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Antiphase domain growth: Correlation functions and structure factors in the scaling regime
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We study the coarsening of three-dimensional antiphase domain structures via Monte Carlo simulations.
Linear lattice dimensions of N = 1024 enable us to reach a scaling regime covering about 2.5 orders of
magnitude of linear scale. With short-range interactions on cubic lattices at temperatures of 0.75 Tc, the resulting
antiphase domain structures are isotropic, which allows us to describe the real-space correlation functions by a
common function scaled by a time-dependent parameter. We compare abstract Potts models and realistic models
of atomic order in compounds and show that those with same ground-state degeneracy q lead to equivalent
antiphase domain structures, while the scaling functions for different q show slight but significant deviations.
Finally, we quantitatively discuss notions of real-space scale (specific interface area) and reciprocal-space scale
(superstructure peak width) and thus give numerically exact values for the corresponding parameter K of the
Scherrer equation.
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I. INTRODUCTION

Ordering transitions in compounds, where the lattice of a
priori equivalent sites decays into sublattices with preferred
occupations by different elements, can have profound effects
on structural as well as functional materials properties [1–3].
For instance, the increased size of the unit cell implies larger
minimal Burgers vectors of dislocations and thus increases the
yield strength of ordered compounds considerably over their
disordered states [4]. Superalloys, such as Ni3Al and Fe3Al
or the lightest intermetallic ordered compound Al3Li with
a L12 superstructure on the fcc lattice, display remarkable
mechanical strength at a low density [1,2,5].

Due to the spontaneous breaking of symmetry, the super-
structures nucleated at independent regions in the crystal do
not necessarily fit together. After the ordered phase has grown
to cover the whole crystal, the resulting interfaces divide
the crystal into so-called antiphase domains (APDs) and are
correspondingly called antiphase domain boundaries. With in-
creasing annealing time the domains start to coarsen, reducing
the excess free energy of the domain walls and increasing the
material’s hardness [6].

Experimentally the size of domains is accessible either by
real-space methods, e.g., electron microscopy, or by diffrac-
tion methods in reciprocal space, perfectly analogous to the
more prominent case of crystallite sizes in polycrystalline
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media. In microscopy the APD scale is most commonly [7–9]
evaluated using the linear intercept method [10], where the
characteristic size is determined as the mean distance between
intersections with APD boundaries along a curve of random
direction [10].

In diffraction, the finite correlation length of the super-
structure due to the APD boundaries gives rise to a broadening
of the superstructure peaks. Here the easiest approach is to
consider descriptive parameters such as the full width at half
maximum (FWHM) or the integral breadth (the quotient of
peak area and peak height) that is according to the Scherrer
equation [11] inversely proportional to the domain size D̄ =
2πK/�k. In more involved evaluations, a heuristic shape and
size distribution function is Fourier transformed and modeled
to the powder pattern [12]. In any case, the shape of the
domain configuration has to be taken into account, either
as a shape constant parameter K as in case of the Scherrer
equation or a as model for the peak shape. Since the statistical
properties of APD structures have no closed form, the deter-
mined scale parameters are specific to the analysis method
and the used assumptions. In particular, in most cases domain
sizes determined by diffraction cannot be related to specific
real-space features of the APD configuration (but see, e.g.,
Refs. [13–15] for past approaches to this problem).

The starting point of typical theoretical treatments of do-
main coarsening is to average over the atomic scale with
its discreteness and disorder, so that the resulting domain
pattern completely specifies the system’s configuration. In
the absence of microscopic randomness, its evolution is de-
terministic and dictated by interface curvature according to
the classical Allen-Cahn treatment [16]. At late times, the
evolution equations can be linearized, so that, if we have two
configurations σ1(�r) and σ2(�r) that are identical after rescaling
the spatial domain σ2(�r) = σ1(λ�r), then, if σ1(�r) evolves into
σ ′

1(�r), also σ2(�r) will evolve into σ ′
2(�r) = σ ′

1(λ�r), albeit after
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a correspondingly rescaled time interval. The scaling hypoth-
esis in the strict sense of the word [17] now corresponds to
the assumption that there is an attractive fixed point in the
space of spatially rescaled statistical properties of domain
configurations to which a typical configuration will converge.
As a consequence, the single characteristic length scale will
show a power-law dependence on time—for the specific case
of curvature-driven coarsening of nonconserved fields with it
should possess an exponent of ν = 1/2.

If only the growth kinetics are the focus of the study,
the scaling behavior of the structure factor S(k, t ) can be
exploited [18], casting the structure factor in the form of
S(k, t ) = L(t )3S(kL(t )), with the time dependent scaling fac-
tor L(t ) [17,19]. The Fourier transform of the structure factor
is the pair-correlation function, which consequently obeys the
corresponding scaling behavior g(r, t ) = g(r/L(t )).

The assumption of infinitely sharp domain interfaces leads
to the correlation function behaving like g(r) ≈ 1 − αr at
small distances, with α being proportional to the specific
interface area σ [20]. This small-scale linear decay with a
discontinuous derivative at the origin when seen as a function
of three-dimensional real space corresponds to the so-called
Porod’s law S(k) ∝ k−4 for the scaled structure factor at large
k [21], which can conveniently be probed via the small-angle
scattering in phase-separation processes [22]. In contrast,
this large-k regime with its simple behavior is typically not
accessible for broadened superstructure peaks in ordering
processes, necessitating a detailed treatment of the full peak
shape.

There have been different approaches to theoretically
derive the scaled correlation function, or equivalently the
reciprocal-space structure factor [19,23–26] (for a compari-
son of the fundamental assumptions and approximations see
Ref. [17]). The predictions do not differ much and are in gen-
eral agreement with experiment. On the other hand, numerical
simulations of coarsening processes with nonconserved or-
der parameters are plentiful, but typically concentrate on
cases with unusual behavior such as the two-dimensional
O(2) model (e.g., Ref. [27]) with its Berezinskii-Kosterlitz-
Thouless transition [28,29]. We are aware of only two
simulations of discrete symmetry breaking with small ground-
state degeneracy in three dimensions, the case relevant for
APD coarsening, but these treated only small systems with
correspondingly short scaling regimes, and only the two-
domain case [30,31].

Our aim in this article is twofold: First, we will present
large-scale simulations of antiphase domain coarsening with
up to four inequivalent domains in three dimensions, treat-
ing both microscopically realistic as well as abstract Potts
models. Second, we will propose a general model for the
real-space correlation function and, as its Fourier transform,
the reciprocal-space structure factor, and determine the set of
parameters that give a very satisfactory fit to our Monte Carlo
simulations. In addition we will show that, as long as interac-
tions are short range and give rise to approximately isotropic
APD interface energies, the obtained scaling functions do not
depend on the specific microscopic model but are universal
with a universality class determined by the ground-state de-
generacy of the ordered state, which opens the possibility
to quantitatively relate the length scales determined by real-

space microscopy to those determined by the broadening of
diffraction peaks.

II. SYSTEMS

In order to have approximately isotropic APD interface
energies, the cubic symmetry of the lattice is of course a
precondition. We consider here cubic systems with twofold,
threefold, and fourfold degenerate ground states, each in two
levels of detail, which in the following we will term the
microscopic and the abstract models, respectively:

The microscopic models correspond to Ising models at
given stoichiometry, where ordering and APD coarsening pro-
ceed via the movement of a vacancy and the corresponding
local shuffling of atoms. Thus, the number of atoms of a given
kind is conserved, while the ordering parameter, correspond-
ing to the assignment of specific kinds of atoms to sublattices,
is not conserved.

The abstract models with q-fold ground-state degeneracy
correspond just to the standard q-state Potts models [32]. In
this case, the values of the spins, which are the fundamental
degrees of freedom in the simulation, correspond directly to
the domain a given site belongs to. Thus, the number of spins
of a given kind is not conserved.

Note that for q = 2, the microscopic (Ising) and abstract
(Potts) models are equivalent in terms of thermodynamics, but
not in terms of dynamics. Thus, we simulated the two cases
independently to serve as a check for our implementations.
On the other hand, all microscopic systems we are aware of
with q > 4 host qualitatively different kinds of APD bound-
aries and are thus beyond our scope, while the corresponding
abstract models would of course still be amenable to our
approach.

A. Microscopic models

In general we consider a Hamiltonian of

H = −Jnn

∑
〈i, j〉

σiσ j − Jnnn

∑
〈i, j〉′

σiσ j . (1)

Here 〈i, j〉 and 〈i, j〉′ denote the summation over all nearest-
neighbor and next-nearest-neighbor pairs of sites, respec-
tively, with each pair counted once. The spin variables σi are
either +1 or −1. In the following we always choose the scale
of energy so that Jnn = −1, leading to a preference for unlike
nearest-neighbor pairs.

For twofold ground-state degeneracy, we use Eq. (1) on
a simple-cubic lattice with equal concentration of the two
kinds of atoms. We choose Jnnn = 0, giving the standard three-
dimensional nearest-neighbor antiferromagnetic Ising model
(which of course is thermodynamically equivalent to the ferro-
magnetic Ising model). Its ground state corresponds to the B1
superstructure (also known as the NaCl structure), obtained by
assuming the space group 225 (Fm3̄m) and assigning A and B
atoms to the Wyckoff positions 4a and 4b, respectively. With
two kinds of domains, there is only one APD boundary, the
nearest-neighbor bonds between the lattice sites give rise to a
bipartite graph, and due to the symmetry of the Hamiltonian,
there will be no segregation to the boundaries. In this sense,
this system is the simplest and thus arguably the most popular
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L12 m-L10

FIG. 1. The two microscopic models as superstructures on the
fcc lattice: L12 (left) and m-L10 (right). The freedom in choosing on
of the four simple cubic sublattices as the green minority sublattice
in L12 results in q = 4 degeneracy, while an ordering of the red and
blue atoms to m-L10 results in additional q = 3 degeneracy.

to study APD structures theoretically [30,33]. Note that the
corresponding case on the body-centered cubic lattice with the
B2 ground state is qualitatively equivalent and the subject of
numerous experimental studies [34–36].

The prototypical case for fourfold ground-state degeneracy
is given by the L12 structure (Cu3Au) with space group 221
(Pm3̄m) and the two kinds of atoms occupying the (3c) and
(1a) sites, respectively (Fig. 1). Again we assume perfect 3 : 1
stoichiometry. In the idealized case, it is well known that
for any two given APDs, the boundary energy is strongly
anisotropic, as there is one among the three {100} plane
families that allows a boundary while keeping all the nearest-
neighbor relations unchanged [13]. As a result, particularly
at low temperatures, the simulated APDs are faceted strongly
in these directions [37]. Since the coarsening of domains is a
curvature-driven process, the domain growth is slowed down,
so that instead of the predicted [16] and experimentally ob-
tained [38] growth exponent of ν = 1

2 , an effective exponent
of ν ≈ 1

4 is observed in simulations [37,39]. By including a
positive next-nearest-neighbor interaction Jnnn, this behavior
can be suppressed [40]. Experimentally, the full range from
strong [13,14] to absent [15] anisotropies is evidenced, de-
pending on the system. Here we choose Jnnn = 1, which leads
to practically isotropic configurations (see Appendix B).

Our microscopic model with threefold ground-state degen-
eracy is derived from the L12 structure. For the composition of
Cu2NiZn it is known (see Ref. [41] and the references given
therein) that its L12 structure, where Zn occupies one of the
four sublattices on the fcc lattice while Cu and Ni jointly
occupy the three others, shows a further ordering transition
as temperature is decreased, in that the Ni atoms congregate
on one of the three Cu/Ni sublattices (Fig. 1). The result-
ing structure of tetragonal symmetry can equally be seen as
a superstructure on L10 and is thus denoted as “modified”
L10 structure. It has space group 123 (P4/mmm) with Zn on
Wyckoff position (1a), Ni on (1c), and Cu on (2e). At this
transition, the Zn atoms are unaffected, so it can be expected
that within the coarse APD structure of the L12 superstructure
formed at higher temperature, a fine m-L10 APD structure will
result as temperature is decreased, with threefold degeneracy
with respect to a given L12 domain. In our model we disre-
gard the static Zn atoms. The situation with respect to the
anisotropy of the APD boundary energy is analogous to the

L12 case, and also here we use Jnnn = 1 to get approximately
isotropic interfacial energies.

B. Abstract models

For the standard ferromagnetic q-state Potts model [42],
the Hamiltonian reads

H = −J
∑
〈i, j〉

δσi,σ j , (2)

where δσi,σ j denotes the Kronecker delta, and the spin vari-
ables take q distinct values. Again, the nearest-neighbor
interaction constant J is chosen as the (positive) unit of
energy.

C. Implementation and dynamics

We implemented the B1 and Potts cases on simple cubic
N × N × N lattices, while the face-centered cubic lattice on
which the L12 and m-L10 superstructures develop is imple-
mented as N/2 × N/2 × N/2 four-site conventional cubic fcc
cells. In all cases we used N = 1024. The pseudorandom
numbers used in the applied algorithms were generated by
the permuted congruential generator [43]. Unless stated oth-
erwise, our coarsening domain structures are initialized from
a completely random state, apart from fixing exact stoichiom-
etry in the Ising case.

In our microscopic Ising models, the temporal evolution
of the configuration is driven by the random movement of a
vacancy according to the Metropolis algorithm [44]: at each
step, a neighboring site is randomly selected, and the differ-
ence in the number of bonds between equal and unequal atoms
on nearest and next-nearest neighbors is used as index into
a precomputed two-dimensional table of exchange probabili-
ties. Comparing another random number to these Metropolis
exchange rates

p(�H ) =
{

1, �H < 0,

exp(− �H
kBT ), �H � 0,

(3)

decides whether the exchange is actually performed. For the
L12 and m-L10 cases, which are asymmetric with respect to
A and B atoms, the vacancy interacts with the other atoms as
if it was a majority atom. Thus, a proposed exchange with
a majority atom will always be performed, which prevents
an otherwise conceivable trapping of the vacancy in locally
optimal configurations. Note that, apart from being physically
more realistic, the good data locality of vacancy dynamics
makes it also computationally more efficient as measured in
terms of CPU cycles per attempted site occupation exchange
due to the cache architecture of modern CPUs, while the so-
called Kawasaki dynamics of attempted exchanges of random
pairs of neighboring atoms [45,46] is bounded by the latency
of accessing unpredictable locations in main memory and thus
is significantly slower, in particular for large system sizes.

In the abstract Potts models, site updates happen via the
heat bath algorithm [47]: Considering a given site, first a
histogram of the spin states of its neighbors is constructed.
These frequencies of neighboring spin states can be translated
to the canonical probabilities for the state of the considered
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site by table look-up and normalization. Finally, a new state
(not necessarily different from the original) is assigned ac-
cording to these probabilities. In order to avoid introducing
dynamical and thus potentially structural anisotropies due to
sequential updating of sites, we exploit the bipartite nature of
the simple-cubic lattice and conceptually update alternatingly
the white and black sites of a corresponding three-dimensional
checkerboard pattern, as sites of given color do not directly
interact among themselves.

Time is measured in units of Monte Carlo steps (MCS),
where one MCS corresponds to as many attempted vacancy
moves as there are sites in the system in case of the mi-
croscopic models, while in the Potts models every spin is
reassigned exactly once per MCS. In the coarsening simu-
lations, we followed the evolution of the configurations over
7500 MCS.

We run our simulations on a workstation with four proces-
sor threads. In the Potts cases we exploit parallel execution
by dividing the set of white or black sites along one dimen-
sion into eight slices and update the even- followed by the
odd-numbered slices concurrently. We use FFTW [48] for
computing the reciprocal-space scattering functions and real-
space correlation functions, and, for being able to handle the
data volume, we reduce these three-dimensional quantities to
one-dimensional radial averages on the fly during the simula-
tion. For each system we performed from 40 up to 80 of these
coarsening simulations. In the quantitative analysis we com-
pute the reported expected values of the derived parameters
from the correlation functions and scattering functions av-
eraged over these independent configurations. The estimated
errors are derived via the bootstrap method [49], that is, by re-
peatedly generating synthetic samples of configurations with
the same number of elements by sampling with replacement
from the simulations, performing the analysis on the cor-
responding averaged correlation or scattering functions, and
computing the standard deviation thereof.

D. Equilibrium properties

In order to decide on the temperature for the L12 and
m-L10 coarsening simulations, as well as to check our im-
plementations by comparing to the known phase transition
temperatures in the Potts cases, we computed the temperature-
dependent long-range order parameter S(T ). Disregarding
APDs for now, we use the definition

S = cA
α − cA

β = cB
β − cB

α , (4)

corresponding to the difference of the occupation of the sub-
lattices. On the other hand, for the q-state Potts model we use

S = qx − 1

q − 1
, (5)

where x is the proportion of the majority spin state. Obviously,
assuming stoichiometric composition in the microscopic case,
both expressions vary between 0 (for the totally disordered)
and 1 (for the totally ordered case).

To start with the case q = 2 in the Potts model, slowly
increasing the temperature on an initially perfectly or-
dered system leads to a continuous decrease of the order
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FIG. 2. Temperature-dependent order parameters S(kBT ) of the
Potts (a) and microscopic systems (b). Uncertainties are generally
much smaller than the symbol sizes.

parameter (Fig. 2), reaching zero at about kBTc = 2.255(2).
This reproduces the well-known behavior of the three-
dimensional ferromagnetic q = 2 Potts case, and also our esti-
mate for the transition temperature is quantitatively consistent
with the best currently known value kBTc = 2.25576163(5)
[50], obtained by methods that are much more efficient for
second-order transitions than our simple local Monte Carlo
updates. As mentioned already, by flipping the sign of the
interaction and the occupation of the sites of one color in the
three-dimensional checkerboard decomposition, the micro-
scopic B1 case becomes thermodynamically equivalent, and
indeed the order parameter curves perfectly coincide when
scaling the temperature by a factor of 2 due to the respective
choice of units, in particular our transition temperature of
kBTc = 4.510(2) is consistent with the Potts value.

Our simulations for the q = 3 and q = 4 Potts models show
a discontinuous transition at kBTc = 1.8164(1) and 1.5907(1),
respectively. Again, this is qualitatively and quantitatively
consistent with the most precise reported transition temper-
atures of kBTc = 1.816315(20) and 1.590816(9) [51]. Note
that determining the transition temperatures simply by con-
tinuously increasing the temperature would lead to inaccurate
values due to the necessary nucleation of the disordered phase,
thus in these cases we determined the transition temperatures
by starting with an inhomogeneous system consisting of an
ordered and a disordered part and adjusting the simulation
temperature until the two phases are seemingly in equilibrium,
indicated by the order parameter showing a purely stochastic
evolution with simulation time. The presented curves have
been obtained by simulations on heating and on cooling,
spliced together at the critical temperature obtained as detailed
above.

The order parameter curves for the microscopic q = 3
and q = 4 cases display an additional detail: while at a first
glance they seem to qualitatively follow the discontinuous
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behavior of the corresponding Potts cases, actually they show
an approximately linear decrease over the regions kBT ∈
(1.814, 1.830) in case of q = 3 and kBT ∈ (1.668, 1.680) in
the q = 4 case. This is due to the conservation of particle
numbers in the microscopic models: as is familiar from binary
alloy phase diagrams, different phases are typically separated
by two-phase regions. In general, due to the details of ther-
modynamics in the two phases at elevated temperatures there
is no reason for a congruent transition to happen exactly at
stoichiometry. Note that this is different for q = 2, where
the above-mentioned symmetry fixes the congruent transition
at stoichiometry. Thus, the linear decrease of the order pa-
rameter corresponds to a situation of coexisting ordered and
disordered regions in the simulation cells, with weights that
are varying with temperature, and is representative for the
equilibrium behavior of the systems.

III. DOMAIN COARSENING

The detailed arrangement of APD boundaries in an actual
experimental sample or in a simulation, being the conse-
quence of microscopic nucleation, growth, and coarsening
dynamics, is of course different from realization to realiza-
tion. However, these specific realizations are governed by
statistical properties, which can be meaningfully discussed
and compared. The simplest of these properties pertain to the
APD pair-correlation function g(�r). Apart from its simplicity
of definition, the pair-correlation function’s importance stems
from the fact that it, being a second-order correlation func-
tion, can be experimentally directly accessed via the variation
of scattered radiation over reciprocal space. For being able
to compare pair-correlation functions for different q, here
we will use a rescaled version that decays from 1 at small
distances to 0 at infinity. Specifically, where g′(�r) is the con-
ventional pair-correlation function defined as the probability
of two random points separated by �r to be located in the same
domain, our rescaled correlation function is defined as

g(�r) = [qg′(�r) − 1]/(q − 1). (6)

We give the actual definitions of g′(�r) for the different systems
in Appendix A.

While atomically sharp APD boundaries resulting at low
temperatures in general do show a pronounced dependence
of interfacial energy on crystallographic direction and thus
lead to strong facetting of the domains with a preference for
low-energy domain boundaries (typically specific low-index
planes) [52], at elevated temperatures the local degree of order
is depressed at the boundaries, the interfaces become diffuse,
and consequently the directional dependence of interfacial
energies and the anisotropy of the pair-correlation function
diminish. For the sake of simplicity, in the following we
will report only radially averaged correlation functions g(r).
We give an account for the validity of this approximation in
Appendix B.

On the other hand, at temperatures close to the transition
point defects appear also inside the APDs, which complicate
the assignment of sites and their occupations to domains.
Instead of coarsening the scale and computing fractional as-
signments via local averages along the point of view of phase
field modeling, here we directly take site occupations, but

q
= 

4
q

= 
3

q
= 

2

200 MCS 400 MCS 800 MCS equilibrium

FIG. 3. Coarsening configurations for the three Potts models at
various stages, together with final configuration of a single domain
with isolated point defects. Shown are sections of 100 sites edge
length of two-dimensional slices, while the three-dimensional sim-
ulation box is considerably larger.

correct for the effect of long-range order degrees smaller than
unity as detailed in Appendix C.

In order to have approximately isotropic APD configu-
rations without introducing too much atomic-scale disorder,
we use consistently temperatures of about 75% of the phase
transition temperature Tc for our coarsening simulations.
Specifically, we use values for kBT of 1.7296, 1.4, and 1.2
for the abstract cases of q = 2, q = 3, and q = 4, and 3.4592,
1.36275, and 1.26 for the corresponding microscopic cases.

A. Dynamical scaling

Representative snapshots of the configuration at different
times during the coarsening process are depicted in Fig. 3 for
the Potts systems with various q. Coloring the sites according
to their spin state directly shows the domain configuration.
The pair-correlation functions g(r) for various coarsening
times t are depicted in Fig. 4 (left top), exemplarily for q = 4.
As the domains grow, the correlation length increases, the
APD boundary density decreases, and thus g(r) decays slower
with distance.

A corresponding behavior is visible in reciprocal space in
Fig. 4 (left bottom), where the structure factors S(k) as the
pair-correlation functions’ Fourier transform display a redis-
tribution of intensity to smaller k indicating longer correlation
lengths. A corresponding behavior is observed in all investi-
gated systems.

According to the scaling hypothesis, at late times the
correlation functions, and thus also the corresponding struc-
ture factors, can be scaled on top of each other. This is
also fulfilled in our simulations, as shown exemplarily for
the q = 4 Potts system in Fig. 4 (right column): with a
single scaling parameter L(t ) both real-space correlation func-
tions and reciprocal-space structure factors can be brought
into satisfactory agreement by plotting them as functions
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FIG. 4. Simulated radially averaged real-space correlation func-
tions (top left) and reciprocal-space structure factors (bottom left) of
q = 4 Potts model at various coarsening stages. In the right column,
the data are replotted on the scaled coordinates together with the
scaling functions, demonstrating the universal shape in the scaling
regime. Note that only a subset of simulated points is plotted for
being able to distinguish the data sets.

of

ρ = rq/L(t )(q − 1) and (7)

κ = kL(t )(q − 1)/q, (8)

respectively [the reason for introducing the term q/(q − 1)
will become clear in Sec. III D]. Only at the earliest times with
correspondingly small L(t ), effects due to the fundamental
discretization of space overlap with the features due to the
APD configuration, leading to deviations from scaling at small
ρ and large κ .

B. The scaling function

1. Phenomenological ansatz

To obtain a simple analytical expression for the general
form of the scaling function in real as well as in reciprocal
space we use an ansatz in terms of exponential decays and
Gaussian functions. We have found that a linear combina-
tion of an exponential decay and two Gaussian functions for
the correlation function adequately reproduces our simulation
results:

g(ρ) = be−ρ/b +
2∑

i=1

aie
−ρ2/2σ 2

i . (9)

The exponential decay at large ρ of this expression conflicts
with the expected superexponential decay due to diffusive
interaction [17], but we want to note that the asymptotic real-
space behavior is practically accessible neither in simulations

nor in experiments. In reciprocal space, our expression gives
the correct asymptotic behavior both for small and large κ .

Setting b = 1 − a1 − a2 the model fulfills the condition
g(0) = 1 that is necessary for any correlation function. Fur-
thermore, by construction it has a derivative of −1 at ρ = 0.
This latter property allows us to define the spatial scale of
a simulated APD configuration via the factor by which its
correlation function has to be scaled in order to fit the scaling
function via Eq. (7). As we will show in Sec. III D, this implies
that the specific interface area of the configuration in the sense
of interface area per unit volume is given by 2/L. A discussion
of how L increases with coarsening time t is given below in
Sec. III C.

By the relation for the three-dimensional Fourier transform
of radially symmetric functions [53]

[F ( f )](κ ) = 4π

∫ ∞

0
dρ

sin(κρ)

κ
f (ρ)ρ, (10)

the expression for the corresponding structure factor is

S(κ ) = 8π

(κ2 + 1/b2)2 +
√

8π3
2∑

i=1

aiσ
3
i exp

( − κ2σ 2
i /2

)
.

(11)
Furthermore, integrating this three-dimensional radially sym-
metric function over two perpendicular dimensions gives
the expression corresponding to the peak profile in powder
diffractometry

S′(κx ) = 8π2

κ2
x + 1/b2

+
√

32π5
2∑

i=1

aiσi exp
( − κ2

x σ 2
i /2

)
,

(12)
which is remarkably similar to the phenomenological pseudo-
Voigt profiles typically used for this purpose.

2. Fitting the scaling function

We determine the parameters of Eq. (9) by fitting the scaled
simulated real-space correlation functions at the successive
coarsening time steps for all six of our considered systems.
Specifically, we first restrict the (unscaled) correlation func-
tions to the region r � 10 in units of the simple-cubic lattice
constant to exclude short-range order effects. We then min-
imize the weighted squared deviations between the scaled
simulated correlation functions and the model curve, varying
concurrently the common model parameters a1, a2, σ1, σ2 as
well as the specific scaling parameters L(t ). We use weights
so that after rescaling a given interval in ρ contributes accord-
ing to its width in logarithmic units, considering the range
0.1 � ρ � 5, analogously for the coarsening time in the range
25 � t � 7500 MCS. In our view, this is the most efficient
way to use the available information in the simulations, as
essentially new configurations are attained after the scale pa-
rameter L has increased by a given factor, which under a
power-law behavior of L(t ) corresponds to a given logarithmic
increment in coarsening time t .

3. Results and theoretical expressions

The resulting real-space and reciprocal-space scaling func-
tions for the q = 4 Potts case are given in the right column of
Fig. 4 along with the scaled simulation results. Obviously the
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TABLE I. Parameters of the scaling function given in Eq. (9) and the corresponding full width at half maximum BFWHM and integral breadth
BI of the powder-diffraction intensity given in Eq. (12).

a1 a2 σ1 σ2 BFWHM BI

q = 2 Potts 0.0557(106) 0.6296(242) 0.2841(47) 0.6280(27) 4.058(16) 5.113(20)
B1 0.0428(60) 0.5805(139) 0.2905(71) 0.6240(34) 4.064(17) 5.137(17)

q = 3 Potts 0.0419(67) 0.5506(172) 0.2930(59) 0.6609(31) 3.852(25) 4.928(24)
m-L10 0.0609(62) 0.5634(161) 0.3170(57) 0.6499(65) 3.952(44) 5.033(45)

q = 4 Potts 0.0450(37) 0.5253(90) 0.3126(30) 0.6860(21) 3.726(17) 4.804(17)
L12 0.0551(42) 0.5129(98) 0.3713(50) 0.6954(55) 3.699(35) 4.765(35)

agreement is very good, also for the reciprocal-space structure
factor, even though only the real-space correlation functions
are used for fitting.

The parameters of the scaling functions for all systems are
listed in Table I, where for convenience we also give the full
widths at half maximum BFWHM and the integral breadth BI of
the corresponding powder diffractometry peak profiles.

A comparison of the scaling functions for the various
systems is given in the left column of Fig. 5. Even though
the systems qualitatively differ on the microscopic scale, the
simulated correlation functions and structure factors look sur-
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FIG. 5. Scaling functions for the real-space correlation functions
(top) and reciprocal-space structure factors (bottom), comparing our
phenomenological functions according to Eqs. (9) and (11) for the
Potts and microscopic systems for various q (left column) and var-
ious theoretical predictions for q = 2 to our corresponding Potts
functions. To highlight the differences between the systems and
theories, the middle row shows the deviations with respect to our
q = 2 Potts correlation function.

prisingly similar. Computing the deviations of the correlation
functions shows that, as expected, the main differences are
between systems of different q, while Potts and microscopic
systems for the same q typically show much less deviations.
An exception is the case q = 3, where the m-L10 correlation
function is about halfway between the q = 3 Potts and the q =
2 cases. In particular, for a given initial slope of the correlation
function, the correlations at intermediate distances increase
with increasing q. We think that this is due to the APD
boundary edges present for q � 3 and corners for q � 4: if we
construct a q-state APD configuration by first dividing space
into a large number of randomly arranged compact regions,
and then randomly assign a state from 1 to q to each region,
the correlation function will be independent of q. However,
if we then allow this configuration to coarsen, for q = 2 it
will quickly evolve smooth boundaries, thus decreasing the
interfacial area and leading to increased correlations at small
ρ, while for larger q edges and corners will evolve, giving a
comparatively smaller increase at small ρ.

To decide on the significance of these findings, we turn to
a statistical evaluation: in Table II we give the L2 distances
between the different fitted phenomenological correlation
functions together with their estimated statistical error as ob-
tained by bootstrap sampling (thus, the first row quantifies
the deviations as plotted in Fig. 5). There we see that the
deviations between systems of different q are indeed in most
cases highly significant different from zero. On the other hand,
the deviations between Potts and microscopic systems for
the same q are also typically a factor of 2 larger than the
corresponding expected errors, where the above-noted q = 3
case is no exception, but only shows a larger estimated error.
Thus, our simulations are still consistent with the hypothesis
of universal scaling functions for given q, also taking into
account systematic effects due to different weights of possible
early-time deviations from scaling, but do show significant
deviations for different q.

Analytic predictions for the form of the scaling function in
the q = 2 case were given by Ohta and co-workers, the OJK
model [24], as well as by Mazenko [25]. The right column
of Fig. 5 compares these functions with the simulated q = 2
Potts case. The visual agreement is quite good, but given
the fact that the variation with q is small according to the
simulations, the OJK model performs significantly better than
the Mazenko model, where the latter even seems to be more
representative for the q = 3 case than for q = 2. To test also
an expression modeling a very different situation, we turn
to spatially uncorrelated polydisperse spheres: a log-normal
distribution of sphere radii with parameters that fulfill the
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TABLE II. The L2 distance between the real-space correlation functions of the different systems, along with estimated statistical errors.

q = 2 q = 3 q = 4

Potts B1 Potts m-L10 Potts L12

q = 2 Potts 0 0.0036(19) 0.0181(28) 0.0081(36) 0.0306(23) 0.0341(39)
B1 – 0 0.0207(27) 0.0103(43) 0.0331(22) 0.0368(39)

q = 3 Potts – – 0 0.0104(46) 0.0125(27) 0.0162(41)
m-L10 – – – 0 0.0229(45) 0.0265(55)

q = 4 Potts – – – – 0 0.0040(25)
L12 – – – – – 0

condition μ = −5/2σ 2 + log(3/4) gives the correct specific
interface area. Choosing σ = 0.3 as a single free parameter
leads to the correlation function and structure factor displayed
in Fig. 5—obviously it is about as successful as the dedicated
models in describing the simulations. A systematic effect
common to all theoretical expressions is an underestimation
of the simulated correlation function at small distances ρ, as
can be seen in the deviation plot.

C. Kinetics

The evolution of the APD scale during coarsening for the
various systems is given in Fig. 6. The classical prediction for
the increase of the spatial scale in the simplest case of O(1)
symmetry would be L(t ) ∝ t1/2 [16], and the same should
hold for Potts cases [54]. Note that the absolute zero of time
has to be treated as a free parameter here, as it is not guar-
anteed that the length scale with which the simulation enters
the scaling regime is consistent with the time when it does so
according to the scaling relation. Thus, we have shifted the
data in time, typically by positive values of a few MCS, to
achieve a small-t behavior as systematic as possible.

In our simulations the Potts systems seem to follow the
expected t1/2 behavior quite well, but a closer look reveals
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FIG. 6. Growth of the characteristic length scales L with time
for the various systems, together with lines indicating the behaviours
L(t ) ∝ t0.5 and L(t ) ∝ t0.46.

that the best fit is achieved by slightly reduced exponents of
about 0.48. Such a behavior has already been reported [31,55]
and suggested to be due to either a pinning of defects on the
lattice or the asymptotic regime having not yet been reached
[31]. As our values pertain to much larger lattices and longer
simulations, we feel save to rule out the latter option.

The microscopic systems show a different behavior. On the
one hand, the B1 system exhibits a growth exponent of about
0.505, slightly but significantly larger than 1/2. We conjecture
that this is due to an energetical attraction of the vacancy to
the APD boundaries, where it is more effective in driving
coarsening [56]: as the specific interface area decreases with
simulation time, the constant vacancy content of the simula-
tion box would lead to an increasing vacancy concentration in
the boundaries and thus faster coarsening [57,58].

On the other hand, the m-L10 and L12 systems show
striking deviations from a power-law behavior. This can be
due either to a transition between regimes or to logarithmic
corrections to power-law scaling—the instantaneous growth
exponent seems to increase monotonously, reaching about
0.46 towards the final stages of the simulation. In these cases,
we suspect the effect of conservation laws to be responsible:
while in all microscopic models the particle numbers are con-
served, the symmetry of the B1 case rules out any systematic
deviation from 1:1 stoichiometry at the APD boundaries. In
contrast, for m-L10 and L12 there is no argument against
segregation of one or the other component towards the APD
boundaries. Thus, the coarsening of APD configurations will
entail some long-range diffusion of atoms.

The Potts cases differ only in q, thus their kinetic behavior
can be directly compared. We observe that it takes longer
to reach a given APD scale L with increasing q. The domi-
nant effect for this behavior is easily understandable: in the
above-mentioned construction of a model APD configuration
by assigning random states to compact regions, the probabil-
ity for neighboring regions to belong to the same domain is
larger for smaller q, thus giving a larger APD scale. Also
the microscopic cases suggest a qualitatively corresponding
behavior, but we have to note here that due to the microscopic
differences of the lattices, the definitions of the domain scales
cannot be compared, thus the observed behavior should be
regarded as fortuitious.

D. Measures of domain size

By construction, our scaling function for the real-space
correlation function g(ρ) decreases with a derivative of −1
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at small distances. In the following we will derive to which
measure of real-space APD scale the corresponding scaling
parameter L corresponds.

Consider two points A and B randomly located in three-
dimensional space and separated by a distance r, and assume
a specific interfacial area of σ (that is the average area of
interface per unit volume). If now all these interfaces were
oriented perfectly perpendicular to the vector connecting A
to B, then the probability of this vector to pass through one
interface would be equal to σ r in the limit of small r. For
arbitrary orientations of the interfaces this has to be multi-
plied by a factor 1/2, which is the mean absolute value of a
randomly oriented three-dimensional unit vector’s projection
along a given direction. Thus, in this limit the probability for
A and B to be in the same domain, which is nothing else than
the (unscaled) correlation function g′(r), is given by

g′(r) ≈ 1 − σ r/2. (13)

As a consequence, with Eqs. (6) and (7) the scaling parameter
L that leads to g(ρ) having a derivative of −1 at ρ = 0 fulfills

L = 2/σ. (14)

A main point to note is that our measure for the APD
scale L is exactly equivalent to the linear intercept method
[10] that is typically used for quantitative evaluations of APD
sizes in microscopy investigations (e.g., Refs. [7–9]), where
the number of intersections along a path in the image plane
is counted and related to the path length—assuming isotropic
APD configurations, any two points along the path can take
the role of A and B in the previous paragraph. Indeed, in
our opinion it would be more appropriate to consistently use
“specific interface area” or “interfacial density” for this quan-
tity rather than “average APD size,” as it is often sloppily
called (note that, for not too large q, covering the cases of
practical interest, the APD configuration is percolating in
three dimensions, thus a domain’s average size in some strict
sense of the word, be it the volume or linear extent, is not
defined).

The most basic approach to quantitatively analyze diffrac-
tion data with respect to the size of the coherently diffracting
domains is afforded by the Scherrer equation [11], which
relates the width of the diffraction peaks �k in units of the
wave-vector transfer to the scale of real-space features D̄,

D̄ = 2πK

�k
, (15)

neglecting in this simplest form any contributions due to
instrumental resolution or strain to the broadening. K is a
phenomenological constant of order unity that depends on
the real-space model of the system and thus the correspond-
ing definition of D̄, and on how the peak broadening �k
is measured. Specifically, assuming monodisperse spherical
domains of volume D̄3 in real space, which is the most basic
choice for the case of powders or polycrystals, and deter-
mining �k as the FWHM of the peak implies KFWHM ≈
0.8920 [59], while using the integral breadth leads to KI =

3
√

32π/81 = 1.0747 [60]. In default of a microscopic model,
often also for studies of APD coarsening the real-space scales
have been reported by employing Eq. (15) with K set to unity
(e.g., Ref. [61]). As we have shown that the scaling functions

are universal for given q, the values we give for the FWHM
and integral breadth of the peak shape in Table I now allow
us to relate scales determined by microscopy and diffraction
quite easily, obviating the need for a detailed phenomenolog-
ical modeling in terms of distribution functions [62,63].

To be specific, defining D̄ = L = 2/σ in Eq. (15) leads
to Scherrer constants KFWHM = 1.2916 and KI = 1.6275 for
the values corresponding to the Potts q = 2 scaling function.
With increasing q, the dominant effect determining the be-
havior of K is the factor 2(q − 1)/q relating the derivative
in g(r) to σ , while the shapes of the scaling functions are of
only secondary importance, leading to KFWHM = 0.7908 and
KI = 1.0195 for the q = 4 Potts case. Interestingly, the ratio
of the scale defined by L to the cubic root of spherical domains
is 3

√
16/9π ≈ 0.8271, assuming volume-filling spheres. Thus,

taking into account the specific definitions for the spatial
scale D̄ the above-mentioned Scherrer constants of order unity
indeed will give an acceptable approximation to the q = ∞
case, corresponding to the polycrystalline case, while for the
low q with APD configurations they would lead to a drastic
overestimation of the specific interface area.

IV. SUMMARY

We have studied the coarsening of domain configurations
in statistical models with discrete symmetry breaking and
nonconserved order parameter by large-scale Monte Carlo
simulations, considering not only the well-studied O(1) Ising
case, but also symmetry breakings with q = 3 and 4 ground-
state degeneracy. Apart from the abstract Potts (Ising) models,
we considered also corresponding realistic models of atomic
ordering in compounds. The primary results of our simula-
tions are the radially varying real-space correlation functions
and reciprocal-space structure factors.

After initial periods of a few tens of Monte Carlo steps,
we observe perfect scaling of the correlation functions and
structure factors over more than two orders of magnitude in
time, or one order of magnitude in spatial scale. As expected,
in general we found an increase of the spatial scale with
the square root of time, while the subtleties of the atomistic
models lead to deviations that are clearly resolvable thanks to
the good statistics of our simulations.

We propose a simple ansatz for the real-space and
reciprocal-space scaling functions, and we give the parameters
that result in a very good fit of to the simulation results.
While the differences between the models are remarkably
small, the good statistics of our simulations allow us to con-
clude that the scaling functions vary significantly with q, but
not among the abstract and atomistic models for the same q.
Interestingly, the deviations the q = 2 simulations and differ-
ent theoretical predictions are on the same order of magnitude
as those between simulations for different q.

Finally, we demonstrated the equivalence of our def-
inition of the scale parameter with the standard linear
intercept method for obtaining domain sizes in microscopy,
being essentially the inverse of the specific interface area.
Thus, our results establish a quantitative link between do-
main sizes measured via the peak broadening in diffraction
and those measured in microscopy without any adjustable
parameters.
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Jnnn = 1, all after 1500 MCS apart from L12 system with Jnnn = 0, which due to its slow coarsening was simulated for 30 000 MCS, compared
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APPENDIX A: DEFINITIONS OF THE
PAIR-CORRELATION FUNCTION

The conventional APD pair-correlation function g′(r) is
defined as the probability for two random points separated
by a distance r to be in the same domain. In the abstract
Potts models, the state of a given spin directly corresponds
to the domain the corresponding site belongs to. However,
for the microscopic systems, the situation is not so obvious.
We use the following definitions: For computing g′(r) for the
m-L10 and L12 cases, we consider each of the three or four,
respectively, simple-cubic sublattices separately, compute the
pair-correlation function of the minority atoms, and sum the
contributions. Ideally, exactly one of the three or four sites
per unit cell is occupied by a minority atom, and a given
unit cell belongs to domain i if it is its site i that is oc-
cupied by a minority atom. Under point-defect disorder, in
our definition a given unit cell can belong to zero, one, or
more domains. As a consequence of treating the simple-cubic
sublattices independently, the smallest accessible distance
corresponds to the cubic lattice constant. On the other hand,
in the B1 case we conceptually cover the system by a three-
dimensional checkerboard pattern, exchange the spins on the,
say, white sites by their opposite, and compute the conven-
tional pair-correlation function. This approach allows to probe
also nearest-neighbor distances.

APPENDIX B: ISOTROPY OF APD STRUCTURES

In order to test for anisotropy in the statistical properties of
the APD configurations, we performed dedicated coarsening
simulations on smaller systems and evaluated directionally
dependent correlation functions in 〈100〉, 〈110〉, and 〈111〉
directions as reported in Fig. 7. As expected, at the low sim-
ulation temperature of 0.1Tc strong directional differences on
the order of 10% result for the exemplarily considered q = 2
Potts case, while the more diffuse interfaces at the simula-

tion temperature of 0.75Tc, which we use in the remainder
of this work, lead to differences that are visually vanishing.
As a second example we considered the microscopic L12

case. For exclusively nearest-neighbor interactions when set-
ting Jnnn = 0, even at 0.75Tc (with Tc for the corresponding
model taken from Ref. [39]) strong anisotropies are visible,
but again our choice of second-nearest-neighbor interactions
Jnnn = −1 leads to isotropic features in a very good approxi-
mation, which is our justification for assuming isotropic APD
configurations in the main part of this work.

In both anisotropic cases considered here, the initial decay
of the correlation function is steepest along the 〈111〉 direc-
tions, followed by 〈110〉. This is consistent with a preference
for {100}-oriented APD boundaries, which can be explained
on the one hand by the {100} planes being the close-packed
planes in the simple cubic lattice that hosts the Potts sys-
tems, while, as discussed in Sec. II A, in the L12 case with
Jnnn = 0 for two given APDs there is a specific plane of {100}
type that can host a locally stoichiometric interface without
an associated cost in energy. Indeed, these cases are already
about as anisotropic as possible under cubic symmetry: as-
suming as an extreme model an APD configuration where
three-dimensional space is tesselated by a lattice of cubes
and the volume enclosed by a given cube is assigned to a
random antiphase domain, the resulting correlation function
can be calculated analytically as the autocorrelation function
of a single cube-shaped domain

g(ρ) =
⎧⎨
⎩

max(0, 1 − ρ) along 〈100〉,
max(0, 1 − ρ/

√
2)2 along 〈110〉,

max(0, 1 − ρ/
√

3)3 along 〈111〉.
(B1)

As can be seen in Fig. 7, in particular the case of an L12

system with exclusively nearest-neighbor interactions gives
anisotropies as pronounced as this most extreme model.

APPENDIX C: CORRECTING FOR DISORDER

In the case of a perfectly ordered system the correlation
function is unity. Due to our using a comparatively high
ordering temperature, which is necessary for diffuse APD
boundaries and thus approximately isotropic configurations,
we have significant concentrations of point defects also away
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FIG. 8. APD correlation functions of the q = 4 Potts model in
the fully uncorrected version (left), and corrected for disorder ac-
cording to Eq. (C3) (right).

from the APD boundaries. Here we specify how we derive
the correlation function of the idealized APD configuration
corresponding to a given configuration of the spins subject to
thermal disorder.

We start with the effect due to a finite long-range order
parameter, giving point defects away from APD boundaries.
We distinguish between the underlying APD correlation func-
tion g′(r) unaffected by thermal disorder and the apparent
APD correlation function f ′(r) determined as detailed in
Appendix A, which is reduced compared to g′(r) due to
thermal disorder. Let p(r) be the probability that two points
separated by a distance r are assigned to the same domain
in equilibrium, that is, when the whole system in principle
belongs to one domain, but where point defects lead to corre-
sponding defects in the domain assignment. We can then write
the uncorrected APD correlation function in a coarsening
simulation as

f ′(r) = g′(r)p(r) + [1 − g′(r)][1 − p(r)]/(q − 1). (C1)

Here we made the approximation that the correlations of point
defects as quantified by p(r) behave across APD boundaries
as they do within a domain, which will be exactly fulfilled in
the limit of vanishing point defect correlations, that is, at large
distances. Solving for g′(r) gives

g′(r) = f ′(r)(q − 1) − 1 + p(r)

qp(r) − 1
. (C2)

Rescaling according to Eq. (6) gives the particularly simple
expression

g(r) = q f ′(r) − 1

qp(r) − 1
. (C3)

For simplicity, and justified by the fact that in fitting we
anyway consider the correlation functions only for r � 10 in
order to avoid effects due to short-range order of defects, we
replace p(r) by its long-distance limit, given by the concentra-
tion of point defects in equilibrium as determined in dedicated
simulations.

The effect of the correction for thermal point defects is
demonstrated in Fig. 8. While the improvement is obvious,
a close look shows that the expected behavior of an extrapo-
lation to exactly 1 as r → 0 is still not fulfilled. This is due to
the depression of order close to the APD boundaries, where
the introduction of a point defect is obviously less costly than
in the interior of the domains. In the simplest approach we can
model the APD boundaries as having a finite width d , within
which the order is completely lost. As the specific interface
area is 2/L, the extrapolation of the correlation function to
r = 0 will correspondingly be reduced from 1 to 1 − 2d/L.
Due to the correlation function’s derivative of −2/L at 0, we
correct for this effect by shifting the distance scale r by d . The
fitted values for d with increasing q are 0.75, 0.62, and 0.51 for
the Potts cases, and 0.76, 0.71, and 0.57 for the microscopic
systems.
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