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Abstract. The transformer models and their variations currently are
considered the prime model architectures in speech recognition since they
yield state-of-the-art results on several datasets. Their main strength lies
in the self-attention mechanism, where the models receive the ability to
calculate a score over the whole input sequence and focus on essential
aspects of the sequence. However, the attention score has some flaws.
It is heavily global-dependent since it takes the whole sequence into ac-
count and normalizes along the sequence length. Our work presents a
novel approach for a dynamic fusion between the global and a local at-
tention score based on a Gaussian mask. The small networks for learning
the fusion process and the Gaussian masks require only few additional
parameters and are simple to add to current transformer architectures.
With our exhaustive evaluation, we determine the effect of localness in
the encoder layers and examine the most effective fusion approach. The
results on the dataset TEDLIUMv2 demonstrate a steady improvement
on the dev and the test set for the base transformer model equipped with
our proposed fusion procedure for local attention.

Keywords: Speech Recognition - Transformer - Local Attention - At-
tention Fusion

1 Introduction

Over the last years, sequence-to-sequence (Seq2Seq) models gain popularity as
they are simple to train and require only little expert knowledge. The introduc-
tion of the transformer [18] proposed a novel way to eliminate the computational
demanding long short-term memory (LSTM) layers by heavily relying on the
self-attention (SA) mechanism. Despite the ordinary architecture, which mostly
depends on feed-forward networks (FFNs), end-to-end speech recognition mod-
els based on the transformer were able to further reduce their word error rate
(WER) on several different datasets. Nowadays, most state-of-the-art (SOTA)
approaches rely on transformer model structure or its variations [2,/10}/13}/17].
The SA is one of the critical elements in the transformer. This mechanism is
based on an operation that predicts attention scores for the complete input se-
quence. These attention scores are gathered in global attention maps containing
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the relevance of each input element in the overall sequence and are normalized
across the complete sequence. As a result, these attention maps describe a strong
global dependency of the overall sequence. Therefore, the model is able to at-
tend to all information in the input sequence and it can focus the importance of
every element in the sequence by itself. However, this can be problematic. The
SA mechanism performs the normalization by applying the softmax operation,
whereby small values are getting smaller and large values are getting even larger.
The valuable and important local context in the sequence is suppressed as only
dominant values remain after the softmax operation.

A simple approach to support local context information is to restrict the
global context. Diminishing the impact of the global context, i.e., create a local
window, is already known. Luong et al. [5] proposed one of the first approaches
in machine translation based on attention models [15]. The model predicts an
aligned position token for each target word. Then, they utilized the predicted
position as the mean of a Gaussian distribution to limit the computation context
of the following context vector.

Later, the approach of adding a Gaussian window to focus more on the
local context was transferred to the transformer [18] model in several works
[12/13,120]. Shaw et al. |[12] proposed to add a trainable parameter to the key
vector. These parameters are the edges of a fully connected, directed graph,
representing the relative positions in a predefined clipping range. Sperger et
al. |[13] utilized a Gaussian mask and added it to the attention maps. This mask
acts as a bias onto the SA mechanism and does not work for the cross-attention
between encoder and decoder. Instead of applying a single fixed window size (i.e.,
a fixed standard derivation parameter o), they proposed a trainable o for every
head. This approach ensures that each head of the SA can determine its specific
parameters to achieve local attention where it is necessary. In [20], the approach
of adding a Gaussian mask was further extended. They proposed a flexible way
to adjust the window size (the standard derivation o) and the position (the
mean ) of the mask. Therefore, the limitation for only utilizing the mask in
the SA was eliminated, and they demonstrated a solution for masking the cross-
attention in the transformer. However, similar to [13], their main focus relied on
determining the window size. Multiple approaches for predicting this window size
were compared, from fixed window sizes to layer-dependent window sizes. Even
though this solution was capable of inserting the mask to the cross-attention,
most of the improvement was still achieved when a Gaussian mask was added
to the encoder’s SA.

Recently, Nguyen et al. [6] closed this gap by proposing a fully differentiable
window, which is also applicable to the SA in the encoder, and the decoder, and
in the cross-attention between encoder and decoder. They investigated different
ways of adding the local window to the SA mechanism and where the local mask
had the most significant impact on the performance of the overall transformer
model. Their study demonstrated that in the case of machine translation, the
best model is returned by utilizing an additive window in the encoder’s SA,
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an additive segment-based window in the cross-attention, and a multiplicative
window in the decoder’s SA.

Nearly all these approaches are proposed in the domain of machine trans-
lation, where they return consistent improvements in their translation score.
Even though [13] shows a way to utilize localness in automatic speech recog-
nition (ASR), their best model applies an LSTM for modeling the positional
encoding. To the best of our knowledge, direct integration of localness into the
global score of a transformer model for ASR has not be done. Our contributions
are the following:

— We transfer the idea of local attention to the domain of ASR.

— We demonstrate that solely the encoder’s SA can already benefit from local-
ness.

— We propose a novel approach to fuse the local and global attention scores.

2 Proposed Method

2.1 Transformer Network

The transformer network relies on the SA mechanism to calculate a score of
importance for each input element. As this SA takes into account the complete
sequence, it can be considered as an attention with strong global context. The
network itself is built up by stacked encoder and stacked decoder networks,
connected by a cross-attention mechanism. In this work, we only examine the
influence of localness on the stacked encoder. The standard SA is defined as
a scoring between the query sequence Q@ = (qy, - ,q;, - ,q;) and the key
sequence K = (kq,--- ,k;,--- , k) of length I:

QW) (KW™)T
Ve .

Since the scoring values are not normalized, a softmax operation is applied,
followed by the value sequence V' = (vy,--- ,v;, - ,vr) to return the final SA:

Score(Q, K) = (1)

SelfAttention(Q, K, V') = Softmax(Score(Q, K)) VWV (2)

Here, q;, k;,v; € R? with the vector dimension d are combined into the matrices
Q, K, V € RI*? respectively and connected to the corresponding trainable
weight matrices W WE WV e Ri%? Note that in case of the SA, Q=K =
V and correspond to the output of the previous layer.

For a single attention head, the model would be restricted to certain positions
learned during training. We obtain a more flexible model by splitting the single
SA to a multi-head attention (MHA) approach [18]:

MultiHeadAttention(Q, K, V') = Concat(hy,--- ,hy,--- ,hN)WO, (3)
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where we concatenate the output of each head h, and transform the concate-
nation into the output space by W© € R4 Each head h,, corresponds to a
SA:

h,, = SelfAttention(Q,,, K, V)

(Q,W&)(K,WKT
V dmha

(4)

= Softmax ( ) (VnWX)’

where dypa = %7 Qn’ K, V,ec RIXdmna gnd Wg’ VVnK7 W:L/ € R%mbaXdmna gre
trainable parameters. The number N of total heads h,, can be chosen freely.

2.2 Local Attention via Flexible Gaussian Window

In the following, we demonstrate the local attention only for the SA since the for-
mulas would be heavily cluttered with indices in the case of MHA. The approach
can seamlessly be transferred to the MHA with its parameters.

Local attention can be achieved by defining a Gaussian mask G:

(j— P)?

2 b
20;

Gij=— (5)

where G € R with G; ; € [0, —0c). The mask is adjustable in its position P;
and its window size o; = % The parameter P; and D; are learned by a FFNs
and restricted to the current input length I, which is defined below. The mask
provides the model with the ability to determine localness by itself if necessary.
For example, if the model is lowering the standard deviation o; via D;, it is able
to focus on relevant parts of the sequence and ignore the irrelevant ones. On the
other hand, if it is crucial to have global sequence information, the model can
widen its focus by increasing o;.

2.3 Trainable Parameters of the Gaussian Mask

In order to predict the central position p; and the window size z;, we follow the

approach in |20]:
Pz' 7. . Pi
<Di> = I - Sigmoid (Zz) . (6)

The values p; and z; are learned by FFNs and are integrated into the SA pro-
cedure. The predict values define a well-fitting Gaussian mask, which induces
local attention in the SA.
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Central Position Prediction The score in is calculated between
the key sequence K and the query sequence Q. In our case, we add the local
attention to the encoder’s SA. Therefore, we make our prediction for the central
position p; dependent on K or Q. Similar to [20], we also utilize the query
sequence @ to transform it into a hidden positional state p;:

p; = ug tanh(W ,q;), (7)

where uj, € R4 and W, ¢ R%*4 are trainable linear transformations.

Window Size Prediction There are several ways to set or learn a specific
window size z; [20]. Besides setting a fixed window size, it is possible to make
the prediction dependent on the mean of the key sequence K. In this way, we
condense all the information of K into a layer-dependent value z. However,
we want to give the model as much flexibility as possible. Thus, we select the
approach where we depend on all the predictions of the query sequence Q:

2 = ug tanh(Wpq,), (8)

where ug € R? denotes a trainable linear transformation. The advantage of
reusing the transformation W g, is that we receive enough flexibility to learn the
corresponding parameters p; and z; with only a few additional parameters [20].

2.4 Global and Local Attention Score Fusion

There are multiple ways, how to integrate the Gaussian mask G into the SA
mechanism. First, we revisit the fusion approach from [20]. We propose two re-
finements for the fusion process to enhance the integration of the local attention.

Bias Attention Fusion The simplest method is to add the local score G to
the global scoring in [Equation 1} where the mask acts like a bias [20]:

QW) (KW™)"
Vd
We believe that it is challenging for the model to create a local mask utilizing

the standard weight matrices we wk WV e R4 transforming the queries,
keys, and values into their own space containing global information.

Score(Q, K) =

+G. (9)

Improved Attention Fusion Inspired by [6], we add weight matrices Wﬁwl,

WE ., WY .., € RI*? for the local attention. However, in [6], they utilize a
differential window instead of a Gaussian mask. For that reason, we transfer the
idea of their fusion process to our approach:

Sgtobal = (QW ) (KW )T (10)



6 T. Watzel et al.
Slocal = (QW%cal)(KW{(fcal)T © G= Sl/ocal © G’ (11)

where ©® denotes an element-wise multiplication and set the final scoring in

with the attention score:
Sglobal + Slocal

Vd

The local weight matrices share the same dimensionality as the global weight
matrices. Now, the model is more flexible in generating local attention masks
since the dependency of the global weight matrices is removed.

Score(Q, K) = (12)

Adjustable Attention Fusion Although the SA is now split into two inde-
pendent attention branches, the additional term in still weights the
global score Sgiobal and the local score Sigeal equally, which could not be optimal,
e.g., if Sgiobal is more relevant for a precise prediction. To cope with this issue,
we insert a weighting parameter « to

« Sglobal + (1 - Oé) Slocal

Score(Q, K) = , 13
(Q, K) Nz (13)

The parameter « is learned by FFNs:
o = Sigmoid(u’ tanh(W ,k)), (14)

where u, € R4, W, € R¥™? and k € R? is the mean key over the key sequence
K.

3 Experiments

3.1 Training Setup

In order to test our approach for local attention, we evaluate our model on the
dataset TEDLIUMv2 [9]. The dataset combines more than 200 h of training data
which is already transcribed. The overall data is divided into train, test, and dev
set with a lexicon of 150k words. Furthermore, we perform different augmen-
tation techniques. Before the actual training, we enhance the training data by
applying speed perturbation |4], where the original signal is resampled with three
different speed factors: 0.9, 1.0, and 1.1. Then, we extract 80-dimensional log Mel
filterbanks as feature vectors, followed by 3-dimensional pitch features vectors
with Kaldi 8], and concatenated the resulting vectors to the final 83-dimensional
feature vector. Moreover, we generate byte pair encoding (BPE) units [11] of
size 500 by utilizing the transcript and set these units as our target values. Dur-
ing training, we apply another augmentation technique SpecAugment [7], which
warps the created features and blocks certain frequency channels or time steps
via masking.

The transformer model is implemented in the ESPnet toolkit [19], where
the pre-processed dataset is fed to the front-end of the transformer model. This
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front-end network sub-samples the input feature sequence utilizing two conv2D
layers with ReLU activation functions. Each convolutional layer has d,¢ = 256
channels and employs a 3 x 3 kernel with a stride of length two. A linear layer
with da = 256 dimensions serves as the output of the front-end, to which the
position encoding from [18] is added.

The transformer contains an encoder and a decoder branch. The stacked
encoder branch is built up by 12 layers with 2048 units, respectively. The decoder
branch has only six layers and shares an equal amount of units as the encoder
branch. We set the dimension of the SA mechanism to duy = 256, which is
applied to all encoder and decoder layers. We also utilize the benefit of the
MHA and set the number of heads N = 4.

All our experiments are based on the identical training setup, whereas we vary
between the different fusion approaches for adding localness. The local attention
is only applied in the SA of the encoder layers. We train all our models for 50
epochs and set the batch size to 128. The transformer models are optimized by
the Adam optimizer [3]. To avoid an early local minimum, we perform a warm-
up phase [18], in which the learning rate is slowly increased until it is steadily
decreased in the regular training setup. The warm-up phase includes 25 000 steps.
For regularization purposes, we follow the approach in [18], where we apply the
standard and residual dropout [14] with a rate of 0.1 in each encoder and decoder
layer and smooth the target labels by 0.1 [16].

The resulting transformer model is trained by the Kullback—Leibler (KL) loss,
which is guided by the auxiliary loss of the connectionist temporal classification
(CTC) [1] network on top of the encoder branch. The CTC loss is weighted by
0.3.

During decoding, we combine the transformer and the corresponding CTC
outputs. The predictions of the CTC network are weighted with 0.3. We apply
a standard beam search with a beam size of 20 and omit the language model.

3.2 Ablation Study

Since the improvement mentioned in [6,20] is located in the domain of machine
translation and language modeling, it is not clear if the same application holds
for the local attention in ASR. Therefore, we perform a short ablation study
where to apply localness and to identify the most effective way to fuse the global

score from and local score from

Effective Fusion We examine different approaches to effectively fuse the lo-
cal and global attention score in the encoder. The standard transformer model
without local attention acts as the baseline for our study. The comparison of the
different fusion setups share the procedure described in and results
are exhibited in [Table 1l
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Table 1: Ablation study of how to fuse
the local attention. The results are in
WER and evaluated on TEDLIUMv2

Table 2: Ablation study of the layer
location for integrating the local at-
tention from The results

[9]. are in WER and evaluated on TEDLI-
TEDLIUMv2 UMy2 [9].

Model dev test TEDLIUMYv2

Baseline w/o localness 10.0 9.2 Model dev test

+ Bias Attention Fusion [20] 10.1 9.0 Baseline w/o localness 10.0 9.2

+ Improved Attention Fusion 10.3 8.8 Layer 1-3 10.1 8.8

+ Adjustable Attention Fusion 9.8 9.1 Layer 1-6 10.2 8.9
Layer 1-9 10.0 8.8
Layer 1-12 9.8 9.1

Our baseline model achieves a WER of 10.0% on the dev and 9.2% on the
test set, which is close to the SOTA results reported in the ESPnet repositoryﬂ
The only difference is that we trained our model for only 50 epochs and decoded
it with a beam size of 20.

In the first Bias Attention Fusion setup, we integrate the Gaussian mask to
the transformer model, similar as proposed in [20]. During our experiments, we
faced the problem that the proposed mask returned only minor WER reductions
compared to the baseline model. Although we reduce the WER on the test set
from 9.2% to 9.0%, we do not observe a similar performance gain on the dev set,
where the WER increases from 10.0% to 10.1%. Since the improvements are not
consistent, we think it is challenging to learn a favorable Gaussian mask if there
is no local branch available which is entirely focusing on inducing localness.

For this reason, we extend the latter approach to the Improved Attention
Fusion setup, where we separate the local and global attention scores. The ex-
tension further reduces the WER on the test set from 9.2% to 8.8%, though
we notice an increase of the WER in the dev set from 10.0% to 10.3%. It seems
that the model benefits from a separate local attention branch, however, without
consistent WER reductions. A reason for these divergent results could be the
final fusion between both scores, which is still equally weighted.

In the Adjustable Attention Fusion setup, we equip the model with the ability
to weigh the global and local scores by itself. Therefore, we utilize the mean key
k of the key sequence K to predict an « value, which defines a fusion weight
between the local and global attention score. We obtain a highly flexible model
which returns consistent WER, reductions. The final model reduces the WER
for the dev set from 10.0% to 9.8% and for the test set from 9.2% to 9.1%.

! https://github.com/espnet/espnet/blob/master/egs/tedlium2/asr1/RESULTS.
md (commit c881192)
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Table 3: Final results in WER trained for 100 epochs between the current SOTA
result and our best approach. Evaluation was done on TEDLIUMv2 [9] and was
decoded with a beam size of 40.

TEDLIUMv2 [9]
Model #Param dev test

Baseline ESPnet 28M 10.1 89
+ Adjustable Attention Fusion 29M 10.0 8.7

Location of Localness Recent approaches as [6,20] already demonstrated that
the location of the local attention in the encoder’s SA of the model is relevant
and improves the transformer performance. They argue that the improvement
results in the fact that the lower layers of the model process more low-level
features, which contain more local information. As we do not know if it also
holds for ASR, we define four setups, where we integrate localness in the encoder
with our Improved Attention Fusion approach continuously. We begin with the
Layer 1-8 setup, where we apply the local attention from in the
first three SA encoder layers. In the following three setups, we always add our
local attention approach for the next three SA encoder layers until the complete
encoder is equipped with it.

Our results in reveal only a minor impact to the layer location of the
local attention. For the Layer 1-3 setup, we observe an improvement on the test
set from 9.2% to 8.8% and a minor increase on the dev set from 10.0% to 10.1%.
We obtain a similar result for localness in the first six layers, where the model
achieves a decline in the WER on the test to 8.9%, however, a slight increase to
10.2% on the dev set. In the Layer 1-9 setup, we are able to equalize with the
baseline setup, where the model returns a WER of 10.0% on the dev set and
reduces the WER on the test set from 9.2% to 8.8%.

The most consistent improvements are returned for the local attention em-
ployed in all SA layers of the encoder. For this setup, we are able to reduce the
WER on the dev set from 10.0% to 9.8% and gain a slight decline on the test set
from 9.2% to 9.1%. All in all, we do not observe similar findings as in [6}20]. One
reason might be the length of the input feature sequence. Although the input
sequence is sub-sampled to reduce its length, it is still several times longer than
the output sequence. For machine translation, this is not the case since the input
sentence and the output sentence share a high length overlap.

3.3 Final Results

For the final results, we trained our approach with a similar training setup as
the current SOTA results reported in the ESPnet repository(c.f. footnote above).
The baseline model and the extension Adjustable Attention Fusion are optimized
for 100 epochs and decoded with a beam size of 40. The extension requires a
minor increase from 28 M to 29 M total model parameters.
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(a) Sipcar Without the Gaus- (b) The learned Gaussian (c) The final score Siocal,
sian mask G. mask G with the marked where S},., is multiplied by
positions p;. G.

200

(d) The global score Sgiobar without induc- (e) The final attention score out of Sgiobal
ing local attention. and Siocal, where o = 0.423.

Fig. 1: The procedure of the Adjustable Attention Fusion with the final attention
score. The global score Sgiohar and the local Sigcal are determined and weighted
by the parameter «. Certain parts of the final attention score in are
getting boosted by Sipcal-

Our results in demonstrate that our approach is competitive with
current SOTA transformer model, hence, localness is also beneficial for trans-
former models in the domain of ASR. We are able to slightly reduce the WER
on the dev set from 10.1% to 10.0% and on the dev set from 8.9% to 8.7%.

Furthermore, we depict in the qualitative results of our approach.
In the upper row, we can observe the process of generating the local score Siocal-
First, in [Figure Ta] the model branch for the local attention determines the local
score S}, . without the Gaussian mask G. Then, in [Figure 1b|two FFNs predict
the position p; and window size z; for each entry in G. As the input sequence
length increases, the position p; of the Gaussian mask slowly transits to the end
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of the output sequence where the more relevant information of the score is. After
the multiplication of S, ., and G, we observe in that certain values of
the local score are raised since the color shading is brighter, whereas other parts
are lowered noticeable by the darker shading.

The fusion process of the Siocal and Sglobal is shown in the lower row of
[Figure 1| In [Figure 1d| the standard score Sgionhar is plotted without applying
any local attention. If the fusion from [Equation 13|is applied, we obtain the final
score in There, it is observable that some values of the final score
are assigned with higher importance since at the positions that plot is much
brighter. As a result, we are able to demonstrate that our approach is visible in
the quantitative as well as the qualitative results.

4 Conclusion

Our work presented a novel approach to induce localness into the global score
of the transformer network’s attention mechanism. Thereby, the local attention
score is achieved by employing a Gaussian mask, where it is essential to fuse the
global and local scores efficiently. Our novel fusion approach provides an excellent
way to do so, with only a minor increase of the total model parameters. In our
future work, we plan to integrate the local attention mechanism to the SA of
the decoder network and the cross-attention between the encoder and decoder
network.
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