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ABSTRACT
An accurate atomistic treatment of aqueous solid–liquid interfaces necessitates the explicit description of interfacial water ideally via ab initio
molecular dynamics simulations. Many applications, however, still rely on static interfacial water models, e.g., for the computation of (elec-
tro)chemical reaction barriers and focus on a single, prototypical structure. In this work, we systematically study the relation between density
functional theory-derived static and dynamic interfacial water models with specific focus on the water–Pt(111) interface. We first introduce
a general construction protocol for static 2D water layers on any substrate, which we apply to the low index surfaces of Pt. Subsequently, we
compare these with structures from a broad selection of reference works based on the Smooth Overlap of Atomic Positions descriptor. The
analysis reveals some structural overlap between static and dynamic water ensembles; however, static structures tend to overemphasize the
in-plane hydrogen bonding network. This feature is especially pronounced for the widely used low-temperature hexagonal ice-like structure.
In addition, a complex relation between structure, work function, and adsorption energy is observed, which suggests that the concentration
on single, static water models might introduce systematic biases that are likely reduced by averaging over consistently created structural
ensembles, as introduced here.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0067106

I. INTRODUCTION

Solid–liquid interfaces (SLIs) are ubiquitous in nature, and
their study is highly relevant for understanding the (electro)chemical
transformation processes that lead to natural corrosion or (elec-
tro)catalytic applications, such as in batteries, electrolyzers, or fuel
cells.1–6 While liquid properties at distances larger than ∼1 nm from
the interface are already bulk-like7,8 and approximately described
with standard continuum models,9,10 the structure and composi-
tion of the first (few) solvent layers in contact with a solid sur-
face typically show a significant dependence on, e.g., the solid sub-
strate and the thermodynamic conditions, e.g., applied electrode
potentials in electrochemistry contexts.11–19 In aqueous solutions,
an accurate atomistic treatment of the substrate–water interface
necessitates the explicit inclusion of at least the first water layer
for a wide range of properties such as adsorption energies or the

potential of zero charge (PZC).15,20–23 On the other hand, the
sensitive dependence of these properties on the interfacial water
structure24–27 necessitates, in principle, an appropriate sampling of
these to obtain reliable thermodynamic averages.11,21,26,28,29 Indeed,
as the accurate description of electronic degrees of freedom and the
chemical reactivity of the substrate are important, ab initio molec-
ular dynamics (AIMD) results based on density functional theory
(DFT) are the only reliable benchmarks to date. The long relax-
ation times of interfacial water30–32 pose, however, a significant
challenge to AIMD simulations and restrict such studies to only a
few selected model systems.14–18,21,26,33–36 As a result, many studies,
e.g., on adsorption and solvation energies across different substrates
and adsorbates27,37–41 or on electrochemical reaction barriers42–49

still rely on simplified and quasi-static interfacial water models.
The water–Pt(111) interface is most likely the best studied of such
systems and has been addressed by AIMD simulations13,14,21,29,50,51
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and static low-temperature water models.25,50,52–54 Typical static
interfacial water models are comprised of ice-like, hexagonal inter-
facial layers,20,48–50,52,54 Hdown, Hup, and chain-Hdown, and also
involve more complex phases52–55 such as

√
37 ×
√

37R25.3○ and√
39 ×
√

39R16.1○. The latter structure comprises five, six, and seven
water rings.52–54 Such structures are typically less prominent in room
temperature AIMD studies16,50,56 where only (predominant) local
water configurations can be identified.16 This puts forward the ques-
tion about the relation between theoretical results from static and
dynamically sampled extended interfacial water structures and pos-
sible structural biases due to the dominant use of hexagonal water
(bilayer) arrangements in applied works.42,48,49 Furthermore, as no
“standard” static water models seem available for other than the pro-
totypical fcc-(111) surface, there is a dramatic lack of knowledge of
interfacial water structures on other interfaces and substrates.

In order to fill this void, we systematically study and compare
ensembles of static and dynamic water structures. We introduce first
our construction protocol for obtaining a consistent set of static
water structures at solid interfaces for any given surface termina-
tion, supercell size, and crystal structure. Here, we start by creat-
ing a dataset of selected, topologically different 2D water layers in
vacuum. The created 2D water layers can be adsorbed on any given
substrate, leveraging optimal lattice matching algorithms and con-
secutive geometric relaxation via DFT. Subsequently, we apply the
algorithm to construct a dataset of 2D static water (2DSW) struc-
tures on low index Pt surfaces and compare the obtained structural
ensemble of interfacial water with the structure of water layers from
other reference works. In particular, we investigate structural sim-
ilarities within quasi-2D water layers in bulk liquid water and ice,
at (liquid) water–vacuum interfaces, and at Pt(111)–water inter-
faces using the local structure descriptor SOAP (Smooth Overlap of
Atomic Positions).57 One central aspect in this respect is the analy-
sis of the relations between structure, adsorption energy, and work
function reduction for Pt(111) with a single adsorbed water layer
and as obtained from AIMD and our 2DSW ensemble. In general,
the analysis reveals a bias of 2DSW structures toward three inter-
molecular hydrogen bonds per water and excess hydrogen bonds
pointing to the substrate, which yield a maximization of the overall
number of bonds within the interface in contrast to the AIMD con-
figurations (see Secs. III B and III C). Nevertheless, we find a decent
overlap between AIMD and 2DSW ensemble averages, while sin-
gle selected static models exhibit large variations in their predictive
quality.

II. CONSTRUCTION PROTOCOL FOR WATER LAYERS
ON SUBSTRATES

Our starting point for the proposed protocol is the common
understanding that the first water layer is extremely important for a
variety of properties at metal–water interfaces and that H2O–H2O
interactions dominate the total energy, at least on coinage metal low
index surfaces.8,58,59 An intuitive approach to model adsorbed water
is by using water layers in vacuum as a starting guess, which directly
motivates the following procedure:

● Creation of a dataset of 2D water phases in vacuum.
● Creation of the target substrate [(hkl) surface and supercell

size].

● Adsorption of 2D water phases that match the substrate
supercell geometry.

● Relaxation of the water adsorbate layer.

A. 2D water structures in vacuum
Based on DFT calculations, we initially investigated 15 differ-

ent polymorphs of 2D water in vacuum consisting of 1–8 water
molecules in the primitive cell as reported in the literature.60–63

We varied lattice constants and unit cell shapes in order to get an
overview of the typical 2D water orderings in vacuum. 2D water
is highly flexible, and typical literature studies are in the context of
confined water, e.g., in between two sheets of graphene, rationaliz-
ing size or pressure restrictions in the out-of-plane direction.61 As
these are not present here, a compression mainly leads to a change in
the degree of buckling and stacking of water molecules into several
layers, an expansion typically to the formation of 1D water chains
with varying degrees of separation. In general, energetic differences
per molecule between the considered systems with different num-
bers of water are small, indicating that complex, large-scale water
patterns are not necessary to describe the approximate energetic
landscape. Furthermore, a wide variety of observed water patterns
can already be achieved with only four water molecules62 in a rect-
angular primitive lattice, featuring water molecules arranged in rect-
angles, parallelograms, and hexagons (see Fig. 1). Note that known
prototypical motives such as squares, rectangles, parallelograms, and
hexagons can be understood within rectangular cells by a variation
in the relative position of the molecules within the cell, as shown
in Fig. 1(a). Furthermore, all observed buckling patterns (water
molecules not in one plane) fall in four classes, where the water net-
work is in a plane, exhibits horizontal or vertical chains, or forms a
2D checkerboard arrangement [see Fig. 1(b)]. In addition, the rela-
tive orientation of the water molecules can follow several patterns;
the most symmetric (in-plane) representations where each water
molecule can maximize the number of hydrogen bonds are drawn
in Fig. 1(c).

After these observations that a wide variety of different topolo-
gies are, indeed, already possible for four molecules in rectangular
cells, we decided to limit ourselves to polymorphs, which obey these
restrictions, as they have several advantages: On the one hand, the
relatively small water unit cells allow for a more exhaustive repre-
sentation of the structural landscape due to the reduced number
of degrees of freedom. On the other hand, lattice matching can be
achieved by smaller increments in the (water) supercell size. As a
result, it is more likely to find small substrate supercells, which is
beneficial, e.g., in terms of applying the protocol to many different
systems. In addition, the choice of equal lattices for all water poly-
morphs ensures the consistent inclusion of all the considered water
topologies on any substrate.

Our final set of 2D water structures consists of eight differ-
ent topologies [Fig. 1(d)] that are observed in the studied selection
of 15 low-temperature polymorphs and include a large variety of
position (p), buckling (b), and orientation (o) patterns. We fur-
thermore scanned the lattice constants on a logarithmically spaced
grid (99 grid points), for which we report the relative stability with
respect to the optimum lattice constant in Fig. 1(e). This clarifies
the small energetic differences of any of these topological variants.
The first six topologies are chains in the direction of the lattice
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FIG. 1. (a)–(c) Basic motives of high symmetry water structures with four H2O molecules in a rectangular cell can be discriminated by the following: (a) Different high
symmetry oxygen positions in the unit cell, which yields water arrangements in rectangles, squares, parallelograms (and mixed versions), and hexagons. (b) Out-of-plane
buckling patterns. Dark red is used for oxygen atoms in a lower plane. (c) Relative water orientations (fulfilling water rules). (d) Our selected set of 2D water polymorphs,
named according to the topological descriptors in (a)–(c). (e) Relative energies per water molecule for different lateral dimensions scanned on a grid. Within the eight
selected polymorphs, p5b2o4/p3b1o3 yields the most/least stable water structure (cf. minimum energies reported above the energy landscapes).

vector a such that their energy is highly sensitive to changes in
that direction and largely invariant for changes in the direction of
the lattice vector b. In contrast, the energy of the latter two con-
figurations with their hexagonal geometry is sensitive to changes
in both directions. A logarithmic lattice spacing is chosen as it
leads to identical relative offsets of neighboring lattice vectors (here
10%), which ensures lattice matching (see below) without overlaps.
Finally, we reduced this set to 20 identical lattice constant com-
binations for all eight polymorphs, which cover the lowest energy
regions in order to construct our final dataset of 160 2D static water
polymorphs.

B. Choice of substrate supercells
Choosing an appropriate substrate supercell evidently depends

on the quantities and systems of interest. As surface cells with
maximum distances to periodic images in the lateral directions
are expected to yield the least periodic boundary artifacts, we
think all studies on surfaces should ideally be performed in such

maximally isotropic supercells. For this purpose, we implemented
an algorithm that yields (with minimal user intervention) slabs
in vacuum, which are maximally isotropic in the in-plane direc-
tions for any given substrate material, (hkl) surface, and tar-
get surface area. The algorithm is outlined in the supplementary
material, and a Python implementation is provided alongside this
work.

C. 2D lattice matching of 2D water phases
With our given dataset of 2D water prototypes at the varying

lattice constant and chosen substrate supercell, we use (a slightly
modified version of) pymatgen64–66 to adsorb 2D water on the sub-
strate via leveraging its implemented lattice matching67 functionality
similarly as implemented in the pymatgen.analysis.interface
module. The logarithmic lattice spacing in our dataset ensures con-
sistency with the lattice vector mismatch constraints in pymatgen
(relative length differences) and enables non-overlapping matches
for neighboring lattice constants.
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In addition, we include possible lateral shifts of the adsorbed
water layer (scanned on a regular grid within the primitive surface
unit cell and a lateral grid spacing of ∼2 Å) while also taking both
possible water layer orientations into account in case the water pro-
totype is polar in the out-of-plane direction. A self-contained Python
implementation of the outlined 2DSW construction protocol is
provided alongside this publication.

D. The 2DSW protocol applied to low-index
Pt surfaces

Using the outlined approach, we created lattice-matched 2DSW
water structures on maximally isotropic substrate supercells for
supercell sizes between 6 and 36 surface atoms for the low
index surfaces (100), (110), and (111) of fcc-Pt. While a wide vari-
ety of possible combinations for the cell size and number of water
molecules is possible, interfaces with 8 and 16 water molecules
take a special role as they yield matches for all three (hkl) termi-
nations. Here, we restrict our analysis to minimal supercell sizes
with only eight water molecules. For the Pt(111) termination, which
we will analyze in more detail subsequently, the algorithm auto-
matically chooses the well-known (

√
12 ×
√

12)R30○ supercell and
yields 80 different initial configurations for interfacial water. These
are relaxed via DFT, and we compute the adsorption energetics, as
well as geometric and electronic properties (eight initial structures
ran into convergence problems, which were not further analyzed
and discarded). The computational parameters are reported in Sub-
section 2 of the Appendix, and the results for Pt(100) and Pt(110)
surfaces are shown in the supplementary material.

III. PROPERTIES OF WATER LAYERS
A. Methodology

In order to analyze the water ordering of quasi-2D water lay-
ers, we used a variety of sources, including ab initio-determined
bulk ice68 and bulk liquid water structures,72 liquid water slabs in
vacuum,72 liquid water on Pt(111),15,21 and static ice-like-layers on
Pt(111) from Ref. 54 and from our 2DSW construction protocol.
Table I lists the according datasets together with our chosen naming
convention and the most important associated properties. Note that

TABLE I. Overview of the datasets used in this paper and the correspondingly used
exchange–correlation functionals (plus vdW correction). The column “Setup” discrimi-
nates between the properties of the original dataset—bulk and symmetric/asymmetric
slab calculations. All datasets are publicly available (see original publications), apart
from the AIMD(P/R) trajectories, which were provided by the (co-)authors of the
respective publications, Le et al.21 and Heenen et al.15

Name Reference Setup Functional(-vdW)

H2O ice 68 Bulk revPBE069,70-D371

H2O AIMD 72 Bulk rVV1073

H2O/vacuum AIMD 72 Sym. rVV1073

H2O@Pt(111) AIMD(P) 21 Sym. PBE74-D375,76

H2O@Pt(111) AIMD(R) 15 Asym. RPBE77-D375,76

H2O@Pt(111) ice 54 Asym. optPBE-vdW78

H2O@Pt 2DSW This work Asym. PBE74

only the latter two sets of structures [H2O@Pt(111) ice and H2O@Pt
2DSW] include natively well-defined quasi-2D water layers, while
all other sources also incorporate in parts or in full bulk-like water
regions. However, water layers are also evidently present in 3D bulk
water structures (H2O ice, H2O AIMD) and are, in particular, dis-
tinct and non-bulk-like for water–vacuum (H2O/vacuum AIMD)
or water–Pt interfaces [H2O@Pt(111) AIMD(P), H2O@Pt(111)
AIMD(R)].

In order to study the structure within these layers, we create
from the latter datasets first systems with water–vacuum boundaries,
if needed, and subsequently extract water layers at water–vacuum
interfaces. In particular, we selected snapshots from the bulk H2O
AIMD trajectory and introduced vacuum layers at random positions
along the z direction while enforcing the integrity of H2O molecules.
Similarly, for H2O ice (54 ice phases from Ref. 68), we created
water slabs up to a maximum Miller index of 3 using pymatgen64–66

again while enforcing molecular integrity. For the water–Pt AIMD
trajectories [H2O@Pt(111) AIMD(P), H2O@Pt(111) AIMD(R)],
we removed all Pt-atoms from the system, thus creating a
vacuum void. Interfacial water layers were then extracted from
the so-preprocessed structures by determining all interfacial water
molecules only for the respective vacuum–water interfaces of inter-
est (e.g., the original H2O@Pt interface) via the algorithm described
in Subsection 1 of the Appendix.

The so-created structural datasets for water layers in bulk, at
vacuum–water, and at Pt–water interfaces are analyzed via the use
of an abstract representation for atomic environments, in particu-
lar, based on the local structure descriptor SOAP57 as implemented
in the Dscribe package79 and as similarly performed for 3D peri-
odic water structures.68 Local environments are represented for each
water molecule by computing a SOAP vector centered on the oxygen
atom and using a cutoff radius of 4 Å, consistent with the geomet-
rical characteristics of water. Interfacial water structures are char-
acterized by the average over all SOAP vectors taken from each O
atom in a configuration,79 which thus also allows (global) for a struc-
ture comparison across structures that differ in the number of H2O
molecules (cf. also Subsection 3 of the Appendix).

B. The structure of extended water layers
In order to gain an intelligible, e.g., visual, representation of

the similarity between and within the different structural ensem-
bles of extended water layers, we apply principal component analysis
(PCA) to the complete dataset of average SOAP vectors. The first and
second PCA components are depicted in Fig. 2, and the solid lines
indicate approximate locations for each dataset as obtained via ker-
nel density estimation.80 Additional dataset-specific plots are pro-
vided in the supplementary material. Figures 2(a) and 2(b) and the
color-coding illustrate how PCA discriminates between the average
number of intermolecular hydrogen bonds (upper left to the lower
right) and the average number of oxygens within the SOAP radius
(lower left to the upper right). Hydrogen bonds between two water
molecules are defined as in Ref. 16, where the oxygens are closer
than 3.5 Å to each other and the angle between O–O–H is less than
35○. There is a broad distribution of structures in the analyzed data,
ranging from rather isolated water molecules to highly coordinated
ones with four hydrogen bonds to its neighbors and the bulk-ice-
derived layers (green line) covering the whole range, with selected
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FIG. 2. PCA map for the structure within water layers based on the average SOAP vector (one point corresponds to one structure; cf. Subsection 3 of the Appendix). The
datasets are those of Table I, and the color-codings in (a) and (b) correspond to the average number of hydrogen bonds ⟨NO–H⋅ ⋅ ⋅O⟩ as defined in Ref. 16 and the number
of nearby oxygen atoms ⟨NO⟩ within a cutoff radius of 4 Å, respectively. The contour lines illustrate the locations of each dataset as obtained via kernel density estimation.
For each dataset, we show an exemplary structure as indicated by the frame color.

examples plotted in Fig. 2. Bulk liquid water (H2O AIMD, red) is
mainly located in the low density region at the lower left corner,
while water at water–vacuum interfaces (H2O/vacuum AIMD, vio-
let) and [H2O@Pt(111) AIMD(P/R), orange/brown] move upward
along the diagonal, toward higher density structures. Note that
the increase in density (number of nearby oxygens ⟨NO⟩) does
not dramatically alter the number of H-bonds ⟨NO–H⋅ ⋅ ⋅O⟩ within
the water layer, as can be rationalized from the color codings in
Figs. 2(a) and 2(b) and from the reported average values provided
in Table II.

TABLE II. Average number of hydrogen bonds ⟨NO–H⋅ ⋅ ⋅O⟩ and number of nearby
oxygens ⟨NO⟩ within the cutoff radius of 4 Å per H2O molecule for each dataset and
respective standard deviations in brackets.

Dataset ⟨NO–H⋅ ⋅ ⋅O⟩ ⟨NO⟩

H2O ice68 1.86(0.88) 3.41(1.38)
H2O AIMD72 1.29(0.45) 2.30(0.51)
H2O/vacuum AIMD72 2.20(0.38) 3.14(0.46)
H2O@Pt(111) AIMD(P)21 2.21(0.21) 4.17(0.41)
H2O@Pt(111) AIMD(R)15 2.19(0.33) 4.17(0.62)
H2O@Pt(111) ice54 3.00(0.00) 3.00(0.03)
H2O@Pt(111) 2DSW 2.56(0.45) 3.07(0.47)

For comparison, we also marked in Fig. 2 specifically the
prototypical low-temperature structures54—(hexagonal) Hup/down

and
√

37/
√

39—which fall in the region of our static water dataset
H2O@Pt 2DSW, which includes natively hexagonal water layers. It
is worth mentioning that the widely used Hup/down structures are
observed at the extreme boundaries of the configurational space,
whereby on average oxygen atoms in Hup/down structures form 0.8
more hydrogen bonds than in H2O@Pt(111) AIMD, as shown in
Table II. While there is no overlap between these and the AIMD
sampled interface structures on Pt(111) (orange and brown lines),
our 2DSW protocol yields at least some overlap. In particular, struc-
tures with less hydrogen bonds, which mainly consist of chain-like
water arrangements, fall in the region of AIMD results (see also dis-
cussion below). These results indicate that ensemble averages based
on 2DSW static water structures might approximate AIMD aver-
ages more accurately than using only selected low-temperature (e.g.,
hexagonal) structural models. Interestingly, Le et al. pointed out that
beyond the first solvation layer, the hydrogen bonding is mainly
affected by the water–water interaction rather than the water–metal
interaction.16 This suggests that better results might be achieved by
including more water layers in the system.

C. Water layers on Pt(111)
While all 2DSW water structures are provided alongside this

work, we show a selection of three obtained structures in Fig. 3,
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FIG. 3. Selected water–Pt(111) configurations initialized from the p3b1o3 and p2b3o3 polymorphs and their corresponding relaxed structures. (a) The most stable relaxed
structure of the whole 2DSW dataset. [(b) and (c)] Two slightly less stable configurations (ΔE = 0.03 eV/H2O). Oxygen atoms corresponding to flat H2O molecules are
colored by dark red in the relaxed structures.

namely, the lowest energy configuration after relaxation (a) and two
local minima [(b) and (c)].

Interestingly, the starting structure of the least stable poly-
morph p3b1o3 [Fig. 3(a)] leads to the most stable relaxed structure
in our set, which is characterized by hexagonal H2O rings, in which
the hydrogen network is distinguished by two chains: one consti-
tuted of only Hdown oriented water molecules and the other chain
comprises H2O molecules parallel to the surface. Here, the structure
is stabilized by forming the three hydrogen bonds per oxygen atom
as in other ice-like water layers. Furthermore, this structure was also
reported by Clabaut et al.54 as the most stable among the hexagonal
ice adlayers.

The configuration in Fig. 3(b) is also initialized from the
p3b1o3 polymorph, but the start configurations differ from each
other in the atomic positions of the water molecules, while Fig. 3(c)
started from chain-like water structures. Both relaxed structures in
Figs. 3(b) and 3(c) form chains of hexagonal H2O rings, however,
with differing water orientations. Regarding energy, both structures
are only 0.03 eV/H2O less stable relative to the lowest energy config-
uration [Fig. 3(a)]. Similar chain-structures have been reported for
(110) metal surfaces.53

In general, our 2DSW protocol yields a variety of hexagonal
ring structures comprised of Hdown, Hup oriented water molecules
and water molecules parallel to the surface, similarly as shown
in Fig. 1(a) at 11 ps in Ref. 51, supporting their importance for
simulations in small unit cells.

For the analysis of water layers on the substrate Pt(111), we fol-
low the previous approach and leverage the average SOAP vector as
the structural descriptor, this time, however, including specifically
the Pt substrate atoms in the atomic environments (see Subsection 3
of the Appendix). Furthermore, we use a SOAP-based average dis-
tance measure ⟨D̄⟩ to evaluate the structural similarity of a single
structure with the AIMD(P) ensemble of interfacial water structures,
which we took as our reference (cf. Subsection 3 of the Appendix).
The PCA map in Fig. 4 yields similar results as before and illustrates
how ⟨D̄⟩ (cf. color) is able to measure structural similarity to the ref-
erence ensemble. As expected, both AIMD simulations remain close
to each other. For the H2O@Pt(111) ice layers (diamonds), we find
a clear trend in distances D̄, namely, Hup (0.27) > Hdown ≈ chain-
Hdown >

√
37 >
√

39 (0.21), where the rather large dissimilarity of the

hexagonal structures is likely ascribed to the lack of disorder. Simi-
larly as before, our 2DSW ensemble shows better agreement with the
AIMD results, although some large dissimilarities ⟨D̄⟩ are observed.
Further analysis is reported in the supplementary material, where
we also analyze other commonly used descriptors of (interfacial)
water, such as the atomic density distribution as a function of the
distance to the surface and the radial distribution functions within
the water adlayers. In general, we find good qualitative agreement in
the vertical density profile for the 2DSW ensemble, which is able to
reproduce the bimodal oxygen peak structure at the approximately
right vertical distance zPt–O between slab and bottom-most oxygen
atoms {2.2 Å (2DSW) vs 2.0 Å [AIMD(P)]}. However, some differ-
ences are observed in the oxygen density profile, e.g., the first peak
for AIMD data is wider than the peak for 2DSW, as shown in Fig. S4
of the supplementary material. This can be ascribed to the absence
of the dynamic interchange of interfacial water molecules within the
solvation layer and with the bulk liquid water.

FIG. 4. PCA map for interfacial water structures on Pt(111) with the atomic posi-
tions of the substrate Pt atoms included in the SOAP descriptors. Datasets from
other sources are highlighted by black edges, and the colors indicate the aver-
age SOAP distance ⟨D̄⟩ to the AIMD(P) reference dataset, which consists of the
colorless circles. (For more details, see the text and Subsection 3 of the Appendix.)
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To this point, we have compared structural similarity to the
AIMD(P) reference trajectory; however, we have not yet analyzed
how far this influences derived quantities such as average adsorption
energies and work function changes, which show a strong structural
sensitivity, e.g., to the distance between the metal surface and the
water adlayer, as pointed out by Tripkovic et al.25 Similarly, AIMD
simulations are comprised of a variety of interfacial water struc-
tures due to fluctuating water orientations and ad- and desorption
events, which strongly influences the work function due to interfa-
cial charge transfer from the first water layer.17,18,36 In this regard,
Surendralal et al. reported values of absolute potentials ranging from
2.5 to roughly 7.5 eV for H2O@Pt(111) AIMD simulations, which
result in an average of 4.86 eV (see the supplementary material in
Ref. 81), and it is of interest to see how far 2DSW ensemble averages
relate to such AIMD-based reference results. Here, we evaluate the
adsorption energy per water molecule as

Eads =
1

NH2O
[EDFT

H2O–Pt − (EDFT
Pt +NH2O EDFT

H2O)], (1)

where NH2O is the number of water molecules at the interface and
EDFT

H2O–Pt, EDFT
Pt , and EDFT

H2O are the total energy of the surface with
the adsorbed water layer, the energy of a clean surface, and the
energy of an isolated water molecule, respectively. The work func-
tion change ΔΦ due to the adsorption of a water film is determined
by the difference in the work function between water-covered and
clean slab ΔΦ = ΦH2O–Pt −ΦPt, both of which are readily accessible
as the position of the Fermi level relative to the electrostatic poten-
tial in the vacuum region. We computed the respective quantities for
our 2DSW dataset but reanalyzed in the same way the AIMD(P) tra-
jectory with all waters removed except for the first interfacial water
layer. Gratifyingly, the so-computed work function reduction ⟨ΔΦ⟩
for the AIMD(P) trajectory by only the first water layer is identical
to the results reported in the original study by Le et al.21 (−1.11 eV
here vs −1.1 eV in Ref. 21). This supports once more the major role
of only the first water layer.22,23

In order to understand better the impact of different possi-
ble choices of static interfacial water structures, we studied two
specific subsets of our raw 2DSW dataset, which include (i) only
configurations with an energy difference ΔE ≤ 0.05 eV/H2O rel-
ative to the lowest energy configuration and (ii) configurations
with ⟨D̄⟩ < 0.21. These two subsets are inspired by two typical
assumptions in theoretical works, namely, to focus (i) on low energy
structures and (ii) on structures that are close to some accurate
reference (e.g., experiments or as here more accurate theoretical

simulations). Table III summarizes the central properties of the
considered structural datasets.

Structurally, the low energy subset (i) exhibits the highest
observed number of hydrogen bonds ⟨NO–H⋅ ⋅ ⋅O⟩, and the number
of nearby oxygens ⟨NO⟩ is close to 3, which likely derives from
the fact that structural optimization leads to a maximized number
of hydrogen bonds within the water layer and maximized number
of bonds with the metal surface [cf. most stable configuration in
Fig. 3(a)]. Therefore, the structures mainly consist of the hexag-
onal (NO–H⋅ ⋅ ⋅O = 3) and some two-dimensional chain structures
(NO–H⋅ ⋅ ⋅O = 2.5). In contrast, the latter subset (ii), which is opti-
mized for structural similarity with the AIMD(P) dataset, is charac-
terized by chain structures, as shown in Fig. 3(b), where the average
number of hydrogen bonds (2.23) and the average number of nearby
oxygen atoms (3.41) are close to the values of the reference set (cf.
Table III and Fig. 4).

For all static water ensembles, we find Eads values that are sig-
nificantly lower than the AIMD(P) average, as the latter structures
were dynamically sampled with additional bonding partners in the
second water layer in the original simulations, which are (artificially)
removed in our analysis. Within our dataset, Eads of the structurally
most similar configuration [see Fig. 5(a)] is roughly 0.1 eV higher
than the lowest energy configuration. On the other hand, our average
adsorption energies fall close to the reported adsorption energies for
static water models.20,52,58,82 While the numerical differences to the
AIMD averages are thus evident, a diverse set of local minima con-
figurations as starting points for further investigations, e.g., based on
short AIMD simulations or nudged elastic band calculations, might
be beneficial for a better understanding of the effects of local water
environments on other processes, such as solvation, diffusion, or
electrochemical reactions.

In terms of the work function reduction, the better struc-
tural agreement of subset (ii) with the AIMD(P) reference dataset
does not lead to better agreement in the work function reduction
[⟨ΔΦ⟩ = −0.43/ − 0.30 eV for 2DSW/subset (ii) vs −1.11 eV for
AIMD(P)]. Indeed, the low energy subset (i) performs best with
⟨ΔΦ⟩ =−0.83 eV, which lies within the margin of errors of published
AIMD reference results (−1.1 to −0.55 eV14,21,81). Note that accurate
work functions and work function reductions are relevant for appli-
cations in electrochemical contexts as they are directly related to the
potential of zero charge of the electrode on an absolute potential
scale.83

In order to get a better understanding of the correlations
between the structural distances ⟨D̄⟩, the adsorption energy Eads,

TABLE III. Central properties of the (reevaluated) H2O@Pt(111) AIMD(P) and the 2DSW dataset and of two analyzed subsets: (i) (ΔE < 0.05 eV/H2O with respect the lowest
energy configuration) and (ii) (⟨D̄⟩ < 0.21). We report the average number of hydrogen bonds ⟨NO–H⋅ ⋅ ⋅O⟩, the number of nearby oxygens ⟨NO⟩, the adsorption energies ⟨Eads⟩,
the work functions ⟨ΦPt⟩ of the bare surfaces, and the work function change ⟨ΔΦ⟩ due to one water adlayer. The standard deviations as obtained from the study of Nconf
configurations are reported in parentheses, as well as the estimated uncertainty (standard error of the mean).

Nconf ⟨NO–H⋅ ⋅ ⋅O⟩ ⟨NO⟩ ⟨Eads⟩ (eV/H2O) ⟨ΦPt⟩ (eV) ⟨ΔΦ⟩ (eV)

H2O@Pt(111) AIMD(P)21 176 2.21(0.21) 4.17(0.41) −0.34 ± 0.00(0.03) 5.75 ± 0.00(0.01) −1.11 ± 0.03(0.33)
H2O@Pt(111) 2DSW 72 2.56(0.45) 3.07(0.47) −0.51 ± 0.01(0.05) 5.77 ± 0.00(0.01) −0.43 ± 0.09(0.76)
H2O@Pt(111) 2DSW(i)[ΔE < 0.05 eV/H2O] 21 2.83(0.24) 2.93(0.17) −0.58 ± 0.00(0.01) 5.76 ± 0.00(0.00) −0.84 ± 0.13(0.60)
H2O@Pt(111) 2DSW(ii)[⟨D̄⟩ < 0.21] 22 2.23(0.29) 3.41(0.44) −0.49 ± 0.01(0.05) 5.77 ± 0.00(0.01) −0.30 ± 0.10(0.48)
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FIG. 5. (a)–(c) The correlations between the average SOAP distance ⟨D̄⟩, adsorption energy per H2O, and work function change for the 2DSW dataset reveal a complex
structure–property relationship for interfacial water on Pt(111). The beige areas in (a) and (b) correspond to our selection criteria for subsets (i) and (ii) of the 2DSW dataset,
respectively. Triangular data points correspond to hexagonal Hdown and Hup ice layers from Ref. 50.

and the work function change ΔΦ, we plot an according analysis of
the complete 2DSW dataset in Fig. 5. The beige areas in Figs. 5(a)
and 5(b) correspond to our selection criteria for subsets (i) and (ii),
respectively. Consistent with the described lower stability of dynam-
ical water structures, we also observe here that the best matching
structures (blue) are higher in energy [∼0.1 eV, Fig. 5(a)]. At the
same time, at these Eads values, the distance measure ⟨D̄⟩ seems
to exhibit a bimodal distribution, thus also incorporating a signifi-
cant amount of structures with maximal ⟨D̄⟩ values. The observed
work function change ΔΦ exhibits a rather large spread [Fig. 5(b)],
which is slightly larger at higher ⟨D̄⟩ values. Indeed, structures with
different ⟨D̄⟩ values can still exhibit similar energies and work func-
tion change [Fig. 5(c)], indicating a high degree of complexity for
the studied structure–property relationships, providing renewed evi-
dence for the difficulty in treating SLIs, in particular water–metal
surfaces with simplified, e.g., individual, static interfacial water mod-
els. As energies and work functions are not included in the PCA,
the prediction can be a challenging task in some cases as here
shown.84

IV. DISCUSSION AND CONCLUSIONS
The systematic study of static interfacial water layers on Pt(111)

revealed that prototypical, low energy interfacial water structures
exhibit quite special orderings and lie rather at the boundaries of
the observed configuration space of AIMD simulations. At vari-
ance, our 2DSW ensemble, which includes a wide variety of water
topologies, does exhibit some more overlap. The main structural
discrepancy is the overemphasis of a high number of in-layer
H2O–H2O bonds for static, single layer water models, which is most
prominent for the lowest energy structures (cf. Table III). These

differences are, on the one hand, linked to the conceptual differ-
ences between local minimum structures and finite temperature MD
trajectories and, on the other hand, to the neglect of more water lay-
ers in the present work, which can influence the configuration of
interfacial water through providing donors and acceptors for hydro-
gen bonds.51 Some better structural agreement might be obtained
already by extending/substituting the dataset of 2D water start con-
figurations with multilayer water models. Whether an implicit sol-
vent environment22,23,47,85–87 can appropriately emulate the bond-
ing to the second water layer and whether AIMD simulations
of minimal explicit–implicit hybrid models can reproduce results
from fully explicit AIMD simulations remain an open question. In
particular, similar results would only be expected if the implicit
model would stabilize stronger non-H-bond-saturated water struc-
tures at the interfaces, e.g., Hup, which clarifies the need for such
models.

Furthermore, the observed overstructuring of interfacial water
might also be influenced by the choice of the substrate supercell,
as the studied

√
12 ×
√

12 Pt(111) substrate allows for commen-
surate hexagonal water orderings. Our protocol thus also provides
a starting point for a consistent analysis of such (artificial) peri-
odic boundary effects, which are often discussed, but not yet well
understood.

In general, while the work function change and the adsorption
energy can vary dramatically for different static water structures,
our 2DSW ensemble averages can provide relatively robust averages
that show decent correlations with AIMD results, at least trend-
wise. As many applications still necessitate the study of quasi-static
water models, e.g., for evaluating reaction barriers via nudged elastic
band methods, these results suggest that ensemble averages over a
consistent set of static water structures might provide more robust
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predictions. Indeed, the application of clustering methods to our
2DSW dataset reveals a total number of 11 topologically different
prototype structures (see Sec. S.5.A of the supplementary material),
which indicates that such an approach would still remain computa-
tionally much more feasible than brute-force AIMD-based methods.

Finally, our approach, in particular the implementation as a
Python package provided alongside this work, might serve as a good
starting point for the study of low-temperature water structures
(or other solvents) on other surface supercell sizes and substrate
materials or as uncorrelated starting points for AIMD simulations.

SUPPLEMENTARY MATERIAL

See the supplementary material for (i) a discussion about the
choice of supercell in the construction protocol, (ii) a description
of the in-house algorithm to find water molecules at the interface,
(iii) PCA maps for the water configurations by using the local SOAP
descriptors, (iv) density profile and O–O radial distribution func-
tion plots for H2O@Pt(111) systems listed in Table I, (v) an overview
of the prototype structures found in H2O@Pt(111) 2DSW, and (vi)
further results for Pt(100) and Pt(110) surfaces. For access to the
relevant data of this work, see the Data Availability section.
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APPENDIX: METHODS
1. Determination of interfacial water molecules

Interfacial water layers at (artificially created or naturally
present) water–vacuum interfaces are selected by first determining
all interfacial O atoms and then adding all chemically bound H
atoms (bond cutoff = 1.2 Å). Interfacial O atoms are determined
via the following algorithm that is inspired from the definition of
quantum mechanical cavities in the context of implicit solvation
methods:89,90

(a) Define the water-filled region Ω by superimposing soft
spheres localized on the atoms with given radius r0 and that
smooth decay from a value of 1 within the sphere to 0 outside
it. Evaluate the so-obtained filling function Ω on a numerical
grid and renormalize all values Ω > 1 to 1.

(b) Estimate the surface of Ω by computing the numerical deriva-
tive S = ∇Ω, and define a grid point i as an interfacial grid
points iS whenever

∥SiS∥ ≥ τ max
i
∥Si∥, τ < 1. (A1)

(c) Interface atoms are given by the set of closest oxygen atoms
to the real space positions {riS} of all interface grid points.

More details, e.g., on the numerical implementation in periodic
boundary conditions and chosen numerical parameters (e.g., r0, τ)
are provided in the supplementary material.

2. Computational details
Periodic DFT calculations are performed with the Quantum

ESPRESSO package91 (PWscf) and the Perdew–Burke–Ernzerhof-
generalized gradient approximation (PBE-GGA)74 for the
exchange–correlation energy functional. All atoms are repre-
sented by ultrasoft pseudopotentials from the open-source GBRV
library92 with density and wave function cutoffs of 360and45 Ry,
respectively. The water films, modeled with eight H2O molecules,
are placed on side of the surface, and a dipole correction as imple-
mented in ENVIRON85 is applied. The Pt surfaces are simulated
by using a (3 × 3) supercell with three layers for Pt(100), a (3 × 2)
supercell with four layers for Pt(110), and a (

√
12 ×
√

12)R30○

supercell with three layers for Pt(111). The two bottommost metal
layers are fixed at their ideal bulk positions. Slabs are separated
by ≈17 Å. Geometry optimizations are carried through until the
forces on all relaxed atoms were smaller than 0.1 eV Å−1. Brillouin
zone integrations are performed using Γ-centered Monkhorst–Pack
meshes of (4 × 4 × 1) and a Marzari–Vanderbilt smearing of
0.02 Ry.

Single point calculations of the interfacial water on Pt(111) for
the AIMD simulation from the work of Le et al.21 were performed
with the same settings, except that a (2 × 2 × 1) k-point grid was
used. The symmetric setup of the original AIMD was split in two
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asymmetric setups with three layers of platinum each. The bottom
half was rotated by 180○ around the y axis to have the same orien-
tation for both sides. No further manipulations were performed on
the cell or positions of the atoms.

3. Structural similarity measures
We selected the local structure descriptor SOAP57 as imple-

mented in the Dscribe package79 and as similarly performed for
3D periodic water structures68 for the representation of the atomic
environment. The local environment 𝒳 around an atom is mod-
eled by summing over Gaussians centered on each atom i in the
structure within a cutoff, yielding the density ρ𝒳 (r). After expan-
sion of the density in a basis of orthonormal radial functions gb(∣r∣)
and spherical harmonics Ylm(r̂), the power spectrum p(𝒳 )b1b2 l can
be expressed in terms of expansion coefficients cblm as

ρ𝒳 (r) = ∑
i∈𝒳

exp(−(xi − r)2

2σ2 ), (A2)

ρ𝒳 (r) =∑
blm

cblmgb(∣r∣)Ylm(r̂), (A3)

p(𝒳 )b1b2 l = π
√

8
2l + 1∑m

(cb1 lm)†cb2 lm. (A4)

The cblm coefficients form the components of an abstract SOAP
descriptor vector, which is conveniently used for measuring struc-
tural similarity throughout this work.

For the analysis of the internal structure of water layers, we
evaluate the SOAP vectors centered on the oxygen atoms, including
neighboring H and O atoms up to a cutoff radius of 4 Å. For the anal-
ysis of water layers on top of Pt(111), we also include the substrate Pt
positions in the environment within the sphere defined by the cut-
off. In both cases, crossover terms between different atomic species
in the power spectrum were allowed to include the information of
hydrogen and, in the later case, platinum as well. A description of the
entire system was obtained by using the inner average of the SOAP
vectors.79 The hyperparameters for computing the SOAP descrip-
tors used throughout this work are nmax = 8, lmax = 8, σ = 0.3, and
rcutoff = 4 Å.

For comparing the structural similarity of single structures A
with a reference structure B, we use the average distance D̄93 as given
by the average kernel K̄93 and defined by

D̄(A, B) =
√

2 − 2 K̄(A, B), (A5)

K̄(A, B) = [ 1
N∑i

p(𝒳 A
i )] ⋅

⎡⎢⎢⎢⎢⎣

1
M∑j

p(𝒳 B
j )
⎤⎥⎥⎥⎥⎦

, (A6)

where N and M are the number of atoms in structures A and B,
respectively. The so-obtained distance measure D̄ is subsequently
averaged over all structures in the reference dataset to obtain an
average structural dissimilarity measure ⟨D̄⟩ with the reference
ensemble, which we call shortly average SOAP distance, here. In the
present work, the reference ensemble was created by taking snap-
shots every 0.1 ps from the AIMD(P) trajectory21 that was provided
by Cheng.
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