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Abstract

Deformable gripper jaws are widely applied in robot grasping applications to better resist
external disturbances. Grasping with such jaws results in nonplanar surface contacts if the
jaws deform to the nonplanar local geometry of an object. The frictional force and torque that
can be transmitted through a nonplanar surface contact are both three-dimensional, result-
ing in a six-dimensional frictional wrench (6DFW). Applying traditional point and planar
frictional contact models to such contacts leads to over-conservative results as the models do
not consider the nonplanar surface geometry and only compute a three-dimensional subset
of the 6DFW. A grasp planner with such overly conservative frictional contact models either
fails to find any grasps to manipulate the object or requires an unnecessary large grasp force,
which may break fragile objects.

To address this issue, this thesis proposes nonplanar frictional surface contact models,
which estimate the force and torque that a deformable gripper jaw can exert on the object
via a nonplanar surface contact. Specifically, this thesis presents the derivation of the 6DFW
by combining concepts of differential geometry and the Coulomb friction law and further
proposes two 6D limit surface (6DLS) models to approximate the frictional force and torque
limit. In addition to experiments with six parametric surfaces and 2,932 meshed contacts
in simulation, the proposed models are further evaluated in terms of their grasp prediction
success rate with more than 3,000 physical grasps of 3D-printed objects collected on three
robot setups. In these experiments, the nonplanar frictional surface contact models increase
precision and recall by up to 4% and 25% over the traditional frictional contact models, re-
spectively.

The thesis further presents a grasp planner for deformable gripper jaws based on the pro-
posed models. The planner finds the most robust grasp using a depth image of previously
unseen objects and achieves 92% grasp success, a 10% increase over the traditional frictional
contact models. The presented grasp planner is also able to find robust grasps for flat objects,
whereas the traditional ones failed to find successful grasps in this case.
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Kurzfassung

Verformbare Greifbacken werden häufig bei Robotergreifanwendungen eingesetzt, um äu-
ßeren Störungen besser zu widerstehen. Das Greifen mit solchen Backen führt zu nichtplana-
ren Oberflächenkontakten, wenn sich die Greifbacken an die nichtplanare lokale Geometrie
eines Objektes anpassen. Die Reibungskraft und das Drehmoment, die durch einen nicht-
planen Oberflächenkontakt übertragen werden können, sind beide dreidimensional, was zu
einer sechsdimensionalen Kraftschraube (engl. six-dimensional frictional wrench, 6DFW)
führt. Die Anwendung herkömmlicher Punkt- und Planarreibungsflächenkontaktmodelle
auf solche Kontakte führt zu zu konservativen Ergebnissen, da die Modelle die nichtplanare
Oberflächengeometrie nicht berücksichtigen und nur eine dreidimensionale Teilmenge der
6DFW berechnen. Ein Greifplaner mit solchen übermäßig konservativen Kontaktmodellen
findet entweder keine Greifpunkte zum Manipulieren des Objektes, oder erfordert eine un-
nötig große Greifkraft, die zerbrechliche Gegenstände zerstören kann.

Um dieses Problem zu adressieren, stellt diese Dissertation nichtplanare Reibungsflä-
chenkontaktmodelle (engl. nonplanar frictional surface contact models) vor, die die Kraft
und das Drehmoment abschätzen, die eine verformbare Greifbacke bei einem nichtplana-
ren Reibungsflächenkontakt auf das Objekt ausüben kann. Diese Dissertation präsentiert
insbesondere die Ableitung des 6DFW durch die Kombination von Konzepten der Dif-
ferentialgeometrie und der Coulombschen Reibung und präsentiert außerdem zwei 6D-
Grenzflächenmodelle (engl. six-dimensional limit surface, 6DLS), um die Reibungskraft- und
Drehmomentgrenze zu approximieren. Zusätzlich zu Simulationsexperimenten mit sechs
parametrischen Oberflächen und 2,932 diskreten Kontakten, werden die vorgeschlagenen
Modelle hinsichtlich ihrer Erfolgsrate bei der Grifferfolgsvorhersage für mehr als 3,000 phy-
sische Greifvorgänge von 3D-gedruckten Objekten, die auf drei Roboteraufbauten gesam-
melt wurden, evaluiert. In diesen Experimenten erhöhen die nichtplanaren Reibungsflächen-
kontaktmodelle die Präzision (engl. precision) und Vollständigkeit (engl. recall) um bis zu 4%
beziehungsweise 25% gegenüber den herkömmlichen Reibungsflächenkontaktmodelle.

Diese Arbeit präsentiert außerdem einen Greifplaner für verformbare Greifbacken basie-
rend auf den vorgeschlagenen Modellen. Der Planer findet den robustesten Griff ihm un-
bekannter Objekte für ein gegebenes Tiefenbild und erzielt eine Erfolgsrate von 92%, 10%
mehr als die traditionellen Reibungsflächenkontaktmodelle. Der vorgestellte Greifplaner ist
darüber hinaus in der Lage, robuste Griffe für flache Gegenstände zu finden, während die
herkömmlichen Planer in diesem Fall keine geeigneten Griffe finden.
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Chapter 1

Introduction

Robot grasping has become an indispensable instrument in industrial and service robots
with wide-ranging applications, such as bin picking and decluttering. A robot that executes
a successful grasp establishes robust contacts between the gripper jaws and the object so that
it can manipulate the object for the desired task at hand. A key research area in grasping is
grasp planning, which addresses the problem of finding the most robust grasp to manipulate
an object. A grasp is robust if it provides sufficient force and torque to the object to counter
external disturbances during the manipulation so that the object remains static relative to the
gripper jaws. The force and torque of a grasp are commonly estimated using a frictional con-
tact model, if the physical properties of the objects and the gripper jaws are known. Existing
frictional contact models [13]–[18] can be applied to grasping with rigid jaws as the models
estimate the frictional force and torque at a point or a planar area contact.

Since recent years, deformable gripper jaws have been widely deployed in grasping ap-
plications due to their enhanced resistance to external disturbances. Grasps with deformable
jaws, such as plastic jaws with a fin ray structure [20], grippers covered with compliant ma-
terials [21]–[23], or soft tactile sensors [19], [24]–[26], result in nonplanar surface contacts
if the local geometry of the object is nonplanar. Figure 1.1 shows representative nonplanar
surface contacts from four pairs of deformable jaws. A nonplanar surface contact results in

(a) (b) (c) (d)

Figure 1.1: Nonplanar surface contacts created by (a) plastic fin ray jaws (figure recreated from [1]
©2021 IEEE); (b) jaws covered with compliant materials (figure recreated from [3] ©2020 IEEE); (c)
Visevi ViseTac tactile sensor (figure recreated from [4] ©2017 IEEE); (d) Soft-bubble gripper (figure
recreated from [19] ©2020 IEEE). Redder colors in (a) and (b) indicate higher pressure.
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2 Chapter 1. Introduction

a six-dimensional (6D) frictional wrench (frictional force and torque) as the frictional force
and torque are in three dimensions, respectively. State-of-the-art grasp planners [27]–[31]
apply existing frictional contact models by assuming a point or planar contact surface. Such
models neglect the nonplanar surface geometry and only consider a three-dimensional (3D)
subset of the 6D frictional wrench (6DFW), which may result in an overly conservative friction
estimation. Danielczuk et al. [5] modeled the frictional wrench for curved surface contacts by
discretizing the contact surface to planar elements and fitting a planar area contact model for
each element, which is less efficient for surfaces that consist of a large number of triangles,
such as curved or complex surface geometry.

To address this issue, this thesis models the 6D frictional wrenches that a deformable
gripper jaw can exert on the grasped object via a nonplanar surface contact. The 6D fric-
tional wrenches are derived based on the differential geometry and Coulomb friction law.
The latter states that the frictional wrench depends on the relative motion, or its tendency,
between two bodies in contact. Specifically, with an external disturbance acting on an ob-
ject during a successful grasp, there is no relative motion between the object and the gripper
jaws. The impact of the external disturbance can be interpreted as the tendency of a rela-
tive motion. Once the disturbance overcomes the maximum static friction, slip occurs and
kinematic friction arises. In this thesis, the tendency of a motion is modeled the same way
as an instantaneous body motion, since grasp planning algorithms estimate the maximum
static friction, which occurs if the object is about to slip. In summary, given an instanta-
neous motion of the grasped object, this thesis first derives the relative motion between the
object and a gripper jaw, followed by the 6D frictional wrench that the jaw can exert on the
object based on this relative motion. However, for many robot grasping applications, the
instantaneous object motion or the relative motion between the object and the jaws caused
by external disturbances during the manipulation is unknown at the time of grasp planning.
To address this issue, this thesis proposes the 6D limit surface (6DLS), generalized from the
3D limit surface (3DLS) proposed by Goyal et al. [13], to describe all possible 6D frictional
wrenches that can be transmitted through a nonplanar surface contact. To improve com-
putational efficiency, this thesis further presents an ellipsoid and a quartic model as two
low-dimensional representations to approximate a 6D limit surface. By using a 6DLS model,
the algorithms presented in this thesis can efficiently plan grasps or infer the grasp success
without any prior knowledge about the object motion or the relative motion between the ob-
ject and the jaws. While the 6DLS considers the frictional wrench limit at a given grasp force,
there are many scenarios where the exact grasp force is unknown, such as grasping with a
robot gripper without force sensors or solving grasp force optimization problems. Therefore,
this thesis extends the 6DLS models and further proposes the 6D friction cone (6DFC), which
approximates the wrench limit, including the normal wrench and the frictional wrench, by
considering grasp forces between 0N and the force limit of the gripper. The 6DLS and the
6DFC models are referred to as the nonplanar frictional surface contact models. This thesis eval-
uates the proposed models by predicting the success of over 3,000 physical grasps collected
on three robot setups.

Similar to the existing models, the proposed nonplanar frictional surface contact models
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: Common pipeline of an analytical grasp planner. (a) Initial state of the setup with the
KUKA robot and the SCHUNK gripper. (b) Algorithm to find the grasp quality map, or the grasp
candidates ranked by the grasp quality. (c) Execution of the highest-quality collision-free grasp from
the grasp quality map. (d) Enlarged view of the gripper from the initial state. (e) Enlarged view of
the perception system (RGBD camera) from the initial state (figure adapted from [32] ©2022 Intel). (f)
Enlarged view of the executed grasp.

can also be used as a key component of an analytical grasp planner, which finds the optimal
grasps to manipulate known objects. Figure 1.2 shows a common pipeline of an analytical
grasp planner. Specifically, Figure 1.2(a) illustrates the initial state, which consists of three
major components: a perception system to obtain object information, a gripper, and an ob-
ject to be grasped. If the object and the gripper geometries are available (for instance, 3D
printed objects, objects scanned by a depth camera, tactile sensor, etc), Figure 1.2(b) depicts
the algorithm to find ranked grasp candidates in simulation. The algorithm first samples
grasp candidates, shown as cylinders representing the grasp axis between the two jaws of
a parallel-jaw gripper. For a candidate, each contact of a grasp is analyzed to compute the
grasp quality. The contact analysis includes the estimation of the contact surface, pressure
distribution, and the frictional wrench limit. The grasp candidates associated with the quali-
ties, or the grasp quality map, are stored for the object. The colors, red, yellow, and green, of
the cylinders indicate low, medium, and high quality of the grasp, respectively. At runtime,
the 6D pose of the object is estimated from the perception system to retrieve the reachable
ranked grasps. Finally, the grasp with the highest quality and which can be performed with-
out collision is executed, as shown in Figure 1.2(c).

While analytical grasp planners are widely deployed since the physics underlying the
frictional contact models are universal [33], it is less realistic to assume that a visual percep-
tion system can provide accurate estimations of object properties [31], [33], [34]. Therefore,
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this thesis also presents a hybrid grasp planner, which combines the proposed nonplanar
surface contact models and modern deep-learning techniques, to plan grasps for previously
unseen rigid objects with deformable jaws. A grasp dataset is created with the proposed
frictional contact models in a simulation setup with a depth sensor and the SCHUNK grip-
per equipped with compliant parallel jaws. Given the grasp dataset, the synthetic depth
images are rendered for each grasp and used to train a convolutional neural network (CNN).
At runtime, the grasp planner finds the most robust grasp for a given depth image by first
sampling grasp candidates in the image, followed by feeding each of them into the CNN for
grasp quality prediction. Finally, the grasp planner returns the highest quality grasp among
all candidates.

In addition to rigid objects, this thesis also applies the proposed 6DLS model to the grasp-
ing of known deformable objects. Deformable jaws are commonly preferred to grasp de-
formable fragile objects as less grasp force is required to establish robust contacts; therefore,
such jaws reduce the risk of irreversible damages due to less object deformation. Grasp-
ing deformable hollow objects, such as plastic bottles and cups, is challenging, as the grasp
should resist disturbances while minimally deforming the object so as not to damage it or
dislodge liquids. To plan grasps for known deformable hollow objects, this thesis proposes
minimal work as a novel grasp quality metric. Specifically, the proposed metric analyzes the
wrenches using the 6DLS models, while considering object deformation caused by the grasp.
A grasp planner that uses the minimal work metric is able to find a robust grasp while min-
imally deforming the object.

In summary, this thesis makes the following contributions:

1. Nonplanar frictional surface contact models: Contact models that estimate the wrench
limit that a deformable jaw can apply on the object via a nonplanar surface contact.

a) 6DFW: Derivation of the 6D frictional wrench for nonplanar surfaces by combin-
ing concepts of differential geometry and the Coulomb friction law.

b) 6DLS: A concept of the 6D limit surface, generalized from 3DLS [13], to represent
the 6D frictional wrench limit for a nonplanar surface contact.

c) 6DLS models: Two geometric models to approximate a 6DLS and efficient algo-
rithms to compute the models.

d) 6DFC: A model to approximate the wrench limit for unknown grasp forces.

2. Robust robot grasping with deformable gripper jaws: Grasp analysis and grasp plan-
ning using nonplanar frictional surface contact models.

a) Grasp success prediction: Two algorithms, by either building a grasp wrench
space or solving a quadratic program, to predict multicontact grasp success for
known rigid objects.

b) Grasp planning: A grasp planner for compliant gripper jaws. Specifically, the
proposed planner detects the most robust grasp for previously unseen rigid ob-
jects given a depth image.
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c) Minimal work metric: A grasp quality metric that evaluates a grasp for known
deformable hollow objects, such as plastic cups and bottles.

1.1 Thesis Organization

This thesis follows the subsequent structure.

• Chapter 2 covers relevant background and state-of-the-art for robot grasping, includ-
ing common perception systems, gripper design to increase grasp robustness, frictional
contact models and their applications in grasp analysis, grasp quality metrics, and
grasp planning algorithms.

• Chapter 3 presents the nonplanar frictional surface contact models and their evalua-
tions in simulation.

• Chapter 4 introduces three applications of the proposed nonplanar frictional surface
contact models, including physical grasp success prediction for known rigid objects,
grasp planning for unknown rigid objects, and grasp planning for known deformable
hollow objects.

• Chapter 5 concludes the thesis. The chapter summarizes the results and further dis-
cusses the limitations of the proposed models, as well as future research directions in
grasp planning.

Parts of the work presented in this thesis have been published in [1], [3], [4], [6].





Chapter 2

Background and Related Work

The chapter presents the most relevant background and related work for robot grasping. In
particular, this chapter first provides the state-of-the-art of perception system (Section 2.1)
and gripper design (Section 2.2), which are two key modules to improve the grasp success.
To better understand the third module, grasp planning, the chapter first introduces the fric-
tional contact models (Section 2.3), which is the main focus of the thesis, followed by the
method to combine the wrench limit of each contact into a grasp (Section 2.4) to compute the
grasp quality (Section 2.5), or the goodness of a grasp. Finally, three types of grasp planners
are introduced (Section 2.6): analytical planners using the computed grasp qualities, empir-
ical planners using modern learning techniques, and hybrid planners, which combine the
advantages of the analytical and empirical planners.

2.1 Perception

A perception system (also referred to as sensing system) provides object information, such
as pose and material properties, for a grasp planner. Two commonly used perception modal-
ities for robot grasping are visual (Section 2.1.1) and tactile sensing (Section 2.1.2).

2.1.1 Visual Sensing

Vision-based grasping algorithms plan grasps directly from visual data by using learning
techniques without physics reasoning (see Bohg et al. [34] for review). Common visual sen-
sors are depth, monocular, and RGBD cameras.

2.1.1.1 Depth Image-based Grasping

Depth camera is perhaps the most commonly used sensing module for grasp planning as the
object pose and other information, such as partial geometry, can be computed or estimated
from the sensor data. Due to the success of Convolutional Neural Networks (CNNs) in image
processing, many works [35], [36] predicted optimal grasp points by training a CNN with
depth images. Johns et al. [37] trained a CNN on a synthetic dataset collected with phys-
ical and depth image simulations to detect grasps. To segment cluttered objects for robot

7
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grasping, Danielczuk et al. [38] proposed a variation of Mask R-CNN [39] and trained it on
synthetic depth images and object masks using simulated heaps of 3D CAD models.

2.1.1.2 Monocular Image-based Grasping

To avoid the complexity of 3D data, other work detects grasps directly from monocular RGB
images [34]. Saxena et al. [40] proposed a grasp point model trained on labeled synthetic
monocular images. Given two RGB images of an object as input, the model outputs a few
good grasp points in each image. The set of points are then triangulated for a 3D location
of the grasp attempt. Redmon et al. [41] proposed an algorithm that classifies images into 16
categories using a CNN and find the optimal grasp associated with the class given an object
image. As human-labeled data are expensive to collect and can be biased, Pinto et al. [42]
proposed a robot self-supervising method to collect the grasp dataset. Specifically, the robot
collected over 700 hours of grasp attempts by trial and error, leading to a dataset of 50,000
data points to train a CNN. Levine et al. [43] further scaled up the dataset and proposed a
learning-based method to hand-eye coordination for robot grasping using a CNN trained on
800,000 grasp attempts collected with up to 14 robot manipulators over two months.

2.1.1.3 RGBD Image-based Grasping

While the aforementioned methods performed well in specific scenarios, detecting 6D grasp
configurations from monocular images alone is an underconstrained problem [34]. There-
fore, many previous works proposed algorithms that learn from both monocular and depth
images. Given RGB and depth images, Rao et al. [44] segmented objects in a cluttered scene
and identified graspable segments. To avoid handcrafted features, Lenz et al. [45] proposed a
deep-learning-based algorithm to detect grasps from an RGBD image of the grasped object.
Danielczuk et al. [46] trained a neural network with a synthetic dataset of RGBD heap images
to search and grasp a specific object in a heap of objects.

2.1.2 Tactile Sensing

In addition to visual sensing, tactile sensing provides the sense of touch (see Luo et al. [47]
and Li et al. [48] for review). Specifically, a tactile sensor provides a diverse set of signals
containing contact details for robots to better interact with the unstructured environments.
There are two types of tactile sensors that are commonly used for robot grasping: force sen-
sors and image-based tactile sensors.

A force sensor provides the contact force between the gripper jaw and the object, such
as the normal force [49], [50] or the 3D force measurement [51], including the normal and
tangential force, such as the frictional force.

An image-based tactile sensors consist of an array of sensor elements [25], [26], [52]–[56]
and provides tactile images, or contact profiles, which describe the contact area and the pres-
sure distribution of a contact. Such tactile sensors can be used either alone [57], [7] or assist
vision [58], [59] for robot grasping. The image-based tactile sensors have wide applications,
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such as grasp adjustment [57], slip detection [60], object property estimation [61], by using
analytical [62] and data-driven methods [63], [64].

2.2 Gripper Design

As the second key component to improve the grasp success, gripper designs are studied to
facilitate grasping, including adhesive fingertips [65], [66], compliant fingertips [23], [67],
underactuated grippers [68]–[72], and soft hands [73]–[75].

Among the advanced gripper designs, compliant fingertips on the rigid grippers increase
grasp robustness and are easier to control compared to underactuated or soft hands. Further-
more, compared to grippers with three to five jaws, a parallel-jaw gripper has significantly
less number of grasp candidates; therefore, grasping with a parallel-jaw gripper reduces the
search space of grasp candidates. Consequently, a large body of research uses parallel-jaw
grippers with compliant fingertips in grasp planning.

2.3 Frictional Contact Modeling

Next, the foundation of the third key component, grasp planning algorithms, is introduced.
An analytical grasp planner requires a frictional contact model, which provides a realistic es-
timation of the possible forces and torques that a gripper jaw can exert on the object. Esti-
mating the frictional wrench, a vector that is composed of the frictional force and torque, is
essential, as a grasp largely relies on the frictional wrench to successfully lift up and rotate an
object. An accurate estimation is especially important for grasping fragile objects, since the
object may be damaged if squeezed too hard or the manipulation may fail if the grasp force
is too small. As a frictional wrench depends on the contact profile and the relative motion
between the object and the jaw, this section first introduces methods to estimate the contact
profile (Section 2.3.1), followed by formulating the object motion (Section 2.3.2) and the fric-
tional wrench that resists this motion (Section 2.3.3), and finally, the frictional contact models
describing the frictional wrench limit (Section 2.3.4 – Section 2.3.5).

2.3.1 Contact Profile Estimation

As an input of the majority of the frictional contact models, a contact profile can be captured
by an image-based tactile sensor (Section 2.1.2), or estimated by the Finite Element Method
(FEM) or a contact model. Note that a contact model, also referred to as a contact theory,
outputs an estimated contact profile, while a frictional contact model outputs the estimated
frictional wrench limit. While the FEM can accurately estimate the contact profiles between
deformable jaws and grasped objects [27], [8], [76], it is computationally demanding and
is potentially infeasible for real-time grasp planning. As a compromise between computa-
tional effort and accuracy, soft contact models require significantly less computational effort,
including kinetostatic analysis for jaws with the fin ray structure [20], modeling hemispher-
ical soft fingertips [77]–[80], and modeling planar compliant jaw pads [30], [5]. This section
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introduces a subset of these efficient models that estimate both contact area and pressure
distribution.

2.3.1.1 Hertz Theory of Linear Elastic Contact

Before presenting the theory, consider the concept of nonconforming contact, which happens
if the geometries of two solids do not fit each other, such as two ellipsoids are in touch or
the nonplanar surface of a cylinder contacts a plane. Consider the scenario where two non-
conforming solids are brought into contact. The initial contact area is a point or a line. As a
normal force is applied as load, the solids deform and the contact area increases. A contact
theory aims to predict the shape of the contact area and how it grows in size with an increas-
ing normal force, as well as the pressure distribution at the contact. Heinrich Hertz [81],
[82] proposed the first contact theory for nonconforming solids in 1882. Note that the Hertz
theory is restricted to frictionless surfaces and linear elastic solids [83, Ch. 4]. This section
summarizes the Hertz theory based on [81], [82], [83, Ch. 4].

Contact Surface Approximation This part first presents the contact surface formulation,
which helps to better understand the theory. Consider two nonconforming bodies, B1 and
B2, are just in contact with B1 below B2. A rectilinear coordinate system is defined so that
the origin is located at the initial contact point. The xy-plane is the tangent plane to the two
surfaces and the z-axis is pointing downwards into the lower solid B1. Before selecting the
x- and y-axes, consider the temporary x′- and y′-axes, which are two arbitrary axes in the
xy-plane and are perpendicular to each other. With the temporary axes, the surface of B1 in
the region close to the initial contact point can be approximated with

z1 = A1x
′2 +B1y

′2 + C1x
′y′ (2.1)

where the higher order terms in x and y are neglected. Next, one defines the x1 and y1 axes
for z1, which are also in the xy-plane and perpendicular to each other. The orientation of x1
and y1-axes are chosen so that the term x1y1 vanishes. Therefore, the equation above can be
written as

z1 =
1

2Rx,1
x21 +

1

2Ry,1
y21 (2.2)

where Rx,1 and Ry,1 are the principal radii of curvature of the surface at the origin. To better
understand Rx,1 and Ry,1, three special geometries of B1 are considered:

1. A sphere with radius R, Rx,1 = Ry,1 = R;

2. A cylindrical lens, or a cylinder, with radius R, Rx,1 = R,Ry,1 =∞;

3. A plane, Rx1 = Ry,1 =∞.

Similarly, the second surface can be expressed as

z2 = A2x
′2 +B2y

′2 + C2x
′y′

= −
(

1

2Rx,2
x22 +

1

2Ry,2
y22

)
.

(2.3)
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Note that the principal axes of the two surfaces, for instance x1 and x2, can be inclined to
each other by an angle α in the range of 0◦ to 90◦.

Next, the separation h between the two surfaces is defined as

h = z1 − z2 = (A1 −A2)x
′2 + (B1 −B2)y

′2 + (C1 − C2)x
′y′. (2.4)

Finally, one selects the x- and y-axes for the contact, whose orientation are chosen so that the
xy term vanishes. Therefore, the separation h can be reformulated as

h =
1

2Rx
x2 +

1

2Ry
y2 (2.5)

where Rx and Ry are the principal relative radii of curvature. The computation of Rx and Ry

can be found in [83, pp. 84–90] and [84].

Assumptions By approximating the contact surfaces this way, Hertz hypothesized that
the contact area between two solids is an ellipse with a and b being the semi-axes, which is
also validated in his observations presented in [82]. To apply the Hertz theory, the following
conditions have to be satisfied

1. The surfaces are continuous and nonconforming.

2. The strains, or the local deformations, are small and within the elastic limit.

3. The contact area is small compared to the dimensions of each body.

4. The contact area is small compared to the relative radii of curvature of the surfaces.

5. The surfaces are frictionless.

Circular Contact Profile If the conditions are satisfied, the Hertz theory provides an ac-
curate estimation of the contact area and the pressure distribution for a given normal force
F as load. First, consider a simplified case where two spheres with radii R1 and R2 are in
contact, which meansRx,1 = Ry,1 = R1 andRx,2 = Ry,2 = R2. The relative radii of curvature
R = Rx = Ry can be computed from

1

R
=

1

R1
+

1

R2
. (2.6)

The contact area between two spheres is a circle with radius a. Denoting r as the radius,
which is the distance between a point within the contact circle to the origin of the coordinate
system, the pressure distribution p (r) is computed with

p (r) = p0

[
1−

(r
a

)2] 1
2

(2.7)

where p0 is the maximal pressure value. Before computing a and p0 from the normal force
F , the effective elastic modulus E needs to be defined first. Denoting E1 and E2 as the elastic
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moduli for the two spheres respectively, and let ν1, ν2 be the Poisson’s ratios, the effective
elastic modulus E can be computed with

1

E
=

1− ν21
E1

+
1− ν22
E2

. (2.8)

Finally, the radius of the contact circle is computed with

a =

(
3RF

4E

) 1
3

. (2.9)

Since R and E are constant, the relation between the radius and the normal force F is

a ∝ F
1
3 . (2.10)

Next, since the normal force F is computed with

F =

∫ a

0
p (r) 2πr dr =

2

3
p0πa

2 (2.11)

p0 can be expressed with

p0 =
3F

2πa2
=

(
6E2F

π3R2

) 1
3

. (2.12)

In summary, Equation (2.7) describes the pressure distribution of the circular contact area,
while Equation (2.9) and Equation (2.12) compute the radius of the circle a and the maximal
pressure value p0, respectively.

Elliptical Contact Profile For the general cases in Hertz contact theory, the contact area is
an ellipse with a and b being the semi-axes with a pressure distribution described by

p(r) = p0

[
1−

(x
a

)2
−
(y
b

)2] 1
2

. (2.13)

Detailed steps to compute p0, a, and b can be found in [83, pp.95–96].

Experiments After proposing the contact theory in [81], Hertz further evaluated it in [82]
with two experiments. The first experiment aimed to evaluate the relation between the nor-
mal force and the radius of the contact circle expressed in Equation (2.9). The contacts are
created from a spherical glass lens with radius R = 28 mm and a glass plate made with
the same material. By applying different loads between 0.2–3.5 kg to the glass lens, Hertz
measured with a microscope the diameter of the resulting contact area, which is between
1.56–4.02 mm. The main observation is that the ratio a/ 3

√
F remains a constant, which vali-

dates the theory expressed in Equation (2.10).
During the second experiment, Hertz evaluated the elliptical contact area between two

identical cylindrical glass lenses. The two lenses are inclined with the angle α between 10◦–
90◦ and the same normal force is applied in each trial. Hertz observed that the measured
radii did not match the theoretical values well when the angle α is relatively small. One
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reason is that it is difficult to put the two lenses in the desired position, so that their common
tangent plane is exactly horizontal. Hertz also evaluated the contacts between a spherical
steel lens and various plates of different metals. However, the experiments were unsatis-
factory. In addition to the difficulty of detecting the initial contact point, the deformation
exceeded the elastic limit and resulted in a plastic deformation during many trials.

2.3.1.2 Power-law Pressure Distribution and its Extensions

While the Hertz contact theory predicts the contact profile for objects with linear elastic mate-
rials, Xydas et al. [80] extended the theory for objects with nonlinear elastic materials. Specif-
ically, Xydas et al. proposed a general power-law model to describe the pressure distribution
between an hemispherical soft jaw and a rigid surface. By assuming a planar circular contact
area with radius a, the contact pressure distribution is formulated as

p (r) = p0

[
1−

(r
a

)k] 1
k

(2.14)

where k = 2 represents the Hertzian pressure distribution and k = ∞ describes a uniform
distribution.

Xydas et al. further used the power-law pressure model with different exponents to com-
pute the limit surface (LS), which is the boundary of the set of all possible frictional forces and
torques that can be transmitted via a contact. Details about the limit surface and its geometric
approximations are later introduced in Section 2.3.4 – Section 2.3.5. Fakhari et al. [85] con-
sidered the asymmetric pressure distributions caused by the tangential force disturbances,
which leads to a smaller LS and potentially a less robust grasp.

2.3.1.3 Pressure Estimation based on Contact Area

Other works computed the contact area based on the local geometry of the grasped object
and the gripper jaw, and estimated the pressure based on the area. Ciocarlie et al. [28] com-
puted the local geometry of two contact bodies based on the elastic contact theory [83] for
real-time grasp score computation. Under the assumption of an elliptical contact area, Cio-
carlie et al. used the Hertzian theory and the Winkler elastic foundation to compute the pres-
sure distribution. Tsuji et al. [29] generalized the contact area approximation from ellipses
to 2D quadric surfaces. Harada et al. [30] analyzed the contacts between rigid objects and a
parallel-jaw gripper with a deformable pad attached to each jaw. Harada et al. estimated the
contact region by clustering the object model and obtained the contact area by projecting the
contact region onto the plane that contains the undeformed jaw pad.

While the aforementioned algorithms assumed a planar contact area, Danielczuk et al. [5]
proposed the Robust Efficient Area Contact Hypothesis (REACH) model to approximate the
nonplanar contact surface between soft jaw pads and rigid objects. Given an object’s geom-
etry modeled as a triangular mesh, the contact area is computed as the constructive solid
geometry intersection of the extruded polygon of the jaw with the object. The intersection
provides an estimation of the deformation of the soft pad around the object at each point on
the contact. The pressure distribution linearly scales with the gripper pad deformation. The
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REACH model thus provides the contact area, consisting of a triangular mesh, and the pres-
sure distribution over each triangle of the contact area mesh. The combination of the limit
surface of each triangle defines the frictional constraints of the contact. The REACH model
is applied in three physical experiments of this thesis (Section 4.1.4, Section 4.2, Section 4.3)
to estimate the contact profiles for compliant gripper jaws.

2.3.2 Instantaneous Body Motion

In addition to a contact model, an instantaneous body motion is the second component re-
quired to compute a frictional wrench, as friction resists the relative motion, or its tendency,
between the grasped object and the gripper jaws. The next part introduces the tendency of
the relative motion in more detail. Consider a representative contact adapted from [86, ch.
12], where a block is resting on a table as illustrated below. To cancel the gravitational force,

the table pushes the block upward with a normal force f⊥. The block is pulled with a slowly
increasing force fp, which is opposite to the frictional force f exerted by the table. At first, fp
is too small to move the block, but results in a tendency of motion of the block. In this case,
the static frictional force f is equal and opposite to fp. Once fp overcomes the maximum
static frictional force, slip occurs and kinematic friction arises. Next, the frictional force is
expressed mathematically for the Coulomb friction law. If the sliding velocity v of the block
is zero, f could act in any direction with the magnitude

‖f‖ ≤ µ‖f⊥‖with ‖v‖ = 0. (2.15)

If the block slides with a velocity v, f is opposite to v and is computed with

f = −µ‖f⊥‖
v

‖v‖
with ‖v‖ 6= 0 (2.16)

where µ > 0 is the friction coefficient.
If the velocity is zero, but the acceleration a is not zero, which occurs when the block is

about to slip, f is
f = −µ‖f⊥‖

a

‖a‖
with ‖v‖ = 0, ‖a‖ 6= 0. (2.17)

The static frictional force reaches the maximum in this case and is opposite to a.
To apply this representative contact to grasping, the table can be substituted with a grip-

per jaw and fp can be considered as an external disturbance during the manipulation, which
may cause a relative motion between the object and the jaw if fp is sufficiently large. By
estimating the maximum static friction using Equation (2.17), one can infer if the expected
external disturbance can be counterbalanced by the frictional force and torque at each con-
tact of the grasp, so that there is no relative motion between the object and the gripper jaws,
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which is considered as a successful grasp. By comparing Equations (2.16) and (2.17), one can
observe that if the direction of v and a is the same unit vector, then the resulting frictional
forces have the same magnitude and direction, regardless if the block is about to slip or is
sliding. Therefore, for grasping applications, one can compute the frictional force and torque
based on the sliding velocity, instead of the acceleration, to avoid the potential complexity
of a second-order dynamic system involving forces and accelerations. Similarly, this thesis
also computes the frictional wrench at a nonplanar surface contact based on the object ve-
locity, or object motion, instead of the object acceleration. The following section describes
instantaneous object motion in two and three dimensions.

2.3.2.1 Instantaneous Motion in Two Dimensions

In two dimensions, the instantaneous motion of a body can be described as a rotation around
a point, defined as the center of rotation (COR). A translation can be considered as a rotation
around a COR that is infinitely far away. The concept of COR is used to compute the fric-
tional wrench for planar surface contacts in Section 2.3.3.3.

Given a COR, the linear velocity v at a point is perpendicular to the vector from the
COR to this point. Figure 2.1(a) illustrates the linear velocities va,vb,vc at three points a, b, c
given a representative COR, respectively. As the COR is further away along the x-axis in
Figure 2.1(b) than in Figure 2.1(a), the linear velocities va,vb,vc are closer to parallel to the
y-axis. If the COR is infinitely far away along the x-axis, va,vb,vc are parallel to the y-axis,
resulting in a pure translation along the negative y-axis.

(a) (b)

Figure 2.1: Two representative center of rotations (CORs) of a rigid body and the corresponding linear
velocities va,vb,vc at the points a, b, c, respectively.

Next, the linear velocity at a point on the object for a given COR is formulated mathemat-
ically. Let ω = [0, 0, ωz]

T be the counter-clockwise angular velocity of the object that rotates
around the COR, let d be the vector from the COR to the point of interest. Figure 2.1 depicts
the angular velocity for the representative COR and da for the point a. The linear velocity at
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the point is computed with

v =

vx
vy

 = ω × d =

−ωz · dy
ωz · dx

 (2.18)

The Coulomb friction law states that the frictional force and torque depend on the di-
rection of the linear velocity, not on its magnitude. Therefore, the definition of a unit linear
velocity v̂ becomes handy. v̂ is the direction vector of the linear velocity and is computed
with

v̂ =
1

‖d‖

−dy
dx

 . (2.19)

The translational and rotational motion of a rigid body are often combined into a single
motion, defined as the body twist ξ, or generalized velocity. For an instantaneous motion in
the 2D space, ξ at a point is in three dimensions. In summary, ξ is

ξ =


vx

vy

ωz

 . (2.20)

2.3.2.2 Instantaneous Motion in Three Dimensions

The instantaneous motion in 3D is used to derive the frictional wrench that resists the mo-
tion at a nonplanar surface contact (Section 3.2). The 3D generalization of the concept of
COR is the instantaneous screw axis (ISA). An instantaneous motion in three dimensions can
be described as the combination of a translation along an axis and a rotation about the same
axis. This axis is defined as the instantaneous screw axis. Specifically, the linear velocity
v ∈ R3 at a point can be considered as the sum of a velocity parallel to the ISA and a
velocity perpendicular to the ISA, denoted as v‖ and v⊥, respectively.

Figure 2.2: Instantaneous body motion in three dimensions.
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Before computing the linear velocity, this part first formulates the instantaneous screw
axis. Figure 2.2 illustrates a representative ISA. The instantaneous screw axis is represented
as a line l with direction e ∈ R3 that goes through a point q ∈ R3. Note that a line is
completely defined by e and q, where ‖e‖ = 1 and q is an arbitrary point. The Plücker co-
ordinates [87], [88, pp. 60–68] of l are defined as (e,m), where m is the moment vector and is
defined as

m = q × ewith ‖e‖ = 1. (2.21)

Using the Plücker coordinates to describe a line is beneficial since m remains the same, re-
gardless of which point q on the line is chosen to compute m. For instance, the point q and
q′ in Figure 2.2 have the same moment m. Note that a line in the space has four degrees of
freedom (DoF), since a translation along the line or a rotation about itself leads to the same
line. In addition to the constraint ‖e‖ = 1, the Plücker coordinates (e,m) reflect the four DoF
of l by satisfying

eTm = eT (q × e) = 0. (2.22)

Given the Plücker coordinates (e,m) of an ISA, the following part presents the computa-
tion of the angular and linear velocity at a point. The angular velocity ω ∈ R3 rotating about
the ISA is the same at any point on the object and can be written as

ω = ‖ω‖e. (2.23)

As the linear velocity at a point depends on the coordinate of this point, the origin o of the
object is selected as a representative point to derive the linear velocity, which is a compo-
nent of the twist. The linear velocity v at o consists of v⊥ and v‖, where v⊥ is the velocity
perpendicular to the ISA and is computed with

v⊥ = ω × (−q) = q × ω = ‖ω‖m. (2.24)

The velocity v‖ parallel to l can be expressed as

v‖ = ‖v‖‖e. (2.25)

Another common way to express v‖ is by defining the scalar pitch h, which is the ratio of
translational to rotational motion. Mathematically, h is defined as h = vTω/‖ω‖2. Therefore,
v⊥ can also be expressed with

v‖ = hω. (2.26)

Finally, the linear velocity v at o is computed with

v = v‖ + v⊥ = hω + ‖ω‖m. (2.27)

The twist ξ at the origin o is defined as

ξ =

v
ω

 =

hω + ‖ω‖m

e

 = ‖ω‖

he+m
e

 . (2.28)
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There are two important special cases. If ‖ω‖ 6= 0 and h = 0, a twist is a pure rotation about
l. If ‖ω‖ = 0 and h = ∞, a twist is a pure translation along l; mathematically, ξ is expressed
as ξ = ‖v‖

[
eT ,0T

]T in this case.
Since the magnitude of ω or v does not affect the frictional wrench for the Coulomb fric-

tion law, the definition of a unit twist becomes handy. First, the magnitude of twist M ≥ 0 is
defined as

M =

‖ω‖, if ω 6= 0

‖v‖, if ω = 0.
(2.29)

Next, consider the definition of the unit twist ξ̂ ∈ R6, which is a twist whose magnitude is
one. Specifically, the unit twist for motions that include a rotation can be obtained by substi-
tuting ‖ω‖ = 1 in Equation (2.28), while ξ̂ for pure translations is obtained by substituting
‖ω‖ = 0 and ‖v‖ = 1. In summary, the unit twist ξ̂ is defined as

ξ̂ =



he+m
e

 if ‖ω‖ = 1

e
0

 if ‖ω‖ = 0.

(2.30)

Note that the triplet (e,m, h) or the vector e alone completely define ξ̂. Therefore, one can
parametrize ξ̂ with (e,m, h) or e to compute relative motion and the frictional constraints of
a contact.

2.3.3 Frictional Wrench Computation

Given an instantaneous object motion (Section 2.3.2), this section presents the frictional force
and torque that a gripper jaw can exert on the object via the contact to resist this motion.
Since a rigid and a deformable gripper jaw transmit different frictional forces and torques,
there are three commonly used contact types, the hard point contact, the soft point contact,
and the planar area contact. For each contact type, the computation pipeline takes the object
motion and the contact profile as inputs, then outputs the corresponding maximum static
frictional force and torque that can be transmitted through the contact.

The friction computation requires the following assumptions

• The contact profile, including the contact area and the pressure distribution, is known.
The contact area can be a point, multiple discrete points, a line segment, or a planar
area.

• The friction coefficient µ is known and is a constant over the contact area.

• Coulomb friction model applies. Specifically, the frictional force is antiparallel to the
relative velocity and does not depend on the magnitude of the velocity. The magnitude
of the maximal static frictional force is proportional to the normal force.



2.3. Frictional Contact Modeling 19

Rather than dealing with a pair of vectors, the force f and torque τ are commonly com-
bined into a single vector, defined as the wrench w

w =

f
τ

 . (2.31)

The frictional wrench computation for each contact type is reviewed in the following.

2.3.3.1 Hard Point Contact

The hard point contact is commonly used in the scenarios, where two nonconforming rigid
bodies are in contact and the contact area is negligible. Figure 2.3 depicts the front view of a
representative hard point contact caused by a spherical rigid jaw pressing onto a rigid cube.
For a hard point contact, the gripper jaw transmits a two-dimensional frictional force at the
contact point to the object.

Figure 2.3: The front view of a representative hard point contact.

Given the relative velocity between the object and the jaw, the frictional force at the con-
tact point is computed next. Let v be the sliding velocity of the object, which is the velocity
of the cube depicted as a pink arrow in Figure 2.3. By assuming the jaw is static after the
contact before the manipulation, the relative velocity vr, which is the velocity of the cube
relative to the jaw, is vr = v. Let O denote the object frame located at the object center of
mass and let C be the contact frame at the contact point, depicted as the blue dot in Fig-
ure 2.3. The z-axis of the contact frame C is in the direction of the inward surface normal at
the contact point, same as the direction of the normal force that the jaw exerts on the object.
Let f⊥ = [0, 0, f⊥]

T , f⊥ ≥ 0 be the normal force acting on the cube and let f = [fx, fy]
T be

the maximum static frictional force in the frame C. The frictional force f acting on the cube
is antiparallel to v and is computed with

f =

fx
fy

 = −µf⊥
v

‖v‖
. (2.32)
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Note that the magnitude of f is a constant with a fixed normal force f⊥

‖f‖ = µf⊥. (2.33)

The frictional wrench w for a hard point contact in the local contact frame C is w = [fx, fy]
T

as there is no frictional torque if the contact area is negligible.

2.3.3.2 Soft Point Contact

Although the hard point contact is widely used to estimate the frictional force, it does not
consider the frictional torque even if the contact area is not negligible, for instance, if a de-
formable gripper jaw presses onto a rigid cube, as shown in Figure 2.4, where the dashed
line depicts the undeformed shape of the jaw and the grey area illustrates the deformed jaw.

Figure 2.4: The front view of a representative soft point contact.

To address the issue with the overly conservative frictional torque estimation, Murray et
al. [15] proposed the soft point contact type. This contact type decouples the angular and
linear velocity of the grasped object to compute the frictional force and torque individually.
Figure 2.4 illustrates the decoupled twist and frictional wrench as the pink and green arrows,
respectively. Let γ ∈ R+ be the torsional friction coefficient and let ω be the angular velocity
of the object. For instance, the representative angular velocity shown in Figure 2.4 can be
expressed with ω = [0, 0,−ωz]T with ωz > 0, which is an angular velocity about the negative
z-axis in contact frame C. The maximum static frictional force f and the frictional torque τ ,
or the torsional friction, in the contact frame C are computed with

f =


fx

fy

0

 = −µf⊥
v

‖v‖

τ =


0

0

τz

 = −γf⊥
ω

‖ω‖
.

(2.34)
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The magnitudes of f and τ are also constant with a fixed normal force f⊥

‖f‖ =
√
f2x + f2y = µf⊥

‖τ‖ = |τz| = γf⊥.
(2.35)

While a soft point contact provides a potentially unrealistic frictional wrench estimation due
to the decoupling of angular and linear velocity, it is a practical model due to its efficiency;
therefore, it is commonly applied in grasp planning [89], [90]. In summary, a soft point con-
tact transmits a 3D frictional wrench w = [fx, fy, τz]

T in the contact frame C.

2.3.3.3 Planar Area Contact

Compared to the soft point contact type, the frictional wrench for a planar area contact, also
called a planar surface contact, is a more realistic estimation but requires higher computa-
tional effort. In contrast to the hard and soft point contacts, the frictional wrench for a planar
surface contact is computed by summing up the local frictional wrench contribution at each
point across the contact. Specifically, given a 2D instantaneous object motion (Section 2.3.2),
the wrench computation pipeline first determines the relative motion of each point on the
contact area, then computes the local frictional wrench at each point, finally integrates or
sums up the local frictional contributions.

Figure 2.5: Left: the front view of a representative planar area contact. Right: the local frictional force
at a point on the contact area for the given COR.

Figure 2.5 (left) shows the front view of an area contact when a jaw deforms onto a rigid
cube. The blue line depicts the contact area. Figure 2.5 (right) illustrates the contact area A
between the two bodies. As the contact area can be of arbitrary shape, it is not illustrated as
a circle to avoid potential confusion.

First, consider the local contact frame C, which lies in the 2D plane that contains the
contact area. The frictional wrench and the relative motion are computed in C. Directly com-
puting the frictional wrench in the object frame O leads to a 6D frictional wrench instead of
3D, thus potentially becomes less efficient. Next, consider a rectilinear coordinate system in
C fixed in the plane with the x- and y-axes being arbitrarily chosen. The origin ofC is located
at the pressure center o = [ox, oy]

T of the contact, as the frictional torque is computed with
respect to o [13]. This origin selection simplifies the process of transforming the frictional
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wrench applied at C into an equivalent wrench applied at O for multicontact grasp analysis.
To compute the pressure center, letA be the contact area and let p be the pressure distribution
of A, where p(x, y) ≥ 0 is the pressure value at the point (x, y) ∈ A. The pressure center o is
computed with

ox =

∫
A x · p(x, y) dA∫
A p(x, y) dA

, oy =

∫
A y · p(x, y) dA∫
A p(x, y) dA

. (2.36)

Given an instantaneous object motion described as a rotation around the center of ro-
tation (COR) in the xy-plane, the next part computes the linear velocity of a point, or an
infinitesimally small area, and its local frictional contribution. Denoting dA as an infinitesi-
mally small area at (x, y) onA, the linear velocity v(x, y) of dA is perpendicular to the vector
from the COR to (x, y), denoted as d(x, y), since dA rotates around the COR. The local fric-
tional force df(x, y) is opposite to v(x, y) and is computed as

df(x, y) = −µ · p(x, y) · v(x, y)
‖v(x, y)‖

dA. (2.37)

Let dτz(x, y) be the local frictional torque of dA about the z-axis pointing outward. With
r(x, y) being the torque arm, dτz(x, y) is computed with respect to the pressure center o by

dτz(x, y) = r(x, y)× df(x, y), where r(x, y) =

x
y

− o. (2.38)

By integrating the local frictional force and torque, the frictional wrench w = [fx, fy, τz]
T

of the contact area A is computed as

f =

fx
fy

 =

∫
A
df(x, y) dA = −µ

∫
A
p(x, y) · v(x, y)

‖v(x, y)‖
dA

τz =

∫
A
dτz(x, y) dA = −µ

∫
A
p(x, y) ·



x
y

− o
× v(x, y)

‖v(x, y)‖

dA.

(2.39)

To better understand the frictional wrench limit of a planar area contact, the following
part discusses the extremes of the frictional force and torque at the contact. Figure 2.6 illus-
trates the local frictional force direction vectors with two representative CORs. As illustrated
on the left of Figure 2.6, the frictional force fx along the x-axis reaches the maximum if the
COR is infinitely far away along the negative y-axis as the local frictional force at each point
is parallel to the x-axis. This COR location results in a zero frictional torque with respect to
o. As shown on the right of Figure 2.6, the magnitude of τz reaches the maximum if the COR
locates at o, since the torque arm of each small area is perpendicular to the local frictional
force. This COR location results in a zero frictional force only if the pressure distribution is
circular symmetric.
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Figure 2.6: Direction vectors of the local frictional forces correspond to two locations of the center of
rotation (COR), which result in the maximum frictional force along the x-axis (left) and the maximum
frictional torque about the negative z-axis (right), respectively.

2.3.4 Limit Surface

So far, the frictional wrench is derived for a given relative motion between two bodies in
contact. However, for many robot applications, such as grasp planning, the relative motion
between the grasped object and the gripper jaws caused by external disturbances during the
manipulation is unknown at the time of planning. Therefore, this section presents the fric-
tional wrench limit that a gripper jaw can act on the object by considering all possible object
motions. Goyal et al. [13] proposed a so-called limit surface (LS) to describe the frictional
wrench limit, which is widely used to plan grasps [27], [28], [91]. The LS is also referred to as
the three-dimensional limit surface (3DLS) in this thesis, as it describes the frictional wrenches
in 3D. In addition to describing all possible frictional wrenches, the limit surface also pro-
vides an estimation of the relative motion between two bodies in contact. Thus, the LS is also
applied in pushing manipulation [16], [88], [92]–[95].

The limit surface in the wrench space can be obtained by sampling the relative motion
space and computing the frictional wrench for each motion. The inverse problem of finding
the relative motion associated with a given frictional wrench is addressed in [13] with the as-
sumption of maximal work inequality. Although the inverse problem is not needed in grasping
applications, the LS properties regarding this part are also reviewed in the following. As a
foundation of the limit surface, the limit curve at a point and the maximum work inequality
are introduced first.

2.3.4.1 Limit Curve and Maximum Work Inequality

At a point of a frictional contact in the xy-plane with a fixed normal force, the frictional forces
in the (fx, fy)-space form a closed curve, defined as the limit curve (LC). The frictional forces
on the LC correspond to all possible directions of the relative linear velocity at the point.

The assumption of maximal work inequality [96], or principle of maximal dissipation,
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states that the frictional forces are adjusted to cause maximum dissipation with a given slid-
ing velocity. Specifically, let f = [fx, fy]

T be the frictional force, let f∗ ∈ R2 be an arbitrary
frictional force within the LC, and let v be the relative linear velocity, the maximum work
inequality can be stated as

(f − f∗)Tv ≥ 0 (2.40)

which implies that the LC must be convex and the direction of v is given by the normal to
the LC at f , where the limit curve is smooth [96]. The LC is a circle for the Coulomb friction
law, or isotropic friction.

2.3.4.2 Load Motion Inequality

The limit curve specifies the frictional force limit at a point and the unique relation between f
and v. However, the LC does not include the frictional torque or the relative angular velocity
for a planar area contact. Thus, Goyal et al. [13] generalized the limit curve to 3D, called the
limit surface, to describe the 3D frictional wrench limit and to fully characterize the relation
between the 3D frictional wrench and the relative motion.

Goyal et al. [13] considered the scenario, where a rigid object slides on a planar surface.
Figure 2.7 illustrates a representative contact, where the object motion is a pure translation.
In contrast to grasping applications, which require the frictional wrench limit acting on the
object (green arrow in Figure 2.7), the limit surface for planar pushing applications provides
the relation between the frictional wrench that the object acts on the supporting surface (or-
ange arrow) and the object motion relative to the surface (pink arrow). In other words, with
the Coulomb friction law, the frictional force acting on the surface has the same direction as
the object relative velocity. Note that if the limit surface is only used to describe the frictional
wrench limit without considering the wrench motion relation and the Coulomb friction law
applies, the LS is identical for the frictional wrenches acting on the object and acting on the
supporting surface since the LS is symmetric. Details about the symmetry are discussed in
Section 2.3.4.4.

Recall that a twist ξ = [vx, vy, ωz]
T describes the instantaneous object motion (Sec-

tion 2.3.2.1). As the supporting surface is static and planar, the relative object motion is
equivalent to the object twist, which is also referred to as the complete velocity in [13] with
its direction ξ/‖ξ‖ being the motion vector. The frictional wrenchw and the twist ξ are with
respect to the same reference point o, typically the contact pressure center or center of mass
of the object.

Figure 2.7: The front view of a representative sliding contact in the xy-plane.

Let w = [fx, fy, τz]
T be the frictional wrench that the object acts on the surface, let w∗ ∈

R3 be an arbitrary frictional wrench, and let ξ = [vx, vy, ωz]
T be the object twist with respect
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to the reference point o. By applying the principle of virtual work and the maximum work
inequality described with Equation (2.40), one obtains the following load motion inequality

(w −w∗)T ξ ≥ 0. (2.41)

The load motion inequality has the same structure as Equation (2.40) and provides important
properties of the limit surface. The definition and properties of the limit surface are reviewed
in the following.

2.3.4.3 Limit Surface Definition

The limit surface is defined as the boundary of the set of all possible frictional wrenches that
can be applied through one contact or a set of contacts. The LS is a closed, convex surface in
the three-dimensional wrench (load) space. Figure 2.8 depicts a representative limit surface.
Let f(x) = 1 with x ∈ R3 define the limit surface, an arbitrary frictional wrench w∗ that can
be transmitted through the contact or the set of contacts is constrained by

f(w∗) ≤ 1. (2.42)

Equation (2.42) provides the frictional wrench constraints, or the frictional wrench limit, of
a contact. Specifically, if the required frictional wrench to counter an external disturbance is
inside of the LS, no relative motion occurs. The LS definition is often used to plan grasps or
to predict grasp success [27], [5], [91].

Figure 2.8: A representative limit surface in the wrench space.

2.3.4.4 Limit Surface Properties

From the load motion inequality in Equation (2.41), one obtains the following properties of
the limit surface. Note that the properties reviewed here are for the Coulomb friction law,
or isotropic friction, which means that the frictional force is parallel to the relative linear
velocity and its magnitude is a constant with a fixed normal force.

1. The limit surface is closed, convex and symmetric about the origin in the wrench space.
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2. If a relative motion occurs, the frictional wrench w lies on the limit surface and the
associated twist ξ is normal to the LS at w if the normal is well-defined.

As the first property, the LS is symmetric about the origin ([0, 0, 0]T ) in the wrench space.
Specifically, if the frictional wrench w associated with the twist ξ is on the LS, then −w as-
sociated with −ξ is also on the LS, since the reversal of a twist leads to the reversal of the
frictional force direction at each point on the contact.

The second property describes the relation between the frictional wrench and the associ-
ated twist at the reference point o. This property is widely applied in planar pushing [88],
[92], [95], where the object twist ξ relative to the supporting surface is predicted for a given
frictional wrench w acting on the surface, as illustrated in Figure 2.8. If w lies at a vertex or
on a flat region of the limit surface, the relation between the twist and the frictional wrench
is not unique. Such non-unique load motion relations happen if the contact area consists of
discrete points or is a line segment, which is discussed next.

2.3.4.5 Vertices and Facets on a Limit Surface

For isotropic friction, vertices or facets (flat regions) on the limit surface occur if the contact is
a line segment or consists of discrete points. On a vertex of the LS, multiple twist directions
are associated with a frictional wrench; whereas on a facet, a range of frictional wrenches are
associated with the same twist direction. If the contact pressure distribution is continuous
and the contact area is not a line segment, the limit surface is smooth and the load motion
relation is well-defined.

Vertices on the LS occur if the contact area is a line segment or all discrete points of the
contact are colinear. The sets of CORs lying on this line but outside of the contact region lead
to the same total frictional wrench of the contact. This is due to the fact that each of the CORs
in these sets results in the same direction of relative velocity at each point on the contact.
Consider an example illustrated in Figure 2.9(a). The blue line segment, which is colinear to
the x-axis, is the contact area. Two representative CORs (purple dots) are on the x-axis but
outside of the contact region. The two CORs lead to the same local frictional forces, whose
direction vectors are illustrated in green, and therefore, the same total frictional wrench of
the contact. Figure 2.9(b) illustrates the total frictional wrench as an orange vertex on the LS.
The twists corresponding to the two CORs are shown as purple arrows.

Facets on the LS occur if the contact consists of discrete non-colinear points. The under-
lying reason is that if the COR coincides with one of the points, the twist of this point is
indeterminate. Therefore, the frictional force at this point can have any direction. By adding
each of the possible frictional contributions at this point to the contributions at the rest of
the points on the contact, one obtains the set of possible frictional wrenches of the contact
that corresponds to the same COR. Therefore, the number of facets on the LS is same as the
number of contact points. For a larger number of points, the contribution of each point to the
total frictional wrench becomes smaller; therefore, the associated facet shrinks. The facets
vanish if the contact pressure distribution is continuous. Figure 2.10(a) depicts a representa-
tive three-point contact resulting from three screws mounted on a triangular pad, where the
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(a) (b)

Figure 2.9: (a) A line segment contact. (b) The corresponding limit surface with vertices.

contact points a, b, c are marked in blue. Figure 2.10(b) shows the limit surface of the contact.
Each facet on the LS is caused by locating the COR at a, b, and c, respectively. The normal of
each facet is the direction vector of the twist ξ that corresponds to one of the three CORs.

(a) (b)

Figure 2.10: (a) Front and bottom view of a triangular pad with three screws, which results in a three-
point contact between the object and the ground. (b) The corresponding limit surface with three facets
in the wrench space.
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2.3.4.6 Constructing a Limit Surface

Given the contact profile, Goyal et al. [13] proposed three ways to construct the limit surface.
The most common way is to compute the frictional wrenches for each of the possible relative
motions. This process requires a dense sampling in the motion space and is potentially time-
consuming. For a contact that consists of discrete contact points with a known limit surface
for each individual point, the LS of the contact is the outer envelope of the convolution of
each limit surface, followed by adding the facets to the LS.

The existing methods are either of low efficiency or not suitable for general planar area
contacts. Therefore, many works approximate the limit surface with different geometric
models for efficiency. Most commonly used LS models are reviewed in the following sec-
tion.

2.3.5 Frictional Contact Models

Given a contact profile, a frictional contact model outputs the possible wrenches that a gripper
jaw can act on the object via the contact. The possible wrenches, or the contact wrenches, are
the sum of the possible frictional wrenches and the wrench impressed by the normal force.
This thesis defines the contact wrench model and the limit surface model as the geometric model
that represents or approximates the contact wrench limit and the frictional wrench limit,
respectively. The contact wrench model and the limit surface model for each of the three
contact types described in Section 2.3.3 are introduced in the following. Figure 2.11 provides
a summary of these models.

2.3.5.1 Hard Point Contact Model

As introduced in Section 2.3.3.1, a hard point contact transmits 2D frictional forces in the
local contact frame C, whose z-axis is in the direction of the inward surface normal at the
contact point of the object. The magnitude of the frictional force ‖f‖ is upper bounded by
µf⊥, where f⊥ = [0, 0, f⊥]

T with f⊥ ≥ 0 is the normal force. In other words, any frictional
force f at a hard point contact for the given f⊥ is constrained by the limit circle. Mathemat-
ically, the set of frictional wrench constraints FHP for a hard point contact is

FHP =

{
f = [fx, fy]

T

∣∣∣∣∣ √f2x + f2y ≤ µf⊥

}
. (2.43)

The contact force, or the sum of the normal and frictional force, lies in a cone aligned with
the contact normal, commonly known as the friction cone as illustrated in Figure 2.12(a). The
contact wrench is equivalent to the contact force for a hard point contact, as the contact force
is a vector that goes through the origin of C, hence does not generate torque with respect
to the origin. The friction cone for the hard point contact model CHP, which constraints the
contact wrench c = [fx, fy, f⊥]

T , is represented as

CHP =

{
c = [fx, fy, f⊥]

T

∣∣∣∣∣ √f2x + f2y ≤ µf⊥, f⊥ ≥ 0

}
. (2.44)
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Figure 2.11: The limit surface and contact wrench models for three common contact types.

Note that in some literature, the surface of the friction cone is defined as the limit surface
of a point contact, whereas the cone is defined as the contact wrench model of a hard point
contact in this thesis.
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(a) Friction cone. (b) Outer cone approximation (c) Inner cone approximation

Figure 2.12: Friction cone and its approximations.

Contact Wrench Constraints as Linear Matrix Inequalities To apply the hard point con-
tact model to grasping, Buss et al. [97] discovered that the contact wrench constraints can be
transformed into positive (semi)definite constraints on certain symmetric matrices. Based on
this observation, Buss et al. [97] formulated the frictional constraints as linear matrix inequal-
ities (LMIs) to optimize grasp force. Han et al. [98] addressed three fundamental problems
in grasp analysis by solving convex optimization problems involving LMIs, which can be
efficiently solved in polynomial time. This part introduces the method to cast the contact
wrench constraints from the hard point model to a linear matrix inequality (LMI). The LMI-
based convex optimization problems for grasp analysis are introduced later in Section 2.5.

Recall that the contact wrench constraints for the hard point model are√
f2x + f2y ≤ µf⊥, f⊥ ≥ 0.

The constraints are equivalent to enforcing positive semidefiniteness of the following matrix
PHP

PHP =


µf⊥ 0 fx

0 µf⊥ fy

fx fy µf⊥

 � 0 (2.45)

since the eigenvalues of PHP are

λ1 = µf⊥

λ2 = µf⊥ −
√
f2x + f2y

λ3 = µf⊥ +
√
f2x + f2y .

(2.46)

The positive semidefiniteness of PHP is equivalent to λ1, λ2 ≥ 0, as λ1 ≥ 0 implies λ3 ≥ 0.

Friction Cone Approximations A second-order friction cone leads to quadratic contact
wrench constraints. To increase efficiency, a friction cone is commonly linearized to approx-
imate the contact wrench limit with linear constraints. Figure 2.12(b) and (c) illustrate the
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linearized outer and inner friction cone approximations as two N -sided polyhedral cones,
where N is the number of edges of the cone. The linear contact wrench constraints for the
outer and inner cone approximations are computed next.

Consider a N -sided polyhedral cone with evenly distributed edges as an outer cone ap-
proximation. Mathematically, the outer cone approximation is represented as

Couter
HP =

{
c = [fx, fy, f⊥]

T

∣∣∣∣∣ cos
(
2π · i
N

)
fx + sin

(
2π · i
N

)
fy ≤ µf⊥,

f⊥ ≥ 0, ∀i ∈ {1, . . . , N}

}
.

(2.47)

There are in total N + 1 contact wrench constraints for an N -sided outer polyhedral cone.
A common inner cone approximation is the convex hull of the forces along the extrema

of the friction cone, which is the smallest convex set that contains the forces. The forces along
the extrema are illustrated as orange dots in Figure 2.12(c). Consider a convex hull with M
facets. Let nHull

i∈{1,...,M} ∈ R3 be the outward normal of the ith facet and let qi ∈ R3 be a point
on the facet. The inner cone contact wrench constraints are represented as

Cinner
HP =

{
c = [fx, fy, f⊥]

T

∣∣∣∣∣ cTnHull
i ≤ qTi nHull

i , ∀i ∈ {1, . . . ,M}

}
. (2.48)

There are M contact wrench constraints for a convex hull with M facets. Although an in-
ner cone approximation provides conservative constraints, which are preferred in grasping
applications due to less false positive predictions, building a convex hull is potentially time
consuming since its time complexity is O(N logN) with N being the input size of the points.

Other work [99] approximated the friction cone with multiple ellipsoids for fast grasp
planning [100].

2.3.5.2 Soft Point Contact Model

Recall that a soft point contact transmits 3D frictional wrenches in the local contact frame
C (Section 2.3.3.2). The frictional forces and torques are decoupled, which means that their
magnitudes are individually upper bounded. Given a normal force with magnitude f⊥ ≥ 0,
the set of frictional wrench constraints FSP for a soft point contact model is

FSP =

{
w = [fx, fy, τz]

T

∣∣∣∣∣ √f2x + f2y ≤ µf⊥, |τz| ≤ γf⊥

}
. (2.49)

The set of constraints above indicates that the limit surface model is an elliptic cylinder in
the (fx, fy, τz)-space, as illustrated in Figure 2.13(a).

From FSP, one can derive the contact wrench constraints. The contact wrench c =

[fx, fy, f⊥, τz]
T of a soft point contact is in four dimensions, since the torque caused by the

normal force is zero with respect to the origin of the contact frame C. The contact force is
constrained by the friction cone, same as for a hard point contact. The torque component of
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c equals the frictional torque, which is constrained by γf⊥. In summary, the set of contact
wrench constraints CSP is

CSP =

{
c = [fx, fy, f⊥, τz]

T

∣∣∣∣∣ √f2x + f2y ≤ µf⊥, |τz| ≤ γf⊥, f⊥ ≥ 0

}
. (2.50)

Figure 2.13(b) and (c) illustrate a 3D and a 2D projection of the 4D contact wrench model for
a soft point contact, respectively.

(a) (b) (c)

Figure 2.13: Soft point contact limit surface and contact wrench models. (a) Elliptic cylinder as the
limit surface model. (b): Friction cone, which is a 3D projection of the contact wrench model in the
(fx, fy, f⊥)-space. (c): Triangle, which is a 2D projection of the contact wrench model.

Approximation of Contact Wrench Constraints The contact wrench constraints can be
approximated with an outer or inner polyhedral cone for the 3D contact forces, same as for
the hard point contact model (Section 2.3.5.1), and linear constraints for the frictional torque
with Equation (2.49).

2.3.5.3 Ellipsoidal Planar Area Contact Model

There are two commonly used models to approximate the limit surface for a planar area
contact: an ellipsoid and a convex fourth-order polynomial, or a convex quartic.

The ellipsoidal model is a data-driven approach proposed by Lee et al. [101] and is discov-
ered by plotting the 3D frictional wrenches in the (fx, fy, τz)-space. As the ellipsoid has an
analytic form, one can easily determine if a relative motion will occur by checking whether
the required frictional wrench to counterbalance the external disturbance is contained within
the ellipsoid.

This part presents the methods to construct an ellipsoid. Given the contact areaA and the
pressure distribution p of a contact, Lee et al. [101] proposed a method to construct the ellip-
soid by computing the ellipsoid end points with the corresponding locations of the center of
rotation. The two end points [fx,max, 0, 0]

T and [0, fy,max, 0]
T correspond to pure translations

along the x- and y-axis, respectively. Note that fx,max = fy,max = µ
∫
A p dA. The third end

point (fx, fy, τz,max) is computed with Equation (2.39) by locating the COR at the pressure



2.3. Frictional Contact Modeling 33

center, which is also the origin of the contact frame C. With this COR location, the frictional
torque τz is maximized, while the frictional forces fx and fy are only zero if the pressure
distribution is circular symmetric, such as Kao’s pressure distribution (Section 2.3.1.2). In
other words, for a circular symmetric contact pressure distribution, the ellipsoid LS model is
axis-aligned, which means that the radii of the ellipsoid are aligned with the fx, fy, τz-axes,
respectively. For a non-circular symmetric pressure distribution, one can find the tilted, or
non-axis-aligned ellipsoid, by defining a new coordinate frame (f ′x, f

′
y, τ
′
z) that aligns with

the major axes of the ellipsoid [101].
The ellipsoidal limit surface function is derived next. Let f1(x) = 1 of the variable x ∈ R3

be the limit surface function of an arbitrary zero-centered ellipsoid with

f1(x) = x
TAex = 1 (2.51)

where Ae ∈ R3×3 is a positive definite matrix. As Ae uniquely defines an ellipsoid, Ae also
denotes the ellipsoid LS model in this theses. The eigenvectors of Ae define the principal
axes of the ellipsoid, while the eigenvalues of Ae are the reciprocals of the squares of the
radii.

As a special case of Ae, an axis-aligned ellipsoid largely simplifies the computational ef-
fort. Therefore, many works [27], [5] assume a circular symmetric pressure distribution to
apply such ellipsoids for grasp analysis. Hence, this thesis also derives the frictional and
contact wrench constraints for such cases. As a special case of f1, the axis-aligned ellipsoid
function f1,a(x) is defined as

f1,a(w) =

(
fx
fmax

)2

+

(
fy
fmax

)2

+

(
τz

τz,max

)2

= 1,

where f⊥ =

∫
A
pdA, fmax = µf⊥.

(2.52)

or in matrix form

f1,a(w) = [fx, fy, τz]


1

f2max
0 0

0 1
f2max

0

0 0 1
τ2z,max



fx

fy

τz

 = 1. (2.53)

Similar to fmax, τmax also linearly scales with f⊥ if the shape of the pressure distribution re-
mains unchanged. Therefore, one can express τmax with τmax = µtf⊥, where µt > 0 depends
on the contact profile and µ. In summary, given f⊥, the set of frictional wrench constraints
FEA for the axis-aligned ellipsoidal planar area contact model is

FEA =

{
w = [fx, fy, τz]

T

∣∣∣∣∣ f2x + f2y
µ2

+
τ2z
µ2t
≤ f2⊥

}
. (2.54)

Add Facets to an Ellipsoid Recall that a limit surface has facets if the contact area is dis-
crete points (Section 2.3.4.5). Therefore, for a contact that consists of N discrete points, one
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needs to add N facets to the limit surface model. Each facet can be obtained by intersecting
the ellipsoid with one plane in the wrench space. To define a plane, one needs the plane
normal, which is also the normal of the facet, and a point that goes through the plane. Let
(xi, yi) be the coordinate of the ith contact point in the contact frame C with i ∈ {1 . . . N}.
The ith facet in the wrench space, or the (fx, fy, τz)-space, occurs when the COR locates at
(xi, yi). The COR location (xi, yi) corresponds to the twist ξ = [yi,−xi, 1]T , which is parallel
to the normal of the ith facet. The next step is to find a point that goes through the plane.
Recall that the frictional force at (xi, yi) is not uniquely defined if the COR locates at (xi, yi).
Therefore, one can use zero force at this point and sum up the local frictional wrenches at the
remaining N -1 contact points. This frictional wrench is a point on the plane. This point and
the plane normal uniquely define the plane.

Consider the following example to better understand the method to add facets to an el-
lipsoid. Figure 2.14(a) illustrates a representative four point contact with a uniform pressure
distribution. Since the pressure distribution is circular symmetric, the limit surface shown
in Figure 2.14(b) is an axis-aligned ellipsoid with three end points marked as orange dots.
The ellipsoid with four facets are shown in Figure 2.14(c). To create a facet, one first locates
the COR at a contact point, say a. Then, one can compute the corresponding twist ξa using
Equation (2.18) and (2.20). The direction vector of ξa is the plane normal na in the wrench
space. Figure 2.14(c) illustrates na as a purple arrow, which is parallel to ξa. By using zero
local force at a, the point qa on the plane can be computed by summing up the local frictional
wrench at b, c, d. As the plane is uniquely defined with the normal na and the point qa, the
facet is created by intersecting the ellipsoid with the plane.

(a) (b) (c)

Figure 2.14: A representative four-point contact (a) and its ellipsoidal limit surface model without
facets (b) and with facets (c).

Linearized Ellipsoid Approximation without Sampling As an ellipsoid provides quadratic
constraints for the frictional wrench, it is a common technique to linearize the ellipsoid and
compute linear constraints for efficiency. Howe et al. [102] proposed a practical ellipsoid ap-
proximation, which is a conservative approximation without decoupling the frictional force

and torque. Denoting ft =
√
f2x + f2y as the tangential frictional force, the linearly approxi-
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mated contact wrench constraints are

1

µ
ft +

1

µt
|τz| ≤ f⊥ with f⊥ ≥ 0. (2.55)

As shown in Figure 2.15, the linearized ellipsoid approximation is more conservative than
decoupling the frictional force and torque constraints used in a soft point contact model.

Figure 2.15: Frictional force and torque with a soft point contact, an ellipsoid, and a linearized ellip-
soid approximation.

Buss et al. [97] also introduced the linear matrix inequalities for the linear ellipsoid model.
The contact wrench constraints in Equation (2.50) are equivalent to enforcing the following
matrix P LE to be positive semidefinite

P LE =



f⊥ 0 0 0

0 α 0 fx

0 0 α fy 04×3

0 fx fy α

β 0 fx

03×4 0 β fy

fx fy β



� 0 (2.56)

where

α = µ

(
f⊥ +

1

µt
τz

)
, β = µ

(
f⊥ −

1

µt
τz

)
. (2.57)
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The eigenvalues of P LE are
λ1 = f⊥

λ2 = α

λ3 = β

λ4 = α−
√
f2x + f2y

λ5 = α+
√
f2x + f2y

λ6 = β −
√
f2x + f2y

λ7 = β +
√
f2x + f2y .

Similar to the LMIs for hard point contacts, λ1 ≥ 0 ensures a nonnegative normal force, while
λ4 ≥ 0 and λ6 ≥ 0 correspond to the contact wrench constraints in (2.55).

Sampling-based Linearized Ellipsoidal Limit Surface Model While the aforementioned
linearized ellipsoid model is practical, there is still a large difference between the linearized
and original ellipsoid as illustrated in Figure 2.15. Therefore, an ellipsoid can also be sam-
pled for linear constraints so that the accuracy of the approximation can be adjusted based
on the number of samples.

Before moving on to computing the linear frictional constraints for a 3D ellipsoid, the
next part first introduces the linear constraints for a 2D ellipse. Figure 2.16 illustrates an
outer and an inner approximation of an ellipse with four sampled points si∈{1,...,4} marked
as purple dots. For the outer approximation, the point si ∈ R2 constrains an arbitrary 2D
frictional wrench to be on one side of the line, which is defined with si and the ellipse normal
ni at si. The ellipse normal ni is computed with ni = Aesi, where Ae ∈ R2×2 is the ellipse
matrix. Therefore, the outer linear approximation of the representative discrete ellipse is a
rectangle, illustrated with black lines in Figure 2.16(a). In other words, an arbitrary frictional
wrench is constrained to be inside the rectangle. For an inner approximation, one first builds
the convex hull of the discrete points and constrains the frictional wrenches to be on one side
of each edge of the hull. Therefore, one obtains a parallelogram as the inner approximation
of the representative ellipse, as shown in Figure 2.16(a). Note that the computation of an
outer approximation requires both the sampled points si∈{1,...,4} and the ellipse matrix Ae,
whereas an inner approximation only needs the sampled points.

The outer and inner approximations of a 3D ellipsoid can be computed in a similar man-
ner. Note that the equations that express the approximations are the same for an axis-aligned
ellipsoid and for an arbitrary zero-centered ellipsoid.

Figure 2.17(a) shows an ellipsoid sampled with N discrete points {s1, . . . , sN} with si ∈
R3, i ∈ {1, . . . , N}. Given the points and the ellipsoid matrix Ae ∈ R3×3, the set of frictional
wrench constraints Fouter

EA for the outer approximation is

Fouter
EA =

{
w = [fx, fy, τz]

T

∣∣∣∣∣ wTni ≤ (si)
T ni, ni =

Aesi
‖Aesi‖

, ∀i ∈ {1, . . . , N}

}
. (2.58)
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(a) (b)

Figure 2.16: An outer approximation (a) and an inner approximation (b) of a 2D ellipse.

(a) (b)

Figure 2.17: (a) A 3D ellipsoid (blue) sampled with discrete points (purple). The ith point si in the
green square and the ellipsoid normal ni at si define the ith linear frictional wrench constraint for the
outer approximation. (b) Inner approximation of the ellipsoid.

One important property of the limit surface is that the LS linearly scales with the mag-
nitude of the normal force f⊥. Therefore, the equation above is rewritten in terms of f⊥ to
better reveal this property. First, consider a unit ellipsoid, which is an arbitrary zero-centered
3D ellipsoid corresponds to a unit normal force where f⊥ = 1. Let Âe be the unit ellipsoid
matrix and let ŝi be the ith point on the unit ellipsoid. As the eigenvectors {v1,v2,v3} of the
ellipsoid matrix define the principal axes of the ellipsoid and the eigenvalues {λ1, λ2, λ3} are
the reciprocals of the squares of the radii, Âe andAe can be written as

Âe = [v1 v2 v3]


λ1 0 0

0 λ2 0

0 0 λ3

 [v1 v2 v3]
−1

Ae = [v1 v2 v3]


λ1
f2⊥

0 0

0 λ2
f2⊥

0

0 0 λ3
f2⊥

 [v1 v2 v3]
−1

(2.59)
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Therefore, one obtains

Ae =
1

f2⊥
Âe (2.60)

Finally, Fouter
HP can be reformulated as

Fouter
EA =

{
w = [fx, fy, τz]

T

∣∣∣∣∣ wTni ≤ f⊥ · (ŝi)T ni, si = f⊥ · ŝi,

ni =
Âeŝi

‖Âeŝi‖
=

Aesi
‖Aesi‖

, ∀i ∈ {1, . . . , N}

}
.

(2.61)

Figure 2.17(b) shows the inner approximation of the ellipsoid, which is the M -facet con-
vex hull of the N points. Let nHull

i be the normal of the ith facet and let si be a point on the
facet, the set of frictional wrench constraints F inner

EA for the inner approximation is

F inner
EA =

{
w = [fx, fy, τz]

T

∣∣∣∣∣ wTnHull
i ≤ (si)

T nHull
i , ∀i ∈ {1, . . . ,M}

}
. (2.62)

While the outer ellipsoid approximation is more efficient as it does not compute the convex
hull, the inner approximation provides more conservative constraints, which are preferred in
grasp analysis. Danielczuk et al. [5] used the former to predict grasp robustness and Ciocarlie
et al. [27] applied the latter to efficiently plan grasps.

Contact Wrench Model Next, the contact wrench limit is derived based on the frictional
wrench limit described with Equation (2.54) for an axis-aligned ellipsoid. The contact wrench
c is in four dimensions as the torque caused by the normal force is zero with respect to the ori-
gin in the contact frame C. The contact wrench lies in a 4D cone since the frictional wrench
linearly scales with the magnitude of normal force f⊥. Mathematically, the set of contact
wrench constraints CEA is

CEA =

{
c = [fx, fy, f⊥, τz]

T

∣∣∣∣∣ f2x + f2y
µ2

+
τ2z
µ2t
≤ f2⊥, f⊥ ≥ 0

}
. (2.63)

Figure 2.18 illustrates two 3D projections of the contact wrench model, or the 4D cone that
limits the contact wrench for an ellipsoidal area contact model. Note that the 2D projection
of the 4D cone in the (fx, τz) or the (fy, τz) space is an ellipse, which is only axis-aligned if
the contact pressure distribution is circular symmetric.

Contact Wrench Constraints as LMIs The set of contact wrench constraints CEA can also
be expressed as LMIs. The symmetric matrix P EA � 0 that describes the contact wrench
constraints in Equation (2.63) is

P EA =



f⊥ 0 0 1√
µfx

0 f⊥ 0 1√
µfy

0 0 f⊥
1√
µt
τz

1√
µfx

1√
µfy

1√
µt
τz f⊥


� 0. (2.64)
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(a) (b)

Figure 2.18: Two 3D projections of the 4D cone, or the contact wrench model, for an axis-aligned
ellipsoidal planar area contact model.

The eigenvalues of P EA are

λ1,2 = f⊥

λ3 = f⊥ −
√

1

µ

(
f2x + f2y

)
+

1

µt
τ2z

λ4 = f⊥ +

√
1

µ

(
f2x + f2y

)
+

1

µt
τ2z .

(2.65)

Again, λ1,2,3 ≥ 0 corresponds to the contact wrench constraints for the ellipsoidal LS model
and λ4 is always nonnegative.

Limitations Although an ellipsoid is a practical model, Howe et al. [16] also discovered
a characteristic flattening of the limit surface for some contact profiles, which potentially
makes the ellipsoid less accurate for such cases.

(a) (b) (c)

Figure 2.19: (a) A 2:1 rectangular contact area. (b) and (c) show the LS cross-sections in the (fx, τz)-
space and in the (fy, τz)-space for four contacts, respectively
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Consider a rectangular contact area with a uniform pressure distribution. The side
lengths of the rectangle are of ratio N:1 with x-axis being the major axis. Such rectangle is
called a N : 1 rectangle in this thesis and Figure 2.19(a) shows a 2:1 rectangle. Figure 2.19(b)
and (c) illustrate the 2D cross-sections of the limit surface for four contacts, which are a 1:1
rectangle, a 2:1 rectangle, a 10:1 rectangle, and a line, which corresponds to a 1:0 rectangle.
The contacts are created by varying the side length on the y-axis and fixing the major axis.
With the rectangle being more narrow, the limit surface in the (fx, τz)-space becomes more
convex, whereas the LS in the (fy, τz)-space is more flat. Note that the LS for the 10:1 rect-
angle and the LS for the line are almost identical. In summary, as a contact area is narrow
in one direction, say in the y direction, there is a corresponding LS flattening in the space of
the frictional force in this direction and the frictional torque, which is the (fy, τz)-space [16].
As a result, the ellipsoid LS model may not well capture such flattening and becomes over-
confident.

2.3.5.4 Quartic Area Contact Model

To better capture the facets or flattening on the LS, Zhou et al. [92] proposed a strictly convex
homogeneous quartic polynomial to approximate a limit surface for planar pushing applica-
tions. Specifically, a homogeneous quartic is defined by a polynomial, whose nonzero terms
have the degree of four. Zhou et al. [92] used the quartic LS model to address the problem of
estimating the direction of the object twist given a frictional wrench and the inverse problem
of finding the frictional wrench given a measured twist. The next part discusses the proper-
ties of a quartic LS about frictional wrenches and twists, although the latter is not applied in
this thesis.

Based on the LS properties described in Section 2.3.4, a geometric model to approximate a
limit surface should be convex, symmetric, and differentiable. In addition to these properties,
Zhou et al. [92] pointed out that the LS model should also be scale invariant and invertible.
Scale invariant is important since a limit surface linearly scales with the normal force, the
frictional coefficient, etc. Changing, for instance, the normal force should only result in a
scaled LS model without changing its geometric shape. The invertibility is essential to the
inverse problem about finding the friction wrench for a given twist. Specifically, let w ∈ R3

be the frictional wrench acting on the supporting table and let ξ ∈ R3 be the twist of the
object being pushed. The inverse problem is to find a w, such that ∇f(w)/‖∇f(w)‖ = ξ̂ for
a given unit twist ξ̂, where ∇f(·) denotes the gradient of the function f(·). Zhou et al. [92]
discovered and proofed that a strictly convex homogeneous quartic fulfills the requirements.

To mathematically describe a quartic, let f2(x) be a quartic of the variable x ∈ R3

and let the nonnegative integer d1, d2, d3 be the degree of the variable x1, x2, x3, respec-
tively. The homogeneous quartic polynomial has the form f2(x) =

∑N
i=1 aix

d1
1 x

d2
2 x

d3
3 =

a1x
4
1 + a2x

3
1x2 + . . . + aNx

4
3, where ai are the coefficients of the terms and d1 + d2 + d3 = 4.

Here, N =
(
4+3−1
3−1

)
= 15. As the coefficients uniquely define f2(x), Aq = [a1, . . . , aN ]

T is de-
noted as the quartic model in this thesis. Although Aq is a vector, the variable is capital for
consistency, since A denotes a limit surface model and Ae denotes the ellipsoidal LS model.
The quartic limit surface model is the surface of the form f2(x) = 1.
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To describe the strict convexity of f2(x), let z ∈ R3 denote a nonzero auxiliary variable
and let ∇2f2(x) be the hessian matrix. A necessary and sufficient condition for f2(x) to be
strictly convex is

zT∇2f2(x)z > 0. (2.66)

Enforcing convexity of a homogeneous quartic with more than one term is NP-hard. Zhou
et al. [92] used a relaxation technique that enforces the convexity of f2(x) only on a region by
using the concept of sum-of-squares (SOS) [103]. Specifically, let y ∈ R36 be another nonzero
auxilary variale, where y(x, z) =

[
x1z

T , x2z
T , x3z

T
]T ∈ R9, the quartic f2(x) is defined as

SOS convex, if there exists a positive definite matrixM ∈ R9×9, so that the following equation
holds

zT∇2f2(x)z = y(x, z)TMy(x, z) > 0 withM � 0 (2.67)

where the operator � 0 means the left-hand side is positive definite. The equation above can
also be written as sparse linear constraints

V 1Aq = V 2vec(M) withM � 0 (2.68)

where each row represents a linear constraint. The matrices V 1 ∈ N36×15
0 and V 2 ∈ N36×81

0

with N0 = {N ∪ {0}} are constant sparse matrices and vec(·) denotes the vectorization op-
eration. V 1 and V 2 are essentially the coefficient of each identical term on the left and right
side of Equation (2.67), respectively.

The next part presents the V 1 and V 2 computation by expanding the left- and right-hand
side of Equation (2.67). By expanding and sorting the polynomial on the left-hand side of
Equation (2.67), one obtains

zT∇2f2(x)z = 12a1x
2
1z

2
1 + 6a2x1x2z

2
1 + 6a3x1x3z

2
1 + 6a2x

2
1z1z2 + . . .

which is a polynomial of 36 terms. By expanding the right-hand side and sorting the terms
in the same order, one has

y(x, z)TMy(x, z) =M1,1x
2
1z

2
1 + 2M2,1x1x2z

2
1 + 2M3,1x1x3z

2
1 + 2M4,1x

2
1z1z2 + . . .

By equaling each term in the two polynomials above, one obtains 36 linear constraints

12a1 = M1,1

6a1 = 2M2,1

6a3 = 2M3,1

6a2 = 2M4,1

...

With the vectorization of M being vec(M) = [M1,1,M2,1,M3,1, . . . ,M9,9]
T ∈ R81, the 36

linear constraints above can be formulated in matrix form shown in Equation (2.68) with V 1
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and V 2 being

V 1 =



12 0 0 0 · · ·

0 6 0 0

0 0 6 0

0 6 0 0

...
. . .


,V 2 =



1 0 0 0 · · ·

0 2 0 0

0 0 2 0 036×36

0 0 0 2

...
. . .


The right part of V 2 is a 36× 36 zero matrix asM is symmetric. Specifically, the elements in
the upper triangle of M are identical as the ones in the lower triangle. Therefore, these con-
straints are combined and represented with the 81− 36 = 45 elements in the lower triangle.

Zhou et al. [92] used semidefinite programming (SDP) to find a quartic LS model fit to K
frictional wrench and twist pairs. The next part presents the data normalization as well as
the objective function and the constraints of the SDP.

The wrenches and twists are normalized for numerical stability. Denoting ρ ∈ R+ as the
radius of gyration and let (wi, ξi) with i ∈ {1, . . . ,K} be the ith frictional wrench and twist
pair. The normalized frictional wrench and twist pair (ŵi, ξ̂i) is computed with

ŵi =


fxi

fyi

τzi/ρ

 , ξ̂i =
1√

(v2xi + v2yi + ω2
zi · ρ2)


vxi

vyi

ωzi · ρ

 (2.69)

The normalization step allows unified units of the components in ŵ and ξ̂, respectively. The
norm of the normalized twist is one, since the limit surface model estimates the direction of
the twist. Note that the normalized wrench and twist samples still obey the maximum work
inequality. The normalization technique for quartic 6D limit surface model proposed by this
thesis differs from Equation (2.69).

For an ideal limit surface model, the frictional wrenches should be on the surface and the
corresponding surface normals should be parallel to the measured twists. Hence, the non-
negative wrench error εwi of the ith normalized wrench ŵi is defined as the distance from ŵi

to the LS, since the distance is zero for an ideal LS model. Denoting∇f2 (ŵi) as the normal of
f2 at ŵi, the nonnegative twist error εti of the ith measured normalized twist ξ̂i is computed
as the projection residual of ∇f2 (ŵi) to ξ̂i. The sum wrench error εw and twist error εt are
computed with

εw =
K∑
i=1

‖f2 (ŵi)− 1‖,

εt =
K∑
i=1

‖∇f2 (ŵi)− (∇f2 (ŵi)
T ξ̂i) · ξ̂i‖

=

K∑
i=1

‖
(
I3×3 − ξ̂iξ̂

T

i

)
∇f2 (ŵi)‖.

(2.70)
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εw and εt can be weighted based on, for instance, the sensory noise with the positive param-
eters ηw and ηt, respectively. Finally, the SDP to find the quartic limit surface model fit to K
normalized wrench and twist pairs is

minimize
Aq ,M

‖Aq‖+ ηw · εw + ηt · εt

subject to V 1Aq = V 2vec(M)

M � 0.

(2.71)

where the term ‖Aq‖ regularizes the parameters.
AsAq uniquely defines f2(x), the set of frictional wrench constraints FQA for the quartic

area contact model is

FQA =

{
w = [fx, fy, τz]

T

∣∣∣∣∣ f2(w) ≤ 1

}
. (2.72)

Contact Wrench Model As the frictional wrench linearly scales with the magnitude of the
normal force, the set CQA of contact wrench constraints is

CQA =

{
c = [fx, fy, f⊥, τz]

T

∣∣∣∣∣ f2,u(w) ≤ f4⊥, f⊥ ≥ 0

}
(2.73)

where f2,u(·) is the quartic computed with a unit normal force f⊥ = 1.
The quartic LS model is applied in planar pushing applications such as trajectory plan-

ning [18], [92], [104]. To the author’s knowledge, the quartic is not applied in grasp planning;
therefore, the geometric shape of its contact wrench model and the linearization technique
are not explored.

2.4 From Contacts to Grasping

Based on the contact wrench constraints for each contact of a grasp, this section introduces
the method to combine these constraints to obtain the total wrench that a grasp can exert on
the object.

2.4.1 The Wrench Basis

Recall that the contact wrenches of a contact are computed with respect to the origin of the
contact frameC. To determine the effect of the total contact wrenches of a grasp, the first step
is to transform the contact wrench constraints from C of each contact to a common reference
frame O, or the object frame, typically located at the object center of mass (COM). Although
a contact wrench in C is 3D or 4D depending on the contact type, the equivalent contact
wrench in O is in six dimensions for a 3D object. Therefore, one commonly uses the wrench
basisB to express a contact wrench in C in six dimensions, which allows the computation of
the equivalent 6D contact wrench in O.

For a hard point contact model with the set of contact wrench constraints CHP, or the
contact wrench model, the 6D contact wrench c6D in C is

c6D = BHc, c ∈ CHP (2.74)
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whereBH ∈ R6×3 is the wrench basis

BH =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


. (2.75)

Since a soft contact model, including the soft point, ellipsoidal area, and quartic area con-
tact models, transmits 4D contact wrenches, the 6D contact wrench for a soft contact in C

is
c6D = BSc, c ∈ CSP ∪ CEA ∪ CQA (2.76)

where the wrench basisBS is

BS =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1


. (2.77)

2.4.2 The Grasp Map

Given the contact wrench of each of the gripper jaws, the total wrench acting on the object
in the object frame O can be computed with a grasp map. Consider the nth contact, where
n ∈ {1, . . . , N} with N being the number of contacts. For instance, N = 2 for a parallel jaw
gripper if both jaws are in contact with the object. Let Cn denote the nth contact frame. Let
cCn be the contact wrench exerted by the nth contact and computed in Cn. The goal of this
part is to compute the equivalent contact wrench in the object frame O, denoted as cOn . Let
tn ∈ R3 and Rn ∈ R3×3 be the translation and rotation of Cn relative to O, respectively, and
let t̂n ∈ R3×3 be the cross product matrix of tn. cOn is

cOn =

 Rn 0

t̂nRn Rn

Bnc
Cn , cCn ∈ Cn (2.78)

whereBn is the wrench basis and Cn is the contact wrench model. If the same contact model
is selected for each jaw, the wrench basis for each contact is identicalB1 = . . . = BN = B.
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To simplify Equation (2.78), one can define the contact map Gn to be the linear map be-
tween the contact wrench with respect to Cn and with respect to O. Gn is defined as

Gn :=

 Rn 0

t̂nRn Rn

Bn. (2.79)

With N jaws contacting an object, the total contact wrench cO on the object , or also re-
ferred to as the grasp wrench, is computed by summing up the contact wrench of each jaw
with respect to O. Mathematically, cO is

cO = G1c
C1+, . . . ,+GNc

CN = [G1 . . .GN ]


cC1

...

cCN

 . (2.80)

Finally, the grasp mapG is defined as

G := [G1 . . .GN ] (2.81)

which maps the contact wrenches in the contact frames to cO. In summary, with cC1 , . . . , cCN

combined into a vector, denoted as cC , the total contact wrench cO ∈ R6 acting on the object
is

cO = GcC , where cC =


cC1

...

cCN

 , cCn ∈ CCn , n ∈ {1, . . . , N}. (2.82)

The grasp map G can also be considered as the function that maps the domain of cC to
the domain of cO. Let K be the dimension of cC and let K be the domain of cC , which means
K ⊆ RK . For instance, for a grasp with a parallel-jaw gripper with soft point contacts, cC1

and cC2 are in four dimensions, respectively. Then K ⊆ R8. To express the function math-
ematically, let O denote the domain of cO with O ⊆ R6 regardless which contact model is
used as the total wrench that acts on an object is 6D.G is a function that maps K to O

G : K → O. (2.83)

The mapping can also be written as
G (K) = O. (2.84)

More details about the grasp map can be found in [15, pp. 219–227], [105].

Geometric Meaning of G The geometric meaning of G is briefly discussed next as many
grasp quality metrics are computed directly based on G . First, let U be a unit sphere in RK

with
U =

{
c ∈ RK

∣∣ ‖c‖2 ≤ 1
}
. (2.85)

The mapping G(U) essentially maps the unit sphere in RK to an ellipsoid in R6. The singu-
lar values of G corresponds to the radii of the ellipsoid. Li et al. [105] proposed two quality
metrics solidly based on the singular values ofG, which are introduced later in Section 2.5.2.
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2.4.3 The Grasp Wrench Space

Given a specific contact wrench exerted by each of the jaws, the section above introduced the
computation of the total contact wrench acting on the object. However, many grasping appli-
cations require the space of all possible contact wrenches that a grasp can exert on the object
as the specific wrench required to counter the external disturbance is typically unknown at
the time of planning. One way to approximate this space is through the grasp wrench space
(GWS). Kirkpatrick et al. [106] and Ferrari et al. [14] proposed two ways to build the GWS,
denoted asWL∞ andWL1 , respectively, depending on how the normal force magnitudes of
the contacts are upper bounded.

First,WL∞ is introduced. By assuming that the normal force magnitudes are limited inde-
pendently and individually,WL∞ is the Minkowski sum of the convex hull of each linearized
contact wrench model. For instance, for a parallel-jaw gripper with hard point contact mod-
els, the convex hull of the linearized friction cone is the smallest convex set that contains this
cone. WL∞ is built by adding each point of the convex set for the left jaw to each point of the
set for the right jaw. Mathematically, for an N -contact grasp with M discrete points of each
linearized contact wrench model,WL∞ is

WL∞ = Conv
({
cO1,1, . . . , c

O
1,M

})
⊕ . . .⊕ Conv

({
cON,1, . . . , c

O
N,M

})
(2.86)

where Conv(·) denotes the convex hull and ⊕ is the Minkowski sum operation. Since one
can exchange the Minkowski sum with the convex hull operation, the equation above can be
rewritten as

WL∞ = Conv
(
⊕Nn=1

{
cOn,1, . . . , c

O
n,M

})
. (2.87)

The Minkowski sum operation outputs MN 6D wrenches, which are the input of the convex
hull operation. Therefore, the time complexity forWL∞ is O

(
MN log

(
MN

))
.

Another way to build the GWS is by assuming an upper bounded sum magnitude of the
normal forces. For instance, for a parallel-jaw gripper whose sum magnitude is limited with
15N, if the normal force magnitude of the left jaw is 12N, the magnitude of the right jaw can
be any value between 0N–3N. Intuitively, it is more likely that each jaw has similar normal
force magnitude for a parallel jaw gripper in practice; therefore, the normal force of each jaw
is up to 7.5N. The intuition behind this assumption is that the sum magnitude is proportional
to the current in motors. Rather than limit each individual normal force, one can also limit
the current or the power required to actuate the gripper. In this case, the GWSWL1 is built by
taking the union of the linearized contact wrench models, followed by passing the outcome
to the convex hull operation. Mathematically,WL1 is

WL1 = Conv
(
∪Nn=1

{
cOn,1, . . . , c

O
n,M

})
. (2.88)

The time complexity forWL1 is O (MN log (MN)), which is much more efficient than com-
putingWL∞ ifM > 2 andN ≥ 2. Note thatWL∞ ⊇ WL1 for the same set of contact wrenches{
cOn,1, . . . , c

O
n,M

}
.

The next part presents a representative grasp and the correspondingWL∞ andWL1 . Fig-
ure 2.20(a) illustrates the front view of a grasp between a parallel-jaw gripper and a rigid
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cylinder. The normal force magnitudes are f⊥1 = f⊥2 = f⊥ and a hard point contact model
is used for each contact. Let fGWS

y and fGWS
z be the total force that the grasp acts on the cylin-

(a) (b)

Figure 2.20: (a) The front view of a representative grasp using the hard point contact models. (b) The
2D projection of the grasp wrench spaces in the (fGWS

y , fGWS
z )-space.

der along the y- and z-axis in O, respectively. Figure 2.20(b) shows the 2D projection of each
friction cone (blue) in the (fGWS

y , fGWS
z )-space. The outer boundary of WL1 and WL∞ built

from the two friction cones are depicted in orange and green, respectively. One observes that
WL1 is smaller thanWL∞ ; therefore,WL1 is potentially over-conservative. However,WL1 is
built under the assumption that the sum magnitude of the normal forces is upper bounded
with f⊥. Therefore, WL1 only includes the wrenches from the normal force magnitudes of,
for instance, f⊥ and 0 or 0.5f⊥ and 0.5f⊥ of the left and the right jaws, respectively, whereas
WL∞ considers the wrench caused by the magnitudes by up to f⊥ and f⊥ of the left and the
right jaws, respectively. To also include the wrench from f⊥ and f⊥ for WL1 , one needs to
first linearly scale each friction cone with a factor of two, which is the number of contacts,
then compute the union of the scaled friction cone. Figure 2.20 (b) illustrates the scaled fric-
tion cones in shallow blue and the outer boundary ofW ′L1

, which is the union of the scaled
friction cones, in purple. W ′L1

can also be computed by scalingWL1 . Specifically, for an N -
contact grasp with each contact having the same magnitude of the normal force,W ′L1

can be
computed with

W ′L1
=
{
N · cGWS

∣∣∣∀cGWS ∈ WL1 , f⊥1 = . . . = f⊥N

}
. (2.89)

Figure 2.20 (b) shows that WL1 ⊆ WL∞ ⊆ W ′L1
. While WL1 is overly conservative, W ′L1

is too confident, since it also includes the wrench caused by the normal force magnitudes
of, for instance, 2f⊥ and 0, where 2f⊥ exceeds the limit of the normal force magnitude f⊥.
Krug et al. [107] appliedWL∞ andWL1 to predict grasp success. The experiments suggested
that assumption of the upper bounded sum magnitude forWL1 leads to overly conservative
results.

In summary,WL∞ better describes the space of possible wrenches that a grasp can act on
the object with a drawback of high time complexity. Borst et al. [108] computed the convex
hull incrementally to efficiently computeWL∞ . AlthoughWL1 provides a less realistic esti-
mation, it is a practical estimation for certain quality metrics, such as force closure described
later in Section 2.5.
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2.4.4 Unit Grasp Wrench Space

A unit grasp wrench space is the space of wrenches that can be applied by a grasp whose force
vector has a magnitude of one. A unit grasp wrench space is commonly used to compute the
grasp qualities, which are described later in Section 2.5. A unit GWS also provides compu-
tational advantages. Since the grasp wrench space linearly scales with the magnitude of the
grasp force, one can precompute the unit GWS Ŵ and scale it at runtime with the measured
grasp force magnitude, if two conditions are satisfied.

Before introducing the conditions, one needs to define the grasp force. For an N -contact
grasp, where f⊥n with n ∈ {1, . . . , N} is the normal force magnitude of the nth contact. The
grasp force is built by piling up the normal force magnitudes

g =


f⊥1

...

f⊥N

 . (2.90)

Next, one needs to define the magnitude ‖g‖ of the grasp force to build a unit GWS.
Recall that WL∞ is built based on the assumption that the normal forces are independent
and individually upper bounded. With this assumption, the grasp force magnitude ‖g‖ is
defined as the L∞ norm of g with ‖g‖ = ‖g‖L∞ = max(f⊥1 , . . . , f⊥N ). Consequently, ŴL∞

is defined asWL∞ with ‖g‖L∞ = 1. Similarly, with the assumption that the sum magnitude
of the normal forces is upper bounded, the same assumption required for WL1 , ‖g‖ is de-
fined as the L1 norm of g with ‖g‖ = ‖g‖L1 = f⊥1 + . . . + f⊥N . ŴL1 is defined asWL1 with
‖g‖L1 = 1.

Finally, the GWS can be computed from the unit GWS.WL∞ andWL1 can be obtained by
scaling ŴL∞ and ŴL1 with the magnitude of the grasp force, respectively, under two con-
ditions. The first condition is that the shape of the contact wrench model remains the same.
This indicates that there is no relative motion between the gripper jaws and the grasped ob-
ject, as well as the contact area and the shape of the pressure distribution remain the same.
The second condition is that the ratio between any pair of the normal force magnitudes re-
mains the same. For instance, given ŴL∞ for the grasp from a parallel-jaw gripper with
the normal force magnitudes 1N and 0.8N. If the measured forces of a physical grasp are,
say 10N and 8N, one obtains WL∞ by linearly scaling ŴL∞ with a factor of ten. However,
if the measured forces are 10N and 6N, a scaled ŴL∞ will not correctly represent WL∞ . In
summary, if both conditions are satisfied,WL∞ for the given g and ŴL∞ is computed with

WL∞ =
{
‖g‖ · cGWS

∣∣∣∀cGWS ∈ ŴL∞

}
. (2.91)

One can scale ŴL1 in a similar manner to obtainWL1 andW ′L1
, if the normal force of each

contact has the same magnitude. In other words, for an N -contact grasp,WL1 andW ′L1
can
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be obtained by

WL1 =

{
‖g‖
N
· cGWS

∣∣∣∣∀cGWS ∈ ŴL1 , f⊥1 = . . . = f⊥N

}
W ′L1

=
{
‖g‖ · cGWS

∣∣∣∀cGWS ∈ ŴL1 , f⊥1 = . . . = f⊥N

}
.

(2.92)

For instance, given the unit grasp wrench space ŴL1 for a two-contact grasp with the magni-
tude of the grasp force being ‖g‖L1 = f⊥1 + f⊥2 = 2f⊥ = 1. If the measured normal force of
each jaw is 15N, which means ‖g‖L1 = 30,WL1 andW ′L1

can be obtained by linearly scaling
ŴL1 with a factor of 15 and 30, respectively.

2.5 Grasp Quality Metrics

The previous section presented the wrench limit that a grasp can act on the object based on
the contact wrench models. This wrench limit, among other metrics, can be used to mea-
sure the grasp effectiveness [109]. Such a measure is called a grasp quality metric, which is an
important component of robot grasp planning. A grasp quality metric is either binary, indi-
cating if the grasp has a certain property, or a nonnegative number to quantitatively measure
the grasp. There is a substantial literature on quality metrics for robot grasping with notable
surveys by Rimon et al. [109, pp. 335–362], Roa et al. [110], Mishra [111], Rubert et al. [112],
and Bicchi et al. [17]. This section focuses on two types of grasps and the associated metrics:

1. Immobilizing grasps can resist object motions in any direction by immobilizing the object
with frictionless contacts. The quality metrics are based on the geometry of the grasped
object (Section 2.5.1).

2. Wrench-resistance grasps can resist wrench disturbances by up to a certain magnitude
with frictional contacts. The grasps are commonly measured by the ability of resist-
ing external wrenches with the Coulomb friction law (Section 2.5.2 – Section 2.5.7). As
some wrench-based metrics rely on the magnitudes of required grasp forces to counter
the disturbance, the algorithms for grasp force optimization are also included in this
thesis (Section 2.5.8).

Other common metrics include dexterity and stability [15], [110]. Dexterity means that the
grasp is able to move the object in a way compatible with the desired task [113]. Before in-
troducing the stability, consider the situation where an external disturbance is acting on the
grasped object and causes a position error of the object. A grasp is stable if the object moves
back to the original position when the disturbance vanishes [114], [115].

2.5.1 Metrics based on Object Geometry

This section introduces the concept of immobilizing grasps and other metrics that are ex-
tended from this concept.
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Form Closure An immobilizing grasp [109], or a form-closure grasp, can resist arbitrary object
motions by relying only on frictionless contacts [116]. The grasped object, which is impossi-
ble to move, is called form closed [117, pp. 680–682], [109, pp. 17–18]. Reuleaux [118] showed
that at least four frictionless contacts are required to obtain a form-closure grasp for a planar
object. Somoff [119] and Lakshminarayana [120] pointed out that seven contact are required
for a 3D object. Trinkle [121] proposed a method to quickly check if the grasp has form clo-
sure and also provided a metric to measure how far a grasp is from loosing form closure.
Rimon et al. [109] proposed the second order immobilization, which is extended from form clo-
sure to also include surface curvature effects. As form closure does not consider friction, it is
overly conservative and potentially difficult to be satisfied in robot manipulation.

2.5.1.1 Caging

While a form-closure grasp immobilizes an object, a caging grasp allows the object to have a
certain amount of mobility [109], [122]. Caging has been an active area with notable surveys
and background by Makita et al. [123] and Rimon et al. [109]. Compared to wrench-based
grasp planning, caging does not require accurate finger positions, and therefore, is less sen-
sitive to position errors.

In a multi-finger cage, gripper jaws surround the rigid object to be grasped, so that the
object may have some amount of mobility but can not move arbitrarily far from its original
position [109], [124]. A cage formulation refers to the jaw placement around the object. Kuper-
berg [125] posed the earliest formal definition of the caging problem. Vahedi et al. [126] pre-
sented the concepts of squeezing and stretching cages for two-finger end-effectors. Specifi-
cally, an object is called squeezing caged if it remains caged when the fingers close. Rodriguez
et al. [122] generalized the squeezing and stretching cages to arbitrary number of jaws and
showed that cages can be useful waypoints to grasp polygonal objects. Allen et al. [124] pro-
posed an algorithm to find all two-finger cage formulations of planar polygonal objects. Wan
et al. [127] presented an algorithm to efficiently check whether a 2D object can be caged by
fingertips or small mobile robots to transport the object. Varava et al. [128] applied the caging
theory to both rigid and partially deformable 3D object and found caging configurations by
using geometric features, such as double forks and necks. Mahler et al. [129] proposed an
algorithm to synthesize energy-bounded cages for planar objects by finding the grasp and
force-direction configuration that maximizes the energy required for the object to escape.

While caging is a promising research direction, many robot grasping applications, such
as assembly, require precise object pose control; therefore, a cage grasp is less suitable for
such tasks.

2.5.2 Metrics based on the Grasp Map

Staring this section, the quality metrics are based on the wrench resistance with frictional
contacts. This part starts with introducing two quality metrics [105] solidly based on the
grasp map.
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Minimum Singular Value of G Recall that the grasp map G maps the local contact
wrenches cC ∈ K ⊆ RK to the total contact wrench cO ∈ O ⊆ R6 acting on the object
(Section 2.4.2). If one assumes that the set K is the entire space RK , which means that there
are no contact wrench constraints, cO can be computed with

cO = GcC , where cC =


cC1

...

cCN

 , cC ∈ RK , n ∈ {1, . . . , N}. (2.93)

Denoting U as the K-dimensional unit sphere, G(U) maps the sphere to an 6D ellipsoid,
whose radii are the singular values ofG. A full-rankG has six singular values. The smallest
singular value corresponds to the weakest direction of the grasp. If a singular value goes
to zero, the grasp can not resist the external disturbances in that direction. The minimum
singular value (MSV) grasp quality metric qMSV for the givenG is denoted as

qMSV = σmin (G) (2.94)

where σmin (G) represents the minimum singular value ofG.
To also account for the contact wrench constraints, the quality metric qMSV can be modi-

fied into the minimum distance of the set G(U ∩ K) to the origin of RK . Mathematically, let
inf{A} denote the infimum, or the greatest lower bound, of the setA. The equation above can
be modified into

qMSV = inf
c∈R6

{
‖c‖

∣∣ c /∈ G(U ∩ K)} . (2.95)

If K is the entire space RK , the equation above is the same as the smallest singular value of
G. Note that qMSV is a metric for the worst case analysis and does not represent the quality of
the whole grasp. Furthermore, qMSV is not invariant under a different selection of the torque
origin.

2.5.2.1 Volume of G

To reflect the quality of the entire grasp, Li et al. [105] further proposed the volume of G
as a quality metric. Excluding the contact wrench constraints, the metric is the volume of
the ellipsoid and is computed with 4π/3 ·

∏6
i=1 ri, where ri is the ith radius of the ellipsoid.

Mathematically, under the assumption that K is RK , the volume-based quality metric can be
computed with

qVOL =

6∏
i=1

ri =

6∏
i=1

σi. (2.96)

If one also considers the contact wrench constraints, the metric is modified into

qVOL =

∫
G(U∩K)

dv. (2.97)

Although the volume is invariant to the selection of torque origin, it does not reflect the
ability of the grasp in resisting disturbances in any direction. Therefore, qVOL is commonly
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combined with other metrics. For instance, one can first find all grasp candidates that can
resist the expected disturbances during the manipulation, then obtain the optimal grasp can-
didate with the maximal volume. The following section introduces the methods to examine
if a grasp can resist a specific disturbance wrench.

2.5.3 Metrics based on Object Static Equilibrium

Equilibrium analysis is a foundation of wrench-based quality metrics. Assuming that an ob-
ject is initially at rest, static equilibrium means that the static forces and torques acting on the
object sum to zero [88, pp. 128–130]. In other words, the object is in equilibrium if the total
grasp wrench acting on the object can counter the external disturbance wext ∈ R6

GcC +wext = 0 with cC =


cC1

...

cCN

 , wherecCn ∈ CCn , n ∈ {1, . . . , N} (2.98)

where 0 is a 6×1 zero vector. The grasps that balance opposing external wrenches and hold
the object in equilibrium are called equilibrium grasps [109, pp. 70–73].

Static equilibrium is a common metric to predict binary grasp success. If the total grasp
wrench can counter the expected disturbance during the manipulation, the grasp is consid-
ered as a success; a failure otherwise. While Hauser et al. [130] proposed an efficient algo-
rithm to evaluate static equilibrium with adhesive contacts and anisotropic friction, the ma-
jority of research in robot grasping analyzed the equilibrium problem by assuming isotropic
(Coulomb) friction, which is also the focus of this thesis. The following part presents two
commonly used methods to solve the equilibrium problem with isotropic friction: using a
grasp wrench space and solving a quadratic program.

2.5.3.1 GWS-based Method

Given the grasp wrench space W and the external disturbance wext, the grasp is predicted
as a success if the opposite wrench −wext is inside of W . Mathematically, given W with
NG facets, denoting n̂i ∈ R6 as the outward normal of the ith facet with i ∈ {1, . . . , NG},
denoting ai ∈ R6 as a point in the hyperplane of the facet, the prediction y is

y =

{
1 if −wT

extn̂i < a
T
i n̂i,∀i ∈ {1, . . . , NG}

0 otherwise.
(2.99)

2.5.3.2 Solving a Quadratic Program

A grasp wrench space either requires high computational effort or is potentially less realistic
in estimating grasp wrench limits. Therefore, grasp analysis is also commonly formulated as
a quadratic program (QP). The goal is to find a set of contact wrenches, one contact wrench
per jaw, that satisfies static equilibrium and the contact wrench constraints.
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For a given external wrench wext and the grasp matrix G, Mahler et al. [131] and Daniel-
czuk et al. [5] setup the following quadratic program to estimate the success of a grasp

minimize
cC

ε = ‖GcC +wext‖2

subject to cC =
[(
cC1
)T
, . . . ,

(
cCN

)T ]T
cCn ∈ CCn , n ∈ {1, . . . , N}.

(2.100)

If the error ε is larger than a threshold, it is considered that no solution is found. More vari-
ations of the optimization problem are introduced in Section 2.5.8, which also presents algo-
rithms for grasp force optimization, while satisfying static equilibrium and contact wrench
constraints.

Based on the static equilibrium, Mahler et al. [131] further proposed the robust wrench
resistance metric for a vertical lifting task in applications, such as bin-picking and pick-and-
place. The metric describes the probability of grasp success under perturbations in friction,
object pose, gripper pose, and external wrenches, to account for uncertainties in sensing and
actuation. First, let x be the state describing the object’s properties, such as geometry and
material, and let u denote a grasp. Grasp success is described with a binary reward function
R, where R = 1 if the grasp lifts the object and R = 0 otherwise. The robust wrench resis-
tance metric for x and u is a grasp reliability distribution Q(x,u), where Q(x,u) = P (R|x,u)
describes the probability of grasp success for x and u. In practice, the robust wrench resis-
tance metric qrobust, which approximates the distributionQ(x,u), is first computed by taking
K samples in simulated environments by perturbing object pose, mass, and frictional prop-
erties and compute the grasp success using Equation (2.100) for each sample. Then qrobust is
computed with the mean of grasp successes of K samples

Q(x,u) ≈ qrobust =
1

K

K∑
i=1

Ri with Ri ∈ {0, 1} . (2.101)

For instance, given x and u, the binary grasp success Ri with i ∈ {1, . . . ,K} is computed
in simulation for K = 10 times, where each time the grasp pose and object material, such
as friction efficient, are slightly different by sampling them within a range. If six out of ten
grasps succeeded, qrobust = 0.6 for x and u. The robust wrench resistance metric is applied
in three physical experiments of this thesis (Section 4.1.4, Section 4.2, Section 4.3) to predict
grasp success and to plan grasps.

2.5.4 Force Closure

While an equilibrium grasp can resist a specific disturbance wrench, a force-closure grasp can
counter external disturbances in all directions [105], [15, pp. 223–233]. In other words, assum-
ing the magnitudes of the normal forces are unconstrained, a grasp has force closure if given
an arbitrary external wrench w∗ext ∈ R6 acting on the object, there exist contact wrenches
cC ∈ K such that

GcC = −w∗ext. (2.102)
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A formal definition and proof of a force-closure grasp are given in [15, pp. 223–224] and [109,
pp. 316–317].

One way to determine if a grasp has force closure is based on the convexity of the contact
wrench models. Consider a grasp with the grasp mapG associated with the contact wrench
domain K ⊆ RK , the grasp has force closure if there exists an ε-sphere at the origin of R6

with ε > 0 such that
Oε ⊂ G (K ∩ U) . (2.103)

This is equivalent of saying that the possible wrenches that the grasp can act on the object has
a magnitude of at least ε in every direction while satisfying the contact wrench constraints.
If such a sphere does not exist, the grasp can not resist the external wrench in at least one
direction.

In a similar manner, one can determine the force closure property for a grasp based on
its grasp wrench spaceW . A grasp has force closure if there exists an ε-sphere located at the
origin of R6 with ε > 0 such that

Oε ⊂ W. (2.104)

Since checking the force closure does not require an accurate estimation of the grasp wrench
limits, the grasp wrench space WL1 built by upper bounding the sum magnitude of grasp
forces is preferred for its computational efficiency.

From a geometric point of view, Nguyen [132] showed that a two-point-contact grasp in
two dimensions, or a planar grasp, with a hard point contact model has force closure if and
only if the line connecting the contact points is inside both friction cones. Similarly, a two-
point-contact grasp in three dimensions with a soft point contact model has force-closure
if and only if the line connecting the contact points is inside of both friction cones. Han
et al. [98] formulated force closure problem as an optimization problem with linear matrix
inequalities without linearizing the contact wrench models, such as friction cones.

Force closure is perhaps the most widely used grasp quality metric. While an object in the
3D space requires seven contacts for form closure, only two contacts with different contact
normals and soft point contact models are required for force closure, and three noncolinear
contacts with hard point contact models are needed [117]. Therefore, force closure is a more
realistic metric and can be easier satisfied in robot manipulation compared to the form clo-
sure metric. However, force closure does not quantify the quality of a grasp. Furthermore,
due to unconstrained normal force magnitudes, the actual required grasp force to resist a
small disturbance can be unrealistically large, or even exceed the upper limit that the end-
effector can provide.

2.5.5 Metrics based on the Grasp Wrench Space

The following metrics quantify the grasp quality and are computed from the GWS.
The ε-metric is one of the most used wrench-based metrics that quantify the grasp quality.

It represents the largest disturbance in any direction in the wrench space that the grasp can
counter; therefore, it represents the largest lower bound on the magnitude of the external
disturbance that the grasp can resist regardless of the direction of the disturbance. Recall
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that ŴL∞ denotes the unit GWS built by upper bounding the magnitudes of the normal
forces individually. Kirkpatrick et al. [106] proposed the ε-metric, which is the radius of the
largest sphere centered at the origin and can be contained in ŴL∞ . Ferrari et al. [14] proposed
another variant of the ε-metric, where ε is the minimal distance from the origin to the near-
est facet of ŴL1 , the unit GWS built by upper bounding the sum magnitude of the normal
forces. ε is also the radius of the largest sphere centered at the origin and just contained in
ŴL1 . Zheng [133] proposed an algorithm to efficiently compute the ε values of WL∞ and
WL1 without calculating the Minkowski sum forWL∞ .

One potential drawback of the ε-metric is that it depends on the reference system to com-
pute the torque. Teichmann [134] proposed the largest ε value with respect to all possible
choices of the reference system, which is potentially computationally expensive. Miller et
al. [135] proposed the volume of the grasp wrench space. However, a GWS with high vol-
ume can be a non-force-closure grasp. Mirtich et al. [136] decoupled forces and torques from
the wrenches and first compute a set of grasps that are ideal to resist pure force disturbances,
followed by selecting grasps that best counter pure torques from the set. Borst et al. [137]
discussed the advantages and potential drawbacks of the GWS-based metrics with represen-
tative grasps.

2.5.6 Metrics based on Manipulation Tasks

Task-oriented grasp quality metrics are well-suited for specific tasks with prior knowledge
such as known external disturbances. A common task representation is a task wrench space
(TWS), which describes expected disturbance wrenches during the manipulation and is com-
monly modeled as a wrench or a set of possible wrenches that will be imposed on an object
during a task [137], [138]. If the TWS is modeled as a single disturbance wrench, the grasp
quality is commonly measured with the minimal force required for a task [139], [140] or
minimal coefficient of friction [141]. Markenscoff et al. [139] minimized the sum magnitude
of the normal forces required to counter any unit force acting on the object center of mass.
Boyd et al. [142] efficiently computed the minimal grasp force by formulating a semidefinite
program. Kruger et al. [143] proposed the partial closure grasps, which consider the ability of
the grasp to counter the disturbance in certain directions. Specifically, the authors proposed
two quality metrics: the maximum magnitude and the sum magnitude of the normal forces
that are required to counter a unit wrench disturbance acting on the object for a specific task.
Haschke et al. [144] presented two representations of a TWS: an external wrench and a task
wrench cone. The authors used convex optimization to solve for the maximal magnitude of
the wrench in the task direction that a grasp with unit contact forces can resist. The frictional
constraints are described with the linear matrix inequalities proposed by Buss et al. [97]. If
the TWS is described with a set of disturbance wrenches, Li et al. [105] approximated the TWS
with a 6D ellipsoid and proposed the grasp quality as the maximum scale of the TWS such
that it remains within the GWS. Lin et al. [145] observed that some disturbance wrenches
happen more often than others during task execution and selected the grasp whose corre-
sponding GWS covers most frequent disturbances.

In addition to counter the expected wrench disturbances during a task, the grasp planner
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proposed by Holladay et al. [146] also considers force and motion constraints for tool use
applications. Lin et al. [147] selected the grasp, which additionally minimizes the required
motion effort of the end effector to fulfill a certain task.

Other work considers the object geometry while planning task-directed grasps based on
the concept of object wrench space (OWS) proposed by Pollard [138]. The OWS is a space
that contains any wrench created by a set of disturbance forces acting on the object surface.
Note that the OWS is the union of all possible grasp wrench spaces of the grasps on the
object. As computing the OWS is nearly infeasible, many works proposed modifications or
approximations of the OWS. Strandberg et al. [148] proposed a method that is suitable for
the scenarios where a single disturbance force is acting on the object. Since the torque caused
by the force can be quickly computed, Strandberg et al. excluded the torque component of a
disturbance wrench and represented the possible disturbances as a closed surface S in the 3D
force space. By sweeping a unit disturbance force, say e, over the object surface, one obtains
the magnitude of the force ‖f ext‖ such that the wrench caused by f ext = ‖f ext‖e can be just
countered by the grasp with unit normal forces. The surface S can be obtained by repeating
the process with the disturbance force in every direction. In the testing phase, a grasp with
unit normal forces can resist the external disturbance if the disturbance force is inside of S.
If the manipulation task is known, one can remove object vertices that are unlikely to have
disturbances during the task for the sweeping step. For instance, when writing with a pencil,
the disturbance force is likely coming from the tip of the pen; therefore, the vertices on the
upper part of the pen can be removed. While the algorithm considers both object geometry
and task information, the computational cost is still expensive due to the sweeping proce-
dure. Borst et al. [137] proposed a modified OWS and approximated it with an ellipsoid for
efficiency. Specifically, if the disturbances during the task are unknown, the modified OWS
is a space that combines the OWS from [138] with the wrench space that is produced by the
forces acting on the object center of mass in any direction. The quality metric is the largest
scaling factor of the ellipsoid such that it just fit into the GWS. However, the ellipsoid may
not well approximate the OWS for asymmetric objects, as pointed out in [149]. Therefore,
Jeong et al. [149] proposed another modified OWS, which is generated by disturbance forces
only in the directions of surface normals. This is equivalent of assuming no friction on the
surface, which is realistic for objects consisting of materials with low friction coefficients.

Information about a manipulation task can also be represented as semantic grasp con-
straints, suggested by Dang et al. [150]. For instance, a grasp on the top of a cup is not
suitable for a pouring task if it blocks the content. Song et al. [151] used stay-out zones to de-
scribe such semantic constraints. Specifically, Song et al. used Dex-Net as a service [152] to plan
robust task-directed grasps given stay-out zones for a target object with a known mesh and
a desired grasp wrench given by the user through an intuitive user interface. The stay-out
zones prevent contacts that hinder the task, while the desired wrench counter the expected
external disturbance during the task. The disturbance can be the object gravity for a lifting
task.

Other work focuses on generalizing example task-specific grasps to new target objects.
Pollard [153] proposed an algorithm to generalize a grasp prototype, which is an example
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grasp computed offline for the task, to a set of grasps that are suitable for a new target object
for the same task. Aleotti et al. [154] used human example grasps and collected the wrenches
imposed on the object with a haptic glove in virtual reality. The convex hull of these wrenches
are called the functional wrench space (FWS). The quality of a candidate grasp for the target
object is computed by comparing the GWS of the grasp and the FWS; the quality is high if
the GWS and the FWS are close, which means the distance between the two spaces is low.

2.5.7 Metrics for Deformable Objects

So far, the previous parts discussed the quality metrics for rigid objects. However, manip-
ulating deformable objects is an active area, with applications such as food handling [155],
fabric manipulation [156], [157], and elastic rod manipulation [158]; a notable survey can be
found in [159] by Sanchez et al. This section summarizes metrics that are either generalized
from metrics for rigid objects or based on the frictional contact models.

Recall that a frictionless grasp that immobilizes a rigid object is called a form-closure
grasp. Gopalakrishnan et al. [160] generalized this concept to holding deformable objects
with frictionless contacts, where a grasp is defined as deform closure when positive work is
required to release the object. Wakamatsu et al. [161] introduced the bounded force closure
metric to grasp deformable objects, which guarantees a force closure grasp under a maximal
allowable external force. Delgado et al. [162] reduced object deformation for a holding task
by computing the maximum allowed force to be exerted on an object. Jia et al. [163] proposed
a grasping strategy to squeeze deformable planar objects based on work performed by the
jaws. When two jaws squeeze and immobilize an object, and a third jaw tries to break the
grasp by pushing the object, the strategy selects the translations of the two pushing jaws
that minimize the required work to balance the object. Lin et al. [76] addressed the problem
of lifting a deformable object based on an object mesh model and jaw positions. An FEM
formulation computes the object deformation based on the jaw displacements. The object
will be lifted if the majority of the contact points are sticking. Similarly, Zaidi et al. [164]
used FEM simulations to manipulate objects with large deformations, such as objects made
of foam or rubber. Alt et al. [8] also used the FEM simulations and heuristics to plan grasps
for deformable hollow objects, such as plastic cups and bottles.

2.5.8 Grasp Force Optimization

As many quality metrics for the wrench-resistance grasps are computed based on the mag-
nitudes of the grasp forces, this sections introduces the techniques to find the optimal set of
grasp forces. Let an object be held by a grasp, represented as the grasp matrix G associated
with the contact wrench constraints, against the external wrench disturbancewext. The grasp
force optimization problem seeks to find the minimal magnitude of the contact forces to hold
the object in equilibrium without violating any contact wrench constraints. There are two
common ways to compute the optimal grasp forces depending on the inputs of the problem:
using a grasp wrench space or solving a convex optimization problem.
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If the grasp wrench space is given, Zheng et al. [165] proposed two efficient ray shooting
algorithms to compute the minimal required grasp force and the minimum friction coeffi-
cient to counter a known external wrench, respectively.

As the grasp wrench space is either less accurate or computationally expensive to build, it
is common to formulate a convex optimization problem to compute the optimal forces. Kerr
et al. [166] used the linear programming (LP) with linearized friction cone constraints to find
the optimal grasp that is furthest from violating any constraints. Liu [167] minimized the L1

norm of the grasp forces by formulating a ray-shooting problem, which is equivalent to an
LP problem having inequality constraints only. Cheng et al. [168] proposed the compact-dual
LP method to efficiently solve for optimal grasp forces. Note that the dual problem of an LP
is often used to compute a lower bound of the primal (original) minimization problem; or an
upper bound for a maximization problem. If the dual problem has the strong duality property,
the optimal solutions for the primal and the dual problems are equal. One of the key ideas
in [168] is to solve the dual of the primal LP problem to improve efficiency. This is based
on the observation that the runtime of an LP largely depends on the number of constraints.
Consider a linear program that has n variables and λ constraints; its dual problem has λ vari-
ables and n constraints. Since a force optimization problem typically has more constraints
than variables to be solved, depending on how well the frictional constraints are approxi-
mated, solving the dual problem largely reduces the number of constraints, and therefore,
decreases runtime.

As linearized contact wrench constraints are potentially less accurate due to the approx-
imation, Buss et al. [97] formulated a semidefinite program (SDP) by casting the constraints
into linear matrix inequalities (LMIs) without approximating the frictional constraints. Buss
et al. [169] further improved the optimization efficiency by using Dikin-type algorithms. In
addition to the contact wrench constraints, Han et al. [98] and Lippiello et al. [170] also con-
sidered the joint torque limits of the robot hand while planning grasps. Lobo et al. [171] and
Han et al. [98] formulated the force optimization problem as a second-order cone program
(SOCP). Boyd et al. [142] proposed a custom interior-point algorithm to solve such an SOCP,
which is more efficient than generic SDP and SOCP algorithms. Since the LMI-based convex
optimization is a foundation of many work in grasp force optimization, the following section
introduces the LMI-based optimization setup based on [97] and [98].

2.5.8.1 LMI-based Semidefinite Programming

As described in Section 2.3.5.1, the contact wrench constraints can be transformed into the
positive (semi)definiteness of a certain matrix P described with Equation (2.45), (2.56), and
(2.64) for the hard point contact, the linearized ellipsoid, and the axis-aligned ellipsoidal pla-
nar area contact model, respectively. The following equations use the hard point contact as
a representative model, but are also suitable for the remaining contact models. Recall that
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PHP is defined as

PHP =


µf⊥ 0 fx

0 µf⊥ fy

fx fy µf⊥

 � 0. (2.105)

Consider an N -contact grasp. For instance, N = 5 for a humanoid hand. Let P n with
n ∈ {1, . . . , N} denote the matrix that describes the contact wrench constraints of the nth
jaw. The matrices P 1, . . . ,PN can be combined into into one matrix P with

P = Blockdiag (P 1, . . . ,PN ) � 0, n ∈ {1, . . . , N}. (2.106)

The matrix P is positive semidefinite if and only if each block P n is positive semidefinite.
In other words, the contact wrench constraints of each jaw are ensured by enforcing positive
semidefiniteness of P .

Note that additional linear constraints for P are required to ensure that P is symmetric
and certain elements of P equal specific values. For instance, P 1,2 = P 2,1 = 0 for the hard
point contact model. Han et al. [98] expressed P i as the sum of certain symmetric matrices
since P n is linear and symmetric in the components of the contact wrench cn ∈ RKn . For the
hard point contact model, Kn = 3 and cn = [fn,x, fn,y, fn,⊥]

T = [cn,1, cn,2, cn,3]
T , where the

notations cn,1, cn,2 . . . are used to express cn in the following.
To formally express P n, let cn,j with j ∈ {1, . . . ,Kn} denote the jth component of the nth

contact wrench cn. Let Sn,j be the symmetric coefficient matrix associated with cn,j . Then
the matrix P n of the nth contact is

P n =

Kn∑
j=1

cn,jSn,j . (2.107)

Before expressing Sn,j , let Ea
b,c =

(
Ea
c,b

)T be the matrix of dimension a× a with the element
(b, c) being 1, while the remaining elements are zero. For instance, E3

1,2 represents

E3
1,2 =


0 1 0

0 0 0

0 0 0

 .

The coefficient matrices Sn,j can be conveniently expressed as the sum of matrices of the
form Ea

b,c. For instance, the matrices Sn,1, . . . ,Sn,Kn of the nth hard point contact are

Sn,1 = E
3
1,3 +E

3
3,1

Sn,2 = E
3
2,3 +E

3
3,2

Sn,3 = µ
(
E3

1,1 +E
3
2,2 +E

3
3,3

)
.

The next step is to write the block diagonal matrix P as a single linear matrix inequal-
ity. Recall that the contact wrench vector cC ∈ RK is defined as cC =

[
cT1 , . . . , c

T
N

]T
=
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[c1, . . . , cK ]
T . If the contact models of a grasp are the same, then K = N ·Kn. For instance,

K = 15 for a humanoid robot hand with N = 5 and a hard point contact model with Kn = 3.
The matrixP as a function of cC can be expressed with the following linear matrix inequality

P
(
cC
)
=

K∑
l=1

clSl � 0 (2.108)

where the double-indexed cn,j is simplified to cl, which is the lth component of cC . The
associated lth symmetric coefficient matrix Sl = Blockdiag (0, . . . , 0,Sn,j , 0, . . . , 0). Equa-
tion (2.108) represents the contact wrench constraints of all N contacts. One can also write
the torque limit constraints in a similar form, as described in [98].

The next step is to setup the optimization to find the feasible contact wrench vector that
satisfies the static equilibrium GcC + wext = 0. If minimizing the magnitude of the nor-
mal forces is the only objective, the program may push the contact wrench toward the fric-
tion limit, which potentially leads to a non-robust grasp due to the uncertainties in contact
information, such as the friction coefficient. Such problem can be addressed by adding a
penalty term, or a barrier function, to the objective function. This part first defines a vector
σ = [σ1, . . . ,σn, . . . ,σN ] ∈ RK to weight the normal force components of the contact wrench
cC . For instance, σn = [0, 0, σn]

T for the nth hard point contact with the weight σn > 0. Han
et al. [98] set up the optimization as

minimize
cC

σTcC − log det (P )

subject to GcC +wext = 0

P
(
cC
)
=

K∑
l=1

clSl � 0.

(2.109)

The first part of the objective function σTcC minimizes the weighted sum of the normal
forces. The second part − log det (P ) = log det

(
P−1

)
, where log prevents computing the

inverse of P , is the barrier term and is toward infinity if the determinant of P tends to zero,
which happens if the contact wrench solution is near the friction limit. Buss et al. [97] further
proposed the smallest eigenvalue of P as a grasp quality metric, since it indicates how far
is the grasp from the contact wrench limits. Helmke et al. [172] introduced a more compact
formulation of the LMIs, where the shape of the matrix PHP is reduced to 2× 2.

2.5.8.2 Second-order Cone Programming (SOCP)

While the LMI-based convex optimization can be efficiently solved with traditional interior-
point methods in polynomial time, specifically, O(N3) with N being the number of contacts,
Boyd et al. [142] proposed a custom interior-point algorithm that has O(N) time complexity
and solves the force optimization problem in only 400 µs with N = 5, as opposed to 100 ms
required by the LMI-based method. Boyd et al. [142] used the hard point contact model but
the algorithm is also suitable for other models, such as the ellipsoidal planar area contact
model. The following part gives a high level summary of the algorithm presented in [142].
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Recall that the set of feasible contact wrenches for the nth hard point contact is

Cn =

{
cn = [cn,1, cn,2, cn,3]

T

∣∣∣∣∣ ‖[cn,1, cn,2]T ‖ =√c2n,1 + c2n,2 ≤ µ · cn,3, n ∈ {1, . . . , N}

}
.

Let Fmax be the maximal magnitude of the N contact wrenches with

Fmax = max {‖c1‖, . . . , ‖cN‖}

= max
n∈{1,...,N}

√
c2n,1 + c2n,2 + c2n,3.

(2.110)

To find the optimal contact wrench vector cC =
[
cT1 , . . . , c

T
N

]T , Boyd et al. [142] set up the
optimization as

minimize
cC

Fmax

subject to cn ∈ Cn
GcC +wext = 0.

(2.111)

Note that this objective function minimizes the maximal magnitude of the contact wrenches,
including the normal and the frictional force components, but the algorithm also works with
other objectives such as minimizing the maximal magnitude of the normal forces only.

Equation (2.111) can be expressed in a conic form, or an SOCP, by introduction an addi-
tional scalar variable F that limits the magnitude of the contact wrenches√

c2n,1 + c2n,2 + c2n,3 ≤ F. (2.112)

Then the SOCP has the form

minimize
cC

F

subject to cn ∈ Cn
GcC +wext = 0√
c2n,1 + c2n,2 + c2n,3 ≤ F.

(2.113)

The custom interior-point algorithm starts with defining a barrier subproblem. Let φ be
a log barrier for the cone constraints with

φ
(
cC , F

)
=

N∑
n=1

φn (cn, F ) (2.114)

where
φn (cn, F ) =− log

(
F 2 − c2n,1 − c2n,2 − c2n,3

)
− log

(
µ2 · c2n,3 − c2n,1 − c2n,2

) (2.115)

Let t > 0 be a parameter, the barrier subproblem, a variation of Equation (2.113), is defined
as

minimize
cC

tF + φ
(
cC , F

)
subject to GcC +wext = 0.

(2.116)
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The algorithm uses Newton’s method to iteratively solve the barrier subproblem above for
a fixed value of the parameter t. Once a feasible solution of cC is obtained at a Newton step,
the current maximal magnitude of the contact wrenches Fmax will be computed from cC .
Then Fdual, the current lower bound of Fmax, is also computed by solving a dual problem
of Equation (2.111). Finally, the algorithm terminates when the difference between Fmax and
Fdual is smaller than a predefined threshold.

2.6 Grasp Planners

The contact models and grasp quality metrics discussed in the previous sections can be ap-
plied to grasp planning, which addresses the problem of finding the optimal grasp pose for
an object. There are three types of grasp planners: analytical, empirical, and hybrid planners.

Section 2.3 – Section 2.5 serve as a foundation of the analytical grasp planners, which as-
sume known object physical properties, such as geometry and mass. Analytical grasp plan-
ners have wide applications since the physics underlying these models are universal [33].
A representative analytical grasp planning algorithm is illustrated in Figure 1.2(b). In the
training phase, a common pipeline starts with sampling grasp candidates on a 3D object
mesh, then computes the quality of each candidate in simulation. A substantial body of
the quality metrics are based on the grasp robustness computed from the frictional contact
models. At the test phase, the planner estimates the 6D pose of the object [116], retrieves
the ranked grasps from the dataset, and executes the highest-quality grasp that is reachable
by the gripper and collision free. While analytical methods are able to efficiently evaluate
a large number of grasps on known objects and work well in controlled environments, it is
less realistic to assume that a perception system can provide accurate estimations of object
properties [31], [33], [34].

On the other hand, empirical approaches do not require specific object information and
learn grasp quality functions purely from data, which can be human labeled [45] or collected
automatically by the robot by trial and error [42], [43]. While the empirical methods achieve
robust performance given sufficiently large number of data, the learned models may not
perform well if used in the applications, where the test data are outside of the training data
distribution [33]. Therefore, applying the pretrained model to another setting, such as dif-
ferent objects, grippers, or sensors, the training dataset may need to be recollected, which
is potentially expensive. Furthermore, it is more difficult to diagnose failures in empirical
approaches compared to analytical methods. For instance, Mahler [31] pointed out that if an
empirical-based grasp planner fails to manipulate a novel object, the reasons can be wrong
labels of the similar examples in the training dataset; a changed setting, such as lightning
conditions; or not sufficient training data.

As the third type, a hybrid grasp planner combines the advantages of analytical and em-
pirical methods. State-of-the-art hybrid methods [36], [173]–[175] use analytical approaches
to efficiently create a scalable grasp dataset and apply empirical methods to train on the
dataset. Therefore, a hybrid grasp planner generalizes well and is robust to uncertainties
in perception and actuation. To create a grasp dataset, existing grasp planners either used
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simulators [35], [176], [177], such as Flex and Pybullet, or computed the grasp qualities using
the traditional frictional contact models and the quality metrics [36], [90], [173]–[175] intro-
duced in Section 2.3.5 and Section 2.5, respectively. However, these methods are not suitable
for grasp datasets with deformable gripper jaws, since it is nearly computationally infeasible
to simulate deformable contacts for a largescale dataset. Furthermore, traditional frictional
contact models assume a point or planar contact area; therefore, they are too conservative
for deformable gripper jaws, which create nonplanar surface contacts. To address this issue,
building on Dex-Net and Grasp Quality Convolutional Neural Network (GQ-CNN) pro-
posed by Mahler et al. [90], this thesis presents a hybrid grasp planner in Section 4.2, which
is trained on a grasp dataset using the proposed nonplanar surface contact models, intro-
duced later in Chapter 3. As the foundation of the proposed grasp planner, Dex-Net and
GQ-CNN are introduced in the following.

2.6.1 Dex-Net and Grasp Quality Convolutional Neural Network

This section presents three main components of a state-of-the-art hybrid grasp planner, Dex-
Net, GQ-CNN, and cross entropy method (CEM)-based grasp sampler. As illustrated in
Figure 2.21, the policy to find the best physical grasp works as follows: given a real depth
image, grasp candidates are first sampled using the CEM. Next, each grasp candidate as-
sociated with a small cropped depth image is feed into GQ-CNN, which outputs the grasp
quality. Finally, the policy returns the grasp with the highest quality.

Figure 2.21: Pipeline of the Dex-Net grasp planner (adapted from [90] ©2018 RSS).

GQ-CNN is trained on Dex-Net, which is a dataset of 3D object models associated with
analytical grasp metrics computed with the soft point contact model (Section 2.3.5.2). There
are four versions of Dex-Net so far, where Dex-Net 2.0 [89] plans grasps for a parallel-jaw
gripper, while Dex-Net 4.0 [36] is suitable for an ambidextrous robot mounted with a suction
cup and a parallel-jaw gripper. Dex-Net 2.0 uses the ε-quality metric (Section 2.5.5), while
Dex-Net 4.0 uses the wrench resistance (Section 2.5.3.2) to evaluate a grasp, as the latter is
applied in bin-picking scenarios and considers the gravity of the grasped object as the exter-
nal disturbance. For each grasp, multiple synthetic depth images are rendered by sampling
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the pose of a virtual depth camera. Figure 2.22 depicts a grasp in simulation and two associ-
ated depth images by sampling the camera pose. Each synthetic depth image is cropped and
rotated, so that the grasp is centered at the image center and the grasp axis is aligned with
the horizontal axis of the depth image, as shown in Figure 2.22(b). Note that the gripper in
Figure 2.22(a) is used to illustrate the grasp and is not visible when rendering the depth im-
ages. A dataset of grasp candidates are used to train GQ-CNN, whose architecture is shown
in Figure 2.23. Each grasp candidate is represented with a pair of the aligned depth image
and the grasp depth to the camera.

(a) (b)

Figure 2.22: A representative grasp in simulation and the corresponding synthetic depth images gen-
erated by sampling virtual camera poses.

Figure 2.23: The architecture of GQ-CNN (adapted from [90] ©2018 RSS).

At the test phase, a CEM-based sampler is used to sample grasp candidates from the
physical depth image. The CEM method models the distribution of good grasp candidates
using a Gaussuan Mixutre Model and optimizes the candidates by iteratively resampling
grasps and updating the distribution. Specifically, in the first iteration, the CEM method
samples antipodal grasps and obtain the quality of each grasp by feeding it to GQ-CNN.
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On the next iteration, the region with high quality grasps is sampled more densely and the
distribution is updated for the next iteration. Mahler et al. [90] proposed the CEM sampler
with three iterations, which is a good balance between the quality of grasp candidates and
computational efficiency.

2.7 Chapter Summary

This chapter provided the most relevant background and related work for grasp analysis and
grasp planning. Specifically, the chapter first introduced recent work in perception system
(Section 2.1) and gripper designs (Section 2.2), which are two important components for a
grasping system. Next, the foundation of a grasp planner, which is the third key component
to improve grasp success, were thoroughly introduced. Specifically, Section 2.3 described the
required steps to find the wrench constraints of a contact using the existing frictional contact
models. Next, Section 2.4 introduced the method to combine the contact wrench limits of
each contact of a grasp, so that one can compute the possible total contact wrenches that a
grasp can exert on the object. Section 2.5 provided a detailed review and discussion of grasp
quality metrics from different aspects, such as the object geometry, the ability to resist wrench
disturbances, and the manipulation tasks. Section 2.6 discussed existing grasp planners and
presented Dex-Net [36], [90], a state-of-the-art hybrid grasp planner, which is the foundation
of the proposed planner for deformable gripper jaws.

While existing work either assumes a planar contact area or decomposes the surface into
planar elements, it is unclear how to model the contact wrench limits that a deformable grip-
per jaw can exert on the object via the nonplanar surface contact. Inspired from existing
work in modeling planar frictional area contacts, the next chapter presents frictional con-
tact models for nonplanar surface contacts and efficient low-dimensional representations to
approximate the models.





Chapter 3

Modeling Nonplanar Frictional
Surface Contacts

The last chapter presented the traditional frictional contact models and their applications in
grasp analysis and grasp planning by assuming either a point or a planar area contact. How-
ever, the traditional models are less realistic for nonplanar surface contacts caused by de-
formable gripper jaws contacting an object with nonplanar local geometry. Figure 3.1 shows
two representative nonplanar surface contacts. Such a contact transmits a frictional wrench

(a) (b)

Figure 3.1: (a) A representative nonplanar surface contact is created when (a) a soft parallel-jaw grip-
per deforms to a rigid cup (adapted from [1] ©2021 IEEE); (b) a compliant gripper jaw surface contacts
a nonplanar object’s surface (adapted from [3] ©2020 IEEE). The redder colors of the nonplanar con-
tact surface represent higher pressure.

in six dimensions, whereas a planar area contact transmits a 3D frictional wrench, result-
ing in overly conservative frictional wrench estimations. To address this issue, this chapter
proposes frictional contact models that describe the 6D frictional wrenches for a nonplanar
surface contact. In particular, Section 3.1 presents the problem to be addressed in this chapter
and the assumptions required for the proposed models. Section 3.2 introduces the frictional
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wrench computation for a given contact profile and an object motion. As the object motion is
typically unknown at the time of planning, Section 3.3 presents the 6D limit surface models
to approximate all possible frictional wrenches that can be transmitted through a nonplanar
surface contact by sampling the motion space. Section 3.4 introduces the contact wrench
model by combining the proposed limit surface models and the normal wrench of a con-
tact. By extending this contact wrench model, Section 3.4 further presents the 6D friction cone
concept to approximate the contact wrench limit with unknown grasp forces. Section 3.5
presents the experiments in simulation to evaluate the proposed 6D limit surface models.

Parts of the work presented in this chapter have been published in [1], [3].

3.1 Problem statement

Given a contact surface and a pressure distribution, this chapter introduces two geometric
models to approximate the 6D limit surface (6DLS), which is a surface that bounds the set
of all possible 6D frictional wrenches that a deformable gripper jaw can exert on the object
via the nonplanar surface contact. Based on the 6DLS model, this chapter further studies
the contact wrench model that approximates the contact wrench limit of a nonplanar surface
contact.

The following assumptions are required to compute the limit surface and the contact
wrench model:

1. Coulomb friction with a known constant friction coefficient;

2. The contact profile, including the contact surface and the pressure distribution, or their
estimations are known. A contact profile can be captured by a tactile sensor [24], [26]
or estimated by a contact model [80].

3.2 Contact Wrench for a Nonplanar Surface Contact

A 6D contact wrench consists of a normal and a frictional wrench. While the former only
depends on the contact profile, the latter also depends on the relative motion between the
grasped object and the gripper jaw. As the contact wrench is computed in a local contact
frame, the following section first introduces the selection of the local contact frame. This sec-
tion further presents the computation of the normal wrench and the frictional wrench that
resists an object motion in the 3D space. The contact wrench computation is generalized
from a planar area contact (Section 2.3.3.3).

3.2.1 Local Contact Frame

To illustrate the object frame O and the local contact frame C, a representative contact is
shown in Figure 3.2. Specifically, Figure 3.2(a) shows a representative grasped object (cup)
with a nonplanar local geometry. The gray surface is the extracted contact surface between
the object and a deformable gripper jaw and its enlarged view is shown in Figure 3.2(b). A
common selection of the origin of O is the center of mass (COM) of the cup.



3.2. Contact Wrench for a Nonplanar Surface Contact 69

(a) (b)

Figure 3.2: (a) Instantaneous motion of a grasped object (cup) described with the instantaneous screw
axis l and the pitch h. (b) Enlarged view of the nonplanar contact surface S and the local frictional
force df at a representative point on S given l and h. The figure is adapted from [1] ©2021 IEEE.

Next, the local contact frame C needs to be defined. As the contact wrench is computed
with respect to the contact pressure center o, let C be a rectilinear coordinate system, whose
origin is located at o and axes are arbitrarily chosen. To compute o, let p denote the pres-
sure distribution and let S be the contact surface, whose parametric form is σ (u, v) with
(u, v) ∈ R2 being the parameters. The pressure center o is

o =


ox

oy

oz

 =

∫
S p (u, v) · σ (u, v) dS∫

S p (u, v) dS
(3.1)

where the integral of a 3D vector function is defined as three individual integrals of each
component. Note that omay not be on the contact surface.

3.2.2 Normal Wrench

Next, the contact wrench, which consists of a normal wrench and a frictional wrench, can
be computed with respect to the pressure center o. In this thesis, the normal wrench w⊥ is
defined as the wrench impressed by the pressure distribution p with respect to o. w⊥ is ob-
tained by integrating the local normal force df⊥ and torque dτ⊥ at each point on the contact
surface S

w⊥ =

f⊥
τ⊥

 =

 −
∫
S p (u, v) · n (u, v) dS

−
∫
S p (u, v) · [(r (u, v)× n (u, v)] dS

 (3.2)



70 Chapter 3. Modeling Nonplanar Frictional Surface Contacts

where r = σ (u, v)− o is the torque arm, n = σu × σv/‖σu × σv‖ is the surface normal, and
dS = ‖σu×σv‖ dudv is the area of an infinitesimally small piece of S . f⊥ and τ⊥ are the nor-
mal force and torque impressed by the pressure acting on the object, respectively. The minus
sign comes from the fact that the force acting on the object is towards the object, whereas the
normal vector n points outward, away from the object. In contrast to the frictional wrench,
which depends on the unit twist, w⊥ is uniquely defined by S and p.

Next, consider the concept sum magnitude of the local normal forces F with F =
∫
S p dS .

Note that F = ‖f⊥‖ for a planar area contact, whereas F > ‖f⊥‖ for the representative
contact surface depicted in Figure 3.2(b) with an axially symmetrical pressure distribution.
This is due to the fact that the integral of df⊥,x over the left half surface cancels the integral
of df⊥,x over the right half surface. The sum magnitude F can be used to compute the nor-
malized pressure distribution p̂ = p/F so that

∫
S p̂ dS = 1. w⊥ can be used to construct the

grasp wrench space.

3.2.3 Frictional Wrench for a Parametric Nonplanar Surface

While the normal wrench only depends on the contact profile, the frictional wrench also de-
pends on the relative motion between the object and the gripper jaw. Given the object motion
described as the unit twist ξ̂ (Section 2.3.2.2), the following section provides the computation
of the linear velocity of the object at a point on the contact surface and the direction of the
relative velocity between the object and the jaw at this point.

Recall that given an instantaneous screw axis (ISA), the linear velocity v ∈ R3 at a point
can be represented as the sum of a velocity parallel to the ISA and a velocity perpendicular
to the ISA, denoted as v‖ and v⊥, respectively. Consider the example in Figure 3.2. Given a
representative ISA (l) illustrated as a dashed line, Figure 3.2(a) depicts the linear velocity at
O of the cup.

The next step is to compute the linear velocity of a point on the contact surface. Fig-
ure 3.2(b) shows a representative contact surface. Similar to computing the linear velocity
component in Equation (2.30), given the Plücker coordinates (e,m) of the ISA and the scalar
pitch h, the linear velocity v at a point on the contact surface is

v(u, v) =

{
he+m− σ (u, v)× e if ‖ω‖ 6= 0

e if ‖ω‖ = 0.
(3.3)

Given l and h, Figure 3.2(b) illustrates the linear velocity v, which is the sum of v‖ and v⊥,
at a representative point on S as a pink vector.

The direction vector v̂r of relative velocity at a point depends on the velocity of the grip-
per jaw and the object in contact, and should be tangential to S at this point. Since the
gripper jaw is static after the grasp and prior to the manipulation, v̂r can be computed by
projecting the linear velocity v of the grasped object at a point onto the tangent plane of S
at that point. Figure 3.2(b) illustrates v̂r as a green vector, which is parallel to the projection
of v in the tangent plane TS , depicted as a green parallelogram. Let σu, σv be the first-
order derivatives of σ (u, v) with respect to u and v, respectively. The surface normal of TS is
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n = σu × σv/‖σu × σv‖. The direction vector v̂r(u, v) of relative velocity is

v̂r(u, v) =

(
I − n(u, v)n(u, v)T

)
v(u, v)

‖(I − n(u, v)n(u, v)T ) v(u, v)‖
(3.4)

where I is a 3× 3 identity matrix.
The local frictional force df at a point is antiparallel to vr and is computed with df =

−µ · p · vr dS , where dS = ‖σu × σv‖dudv is the area of an infinitesimally small piece of
S. The local frictional torque is dτ = r × df , where r = σ (u, v) − o is the torque arm. By
integrating df and dτ over S, the frictional wrench w of the contact surface acting on the
object is

w =

f
τ

 =

 −µ
∫
S p (u, v) · v̂r(u, v) dS

−µ
∫
S p (u, v) · [r (u, v)× v̂r(u, v)] dS

 . (3.5)

3.2.4 Frictional Wrench for a Discrete Nonplanar Surface

Computing w for a parametric surface can be inefficient because of the integral operation.
Therefore, the following part introduces the frictional wrench computation for a discrete
surface with convex polygonal elements. The method is also beneficial for a surface whose
parametric form is nontrivial to determine.

Consider a discrete surface consisting of Ns convex polygonal elements. Given a unit
twist described with (e,m, h), also given the center ci and the normal ni of the ith element
with i ∈ {1, . . . , Ns}, one obtains the direction vector v̂ri of relative velocity at ci with

vi =

{
he+m− ci × e if ‖ω‖ 6= 0

e if ‖ω‖ = 0

v̂ri =

(
I − ninTi

)
vi

‖
(
I − ninTi

)
vi‖

.

(3.6)

Denoting pi and ai as the pressure and the area of the ith element, respectively, the pres-
sure center o of the surface is

o =


ox

oy

oz

 =

∑Ns
i=1 ci · pi · ai∑Ns
i=1 pi · ai

. (3.7)

The frictional force and torque of the discrete surface are

f = −µ
Ns∑
i=1

pi · ai · v̂ri

τ = −µ
Ns∑
i=1

pi · ai · [(ci − o)× v̂ri ].

(3.8)
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3.2.5 Example of Contact Wrench Computation for a Parametric Nonplanar
Surface

This section shows an example of the contact wrench computation for the representative
contact surface shown in Figure 3.2. The units of the parameters are listed as follows:

1. parametric form σ of the contact surface: meters (m)

2. pressure distribution p: Newtons (N)/m2

3. normalized pressure distribution p̂: 1/m2

4. friction coefficient µ: unitless

5. pressure center o: m

6. frictional force f and normal force f⊥: N

7. torque arm r: m

8. frictional torque τ and normal torque τ⊥: N·m

9. sum magnitude of local normal forces F : N

10. linear velocity v: meters per second (m/s)

11. e of the Plücker coordinates for a unit twist: unitless

12. m of the Plücker coordinates for a unit twist: m

13. scalar pitch h for a unit twist: meters per radians (m/rad)

The units are omitted from now on.
Consider an elliptical cylinder with the parametric form σO(u, v) = [0.02 cosu, 0.02 sinu,

v]T , u ∈ [0.25π, 0.75π] , v ∈ [−0.05,−0.03] in the object frame O. The unit of σO(u, v) is Given
the uniform pressure distribution p = 103 and the friction coefficient µ = 0.3 as inputs, one
first computes the contact wrench with respect to the friction center in the local contact frame
C. The frictional wrenches inC do not depend on the jaw position relative to the object COM;
therefore, can be precomputed and reused.

As the origin of C is located at the pressure center oO, one needs to determine oO in the
object frame. If the origin of C is not located at oO, one can first compute the equivalent con-
tact wrenches with respect to the origin of C, before transforming the wrenches to O. With
σO(u, v), p, and dS = ‖σOu × σOv ‖dudv = 0.02 dudv, oO is computed using Equation (3.1)

oO =

∫ −0.03
−0.05

∫ 0.75π
0.25π 103 [0.02 cosu, 0.02 sinu, v]T 0.02 dudv∫ −0.03

−0.05
∫ 0.75π
0.25π 103 · 0.02 dudv

≈ [0, 0.018,−0.04]T .

The local contact frame C is obtained by shifting O by [0, 0.018,−0.04]T . The parametric
form in C is σ(u, v) = [0.02 cosu, 0.02 sinu, v]T − [0, 0.018,−0.04]T , where the ranges of u and
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v remain unchanged. The superscript C is omitted for the variables in the following part as
the wrenches are all in the local contact frame C.

3.2.5.1 Normal Wrench

The normal wrenchw⊥ in C is computed by substituting dS = ‖σu×σv‖ dudv = 0.02 dudv,
n(u, v) = σu × σv/‖σu × σv‖ = [cosu, sinu, 0]T , p = 103, and r (u, v) = σ (u, v) − o into
Equation (3.2). Finally, one obtainsw⊥ =

[
fT⊥, τ

T
⊥
]T ≈ [0,−0.5657, 0, 0, 0, 0]T . The sum mag-

nitude of local normal forces is F =
∫
S p dS ≈ 0.6283 > ‖f⊥‖. The normalized pressure

distribution is p̂ = p/F ≈ 1592.

3.2.5.2 Frictional Wrench

In addition to the contact profile, the frictional wrench w also depends on µ and the unit
twist. Given µ = 0.3 and a unit twist described with e = [0,−1, 0]T , m = [0, 0, 0]T , and
h = 0, which is a pure rotation around the negative y-axis, w is computed in the following
for the same contact profile.

First, the linear velocity of the object is computed by substituting e,m, σ, h into Equa-
tion (3.3) and one obtains v(u, v) = [−v − 0.04, 0, 0.02 cosu]T . Next, the direction vector
v̂r(u, v) of the relative velocity is obtained by substituting v(u, v), n(u, v) into Equation (3.4).
v̂r(u, v) is

v̂r(u, v) =

[
− sin2 u(v + 0.04), sinu cosu(v + 0.04), 0.02 cosu

]T√
sin2 u(v + 0.04)2 + (0.02 cosu)2

.

Finally, the frictional wrenchw is computed by substituting µ, p, v̂r(u, v), dS, and r (u, v) into
Equation (3.5) and one obtains w ≈ [0, 0, 0, 0, 0.0018, 0]T . The local frictional force direction
vectors for the representative unit twist are shown in Figure 3.3(a).

3.3 Six-dimensional Limit Surface Model

In the previous section, the frictional wrench of a nonplanar surface contact is computed for
a given unit twist of the grasped object. The following section defines a 6D limit surface (Sec-
tion 3.3.1), which models all possible frictional wrenches that can be transmitted through a
contact by sampling the space of unit twists (Section 3.3.2). Next, two 6D limit surface mod-
els are introduced to approximate a 6D limit surface for computational efficiency. The fric-
tional wrench samples are normalized (Section 3.3.3) and the models are fit to the normalized
wrenches. The two 6DLS models are an ellipsoid (Section 3.3.4) and a convex quartic model
(Section 3.3.5), generalized from the corresponding 3D models described in Section 2.3.5.3
and Section 2.3.5.4, respectively. Finally, the linearization techniques (Section 3.3.6) for the
two models are introduced as a foundation for grasp analysis.

3.3.1 Definition

Recall that a limit surface is the boundary of the set of all possible frictional wrenches that
can be applied through one contact or a set of contacts [13] (Section 2.3.4.6). Generalized
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(a) (b)

Figure 3.3: Local frictional force direction vectors (green) of a nonplanar surface contact acting on the
grasped object, (a) if the object rotates around the negative y-axis, (b) if the object slides along the
negative z-axis relative to the gripper. The figures are adapted from [1] ©2021 IEEE.

from 3DLS, let f(x) = 1 with x ∈ R6 define the six-dimensional limit surface (6LDS), which
is a surface that bounds the set of all possible 6D frictional wrenches at a nonplanar surface
contact. In other words, an arbitrary frictional wrench w∗ that can be transmitted through a
contact is constrained to be inside of the 6DLS

f(w∗) ≤ 1. (3.9)

3.3.2 Motion Sampling

One intuitive way to build a 6D limit surface consists of densely sampling the motion space
and computing the frictional wrench for each motion, which is potentially a time-consuming
operation. To increase efficiency, a finite number of object motions is sampled and the corre-
sponding frictional wrenches are computed using Equation (3.3)–(3.5). Then an ellipsoid or
a quartic is fit to the frictional wrenches to approximate the 6D limit surface.

Recall that the triplet (e,m, h) or the direction vector e alone uniquely defines a unit
twist. Due to the constraint eTm = 0, one intuitive way is to sample e and two com-
ponents of m, for instance, mx and my, and compute the third component with mz =

−(exmx + eymy)/ez . However, the division leads to numerical instability if ez = 0. There-
fore, (e,m, h) is sampled for the motions that include a rotation with m being computed
withm = q × e; e is sampled for pure translations.

The specific steps for motion sampling are described as follows. Each component of
(e,m, h) is sampled individually. e is uniformly sampled from the unit sphere using the
Fibonacci sphere algorithm, q is randomly sampled within a radius r of the pressure cen-
ter o of the contact, and the pitch h is randomly sampled in the range [−2, 2]. The radius
r depends on the size of the contact surface. If r is too large or too small, one obtains very
unevenly distributed frictional wrenches. To determine r, the smallest rectangular cuboid
is first found so that it just contains the nonplanar surface. Denoting ls as the longest side
length of the cuboid, the radius r is experimentally determined to be 0.25ls, which results in
relatively evenly distributed frictional wrenches. The sampled e is also used to compute the
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unit twists that only contain a translation using Equation (2.30). The process leads to a total
of K motion samples.

Figure 3.3 shows two representative sampled unit twists and the resulting local frictional
force direction vectors, which are used to compute the frictional wrench of the contact. Fig-
ure 3.3(a) illustrates a pure rotation around the negative y-axis with e = [0,−1, 0]T , q =

[0, 0, 0]T , h = 0, and ‖ω‖ = 1 in the local contact frame C, where τy, the frictional torque
component around the y-axis, is maximized for the representative surface. Figure 3.3(b)
shows a pure translation along the negative z-axis with e = [0, 0,−1]T and ‖ω‖ = 0, where
fz reaches the maximum.

3.3.3 Normalizing Frictional Wrenches

From the K motion samples, one obtains K frictional wrenches using Equation (3.3)–(3.5).
Let wi be the ith frictional wrench with i ∈ {1, . . . ,K}. wi is normalized so that each com-
ponent of wi is in the range of [−1, 1] for numerical stability. Let wmax = [fx,max, fy,max,

fz,max, τx,max, τy,max, τz,max]
T be the wrench composed of the maximal magnitudes of the K

frictional wrenches in the six dimensions. The ith normalized frictional wrench ŵi is

ŵi = wi �wmax. (3.10)

Note that ŵ is dimensionless. A representative set of {ŵ1, . . . , ŵK} is illustrated in Figure 3.4
as orange dots.

3.3.4 Finding an Ellipsoid

The first proposed model to approximate a 6D limit surface is a 6D ellipsoid. An arbitrarily
oriented zero-centered 6D ellipsoid is defined by f1(x) = xTAex = 1, where Ae ∈ R6×6 is
a positive definite matrix. Two methods to find Ae are presented here: convex optimization
and least square fitting.

3.3.4.1 Convex Optimization

An ellipsoid fit to the normalized frictional wrenches {ŵ1, . . . , ŵK} can be found by using
the optimization problem

minimize
Ae

K∑
i=1

(f1(ŵi)− 1)2

subject to f1(x) = x
TAex

Ae � 0

(3.11)

where Ae � 0 means that Ae is positive definite. Since Ae uniquely defines an ellipsoid, Ae

is denoted as the ellipsoidal LS model.
However, a conventional solver can only constraint Ae to be positive semidefinite. If the

frictional wrench samples are linearly dependent in a subspace, for instance, the frictional
wrenches are in 3D for a planar area contact, the solver fails to solve the program. Therefore,
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(a) (b)

Figure 3.4: A 3D projection of (a) an ellipsoid and (b) a quartic 6DLS model fit to the normalized
frictional wrenches illustrated as orange dots. The figures are adapted from [1] ©2021 IEEE.

to ensure the determinant of Ae is positive in practice, a penalty term is added to the objec-
tive function. Similar to the penalty term in Equation (2.109), the penalty term is selected as
−α · log det (Ae) with a coefficient α > 0 to adjust the weight of the penalty. In summary,
Equation (3.11) is reformulated as a semidefinite program

minimize
Ae

K∑
i=1

(f1(ŵi)− 1)2 − α · log det (Ae)

subject to f1(x) = x
TAex

Ae � 0

α > 0.

(3.12)

where Ae � 0 means that Ae is positive semidefinite. Figure 3.4(a) shows a 3D projection of
the 6D ellipsoid fit to the normalized wrenches.

3.3.4.2 Least Square Method

While solving a SDP provides accurate results, the computational effort is demanding. To
find a balance between efficiency and accuracy, the least square method is presented to find
an ellipsoid. Given K normalized frictional wrenches {ŵ1, . . . , ŵK}, the ellipsoid A∗e that
best fit to the wrenches is

A∗e = argmin
Ae

K∑
i=1

‖ŵT
i Aeŵi − 1‖2 (3.13)

Equation (3.13) can be solved using least squares since it is linear in Ae. However, this
method does not guarantee to result in an ellipsoid if the matrix is not positive definite.
Therefore, in practice, the dimensionality of the data is first determined by using principal
component analysis. Then, an ellipsoid of the determined dimensionality is fit to the data
rotated to the PCA frame. The remaining dimensions with explained variances less than a
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small value ε > 0 are filtered out. Finally, the ellipsoid is rotated back to the original non-PCA
frame. Note that this case subsumes the planar area frictional contact model (Section 2.3.5.3);
if the contact surface is planar, the ellipsoidal 6DLS model reduces to a 3D ellipsoid.

3.3.5 Finding a Quartic

While an ellipsoid is a practical LS model for quasi-static [91] and sliding manipulations [16],
Zhou et al. [18] suggested that a convex homogeneous quartic model better captures the
force-motion relation for planar sliding. The quartic (fourth-order polynomial) [18], which
describes a limit surface in 3D, is generalized in this thesis to approximate a limit surface in
6D, which requires that the polynomial defining this surface is a function of all six compo-
nents of x.

To formulate the quartic f2(x) with x ∈ R6, let the nonnegative integer dj be the degree of
the jth component of x with

∑6
j=1 dj = 4 for the homogeneous quartic. The quartic surface

with up toL terms is defined by f2(x) = a1x
4
1+a2x

3
1x2+. . .+aLx

4
6 =

∑L
κ=1

(
aκ
∏6
j=1 x

dj,κ
j

)
=

1, where aκ ∈ R is the coefficient of the κth term. Here, L =
(
4+6−1
6−1

)
= 126. Since the co-

efficients uniquely define a quartic surface, Aq = [a1, . . . , aL]
T is denoted as the quartic LS

model in this thesis. Note that Aq ∈ R126, whereas Ae ∈ R6×6 for an ellipsoid. Aq is
uppercase for consistency asA denotes the LS model.

Zhou et al. [18] showed that it is essential to enforce the convexity of the quartic. However,
the convexity is NP-hard to determine if d > 2 and L > 1. Inspired by Magnani et al. [103],
the proposed method uses a similar relaxation technique that enforces the convexity of f2(x)
only on a region by using the concept of sum-of-squares (SOS).

The next part describes the specific steps to find a quartic. Let z ∈ R6 be a nonzero
auxiliary variable. Let y(x, z) be a variable that depends on x and z with

y(x, z) =
[
x1z

T , x2z
T , x3z

T , x4z
T , x5z

T , x6z
T
]T ∈ R36. (3.14)

The polynomial f2(x) is defined as SOS convex, if there exists a positive definite matrixM ∈
R36×36 such that

zT∇2f2(x)z = y(x, z)TMy(x, z). (3.15)

Equation (3.15) is reformulated as sparse linear constraints ofAq and the vectorization ofM
with

V 1vec(M) = V 2Aq (3.16)

where V 1 ∈ N441×1296
0 and V 2 ∈ N441×126

0 with N0 = {N ∪ {0}} are constant sparse matrices,
and vec(·) denotes the vectorization operation. A quartic surface is fit to {ŵ1, . . . , ŵK} by
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formulating the optimization problem

minimize
Aq=[a1,...,aL]

T ,M

K∑
i=1

(f2(ŵi)− 1)2

subject to f2(x) =
L∑
κ=1

aκ 6∏
j=1

x
dj,κ
j


V 1vec(M) = V 2Aq

M � 0.

(3.17)

Figure 3.4(b) shows a 3D projection of the quartic 6DLS model fit to {ŵ1, . . . , ŵK}. Note that
the semidefinite program with a penalty term for the 6D ellipsoid can also be used to find a
quartic; however, the method is not explored in this thesis.

To evaluate both models, the mean distance of the wrench samples to the surface is used
as the wrench fitting error

ε1,2 =
1

K

K∑
i=1

‖f1,2(ŵi)− 1‖. (3.18)

Note that ε1,2 does not have a unit as the normalized frictional wrenches are unitless.
Algorithm 1 summarizes the process to find a 6DLS model for a nonplanar surface con-

tact. The description after double slash (//) in the algorithm is a comment. As the limit
surface models are fit to the normalized frictional wrenches, Algorithm 1 also outputs wmax

to denormalize the constraints for multicontact grasp analysis in Section 4.1.2.1.

Algorithm 1 Finding a 6D limit surface model for a nonplanar surface contact.

Require:
- Friction coefficient µ
- Contact surface S represented with a parametric form or a mesh
- Pressure distribution p

Output: The 6DLS modelA and wmax

(ei, qi, hi) or ei, i ∈ {1, . . . ,K} ← Sampling (e, q, h) or e for possible motions (unit twists)
o← S, p // Equation (3.1)
for i← 1 to K do
mi = qi × ei
wi ← µ, p,S,o, ei,mi, hi // Equation (3.3)–(3.5)

end for
// Normalizing the frictional wrenches
wmax ← {w1, . . . ,wK}
{ŵ1, . . . , ŵK} ← wmax, {w1, . . . ,wK} // Equation (3.10)
// Fit a 6DLS model to the normalized frictional wrenches
A ← {ŵ1, . . . , ŵK} // Equation (3.11) or (3.17) for the ellipsoid or quartic 6DLS model,
respectively
return A, wmax
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3.3.6 Linearizing Frictional Constraints

Recall that a 3D limit surface model for a planar area contact is commonly linearized to
build a grasp wrench space or to form linear frictional constraints for grasp analysis (Sec-
tion 2.3.5.3). Similarly, a 6DLS model can also be linearized to approximate frictional con-
straints for efficiency. Specifically, instead of using Equation (3.9), a frictional wrench is con-
strained to lie inside the discrete limit surface. The following section presents two types of
constraints: inner and outer linear frictional constraints. While the former is used to build a
GWS, the latter is used as constraints for a quadratic program. Note that the outer constraints
are only for the 6D ellipsoid as the ones for the quartic are not explored in this thesis.

3.3.6.1 Inner Linear Frictional Constraints

There are three steps to find the set of inner linear frictional constraints F inner. First, a 6DLS
model A is discretized by sampling the surface with M vertices ŝLS

m ∈ R6,m ∈ {1, . . . ,M}.
Then, ŝLS

m is denormalized as A is fit to normalized frictional wrenches. Finally, F inner is
the convex hull of the M denormalized vertices. Although one can also use the convex hull
of the frictional wrenches {w1, . . . ,wK} from the initial motion sampling, the resulting set
of frictional constraints is less accurate and requires higher computational effort. This is
because {w1, . . . ,wK} can be unevenly distributed due to the geometry of the contact sur-
face and the convex hull will likely have significantly more facets as the fine surface details
are preserved. In contrast, the proposed F inner is evenly distributed and further provides a
low-dimensional representation of the frictional constraints. Section 4.1.3.4 later presents a
comparison of the prediction results and the grasp wrench spaces built with {w1, . . . ,wK}
and with the proposed F inner. Note that the inner constraints only require the denormal-
ized sampled vertices, whereas the outer constraints require both the vertices and the 6DLS
modelA.

The following part introduces the details of the three steps to find F inner, including sur-
face sampling, denormalization, and the convex hull operation.

While there are multiple techniques to sample an ellipsoid, sampling a quartic surface is
nontrivial. The following sampling algorithm is proposed as it is applicable to both surfaces.
The idea is to sample M points {scube

1 , . . . , scube
M } with scube

m ∈ R6 on a 6D hypercube, then
compute ŝLS

m from scube
m using Newton’s method. Specifically, the method first samples M

points on the surface of a 6D hypercube, where each side is in [−1, 1]. Next, the method
defines a ray that starts from 0 ∈ R6 and goes through scube

m . The intersection point of the
ray and the limit surface model is the mth vertex ŝLS

m on the model. Figure 3.5 illustrates a
representative scube

m as the black dot and the ray that goes through scube
m as the dashed arrow.

The intersection point of the ray and the LS model is ŝLS
m , depicted as the purple dot within

the dashed rectangle. To compute ŝLS
m , let the mth ray be parametrized as γm · scube

m , where
γm is a positive scaling factor. Given the LS equation f(x) = 1 with f(x) being f1(x) for
the ellipsoid or f2(x) for the quartic, the intersection point ŝLS

m can be found by solving the
following equation system with Newton’s method

f(ŝLS
m ) = 1 and ŝLS

m = γm · scube
m , γm > 0 (3.19)
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Figure 3.5: The convex hull of the ellipsoidal (left) and the quartic (right) 6DLS models linearized by
sampling the surface with vertices, respectively (adapted from [1] ©2021 IEEE).

where ŝLS
m and γm are the variables to be solved in the equation system. The initial guess for

the two variables are scube
m and 1, respectively, since ŝLS

m is near scube
m .

Since both LS models are fit to the set of normalized frictional wrenches (Section 3.3.3),
the following part introduces denormalization of the vertices. Given {ŝLS

1 , . . . , ŝ
LS
M}, the set

of denormalized frictional wrenches X is

X =
{
sLS
m

∣∣∣ sLS
m = ŝLS

m ◦wmax,m ∈ {1, . . . ,M}
}

(3.20)

where ◦ is the Hadamard product.
Finally, the set of inner linear frictional constraints F inner is the convex hull of X ,

F inner = Conv (X ) (3.21)

where Conv (·) denotes the convex hull operation. In other words, an arbitrary frictional
wrenchw∗ is constrained to be inside of the convex hull of X . Note that F inner is a conserva-
tive approximation of the frictional wrench limit at a nonplanar surface contact. Figure 3.5
illustrates the 3D projection of the convex hull of the linearized ellipsoid and quartic, respec-
tively, where each triangle is a facet of the convex hull. Note that X , instead of F inner, of each
contact of a grasp is used to build a grasp wrench space.

Since the limit surface computation only requires the contact profile, including the con-
tact surface S and the pressure distribution p, one can precompute the linear frictional con-
straintsX for the profile and storeX in the datasetD for efficiency. If the same contact profile
is countered, a stored version in D can be reused. As there are an infinite set of continuous
contact profiles, one can discretize the contact surface and the pressure distribution to obtain
a finite set. The effect of the discretization is later presented in Section 3.5.1.2. Furthermore,
one typically obtains contact profiles with tactile sensors in experiments. As the sensors pro-
vide discrete profiles, the possible contact profiles are a finite set and the LS for each profile
can be precomputed in extreme cases. However, it is less realistic to assume that the physical
contact profile exactly matches a stored version inD. As the tolerable offset of a limit surface
depends on the specific application, one can adjust the tolerable offset of a contact profile
experimentally. The effect of different offsets in pressure distribution and contact surface is
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later discussed in Section 4.1.3.5 for elliptic cylindrical contact surfaces with the power-law
pressure model [80].

Also note that X linearly scales with the sum magnitude of the local normal forces
F =

∫
S p dS. Therefore, one can precompute X for the pair S and the normalized pres-

sure distribution p̂ = p/F , and scale X with F or with a force sensor reading for each jaw
when constructing the GWS. In summary, defining a profile pair (S, p̂) for a contact and com-
pute X given (S, p̂), the dataset D can be updated with D = D ∪ X . When constructing the
GWS, the precomputed X for (S, p̂) is retrieved from D and denormalized with F or a force
sensor reading. If X /∈ D, X is computed online.

3.3.6.2 Outer Linear Frictional Constraints for Ellipsoid

While the inner linear frictional constraints are more conservative, hence avoid false positive
predictions, building a GWS is computationally demanding. Thus, solving a quadratic pro-
gram (QP) for grasp analysis is preferred for online grasp planning or generating largescale
datasets. A QP requires outer linear frictional constraints Fouter, which are introduced in the
following. Note that the following outer constraints are only for the ellipsoidal 6DLS model,
as the ones for a quartic are not explored in this thesis.

The computation of Fouter requires three steps. The first step is sampling the surface of
Ae, same as for the inner constraints. Then, ŝLS

m is denormalized and the surface normal nLS
m

of the denormalized Ae at sLS
m is computed. Finally, sLS

m and nLS
m are used to defined the mth

linear constraint of Fouter.
The specific steps are introduced next. To sample points ŝLS

m on the ellipsoid, one can use
Equation (3.19) or other techniques, such as sampling a 6D sphere, than scale the vertices
with the radii of the ellipsoid and rotate them using the eigenvectors of the ellipsoid. Then,
one can denormalize ŝLS

m with sLS
m = ŝLS

m ◦wmax, which is equivalent to

sLS
m =Wmaxŝ

LS
m , whereWmax =



fx,max

fy,max 0
fz,max

τx,max

0 τy,max

τz,max


. (3.22)

The outward normal nLS
m of the denormalized ellipsoid at sLS

m is

nLS
m =

W−1
maxAeŝ

LS
m

W−1
max‖Aeŝ

LS
m ‖

. (3.23)

Similar to the set of outer linear constraints for 3D ellipsoid described with Equation (2.58),
sLS
m and its outward normal nLS

m form a hyperplane. An arbitrary frictional wrench is con-
strained to the interior of the M hyperplanes. Therefore, the set of outer linear frictional
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constraints Fouter is

Fouter =

{
w∗ ∈ R6

∣∣∣∣∣ (w∗)T nLS
m ≤

(
sLS
m

)T
nLS
m , ∀m ∈ {1, . . . ,M}

}
. (3.24)

3.4 Six-dimensional Contact Wrench Model

The previous section introduced the 6DLS models, which are the constraints for frictional
wrench of a contact. However, a contact can transmit a frictional wrench and a normal
wrench, which is the wrench impressed by the normal pressure. This section introduces the
contact wrench model, which approximates the 6D contact wrench limit that can be trans-
mitted through a nonplanar surface contact.

A contact wrench c is the sum of a frictional and a normal wrench

c = w +w⊥. (3.25)

Given a contact profile, w⊥ ∈ R6 can be computed using Equation (3.2) and the frictional
wrench w is constrained to be inside of a 6DLS model. Therefore, the contact wrench is con-
strained to be inside of an ellipsoid or a quartic centered at w⊥. In other words, the contact
wrench model is a shifted ellipsoid or quartic, depending on the model. Mathematically, let
f(x) = 1 be the 6DLS, an arbitrary contact wrench c∗ ∈ R6 is constrained to be inside of the
shifted 6DLS centered at w⊥

f (c∗ −w⊥) ≤ 1. (3.26)

The set of inner linearized contact wrench constraints Cinner can be computed with Equa-
tion (3.20), (3.21), and (3.25)

Cinner = Conv

( {
sLS
m +w⊥

∣∣∣ m ∈ {1, . . . ,M}} ) . (3.27)

Similarly, the set of outer linearized contact wrench constraints Couter using an ellipsoidal
6DLS modelAe can be computed by combining Equation (3.24) and (3.25)

Couter =

{
c∗ ∈ R6

∣∣∣∣∣ (c∗ −w⊥)T nLS
m ≤

(
sLS
m

)T
nLS
m , ∀m ∈ {1, . . . ,M}

}
. (3.28)

Couter is also called the ellipsoidal 6D contact wrench model in this thesis.
Note that the contact wrench constraints above are computed with a specific contact

profile; therefore, the constraints correspond to the normal force magnitude computed from
the contact profile. The normal force magnitude f⊥ for a nonplanar surface contact is
defined as the magnitude of the normal force component along the grasp axis. For in-
stance, for the representative grasp in Figure 3.1(a), one first compute the normal wrench
w⊥ = [f⊥x , f⊥y , f⊥z , τ⊥x , τ⊥y , τ⊥z ]

T from the contact profile using Equation (3.2). The normal
force magnitude f⊥ is f⊥y in this case, since f⊥y is the force component along the grasp axis.
In practice, if f⊥ is known from a force sensor, one can compute the contact wrench con-
straints that match the measured force along the grasp axis. Specifically, one can compute
the contact wrench constraints for a unit normal force magnitude with f⊥ = 1, then scale the
constraints by the measured force since a contact wrench linearly scales with f⊥.
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3.4.1 Six-dimensional Friction Cone

So far, the contact wrench constraints are computed for a given normal force magnitude
f⊥. However, f⊥ is unknown for many scenarios, for instance, when the contact wrench
constraints are used to optimize the grasp force (Section 2.5.8) or the physical gripper is not
equipped with force sensors, such as the ABB YuMi robot. Therefore, this thesis proposes the
six-dimensional friction cone (6DFC), which is a generalization of the traditional friction cone
for point contacts (Section 2.3.5.1) and the ellipsoidal 6D contact wrench model. Specifically,
the 6DFC constrains the contact wrench of a nonplanar surface contact for any f⊥ between
0N and the upper limit of the grasp force f⊥,max of the gripper. Figure 3.6 shows the 3D
projection of a representative 6D friction cone. Each ellipsoid represents a projection of the
ellipsoidal contact wrench model for a given f⊥ and its center corresponds to the normal
wrench corresponds to f⊥. Since the contact wrench applied at a contact with f⊥ can be
modeled with a 6D ellipsoid that is centered atw⊥, so that varying the value of f⊥ results in
a 6D friction cone, whose center lies along the vector w⊥ and has 6D ellipsoids as contours
for each value of f⊥. Mathematically, given an ellipsoidal 6DLS model Ae and the normal
wrench w⊥ computed with a unit normal force magnitude f⊥ = 1 , the proposed 6DFC,
denoted as C6DFC, constraints an arbitrary contact wrench c∗ ∈ R6 by

C6DFC =

{
c∗ ∈ R6

∣∣∣∣∣ (c∗ − f⊥ ·w⊥)T Ae (c
∗ − f⊥ ·w⊥) ≤ f⊥2 with 0 ≤ f⊥ ≤ f⊥,max

}
.

(3.29)
By combining Equation (3.28) and Equation (3.29), the set Couter

6DFC of outer linear constraints of
the 6DFC is

Couter
6DFC =

{
c∗ ∈ R6

∣∣∣∣∣ (c∗ − f⊥ ·w⊥)T nLS
m ≤

(
f⊥ · sLS

m

)T
nLS
m with

∀m ∈ {1, . . . ,M}, 0 ≤ f⊥ ≤ f⊥,max

}
.

(3.30)

Note that the 6DFC subsumes the ellipsoidal contact wrench model. Also note that a grasp
based on the 6DFC can have different normal force magnitude f⊥ of each jaw. For a robot
setup with force sensors, the 6DFC can be computed with f⊥,max being the force sensor read-
ing. For such setups with known grasp forces, one can expect that the 6DFC and the ellip-
soidal contact wrench model provide similar grasp planning results.

3.5 Simulation

This section presents the evaluation of the two proposed limit surface models for nonplanar
parametric surfaces (Section 3.5.1) and discrete contact surfaces obtained from FEM simu-
lations (Section 3.5.2). For the parametric surfaces, results for three experiments are pre-
sented: the maximal frictional wrench computed with different contact models, the surface
discretization effect, and the fitting results with the two 6DLS models. For the discrete con-
tact surfaces, the fitting results are further evaluated with more diverse contact profiles. Note
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Figure 3.6: 3D projection of a 6D friction cone for a nonplanar surface contact (adapted from [3] ©2020
IEEE).

that the contact wrench models are evaluated in Section 4.1 and Section 4.2 with physical
grasps.

3.5.1 Evaluation with Parametric Contact Surfaces

This section starts with the evaluation of six parametric contact surfaces S1, . . . ,S6, as illus-
trated in Figure 3.7. Table 3.1 summarizes the parametric form of each surface. Although the
coordinate system can be arbitrarily chosen, the x, y, z-axes are selected so that the surfaces
are symmetric about the yz-plane for easier comparison. The friction coefficient µ = 1 and
a normalized uniform pressure distribution p̂i are selected with

∫
Si p̂i dSi = 1 for Si, where

i ∈ {1, . . . , 6}. This selection allows for a more intuitive comparison between the frictional
wrenches computed with the proposed nonplanar and the traditional planar area frictional
contact model.

(a) (b) (c) (d) (e) (f)

Figure 3.7: Six parametric contact surfaces used to evaluate the 6D frictional wrenches and the pro-
posed 6DLS models (adapted from [1] ©2021 IEEE). (a) S1: cylinder. (b) S2: elliptic cylinder. (c) S3:
sphere. (d) S4: ellipsoid. (e) S5: paraboloid. (f) S6: elliptic paraboloid.

3.5.1.1 Maximal Frictional Wrench

For each contact surface,wmax is compared with different contact models, wherewmax is the
wrench that consists of the maximal magnitudes of the frictional wrenches in the six dimen-
sions with respect to the friction center. Table 3.2 shows wmax for S1.
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Table 3.1: Parametric form of the contact surfaces.

ID Type Parametric form

S1 cylinder [cosu, sinu, v]T

(u, v) ∈ [0, π]× [0, 1]

S2
elliptic

cylinder
[a · cosu, b · sinu, v]T

(u, v) ∈ [0, π]× [0, 1], a = 1, b = 1
2

S3 sphere [cosu · cos v, cosu · sin v, sinu]T
(u, v) ∈ [−1

2π,
1
2π]× [0, π]

S4 ellipsoid [a · cosu · cos v, b · cosu · sin v, c · sinu]T
(u, v) ∈ [−1

2π,
1
2π]× [0, π], a = 1, b = 1

2 , c = 3
5

S5 paraboloid
[
cosu · v, sinu · v, v2

]T
(u, v) ∈ [0, π]× [0, 1]

S6
elliptic

paraboloid

[
a · cosu · v, b · sinu · v, v2

]T
(u, v) ∈ [0, π]× [0, 1], a = 1, b = 1

2

Table 3.2: Maximal magnitudes of the frictional wrenches in the six dimensions for S1 computed with
three contact models.

Contact
model

fx,max fy,max fz,max τx,max τy,max τz,max

6D
nonplanar

0.64 0.64 1.00 0.34 0.69 0.59

3D
nonplanar

[4]
0.64 0.00 1.00 0.00 0.69 0.00

Planar 1.00 0.00 1.00 0.00 0.59 0.00

With the nonplanar frictional surface contact model, the magnitude of fx reaches the
maximum if the twist is a pure translation along the (negative) x-axis, which means the in-
stantaneous screw axis l is parallel to the x-axis and ‖ω‖ = 0. The local frictional force df at
each point is antiparallel to the projection of the linear velocity, or in this case the (negative)
x-axis, onto the surface tangent plane at this point. Similarly, the magnitudes of fy and fz are
maximized if l is parallel to the y- and z-axes with ‖ω‖ = 0, respectively. Note that fz,max = 1

as the z-axis is in the tangent plane of each point since there is no curvature along the z-axis
for S1. fx,max and fy,max are equal for S1 as the integrals of the projected x- and y-axis are
identical.

wmax for S1 is also computed with the 3D nonplanar model [4] and the traditional planar
area contact model. The former computes only the three largest components fx, fz and τy for
a nonplanar surface and sets the remaining three components to zero, resulting in an over-
conservative friction estimation compared to the proposed 6D nonplanar surface model. For
the latter, the planar area Spl is obtained by projecting S1 onto the xz-plane. The uniform
pressure distribution is normalized so that

∫
Spl
p̂pl dSpl = 1. For S1, the planar area contact
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model results in an overconfident estimation of fx and an over-conservative estimation of
fy, τx, τy, τz . Furthermore, a principle component analysis (PCA) is performed on the sam-
pled normalized frictional wrenches {ŵ1, . . . , ŵK} for all the studied parametric surfaces. In
all cases, one can observe five or even six significant components, which is another indication
that a traditional 3D limit surface is not sufficient for nonplanar surface contacts.

3.5.1.2 Surface Discretization Effect

While the friction computation for a parametric surface is less efficient than for a meshed
surface due to the integral operation, the frictional wrench for a meshed surface can be less
accurate depending on the number of elements. Therefore, these experiments present an
analysis of the runtime and wmax for the continuous surfaces S1, . . . ,S6 and their meshes
with 25–1,000 triangular elements.

To analyze the error caused by the surface discretization, the value of wmax computed
with continuous and discrete surfaces are compared;wmax for the continuous surface is used
as the ground truth. To evaluate the error of wmax, one defines the wrench error rate, which
is the difference of wmax divided by the ground truth and averaged over all dimensions of
wmax. As shown in Figure 3.8, the wrench error rate of all surfaces rapidly decreases with the
number of elements since the meshed surfaces are closer to the parametric ones. The error
rate is below 4% with 300 triangles, which is acceptable in most applications and is nearly
zero with 1,000 elements. S1 and S2 have the lowest error since there is no curvature along
the z-axis.

The runtime is further measured on an Ubuntu 16.04 machine with an Intel Core i7-8700K
CPU (3.7 GHz) with a MATLAB implementation. While the average runtime to integrate a
single wrench is 2.62s, the computation for a discrete surface requires 1.3ms and achieves a
2,000-times speedup.

3.5.1.3 6DLS Model Evaluation

The experiments above evaluated the frictional wrench computation for continues and dis-
crete surfaces. Now, the proposed 6DLS models are evaluated by fitting them to different
numbers of normalized frictional wrenches computed with the six parametric surfaces using
convex optimization. Figure 3.9 shows the mean wrench fitting error and the corresponding
runtime. The wrench error is measured as the mean distance of the wrenches to the LS and
is computed with 20,000 normalized frictional wrenches with Equation (3.18). While being
less efficient, the quartic achieves a lower fitting error with more than 200 wrenches as a
quartic has 126 variables and an ellipsoid has 21. An appropriate LS model can be selected
based on the trade-off between the fitting error and the runtime required by the application.
Figure 3.10 shows a representative 3D cross-section of the quartic and the ellipsoidal 6DLS
model, where the remaining three components are zero. Each LS model is fit to 600 frictional
wrenches (orange dots) computed with S4 (ellipsoid). One observes that the wrenches are
closer to the quartic surface compared to the ellipsoidal one. Large differences are visualized
with dashed rectangles.
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Figure 3.8: Wrench error rate of the six meshed surfaces with an increased number of triangular
elements (adapted from [1] ©2021 IEEE).

(a) (b)

Figure 3.9: Wrench error (a) and runtime (b) of the quartic and the ellipsoidal 6DLS model fit to 100–
1,000 frictional wrenches (adapted from [1] ©2021 IEEE).
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(a) (b)

Figure 3.10: A representative 3D cross-section of (a) the quartic and (b) the ellipsoidal 6DLS fit to the
normalized frictional wrenches shown as orange dots. The figure is adapted from [1] ©2021 IEEE.

3.5.2 Evaluation with Discrete Contact Surfaces

So far, the 6DLS models are computed with six parametric surfaces. While such surfaces
allow an evaluation of the frictional wrench computation for continuous nonplanar surfaces,
the number of contact profiles is limited. This section presents experiments with a large va-
riety of contact profiles obtained from FEM simulations. Specifically, the contacts between
a parallel-jaw gripper and thin-walled objects are simulated using the commercial software
ANSYS [178] based on the work presented in [9]. The objects for the simulations are rigid,
similar to closed plastic bottles.

The object geometry is described with nonuniform rational B-Splines (NURBS), which
is later meshed according to quality preferences. The top of Figure 3.11(a) depicts the ob-
ject geometry generation. An ellipse defines the base and a spline curve shapes the wall,
which is controlled by the variables p1, . . . , p12. As illustrated in Figure 3.11(a) bottom, the
spline curve are vertically sampled to create an ellipse at each sample. The object surface is
created by ruling the adjacent ellipses; the hatched surface at the bottom of Figure 3.11(a)
shows a representative ruled surface. The squares and circles mark the locations of the an-
tipodal grasps with two approach directions, which are spread vertically. By varying the
12 variables, 24 objects with different geometries are efficiently generated, as shown in Fig-
ure 3.11(b).

Rectangular gripper jaws are selected for the simulations. Each jaw is covered with a soft
silicon pad with 5mm thickness, as gripper jaws with compliant materials are widely used
in robot grasping [30], [5] to increase grasp robustness. Figure 3.11(c) shows the meshed
bodies (left) and the nodal solution (right) of a representative FEM simulation. A displace-
ment (orange arrow) parallel to the grasp axis is applied as the load to each jaw. For each
grasp location, three displacements in the range of 1–3 mm are applied, resulting in a total of
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(a) (b) (c) (d)

Figure 3.11: FEM simulations to create a large variety of contact profiles to evaluate the 6DLS models
(adapted from [1] ©2021 IEEE). (a) Object model generator. (b) 24 rigid objects used for the simula-
tions, where eight objects are asymmetric. (c) Meshed object and the nodal solution of a representative
FEM simulation. (d) Representative contact profiles obtained from the simulations, where red means
high pressure.

Table 3.3: Fitting error of the 6DLS models fit to frictional wrenches computed with contact profiles
from 2,932 FEM simulations.

Quartic model Ellipsoidal model

0.011 ± 0.006 0.019 ± 0.005

2,932 grasps. Figure 3.11(d) shows representative contact profiles with interpolated pressure
values. Each contact surface consists of 3×3 rectangular elements and each element has a
single pressure value. For each contact profile, 600 frictional wrenches are sampled and the
two 6DLS models are fit to the normalized wrenches. Table 3.3 summarizes the means and
standard deviations of the fitting errors. Similar to the results for the parametric surfaces in
Section 3.5.1.3, the quartic model yields a lower fitting error. The low standard deviations
of both models suggest that the proposed 6DLS models achieve consistent performance and
are suitable for a large variety of contact profiles.

3.6 Chapter summary

This chapter presented two 6D limit surface models and two 6D contact wrench models for
nonplanar frictional surface contacts. First, the 6D contact wrench is computed for a given
contact profile and object motion. Next, the concept of a 6D limit surface is introduced to
describe the 6D frictional wrench limit at a nonplanar surface contact. Due to the high com-
putational effort of a 6DLS, ellipsoidal and quartic 6D limit surface models are presented to
approximate the 6DLS. This chapter further introduced the ellipsoidal 6D contact wrench
model, based on the ellipsoidal 6DLS and the normal wrench, to approximate the contact
wrench limit. For scenarios with unknown grasp forces, this chapter presented the 6D fric-
tion cone, extended from the traditional friction cone of a point contact and the ellipsoidal 6D
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contact wrench model. The 6DFC approximates the contact wrench constraints by consider-
ing any normal force magnitudes between 0N and the maximal grasp force of the physical
robot. Finally, simulation results are presented to evaluate the proposed 6DLS models. Fit-
ting results with six parametric surfaces and 2,932 FEM simulations showed that the quartic
and ellipsoidal 6DLS models reached as low as 0.02 and 0.04 mean wrench error, respec-
tively, which suggested that both models well describe frictional wrenches for a large variety
of nonplanar surface contacts.



Chapter 4

Applications and Experiments

This chapter shows three applications of the proposed nonplanar frictional surface contact
models with physical experiments:

1. Grasp success prediction for rigid known objects (Section 4.1). Two types of gripper
jaws are used in the experiments: deformable plastic fin ray jaws and rigid jaws cov-
ered with deformable rubbers. The former creates elliptic cylindrical contact surfaces,
while the latter creates arbitrary contact surfaces. The proposed models are further
evaluated with a grasp dataset collected on the ABB YuMi robot with silicon gripper
jaws.

2. Grasp planning for previously unseen rigid objects (Section 4.2). The proposed models
are used to create a grasp dataset to train a hybrid grasp planner. Given a depth image,
the planner outputs the optimal grasp for compliant gripper jaws to pick and place a
novel rigid object.

3. Grasp planning for known deformable hollow objects, such as plastic cups and bot-
tles (Section 4.3). A novel grasp quality metric, which is computed with the proposed
models, is proposed to plan physical grasps.

Parts of the work presented in this chapter have been published in [1], [3], [6].

4.1 Grasp Success Prediction for Known Rigid Objects

This section presents the grasp analysis algorithms using the proposed nonplanar frictional
surface contact models and physical experiments on grasp success prediction to evaluate the
models.

4.1.1 Problem statement

The 6D limit surface models and the 6D friction cone are applied to predict grasp success for
a vertical lifting task with a parallel-jaw gripper. One 6DLS or 6DFC model is computed for
each gripper jaw and the grasp success is predicted with these two models by either building
a GWS or solving an optimization problem.

91
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4.1.1.1 Assumptions

In addition to the assumptions for the nonplanar frictional surface contact models described
in Section 3.1, the following assumptions are required for the prediction:

1. Both jaws are in contact with the grasped object simultaneously. Specifically, the object
is assumed to remaining static while grasping. This assumption is required to estimate
the contact profiles for the experiments later introduced in Section 4.1.4.

2. The change of the contact profile is minor during the manipulation. Therefore, the
frictional contact models are not recomputed during the manipulation.

3. Inertial terms (quasi-static physics) are neglected. Specifically, it is assumed that the
robot arm lifts the object in a slow manner, so that the acceleration is negligible. The
prediction can be too optimistic as the acceleration is not considered. For the scenar-
ios with fast robot arm movement, the acceleration can be modeled as an additional
external disturbance.

4.1.1.2 Metrics

The precision and recall of binary predictions on physical experiments are used as metrics.
Denoting ntp as the number of true positive predictions, nfp as false positives, nfn as false
negatives, precision and recall are ntp/(ntp + nfp) and ntp/(ntp + nfn), respectively. A com-
bination of high precision and recall indicates that the algorithm predicts few false positives
and false negatives. Both metrics are commonly used for datasets with unequal class distri-
butions in robot grasping applications [5], [36] and describe if the algorithm is overconfident
or too conservative [179].

4.1.2 Grasp Analysis using Frictional Nonplanar Surface Contact Models

To analyze the total wrench that a grasp can exert on an object, one needs to combine the fric-
tional contact model for each contact of the grasp. This thesis proposes two ways to combine
them: building a grasp wrench space or solving a quadratic program (QP). While a GWS
provides more conservative grasp wrench estimation due to the linearization techniques of
the frictional constraints, it is less computationally efficient compared to solving a QP.

4.1.2.1 Grasp Wrench Space-based Grasp Analysis

Given a 6DLS or 6DFC for each contact of a grasp, this part introduces the process of building
the GWS. Once the GWS is computed, one can use Equation (2.99) to predict grasp success
and use GWS-based metrics in Section 2.5.5 to estimate the grasp quality for grasp planning.

Building a GWS with the nonplanar frictional surface contact models is similar to con-
structing it for planar area contacts (Section 2.4.3). However, the wrench basis introduced in
Section 2.4.1 can be omitted for the nonplanar cases since the frictional constraints are in 6D.

Recall that the frictional constraints described in Section 3.3 are for one contact with re-
spect to a local contact frame. The next step is to compute the contact wrench constraints



4.1. Grasp Success Prediction for Known Rigid Objects 93

{c1, . . . , cM} by combining the constraints for the frictional and the normal wrench, where
the latter is the wrench impressed by the pressure. Then, one computes the contact wrench
constraints with respect to the object frame O, whose origin is at the center of mass oCOM of
the grasped object.

Consider the nth contact with n ∈ {1, . . . , N}. For instance, N = 2 for a parallel-jaw
gripper if both jaws are in contact with the object. Given the contact surface Sn and the
pressure distribution pn, one can compute the linear frictional constraints Xn and the normal
wrench w⊥n using Algorithm 1 as well as Equation (3.2), (3.19), and (3.20). Let tn ∈ R3 and
Rn ∈ R3×3 be the translation and rotation of the nth local contact frame relative to the object
frame, respectively. Denoting sLS

n,m ∈ Xn as the mth frictional constraint of the nth contact,
the mth contact wrench constraint cn,m ∈ R6 with respect to oCOM is computed with

cn,m =

 Rn 0

t̂nRn Rn

(sLS
n,m +w⊥n

)
(4.1)

where t̂n ∈ R3×3 is the cross product matrix of tn and introduces an additional torque due to
the change of frame.

Recall that Ferrari et al. [14] proposed two ways to build a GWS: by upper bounding the
magnitude of each contact force individually for WL∞ or by bounding the sum magnitude
of the contact normal forces for WL1 (Section 2.4.3). The former is selected for the experi-
ments described later in Section 4.1.3 since Krug et al. [62] suggested that the latter is overly
conservative. The grasp wrench spaceWL∞ is

WL∞ = Conv(⊕Nn=1{cn,1, . . . , cn,m, . . . , cn,M}) (4.2)

where Conv(·) denotes the convex hull and ⊕ is the Minkowski sum operation. Algorithm 2
summarizes the process to build a grasp wrench space using the nonplanar surface contact
models.

4.1.2.2 Solving a Quadratic Program

The grasp quality can also be accessed by solving a QP using Equation (2.100) with the outer
linearized contact wrench constraints of a 6DLS with Equation (3.28) or a 6DFC with Equa-
tion (3.30).

4.1.3 Physical Experiments for Elliptic Cylindrical Contact Surfaces

The proposed nonplanar frictional contact models are applied to predict physical grasp suc-
cess for a vertical lifting task in these experiments. Given the external wrench disturbance
wext, the friction coefficient µ, the gripper pose, and an estimated contact profile for each
gripper jaw, the algorithm predicts if the grasp can counterbalance wext by checking if the
opposite of wext is in the grasp wrench space, as summarized in Algorithm 2. The physical
experiments are designed so that the uncertainties during the experiments are minimized.
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Algorithm 2 Building a Grasp Wrench Space using 6DLS models.

Require:
- Friction coefficient µ
- External disturbance wext
- Details of each contact

• Contact surface S

• Pressure distribution p

• RotationR and translation t between the local contact and the object frame

Output: The grasp wrench spaceW

for n← 1 to N do
// Find the 6DLS modelAwith Algorithm 1
A,wmax ← µ,Sn, pn
// Linearizing the frictional constraints
{scube

1 , . . . , scube
M } ← Sampling a 6D hypercube

{ŝLS
n,1, . . . , ŝ

LS
n,M} ← A, {scube

1 , . . . , scube
M } // Equation (3.19)

// Denormalizing the linear frictional constraints
Xn ← {ŝLS

n,1, . . . , ŝ
LS
n,M},wmax // Equation (3.20)

w⊥n ← Sn, pn // Normal wrench with Equation (3.2)
// Contact wrench constraints
{cn,1, . . . , cn,M} ← Xn,w⊥n ,Rn, tn // Equation (4.1)

end for
W ← {c1,1, . . . , c1,M}, . . . , {cN,1, . . . , cN,M} // Equation (4.2)
return W

4.1.3.1 Experiment Setup

Figure 4.1 (left) depicts the setup of a KUKA robot arm and a SCHUNK parallel-jaw gripper
mounted with customized deformable fin ray jaws [180] (blue). The rigid grasped objects are
3D-printed to control the contact surface.

A 3D-printed mechanical assembly (pink) is further attached to the grasped object to cre-
ate different wrench disturbanceswext by mounting weight plates at various locations. Such
design allows large torques due to the long torque arms and efficient computation for wext,
and therefore, reduces uncertainties compared to grasping real life objects.

The next step is to define an object frame, as the GWS andwext are computed with respect
to the origin of the object frame. The COM of the grasped object is selected as the origin in
the experiments, instead of the COM of both the grasped object and the wrench disturbance
assembly. This frame selection enables easier comparison between the grasp wrench spaces
constructed with different contact models and does not affect the predictions as one can se-
lect an arbitrary reference point to compute torques, and therefore, the GWS.

Two approach directions are used to createwext. Figure 4.1 (left) illustrates the x, y, z-axes
of the object frame for a representative vertical and horizontal grasp with the x-axis parallel
to the grasp axis. The wrench disturbance assembly generates wext in the (fy, τx, τz)- and
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Figure 4.1: Experiment setup for grasp success prediction. Left: deformable gripper jaws (blue) grasp
a 3D-printed object with nonplanar surfaces. The 3D printed assembly (pink) attached to the grasped
object generates external disturbances. Right: Ten 3D-printed rigid objects that create two types of
contact surfaces (adapted from [1] ©2021 IEEE).

(fz, τx, τy)-space with the vertical and horizontal grasp direction, respectively. The locations
of weight plates are selected so that the disturbances are well-scattered in each space.

A force sensor is mounted on each gripper jaw to measure the grasp force along the x-
axis. An Intel RealSense SR300 RGBD camera (green) is mounted on the gripper to label the
grasp success by tracking the object pose with the pcl library [181]. Specifically, the object
point clouds captured at two poses, when the object was grasped and when it reached the
highest point of the vertical lifting task, are compared using the Super4PCS algorithm [182]
to detect the object pose change. If the object rotation angle and translation are below a
threshold pair, the grasp is labeled as a success. However, the jaws’ deformation during the
manipulation also leads to a changed object pose, even though there is nearly no relative
motion between the object and the gripper jaws. The threshold pair 5◦ and 9mm is selected
so that about half of the physical grasps are successful. If the thresholds are high, the grasps
will be labeled as a success even if there is a relative motion; whereas with low thresholds,
the grasps will be labeled as a failure even if there is no relative motion but the gripper jaws
deformed during the manipulation. The prediction results with different threshold pairs are
discussed in Section 4.1.3.5, as robot applications have different tolerance of object motion
during the manipulation. While assembly tasks require minimal object motion, bin-picking
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allows larger object pose change. In future work, one can use a tactile sensor to label grasp
success by detecting slips.

4.1.3.2 Contact Profile Estimation

The contact profile, including the contact surface S and the pressure distribution p, is esti-
mated for each gripper jaw.

Figure 4.1 (right) shows two types of contact surfaces created by ten 3D-printed rigid ob-
jects. As illustrated on the top, the five object models of type I are cut from elliptic cylinders,
whose horizontal radii are identical, whereas the vertical radii vary to change the surface
curvature. The cylinders are cut so that the contact surface is the same when the grasp force
of each jaw is higher than a threshold (20N). The contact surface is completely defined by the
radii and the contact length l1, which is depicted in Figure 4.1 (right). If the elliptic cylinders
are directly used as the grasped objects, one needs to measure the contact surface for each
trial as the surface increases with the grasp force. As shown on the bottom, each of the type II
objects creates five or eight narrow planar contact surfaces with 3–5 mm width. The contact
length l2 of type II is defined as the length of each narrow surface. The direction of frictional
forces are constrained to lie in each planar surface, as described in Section 3.2.4. Type II ob-
jects show that the contact surface can be nonplanar, even if the local contact surfaces are
planar. Such discrete nonplanar surfaces also occur, for instance, when a silicon jaw pad de-
forms to the corner of a rigid cube. Both types of objects create ten different contact surfaces
in total as the grasp forces used in the experiments are larger than the threshold and each
object creates one contact surface. The effect of contact lengths on grasp prediction results is
discussed in Section 4.1.3.5.

To estimate the pressure distribution, the contacts between the fin ray jaw and the rigid
elliptic cylinders of type I are first simulated by using the FEM. Figure 4.2(a) shows the sim-
ulation results by applying a displacement on the jaw, as well as the interpolated pressure
values of the contact. Although one can simulate each physical grasp for the contact profile,
the system will be potentially computationally infeasible. Furthermore, one can observe that
a change of the pressure distribution with a small translation of the object pose along the
y-axis; therefore, it is difficult to align the exact same object pose in the simulation and the
experiment. Hence, the pressure distribution is approximated with the power-law model
proposed by Xydas et al. [80] based on the FEM simulation results. As the power-law model
is originally evaluated with planar circular contacts, the model is modified in the thesis so
that it applies to the contacts used in the experiments. For other types of contact surfaces,
one can use the REACH model proposed by Danielczuk et al. [5] in Section 2.3.1.3, which
approximates the contact profile between a rigid object and a gripper jaw mounted with a
deformable pad. Section 4.1.4 presents physical experiments for arbitrary contact surfaces
using the REACH model.

Figure 4.2(a) shows that the pressure along the z-axis is nearly constant but varies along
the y-axis. Figure 4.2(b) shows the top view of the contact and the computation of the power-
law model. The pressure distribution is assumed to be symmetric about the center og of the
grasped object. Limitations of the assumption are discussed in Section 4.1.3.6. The modified
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(a) (b)

(c) (d)

Figure 4.2: FEM simulation and the power-law pressure distribution of a nonplanar surface contact
between a deformable fin-ray jaw and a rigid elliptic cylinder (adapted from [1] ©2021 IEEE). Pa in
(a) and (c) is short for pascal, which is the unit of pressure.

power-law model expresses the pressure at a point as a function of the y component of the
distance between the point to og, denoted as r ≥ 0. Let rmax be the y component of the maxi-
mal distance between any point on the contact surface to og and p̂(rmax) = 0, the normalized
power-law pressure distribution is

p̂(r) = p0

[
1−

(
r

rmax

)k]1/k
. (4.3)

The exponent k ∈ R+ controls the shape of the pressure distribution and p̂(r) is a uniform
pressure distribution with k = ∞. p0 is a normalization constant such that

∫
S p̂(r) dS = 1.

Figure 4.2(c) illustrates the extracted contact surface with a normalized pressure distribution
p̂ from the FEM simulation, where each element has a single pressure value. Figure 4.2(d)
depicts the pressure values from Figure 4.2(c) as a function of r/rmax and a power-law model
with k = 2.4 fit to the pressure values. The pressure values, depicted as circles in Fig-
ure 4.2(d), are close to the curve, which suggests that the power-law model is an applica-
ble approximation for the nonplanar contact surfaces used in these experiments. However,
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there is an interesting observation that the exact k value varies from 2.4 to 5.5 for the elliptic
cylinders under different loads during the FEM simulations. Therefore, the grasp success
prediction results with different k values are discussed in Section 4.1.3.5.

Next, p̂ is scaled so that the normal force of each contact matches the force sensor reading
Fs. As shown in Figure 4.1 (right), Fs measures ‖f⊥x‖, the magnitude of the x component of
the normal force; therefore, p̂ is scaled so that ‖f⊥x‖ = Fs. Thus, ‖f̂⊥x‖ is computed with p̂ us-
ing Equation (3.2) and obtained the pressure distribution p(r) = λp · p̂(r) with λp = Fs/‖f̂⊥x‖.

4.1.3.3 Evaluated Contact Models

The following contact models are evaluated for physical grasp success prediction

• 3DLS-planar: the traditional planar area contact models. As shown in Figure 4.1 (right),
a planar contact surface (orange line) is created by projecting the nonplanar surface
(blue line) along the x-axis onto the yz-plane. The frictional wrenches are computed in
the (fy, fz, τx)-space and the 3DLS models are fit to the wrenches.

• 6DFW: 6D frictional wrenches (6DFWs) are computed for a nonplanar surface contact.
The 6DFWs of each jaw are directly used to construct the GWS without a LS model.
The GWS is built by first computing the minkowski sum of the 6DFWs from the left
and right contacts, then compute the convex hull of the minkowski sum results.

• 3DLS-nonplanar: the 3DLS models are fit to the three major components, fy, fz, τx, of
the 6DFWs, while the remaining three components are set to zero [4].

• 6DLS: the proposed 6DLS models are fit to all components of the 6DFWs.

There are in a total of seven baseline contact models, as each LS model has the quartic and
ellipsoid variants. Note that the 6DFC model is not evaluated in these experiments since
one expects that the 6DFC will likely have similar results as 6DLS for such grasps, where the
contacts of the left and right jaws are symmetric and the grasp force is known.

4.1.3.4 Grasp Success Prediction Results

For the experiments, 115 well-distributed wrench disturbances for the ten grasped objects.
For each disturbance, three grasp forces in the range of 20–35 N are randomly chosen. By
repeating each grasp three times, 1,035 physical grasps are collected. Each grasp is followed
by a slow vertical lifting so that the acceleration affects the disturbances minimally. For the
scenarios with a medium to high moving speed of the robot arm, one can model the accel-
eration of the grasped object as an additional external disturbance as the current algorithm
neglects the inertial terms. The friction coefficient µ = 0.3 is experimentally determined and
the power-law pressure distribution with k = 2.4 is used for each contact. The predictions
with each model are ran five times and precision and recall are used to evaluate the results.
Note that precision is inversely related to the number of false positive predictions, whereas
high recall indicates low false negatives. The F1 score and the accuracy of each model are
also computed. Specifically, the F1 score is a harmonic mean of the precision and recall and
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Table 4.1: Prediction results of 1,035 physical grasps for the ten objects of type I and II.

Contact model LS model Precision (%) Recall (%) F1 score (%) Accuracy (%)

3DLS-planar
Quartic 68.2±0.1 46.8±0.1 55.5±0.1 59.9±0.0

Ellipsoid 71.0±0.2 50.8±0.2 59.2±0.2 62.6±0.2

6DFW None 63.2±0.5 64.5±1.2 63.9±0.8 61.0±0.7

3DLS-nonplanar
[4]

Quartic 66.0±0.1 64.4±0.2 65.2±0.1 63.3±0.1

Ellipsoid 67.6±0.3 68.4±0.3 68.0±0.2 65.6±0.2

Proposed 6DLS
Quartic 65.7±0.1 73.5±0.4 69.4±0.2 65.3±0.1

Ellipsoid 66.8±0.0 76.9±0.2 71.5±0.1 67.3±0.1

is computed with 2·precision·recall/(precision + recall). The accuracy is computed with the
number of correct predictions divided by the number of all samples. Table 4.1 shows the
means and the standard deviations of the seven baseline models for grasps with both object
types, as similar results for object type I and II are observed during the experiments.

Table 4.1 shows that the proposed 6DLS models outperform the 3DLS-planar, the 6DFW,
and the 3DLS-nonplanar by up to 26%, 12%, and 9% in recall, respectively, while maintaining
a comparable precision. High recall indicates that the 6DLS models reduce false negatives,
and therefore, avoids unnecessary grasp force and grasp pose adaptations in robot manipu-
lation. In addition, the 6DLS models also increase the F1 score and accuracy by up to 16%
and 7% compared to the remaining models. Furthermore, the standard deviation of 6DFW
is higher as the frictional wrenches are randomly sampled. Hence, in addition to a higher
accuracy, a limit surface model also increases repeatability in predictions.

One can further observe that the ellipsoidal LS models slightly outperform the quar-
tic ones even though the quartic achieves a lower wrench fitting error, as shown in Sec-
tion 3.5.1.3. Figure 4.3(a) shows the convex hulls in the first quadrant of a 2D projection of
the GWSs constructed with an ellipsoidal and a quartic 6DLS linearized with 728 points. The
difference between the two GWSs is small, as the LS models are not densely sampled for
linearization due to the high computational complexity of the Minkowski sum operation.
Fewer samples on the LS model lead to an overly conservative LS approximation due to the
convex hull operation.

The following shows the comparison between GWSs constructed with the 6DFW and
the three ellipsoidal LS models. Figure 4.3(b) shows the 2D projections of the GWSs. The
GWS constructed with the proposed 6DLS is larger than with the 3DLS models, as it con-
siders the full 6D frictional wrenches, and therefore, reduces false negatives. Note that the
τGWS
y and τGWS

z components of the GWS constructed with the 3DLS-planar and the 3DLS-
nonplanar models are not zero, because although the 3DLS models did not consider the fric-
tional torques τy and τz with respect to the pressure center when computing the LS, the fric-
tional forces introduced an additional torque when constructing the GWS due to the change
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(a) (b)

Figure 4.3: 2D projections of a representative 6D grasp wrench space constructed (a) with a quartic
and an ellipsoidal 6DLS model, (b) with the 6DFW and the ellipsoidal limit surface models (adapted
from [1] ©2021 IEEE).

(a) (b) (c) (d)

Figure 4.4: Precision and recall for each contact model as a function of (a) the threshold pairs in in-
creasing order, (b) the exponent k of the power-law pressure model [80] with k = 106 being close to a
uniform distribution, (c) friction coefficient offset with ±0% meaning the experimentally determined
value µ = 0.3, (d) contact length offset with ±0% meaning the measured contact length l1 or l2 for the
two contact types, respectively. The contact area increases with the contact length (adapted from [1]
©2021 IEEE).

of frame using Equation (2.78). Although the 6DFW also considers 6D frictional wrenches,
the constructed GWS is not symmetric, as the initial frictional wrenches are randomly sam-
pled, resulting in worse and less repeatable prediction results. The largest difference between
the GWSs constructed with the 6DLS and the 3DLS is the fGWS

x component, as shown in the
right of Figure 4.3(b). The fGWS

x component of the GWSs constructed with both 3DLS mod-
els is zero as they do not consider the frictional force component fx and the normal forces of
the left and the right jaws cancel out. However, force disturbances along the x-axis are not
evaluated in the experiments as the x-axis is the grasp axis.

4.1.3.5 Sensitivity Analysis

As each of the contact models contains several parameters, such as friction coefficient, pres-
sure distribution, this thesis includes an analysis of each model’s sensitivity to a subset of
these parameters. Figure 4.4 shows the precision and recall of the 6DFW and the ellip-
soidal LS models with shaded error bars showing the standard deviations of five runs of
each model.
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Effect of Threshold Pairs As described in Section 4.1.3.1, the grasp is labeled as a suc-
cess if the object rotation and translation are below a threshold pair. The prediction results
are compared with five threshold pairs in increasing order, where the second pair is used to
evaluate the models in Section 4.1.3.4. With an increasing threshold, the precision of each
model increases, as more grasps are labeled as success and the number of true positive pre-
dictions increases, whereas recall decreases because the models predict more false negatives.
Figure 4.4(a) further shows that the proposed ellipsoidal 6DLS has the highest recall with
similar precision for all thresholds. A large threshold pair is suitable to robot applications
such as bin-picking, as the exact object pose is not critical to the manipulation success. With
precision (88%) higher than recall (71%), the 6DLS model becomes conservative for such
applications, but still increases recall by up to 24% over the remaining three baseline models.

Effect of Pressure Distributions As the exponent k of the power-law pressure distribu-
tion [80] changes with contact surfaces and grasp forces, the effect of k is also analyzed. Note
that the pressure distribution is close to uniformity with k = 106. Figure 4.4(b) shows that the
recall of each contact model increases with k as the frictional torque of each contact increases
and the models predict more positives.

Effect of Friction Coefficients Figure 4.4(c) illustrates the prediction results with different
friction coefficient offsets. The symbol ±0% indicates that the models used the experimen-
tally determined value µ = 0.3 and +10% offset represents µ = 0.33. The predictions of all
baseline models are relatively sensitive to µ as a LS linearly scales with µ. For scenarios with
an unknown friction coefficient, one can select a lower µ value for conservative predictions
as each model predicts fewer positives.

Effect of Contact Lengths Figure 4.4(d) illustrates the results with different contact length
offsets. The symbol ±0% indicates that the models used the measured contact length l1 and
l2 for the two contact types illustrated in Figure 4.1 (right). The recall of each baseline model
increases with the contact length as the surface area and the frictional torque of each contact
also increases.

4.1.3.6 Discussion

The power-law pressure distribution described in Section 4.1.3.2 is based on the assump-
tion that the pressure is symmetric about the object center. However, the results shown in
[20] suggest that the pressure distribution can be asymmetric depending on the object pose
relative to the fin ray jaw. With the vertical grasp direction shown in Figure 4.1 (left), an
asymmetric pressure distribution leads to a component of the normal force that is parallel to
the gravity direction, and therefore, affects the prediction results. Furthermore, contact pro-
files can change during the manipulation due to the jaws’ deformation. One way to address
the two limitations is to relax the assumption of a constant symmetric contact profile and to
constantly predict grasp success with updated profiles captured with deformable tactile sen-
sors such as GelSlim [24] or the tactile fingertip sensors by Romero et al. [26]. A tactile sensor
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can further better detect relative motions between the grasped object and the jaws compared
to tracking object poses using point clouds.

The contact surfaces evaluated in the physical experiments in this section are restricted
in (discrete) elliptic cylinders due to the design of the fin ray jaws. Therefore, the next exper-
iments are designed to evaluate the proposed models for various contact profiles created by
gripper jaws covered with compliant materials.

4.1.4 Physical Experiments for Arbitrary Contact Surfaces

The proposed 6DLS and 6DFC models are evaluated with various contacts caused by compli-
ant gripper jaws contacting adversarial objects, which are objects without parallel surfaces,
hence especially difficult to grasp. The grasps are sampled in simulation. To compute the
corresponding physical grasp pose, the transformation of the object pose from simulation to
real world is estimated by using the Super4PC algorithm [182]. Specifically, the object pose
transformation is estimated by matching the synthetic and real point cloud of the grasp ob-
ject. The grasp success prediction results are evaluated based on the physical grasp success
and the predicted grasp quality using the robust wrench resistance metric (Section 2.5.3.2)
by solving a quadratic program (Section 4.1.2.2).

4.1.4.1 Contact Profile Estimation using the REACH Model

The contact profiles, which is the input of a frictional contact model, are computed using the
REACH model [5] (Section 2.3.1.3). Figure 4.5 shows the contact profiles between a repre-
sentative adversarial object and the SCHUNK gripper with two compliant jaws. The redder
colors indicate higher pressure values. Note that the deformed shape of the jaws are not
visualized in this figure.

(a) (b)

Figure 4.5: Contact profiles of nonplanar surface contacts estimated by the REACH model [5].
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4.1.4.2 Experiment Setup

A KUKA robot with a SCHUNK parallel-jaw gripper is used to collect physical grasps, as
depicted in Figure 4.6. Each gripper jaw is mounted with a deformable rubber layer of 5
mm thickness. As illustrated in Figure 4.6(b), nonplanar surface contacts are created when
the jaws contact an object with nonplanar local geometry. An overhead Intel RealSense D455
RGBD camera is mounted to capture object pose for the sim2real object pose transfer.

(a) (b)

Figure 4.6: (a) Robot setup for grasp success prediction and grasp planning. (b) An enlarged view of
representative nonplanar surface contacts caused by compliant gripper jaws deformed to the grasp
object.

A total of 920 physical grasps are collected for the experiments. Specifically, eight adver-
sarial objects are selected for the experiments, as shown in Figure 4.7. For each object, 24
different grasps are planned in the simulation with each grasp being executed with a phys-
ical robot for five trials. For each physical grasp, the gripper slowly closes until the 20N
normal force of each jaw is reached. A grasp is considered as a success if it lifts the object
and places it in the bin, which is illustrated in Figure 4.6(a) as a purple box.

Figure 4.7: Physical objects for the grasp success prediction experiments using KUKA Robot with
SCHUNK parallel-jaw gripper and RealSense D455 RGBD camera.
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4.1.4.3 Evaluated Contact Models

Four contact models are used to predict the grasp success. Specifically, each contact model
provides different contact wrench constraints for the quadratic program in Equation (2.100).

• Soft Point Contact (Point): As described in Section 2.3.5.2, this algorithm constrains the
wrench applied at the contact through a set of linearized 4D contact wrench constraints
in Equation (2.50) with an additional constraint f⊥ ≤ 20, where 20N is the maximum
normal force that can be applied at the contact.

• Planar Area Contact (Planar): As described in Section 2.3.3.3, this algorithm assumes a
planar area contact and uses the ellipsoidal limit surface model as the frictional con-
straints. To find the plane that fits best to the nonplanar contact surface, the principal
component analysis (PCA) is performed on the vertices of the contact surface obtained
by the REACH model. The two most significant components define the plane.

• Ellipsoidal 6D limit surface model (6DLS): This algorithm constructs the ellipsoidal 6DLS
model by the f⊥ = 20N using the least square method (Section 3.3.4.2). Then the con-
tact wrench constraints in Equation (3.28) are obtained by linearizing the 6D ellipsoid
and combines them with the normal wrench.

• 6D friction cone (6DFC): This algorithm constructs a 6D friction cone and uses the lin-
earized outer frictional constraints in Equation (3.30) as the contact wrench constraints.

4.1.4.4 Metrics

Both average precision (AP) and average recall (AR) are used as metrics for each object using
the dataset’s ground-truth physical grasp labels and each algorithm’s predictions. The per-
formance is measured with mean average precision (mAP) and mean average recall (mAR),
which are the AP and AR of the algorithm averaged over all objects to account for discrep-
ancies in the number of successful grasps for each object. Runtime per grasp computation
is also measured for each model on the an Ubuntu 16.04 machine with a 12-core 3.7 GHz
i7-8700k processor.

4.1.4.5 Results

Table 4.2 shows the prediction results for the four frictional contact models. The 6DLS and
6DFC algorithms can increase mAP by 4% and mAR by 21% and 25%, respectively, over
the traditional soft point contact model. The 6DFC has higher recall than 6DLS as it is less
conservative. One can expect a higher increase in mAR with the 6DFC for grasps with un-
known normal forces, since the 6DFC considers all normal forces between 0–20 N of each
jaw, whereas the normal force is controlled to be 20N in these experiments. Furthermore, the
prediction performance with all models can be enhanced with a RGBD camera that provides
high-quality depth images, so that the sim2real object pose transformation can be estimated
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Frictional Contact Model mAP mAR Runtime (ms/grasp)

Point 0.67 ± 0.01 0.40 ± 0.01 14.2 ± 0.8

Planar 0.68 ± 0.01 0.48 ± 0.01 41.3 ± 0.4

6DLS (proposed) 0.71 ± 0.00 0.61 ± 0.01 235.9 ± 2.0

6DFC (proposed) 0.71 ± 0.01 0.65 ± 0.01 245.4 ± 2.3

Table 4.2: Results of physical grasp success using KUKA robot arm, SCHUNK gripper, and Intel
RealSense SR300 RGBD camera.

more accurately. Therefore, this thesis further evaluates the proposed frictional contact mod-
els with physical experiments using high-quality RGBD camera and a gripper without force
sensors.

4.1.4.6 Experiments using High Resolution RGBD Camera

The proposed 6DLS and 6DFC are further evaluated on physical grasps collected with grip-
pers without force sensors and a high-resolution RGBD camera. Specifically, the proposed
models are evaluated on 1,500 grasps on 12 3D-printed adversarial objects from the Soft
Area-Contact Physical Robot Grasp Dataset [5], collected on a physical ABB YuMi robot with
a compliant parallel-jaw gripper and the PhotoNeo Phoxi RGBD camera. Although exerted
forces are not actively controlled, as the gripper does not have force sensors, the upper limit
of the closing force is known.

Results in Table 4.3 show that the 6DFC can increase the recall by as much as 17% over ex-
isting models while maintaining a similar mAP. Furthermore, the precision and recall shown
in Table 4.3 are up to 13% and 10% than results in Table 4.2 largely due to the higher quality
of the depth images.

Frictional Contact Model mAP mAR Runtime (ms/grasp)

Point 0.80 ± 0.01 0.50 ± 0.01 13.0 ± 2.7

Planar 0.75 ± 0.01 0.55 ± 0.01 43.9 ± 0.6

6DLS (proposed) 0.83 ± 0.02 0.60 ± 0.01 247.9 ± 9.6

6DFC (proposed) 0.82 ± 0.01 0.67 ± 0.01 251.6 ± 14.2

Table 4.3: Prediction results of physical grasp success using ABB YuMi robot and PhotoNeo Phoxi
RGBD camera.

4.1.4.7 Discussion

Experiments with two physical setups show that the proposed nonplanar frictional surface
contact models increase mAP and mAR by up to 4% and 25% compared to the traditional
soft point contact model, respectively. One observation is that the 6DFC accurately predicts
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success of dynamic grasps, where the object moved when the gripper jaws close. However,
the 6DFC algorithm also predicts false positives. One hypothesis is that the 6DFC allows
different contact forces of each jaw, which is not feasible with the current physical setup. In
future work, one can evaluate 6DFC with a three-jaw gripper that allows fully controllable
forces to further investigate this effect.

4.2 Grasp Planning for Previously Unseen Rigid Objects

The second application of the proposed nonplanar frictional surface contact models is grasp
planning, which addresses the problem of detecting the optimal grasp to manipulate an ob-
ject for the desired task. A frictional contact model is commonly applied in analytical or hy-
brid grasp planning algorithms. One limitation of the former is that it requires prior knowl-
edge such as the geometry and the mass of the object to plan grasps, which is less realistic in
an unstructured environment. Therefore, building on Dex-Net and GQ-CNN (Section 2.6.1),
this thesis proposes a hybrid grasp planner, which detects grasps with compliant gripper
jaws for previously unseen, or novel, rigid objects. While the pipeline of the proposed hy-
brid planner is similar to Dex-Net 4.0 [36], the grasp dataset, which is required to train the
planner, is generated based on the nonplanar frictional surface contact models, instead of the
soft point contact model. The next part introduces details about the grasp dataset and the
synthetic depth images, as well as the physical experiments to evaluate the grasp planners
based on different frictional contact models.

4.2.1 Problem Statement

Given a depth image, the proposed grasp planner outputs the optimal grasp pose to lift and
place a novel object. Note that the planned grasp is restricted to top grasps, which means
that the gripper approaches the object from the top. To create a grasp dataset, the assump-
tions for the nonplanar frictional surface contacts and grasp analysis listed in Section 3.1 and
Section 4.1.1, respectively, are required. The quality of a grasp in the dataset is computed
with the robust wrench resistance metric (Section 2.5.3.2) by solving the quadratic program
in Equation (2.100).

4.2.2 Dataset Generation

The pipeline to generate the grasp dataset in simulation is similar to finding the grasp qual-
ity map for an analytical grasp planner, as illustrated in Figure 1.2(b). Given the mesh of an
object, the first step is to sample the grasp candidates. Then, the quality of each candidate is
computed based on the selected frictional contact model.

This thesis uses the grasp sampling algorithm proposed by Mahler et al. [89], which is a
variation of [183], and is suitable for objects with an arbitrary geometry. The idea is to first
generate a contact point by sampling the object surface. For each contact point, the direction
of the grasp axis is further sampled within the friction cone at the point by assuming a point
contact. Sampling within the friction cone eliminates potential nonrobust grasps, hence re-
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duces the search space of the grasp candidates. One can use a larger friction coefficient for
the cone to preserve more grasps. Finally, the second contact point on the object can be com-
puted from the first point, the grasp axis direction, and the gripper width. These two contact
points define a grasp. The grasp is considered as a candidate if it is not in collision with the
grasp object or the objects in the work space, such as the table.

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Comparison of two grasp axis definitions. (a)(c)(e): grasp candidates, where the grasp
axis is between the center of two jaws; (b)(d)(f): grasp candidates, where the grasp axis is between the
bottom of the jaws.

Next, the grasp axis needs to be defined. Intuitively, the grasp axis can be the axis be-
tween the center of two gripper jaws, as illustrated in Figure 4.8(a). However, with this grasp
axis definition, there are only a limited number of sampled grasps for flat objects, as the re-
maining grasps may collide with the table underneath the object. Figure 4.8(c) shows the
sampled grasps for a representative flat object from the EGAD dataset [184]. Figure 4.8(e)
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illustrates one of the grasp candidates with the contact profiles estimated by the REACH
model. To address this issue, this thesis defines the grasp axis as the axis between the bot-
tom of the two jaws, as shown in Figure 4.8(b). Figure 4.8(d) shows that more grasps can
be sampled for the same object with the new grasp axis definition. A representative grasp
candidate with the new axis is presented in Figure 4.8(f).

As the second step to generate a grasp dataset, the quality of each grasp candidate is
computed based on the selected frictional contact model using the robust wrench resistance
metric (Section 2.5.3.2). Figure 4.9(a)–(d) show the grasp quality maps for the EGAD flat
object computed with the soft point contact, planar area contact, the ellipsoidal 6DLS model,
and the 6DFC, respectively. Figure 4.9(e)–(h) present the highest-quality grasp among these
candidates with the respective frictional contact model. Figure 4.9(a) shows that the soft
point contact model is overly conservative as the grasp qualities are less than or equal to 0.2,
while the highest-quality grasp depicted in Figure 4.9(e) will likely fail during the physical
robot execution. While the planar area contact model finds the same highest-quality grasp
in (f) as the 6DLS in (g) and the 6DFC in (h), it is also too conservative. A grasp planner
with such conservative frictional contact models will likely fail to find any grasps to lift up
the object. Figure 4.9(c) and (d) show that the grasp qualities computed with the 6DLS and
6DFC are similar for this object.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.9: Quality of grasp candidates computed with four frictional contact models. (a)–(d): Grasp
maps computed with the four models. (e)–(h) the highest-quality grasp among the corresponding
candidates. (a)(e) grasps with the point contact model; (b)(f) grasps with the planar area contact
model; (c)(g) grasps with the ellipsoidal 6DLS model; (d)(h) grasps with the 6DFC.

For each frictional contact model, a grasp dataset containing over 500K grasp candidates
for 1,080 meshes from Dex-Net 1.0 [89] is created. For a grasp dataset, Ns synthetic depth
images are rendered for each grasp by randomly sampling Ns camera poses within a range.
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Specifically, the height of the overhead camera is fixed, same as in the physical experiments.
The x- and y- coordinates of the camera are sampled with the object being fixed on the table,
which is equivalent to sampling the object poses relative to a fixed overhead camera. Each
depth image is cropped to 96×96 around the grasp center and rotated so that the grasp axis
is horizontal. In this thesis, Ns = 5 depth images are rendered for each grasp. Therefore,
there are over 2,500,000 synthetic depth images to train the GQ-CNN for each model.

4.2.3 Physical Experiments

The grasp planners based on three frictional contact models are evaluated for a pick-and-
place task. Note that the planar area contact model is not evaluated as [5] suggested that
it is worse than soft point contact in grasp success prediction with compliant gripper jaws.
The robot setup is illustrated in Figure 4.6, which is identical to the setup for grasp success
prediction. A singulated object is placed on the table and a depth image is taken and fed into
GQ-CNN. The highest-quality collision-free grasp is executed. If no grasps are found, a new
depth image will be taken and passed to GQ-CNN. This process is repeated up to ten itera-
tions. Note that the grasps from GQ-CNN may differ at each iteration as the grasp sampling
process has randomly sampled parameters and the depth images can be slightly different,
for instance, at the edges on the object. A grasp is considered as a success if it lifts the object
and places it into the bin on the table. A grasp is labeled as a failure if it fails to place the
object or no grasps can be found by GQ-CNN after ten iterations.

The physical grasps are collected on 32 objects, including eight adversarial training ob-
jects [90] and 24 novel objects from the YCB dataset [185], the EGAD dataset [184], and novel
household objects, as shown in Figure 4.10, where the eight training objects are above the
dashed line in the figure.

Figure 4.10: 32 physical objects for the grasp planning experiments. The objects with a green under-
line are flat objects, which are potentially difficult to grasp.

Each object is grasped ten times with different stable poses. The stable poses are the same
for each frictional contact model to enable a fair comparison. There are in a total of 80 grasps
for the training objects and 240 grasps for the novel objects for each model.
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4.2.3.1 Metrics

Two metrics are used to evaluate the performance of GQ-CNN

1. Grasp Success Rate, which is the rate of successful grasps among all executed grasps. A
higher grasp success rate means that the grasp planner can find more robust grasps.

2. Precision and Recall, which are computed with the estimated grasp quality from GQ-
CNN and the physical grasp success. A combination of high precision and high recall
indicates that GQ-CNN accurately predicts the quality of the planned grasp.

4.2.3.2 Results

The results for training and novel objects are compared with the three frictional contact mod-
els. Results for training objects are used to tune the parameters and provide a benchmark
for different physical settings. Table 4.4 shows the results for the eight training objects. The
6DLS reaches the highest grasp success rate, as well as the highest precision and recall. The
results indicate that the grasp planner based on the 6DLS model detects the best grasps for
the training objects and predicts the grasp quality more accurately compared to the remain-
ing models.

Frictional Contact Model Grasp Success Rate Precision Recall

Point 0.88 0.87 0.56

6DLS (proposed) 0.91 0.96 0.80

6DFC (proposed) 0.90 0.88 0.57

Table 4.4: Results of planned grasps with three frictional contact models for eight training objects.

Table 4.5 shows the results for the 24 novel objects. The 6DLS achieves 92% grasp success,
10% higher over the traditional soft point contact model. Furthermore, the recall of the 6DLS
is up to 14% higher than the remaining models. The main difference comes from the five flat
objects, which are depicted in Figure 4.10 with a green line underneath the object. The 6DLS
is able to find robust grasps for these flat objects, whereas the traditional model can not. Re-
sults for the flat objects in Table 4.5 shows that the ellipsoid model increases grasp success,
precision, and recall by 30%, 1%, and 22% compared to the remaining models, respectively.
This observation is consistent with the planned grasps in simulation, illustrated in Figure 4.9.
Furthermore, by comparing Table 4.4 and 4.5, one observes that the 6DLS model achieves a
similar grasp success rate for the training and novel objects, whereas there is a 6% drop for
the point and 6DFC frictional contact models. This suggests that the 6DLS-based grasp plan-
ner generalizes well to previously unseen objects. However, it is surprising that the results of
6DFC are worse than 6DLS. One reason can be the physical setup used in the experiments, as
the closing force is actively controlled by using the force sensors and the 6DFC is more suit-
able for cases with unknown grasp forces. In future work, the 6DFC model can be further
evaluated with a three-jaw gripper.
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All Objects Flat Objects
Frictional

Contact Model
Grasp

Success Rate
Precision Recall

Grasp
Success Rate

Precision Recall

Point 0.82 0.95 0.69 0.50 0.84 0.55

6DLS (proposed) 0.92 0.95 0.83 0.80 0.85 0.77

6DFC (proposed) 0.84 0.96 0.71 0.52 0.84 0.60

Table 4.5: Results of planned grasps with three frictional contact models for 24 novel objects and five
flat objects.

4.2.3.3 Discussion

One typical failure case for all frictional contact models are dynamic grasps, which occur
when one jaw contacts the object first, resulting in an object motion and a failed grasp. In
future work, one can also consider such dynamics using simulation, such as the method
proposed by Kim et al. [186], to further update the grasp quality.

4.3 Grasp Planning for Known Deformable Hollow Objects

The third application of the proposed nonplanar frictional surface contact models is grasp
planning for deformable hollow objects, such as plastic bottles and cups, with compliant
gripper jaws. Grasping such deformable objects is challenging, as the grasp should resist
disturbances while minimally deforming the object so as not to damage it or dislodge liq-
uids. This thesis proposes minimal work as a novel grasp quality metric that combines object
deformation and wrench resistance by using the ellipsoidal 6DLS model. An efficient algo-
rithm is further proposed to compute the work required to resist an external wrench for a
manipulation task by solving a linear program. The algorithm first computes the minimum
required grasp force and an estimation of the gripper jaw displacements based on the ob-
ject’s empirical stiffness at different locations. The work done by the jaws is the product of
the grasp force and the displacements. Grasps requiring minimal work are considered to be
of high quality.

Consider a representative grasp in Figure 4.11. The left part shows the stiffness of the
cup, where blue indicates high stiffness and red indicates low stiffness. Intuitively, the cup
is stiffer near the rim and bottom, where the shape provides reinforcement. The middle part
illustrates three planned grasps, shown as cylinders representing the grasp axis for a parallel-
jaw gripper, where green indicates high quality and red indicates low quality according to
the minimal work metric. The right figure shows the execution of the highest quality grasp
according to the minimal work grasp metric.

4.3.1 Problem Statement

The proposed metric addresses the problem of grasp planning and grasp success prediction
for 3D deformable hollow objects with compliant jaw pads based on the ability of a grasp to
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Figure 4.11: Plastic cup example for the proposed minimal work quality metric (adapted from [6]
©2020 IEEE).

resist external wrenches and the deformability of the object at the grasp location.

4.3.1.1 Assumptions

In addition to the assumptions for the nonplanar surface contacts and grasp analysis listed
in Section 3.1 and Section 4.1.1, respectively, the proposed algorithm requires the following
assumptions:

1. The stiffness is known for the objects to be grasped. This is required to compute the
object deformation for a given grasp force.

2. A linear elastic model (linear stiffness) of soft jaw pads and objects. The assumption
allows the computation of object deformation for an arbitrary grasp force.

4.3.1.2 Metrics

A grasp is considered to be successful if it completes the manipulation task without damag-
ing the object or dislodging contents and to be failed otherwise. The predicted grasp success
is binary and evaluates to 1 if the metric is higher than a threshold. Balanced accuracy is used
in these experiments to evaluate the predictions made by a given metric by comparing them
with real-world grasp success labels. Balanced accuracy is suitable for imbalanced datasets
and is computed by weighting each sample with the inverse prevalence of its true class when
finding the accuracy.

4.3.2 Algorithm

To evaluate a grasp candidate, the algorithm computes the minimal work of the gripper jaws
required to complete a manipulation task. Applying the ellipsoidal 6DLS model as the fric-
tional constraints, the minimal grasp force is computed by solving a linear program (LP).
Then, the object deformation is estimated based on the grasp force and the object’s empirical
stiffness at the contact locations. The work of each gripper jaw is the product of the grasp
force and the jaw displacement. The sum of the work of each jaw forms the work of the
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Figure 4.12: Contact profile with an enlarged view obtained by the REACH model [5]. The contact
area consists of triangles and the redder colors represent higher pressure due to larger deformation
of the soft jaw pad at that point (adapted from [6] ©2020 IEEE).

grasp. The pipeline, including contact profile estimation, frictional constraints computation,
and the minimal work quality computation, is introduced in the following.

4.3.2.1 Contact Profile Estimation

The REACH model [5] (Section 2.3.1.3) is used to estimate the profile for contacts between
compliant jaw pads and deformable hollow objects due to its computational efficiency com-
pared to the Finite Element Method. Figure 4.12 shows a representative contact profile con-
sisting of a triangular mesh and the pressure distribution. However, the obtained contact
profiles may be less accurate for objects with low stiffness since the model assumes that the
grasped object is rigid.

4.3.2.2 Contact Wrench Constraints

Contact wrench constraints, which are constraints of frictional and normal wrenches, are
essential to determine the minimal required grasp force to counter an expected external dis-
turbance. Given the contact profile, an ellipsoidal 6DLS model Ae is computed with Al-
gorithm 1. Next, the outer linearized contact wrench constraints Couter in Equation (3.28)
are obtained by linearizing the 6D ellipsoid and combining the frictional wrench constraints
with the normal wrench.

4.3.2.3 Minimal Work Quality Metric

For a grasp with N contacts, let G ∈ R6×6N be the grasp map (Section 2.4.2). Let ci ∈ R6

be the contact wrench applied at the ith contact and let f⊥ = [f⊥1 , . . . , f⊥N ]
T be a vector of

magnitudes of the normal forces, where f⊥i is the magnitude of the normal force at the ith
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contact. The minimal required grasp force to resist an external wrench wext ∈ R6 is

min
f⊥,c1,...,cN

f⊥
T1N

subject to G


c1

...

cN

+wext = 0,

ci ∈ Couter
i , ∀i ∈ {1, . . . , N}.

(4.4)

Denoting di as the displacement of the ith jaw and si as the object stiffness at the ith
contact, the work W is computed based on Hooke’s law:

W =
N∑
i=1

(f⊥i · di) with di =
f⊥i
si

+ ε, (4.5)

where ε is a small positive number, which allows the minimal work quality metric to also
apply to rigid objects or objects containing a rigid part. In this case, the displacement di is
equal to ε and the minimal work grasp quality metric reduces to the minimal force metric.

Denoting Wmax as the maximal work for normalization, the minimal work grasp quality
qwork is computed with

qwork = 1− W

Wmax
. (4.6)

Wmax is selected based on the collected physical data.

4.3.3 Grasp Planning in Simulation

The following part presents the object’s stiffness acquisition required to compute work and
the planned grasps in simulation with the proposed minimal work quality metric compared
to two baseline metrics.

4.3.3.1 Acquisition of Object Stiffness

The object’s stiffness is estimated with physical experiments. One can use the Finite Element
Method to compute the object’s deformation with a closing force of the gripper. However,
the stiffness of hollow objects, such as plastic bottles and cups, highly depends on the wall
thickness, the geometry, and material of the object, which are non-trivial to simulate. There-
fore, a physical robot is used to collect object’s stiffness at different locations in this work.
Specifically, the KUKA robot and the SCHUNK parallel-jaw gripper with a force sensor on
each jaw are used to collect the stiffness. The object’s stiffness is estimated based on

1. The target normal force f⊥;

2. The gripper opening ls when it first makes contact with the object;

3. The gripper opening le when f⊥ is reached;
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First, antipodal grasps are planned in simulation for each object. At each planned grasp
location, the SCHUNK gripper closes with a target force f⊥ = 10N of each jaw. The object’s
stiffness si at the location i, which is the intersection point of the grasp axis and the object
surface, is computed with si = f⊥i/(ls,i − le,i). Each grasp is repeated five times and the
median of the stiffness is chosen.

4.3.3.2 Evaluated Metrics

The proposed minimal work grasp quality metric is compared with two baseline metrics.

• Grasp reliability metric qrobust: as introduced in Section 2.5.3.2, qrobust addresses uncer-
tainties in actuation by using Monte-Carlo sampling over the grasp pose and is the
average grasp success over the K samples

qrobust =
1

K

K∑
i=1

Ri.

• Minimal force metric qforce: The grasp quality is the minimal required grasp force f⊥ to
resist wext given the maximal force limit f⊥max

qf = 1− f⊥
f⊥max

,

where f⊥max is determined experimentally.

• Minimal work metric: the proposed metric computed with

qwork = 1− W

Wmax
.

4.3.3.3 Grasp Planning in Simulation

Planned grasps in simulation with the three quality metrics are compared. Figures 4.13(a)
and (b) show the planned grasps for three objects based on their 3D meshes and the interpo-
lated stiffness maps.

Antipodal grasp candidates are sampled and the quality of each grasp is computed for 1)
vertical lifting and 2) lifting and 90◦ rotation tasks. Grasps planned with three quality met-
rics are compared, as shown in Figures 4.13(c) and (d). The two tasks are modeled with a 6D
gravity wrench to be resisted under one and three object poses obtained by discretizing the
manipulation trajectory, respectively, since the gravity wrench remains the same for the ver-
tical lifting task. The lowest quality value of a grasp among all object poses is selected as the
value for each metric. The colored lines represent the grasp axes; green indicates high quality
under the given metric, while red indicates low quality. Figure 4.13 shows that the planned
grasps using the proposed minimal work quality metric avoid causing large deformations of
the object while resisting the gravitational disturbances of the manipulation tasks.
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Figure 4.13: Planned grasps for three physical objects with three quality metrics.

4.3.4 Physical Experiments

The planned grasps are evaluated with physical experiments for the two manipulation tasks.
A total of 46 grasp poses are selected for the three objects that cover different regions of each
object. Each grasp is repeated five times, resulting in 230 grasps for each task. A grasp is
considered to be successful if 1) the task is completed, 2) the object returns to its original
shape when the grasp force is released, and 3) the content is not dislodged during the grasp.

The objects are filled with wet towels to simulate the mass of the object filled with liquid
without changing the object’s stiffness or damaging the electrical devices. Object 1 and 2
are sealed with a balloon to infer the content spillage. By measuring the balloon’s inflation
before and after the grasp, the content is considered spilled if the inflation difference is larger
than a threshold.

The balanced accuracy, or the accuracy weighted by the number of successful and failed
grasps in the collected data, is selected as the metric to evaluate the prediction accuracy.
Each metric’s grasp quality prediction is binarized by thresholding the quality at a threshold
σ = 0.5. Table 4.6 shows the balanced accuracy of the three grasp quality metrics for the two
manipulation tasks. The proposed metric reaches 77.5% and 78.9% balanced accuracy for the
two tasks, up to 28.8% and 22.7% higher than the other metrics, respectively.

4.3.5 Discussion

The section proposes a minimal work quality metric to plan grasps for 3D deformable hol-
low objects. During the experiments, one can observe that the proposed method may not
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Table 4.6: Balanced accuracy of three quality metrics.

Object
Vertical lifting Lifting and 90◦ rotation

qrobust qforce qwork qrobust qforce qwork

1 0.500 0.711 0.833 0.575 0.600 0.875

2 0.391 0.539 0.831 0.516 0.714 0.759

3 0.500 0.535 0.610 0.630 0.570 0.760

All 0.487 0.606 0.775 0.562 0.641 0.789

perform well for objects having large deformations due to the linear stiffness assumption
and the simplified model to acquire contact profiles. To address this, one can simulate the
contacts with the FEM and fit a strain-stress curve for each grasp location by applying dif-
ferent loads. The algorithms then use the obtained pressure distribution and the deformed
object shape to compute the grasp quality.

Note that the minimal work grasp quality metric is also applicable to grasps on rigid ob-
jects with compliant gripper jaws. As future work, this duality can be further investigated
and applied in grasp planning for both rigid and deformable objects.

4.4 Chapter summary

This chapter evaluated the proposed nonplanar frictional surface contact models, including
the two 6DLS models and the 6DFC, for three applications. The first application was grasp
success prediction for rigid known objects. The frictional contact models were evaluated
with over 3,000 grasps on 3D-printed objects with three physical setups equipped with dif-
ferent deformable gripper jaws. The results showed that the proposed model increases the
precision and recall in all experiments by up to 4% and 25% over the traditional frictional
contact models, respectively. This chapter further presented a hybrid grasp planner that
finds robust grasps for previously unseen rigid objects given a depth image. The proposed
ellipsoidal 6DLS model and the 6DFC were used to create a grasp dataset and a synthetic
depth image dataset in simulation to train the grasp planners. Physical experiments showed
that the grasp planner based on the proposed 6DLS model was able to find robust grasps
for 24 novel objects and achieved 92% grasp success rate, 10% higher compared to the tradi-
tional frictional contact models. The third application was grasp planning and grasp success
prediction for known deformable hollow objects. The novel minimal work quality metric ap-
plies the ellipsoidal 6DLS model and increased balanced accuracy for physical grasp success
prediction by up to 28.8%.
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Conclusion

Robust robot grasping enables object manipulation with promising applications in industry,
households, and health care, such as intra-logistics, cooking, and elderly care. One key chal-
lenge of grasping is grasp planning, which requires a frictional contact model to estimate
the grasp quality so that the planner can find the most robust grasp among the grasp can-
didates. While deformable gripper jaws are widely applied in many of the aforementioned
applications to increase grasp robustness, they create nonplanar surface contacts when they
deform to the object’s nonplanar local geometry. As the frictional contact models for non-
planar surfaces are not well studied, this thesis focuses on modeling the frictional nonplanar
surface contacts and their applications in grasp success prediction and grasp planning with
deformable gripper jaws. This chapter discusses the results and the limitations of the pro-
posed models and further presents potential future research directions for a grasp planner
toward human level performance.

5.1 Summary of the Results

The thesis derived the 6DFW given a contact profile and object motion. Results with six
nonplanar parametric surfaces in simulation showed that the traditional planar area con-
tact model results in a frictional wrench that is over-conservative in four dimensions and
overconfident in one dimension, which suggests the importance of considering the nonpla-
nar surface geometry. This thesis further evaluated the two 6DLS models that approximate
a 6DLS, which describes the frictional wrench limit at a nonplanar surface contact. Fitting
results with six parametric surfaces and 2,932 contacts from FEM simulations showed that
the quartic and ellipsoidal 6DLS models reached as low as 0.02 and 0.04 mean wrench error,
respectively, which suggests that both models well approximate the frictional wrench limit
for a large variety of nonplanar surface contacts.

For the first application in grasping, the 6DLS and 6DFC models are used to predict
physical grasp success. The first experiment setup evaluated the 6DLS models for elliptic
cylindrical contact surfaces caused by the deformable 3D-printed plastic jaws with the fin
ray structure. Prediction results for 1,035 physical grasps showed that the ellipsoidal 6DLS
model improves the F1 score by up to 16% compared to the traditional frictional contact
models. As the ellipsoid has lower computational effort and slightly outperforms the quartic
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in this experiment setup, the ellipsoid is used as a representative 6DLS model for the next
experiments. The second experiment setup evaluated the 6DLS and the 6DFC models for
arbitrary nonplanar surface contacts caused by rigid jaws covered with compliant materials.
Two physical grasp datasets, 920 grasps collected with the SCHUNK gripper on the KUKA
robot and 1,500 grasps collected with the ABB YuMi robot, showed that the ellipsoidal 6DLS
model outperforms the traditional frictional contact models by up to 4% mAP and 21% mAR.
Compared to the 6DLS model, the 6DFC further improves mAR by 4%, while keeping the
same mAP.

This dissertation further evaluated the proposed hybrid grasp planners for novel rigid
objects based on the 6DLS and the 6DFC models. Physical experiments with 22 novel objects
showed that the grasp planner trained with the proposed ellipsoidal 6DLS model achieved
92% grasp success, which is 10% higher than the traditional soft point contact model used
in the state-of-the-art hybrid grasp planner Dex-Net [36], [90]. One key observation is that
the 6DLS-based grasp planner is also able to find robust grasps for flat objects, while the soft
point contact model can not in this case.

As the third application of the 6DLS model, this dissertation presented a novel minimal
work quality metric for deformable hollow objects. Grasps planned with the minimal work
metric in simulation can resist gravitational disturbances without causing large deforma-
tions. Furthermore, the proposed metric was evaluated with a total of 460 physical grasps
for grasp success prediction for two manipulation tasks. The minimal work metric reached
77.5% and 78.9% balanced accuracy for the two tasks, up to 28.8% and 22.7% higher than the
traditional metrics, respectively.

5.2 Limitations

While the proposed 6DLS and 6DFC models increase the accuracy for grasp success predic-
tion and grasp success for planning, this section discusses three limitations of the proposed
methods.

To predict grasp success, the change of the contact profile is assumed to be minor during
the manipulation; therefore, the 6DLS model is not recomputed during the manipulation.
However, one can observe that the contact profile can change during the manipulation due
to the jaws’ deformation. One way to address this limitation is to constantly predict grasp
success with updated profiles captured with deformable tactile sensors.

Furthermore, 6DLS-based grasp analysis requires the assumption that both gripper jaws
are in contact with the object simultaneously; therefore, the object remains static while the
gripper closes. However, one can observe that the object moves if one jaw touches the object
first. This object motion results in a less accurate contact profile estimation or even a grasp
failure. This issue can be addressed by simulating or predicting the object dynamics during
grasping.

Finally, the minimal work metric is less suitable for objects with large deformations due
to the linear stiffness assumption and the simplified model to acquire the contact profiles.
To address this, one can simulate the contacts with the FEM and use the obtained pressure
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distribution to compute the minimal grasp force. With the simulated deformed shape of the
object, one can further fit a strain-stress curve for each grasp location by applying different
loads to accurately estimate the object deformation.

5.3 Future Work

In addition to addressing the limitations above as future work, this section also points out
promising future research directions so that a robot can robustly manipulate arbitrary novel
objects for wide-range applications.

1. Accurate and efficient contact profile estimation: While the REACH model [5] effi-
ciently estimates contact profiles, the estimations are less accurate compared to the
FEM simulations. Furthermore, the model should also consider the object dynamics
during the grasp due to one jaw contacting the object first. Such an accurate and effi-
cient model allows largescale dataset generation for an optimal grasp planner.

2. Planning six DoF grasps for novel objects: The proposed planner is limited to top
grasps, which is not sufficient for manipulation tasks such as pouring liquids. The
challenges of training a six DoF grasp planner include efficient grasp representation to
reduce the number of grasp candidates, six DoF grasp sampling for the given depth
image, and preventing grasps colliding with the environments.

3. Grasp planner for different manipulation tasks: While the majority of grasp planners
focuses on the pick-and-place task, a planner should be able to generalize to different
tasks. Rather than training a grasp planner for a specific task, one can consider modular
tasks and combine them to find the best grasp for the main task [7]. The key challenges
include the definition of modular tasks and how to guarantee the success of the main
task if modular tasks are predicted to be successful.

4. Quality metric for both rigid and deformable objects: The proposed minimal work
metric is also applicable to grasps on rigid objects with compliant gripper jaws, as it
reduces to the minimal force metric. This duality can be further studied for a universal
metric for both rigid and deformable objects.

5. Object pose control with compliant gripper jaws: During a successful grasp with de-
formable gripper jaws, the object pose can change even if there is no relative motion
between the object and the jaws due to the jaws’s deformation. Such pose change may
cause manipulation failure in applications such as assembly, as the object pose has to
be precisely controlled. Therefore, an ideal manipulator should also consider the de-
formation of the jaws to control the object pose.

6. Grasp planning for novel rigid and deformable objects: An ideal grasp planner
should be able to find robust grasps for arbitrary objects. The challenges include a
unified grasp quality metric for arbitrary objects, identification of the object stiffness
prior to the manipulation, as well as updating the grasp pose for unexpected object
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stiffness. For such scenarios, a recurrent neural network (RNN) can be used to train
a grasp planner. Specifically, the planner first finds a grasp by assuming the object is
rigid at the grasp location. If the object deforms during the grasp, the object stiffness is
feed into the RNN so that the planner updates the optimal grasp pose.
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