
1. Introduction
The mixing of fluids is relevant in many fields of science and engineering over a large range of time and 
length scales (Aref et al., 2017; Kitanidis, 1994; Ottino, 1990; Rolle & Le Borgne, 2019; Valocchi et al., 2019). 
Mixing is strongly associated with stretching and deformation in the flow field (Ottino, 1990) and with 
the combined action of advection and diffusion mechanisms (Turuban et al., 2019). In geophysical flows, 
mixing affects biogeochemical cycles, mineral precipitation/dissolution, carbon sequestration, oil recovery, 
and surface water and groundwater contamination and remediation (e.g., Cardenas et al., 2004; Chiogna 
et al., 2012; Cil et al., 2017; Wallace et al., 2020; Zhang et al., 2010).

In porous media, mixing is often slow and incomplete thus constituting the overall rate-limiting step of 
many biogeochemical processes (Sole-Mari et al., 2020; Valocchi et al., 2019; Wright et al., 2017). Therefore, 
identifying the mechanisms that can enhance mixing is of great importance, in particular at the millime-
ter to meter scale where mixing-controlled reactions often occur in a very thin (bio)reactive fringe (Bauer 
et al., 2009; Hester et al., 2017; Rolle et al., 2013). At the pore scale, fingering structures (de Anna et al., 2014; 
Jiménez-Martínez et al., 2016) and chaotic advection (Heyman et al., 2020; Lester et al., 2013, 2016; Souzy 
et al., 2020; Turuban et al., 2019) enhance mixing and exert a key control on dispersion and reaction rates. 
At the Darcy scale, anisotropic (Chiogna et al., 2015; Ye et al., 2015a, 2018) and heterogeneous flow fields 
(e.g., de Barros et al., 2012; Dentz et al., 2016) enhance plume dilution and reactive mixing. Variability in 
the hydraulic conductivity fields (Rolle et al., 2009; Werth et al., 2006; Ye et al., 2015c), topographic features 
(Bandopadhyay et al., 2018), and transient conditions (e.g., de Dreuzy et al., 2012; Kahler & Kabala, 2016; 
Piscopo et al., 2013; Sposito, 2006; Trefry et al., 2019) lead to spatially variable flow fields.
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Plain Language Summary Mixing processes in porous materials, such as aquifers, are 
generally slow and inefficient. In this study, we performed laboratory experiments to demonstrate that 
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Transient flow fields are important both in natural and engineered subsurface systems (Piscopo et al., 2013; 
Singh et al., 2020). For instance, in coastal aquifers, the combined effect of tides and regional groundwater 
flow impacts mixing and reactive processes (Geng et al., 2020; Trefry et al., 2019; Wu, Lester, et al., 2020), in-
fluencing salinity distributions and biogeochemical processes. Among engineered applications, in the field 
of groundwater remediation, transient flow fields have been proposed to enhance reactant delivery and con-
taminant degradation (Bagtzoglou & Oates, 2007; Neupauer et al., 2014; Reising et al., 2018; Rodríguez-Es-
cales et  al.,  2017; Zhang et  al.,  2009). Transient flow fields and their effect on spreading, including the 
theoretical derivation of an effective dispersion tensor have been also analyzed in previous studies (Bolster 
et al., 2009; de Dreuzy et al., 2012; Dentz & Carrera, 2003, 2005). These studies focused on heterogeneous 
porous media and on the evolution of spreading toward an asymptotic behavior. Effective and macrodisper-
sion coefficients were commonly expressed as a function of the heterogeneous properties of the porous me-
dium. Our focus here is on mixing occurring in aquifer systems affected by hydropeaking in hydraulically 
connected rivers, where sudden fluctuations in river stage at the sub-daily scale are caused by the release or 
storage of water in artificial reservoirs. This hydrological regime leads to sharp and frequent fluctuations in 
the groundwater velocity field, altering the flux and solute exchange between the river and the aquifer and, 
in combination with the geomorphic features of the river, it plays an important role in physical, geochem-
ical, thermal and biological processes in the hyporheic zone (Cardenas et al., 2004; Ferencz et al., 2019; 
Hester et al., 2013; Sawyer, Bayani Cardenas, et al., 2009; Schmadel et al., 2016; Shuai et al., 2019; Song 
et al., 2018; Wu et al., 2018, Wu, Gomez-Velez, et al., 2020). Hydropeaking affects sediment and solute trans-
port in the river (Béjar et al., 2018; Pulg et al., 2016), as well as, biogeochemical cycles (Maavara et al., 2020) 
and riverine ecosystems (Gillespie et al., 2015; Hauer et al., 2017). However, the experimental quantification 
of the impact of hydropeaking on solute transport, mixing, and mixing enhancement in the underlying 
aquifer has received little attention.

This work provides experimental evidence of the effects of hydropeaking on solute transport and mixing 
enhancement in porous aquifers. We adopt an approach based on multidimensional flow-through exper-
iments, which have been increasingly used to investigate solute transport and mixing in steady-state flow 
fields (e.g., Castro-Alcalá et al., 2012; Haberer et al., 2015; Muniruzzaman & Rolle, 2015, 2017; Simmons 
et  al.,  2002; Ye et  al.,  2015b). Conversely, fewer contributions have provided experimental evidence of 
the effect of transient boundary conditions on mixing (e.g., Boufadel et al., 2007; Cho et al., 2019; Zhang 
et al., 2009), particularly in the context of surface water-groundwater interaction (Santizo et al., 2020). We 
focus on groundwater plume spreading and mixing enhancement caused by fluctuating stages in two river 
transects in hydraulic contact with the aquifer. Such setup was inspired by the conditions typically en-
countered in the Alps, where multiple streams in the same plain are affected by the operation of different 
hydropower plants (Pérez Ciria et al., 2019) and it is also representative of a longitudinal cross section of 
a meandering or braided river affected by a hydropeaking wave. We perform the experiments in a qua-
si-two-dimensional flow-through chamber representing the vertical cross-section of an unconfined ho-
mogeneous aquifer. The homogeneous porous medium allowed us to study the impact of transient flows 
caused by hydropeaking on solute transport and mixing in isolation, avoiding mixing enhancement effects 
that occur in heterogenous porous materials (e.g., Rolle et al., 2009; Werth et al., 2006; Ye et al., 2015c). A 
dye tracer is injected into the setup in a series of five experiments considering both steady and transient 
flows. High-resolution monitoring of the spatio-temporal plume evolution is performed with a non-invasive 
imaging technique and by depth-resolved sampling and spectrophotometric measurements at the outlet of 
the setup. We quantify plume spreading and mixing, and their link with the highly fluctuating flow fields by 
analyzing breakthrough curves (BTCs), the second central spatial moments of the solute distribution, the 
dilution index, and the flux-related dilution index.

2. Experimental Setup
A quasi 2-D acrylic glass setup with inner dimensions of 77.9 E  15 E  1.1 cm3 (length × height × width) was 
used as a flow-through chamber (Figure 1). The experiments were performed in an unconfined homogenous 
porous medium made of glass beads with a diameter in the range 1.0–1.5 mm (Sartorius AG, Germany).

In the transient flow experiments, an additional layer of sand (d = 0.5–0.8 mm, Euroquartz, Germany) was 
positioned on top of the glass beads to recreate the riverbed and the riverbanks. The riverbed bottoms of the 
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two river transects were placed at different depths in the flow-through chamber to allow for both losing (left 
river) and variably losing/gaining conditions (right river), moreover, the rivers have different widths and 
riverbed thickness as indicated in Table S1. The flow-through the system is equipped with 13 ports, equally 
spaced by a constant distance of 1.1 cm. Two high-precision multi-channel peristaltic pumps (IPC-N24, 
ColeParmer, United States) were connected to the lowest 10 inlet and outlet ports to establish the flow in 
the aquifer. To generate transient flow conditions within the porous medium, two water reservoirs were 
connected to the top of the flow-through chamber with two semi-rigid tubes and placed on two surface-wa-
ter height adjusters, which could be moved vertically to simulate an oscillating water head (Figure 1). An 
additional channel was considered at the outlet to avoid the overflow of the system due to the additional 
water from the losing conditions of the rivers in the transient experiments. The river stage fluctuations are 
shown in Figure 1.

In the experiments we consider river-aquifer interaction by changing the phase of the oscillations in the 
stage of the two rivers, the amplitude of the fluctuations, the river bottom location, the thickness of the 
sandy river bottom, and the width of the two rivers. The frequency of the oscillations is kept constant. In the 
transient experiments, the Townley number (i.e., ratio between the relative time scale of diffusion and the 
tidal forcing), and the tidal strength (i.e., ratio between the amplitude of the tidal forcing and the regional 
gradient) are typical for systems affected by hydropeaking (Francis et al., 2010; Sawyer et al., 2009; Pérez 
Ciria et al., 2019) and coastal aquifers (e.g.., Trefry et al., 2019) and are reported in the Text S1, Table S1 and 
Figure S1 in Supporting Information S1. The grain Péclet number of the experiment is 566 E  and indicates 
advection-dominated conditions. During each experiment, a constant concentration C0 = 300 mg/L of the 
red azo dye new coccine (CAS 2611-82-7, Sigma-Aldrich, United States) solution was injected from the two 
central inlet ports (fourth and fifth) for 24 min. This tracer is chemically stable and photostable and displays 
low scattering and no fluorescence (Jaeger et al., 2009). The plume movement and concentration were cap-
tured with optical imaging, using a Nikon D5000 camera (12 Megapixel resolution, 18–55 mm Nikon lens). 
Details about the optical calibration are provided in Text S2 and Figures S2 and S3. We collected samples 
at the outlet ports every 4 min ( E  120 samples for each experiment) and measured the tracer concentration 

Figure 1. (a) Schematic illustration of the experimental setup, including the flow-through chamber, the inlet, and outlet pumps, and the reservoirs placed 
above two surface-water height adjusters mimicking hydropeaking. (b–c) Hydrographs showing the fluctuations of the two rivers used in one of the transient 
flow experiments (Transient 1).
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using a DR 3900 Spectrophotometer (Hach Lange, Germany). The col-
lected samples were also used to validate the results obtained from the 
optical analysis and to calculate the flux-related dilution index. The spec-
troscopy calibration curve is shown in Figure S4.

We processed the raw images taken with the camera to quantify the con-
centration of the tracer using an algorithm based on the one presented 
by Jaeger et  al.  (2009). A comparison between raw photographs and 
post-processed images is shown in Figure  2 for four plume pictures at 
different time steps (Figures 2a and 2b) and the mapped concentrations 
(Figures 2c and 2d) under steady and transient flow conditions.

The photographs in Figure 2 highlight the difference in the plume shape 
between the steady and transient setups while the tracer plume moves 
through the porous medium. A deformed plume in the transient experi-
ment (Figure 2b) is observed as a consequence of the interaction with the 
rivers. Besides capturing the evolving shape of the plume, the post-pro-
cessed images (Figures 2c and 2d) allowed us to quantify the temporal 
evolution of solute concentrations, which is necessary for the analysis of 
spreading and mixing in each experiment.

A total of five flow-through experiments was performed. The first one 
was run under steady-state flow conditions without the river system. 
In the second experiment, the rivers were added to the previous setup, 
keeping the head of both rivers equal to the groundwater table to avoid 
any surface water - groundwater exchange. Finally, three transient flow 
experiments were performed considering two time series of fluctuating 
river heads (Figure 1). In the first transient experiment, the head fluctu-
ations in the left and right rivers were in-phase, while in the second one 
they were in counter-phase. In the third transient flow experiment, the 
river fluctuations in counter-phase were repeated by filling with sand the 
whole part of the flow-through chamber above the glass beads, to reduce 
the possible occurrence of water levels higher than the porous matrix and 
in this way lowering the centroid of the plume in the vertical direction af-
ter injection of the tracer solution (Figure S8). Details of the experimental 
settings, river fluctuations, and hydraulic and transport parameters are 
reported in Table S1 while the dataset is available in Ziliotto et al. (2021).

3. Evaluation of Plume Spreading and Mixing
We computed the spatial moments to analyze the distribution of the solute concentration in the porous 
medium and to quantify the spreading of the plume and its temporal evolution. The first spatial moment 
in the i - direction, αi [L], is used to describe the location of the centroid of the plume and it is calculated as:

i xt p t x dV
V i     ,

 (1)

where xi is the ith component of the spatial coordinates, t is a dimensionless time expressed in pore volumes 
( PV v t L ( )/  , where v is the seepage velocity and L is the length of the flow-through chamber), and p x t( , ) 
[L−3] is the probability distribution of the location of the tracer at time t in the domain V:

p t
c t

c t dVV

x
x

x
,

,

,

    
   (2)

The second spatial moment E Δij [L2] is a second-order tensor and represents the mean square distance from 
the centroid of the plume. It gives information about the spreading of the plume and it is computed as:

 ij xt p t x x dVV i i j j         ,   (3)

Figure 2. Photographs (a–b) and processed images (c–d) of the dye tracer 
plume at different time steps under steady and transient flow conditions.
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A dimensionless second spatial moment is obtained by dividing the value of  ij ( )t  by  ij ( )tp
 , where tp is the 

time at which the tracer solution is completely injected in the flow-through setup. To evaluate mixing in 
porous media, we computed the dilution index (Kitanidis, 1994) and the flux-related dilution index (Chi-
ogna et al., 2011; Rolle & Kitanidis, 2014). The dilution index E t( ) [L3] is related to the Shannon entropy of 
the concentration of a plume and is a true measure of mixing that is expressed by the following equation:

          , ln ,VE t exp p t p t dVx x (4)

The dimensionless representation of the dilution index is called volumetric reactor ratio M and it is obtained 
by dividing the dilution index by the volume of the flow-through system. The flux-related formulation of the 
dilution index, E x t

Q
( , ), can also be used to characterize mixing in flow-through porous media. This metric 

quantifies how the mass flux of a solute is distributed over a given flow rate (Chiogna et al., 2011; Rolle 
et al., 2009) and it is calculated as (Rolle & Kitanidis, 2014):

           , , ln , ,Q A Q Q xE t exp p t p t q t dAx x x x (5)

where q x tx ( , ) [L/T] is the component of the specific discharge in the main flow direction, E A [L2] is the 
cross-sectional area normal to the main flow direction and  ,QE p x t  is the flux-related probability density 
function of the concentration:

   
   



,
,

, ,Q
A x

c t
p t

c t q t dA
x

x
x x

 (6)

The dimensionless representation of the flux-related dilution index is obtained by dividing E x tQ ( ),  by the 
water flux through the system.

4. Results and Discussion
The experiments performed in this study allowed investigating the dynamics of spreading and mixing of 
a plume affected by the transient fluctuations occurring in the river stage due to hydropeaking. Such fluc-
tuations have an important impact both on the solute breakthrough at the outlet of the setup and on the 
concentration distribution within the porous medium.

4.1. Breakthrough Curves

The quantification of solute concentration at the outlet of the flow-through chamber allowed obtaining 
port-resolved (Figure 3) and integrated BTCs (Figure S6). The BTCs of new coccine at several outlet ports 
reported in Figure 3 show the results of transport under steady flow conditions and under the fluctuating 
conditions of the transient flow 1 experiment. Similar results for the other transient experiments are re-
ported in Figures S5 and S6, showing that considering both in-phase or counter-phase oscillations leads to 
multi-peaked BTCs.

In the steady flow field, the solute plume displays the typical bell-shaped concentration distribution at all 
ports, and the highest peak concentrations occur at ports 4 and 5, which are in line with the injection of 
the plume at the inlet. The breakthrough curves of the transient flow 1 experiment display more complex 
patterns. As observed in Figure 2, the transient flow, induced by the fluctuations in the river stage, leads to 
stretching and folding, enhanced spreading in the longitudinal and transverse directions, and also depth-de-
pendent variations of the advective velocity. The part of the plume closer to the river is more affected by the 
change in the hydraulic head gradients and shows more pronounced deformation in the concentration dis-
tribution within the porous medium. The breakthrough curves measured in the transient experiments be-
come multi-modal, especially in the core of the plume (ports 4, 5, 6, and 7); normalized concentrations high-
er than 0.5 occur now at three ports (ports 5, 6, and 7) at three distinct times (1.12 PV, 1.32 PV, and 1.28 PV, 
respectively) and we can observe strong fluctuations in the concentration values measured at the same port 
at different times. Besides the concentration values of the measured breakthrough curves, the river stage 
fluctuations also impact the time at which peak concentrations are reached. The first peak concentration 
occurs earlier in the transient experiment than the single peak displayed in the steady flow experiment. In 
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fact, the mean velocity increases due to the local reduction of the thickness of the saturated porous medium 
induced by the presence of the rivers (this effect is clearly visible in the breakthrough curves measured for 
the steady flow experiment with rivers in Figure S5). Moreover, positive and negative fluctuations around 
the mean flow velocity caused by changes in the river stage can both accelerate and decelerate the plume 
movement (depending on its location in the system), increase spreading in the longitudinal direction, and 
influence local dispersion by sharpening concentration gradients and by affecting the magnitude of the 
hydrodynamic dispersion coefficients. We provide further details and data about a solute breakthrough in 
the Supporting Information S1, including the port-resolved breakthrough curves for all experiments (Fig-
ure  S5), the depth-integrated breakthrough curves (Figure  S6), and the evolution of the vertical spatial 
profiles at the outlet for the steady flow and the transient flow Experiment 1 (Figure S7). Considering the 
location of the first central moment on the vertical direction through the comparison between Transient 2 
and Transient 3 experiments, we can observe that the multi-modal shape of the BTCs is more pronounced 
in plumes that flow closer to the river boundary (Figures S5 and S8).

4.2. Plume Spreading, Mixing, and Mixing Enhancement

The normalized second moments in the longitudinal and transverse directions,  xx xx/( ( ))t tp  and 
 zz /( ( ))t tzz p  , respectively, and the volumetric reactor ratio E M for all flow-through experiments were com-
puted based on the results of the image analysis (Figures 4a–4c). The flux-related reactor ratio, QE M  (Fig-
ure 4d), was calculated from the collected samples at the outlet using the flow rate measured at each port 
and the samples' solute concentrations determined by spectrophotometric analysis. These quantities were 
calculated to analyze and quantify the impact of the rivers' fluctuations on plume spreading, mixing, and 
mixing enhancement. In addition to the experimental results of the steady flow experiment, we computed 
the analytical solution of the 2-D advection-dispersion equation considering a pulse input of a tracer from 
a line source (Text S3). Even if the analytical solution requires some simplifications in comparison to the 

Figure 3. Breakthrough curves obtained from the results of the optical analysis and spectrophotometric measurements 
of the samples collected at different outlet ports in a steady flow and transient flow Experiment 1 (TF1). The shaded 
areas represent the experimental uncertainty of the concentration estimated by image analysis.
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experimental setup, it describes very well the steady flow experiment without rivers, validating the evidence 
collected in the steady flow experiments and allowing the quantification of local longitudinal and trans-
verse dispersion coefficients (Dl,sf = 1.02 × 10−7 m2/s and Dt,sf = 8.0 × 10−9 m2/s).

Figures 4a and 4b show that the spreading in the longitudinal and transverse directions is more pronounced 
in the transient flow experiments than in the steady flow ones. The spreading in the longitudinal direction 
increases following almost a monotonic trend for all the experiments. However, we can observe the differ-
ent effect of a loosing river (left river) in comparison to a loosing/gaining river (right river). The increase in 
longitudinal spreading is reduced under loosing conditions since the longitudinal flow velocity of the plume 
decreases. If loosing/gaining conditions are variably present, longitudinal spreading decreases/increases 
due to the river acting as a source/sink term for the flow. On the contrary, the spreading in the transverse 
direction fluctuates strongly in accordance with the squeezing and the stretching of the plume caused by 
the oscillations in the rivers' water table. The highest and fastest increase in spreading occurs below the 
river on the right, where the shape of the plume significantly changes. The downstream river is located 
deeper than the one upstream and is characterized by stage fluctuations with a larger amplitude. Therefore, 
the closer the plume is to the surface water-groundwater interface and the larger the fluctuations, the larger 
is the expected effect of hydropeaking on spreading. For instance, the comparison between transient 2 and 
transient 3 experiments close to the left river shows that the amplitude in the fluctuations of Δzz is related to 
the distance of the centroid of the plume to the river (Figure S8). Comparing the differences in the timing 
of the peaks in Δzz, we can appreciate the effect of the phase shift between the oscillations in transient 1 

Figure 4. Second spatial moments normalized by  ij ( )tp  , where tp is the time at which the tracer solution is completely 
injected in the flow-through setup, obtained from the optical analysis for all the experiments (a–b). Volumetric reactor 
ratio E M obtained from the optical analysis for all the experiments (c). The filled markers indicate the time during which 
the tracer solution is completely injected in the flow-through setup. The light blue area (fx5) indicates the time spent by 
the plume under the left river, while the gray area (fx6) indicates the time spent under the right river. Panel (d) shows 
the flux-related reactor ratio obtained from the spectrophotometric analysis of the samples collected at the outlet of the 
setup.
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(in-phase), and transient 2 and transient 3 (counter-phase) experiments. Moreover, during transient flow 
conditions, local transverse dispersion, which is nonlinearly dependent on the groundwater flow velocity 
(Chiogna et al., 2010), may have an additional effect on enhancing spreading in the vertical direction (Fig-
ure 4b). Even if mixing cannot be described by the second moments only, a correlation between spreading in 
the vertical direction and mixing can be observed. In fact, the dilution index increases faster under transient 
flow than in steady flow conditions (Figure 4c). As observed, the spatial variability of the flow velocity leads 
to changes of plume shape, enhances solute spreading, affects local dispersion coefficients, and all these 
processes result in enhancement of plume dilution. Finally, we observe that the hydropeaking-induced 
fluctuations impact the distribution of the solute mass flux over the water flux (Figure 4d). The flux-related 
reactor ratio integrates both the impact on solute distribution by diffusive-dispersive processes at the plume 
fringe as well as the changing water flux due to the hydraulic connection of the rivers with the underlying 
aquifer. Overall, the fluctuations cause a distribution of the solute over a larger flow rate in particular at 
early and late times (i.e., 0.92 PV < t < 1.12 PV and 1.47 PV < t < 1.62 PV, respectively) when higher values 
of flux-related reactor ratio are reached. This behavior is explained by the fact that plumes in the transient 
experiments are more elongated than in the steady flow experiments and the forward and backward fringes 
of the plume are more diluted. Spreading and mixing enhancement show very dynamic patterns, which 
are illustrated in Figures S9–S11. The sole presence of the rivers leads to some increase of ΔxxE  and ΔzzE  (i.e., 
20.4% and 49.8%, respectively) as shown in Figures S9 and S10, and only to a slight mixing enhancement 
of 4.8% at the outlet of the system (Figure S11). All transient flow experiments show significant spreading 
enhancement ( ΔxxE  from 63% to 105.6% and ΔzzE  from 81.9% to 249.5%) and mixing enhancement ranging 
from 23.7% to 41.8% at the end of the system, with respect to the steady flow experiment. More specifical-
ly, the spreading enhancement only due to hydropeaking (i.e., compared with the steady flow with rivers 
experiment) ranges from ΔxxE  44.7% to 78.8% and from ΔzzE  38.7% to 209.6%, and the mixing enhancement 
ranges from 13.2% to 29.7% at the outlet of the flow-through chamber. In the transient flow Experiment 
1, we observe the smallest maximum enhancement in lateral spreading (i.e., 81.9%) and consequently the 
smallest mixing enhancement (23.7%). Conversely, when ΔzzE  reaches its maximum value in the transient 
flow Experiment 2 (249.5% at 0.43 PV), we observe a variation in the slope of the volumetric reactor ratio 
(Figures 4b and 4c), and the highest increment (+41.8%) is reached at the outlet of the system (Figures S10 
and S11). These results show a positive correlation between plume deformation quantified through lateral 
spreading and mixing enhancement. In particular, from the analyzed setups we can observe that the dis-
tance of the plume to the riverbed and the amplitude of the fluctuations are key factors controlling mixing 
and spreading, whereas the phase shift between the fluctuations of the two rivers and the thickness of the 
sand layer plays a minor role. Finally, Figure S12 shows that our system does not reach an asymptotic value 
in the effective dispersion coefficient as, for example, in Bolster et al. (2009), Dentz and Carrera (2005), and 
de Dreuzy et al. (2012) due to the local impact of the river fluctuations and their high frequency. In our 
experiment, the system remains in non-equilibrium conditions, and the mean values of both longitudinal 
and transverse effective dispersion coefficients, normalized by Dl,sf and Dt,sf, vary with the river fluctuations.

5. Conclusions
The laboratory investigation performed in this study provides the first experimental evidence of the effects 
of dynamic river fluctuations, mimicking hydropeaking conditions, on solute transport and concentration 
distribution in the subsurface. The experimental outcomes, obtained by combining high-resolution imag-
ining techniques and conventional depth-resolved sampling and spectrophotometric analysis, show that 
hydropeaking generates multi-modal, fluctuating breakthrough curves. Our results also show a significant 
spreading and mixing enhancement when comparing the transient flow with the steady flow experiments. 
Moreover, the unique dataset collected in this experimental investigation can be used in future studies to 
test theoretical works on plume dispersion in porous media, as well as the capabilities of numerical mod-
els to accurately describe flow and transport under transient conditions. The rivers' fluctuations enhance 
spreading in the longitudinal direction and cause the spreading in the vertical direction to strongly fluctuate 
because of the squeezing and the stretching of the plume. Even if spreading cannot univocally describe 
mixing, the link between the spreading in the vertical direction and mixing enhancement is evident. In fact, 
when the plume is more deformed and consequently diffusive/dispersive fluxes occur over a larger area, 
mixing is also enhanced. These findings are opposite to the observations in heterogeneous media, where 
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mixing enhancement is mainly caused by flow focusing: in regions of high hydraulic conductivity contrast, 
streamlines are squeezed and the area available for diffusive/dispersive fluxes decreases (i.e., a reduction in 
transverse spreading), however, the solute distributes effectively over a larger water flux. Indeed, the main 
mixing enhancement in the setup considered in this study is due to an increase in plume spreading and to 
changes in the local dispersion coefficient caused by the highly transient boundary conditions. Our out-
comes show the importance of considering hydropeaking, and more generally transient conditions at the 
surface water-groundwater interface, as an important factor for subsurface solute transport.

Data Availability Statement
Datasets for this research are available in this in-text data citation reference: Ziliotto et al.  (2021). “Mix-
ing enhancement mechanisms in aquifers affected by hydropeaking: Insights from flow-through labora-
tory experiments. Mendeley Data, V2, https://doi.org/10.17632/sx9gj2mhhm.2, www.doi.org/10.17632/
sx9gj2mhhm.2.
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