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The implicit frequency dependence of linear systems arising from the acoustic boundary element
method necessitates an efficient treatment for problems in a frequency range. Instead of solving the
linear systems independently at each frequency point, this paper is concerned with solving them
simultaneously at multiple frequency points within a single iteration scheme. The proposed concept
is based on truncation of the frequency range solution and is incorporated into two well-known
iterative solvers - BiCGstab and GMRes. The proposed method is applied to two acoustic interior
problems as well as to an exterior problem in order to assess the underlying approximations and
to study the convergence behavior. While this paper provides the proof of concept, its application
to large-scale acoustic problems necessitates efficient preconditioning for multi-frequency systems,
which are yet to be developed.

Keywords: Boundary element method; multi-frequency; low-rank; iterative solver.

1. Introduction

The boundary element method (BEM) is a popular numerical method for the discretization
of the acoustic Helmholtz equation.1–3 Compared to the finite element method (FEM),4
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BEM reduces the spatial dimension of the problem by one and hence, boundary element
(BE) discretizations only involve the surface of the acoustic domain. However, although
resulting in a significantly smaller number of equations, BEM is not necessarily more efficient
than FEM in terms of computational time, particularly for large-scale problems.5 Among
others, this is attributed to the implicit frequency dependence of BE coefficient matrices. In
contrast, acoustic FEM usually yields a linear system of equations with quadratic frequency
dependence, which admits efficient approximation by Krylov subspace methods6 or even the
computation of modal quantities by standard eigensolvers.7 Clearly, the situation is different
in the case of BEM, and more elaborate approaches are required in order to alleviate the
high computational effort that is required for problems with rapidly varying responses.

The first approaches for efficient BE analyses over frequency ranges were based on
computing the BE matrices only at a few sample frequencies and linear interpolations in
between,8 or based on truncated Taylor series.9 Wu et al. suggested a frequency interpolation
of the Green’s function, thereby limiting the numerical integration to a single frequency.10

Such frequency approximations of BE matrices also paved the way to acoustic eigenvalue
analyses with BEM.11–13 More recently, Chebyshev approximations14 and rational Cauchy
approximations15 of the system matrix have been proposed in the context of modal analyses
with BEM.

Instead of using frequency approximations of the system matrix, the acoustic response
itself may be approximated as well. Examples include the evaluation of the sound pressure
at a single field point as well as the computation of integrated quantities such as radiated
sound power. Coyette et al., employed a Padé approximation to extend the response from
a single BE solution to a range of frequencies.16 Similar methods have also been applied to
transfer matrices for an efficient multi-frequency calculation of radiated sound power.17,18

While frequency approximations of BE matrices only address the effort for setting-up the
coefficient matrices, the solution of the linear system accounts for a major share in the overall
computational effort as well. Acoustic problems with only a few degrees of freedom (DOF)
can be efficiently solved by Gaussian elimination. However, most of today’s engineering
problems are addressed by means of iterative solvers such as Krylov subspace methods19

requiring repeated evaluations of matrix vector products. While solving a sequence of linear
systems, the total number of matrix vector products can be significantly reduced by reusing
selected subspaces.20,21 Moreover, the high complexity associated with the evaluation of pro-
ducts involving fully populated matrices have been addressed by several fast algorithms22,23

that have also been combined with efficient multi-frequency strategies.24 In recent years,
frequency-sweep analyses of vibroacoustic problems have also been accelerated by means of
model order reduction.15,25–27

This paper is concerned with solving linear systems arising from acoustic BEM simul-
taneously at multiple frequency points within a single iteration scheme. The evaluation
of the matrix vector products is accelerated by compressing the frequency range informa-
tion by low-rank truncations. Essentially, the low-rank truncations exploit the fact that
the spatial patterns of acoustic responses usually feature regularity with respect to the fre-
quency — a concept that also underlies model order reduction techniques such as modal
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superposition. Several iterative schemes relying on the low-rank format have been proposed
in the context of solving parametrized linear systems, and a summary can be found in
the survey by Grasedyck et al.28 In the authors’ preliminary work,29 a low-rank version of
BiCGstab has been applied to an acoustic interior problem. This paper extends that work
to the low-rank GMRes method and provides insights with regard to approximation errors,
convergence behavior and computational times. The approach in this paper is based on the
works by Kressner and Tobler30 as well as the work of Ballani and Grasedyck31 on the ite-
rative solution of high-dimensional linear systems. Though only the frequency dependence
is considered in this paper, the general concept can be straightforwardly applied to other
parameter dependencies such as those originating from vibroacoustic optimization prob-
lems32 and uncertainty quantification.33 The main objective of this paper is to demonstrate
the application of low-rank approximations in the context of acoustic BEM and to provide
a proof of concept.

Section 2 outlines the proposed method. Low-rank factorizations in conjunction with
a frequency approximation of the BE system matrix enable efficient evaluations of matrix
vector products within iterative schemes. These concepts are described in detail and incorpo-
rated into the biconjugate gradient stabilized method (BiCGstab) and the generalized min-
imal residual method (GMRes). Section 3 then provides the proof of concept based on two
acoustic interior problems as well as an exterior problem. The underlying approximations,
i.e. the low-rank factorizations and the frequency interpolation, are assessed systematically,
the convergence behaviors of low-rank versions of BiCGstab and GMRes are studied, and
the computational times are compared to those of a conventional frequency-wise strategy.
In Sec. 4, the paper concludes with an outlook on possible improvements of the method in
order to extend its applicability to a wide range of engineering problems in the future.

2. Low-Rank Solvers for the Acoustic Boundary Element Method

Boundary element formulations are often categorized into directed and indirect
approaches.1–3 This work exclusively considers the direct formulation, in which the
Kirchhoff–Helmholtz integral equation is obtained by application of Green’s theorem. The
integral equation and associated boundary conditions can be discretized by several meth-
ods, of which collocation and Galerkin discretization methods are the most popular ones.
Though only direct collocation BEM is considered in what follows, the iteration scheme
proposed in this section is straightforwardly applicable to other frequency-dependent linear
systems as well. The resulting linear system of equations reads

H(k)p = G(k)v + pi = b(k), H(k),G(k) ∈ C
n×n, p,v,pi,b(k) ∈ C

n×1. (1)

The complex-valued matrices H(k) and G(k) are obtained by element-wise numerical inte-
gration. They are implicitly dependent on the wavenumber k = 2πf/c, where f is the
frequency and c denotes the speed of sound. They are both fully populated, and generally
neither positive definite nor Hermitian. The matrix H(k) contains the integral-free term of
the Kirchhoff–Helmholtz integral equation as well as the contributions of the double layer
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potential and the admittance boundary condition. Further, G(k) corresponds to the single
layer potential. The vector p contains unknown nodal scalar sound pressure values, and the
excitation is given by the vector of nodal scalar particle velocities v as well as the incident
pressure field pi. Usually, the right-hand side vector b(k) is assembled directly in order to
avoid the storage of the fully populated matrix G(k). Each node carries a single DOF, and
hence n refers to the number of nodes as well as to the number of unknowns.

Many vibroacoustic applications are subject to excitation at a range of frequencies, and
hence the simulation of their acoustic responses with BEM requires setting up and solving
linear systems at each frequency point of interest, i.e. wavenumbers k1, . . . , km. Usually, the
m linear systems are successively solved by either direct or iterative solvers. Linear systems
with only a few DOFs can be solved directly by computing a system matrix factorization.
For a single frequency solution, this is associated with an algorithmic complexity of O(n3).
However, most of today’s engineering problems are addressed by means of iterative solvers,
which rely on repeated evaluation of matrix vector products. Hence, the use of iterative
solvers reduces the algorithmic complexity to O(n2) for a single frequency solution, given
that convergence is reached in a few iterations. The total number of matrix vector multi-
plications determines the computational effort of the individual solution process. Clearly,
the overall computational effort is significantly driven by the number of frequency points.
The main idea behind the proposed iterative scheme is to enhance the numerical efficiency
of those matrix vector multiplications by making use of low-rank approximations.

Instead of solving the m linear systems resulting from acoustic BEM individually, they
can be arranged in a single system with a block diagonal system matrix. The solution vectors
and right-hand sides corresponding to the m frequency points are vertically concatenated,
which gives

⎡
⎢⎢⎣

H(k1)
. . .

H(km)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

p1

...

pm

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b(k1)
...

b(km)

⎤
⎥⎥⎦. (2)

As mentioned above, products similar to the one on the left-hand side of Eq. (2), which
require multiplication of the system matrix with an intermediate (i.e. not yet converged)
solution vector, occur repeatedly in iterative schemes. The objective is to define an efficient
procedure for their evaluation. For this, the sound pressure vectors p1, . . . ,pm, correspond-
ing to the intermediate solutions at the desired wavenumbers k1, . . . , km, are rearranged
side by side in the matrix P = [p1, . . . ,pm], hence P ∈ C

n×m. Once convergence is reached,
it can be interpreted as a matrix containing the frequency range solution. For the sake of
readability, P will be simply referred to as solution matrix in the remainder of the paper,
though it serves as representative for all intermediate matrices that arise over the course of
the iterations.

The key concept of the proposed method relies on finding a low-rank approximation
of the matrix P and thereby compressing the frequency range information. Assuming a
singular value decomposition (SVD) and subsequent truncation, an approximation of P can
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be written as the product of two tall-and-skinny matrices, i.e.

P ≈ UPVH
P, UP ∈ C

n×r, VP ∈ C
m×r, (3)

with the rank r � n,m. The superscript (·)H denotes the Hermitian transpose of a matrix.
Details on this low-rank factorization are given in Sec. 2.1.

Moreover, a frequency approximation of the BE system matrix is introduced as second
approximation. It is defined such that

H(k) ≈
q∑

j=0

Hjvj(k), (4)

is approximated by a linear combination of a few frequency-independent coefficient matrices
Hj. They are multiplied with the scalar-valued, frequency-dependent functions vj(·) as
weights. For the efficiency of the method, the number of terms is required to be small,
i.e. q � n,m. Details on the construction of the approximation in Eq. (4) are provided in
Sec. 2.2.

Furthermore, the right-hand side vectors at the desired wavenumbers are also rearranged
in the matrix B = [b(k1), . . . ,b(km)], similar to the definition of the solution matrix P.
Finally, with the approximations in Eqs. (3) and (4) at hand, a linear operator H : C

n×m →
C

n×m is introduced as

H(P) =
q∑

j=0

(HjUP)(VH
PDj), Dj = diag(vj(k1), . . . , vj(km)). (5)

Application of H to the solution matrix P approximately yields the right-hand side matrix B
at a computational effort of O(qr(n2 + m + mn)). It serves as an alternative for evaluating
the matrix vector product on the left-hand side of Eq. (2) which would require O(mn2)
number of operations. Hence, the evaluation via Eq. (5) is economic when qr < m, which
holds as long as one is interested in a fine frequency resolution, and the approximations in
Eqs. (3) and (4) yield sufficient accuracy with only small numbers of terms. The numerical
examples in Sec. 3 verify the latter assumption.

2.1. Low-rank factorization

A factorization of the solution matrix P ∈ C
n×m as given in Eq. (3) with a small rank is

crucial for the efficiency of the operation in Eq. (5). Its computation is described in what
follows.

The rank R of a matrix corresponds to the number of linearly independent rows and
columns, and a matrix is said to have full rank if R = min(n,m). Assuming an irregular
spatial distribution of the sound pressure field and also an absence of any regularity of the
sound pressure with respect to the frequency, P would originally have full rank. However, in
most applications this is not the case, and P admits a sufficiently accurate approximation
by a matrix of significantly reduced rank r compared to the original rank, i.e. r � R.
Actually, this is also the underlying concept of modal superposition, in which the response
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in a frequency range is expressed as a summation of a few modes of the system. However,
the proposed method does not rely on the solution of an eigenvalue problem that would be
required to determine the modes.

For a given rank r, the closest approximation of a matrix with respect to the Frobenius
norm is achieved by SVD and subsequent truncation. Since P is nonsquare (i.e. m �= n),
the economic version of SVD is used in this paper, which omits the rows or columns of
zeros from the singular value matrix. The algorithm for computing the SVD is based on
bidiagonalization and is associated with a complexity of O(nm2) when m < n. The resulting
factorization reads

P = ŨPΣPṼH
P, (6)

where ΣP is a diagonal matrix containing the real-valued, nonnegative singular values σ1 ≥
· · · ≥ σR in decreasing order. Given an analytical frequency dependence of the system
matrix H(k) and right-hand side b(k), it is proven that the singular values of P exhibit
exponential decay.30 This also confirms the admissibility of approximating P with a low-
rank factorization. Instead of defining a fixed rank for the truncation, a relative error εT is
chosen, and the smallest r is found such that

√
σ2

r+1 + · · · + σ2
R ≤ εT

√
σ2

1 + · · · + σ2
r . (7)

Thereby, the error in the Frobenius norm, introduced due to the approximation P ≈ UPVH
P,

is limited to
∥∥P − UPVH

P

∥∥
F
≤ εT ‖UPVH

P‖F. With the rank r at hand, UP and VP are
constructed using the corresponding singular vectors ũ and ṽ of ŨP and ṼP, i.e.

UP = [ũ1, . . . , ũr]diag(
√

σ1, . . . ,
√

σr), VP = [ṽ1, . . . , ṽr]diag(
√

σ1, . . . ,
√

σr). (8)

In this way, the truncation operator T : C
n×m → C

n×m,P �→ UPVH
P can be defined.

Thereby calculated low-rank factorizations play an important role in the iterative schemes
described in Sec. 2.3.

2.2. Frequency approximation of the boundary element equations

Beside the above-described low-rank factorization, a frequency approximation of the sys-
tem matrix H(k) is the second essential approximation underlying the proposed iterative
scheme. The form in Eq. (4) is given by a linear combination of a few frequency-independent
coefficient matrices and should enable satisfactory approximation over the whole frequency
range of interest. Different types of polynomial12,14 and rational approximations15 are pos-
sible in this regard. Since only real-valued wavenumbers are of interest in frequency-sweep
analyses, polynomial approximations are more suitable for this work. In order to ensure an
evenly distributed approximation error over the frequency range, a qth order polynomial
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approximation of the form

H(k) ≈
q∑

j=0

Hjk
j = H0 + H1k + · · · + Hqk

q (9)

is used herein. For this, the system matrix H(k) is evaluated as usual by element-wise numer-
ical integration at s = q+1 sample wavenumbers k1, . . . , ks. These sample wavenumbers are
chosen as the Chebyshev nodes in order to mitigate the effect of Runge’s phenomenon.34

Considering the interval k ∈ [kmin, kmax], they are given by

kj = 0.5(kmin + kmax) + 0.5(kmax − kmin)cos
(2j − 1)π

2s
, j = 1, . . . , s. (10)

With the system matrix samples H(k1), . . . ,H(ks) at hand, the unknown coefficient matrices
Hj of the polynomial approximation (9) can be determined by solving a sequence of linear
systems of dimension s.

The approximation of the system matrix offers the additional advantage of requiring
the set-up of H(k) only at a few sample frequencies. However, this advantage is lost if the
numerical integration that goes along with the assembly of the right-hand side b is still
performed at each frequency point of interest. Therefore, similar approximations are also
employed for the right-hand side in order to preserve computational efficiency, i.e.

b(k) ≈
q∑

j=0

bjk
j = b0 + b1k + · · · + bqk

q. (11)

In contrast to the low-rank factorizations given in Sec. 2.2, the error introduced by the
polynomial frequency approximations cannot be determined a priori. The error is mainly
driven by the extent of the wavenumber interval kmax−kmin on the one side and the chosen
polynomial order on the other side. Assuming an evenly distributed error over the frequency
range, an a posteriori evaluation of the error at a frequency between two neighboring samples
could provide an estimation for an upper bound. The numerical examples in Sec. 3 give
further insights in this regard.

2.3. Algorithms for low-rank iteration schemes

The nonsymmetric linear systems arising from acoustic BEM are usually addressed by itera-
tive solvers based on Krylov subspace methods. Regarding multi-frequency problems, these
iterative solvers are usually employed successively for each frequency. The overall compu-
tational effort is associated with the total number of matrix vector multiplications adding
up over all iterations and frequency points. In contrast, the implementations in this paper
seek for a simultaneous solution for the whole frequency range. Low-rank factorizations in
conjunction with a frequency approximation of the BE matrix allow to replace the matrix
vector multiplications by a single operation given by Eq. (5) covering all frequency points.
Moreover, the algorithms in this paper are nonstandard in the sense that the iterates are
matrices instead of vectors.
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Algorithm 1 Low-rank BiCGstab
1: input
2: linear operator H : C

n×m → C
n×m as given in Eq. (5)

3: truncation operator T : C
n×m → C

n×m as described in Sec. 2.2
4: relative error for the low-rank approximation εT
5: relative residual tolerance εtol

6: right-hand side B ∈ C
n×m

7: set
8: B := T (B)
9: initial guess P0 := 0, R0 := B

10: ρ0 := 〈B,R0〉
11: Y0 := R0

12: W0 := H(Y0), W0 := T (W0)
13: j := 0
14: while ‖Rj‖F/‖B‖F > εtol do
15: αj := ρj/〈B,Wj〉, breakdown if 〈B,Wj〉 = 0
16: Sj := Rj − αjWj , Sj := T (Sj)
17: if ‖Sj‖F/‖B‖F < εtol then
18: P := Pj + αjYj, return

19: Tj := H(Sj), Tj := T (Tj)
20: ξj := 〈Tj ,Sj〉/〈Tj ,Tj〉
21: Pj+1 := P + αjYj + ξjSj

22: Rj+1 := Sj − ξjTj, Rj+1 := T (Rj+1)
23: ρj+1 := 〈B,Rj+1〉
24: βj := (ρj+1αj)/(ρjξj), breakdown if ρjξj = 0
25: Yj+1 := Rj+1 + βj(Yj − ξjWj), Yj+1 := T (Yj+1)
26: Wj+1 := H(Yj+1), Wj+1 := T (Wj+1)
27: j := j + 1
28: output
29: P ∈ C

n×m with ‖H(P) − B‖F/‖B‖F ≤ εtol

The incorporation of the low-rank format into BiCGstab30,35 is given in Algorithm 1. In
there, inner products of two matrices 〈X,Y〉 need to be evaluated, which can be performed
economically, if X = UXVH

X and Y = UYVH
Y are available in the low-rank format as

〈X,Y〉 = trace(XHY) = trace((VH
YVX)(UH

XUY)). (12)

A restarted low-rank GMRes31,36,37 is summarized in Algorithm 2. In there, a new basis
vector Sk+1 of the subspace span(S1, . . . ,Sd) is obtained by applying the system matrix to
the basis vector Sk of the previous iteration, which would lead to a rank increase over the
iterations. In order to avoid this, the basis vectors are truncated as described in Sec. 2.2,
although thereby their orthogonality is lost. Consequently, cheap estimations of both, the
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Algorithm 2 Restarted low-rank GMRes
1: input
2: linear operator H : C

n×m → C
n×m as given in Eq. (5)

3: truncation operator T : C
n×m → C

n×m as described in Sec. 2.2
4: relative error for the low-rank approximation εT
5: relative residual tolerance εtol

6: dimension of the Krylov subspace d

7: right-hand side B ∈ C
n×m

8: set
9: initial guess P0 := 0, R0 := B

10: j := 0
11: while ‖Rj‖F/‖B‖F > εtol do
12: S̃1 := Rj, S̃1 := T (S̃1)
13: S1 := S̃1/‖S̃1‖2

14: for k = 1,...,d do
15: Wk := H(Sk), Wk := T (Wk)
16: Solve [〈Sp,Sq〉]kp,q=1α = [〈Sp,Wk〉]kp=1 for α ∈ C

k×1

17: S̃k+1 := Wk − ∑k
i=1 αiSi, S̃k+1 := T (S̃k+1)

18: Sk+1 := S̃k+1/‖S̃k+1‖2

19: Solve [〈Wp,Wq〉]dp,q=1β = [〈Wp,Rj〉]dp=1for β ∈ C
d×1

20: Pj+1 := Pj +
∑d

i=1 βiSi, Pj+1 := T (Pj+1)
21: Rj+1 := B − H(Pj+1)
22: j := j + 1
23: output
24: P ∈ C

n×m with ‖H(P) − B‖F/‖B‖F ≤ εtol

residual and the required subspace dimension d inside the inner loop of Algorithm 2 are no
longer possible. Instead, d is assumed to be predefined in this paper. An elaborate discussion
on the implications of approximate basis vectors in GMRes can be found in the paper by
Ballani and Grasedyck.31

2.4. Some remarks on preconditioning

A preconditioner M : C
n×m → C

n×m could be employed in order to accelerate the conver-
gence of the solution. Ideally, it should be defined such that M−1 admits an economic appli-
cation to matrices in the low-rank format and reduces the condition number in the whole
frequency range. Incorporations of preconditioners in low-rank versions of both BiCGstab
and GMRes are described in the literature for special cases such as linear parameter depen-
dence30 and block diagonal systems,37 but they are not applicable in the herein presented
case of polynomially approximated frequency dependency. An alternative way is to apply
well-known preconditioners for single frequency BE matrices38,39 to individual columns of
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P before truncation. However, the choice of suitable frequency samples for preconditioning
is indeed an intricate task and would require a priori estimation of condition numbers. Pre-
liminary experiments with explicitly preconditioning at (or even omitting) the frequency
samples associated with high condition numbers (typically those in the vicinity of eigenfre-
quencies) only marginally improved the convergence in the tested cases. For the remainder
of the paper, preconditioning is neglected in Algorithms 1 and 2.

3. Numerical Examples

The key concepts of the proposed scheme include a polynomial approximation of the system
matrix, low-rank factorizations and their incorporation into iterative solvers. These concepts
are verified each based on an interior duct problem in Sec. 3.1. An exterior scattering
problem is analyzed in Sec. 3.2 and the computational times are compared to those of a
conventional frequency-wise strategy.

3.1. Two-dimensional duct with reflecting and absorbing

boundary conditions

A closed, two-dimensional duct of length l = 3.4m and width w = 0.2m is considered,
as shown in Fig. 1. A plane sound wave is excited harmonically due to a particle velocity
v0 = 1mm/s at x = 0 and propagates through air with a density of ρ = 1.3 kg/m3 and
speed of sound of c = 340m/s. The example is studied in the frequency range from 421
to 520Hz in steps of Δf = 1Hz. Hence, using state-of-the-art solution schemes, m = 100
linear systems need to be solved. At the right end x = l, two different boundary conditions
are considered. First, an admittance boundary condition with Y (l) = 1/ρc is used, which
results in full absorption of the wave at the outlet x = l. This will be referred to as the
condition (I). Second, sound hard boundary conditions Y (l) = 0 are employed, denoted as
condition (II). They lead to a full reflection of the wave, and hence, standing waves emerge
at the resonance frequencies of 450 and 500Hz. Similar models comprising plane sound
waves inside two- and three-dimensional ducts are widely used as benchmark problems in
computational acoustics40 and extensive studies on associated discretization errors with
respect to mesh sizes and element types are available in the literature.41,42

A total of 32 one-dimensional isoparametric elements of quadratic order resulting in
n = 64DOFs are employed for discretizing the sound pressure on the boundary of the duct,
where the edges parallel to the direction of wave propagation accommodate 15 elements,
respectively. At 500Hz, this corresponds to a ratio of three elements per wavelength.

x

y
w

Fig. 1. Schematic of the air-filled two-dimensional duct.
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3.1.1. Assessment of the frequency approximations

Before studying the characteristics of the proposed iterative scheme, the applicability of the
underlying approximations is assessed in what follows. This section is concerned with errors
associated with the frequency approximations excluding the effects of low-rank approxima-
tions and iterative solvers.

Polynomial frequency approximations of orders q = 3, . . . , 6 are computed for the system
matrix H(k) ∈ C

64×64. The corresponding right-hand side vectors b(k) ∈ C
64×1 are also

approximated across the frequency range using the same sample frequencies. This is done in
order to achieve efficiency of the algorithm as discussed in Sec. 2.1. The approximations of
H(k) and b(k) are then evaluated at the wavenumbers k1, . . . , km and the m linear systems
are solved individually using a direct solver. The real parts of the resultant sound pressure
solutions at the corner node (x, y) = (0, 0) are displayed in Figs. 2 and 3. Qualitatively, the
results accord well with the conventional solutions that are obtained by setting up the system
matrices and right-hand sides for each wavenumber k1, . . . , km. This also applies to all other
positions in the duct, as well as the imaginary parts of the solutions. The graphs in Fig. 3
display the sound pressure solution for the condition (II). As expected, resonances occur
at 450 and 500Hz, respectively, and relatively large deviations are observed around them.
However, considering that the resonance frequencies and associated amplitudes are generally
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Fig. 2. Real parts of the sound pressure solutions at the corner (x, y) = (0, 0) in the duct with absorbing
condition (I) over frequency. Comparison of conventionally obtained solutions and solutions obtained by
using different orders of polynomial approximations for right-hand sides and system matrices.
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Fig. 3. Real parts of the sound pressure solutions at the corner (x, y) = (0, 0) in the duct with sound hard
condition (II) over frequency. Comparison of conventionally obtained solutions and solutions obtained by
using different orders of polynomial approximations for right-hand sides and system matrices.

subject to uncertainties such as the extent of damping, the overall accuracy achieved with
the frequency approximations is acceptable with regard to most engineering applications.

In addition to the qualitative comparisons shown in Figs. 2 and 3, the errors introduced
to the system matrices are quantified using the Frobenius norm, i.e.

εrel,H =
‖∑q

j=0 Hjk
j − H(k)‖F

‖H(k)‖F
, k = k1, . . . , km, (13)

and they are given in Fig. 4. The errors are smallest around the sample frequencies and
are largest between two sample frequencies. As expected, higher polynomial orders provide
better approximations. The relative errors in the corresponding sound pressure solutions
are depicted in Fig. 5. They are determined for each frequency in the Euclidean norm from

εrel,p =
‖p̃ − p‖2

‖p‖2
, p̃ = p̃1, . . . , p̃m, p = p1, . . . ,pm, (14)

where p̃ is obtained using the approximations in Eqs. (9) and (11). The sound pressure
errors in condition (I) show similar distributions as the corresponding matrix errors in
Fig. 4 providing minima at the Chebyshev nodes and upper bounds for each approximation,
respectively. For example, a 6th-order matrix approximation subjects the sound pressure
solution to an error of εrel,p < 10−3 in the considered frequency range. However, in condition
(II), significantly higher errors are encountered in the vicinity of the eigenfrequencies. They
stem from the ill-conditioned matrix H(k) at the resonances and thus a high sensitivity

2150004-12

J.
 T

he
or

. C
om

p.
 A

co
ut

. 2
02

1.
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
E

C
H

N
IC

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

M
U

N
IC

H
 o

n 
01

/2
1/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



September 28, 2021 9:21 WSPC/S2591-7285 130-JTCA 2150004

Low-Rank Solvers for Acoustic BEM

420 440 460 480 500 52010−5

10−4

10−3

10−2

10−1

Frequency in Hz

R
el

at
iv

e
er

ro
r

ε r
el

,H

3rd order 4th order 5th order 6th order

420 440 460 480 500 52010−5

10−4

10−3

10−2

10−1

Frequency in Hz

R
el

at
iv

e
er

ro
r

ε r
el

,H

Fig. 4. Relative errors in the Frobenius norm of polynomial approximations of the system matrices. Absorbing
condition (I) on the left and sound hard condition (II) on the right.
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Fig. 5. Relative errors in the Euclidean norm of the sound pressure solutions obtained using polynomial
approximations of the right-hand sides and system matrices. Absorbing condition (I) on the left and sound
hard condition (II) on the right.

of the solution accuracy with respect to approximation errors. Relatively small errors in
the system matrices and right-hand sides give rise to large deviations in amplitudes as
well as to frequency shifts at the resonances. Both can be seen in Fig. 3. However, as
already mentioned, the qualitative accordance and the overall accuracy can be judged to be
acceptable for both conditions (I) and (II).

2150004-13

J.
 T

he
or

. C
om

p.
 A

co
ut

. 2
02

1.
29

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
E

C
H

N
IC

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

M
U

N
IC

H
 o

n 
01

/2
1/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



September 28, 2021 9:21 WSPC/S2591-7285 130-JTCA 2150004

S. K. Baydoun, S. Marburg & M. Voigt

While the results in Figs. 2 to 5 indicate an improvement in accuracy with increasing
polynomial orders, it has to be noted that the polynomial order cannot be chosen arbitrarily
high. In this example, orders greater than six induce numerical instabilities due to round-off
errors in the coefficient matrices of Eq. (9).

3.1.2. Assessment of the low-rank factorizations

Beside frequency approximations of H(k) and b(k), a low-rank factorization accounts for
a second approximation underlying the proposed iterative scheme. For the efficiency of the
scheme, it is crucial that the solution matrix P and the right-hand side B both admit a
low-rank factorization, i.e. they can be well approximated by only taking a small number of
singular values and singular vectors into account. This property is assessed in this section on
the example of the duct problem. The admissibility of low-rank approximations is studied in
an isolated manner as well as in combination with the polynomial frequency approximations.
The effect of iterative solvers is excluded altogether.

Figure 6 shows the singular values of both B and P for conditions (I) and (II) when
obtained conventionally by numerical integration for each frequency as well as by means of
the frequency approximations described in Sec. 2.1. As discussed in Sec. 2.2, the conven-
tionally obtained matrices exhibit an exponential singular value decay. However, this does
not hold when using polynomial frequency approximations of H(k) and b(k). Considering a
qth order approximation of the right-hand side B = [b(k1), . . . ,b(km)], its column vectors
are linear combinations of q + 1 coefficient vectors, c.f. Eq. (11). Hence, the polynomial
approximation of B is of rank (B) ≤ q + 1. For example, Fig. 6 indicates that the 6th-order
approximation of B yields a good accordance in the first seven singular values. Note that
the smaller singular values do not vanish due to finite arithmetic accuracy. The same issue
can be observed for the first seven singular values of the resulting solution matrices P. They
agree well with those of the conventionally obtained matrices. However, using polynomial
approximations for H(k) and b(k), the smaller singular values of P do no longer exhibit an
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Fig. 6. Singular values of right-hand sides B and solutions P for conditions (I) and (II) for conventionally
obtained matrices and using 6th-order polynomial approximations.
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exponential decay. These considerations are essential when choosing the relative error εT
for the low-rank approximation in Algorithms 1 and 2.

The ranks of B and P after computing SVDs and performing truncations with dif-
ferent relative errors εT are given in Table 1. As expected, the ranks are slightly higher
when using polynomial approximations, in particular with regard to higher accuracies εT .
Nonetheless, the ranks are still considerably smaller than m and n, and hence, the products
in Algorithms 1 and 2 can be efficiently computed by making use of the low-rank format.

3.1.3. Convergence behaviors of the low-rank iteration schemes

Having assessed the implications of polynomial frequency approximations and low-rank fac-
torizations, the characteristics of the iterative schemes incorporating these approximations
are examined hereinafter. The convergence of the relative residuals ‖R‖F/‖B‖F for both,
the absorbing (I) and the sound hard condition (II), are shown in Fig. 7 for GMRes. A
restart parameter of d = 5 is used in this example and the indicated numbers of iterations
in Fig. 7 refer to the cumulative repetitions of the inner loop of Algorithm 2, that is d

times the number of restarts. The residuals decrease monotonically over the course of the
iterations. Initially, the rate of convergence is independent of the accuracy of the low-rank
approximation εT , but the truncations cause early stagnation of the method at residuals
depending on the chosen value for εT . However, the convergence behavior up to the point of
reaching the respective final accuracy is not deteriorated. While in the absorbing condition
(I), convergence is reached rather quickly, the convergence rate in the sound hard condition
(II) is much slower due to the resonances and associated high condition numbers of H(k).

Similar convergence plots are given in Fig. 8 for BiCGstab. In contrast to GMRes, the
residuals do not decrease monotonically over the course of the iterations. In condition (I),
different accuracies of the low-rank approximation εT do not have a significant influence
on the convergence, while in condition (II), higher accuracies are associated with faster
convergence. In this example, the residuals decrease without being restricted by the low-
rank approximations. However, note that in case of evaluating the residual explicitly by

Table 1. Ranks of right-hand sides B and solu-
tions P for conditions (I) and (II) after SVD
and truncation with relative errors εT for con-
ventionally obtained matrices and using 6th-
order polynomial approximations.

εT 10−4 10−6 10−8

B (conv.) 6 7 9
B (approx.) 5 7 7
P (cond. (I), conv.) 6 8 10
P (cond. (I), approx.) 6 9 12
P (cond. (II), conv.) 7 9 11
P (cond. (II), approx.) 7 10 13
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Fig. 7. Convergence behavior of low-rank GMRes (d = 5) with different relative errors for the low-rank
approximation εT . Absorbing condition (I) on the left and sound hard condition (II) on the right. The
number of iterations refers to d times the number of restarts.
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Fig. 8. Convergence behavior of low-rank BiCGstab with different relative errors for the low-rank approxi-
mation εT . Absorbing condition (I) on the left and sound hard condition (II) on the right.

Rj+1 := B−H(Pj+1) instead of the using the recursion formula in line 22 of Algorithm 1,
the residual stagnates depending on the chosen value for εT similarly to GMRes.

The overall computational time is mainly driven by the efforts associated with the eva-
luation of matrix products and the computation of the low-rank factorizations within each
iteration as well as the total number of iterations. While low numerical ranks clearly reduce
the efforts for evaluating matrix products, the numerical experiments indicate that they can
be detrimental in terms of the rate of convergence, i.e. the number of iterations. Therefore,
omitting some of the truncations in the loop of Algorithm 1 could be beneficial regarding
the overall computational time. The optimal trade-off between fast evaluations of matrix
products by low numerical ranks on the one side and the additional effort for the SVDs
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as well as a possible increase in the number of iterations on the other side is certainly
problem-dependent. Further studies are required to gain confidence in this regard.

As a final remark, it should be noted that though the solution and right-hand side
both admit low-rank approximations as confirmed by Table 1, the ranks of intermediate
matrices could temporarily grow larger in the course of the iterations. This can be avoided
by truncating the respective matrices to a fixed rank, however thereby sacrificing information
on the introduced numerical error. Preliminary numerical experiments indicate that this can
be feasible in GMRes, since after all, the subspaces are discarded at the restarts.

3.2. Plane wave scattering on a rigid sphere

The second example involves a rigid sphere with a radius of 5m submerged in water with a
density of ρ = 1000 kg/m3 and speed of sound of c = 1500m/s. The sphere is subject to an
infinite incident plane wave with an amplitude of p0 = 1Pa. Only scattering is considered
and hence, the right-hand side in Eq. (1) only comprises the incident sound pressure vector
pi. The problem is analyzed in the frequency range from 10 to 130Hz in frequency steps
of Δf = 1Hz, i.e. m = 121. A treatment for irregular frequencies is not required, since the
first eigenfrequency of the interior Dirichlet problem is approximately 148Hz.

The acoustic field is discretized by 864 quadrilateral boundary elements with bi-
quadratic geometry approximation and discontinuous bi-linear sound pressure approxima-
tion. This corresponds to 12 elements on a π/2 arc and a total of n = 3456DOFs.

First, the problem is addressed in conventional manner by solving each of the m = 121
linear systems independently by standard GMRes without restarts. For this, the built-in
MATLAB function gmres is employed with a tolerance of εtol = 10−6 for the relative residual.
A cumulative number of 577 iterations is required adding up to a total wall clock time of
10.4 s. Note that this does not include the time for setting up the BE matrices but only the
actual solution of the linear systems. The evaluation of a single matrix vector product takes
approximately 0.006 s.

Second, the low-rank BiCGstab method described in Algorithm 1 is applied for a simul-
taneous frequency range solution. The BE matrix is approximated by a polynomial of order
q = 6. The tolerance for the low-rank truncation is set to εT = 10−6, which yields a rank of
r = 7 for the solution matrix P after convergence. Low-rank BiCGstab requires 16 iterations
to reach a relative residual of εtol = 10−6 corresponding to a wall clock time of 4.3 s. Higher
values for εT of course result in higher ranks but do hardly affect the wall clock time. The rel-
ative difference in the sound pressure solution is ‖Pconv −P‖F/‖Pconv‖F = 3.8 ·10−4 , where
Pconv denotes the solution matrix obtained by the above-described conventional approach.
The evaluation of the operator in Eq. (5) takes approximately 0.07 s.

Third, the problem is addressed by the low-rank GMRes method described in Algo-
rithm 2, using the same parameters as above, i.e. q = 6, εT = 10−6 and εtol = 10−6. The
restart parameter is set to d = 5. Again, the rank of P after convergence is r = 7. Low-rank
GMRes takes six outer iterations and a wall clock time of 5.4 s for the frequency range
solution.
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Fig. 9. Comparison between conventional strategy and the low-rank versions of BiCGstab and GMRes. Wall
clock times for the solution of the scattering problem in the frequency range from 10 to 130 Hz using different
resolutions (i.e. frequency steps Δf).

In summary, the low-rank versions of BiCGstab and GMRes have reduced the computa-
tional time for solving the given scattering problem by 59% and 48%, respectively. But as
with all multi-frequency solvers, the success of the proposed low-rank schemes depends on
the desired frequency resolution. This issue is illustrated in Fig. 9, which shows the solution
time of the scattering problem for different frequency resolutions. While the solution time of
the conventional approach increases proportionally with the number of frequency samples
m, this rate is much smaller when using the low-rank schemes. On the other hand, in this
example, the conventional strategy is more efficient when the frequency steps go beyond
Δf = 2Hz, which corresponds to m = 61.

4. Conclusions and Future Work

A low-rank iteration scheme has been proposed for the frequency range solution of acoustic
problems with BEM. It is based on a polynomial frequency approximation of BE equations
and on low-rank factorizations of intermediate matrices. Combining both concepts enables
efficient evaluations of matrix vector products, and their incorporation into BiCGstab and
GMRes has been presented. The method has been applied to an interior duct problem
subject to absorbing and to sound hard boundary conditions in order to provide a proof of
concept. The implications of the underlying approximation have been assessed systematical-
ly and the convergence behaviors of low-rank versions of BiCGstab and GMRes have been
studied. Further, an exterior scattering problem has been analyzed, and the computational
times have been compared to those of a conventional frequency-wise strategy. As expected,
the benefit of the proposed low-rank schemes increases with the chosen frequency resolution.
Hence, the common issue of oversampling the frequency range has less of an impact on the
computational time.

Acceptable accuracies have been achieved in the whole frequency range using polyno-
mial frequency approximations. However, the size of the frequency interval is limited since
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overly large intervals would require high polynomial orders possibly resulting in numerical
instabilities. Piece-wise polynomial approximations of lower orders could address this issue.
As an alternative, the discrete empirical interpolation method could be used for improving
the frequency approximation.45

The numerical examples have also confirmed the admissibility of truncating solution
and right-hand side matrices to low numerical ranks. Clearly, this is the key concept of
the method since low numerical ranks are crucial for efficient evaluation of products in the
course of the iterations. For this, SVDs need to be computed repeatedly accounting for a
major share in the overall computational time. While a standard algorithm based on bidi-
agonalization has been employed in this work, more efficient strategies are available, such as
the computation of a subset of singular values43 or randomized SVD.44 Their incorporation
into the proposed low-rank iteration schemes is certainly a task for future research.

Regarding the behaviors of the low-rank-based iterative schemes, BiCGstab and GMRes
have both shown convergence. Although the basis vectors spanning the subspace are not
orthogonal in low-rank GMRes, it has provided monotone decrease of the residual until
reaching the final accuracy in the considered example. While in the traveling wave and
the exterior scattering problem, relatively high rates of convergence have been obtained,
a considerably large number of iterations was required to achieve convergence in the duct
problem with sound hard boundary conditions due to the emerging resonances.

The development of efficient preconditioning is therefore crucial in order to extend the
applicability of the method to actual technical and scientific problems. A preconditioner
should be defined such that it first allows for an economic application to matrices in the low-
rank format and second decreases the condition number uniformly over the whole frequency
range. Several approaches for the preconditioning of parametrized linear systems exist in the
literature,46,47 however incorporating them into low-rank iteration schemes is an ongoing
challenge.

The main purpose of this paper is to provide a proof of concept and to initiate further
research on the applicability of low-rank solvers in the field of computational acoustics.
Though only frequency-dependent BE matrices have been considered here, the concept
can be straightforwardly applied to other parametrized linear systems as those originat-
ing from vibroacoustic optimization problems and uncertainty quantification. Moreover,
multiple parameter dependence can be handled by making use of the low-rank tensor
format.

In this paper, academic problems with relatively small numbers of DOFs have been
considered with the aim to verify the underlying approximations of the method. Examining
larger problems and comparing the performance to other multi-frequency strategies with
regard to computational efficiency are tasks for future research. The high complexity and
memory requirements associated with fully populated BE matrices have given rise to several
fast algorithms such as hierarchical matrices.23 They provide reduced memory requirements
and fast evaluation of matrix operations and hence, enable the treatment of large problems
with BEM. Their incorporation into the proposed low-rank iteration scheme is vital in order
to avoid the storage of several fully populated coefficient matrices.
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