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Abstract
We consider composite quantum-dynamical systems that can be partitioned into
weakly interacting subsystems, similar to system–bath type situations. Using
a factorized wave function ansatz, we mathematically characterize dynamical
scale separation. Specifically, we investigate a coupling régime that is partially
flat, i.e. slowly varying with respect to one set of variables, for example, those
of the bath. Further, we study the situation where one of the sets of variables is
semiclassically scaled and derive a quantum–classical formulation. In both sit-
uations, we propose two schemes of dimension reduction: one based on Taylor
expansion (collocation) and the other one based on partial averaging (mean-
field). We analyze the error for the wave function and for the action of observ-
ables, obtaining comparable estimates for both approaches. The present study
is the first step towards a general analysis of scale separation in the context of
tensorized wavefunction representations.
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1. Introduction

We consider composite quantum-dynamical systems that can be partitioned into weakly inter-
acting subsystems, with the goal of developing effective dynamical descriptions that sim-
plify the original, fully quantum-mechanical formulation. Typical examples are small reactive
molecular fragments embedded in a large molecular bath, namely, a protein, or a solvent, all
being governed dynamically by quite distinct energy and time scales. To this end, various
régimes of intersystem couplings are considered, and a quantum–classical approximation is
explored. A key aspect is dimension reduction at the wave function level, without referring to
the conventional ‘reduced dynamics’ approaches that are employed in system–bath theories.

1.1. The mathematical setting

The quantum system is described by a time-dependent Schrödinger equation

i∂tψ = Hψ; ψ|t=0 = ψ0, (1)

governed by a Hamiltonian of the form

H = Hx + Hy + W(x, y),

where the coupling potential W(x, y) is a smooth function, that satisfies growth estimates guar-
anteeing existence and uniqueness of the solution to the Schrödinger equation (1) for a rather
general set of initial data, as we shall see later in section 2. The overall set of space variables is
denoted as (x, y) ∈ Rn × Rd such that the total dimension of the configuration space is n + d.
The wave function depends on time t � 0 and both space variables, that is, ψ = ψ(t, x, y). We
suppose that initially scales are separable, that is, we work with initial data of product form

ψ(0, x, y) = ψ0(x, y) = ϕx
0(x)ϕy

0(y). (2)

In the simple case without coupling, that is, W ≡ 0, the solution stays separated, ψ(t, x, y) =
ϕx(t, x)ϕy(t, y) for all time, where

i∂tϕ
x = Hxϕ

x; ϕx
|t=0 = ϕx

0,

i∂tϕ
y = Hyϕ

y; ϕy
|t=0 = ϕy

0,

and this is an exact formula. Here, we aim at investigating the case of an actual coupling with
∂x∂yW �≡ 0 and look for approximate solutions of the form

ψapp(t, x, y) = ϕx(t, x)ϕy(t, y),

where the individual components satisfy evolution equations that account for the coupling
between the variables. The main motivation for such approximations is dimension reduction,
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since ϕx(t, x) and ϕy(t, y) depend on variables of lower dimension than the initial (x, y). Of cru-
cial importance is the choice of the approximate Hamiltonian Happ = Hx + Hy + Wapp(t, x, y),
that governs the approximate dynamics. We consider two different approximate coupling
potentials: one is the time-dependent Hartree mean-field potential, the other one, computa-
tionally less demanding, is based on a brute force single-point collocation. Time-dependent
Hartree methods have been known for a long time and have earned the reputation of oversim-
plifying the dynamics of real molecular systems. We emphasize, that our present study does
not aim at rejuvenating but at deriving rigorous mathematical error estimates, which seem to
be missing in the literature. Surprisingly, our error analysis provides similar estimates for both
methods, the collocation and the mean-field approach. We investigate the size of the difference
between the true and the approximate solution in the L2-norm,

‖ψ(t) − ψapp(t)‖L2 =

√∫
Rn+d

|ψ(t, x, y) − ψapp(t, x, y)|2 dx dy

and in Sobolev norms. We present error estimates that explicitly depend on derivatives of the
coupling potential W(x, y) and on moments of the approximate solution. As an additional
error measure we also consider the deviation of true and approximate expectation values
〈ψ(t), Aψ(t)〉 − 〈ψapp(t), Aψapp(t)〉, for self-adjoint linear operators A. Roughly speaking, the
estimates we obtain for observables depend on one more derivative of the coupling potential
W(x, y) than the norm estimates. This means that in many situations expectation values are
more accurately described than the wave function itself. Even though rigorous error estimates
that quantify the decoupling of quantum subsystems in terms of flatness properties of the cou-
pling potential W(x, y) are naturally important, our results here seem to be the first ones of their
kind.

1.2. Relation with previous work

Interacting quantum systems have traditionally been formulated from the point of view of
reduced dynamics theories, based on quantum master equations in a Markovian or non-
Markovian setting [1]. More recently, also tensorized representations of the full quantum
system have been considered, as for example by matrix product states [2, 3] or within a
multiconfiguration time-dependent Hartree (MCTDH) approach [4–7]. Both wavefunctions
(pure states) and density operators (mixed states) can be described in this framework, and
wavefunction-based computations can be used to obtain density matrices [8]. In the chemical
physics literature, dimension reduction for quantum systems has been proposed in the con-
text of mean-field methods [9, 10], and the quantum–classical mean-field Ehrenfest approach
[11, 12]. Also, quantum–classical formulations have been derived in Wigner phase space
[13, 14] and in a quantum hydrodynamic setting [15–17]. Our present mathematical formu-
lation circumvents formal difficulties of these approaches [18–20], by preserving a quantum
wavefunction description for the entire system. Previous mathematical work we are aware of is
concerned with rather specific coupling models, as for example the coupling of Hartree–Fock
and classical equations in [21], or the time-dependent self-consistent field equations in [22],
or with adiabatic approximations which rely on eigenfunctions for one part of the system, see
for example [23, 24]. To the best of our knowledge, the rather general mathematical analysis
of scale separation in quantum systems we are developing here is new.
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1.3. Partially flat coupling

For a first approximate potential, we consider a brute-force approach, where we collocate
partially at a single point, for definiteness we choose the origin, and set

Wbf(x, y) = W(x, 0) + W(0, y) − W(0, 0).

In comparison, following the more conventional time-dependent Hartree approach, we set

Wmf(t, x, y) = 〈W〉y(t, x) + 〈W〉x(t, y) − 〈W〉 (t),

where we perform partial and full averages of the coupling potential,

〈W〉x =

∫
Rd

W(x, y) |ϕx(t, x)|2 dx

/∫
Rd
|ϕx(t, x)|2 dx,

〈W〉y =

∫
Rd

W(x, y) |ϕy(t, y)|2 dy

/∫
Rd
|ϕy(t, y)|2 dy,

〈W〉 =
∫
Rn+d

W(x, y) |ϕx(t, x)ϕy(t, y)|2 dx dy

/∫
Rn+d

|ϕx(t, x)ϕy(t, y)|2 dx dy.

For both approximations, the brute-force and the mean-field approximation, we derive var-
ious types of estimates for the error in L2-norm. Our key finding is that both methods come
with error bounds that are qualitatively the same, since they draw from either evaluations or
averages of the function

δW(x, x′, y, y′) = W(x, y) − W(x, y′) − W(x′, y) + W(x′, y′).

Depending on whether one chooses to control the auxiliary function δW in terms of∇xW,∇yW
or ∇x∇yW, the estimate requires a balancing with corresponding moments of the approximate
solution. For example, proposition 1 provides L2-norm estimates of the form

‖ψ(t) − ψapp(t)‖L2 �

⎧⎪⎪⎨⎪⎪⎩
const ‖∇yW‖L∞‖ϕx

0‖L2
x

∫ t

0
‖yϕy(s)‖L2

y
ds,

const ‖∇x∇yW‖L∞

∫ t

0
‖xϕx(s)‖L2

x
‖yϕy(s)‖L2

y
ds,

where const. ∈ {1, 2, 4}, depending on whether ψapp(t) results from the brute-force or the
mean-field approximation. Example 3 discusses important variants of this estimate using dif-
ferent ways of quantifying the flatness of the coupling potential. Proposition 2 gives analogous
estimates in Sobolev norms. In addition, we analyze the deviation of the true and the approxi-
mate expectation values in a similar vein. For the expectation values, we again obtain qualita-
tively similar error estimates for Wbf and Wmf. The upper bounds differ from the norm bounds
in so far as they involve one more derivative of the coupling potential W and low order Sobolev
norms of the approximate solution, see proposition 3. Hence, from the perspective of approx-
imation accuracy, the brute force and the mean-field approach differ only slightly. Therefore,
other assessment criteria are needed for explaining the prevalence of the Hartree method in
many applications, as we will discuss in section 3.5.
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1.4. Dimension reduction via semiclassical analysis

In the second part of the paper we turn to a specific case of the previous general class of
coupled Hamiltonians Hε = Hx + Hε

y + W(x, y) and consider for one part of the system a
semiclassically scaled Schrödinger operator

Hε
y = −ε2

2
Δy + V2(y), ε > 0.

We will discuss in section 5.1 system–bath Hamiltonians that can be recast in this semiclassical
format. The initial data are still a product of the form 2, but the y-factor is chosen as

ϕy
0(y) = ε−d/4a

(
y − q0√

ε

)
eip0·(y−q0)/ε,

that is, ϕy
0 is a semiclassical wave packet with a smooth and rapidly decaying amplitude func-

tion a ∈ S(Rd), and an arbitrary phase space centre (q0, p0) ∈ R2d. We will choose a semi-
classical wave packet approximation for ϕy(t, y) exploring two different choices for the centre
(q(t), p(t)). As a first option we consider the classical trajectory

q̇ = p, ṗ = −∇V2(q),

and as a second option the corresponding trajectory resulting from the averaged gradient of the
potential V2,

〈∇V2〉 (t) =
∫
Rd
∇yV2(y) |ϕy(t, y)|2 dy

/∫
Rd
|ϕy(t, y)|2 dy.

Correspondingly, the approximative factor ϕx(t, x) is evolved by the partial Hamiltonian
Hx + Weff with

Weff(t, x) = W(x, q(t)) or

Weff(t, x) =
∫
Rd

W(x, y) |ϕy(t, y)|2 dy

/∫
Rd
|ϕy(t, y)|2 dy.

We obtain error estimates in L2-norm, see proposition 4 and expectation values, see proposition
5. These estimates are given in terms of the semiclassical parameter ε and derivatives of the
coupling potential. Again, both choices for the effective potential differ only slightly in approx-
imation accuracy. Measuring the coupling strength in terms of η = ‖∇yW‖L∞ , we obtain two-
parameter estimates of order

√
ε+ η/

√
ε in norm, while the ones for the expectation values

are of order ε+ η. Hence, again the accuracy of quadratic observables is higher than the one
for wavefunctions.

2. Assumptions

We describe here the mathematical setting that will be ours, and discuss it in the context of
system–bath Hamiltonians [1, 25]. Our Hamiltonian is of the form

H = Hx + Hy + W(x, y), with

Hx = −1
2
Δx + V1(x), Hy = −1

2
Δy + V2(y),

(3)
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where the potentials V1(x), V2(y) and the coupling potential W(x, y) are all smooth functions,
that satisfy growth conditions as given in assumption 1. We will denote V(x, y) = V1(x) +
V2(y) + W(x, y) and abbreviate the Lebesgue spaces for the different variables x, y, and (x, y)
by

L2
x = L2(Rn), L2

y = L2(Rd), L2 = L2(Rn+d).

The initial data ψ0(x, y) in (2) are products of functions ϕx
0 ∈ L2

x and ϕy
0 ∈ L2

y , that are square-
integrable and typically, Schwartz class, see below.

2.1. Assumptions on regularity and growth of the potentials

We choose a very classical set of assumptions on the regularity and the growth of the potential,
since our focus is more on finding appropriate ways to approximate the solution in a standard
framework than on treating specific situations.

Assumption 1. All the potentials that we consider are smooth, real-valued, and at most
quadratic in their variables:

V1 ∈ C∞(Rn;R), V2 ∈ C∞(Rd;R), W ∈ C∞(Rn+d;R),

and, for α ∈ Nn, β ∈ Nd,

∂α
x V1 ∈ L∞ for |α| � 2, ∂β

y V2 ∈ L∞ for |β| � 2,

∂α
x ∂

β
y W ∈ L∞ for |α|+ |β| � 2.

We also assume that ∇yW ∈ L∞, but note that this condition can easily be relaxed, see example
3. All the initial date we consider are smooth and rapidly decaying, that is, Schwartz class
functions:

ϕx
0 ∈ S(Rn;C), ϕy

0 ∈ S(Rd;C) (hence ψ0 ∈ S(Rn+d;C)).

Under the above assumption, it is well-known that Hx, Hy and H are essentially self-
adjoint on L2(RN), with N = n, d and n + d, respectively (as a consequence of Faris–Lavine
theorem, see e.g. [26, theorem 10.38]).

Example 1. Since assumption 1 involves similar properties for V1, V2 or W, we present
examples for V1 only, which can readily be adapted to V2 and W . For instance, we can consider

V1(x) =
n∑

j=1

ω2
j x2

j +

n∑
j=1

β j exp(−〈x, A jx〉) + Vper(x),

with ω j � 0 (possibly anisotropic harmonic potential), β j ∈ R, A j ∈ Rn×n positive definite
symmetric matrices (Gaussian potential), and Vper a smooth potential, periodic along some
lattice in Rn.

The assumptions on the growth and smoothness of the potentials and the regularity of the
initial data call for comments.

Remark 1. Concerning the growth of V1, V2 and W, the assumption that they are
at most quadratic concerns the behavior at infinity and could be relaxed, up to suit-
able sign assumptions. Local behavior is rather free, for example a local double well is allowed,
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as long as it is not too confining at infinity. We choose to stick to the at most quadratic case,
since bounded second order derivatives simplify the presentation.

Remark 2. Concerning the smoothness of our potentials, most of our results still hold assum-
ing only smoothness of W, as long as the operators Hx and Hy are essentially self-adjoint on
an adequate domain included in L2(RN), with N = n, d. For example, V1 and V2 could both
present Coulomb singularities, and the results of proposition 1 would still hold. In the semi-
classical régime, we can also allow a Coulomb singularity for V1 and prove propositions 4
and 5.

Remark 3. Concerning the smoothness and the decay of the initial data, most of our results
still hold, if the initial data are contained in one of the spaces Σk(RN) containing functions f
whose norms

‖ f ‖Σk = sup
z∈RN

|α|+|β|�k

‖zα∂β
z f ‖L2 (4)

are bounded. Note that S(RN) = ∩k∈NΣ
k. For example, proposition 1 still holds for initial data

in Σ1, while proposition 4 requires initial data in a semiclassically scaled Σ3 space.

2.2. System–bath Hamiltonians

An important class of coupled quantum systems are described by system–bath Hamiltonians
[1, 25].

Hsb = −1
2
Δx −

1
2
Δy + Vs(x) + Vb(y) + Vsb(x, y).

These are naturally given in the format required by (26). In the present discussion, we spec-
ify that the bath is described by a harmonic oscillator, Vb(y) = 1

2 k0
2|y|2 (or a set of harmonic

oscillators in more than one dimension) and the system–bath coupling Vsb(x, y) = W(x, y) is
of cubic form, such that we obtain in the notation of (26),

Hx = −1
2
Δx + Vs(x), Hy = −1

2
Δy +

1
2

k0
2|y|2, W(x, y) =

1
2
�η · x|y|2,

where k0
2 > 0 and �η ∈ Rd . The cubic, anharmonic coupling W(x, y) is a non-trivial case, which

is employed, e.g. in the description of vibrational dephasing [27, 28] and Fermi resonances
[29]. It is natural to assume smoothness and subquadratic growth for Vs(x). However, the cou-
pling potential W(x, y) clearly fails to satisfy the growth condition of assumption 1. Moreover,
it is not clear that in such a framework the total Hamiltonian H is essentially self-adjoint. On
the other hand, adding a quartic confining potential,

Hy = −1
2
Δy +

1
2

k0
2|y|2 +

1
4

k0
4|y|4, k0

4 > 0,

guarantees that H is essentially self-adjoint. Indeed, Young’s inequality for products yields

W(x, y) � −1
4

(
1
c0
|η|2|x|2 + c0|y|4

)
, ∀ c0 > 0,

so choosing c0 = k0
4, we have, for the total potential V(x, y) = Vs(x) + Vb(y) + W(x, y),

V(x, y) � |Vs(x)| − |η|2
8k0

4

|x|2 � −C1|x|2 − C2,

7



J. Phys. A: Math. Theor. 54 (2021) 414002 I Burghardt et al

for some constants C1, C2 � 0. Hence, the Faris–Lavine theorem implies that Hx , Hy and H
are essentially self-adjoint. In the following, we will therefore also provide slight extensions
of our estimates to accommodate this specific, but interesting type of coupling (see remark 8).

3. Partially flat coupling

In this section, we present error estimates that reflect partial flatness properties of the cou-
pling potential W(x, y) in the sense, that quantities like ‖∇yW‖L∞ or ‖∇x∇yW‖L∞ are small.
Depending on the regularity of the initial data, the smallness of these norms could also be
relaxed to the smallness of ‖〈x〉−σx〈y〉−σy∇yW‖L∞ for some σx , σy � 0, see example 3. We
investigate two approximation strategies, one that is based on brute-force collocation, the other
one on spatial averaging. In each case, we prove that the coupling in (x, y) is negligible at lead-
ing order with respect to ∇yW. Throughout this section, ψ = ψ(t, x, y) denotes the solution to
the initial value problem (1) and (2).

3.1. Brute-force approach

We consider the uncoupled system of equations⎧⎨⎩i∂tϕ
x = Hxϕ

x + W(x, 0)ϕx; ϕx
|t=0 = ϕx

0,

i∂tϕ
y = Hyϕ

y + W(0, y)ϕy; ϕy
|t=0 = ϕy

0.
(5)

In view of assumption 1, these equations have unique solutions ϕx ∈ C(R; L2
x), ϕy ∈ C(R; L2

y),
and higher regularity is propagated, ϕx ∈ C(R;Σk

x), ϕy ∈ C(R;Σk
y), for all k ∈ N, where we

recall that Σk has been defined in (4). The plain product solves

i∂t(ϕxϕy) = H(ϕxϕy) + (−W(x, y) + W(x, 0) + W(0, y)) (ϕxϕy).

This is not the right approximation, since the residual term is not small: even if W varies very
little in y, then W(x, y) − W(x, 0) − W(0, y) ≈ W(x, 0) − W(x, 0) − W(0, 0) = −W(0, 0). This
term is removed by considering instead

ψapp(t, x, y) = exp(itW(0, 0))ϕx(t, x)ϕy(t, y).

It satisfies the equation

i∂tψapp = Hψapp −
(
W(x, y) − Wapp(x, y)

)
ψapp︸ ︷︷ ︸

=:Σψ

.

with approximative potential Wapp(x, y) = W(x, 0) + W(0, y) − W(0, 0). The last termΣψ con-
trols the errorψ − ψapp, as we will see more precisely below. Saying that the coupling potential
W is flat in y means that ∇yW is small, and we write

W(x, y) − Wapp(x, y) = (W(x, y) − W(x, 0))︸ ︷︷ ︸
≈y·∇yW(x,0)

− (W(0, y) − W(0, 0))︸ ︷︷ ︸
≈y·∇yW(0,0)

.

This suggests that partial flatness of W implies smallness of the approximation error.

Remark 4. For choosing another collocation point than the origin, one might use the matrix

M(x, y) = ∂x∂yW(x, y) =
(
∂x j∂yk W(x, y)

)
1� j�n, 1�k�d

.
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The Taylor expansion

W(x, y) − Wapp(x, y) = W(x, y) − W(x, 0) − W(0, y) + W(0, 0)

= y ·
∫ 1

0

(
∂yW(x, ηy) − ∂yW(0, ηy)

)
dη

=

∫ 1

0

∫ 1

0
y · ∂x∂yW(θx, ηy) x dη dθ. (6)

implies for (x, y) ≈ (x0, y0) that

W(x, y) − W(x, y0) − W(x0, y) + W(x0, y0) ≈ (x · M(x0, y0)y),

which corresponds to the standard normal mode expansion. Hence, choosing (x0, y0) such that
the maximal singular value of M(x0, y0) is minimized, we minimize the error of the brute-force
approach.

3.2. Mean-field approach

Instead of pointwise evaluations of the coupling potential, we might also use partial averages
for an approximation. We consider⎧⎨⎩i∂tφ

x = Hxφ
x + 〈W〉y(t)φx; φx

|t=0 = ϕx
0,

i∂tφ
y = Hyφ

y + 〈W〉x(t)φy; φy
|t=0 = ϕy

0,
(7)

where we have denoted

〈W〉y = 〈W〉y(t, x) =

∫
W(x, y)|φy(t, y)|2dy∫

|φy(t, y)|2dy
=

∫
W(x, y)|φy(t, y)|2dy∫

|ϕy
0(y)|2dy

, (8)

〈W〉x = 〈W〉x(t, y) =

∫
W(x, y)|φx(t, x)|2dx∫

|φx(t, x)|2dx
=

∫
W(x, y)|φx(t, x)|2dx∫

|ϕx
0(x)|2dx

, (9)

where we have used the fact that the L2-norms of φx and φy are independent of time, since
W is real-valued. Note that (7) is the nonlinear system of equations of the time-dependent
Hartree approximation. Contrary to the brute-force approach, L2 regularity does not suffice
to define partial averages in general. In view of assumption 1, a fixed point argument (very
similar to the proof of e.g. [30, lemma 13.10]) shows that this system has a unique solution
(φx ,φy) ∈ C(R;Σ1

x × Σ1
y), and higher regularity is propagated,φx ∈ C(R;Σk

x), φy ∈ C(R;Σk
y),

for all k � 2. The approximate solution is then

φapp(t, x, y) = φx(t, x)φy(t, y) exp

(
i
∫ t

0
〈W〉 ds

)
,

with the phase given by the full average

〈W〉 = 〈W〉(t) =
∫

W(x, y)|φx(t, x)φy(t, y)|2dx dy∫
|ϕx

0(x)ϕy
0(y)|2dx dy

.

It solves the equation

i∂tφapp = Hφapp − Σφ, Σφ :=
(

W − 〈W〉x − 〈W〉y + 〈W〉
)
φapp.

9
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Remark 5. The correcting phase exp(i
∫ t

0 〈W〉 ds) seems to be crucial if we want to compute
the wave function. On the other hand, since it is a purely time dependent phase factor, it does
not affect the usual quadratic observables. The same applies for the phase exp(itW(0, 0)) of the
brute-force approximation.

3.3. Error estimates for wave functions

We begin with an approximation result at the level of L2-norms only. For its proof, see
section 4.

Proposition 1. Under assumption 1, we have the following error estimates:
Brute-force approach: for ψapp(t, x, y) = ϕx(t, x)ϕy(t, y)exp(itW(0, 0)) defined by (5),

‖ψ(t) − ψapp(t)‖L2 �

⎧⎪⎪⎨⎪⎪⎩
2‖∇yW‖L∞‖ϕx

0‖L2
x

∫ t

0
‖yϕy(s)‖L2

y
ds,

‖∇x∇yW‖L∞

∫ t

0
‖xϕx(s)‖L2

x
‖yϕy(s)‖L2

y
ds.

Mean-field approach: for φapp(t, x, y) = φx(t, x)φy(t, y) exp(i
∫ t

0 〈W〉 ds) defined by (7),

‖ψ(t) − φapp(t)‖L2 �

⎧⎪⎪⎨⎪⎪⎩
4‖∇yW‖L∞‖ϕx

0‖L2
x

∫ t

0
‖yφy(s)‖L2

y
ds,

4‖∇x∇yW‖L∞

∫ t

0
‖xφx(s)‖L2

x
‖yφy(s)‖L2

y
ds.

We see that the smallness of ‖∇yW‖L∞ controls the error between the exact and the
approximate solution in both approaches.

Example 2. An important class of examples consists of those where W is slowly varying
in y: W(x, y) = w(x, ηy) with η � 1 and w bounded, as well as its derivatives. In that case
‖∇yW‖L∞ = η‖∇yw‖L∞ .

Example 3. In the case W(x, y) = W1(x)W2(y), the averaged potentials satisfy

〈W〉y(t, x) = W1(x)〈W2〉y(t), 〈W〉x(t, y) = 〈W1〉x(t)W2(y),

with

〈W2〉 = 〈W2〉y(t) =

∫
W2(y)|φy(t, y)|2dy∫

|φy(t, y)|2dy
=

∫
W2(y)|φy(t, y)|2dy∫

|ϕy
0(y)|2dy

,

〈W1〉 = 〈W1〉x(t) =

∫
W1(x)|φx(t, x)|2dx∫

|φx(t, x)|2dx
=

∫
W1(x)|φx(t, x)|2dx∫

|ϕx
0(x)|2dx

.

In this special product case, the crucial source term takes the form

Σφ(t) = (W1 − 〈W1〉x(t)) (W2 − 〈W2〉y(t)) φapp(t),

10
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and proposition 1 can be augmented by the gradient-free estimate

‖ψ(t) − φapp(t)‖L2 � ‖ϕx
0‖L2

x
‖ϕy

0‖L2
y

∫ t

0

√(〈
W2

1

〉
x
(s) − 〈W1〉2

x(s)
)(〈

W2
2

〉
y
(s) − 〈W2〉2

y(s)
)

ds

(10)

The L∞-norms, that provide the upper bounds in proposition 1, separate as

‖∇yW‖L∞ = ‖W1‖L∞x ‖∇yW2‖L∞y ,

‖∇x∇yW‖L∞ = ‖∇xW1‖L∞x ‖∇yW2‖L∞y ,

and it is ‖∇yW2‖L∞ that controls the estimates. Suppose we have W2(y) = η|y|2 with η small:
∇W2 is not bounded, but we can adapt the proof of proposition 1 to get

‖ψ(t) − φapp(t)‖L2 � 16η‖W1‖L∞x ‖ϕx
0‖L2

x

∫ t

0
‖|y|2φy(s)‖L2

y
ds,

that is, the extra power of y is transferred to the φy term.

Remark 6. In the spirit of the last observations of example 3, in terms of η :=
‖〈x〉−σx〈y〉−σy∇yW‖L∞ , for some σx , σy � 0, we get in proposition 1:

‖ψ(t) − φapp(t)‖L2 � 8η
∫ t

0
‖〈x〉σxφx(s)‖L2

x
‖〈y〉σy |y|φy(s)‖L2

y
ds.

See appendix B for details of the argument.

Remark 7. If V1 is confining, V1(x)� |x|2 for |x| � R (for instance, V1(x) = c|x|2k, c > 0
and k a positive integer, a typical case where V1 may be super-quadratic while Hx and H remain
self-adjoint), then we can estimate ‖xφx‖L2

x
uniformly in time. If V1 = 0, or more generally if

V1(x) → 0 as |x| →∞, we must expect some linear growth in time ‖xφx(t)‖L2
x
� 〈t〉, and the

order of magnitude in t is sharp, corresponding to a dispersive phenomenon.

Remark 8. The framework of a cubic system–bath coupling W(x, y) = 1
2�η · x|y|2 as

described in section 2.2 is recovered by taking σx = σy = 1 in example 3. In addition, in
the presence of a quartic confinement with k0

4 > 0, in view of remark 7, we also know that
‖〈y〉|y|φy(t)‖L2

y
is bounded uniformly in t.

Adding control on the gradients of the functionsϕx(t),ϕy(t) respectively φx(t),φy(t), allows
also error estimates at the level of the kinetic energy. For a proof, see appendix B.2.

Proposition 2. Under assumption 1, there exists a constant C > 0 depending on second
order derivatives of the potentials such that we have the following error estimates:

Brute-force approach: for ψapp(t, x, y) = ϕx(t, x)ϕy(t, y)exp(itW(0, 0)) defined by (5),

‖∇xψ(t) −∇xψapp(t)‖L2 + ‖xψ(t) − xψapp(t)‖L2

� C‖∇x∇yW‖L∞ ×
∫ t

0
eCs‖yϕy(s)‖L2

y

(
‖xϕx(s)‖L2

x

+ ‖∇xϕ
x(s)‖L2

x
+ ‖|x|∇xϕ

x(s)‖L2
x

)
ds,

11
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and

‖∇yψ(t) −∇yψapp(t)‖L2 + ‖yψ(t) − yψapp(t)‖L2

� C‖∇x∇yW‖L∞ ×
∫ t

0
eCs‖xϕx(s)‖L2

x

(
‖yϕy(s)‖L2

y

+ ‖∇yϕ
y(s)‖L2

y
+ ‖|y|∇yϕ

y(s)‖L2
y

)
ds.

Mean-field approach: for φapp(t, x, y) = φx(t, x)φy(t, y) exp(i
∫ t

0 〈W〉 ds) defined by (7), analo-
gous estimates for ψ(t) − φapp(t) hold.

Remark 9. The strategy used to prove proposition 2 can be iterated to infer error estimates
in Sobolev spaces of higher order, Hk(Rn+d) for k � 2, provided that we consider momenta
of the same order k, which explains the interest in the functional spaces Σk. Error estimates in
such spaces can also be obtained by first proving thatψ and the approximate solution(s) remain
in Σk, and then interpolating with the L2 error estimate from proposition 1.

3.4. Error estimates for quadratic observables

For obtaining quadratic estimates, we consider observables such as the energy or the momenta,
that is, operators that are differential operators of order at most 2 with bounded smooth
coefficients. These differential operators have their domain in H2(Rn+d), as the operator H.
More generally, we could consider pseudo-differential operators B = op(b) associated with a
smooth real-valued function b = b(Z) with Z = (z, ζ) ∈ R2(n+d), whose action on functions
f ∈ S(Rn+d) is given by

op(b) f (z) = (2π)−(n+d)
∫
R2(n+d)

b

(
z + z′

2
, ζ

)
exp(iζ · (z − z′)) f (z′)dζ dz′.

We assume that b satisfies the Hörmander condition

∀ α, β ∈ N
n+d, ∃Cα,β > 0, |∂β

z ∂
α
ζ b(z, ζ)| � Cα,β〈ζ〉2−|α|, (11)

that is, b is a symbol of order 2, see e.g. [31, chapter I.2]. We shall also consider observables
that depend only on the variable x or the variable y. The following estimates are proven in
appendix B.3.

Proposition 3. Under assumption 1, for b ∈ C∞(Rn+d) satisfying 11 and B = op(b), there
exists a constant Cb > 0 such that we have the following error estimates:

Brute-force approach: for ψapp(t, x, y) = ϕx(t, x)ϕy(t, y)exp(itW(0, 0)), defined by (5), the
error

eψ(t) = 〈ψ(t), Bψ(t)〉 − 〈ψapp(t), Bψapp(t)〉

satisfies

|eψ(t)| � Cb sup
|β|�Nn+d

‖∇βM‖L∞‖ψ0‖L2

(
N (ψapp) + t‖ψ0‖L2

)
,

12
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where Nn+d > 0 depends on n + d , M(x, y) = ∂x∂yW(x, y), while

N (ψapp) = ‖ϕx
0‖L2

x

∫ t

0
‖yϕy(s)‖L2

y
ds + ‖ϕy

0‖L2
y

∫ t

0
‖xϕx(s)‖L2

x
ds

+ ‖ϕx
0‖L2

x

∫ t

0
‖∇(yϕy(s))‖L2

y
ds + ‖ϕy

0‖L2
y

∫ t

0
‖∇(xϕx(s))‖L2

x
ds

+

∫ t

0
‖xϕx(s)‖L2

x
‖∇ϕy(s)‖L2

y
ds +

∫ t

0
‖∇ϕx(s)‖L2

x
‖yϕy(s)‖L2

y
ds.

Mean-field approach: for φapp(t, x, y) = φx(t, x)φy(t, y) exp(i
∫ t

0 〈W〉 ds) defined by (7), the
error 〈ψ(t), Bψ(t)〉 − 〈φapp(t), Bφapp(t)〉 satisfies a similar estimate.

Remark 10. The averaging process involved in the action of an observable on a wave func-
tion allows to prove estimates like the one in proposition 3, that are more precise than the
standard ones stemming from norm estimates,

|eψ(t)| � ‖ψ(t) − ψapp(t)‖L2

(
‖Bψ(t)‖L2 + ‖Bψapp(t)‖L2

)
.

Remark 11. We point out that the error is governed by derivatives of second order in W,
involving a derivative in the y variable that is supposed to be small. Besides, note that the
direct use of an estimate on the wave function itself would have involved H2 norms of ψapp(s),
while this estimate only requires H1 norms. This first improvement is due to the averaging
process present in Egorov theorem.

3.5. Energy conservation

The error estimates of propositions 1–3, do not allow to distinguish between the brute-force
single point collocation and the mean-field Hartree approach. However, in computational prac-
tice most of the employed methods are of mean-field type. Why? Our previous analysis, that
specifically addresses the coupling of quantum systems, does not allow for an answer, and we
resort to a more general point of view. Both approximations, the brute-force and the mean-
field one, are norm-conserving. However, the mean-field approach is energy-conserving with
the same energy as 1. At first sight, this is surprising, since the mean-field Hamiltonian Hmf(t)
depends on time. In a more general framework, where the time-dependent Hartree approxima-
tion is considered as application of the time-dependent Dirac–Frenkel variational principle on
the manifold of product functions, energy conservation is immediate, see [32, section 3.2] or
[33, chapter II.1.5].

Lemma 1. Under assumption 1 and considering the mean-field approach φapp(t, x, y) =
φx(t, x)φy(t, y) exp(i

∫ t
0 〈W〉 (s)ds) defined by (7), we have

〈φapp(t), Hmf(t)φapp(t)〉 = 〈ψ0, Hψ0〉 for all t � 0,

where the mean-field Hamiltonian is given by

Hmf(t) = Hx + Hy + 〈W〉y(t) + 〈W〉x(t) − 〈W〉 (t).

Below in appendix B.5 we give an elementary ad-hoc proof of lemma 1.

Remark 12. In the brute-force case, the approximate Hamiltonian Hbf = Hx + Hy +
W(x, 0) + W(0, y) − W(0, 0) is time-independent, and we have

〈ψapp(t), Hbfψapp(t)〉 = 〈ψ0, Hbfψ0〉 for all t � 0.

13
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However this conserved value does not correspond to the exact energy of (1), but only to an
approximation of it.

4. An exemplary proof

Here we discuss our basic proof strategy and apply it for the norm estimate of proposition
1. The norm estimates of example 3, propositions 2 and 4 and the observable estimates of
propositions 3 and 5 are carried out in appendices B and C.

Lemma 2. Let N � 1, A be self-adjoint on L2(RN), and ψ solution to the Cauchy problem

ih∂tψ = Aψ +Σ; ψ|t=0 = ψ0,

where ψ0 ∈ L2(RN) and Σ ∈ L1
loc(R+; L2(RN)). Then for all t � 0,

‖ψ(t)‖L2(RN ) � ‖ψ0‖L2(RN ) +
1
h

∫ t

0
‖Σ(s)‖L2(RN )ds.

This standard lemma is our main tool for proving norm estimates. It will be applied with
either h = 1 or h = ε as parameter. Its proof is given in appendix A. Now we present the proof
of proposition 1.

Proof. Denote by rψ = ψ − ψapp and rφ = ψ − φapp the errors corresponding to each of the
two approximations presented in sections 3.1 and 3.2, respectively. They solve

i∂trψ = Hrψ +Σψ; i∂trφ = Hrφ +Σφ; rψ|t=0 = rφ|t=0 = 0. (12)

We note that both approximations and their components are norm-conserving for all times
t � 0, that is,

‖φx(t)‖L2
x
= ‖ϕx(t)‖L2

x
= ‖ϕy

0‖L2
x

, ‖φy(t)‖L2
y
= ‖ϕy(t)‖L2

y
= ‖ϕy

0‖L2
y
.

• In the case of the brute-force approach, we consider the Taylor expansions (6) and derive
the estimates

‖Σψ‖L2 �

⎧⎨⎩2‖∇yW‖L∞‖yψapp‖L2 = 2‖∇yW‖L∞‖ϕx‖L2
x
‖yϕy‖L2

y
,

‖∇x∇yW‖L∞‖xϕx‖L2
x
‖yϕy‖L2

y
.

(13)

• In the mean-field approach, we note that for (t, x, y) ∈ R× R
n+d,(∫

|ϕx
0(x′)ϕy

0(y′)|2dx′dy′
)(

W − 〈W〉x − 〈W〉y + 〈W〉
)

(t, x, y)

=

∫
Rn+d

(
W(x, y) − W(x, y′) − W(x′, y) + W(x′, y′)

)︸ ︷︷ ︸
=:δW(x,x′ ,y,y′ )

|φx(t, x′)φy(t, y′)|2dx′dy′

14
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Like we did in the brute-force approach, we may use either of the estimates

|δW(x, x′, y, y′)| �
{

2|y − y′| × ‖∇yW‖L∞ ,

|x − x′| × |y − y′| × ‖∇x∇yW‖L∞ .

In the first case, we come up with

‖Σφ‖2
L2 � 4‖∇yW‖2

L∞‖ϕx
0‖2

L2
x

×
∫
Rd

(∫
Rd
|y − y′||φy(t, y′)|2dy′

)2

|φy(t, y)|2dy/‖ϕy
0‖4

L2
y
.

Now we have ∫
Rd
|y − y′||φy(t, y′)|2dy′ �

∫
Rd

(
|y|+ |y′|

)
|φy(t, y′)|2dy′

� |y|‖ϕy
0‖2

L2
y
+ ‖yφy(t)‖L2

y
‖ϕy

0‖L2
y
,

where we have used Cauchy–Schwarz inequality for the last term. We infer(∫
Rd
|y − y′||φy(t, y′)|2dy′

)2

� 2|y|2‖ϕy
0‖4

L2
y
+ 2‖yφy(t)‖2

L2
y
‖ϕy

0‖2
L2

y
,

where we have used Young inequality (α+ β)2 � 2(α2 + β2), hence

‖Σφ‖2
L2 � 8‖∇yW‖2

L∞‖ϕx
0‖2

L2
x

(∫
Rd
|y|2|φy(t, y)|2dy + ‖yφy(t)‖2

L2
y

)
,

and finally

‖Σφ‖L2 � 4‖∇yW‖L∞‖yφy(t)‖L2
y
‖ϕx

0‖L2
x
. (14)

In the case of the second type approximation for δW , we similarly find

‖Σφ‖L2 � 4‖∇x∇yW‖L∞‖xφx(t)‖L2
x
‖yφy(t)‖L2

y
.

Proposition 1 then follows from lemma 2 with h = 1. �

5. Dimension reduction via semiclassical analysis

In this section, we consider coupled systems, where one part is governed by a semiclassically
scaled Hamiltonian, that is, Hy = Hε

y with

Hε
y = −ε2

2
Δy + V2(y).

First we motivate such a partial semiclassical scaling in the context of system–bath Hamilto-
nians and introduce wave packets as natural initial data for the semiclassical part of the system.
We explore partial semiclassical wave packet dynamics guided by classical trajectories and by
trajectories with averaged potentials. Thus, the partially highly-oscillatory evolution of a PDE
in dimension n + d is reduced to a less-oscillatory PDEs in dimensions n, and ODEs in dimen-
sion d. The corresponding error estimates in section 5.5 compare the true and the approximate
product solution in norm and with respect to expectation values.
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5.1. Semiclassical scaling

We reconsider the system–bath Hamiltonian with cubic coupling of section 2.2, now formu-
lated in physical coordinates (X, Y), that is,

Hsb = − h̄2

2μ1
ΔX + Vs(X) − h̄2

2μ2
ΔY +

μ2ω
2
2

2
|Y|2 + 1

2
�η · X|Y|2,

where the coordinates X and Y of the system and the bath part are prescaled, resulting in
the single mass parameters μ1, μ2 for each subsystem and one single harmonic frequency ω2

for the bath (noting that, alternatively, several harmonic bath frequencies ω2, j could be intro-
duced, without modifying the conclusions detailed below). The corresponding time-dependent
Schrödinger equation reads

ih̄∂τΨ(τ , X, Y) = HsbΨ(τ , X, Y).

We perform a local harmonic expansion of the potential V s(X) around the origin X = 0 and
assume that it is possible to determine a dominant frequency ω1. We then define the natural
length scale of the system as

a1 =

√
h̄

μ1ω1
.

Rescaling coordinates as (x, y) = 1
a (X, Y), we obtain

Hsb = h̄ω1

(
−1

2
Δx + V1(x) − ε2

2
Δy +

1
2
�2

ε2
|y|2 + 1

2
�η ′ · x|y|2

)
,

where we have introduced the dimensionless parameters

ε =

√
μ1

μ2
, � =

ω2

ω1
,

and denoted V1(x) = 1
h̄ω1

Vs(a1x) and �η ′ = a1
μ1ω

2
1
�η. The rescaling of the system potential Vs and

the coupling vector �η do not alter their role in the Hamiltonian, whereas the two dimensionless
parameters ε and � deserve further attention. We now consider the régime where both the
mass ratio ε between system and bath and the frequency ratio � between bath and system are
small, that is, where the system is viewed as ‘light’ and ‘fast’ when compared to the ‘heavy’
and ‘slow’ bath.

Example 4. For the hydrogen molecule H2, where the electrons are considered as the
quantum subsystem while the interatomic vibration is considered as the classical subsystem,
we have μ1 = me and μ2 = 918.6me. Further, the characteristic electronic energy is of the
order of h̄ω1 = 1Eh while the first vibrational level is found at h̄ω2 = 0.020 05Eh. Hence the
dimensionless parameters are both small, ε = 0.032 99 and � = 0.020 05.

Example 5. As a second example, we consider coupled molecular vibrations, exempli-
fied by the H2 molecule in a ‘bath’ of rare-gas atoms, here chosen as krypton (Kr) atoms.
The H2 vibration is now considered as a quantum system interacting with weak intermolec-
ular vibrations. The reduced masses are given as μ1 (H–H) = 0.5u = 911.44me (where u
refers to atomic mass units), μ2 (Kr–Kr) = 41.9u = 76.379 × 103me, and μ3 (H2–Kr) =
1.953u= 3560.10me. The vibrational quanta associated with these vibrations are h̄ω1(H–H) =
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4159.2 cm−1 = 0.0189Eh, h̄ω2(Kr–Kr) = 21.6 cm−1 = 9.82 × 10−5Eh, and h̄ω3(H2–Kr) =
26.8 cm−1 = 1.22 × 10−4Eh (see references [34, 35]). The resulting dimensionless mass ratios
are given as ε12 =

√
μ1/μ2 = 0.109 and ε13 =

√
μ1/μ3 = 0.51, and the corresponding fre-

quency ratios are �12 = ω2/ω1 = 0.005 and �13 = ω3/ω1 = 0.006. In the case of the H2–Kr
relative motion, note that the frequency ratio �13 is indeed small whereas the mass ratio is
ε13 ∼ 0.5; this shows that the quantum–classical boundary is less clearly defined than in the
first example of coupled electronic-nuclear motions. In such cases, different choices can be
made in defining the quantum–classical partitioning.

In an idealized setting, where ε is considered as a small positive parameter whose size can
be arbitrarily small, we would say that

� = O(ε) as ε→ 0,

and view the system–bath Hamiltonian Hsb as an instance of a partially semiclassical operator

Hε = −1
2
Δx + V1(x) − ε2

2
Δy + V2(y) + W(x, y),

whose potentials V1(x) and V2(y) are independent of the semiclassical parameter ε and sat-
isfy the growth conditions of assumption 1. As emphasized in section 2.2, the cubic coupling
potential W(x, y) does not satisfy the subquadratic estimate, but can be controlled by additional
moments of the approximate solution. A corresponding rescaling of time, t = εω1τ , translates
the time-dependent Schrödinger equation to its semiclassical counterpart

iε∂tψ
ε(t, x, y) = Hεψε(t, x, y), (15)

where the physical and the rescaled wave functions are related via

ψε(t, x, y) = a(n+d)/2 Ψ(τ/(εω1), aX, aY).

Remark 13. Criteria for justifying a semiclassical description are somewhat versatile in the
literature. Our scaling analysis shows, that for system–bath Hamiltonians with cubic coupling
the obviously small parameter ε, that describes a ratio of reduced masses, has to be com-
plemented by an equally small ratio of frequencies �. Otherwise, the standard form of an
ε-scaled Hamiltonian, as it is typically assumed in the mathematical literature, does not seem
appropriate.

5.2. Semiclassical initial data and ansatz

As before, the initial data separate scales,

ψε(0, x, y) = ϕx
0(x)gε(y), (16)

where we now assume that gε is a semiclassically scaled wave packet,

gε(y) =
1

εd/4
a

(
y − q0√

ε

)
exp(ip0 · (y − q0)/ε), (17)

with (q0, p0) ∈ R2d, a smooth and rapidly decreasing, i.e. a ∈ S(Rd;C) = ∩k∈NΣ
k. In the typ-

ical case, where the bath is almost structureless (say, near harmonic), the amplitude a could be
chosen as a complex Gaussian, but not necessarily. We now seek an approximate solution of
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the form ψε
app(t, x, y) = ψε

1(t, x)ψε
2(t, y), where ψε

2 is a semiclassically scaled wave packet for
all time,

ψε
2(t, y) =

1
εd/4

u2

(
t,

y − q(t)√
ε

)
exp(ip(t) · (y − q(t))/ε+ iS(t)/ε). (18)

Here, (q(t), p(t)) ∈ R2d, the phase S(t) ∈ R, and the amplitude u2(t) ∈ S(Rd ,C) must be
determined.

Remark 14. We note that our approximation ansatz differs from the adiabatic one, that
would write the full Hamiltonian as Hε = − ε2

2 Δy + Hf(y), where

Hf(y) = −1
2
Δx + V1(x) + V2(y) + W(x, y)

is an operator, that parametrically depends on the ‘slow’ variable y and acts on the ‘fast’ degrees
of freedom x. From the adiabatic point of view, one would then construct an approximate solu-
tion as ψε

bo(t, x, y) = Φ(x, y)ψε
2(t, y), where Φ(x, y) is an eigenfunction of the operator Hf(y);

here, the subscript ‘bo’ stands for Born–Oppenheimer. The result of corollary 2 emphasizes
the difference between these two points of view.

We denote by

uε
app(t, x, z) = ψε

1(t, x)u2(t, z) with z =
y − q(t)√

ε
(19)

the part of the approximate solution that just contains the amplitude. With this notation,

ψε
app(t, x, y) =

1
εd/4

uε
app(t, x, z) exp(ip(t) · z/

√
ε+ iS(t)/ε)

∣∣∣∣
z= y−q(t)√

ε

.

The analysis developed in the next two sections allows to derive two different approximations,
based on ordinary differential equations governing the semiclassical wave packet part, which
are justified in section 5.5 (see proposition 4).

5.3. Approximation by partial Taylor expansion

Plugging the expression of ψε
app(t, x, y) into (15) and writing y = q(t) + z

√
ε in combination

with the Taylor expansions

V2(y) = V2(q(t) + z
√
ε) = V2(q(t)) +

√
εz · ∇V2(q(t))

+
ε

2

〈
z,∇2V2(q(t))z

〉
+O(ε3/2),

W(x, y) = W(x, q(t) + z
√
ε) = W(x, q(t)) +

√
εz · ∇yW(x, q(t)) +O (ε) ,

we find:

iε∂tψ
ε
app +

1
2
Δxψ

ε
app +

ε2

2
Δyψ

ε
app − V(x, y)ψε

app

= ε−d/4 exp(ip(t) · z/
√
ε+ iS(t)/ε)

×
((

p · q̇ − Ṡ − |p|2
2

− V2(q) − V1(x) − W(x, q)

)
uε

app

18
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+
√
ε
(
−iq̇ · ∇zu

ε
app − ṗ · z uε

app + ip · ∇zu
ε
app − z · ∇V2(q)uε

app

− z · ∇yW(x, q)uε
app

)
+ ε

(
i∂tu

ε
app +

1
2ε

Δxuε
app +

1
2
Δzu

ε
app −

1
2

〈
z,∇2V2 (q) z

〉
uε

app

)
+O(ε3/2)

)
,

where the argument of uε
app and its derivatives are taken in z = y−q(t)√

ε
. To cancel the first four

terms in the
√
ε line, it is natural to require

q̇ = p, q(0) = q0, ṗ = −∇V2(q), p(0) = p0. (20)

Now cancelling the first four terms in the first line of the right-hand side yields

Ṡ(t) =
|p(t)|2

2
− V2(q(t)), S(0) = 0. (21)

In other words, (q(t), p(t)) is the classical trajectory in y, and S(t) is the associated classical
action. At this stage, we note that the term z · ∇yW(x, q)uε

app is not compatible with decoupling
the variables x and z (or equivalently, x and y). Using that ‖∇yW‖L∞ is assumed to be small,
the above computation becomes

iε∂tψ
ε
app +

1
2
Δxψ

ε
app +

ε2

2
Δyψ

ε
app − V(x, y)ψε

app

= ε−d/4 exp(ip(t) · z/
√
ε+ iS(t)/ε)

×
(

iε∂tu
ε
app +

1
2
Δxuε

app +
ε

2
Δzu

ε
app

−
(ε

2

〈
z,∇2V2 (q) z

〉
+ V1(x) + W(x, q)

)
uε

app

+O
(
ε3/2 +

√
ε ‖∇yW‖L∞

))
.

In view of (19), we set

iε∂tψ
ε
1 +

1
2
Δxψ

ε
1 = (V1(x) + W(x, q))ψε

1; ψε
1|t=0 = ϕx

0 (22)

i∂tu2 +
1
2
Δzu2 =

1
2

〈
z,∇2V2 (q) z

〉
u2; u2|t=0 = a. (23)

Equation (23) is a Schrödinger equation with a time-dependent harmonic potential: it has a
unique solution in L2 as soon as a ∈ L2(Rd). In addition, since a ∈ Σk for all k ∈ N, u2 ∈
C(R;Σk

z) for all k ∈ N. The validity of this approximation is stated in proposition 4 below.
Note that if a is a Gaussian state, then u2 too and its (time-dependent) parameters—width
matrix and centre point—can be computed by solving ODEs (see e.g. [30, 33, 36, 37] and
references therein).
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5.4. Approximation by partial averaging

Following e.g. [38, 39] or [37, section 2], we write

V2(y) = V2(q(t) + z
√
ε) = 〈V2〉y(t) +

√
εz · 〈∇V2〉y(t) +

ε

2
z · 〈∇2V2〉y(t)z + v1,

W(x, y) = W(x, q(t) + z
√
ε) = 〈W(x, ·)〉y(t) + v2,

where the averages are with respect to |ψε
2(t, y)|2dy. For example,

〈∇2V2〉y(t) =

∫
∇2V2(y)|ψ2(t, y)|2dy∫

|ψ2(t, y)|2dy

=
1

‖a‖2
L2(Rd )

∫
Rd
∇2V2(q(t) +

√
εz) |u2(t, z)|2dz, (24)

〈W(x, ·)〉y(t) =
1

‖a‖2
L2(Rd )

∫
Rd

W(x, q(t) +
√
εz) |u2(t, z)|2dz,

where we anticipate the fact that the L2
y-norm of ψε

2(t) is independent of time. We almost
literally repeat the previous argument and find that

iε∂tψ
ε
app +

1
2
Δxψ

ε
app +

ε2

2
Δyψ

ε
app − V(x, y)ψε

app

= ε−d/4 exp(ip(t) · z/
√
ε+ iS(t)/ε)

×
(

iε∂tu
ε
app +

1
2
Δxuε

app +
ε

2
Δzu

ε
app −

(ε

2
z ·

〈
∇2V2

〉
y
z

+ V1(x) + 〈W(x, ·)〉y

)
uε

app

+ r̃ε1 + r̃ε2

)∣∣∣∣
z= y−q(t)√

ε

with r̃εj = v juε
app, j = 1, 2, and z is taken as z = (y − q(t))/

√
ε. The parameters satisfy the

equations of motion

q̇ = p, q(0) = q0, ṗ = −〈∇V2〉y(t), p(0) = p0, Ṡ(t) =
|p(t)|2

2
− 〈V2〉y(t), S(0) = 0.

We see that we can now define the approximate solution by:

iε∂tψ
ε
1 +

1
2
Δxψ

ε
1 =

(
V1(x) + 〈W(x, ·)〉y(t)

)
ψε

1; ψε
1|t=0 = ϕx

0, (25)

i∂tu2 +
1
2
Δzu2 =

1
2

z ·
〈
∇2V2

〉
y
(t) z u2; u2|t=0 = a.

Since the matrix 〈∇2V2〉y(t) is real-valued, we infer that the L2
z -norm of u2(t) is independent

of time, hence ‖ψ2(t)‖L2
y
= ‖u2(t)‖L2

z
= ‖a‖L2 . The equation in u2 is now nonlinear, and can

be solved in Σ1, since ∇V2 is at most linear in its argument: u2 ∈ C(R;Σ1
z ), and higher Σk

regularity is propagated. Here again, if a is a Gaussian, then so is u2 and its width and centre
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can be computed by solving ODEs (see [30, 33]). Note also that, differently from the previous
setting, u2 is now ε-dependent via the quantity 〈∇2V2〉y(t) (see (24)). However, this dependence
is very weak since a Taylor expansion in (24) shows that u2 is close in any Σk norm from the
solution of the equation (23). For this reason, we do not keep memory of this ε-dependence
and write u2. By contrast, the ε-dependence ofψε

1 is strong since it involves oscillatory features
in time.

5.5. The approximation results

The main outcome of the approximations can be stated as follows, and is proved in
appendix C.1:

Proposition 4. Let ψε be the solution to (15) and (16), with gε given by (17). Then with ψε
app

given either like in section 5.3 or like in section 5.4, there exist constants K0, K1 independent
of ε such that for all t � 0,

‖ψε(t) − ψε
app(t)‖L2 � K0

(√
ε+

‖∇yW‖L∞√
ε

)
eK1 t.

Corollary 1. Assume η := ‖∇yW‖L∞ �
√
ε, then for all T > 0,

sup
t∈[0,T]

‖ψε(t) − ψε
app(t)‖L2 = O

(√
ε+

η√
ε

)
.

Remark 15. Using the same techniques as in appendix B.2, one can prove estimates on
higher regularity norms, using ε-derivatives in y and standard ones in x. For example, if a ∈ Σ4,
then there exists K0, K1 independent of ε such that

‖ε∇yψ
ε(t) − ε∇yψ

ε
app(t)‖L2 + ‖yψε(t) − yψε

app(t)‖L2

� K0

(√
ε

∫ t

0
eK1s‖u2(s)‖Σ4ds +

‖∇yW‖L∞√
ε

∫ t

0
eK1s‖u2(s)‖Σ2ds

)
.

We refer to [40] (see also [30, chapter 12]) for more detailed computations.

Note that, in both approximations, the evolution of u2 corresponds to the standard quadratic
approximation. In particular, if a is Gaussian, then u2 is Gaussian at all time, and solving the
equation in u2 amounts to solving ordinary differential equations. However, the equation (22)
solved by ψ1(t) is still quantum, such that a reduction of the total space dimension of the
quantum system has been made from n + d to n.

Let us now discuss the approximation of observables that we choose as acting only in the
variable y. Due to the presence of the small parameter ε, we choose semiclassical observ-
ables and associate with b ∈ C∞

c (R2d) (b smooth and compactly supported) the operator opε(b)
whose action on functions f ∈ S(Rd) is given by

opε(b) f (y) = (2πε)−d
∫
R2d

b

(
y + y′

2
, ξ

)
exp(iξ · (y − y′)/ε) f (y′) dξ dy′.

As before, the error estimate is better for quadratic observables than for the wave func-
tions. More specifically, the following result, that is proved in appendix C.2, improves the
error estimate from proposition 4 by a factor

√
ε.

Proposition 5. Let ψε be the solution to (15) and (16), with gε given by (17). Then with
b ∈ C∞

c (R2d) and ψε
app given either like in section 5.3 or in section 5.4, there exist a constant
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K independent of ε such that for all t � 0,∣∣〈ψε(t), opε(b)ψε(t)〉 − 〈ψε
app(t), opε(b)ψε

app(t)〉
∣∣ � K t

(
ε+ ‖∇yW‖L∞

)
.

Remark 16. Of course, we could have considered a mixed setting consisting of pseudodif-
ferential operators as in section 3.4 in the variable x, and semiclassical as above in the variable
y. One would then obtain estimates mixing those of propositions 3 and 5.

6. A numerical example

For an illustrative numerical application, we consider a system–bath type Hamiltonian with
cubic coupling W(x, y) = 1

2ηxy2, as developed in section 2.2,

i∂tψ(t, x, y) = Hsbψ(t, x, y); ψ(0, x, y) = ϕx
0(x)ϕy

0(y),

in dimension d = n = 1,

Hsb = − 1
2μ1

∂2

∂x2
− 1

2μ2

∂2

∂y2
+ Vs(x) + Vb(y) +

1
2
ηxy2. (26)

The mass ratio between the system and the bath is moderately small,μ1/μ2 = 0.25. The system
potential is a quartic double well, while the bath potential is harmonic,

Vs(x) =
1
2

x2
( x

2�
− 1

)2
, Vb(y) =

1
2

k0
2y2.

The length scale � = 4a1 of the double well is a multiple of the system’s natural harmonic
unit a1. The initial data ψ0(x, y) = ϕx

0(x)ϕy
0(y) are the ground state of the bivariate harmonic

oscillator, that results from the harmonic approximation of Vs(x) + Vb(y) around the left well
(x, y) = (0, 0). The coupling constant η < 0 is negative to ensure that the total Hamiltonian’s
ground state is localised in the right well (x, y) = (2�, 0), providing a setup with pronounced
non-equilibrium dynamics. For such a system–bath model, the gradient-free error estimate
(10) of example 3 is given by

‖ψ(t) − φapp(t)‖L2 � 1
2
|η| ‖ϕx

0‖L2
x
‖ϕy

0‖L2
y

∫ t

0

√(
〈x2〉x(s) − 〈x〉2

x(s)
)(

〈y4〉y(s) − 〈y2〉2
y(s)

)
ds.

(27)

Figure 1 presents the results from the following numerical experiment: (see the suppl-
mentary material for computational details https://stacks.iop.org/A/54/414002/mmedia) we
identify a frequency ratio �ref = 1/100 between bath and system and a coupling parameter
ηref = −k0

2/(3a1�) as generating ‘reference’ system–bath dynamics. For this parameter choice,
the mean-field approximation, when compared with a numerically converged MCTDH approx-
imation, results in roughly a 0.1% error after 10 units of the natural harmonic time scale
t1 = 1/ω1 of the system (blue curve), see figure 1(a). Hence, the Hartree approximation is
excellent on the time scale under study. Decreasing the frequency ratio by a factor of four,
roughly halves the error (red curve). And, as expected, an increase in the coupling strength
also increases the error (grey curve), while decreasing the coupling also decreases the error
(yellow curve). The corresponding plot of figure 1(b) illustrates that the upper bound of the
theoretical error estimate correctly captures the initial slope of all four error curves, while
slightly over-estimating the actual error as time evolves. A more detailed assessment of the
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Figure 1. Error of the mean-field approximation for a family of system–bath models
with cubic coupling W(x, y) = 1

2ηxy2 as a function of time. The left plot shows the time
evolution of the norm of the error for four different variations of the parameter values
as given in table 1. The right plot shows the corresponding upper bound of the error
estimate (27).

Table 1. Parameters defining the four numerically simulated variations of the
system–bath Hamiltonian (26). The blue model uses the coupling parameter
ηref = −k0

2/(3a1�) and the frequency ratio �ref = 1/100. The red model varies the
frequency ratio, the grey and yellow models the coupling strength.

Model variation � = ω2/ω1 η (coupling)

Blue �ref ηref

Red 1
4�ref ηref

Grey �ref
9
8ηref

Yellow �ref
3
4ηref

error estimate (27), in particular of its long-time behaviour (up to 150 ps), when the mean-field
approximation goes up to errors of the order of 1%, and a more complete screening of physi-
cally relevant parameter régimes are work in progress for a numerical companion paper to the
present theoretical study.

7. Conclusion and outlook

We have presented quantitative error bounds for the approximation of quantum dynami-
cal wave functions in product form. For both considered approaches, a brute-force single
point collocation and the conventional mean-field Hartree approximation, we have obtained
similar error estimates in L2-norm (proposition 1, example 3), in H1-norm (proposition 2),
and for quadratic observables (proposition 3). To our knowledge, such general estimates, that
quantify decoupling in terms of flatness properties of the coupling potential, are new. The cor-
responding analysis for semiclassical subsystems (propositions 4 and 5) confirms the more
general finding, that error estimates for quadratic observables provide smaller bounds than
related norm estimates. The single product analysis, as presented here, provides a well-posed
starting point for the investigation of more elaborate approximation methods. If the initial data
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satisfy

ψ(0, x, y) = ψ0(x, y) =
J∑

j=1

ϕx
0 j(x)ϕy

0 j(y),

then we may invoke the linearity of (1) to write ψ(t, x, y) =
∑J

j=1 ψ j(t, x, y), where each ψ j

solves i∂tψ j = Hψ j, with ψ j|t=0 = ϕx
0 j ⊗ ϕy

0 j. We approximate each ψ j ≈ ψ j,app individually
in one of the ways discussed in the present paper and use the triangle inequality for∥∥∥∥∥∥ψ(t) −

J∑
j=1

ψ j,app(t)

∥∥∥∥∥∥ �
J∑

j=1

‖ψ j(t) − ψ j,app(t)‖,

where the norm can be an L2 or an energy norm, for instance. However, working on each ψ j

instead ofψ directly, seems to prevent control of the limit J →∞. Multi-configuration methods
therefore use ansatz functions of the form

ψapp(t, x, y) =
∑

j,�

a j�(t)ϕ
(x)
j (t, x)ϕ(y)

� (t, y),

where the families (ϕ(x)
j (t)) j�1 and (ϕ(y)

� (t))��1 satisfy orthonormality or rank conditions, while
gauge constraints lift redundancies for the coefficients ak�(t) ∈ C. We view our contribu-
tions here as an important first step for a systematic assessment of such multi-configuration
approximations in the context of coupled quantum systems. A numerical companion paper,
that explores the dynamics of system–bath Hamiltonians with cubic coupling on multiple
time-scales with respect to various parameter régimes, is currently in preparation.
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Appendix A. General estimation lemmas

Here we provide the proof of the standard energy estimate, lemma 2.

Proof. In view of the self-adjointness of A, we have

‖ψ(t)‖ d
dt
‖ψ(t)‖ =

1
2

d
dt
〈ψ(t),ψ(t)〉 = Re

〈
ψ(t),

1
ih

(Aψ(t) +Σ(t))

〉
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=
1
h

Im〈ψ(t),Σ(t)〉,

and therefore, by the Cauchy–Schwarz inequality, d
dt‖ψ(t)‖ � 1

h‖Σ(t)‖. Integrating in time, we
obtain

‖ψ(t)‖ = ‖ψ0‖+
∫ t

0

d
ds

‖ψ(s)‖ds � ‖ψ0‖+
1
h

∫ t

0
‖Σ(s)‖ds.

�
In the context of observables, refined error estimates will follow from the application of the

following lemma.

Lemma 3. Let N � 1, A1, A2, B be self-adjoint on L2(RN), and ψ(1),ψ(2), solutions to the
homogeneous Cauchy problems

ih∂tψ
( j) = A jψ

( j); ψ( j)
|t=0 = ψ0,

where ψ0 ∈ L2(RN). Then, for all t � 0

∣∣〈ψ(1)(t), Bψ(1)(t)
〉
−

〈
ψ(2)(t), Bψ(2)(t)

〉∣∣ � 1
h

∫ t

0
|ρ(s, t)| ds,

with ρ(s, t) =
〈
ψ(1)(s),

[
exp(i A2(t − s)/h)B exp(−i A2(t − s)/h), A1 − A2

]
ψ(1)(s)

〉
, where we

have denoted by [A,B] = AB − BA the standard commutator.

Proof. We denote the unitary evolution operators by U j(t) = exp(−iAjt/h) and calculate〈
ψ(1)(t), Bψ(1)(t)

〉
−

〈
ψ(2)(t), Bψ(2)(t)

〉
= 〈U1(t)ψ0, BU1(t)ψ0〉 − 〈U2(t)ψ0, BU2(t)ψ0〉

=

∫ t

0

d
ds

〈ψ0, U1(s)∗U2(t − s)∗BU2(t − s)U1(s)ψ0〉 ds

=
1
ih

∫ t

0
〈ψ0, U1(s)∗[U2(t − s)∗BU2(t − s), A1 − A2]U1(s)ψ0〉 ds

=
1
ih

∫ t

0

〈
ψ(1)(s), [U2(t − s)∗BU2(t − s), A1 − A2]ψ(1)(s)

〉
ds.

�

Appendix B. Proof of error estimates: partially flat coupling

In this section, we prove error estimates in L2-norm for general potentials W (remark 6), in
H1-norm (proposition 2), and for quadratic observables (proposition 3).

B.1. Proof of remark 6

Proof. To prove the estimates of example 3, recall that we have denoted

η = ‖〈x〉−σx〈y〉−σy∇yW‖L∞ < ∞.

25



J. Phys. A: Math. Theor. 54 (2021) 414002 I Burghardt et al

The fundamental theorem of calculus yields

W(x, y) − W(x, y′) = (y − y′) ·
∫ 1

0
∇yW

(
y′ + θ(y − y′)

)
dθ,

so we have

|W(x, y) − W(x, y′)| � |y − y′|〈x〉σxη

∫ 1

0
〈y′ + θ(y − y′)〉σydθ

� |y − y′|〈x〉σx max
(
〈y〉 , 〈y′〉

)σyη,

and we replace the pointwise estimate of δW with

|δW(x, x′, y, y′)| � |y − y′|
(
〈x〉σx + 〈x′〉σx

)
max

(
〈y〉 , 〈y′〉

)σyη.

The estimate on Σφ becomes

‖Σφ‖2
L2 � η2

∫
Rn

(∫
Rn

(
〈x〉σx + 〈x′〉σx

)
|φx(t, x′)|2dx′

)2

|φx(t, x)|2dx/‖ϕx
0‖4

L2
x

×
∫
Rd

(∫
Rd
|y − y′|max

(
〈y〉σy , 〈y′〉σy

)
|φy(t, y′)|2dy′

)2

|φy(t, y)|2dy/‖ϕy
0‖4

L2
y︸ ︷︷ ︸

=:εy(t)

,

and we conclude by resuming the same estimates as above:∫
Rn

(∫
Rn

(
〈x〉σx + 〈x′〉σx

)
|φx(t, x′)|2dx′

)2

|φx(t, x)|2 dx
‖ϕx

0‖4
L2

x

� 4‖〈x〉σxφx(t)‖2
L2

x
,

and, in view of the inequality

|y − y′|max
(
〈y〉σy , 〈y′〉σy

)
� 2 max

(
〈y〉σy |y|, 〈y′〉σy |y′|

)
� 2

(
〈y〉σy |y|+ 〈y′〉σy |y′|

)
,

we find

εy(t) � 16‖〈y〉σy |y|φy(t)‖2
L2

y
.

�

B.2. Proof of proposition 2

To prove error estimates in H1(Rn+d), we differentiate (12) in space, and two aspects must be
considered: (i) in our framework, the operator ∇x,y does not commute with H. (ii) We must
estimate ∇x,yΣψ and ∇x,yΣφ. Indeed, we compute

i∂t∇xrψ = H∇xrψ + [∇x, H]rψ +∇xΣψ ,

and

[∇x , H] = ∇xH − H∇x = ∇xV1 +∇xW.
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In the typical case where V1 is harmonic, ∇xV1 is linear in x, and so xrψ appears as a source
term. Note that in the general setting of assumption 1, |∇xV1(x)| � 〈x〉.

Remark 17. If ∇xV1 and ∇xW are bounded, then lemma 2 yields

‖∇xrψ(t)‖L2 �
∫ t

0

(
C‖rψ(s)‖L2 + ‖∇xΣψ(s)‖L2

)
ds.

The term ‖rψ(s)‖L2 is estimated in proposition 1, and ‖∇xΣψ(s)‖L2 is estimated below.

Multiplying (12) by x, we find similarly

i∂t(xrψ) = H(xrψ) + [x, H]rψ + xΣψ = H(xrψ) +∇xrψ + xΣψ.

Energy estimates provided by lemma 2 applied to the equation for ∇xrψ and xrψ then yield a
closed system of estimates:

‖∇xrψ(t)‖L2 + ‖xrψ(t)‖L2

�
∫ t

0

(
‖(∇xV1 +∇xW)rψ(s)‖L2 + ‖∇xrψ(s)‖L2

)
ds

+

∫ t

0

(
‖∇xΣψ(s)‖L2 + ‖xΣψ(s)‖L2

)
ds

� C
∫ t

0

(
‖xrψ(s)‖L2 + ‖∇xrψ(s)‖L2

)
ds

+

∫ t

0

(
‖∇xΣψ(s)‖L2 + ‖xΣψ(s)‖L2

)
ds,

where we have used the estimate |∇xV1 +∇xW| � C(1 + |x|), and the uncertainty principle
(uncertainty in x, Cauchy–Schwarz in y),

‖ f ‖2
L2 �

2
n
‖∇x f ‖L2‖x f ‖L2 .

The Gronwall lemma then yields

‖∇xrψ(t)‖L2 + ‖xrψ(t)‖L2 �
∫ t

0
eCs

(
‖∇xΣψ(s)‖L2 + ‖xΣψ(s)‖L2

)
ds,

for some C > 0. We compute

∇xΣψ = (∇xW(x, y) −∇xW(x, 0))ψapp + δW(x, 0, y, 0)∇xψapp.

The first term in controlled by |y|‖∇x∇yW‖L∞|ψapp|. The second term is controlled like in
section 3.3, by replacing ψapp with ∇xψapp. We can of course resume the same approach
when considering ∇yrψ, and the analogue of the above first term is now controlled by
|x|‖∇x∇yW‖L∞|ψapp|. Finally, in the case of rφ, computations are similar (we do not keep
track of the precise dependence of multiplicative constants here).

27



J. Phys. A: Math. Theor. 54 (2021) 414002 I Burghardt et al

B.3. Proof of proposition 3

Proof. We use lemma 3 for the operators H and the approximate Hamiltonian Hbf ,

Hbf = Hx + Hy + W(x, 0) + W(0, y) − W(0, 0), (B.1)

to obtain

|eψ(t)| �
∫ t

0
|ρψ(t, s)| ds,

where

ρψ(t, s) = 〈ψapp(s), [B(t − s), H − Hbf]ψapp(s)〉 , B(σ) = eiσHBe−iσH.

By Egorov theorem, see [41, theorem 11.1], the operator B(σ) is also a pseudodifferential
operator, that is, B(σ) = op(b(σ)) for some function b(σ) that satisfies the growth condition
(11). We have

H − Hbf = W(x, y) − W(x, 0) − W(0, y) + W(0, 0) = δW(x, 0, y, 0)=:δW(x, y),

with the notations of appendix B.1. Then, by the direct estimate of lemma 4 below,

‖[B(σ), δW]ψapp(s)‖L2 � Cb(σ)
(
‖∇(δW)ψapp(s)‖H1 + C2(δW)‖ψapp(s)‖L2

)
,

(B.2)

where Cb(σ) > 0 depends on derivative bounds for the function b(σ) and

C2(δW) =
∑

2�|α|�Nn+d

‖∂αδW‖L∞ .

We therefore obtain

|ρψ(t, s)| � Cb(t−s)

(
‖∇(δW)ψapp(s)‖H1 + C2(δW) ‖ψ0‖L2

)
‖ψ0‖L2 .

Using the rectangular n × d matrix M(x, y) introduced in remark 4, the gradient of δW(x, y)
can be written as

∇(δW)(x, y) =

(
∇xW(x, y) −∇xW(x, 0)
∇yW(x, y) −∇yW(0, y)

)
=

⎛⎜⎜⎝
∫ 1

0
M(x, ηy)y dη∫ 1

0

tM(θx, y)x dθ

⎞⎟⎟⎠
We estimate the Sobolev norm by

‖∇(δW)ψapp(s)‖H1 � ‖∇M‖L∞
(
‖xψapp(s)‖L2 + ‖yψapp(s)‖L2

)
+ ‖M‖L∞

(
‖∇(xψapp(s))‖L2 + ‖∇(yψapp(s))‖L2

)
,

so that integration in time provides

|eψ(t)| � Cb‖∇M‖L∞‖ψ0‖L2

∫ t

0

(
‖xψapp(s)‖L2 + ‖yψapp(s)‖L2

)
ds
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+ Cb‖M‖L∞‖ψ0‖L2

∫ t

0

(
‖∇(xψapp(s))‖L2 + ‖∇(yψapp(s))‖L2

)
ds

+ Cb C2(δW) t ‖ψ0‖2
L2 ,

where the constant Cb = maxσ∈[0,t]Cb(σ) depends on derivatives of b. In the mean-field case,
the approximate Hamiltonian is time-dependent,

Hmf(t) = Hx + Hy + 〈W〉y(t) + 〈W〉x(t) − 〈W〉 (t). (B.3)

The difference of the Hamiltonians is also a function, which is now time-dependent, H −
Hmf(t) = W + 〈W〉(t) − 〈W〉x(t) − 〈W〉y(t). However, it is easy to check that a similar estimate
can be performed, leading to an analogous conclusion. �

B.4. Commutator estimate

We now explain the commutator estimate used in the previous subsection:

Lemma 4. Let N � 1 and b = b(z, ζ) be a smooth function onR2N satisfying the Hörmander
growth condition (11). Let δW be a smooth function on RN with bounded derivatives. Then,
there exist constants Cb > 0 and MN > 0 such that

‖[op(b), δW]ψ‖L2 � Cb

⎛⎝‖∇(δW)ψ‖H1 +
∑

2�|α|�MN

‖∂α(δW)‖∞‖ψ‖L2

⎞⎠
for all ψ ∈ H1(RN).

Proof. We explicitly write the commutator as

[op(b), δW]ψ(z) = (2π)−N

∫
R2N

b

(
z + z′

2
, ζ

)
exp(iζ · (z − z′))

(
δW(z′)

− δW(z))ψ(z′) dζ dz′.

We Taylor expand the function δW(z) around the point z′, so that

δW(z) − δW(z′) = ∇(δW)(z′) · (z − z′) + (z − z′) · δR2(z, z′)(z − z′)

with

δR2(z, z′) =
∫ 1

0
(1 − ϑ)∇2(δW)(z′ + ϑ(z − z′)) dϑ.

Corresponding to the above decomposition, we write [op(b), δW]ψ(z) = f1(z) + f2(z) and esti-
mate the two summands separately. We observe that (z − z′)exp(iζ · (z − z′)) = −i∇ζ exp(iζ ·
(z − z′)) and perform an integration by parts to obtain∫

R2N
b

(
z + z′

2
, ζ

)
exp (iζ · (z − z′)∇(δW)(z′) · (z − z′)ψ(z′) dζdz′

= i
∫
R2N

∇(δW)(z′) · ∇ζb

(
z + z′

2
, ζ

)
exp(iζ · (z − z′))ψ(z′) dζdz′
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Therefore,

‖ f1‖L2 � Cb ‖∇(δW)ψ‖H1 ,

where the constant Cb > 0 depends on derivative bounds of the function b. For the remainder
term of the above Taylor approximation we write∫

R2N
b

(
z + z′

2
, ζ

)
exp(iζ · (z − z′)) (z − z′) · δR2(z, z′)(z − z′)ψ(z′) dζ dz′

=

∫
R2N

tr

(
δR2(z, z′)∇2

ζb

(
z + z′

2
, ζ

))
exp(iζ · (z − z′))ψ(z′) dζ dz′,

and obtain that

‖ f2‖L2 � C′
b

∑
2�|α|�MN

‖∂α(δW)‖∞‖ψ‖L2 ,

where C′
b > 0 depends on derivative bounds of b, and MN > 0 depends on the

dimension N. �

B.5. Proof of energy conservation

Here we provide an elementary ad hoc proof for energy conservation of the time-dependent
Hartree approximation, lemma 1.

Proof. A first observation is that

〈φapp(t), Hmf(t)φapp(t)〉 = 〈ψ0, Hmf(0)ψ0〉 for all t � 0.

Indeed,

d
dt

〈φapp(t), Hmf(t)φapp(t)〉 = 〈φapp(t), ∂tHmf(t)φapp(t)〉

= 〈φapp(t), ∂tWapp(t)φapp(t)〉

with Wapp(t) = 〈W〉y(t) + 〈W〉x(t) − 〈W〉 (t). We deduce

d
dt

〈φapp(t), Hmf(t)φapp(t)〉

=

∫
W(x, y)

(
∂t|φx(t, x)|2 |φy(t, y)|2 + |φx(t, x)|2 ∂t|φy(t, y)|2

)
dxdy

−
∫

W(x, y)∂t

(
|φx(t, x)|2 |φy(t, y)|2

)
dxdy = 0,

where we have used the self-adjointness of Hmf(t) and norm-conservation in the multiplicative
components. Secondly, since

〈ψ0, Wapp(0)ψ0〉 =
〈
ψ0,

(
〈W〉x(0) + 〈W〉y(0) − 〈W〉 (0)

)
ψ0

〉
= 2 〈W〉 (0) − 〈W〉 (0) = 〈W〉 (0),

the approximate energy coincides with the actual energy, and we obtain the aimed for
result. �
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Appendix C. Proof of error estimates in the semiclassical régime

Here we present the proofs of the semiclassical estimates given in propositions 4 and 5.

C.1. Error estimates for the wave function

In this section, we prove proposition 4, and comment on the constants K0, K1, which may be
analyzed more explicitly in some cases.

C.1.1. Approximation by partial Taylor expansion.

Proof. Section 5.3 defines an approximate solution of the from

ψε
app(t, x, y) = ε−d/4 exp(ip(t) · (y − q(t))/ε+ iS(t)/ε)u2

(
t,

y − q(t)√
ε

)
ψε

1(t, x)

with

iε∂tψ
ε
1 +

1
2
Δxψ

ε
1 = (V1(x) + W(x, q))ψε

1; ψε
1|t=0 = ϕx

0

and

i∂tu2 +
1
2
Δzu2 =

1
2

〈
z,∇2V2 (q) z

〉
u2; u2|t=0 = a,

q̇ = p, q(0) = q0, ṗ = −∇V2(q), p(0) = p0, S(t) =
∫ t

0

(
|p(s)|2

2
− V2(q(s))

)
ds.

It solves the equation

iε∂tψ
ε
app +

1
2
Δxψ

ε
app +

ε2

2
Δyψ

ε
app − Vψε

app = ε−d/4 exp(ip · z/
√
ε+ iS/ε)

(
rε1 + rε2

)
,

where the remainder rε1 is due to the Taylor expansion in V2, and satisfies the pointwise estimate

|rε1(t, x, z)| � 1
6
× ε3/2‖∇3V2‖L∞y |ψε

1(t, x)| × |z|3|u2(t, z)|

while the remainder rε2 is due to the Taylor expansion in W , and satisfies the pointwise estimate

|rε2(t, x, z)| �
√
ε ‖∇yW‖L∞|ψε

1(t, x)| × |z||u2(t, z)|.

This implies for the L2-norm,

‖rε1(t)‖L2 � ε3/2

6
‖∇3V2‖L∞y ‖ϕx

0‖L2
x
‖|z|3u2(t)‖L2

z
,

‖rε2(t)‖L2 �
√
ε ‖∇yW‖L∞‖ϕx

0‖L2
x
‖zu2(t)‖L2

z
.

Lemma 2 then yields, with now h = ε,

‖ψε(t) − ψε
app(t)‖L2 �

√
ε

6
‖∇3V2‖L∞y ‖ϕx

0‖L2
x

∫ t

0
‖|z|3u2(s)‖L2

z
ds

+
‖∇yW‖L∞√

ε
‖ϕx

0‖L2
x

∫ t

0
‖|z|u2(s)‖L2

z
ds.
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According to the signature of ∇2V2(q(t)), the quantities ‖|z|3u2(s)‖L2
z

and ‖|z|u2(s)‖L2
z

may

be bounded uniformly in s � 0 or not. For instance, they are bounded if ∇2V2 is uniformly
positive definite, or at least uniformly positive definite along the trajectory q. On the other
hand, we always have an exponential bound, even if it may not be sharp,

‖|z|3u2(s)‖L2
z
+ ‖|z|u2(s)‖L2

z
� C0eC1s,

for some constants C0, C1 > 0. This control is sharp in the case where ∇2V2 is uniformly
negative definite. See e.g. [30, lemma 10.4] for a proof of the exponential control, and [30,
section 10.5] for a discussion on its optimality. In particular, for bounded time intervals, the
(relative) error is small if ‖∇yW‖L∞ �

√
ε � 1. �

Remark 18. If ∇yW is not bounded, e.g. ∇yW(x, y) = η〈x〉γ , then we can replace the
previous error estimate with

‖ψε(t) − ψε
app(t)‖L2 �

√
ε

6
‖∇3V2‖L∞y ‖ϕx

0‖L2
x

∫ t

0
‖|z|3u2(s)‖L2

z
ds

+
η√
ε

∫ t

0
‖〈x〉γψε

1(s)‖L2
x
‖|z|u2(s)‖L2

z
ds.

In other words, the cause for the unboundedness of ∇yW is transferred to a weight for ψε
1.

Similarly, if ∇yW is unbounded in y, we may change the weight in the terms ‖|z|ku2‖L2
z
, after

substituting y with q + z
√
ε.

C.1.2. Approximation by partial averaging.

Proof. The semiclassical approximation obtained by partial averaging reads:

ψε
app(t, x, y) = ε−d/4 exp(ip(t) · (y − q(t))/ε+ iS(t)/ε)u2

(
t,

y − q(t)√
ε

)
ψε

1(t, x)

with

iε∂tψ
ε
1 +

1
2
Δxψ

ε
1 =

(
V1(x) + 〈W(x, ·)〉y(t)

)
ψε

1; ψε
1|t=0 = ϕx

0

and

i∂tu2 +
1
2
Δzu2 =

1
2

z ·
〈
∇2V2

〉
y
(t)z u2; u2|t=0 = a,

q̇ = p, q(0) = q0, ṗ = −〈∇V2〉y(t), p(0) = p0, Ṡ(t) =
|p(t)|2

2
− 〈V2〉y(t).

To estimate the size of r̃1 and r̃2 introduced in section 5.4, we might argue again via Taylor
expansion. Indeed,

‖a‖2
L2〈V2〉y =

∫
V2(q(t) +

√
εz) |u2(t, z)|2dz

= V2(q(t)) +
√
ε∇V2(q(t)) ·

∫
z|u2(t, z)|2dz + rε3(t),
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where

|rε3(t)| � ε

2
‖∇2V2‖L∞‖|z|u2(t, z)‖2

L2
z
.

Hence, we have for all averages f = V2,∇V2,∇2V2, W(x, ·) that

〈 f 〉y(t) = f (q(t)) +O(
√
ε),

where the error constant depends on moments of |u2|2. In particular, if u2(0) is Gaussian, the odd
moments of |u2(t, z)|2 vanish, and the above estimate improves to O(ε). Hence, the L2-norm of
r̃1 is O(

√
ε) close to the L2-norm of r1, and the L2-norm of r̃2 is O(η

√
ε), η = ‖∇yW‖L∞ ,

close to the L2-norm of r2 (with each time an extra
√
ε gain in the above mentioned Gaussian

case). In particular, the order of magnitude for the difference between exact and approximate
solution is the same as in the previous subsection, only multiplicative constants are affected. We
emphasize that the constants C0 and C1 from the previous subsection are in general delicate to
assess. On the other hand, in specific cases (typically when u2 is Gaussian and ∇2V2 is known),
they can be computed rather explicitly. �

C.2. Error estimates for quadratic observables

The proof of proposition 5 is discussed in the next two sections.

C.2.1. Approximation by Taylor expansion.

Proof. Taylor expansion yields a time-dependent Hamiltonian Hε
app = Hε

te with

Hε
te := − 1

2
Δx −

ε2

2
Δy + V1(x) + W(x, q) + V2(q) + (y − q) · ∇V2(q)

+
1
2

〈
y − q,∇2V2(q)(y − q)

〉
,

where q = q(t). In particular, the difference Hε − Hε
te is a function,

Hε − Hε
te = W(x, y) − W(x, q) + V2(y) − V2(q) − (y − q) · ∇V2(q)

− 1
2

〈
y − q,∇2V2(q)(y − q)

〉
=: δW(t, x, y).

In view of lemma 3, if B = opε(b) with b ∈ C∞
c (R2d), it yields (a posteriori estimate)∣∣〈ψε(t), Bψε(t)〉 −

〈
ψε

app(t), Bψε
app(t)

〉∣∣ � 1
ε

∫ t

0
|ρε(t, x)|ds,

where

ρε(t, s) =
〈
ψε

app(s), [B(t − s), δW(s)]ψε
app(s)

〉
,

B(σ) = exp(iσH/ε)B exp(−iσH/ε).

By Egorov theorem [41, theorem 11.1], B(σ) = ε opε(b(σ)) for a function b(σ) ∈ C∞
c (Rd).

Therefore, by semiclassical calculus,

1
iε

[B(t − s), δW(s)] = opε

(
{b(t − s), δW(s)}

)
+ ε2opε (rε(s, t)) ,

where ‖opε(r
ε(s, t))‖L(L2) is bounded uniformly in ε, whence the estimate of proposition 5. �
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C.2.2. Approximation by partial averaging.

Proof. The time-dependent Hamiltonian is Hε
app = Hε

pa with

Hε
pa = −1

2
Δx −

ε2

2
Δy + V1(x) + 〈W(x, ·)〉y + 〈V2〉y(t) + (y − q) · 〈∇V2〉y(t)

+
1
2

(y − q) · 〈∇2V2〉y(t)(y − q),

where q = q(t). In particular, as in the preceding case, the difference Hε − Hε
pa is a time-

dependent function

Hε − Hε
pa = W(x, y) − 〈W(x, ·)〉y + V2(y) − 〈V2〉y(t) − (y − q) · 〈∇V2〉y(t)

− 1
2

(y − q) · 〈∇2V2〉y(t)(y − q)

=: δ̃W(t, x, y),

and the arguments developed above also apply. �

C.3. Time-adiabatic approximation

The evolution equations for the quantum part of the system, equations (22) and (25), can be
written as an adiabatic problem:

iε∂tψ
ε
1(t) = h(t)ψε

1(t), ψε
1(0) = ϕx

0,

where h(t) is one of the time-dependent self-adjoint operators on L2(Rn)

hte(t) = −1
2
Δ+ V1(x) + W(x, q(t)); and hpa(t) = −1

2
Δ+ V1(x) + 〈W(x, .)〉y(t).

We assume here that h(t) has a compact resolvent and thus, that its spectrum consists in a
sequence of time-dependent eigenvalues

Λ1(t) � Λ2(t) � · · · � Λk(t) →
k→+∞

∞.

We also assume that some eigenvalueΛ j(t) is separated from the remainder of the spectrum
for all t ∈ R and that the initial datum ϕx

0 is in the eigenspace of h(0) for the eigenvalue Λ j(0):

h(0)ϕx
0 = Λ j(0)ϕx

0. (C.1)

Then adiabatic theory as developed by Kato [42] states that ψ1(t) stays in the eigenspace of
Λ j(t) on finite time, up to a phase.

Proposition 6 (Kato [42]). Assume we have (C.1) and that Λj(0) is a simple eigenvalue
of h(0) such that there exists δ0 > 0 for which

d
(
{Λ j(t)}, Sp(h(t))\{Λ j(t)}

)
� δ0.

Denote by Φx
j(t) a family of normalized eigenvectors of h(t) such that

Φx
j (0) = ϕx

0,
〈
Φx

j (t), ∂tΦ
x
j(t)

〉
= 0.
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Then, for all T > 0, there exists a constant CT > 0 such that∥∥∥ψε
1(t) − e−

i
ε

∫ t
0Λ j(s)dsΦx

j(t, x)
∥∥∥

L2
x

� CTε.

In contrast to the Born–Oppenheimer point of view recalled in remark 14, we obtain the
following time-adiabatic extension for our wave-packet approximation:

Corollary 2. In the setting of propositions 4 and 6, we obtain the following approximate
solution

ψε
app(t, x, y) = exp

(
− i
ε

∫ t

0
Λ j(s)ds +

i
ε

S(t) +
i
ε

p(t) · (y − q(t))

)
Φx

j(t, x)u2

(
t,

y − q(t)√
ε

)
.
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