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Abstract
Boundary equilibria bifurcation (BEB) arises in piecewise-smooth (PWS) sys-
tems when an equilibrium collides with a discontinuity set under parameter
variation. Singularly perturbed BEB refers to a bifurcation arising in singu-
lar perturbation problems which limit as some ε→ 0 to PWS systems which
undergo a BEB. This work completes a classification for codimension-1 sin-
gularly perturbed BEB in the plane initiated by the present authors in [19],
using a combination of tools from PWS theory, geometric singular perturba-
tion theory and a method of geometric desingularization known as blow-up.
After deriving a local normal form capable of generating all 12 singularly
perturbed BEBs, we describe the unfolding in each case. Detailed quantita-
tive results on saddle-node, Andronov–Hopf, homoclinic and codimension-2
Bogdanov–Takens bifurcations involved in the unfoldings and classification
are presented. Each bifurcation is singular in the sense that it occurs within a
domain which shrinks to zero as ε→ 0 at a rate determined by the rate at which
the system loses smoothness. Detailed asymptotics for a distinguished homo-
clinic connection which forms the boundary between two singularly perturbed
BEBs in parameter space are also given. Finally, we describe the explosive
onset of oscillations arising in the unfolding of a particular singularly perturbed
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boundary-node bifurcation. We prove the existence of the oscillations as per-
turbations of PWS cycles, and derive a growth rate which is polynomial in ε
and dependent on the rate at which the system loses smoothness. For all the
results presented herein, corresponding results for regularised PWS systems are
obtained via the limit ε→ 0.

Keywords: singular perturbations, piecewise-smooth systems, blow-up,
boundary-equilibrium bifurcation, regularisation

Mathematics Subject Classification numbers: 34A34, 34D15, 34E15, 37C10,
37C27, 37C75.

(Some figures may appear in colour only in the online journal)

1. Introduction

This manuscript concerns the unfolding of singularities in planar singular perturbation prob-
lems which limit to piecewise-smooth (PWS) systems. The underlying PWS system is assumed
to have a smooth codimension-one discontinuity set, or switching manifold Σ ⊂ R

2, which has
an isolated boundary equilibrium (BE). BEs are PWS singularities which unfold generically
in a codimension-1 bifurcation known as a boundary equilibrium bifurcation (BEB), whereby
an isolated equilibrium collides with the switching manifold Σ under parameter variation.

A first classification of planar BE singularities appeared in Filippov’s seminal work on
discontinuous PWS systems [10]. Here it was shown that generically, there are eight topo-
logically distinct classes of BE singularities, comprised of two boundary-saddle (BS), two
boundary-focus (BF) and four boundary-node (BN) singularities; see figure 1. A treatment of
the unfolding of these singularities came later in [32], where the authors identify ten topologi-
cally distinct unfoldings, and provide ‘prototype systems’ for each. Subsequently in [14], two
more unfoldings were identified, bringing the total count to 12. Here the authors present a sin-
gle prototype system capable of generating all 12 unfoldings, and a completeness theorem [14,
theorem 2] ruling out the possibility of additional missing cases. Finally, explicit local normal
forms (as opposed to ‘prototypes’) for a large number of BE singularities have been derived in
[6], however the unfoldings of these normal forms via BEB have not yet been described.

The notion of singularly perturbed BEB was developed more recently in [19], for the anal-
ysis of smooth singular perturbation problems limiting to PWS systems with a BF bifurcation.
The motivation to study smooth perturbations of PWS systems arises from the observation that
PWS systems often serve as approximations for smooth dynamical systems with abrupt tran-
sitions in phase space. Hence, it is natural to consider a class of smooth singular perturbation
problems, which limit to PWS systems that are discontinuous along a switching manifold Σ
as a perturbation parameter ε→ 0. Abrupt dynamical transitions in such systems occur within
an ε-dependent neighbourhood Uε ⊂ R

2 about Σ known as the switching layer, which satisfies
Uε → Σ as ε→ 0. It is important to note that singular perturbation problems in this class can
arise either (i) naturally, or (ii) by a process of regularisation whereby a modeller ‘smooths out’
discontinuity in a PWS system. In the former case, the problem is given as a smooth singular
perturbation problem with a PWS singular limit; see e.g. [18, 27] for applications of this kind.
In the latter case, the PWS system is given, and the modeller introduces a method of regular-
ization based on the characteristics of the problem at hand; many examples of this kind can be
found in [16]. In both cases, analytical techniques from PWS systems and geometric singular
perturbation theory [21, 30, 38], in combination with a method of geometric desingularization
known as the blow-up method [9, 29], provide a powerful analytical framework; see e.g. [4, 5,
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Figure 1. The eight BE singularities arising in Filippov’s topological classification
[10]. The switching manifold Σ is shown in green, with sliding/crossing submanifolds
in bold/dashed respectively. We adopt the labelling convention in [14] with S, n, N,
F denoting saddle, stable node, unstable node, focus respectively, and I/O denoting
inward/outward flow along the (bold green) sliding branch of Σ.

13, 16, 22, 24–27, 34, 36, 37]. The reader is referred to [7] for an existing analysis of BEBs
via such an approach.

The present manuscript provides a classification and detailed dynamical study of singularly
perturbed BEBs in the plane. The work can be seen as a (self-contained) continuation of recent
work in [19], see also the PhD thesis [17], where the analysis was restricted to a subset of
singularly perturbed BF bifurcations, treating three of the total 12 BE unfoldings in detail,
and successfully resolving the degeneracies associated with these cases. This manuscript aims
to complete the project, by providing a ‘complete’ description for all 12 unfoldings. Simi-
larly to [17, 19], emphasis is placed on understanding the smooth dynamics with 0 < ε � 1.
This allows for the treatment of problems arising either naturally or via regularization simul-
taneously, since the corresponding results for (regularized) PWS systems are easily obtained
upon taking the non-smooth singular limit ε→ 0.

First, we show that the Cr�1 local normal form derived for singularly perturbed BF bifur-
cations in [19] is in fact sufficient to generate all 12 unfoldings. A corresponding PWS local
normal form is obtained from this expression in the non-smooth singular limit ε→ 0.

We then study all 12 unfoldings for 0 < ε � 1. Each unfolding typically involves singular
bifurcations, in some cases codimension-two, occurring within an ε-dependent domain which
shrinks to zero as ε→ 0 at a rate which can be quantified explicitly in terms of the rate at which
the system loses smoothness. We present two-parameter bifurcation diagrams for a desingular-
ized system with ε = 0 which determines the qualitative dynamics for 0 < ε � 1. It is worthy
to note that within the class of smooth monotonic regularizations considered, the dynamics
are shown to be qualitatively determined by the underlying PWS problem, i.e. the bifurcation
structure is qualitatively independent of the choice of regularization, and determined by the
type of PWS unfolding in the limit ε→ 0. It is shown how the choice of regularisation does,
however, effect the dynamics quantitatively, particularly due to its determination of the rate at
which the system loses smoothness as ε→ 0.

Following an analysis of the unfoldings, we present new results on the asymptotics of distin-
guished homoclinic solutions corresponding to boundaries between singularly perturbed BF1

and BF2 bifurcations. Finally, special attention is devoted to the singularly perturbed BN3

bifurcation, which provides the necessary local mechanisms for the onset of relaxation-type
oscillations. This was first observed in [27] in the context of substrate-depletion oscillations.
Whereas emphasis there was on the existence of relaxation-type oscillations for the specific
model, we will in the present work identify and describe the explosive onset of oscillations in
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the case of generic singularly perturbed BN3 bifurcations. Similarly to the canard explosion
phenomena known to occur in classical slow-fast systems [9, 29, 30], we will show that limit
cycles in the singularly perturbed BN3 bifurcation perturb from a continuous family of singu-
lar cycles, i.e. closed concatenated orbits having segments along a critical manifold. However,
the local mechanism for the onset of explosive dynamics differs from that of classical canard
explosion, and functions without the need for canard solutions. In contrast to the exponential
growth rate associated with classical canard explosion, we show that the growth rate of the
cycles arising in singularly perturbed BN3 is polynomial in ε. We quantify this growth rate in
terms of properties of the regularization.

The manuscript is structured as follows: basic definitions and setup are introduced in
section 2. The Cr�1 local normal form capable of generating all 12 unfoldings for 0 < ε � 1, as
well as the resulting smooth and PWS classifications are also given in section 2. Main results are
presented in section 3. Specifically, the blow-up analysis is outlined in section 3.1, unfoldings
and corresponding two-parameter bifurcation diagrams are presented in section 3.2, asymp-
totic results on boundary separatrices are presented in section 3.3, and results on the singularly
perturbed BN3 explosion are given in section 3.4. Main results on the unfolding and boundary
separatrices are proved in section 4, and a proof for the results pertaining to BN3 explosion are
presented in section 5. Finally in section 6, we conclude and summarise our findings.

2. Setup and normal form

2.1. Setup

The setup is taken from [23], which has also been adopted in [17, 19, 27]. We consider planar
systems

ż = Z
(
z,φ

(
yε−1

)
,α

)
, (1)

where z = (x, y) ∈ R
2, φ : R→ R, ε ∈ (0, ε0], and α ∈ I ⊂ R. The vector field Z : R2 × R×

I → R
2 is assumed to be smooth in all arguments, but generically non-smooth in the limit

ε→ 0.

Assumption 1. The map p �→ Z(z, p,α) is affine, i.e.

Z(z, p,α) = pZ+(z,α) + (1 − p)Z−(z,α), (2)

where the vector fields Z± : R2 × I → R
2 are smooth.

Assumption 2. The smooth ‘regularization function’ φ : R→ R satisfies the monotonicity
condition

∂φ(s)
∂s

> 0,

for all s ∈ R and, moreover,

φ(s) →
{

1 for s →∞,

0 for s →−∞.
(3)
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It follows from assumption 1 and the form of the (non-uniform) limit in (3) that system (1)
is (generically) PWS in the singular limit ε→ 0. In particular, the limiting system

ż =

{
Z+(z,α) if y > 0,

Z−(z,α) if y < 0,
(4)

is PWS and (generically) discontinuous along the switching manifold

Σ = {(x, y) : f Σ(x, y) = y = 0} . (5)

Remark 2.1. The more general scenario where Σ = {z ∈ R
2 : f Σ(z) = 0} for any smooth

function f Σ : R2 → R such that D f Σ|Σ 	= (0, 0), can easily be incorporated into the preceding
formalism by replacing y with f Σ(z) in system (1) and adjusting assumptions 1 and 2 accord-
ingly. Since we restrict to a local analysis throughout, we may assume that f Σ(z) = y without
loss of generality.

Notice that system (4) can be ‘regularised’ via (2) with p = φ(yε−1). Hence, system (1) can
be viewed as either of the following:

• A smooth singularly perturbed system with a PWS singular limit;
• A smooth regularization of the PWS system (4).

In this work we shall prioritise the former interpretation, since (i) this case is treated in less
detail so far in the literature, and (ii) findings pertinent to the latter case can be immediately
inferred from the dynamics of the nearby smooth system upon taking the limit ε→ 0.

We impose one more technical assumption, which restricts the class of regularization
functions φ:

Assumption 3. The regularization function φ(s) has algebraic decay as s →±∞, i.e. there
exist k± ∈ N+ and smooth functions φ± : [0,∞] → [0,∞) such that

φ(s) =

{
1 − s−k+φ+

(
s−1

)
, s > 0,

(−s)−k−φ−
(
(−s)−1

)
, s < 0,

(6)

and

β± :=φ±(0) > 0. (7)

Assumption 3 restricts to the class of regularization functions with algebraic decay toward
0, 1, and is natural in the context of general systems (1) with analytic or sufficiently smooth
right-hand-side. Specifically, it follows that both mappings u �→ φ(±u−1) for u > 0 have well-
defined Taylor expansions at u = 0, which are each nondegenerate in the sense that there
are leading nonzero terms (1 − uk+β+ and uk−β−, respectively) at order k±, respectively.
Note this assumption precludes regularizations like φ(s) = tanh(s) or φ(s) = es/(1 + es),
which have exponential decay toward 0, 1 and thus k = ∞. We omit the rigorous treatment
of these cases, but refer to [18, 22] for details on how to handle non-algebraic asymptotics
using an adaptation of the blow-up method.

Remark 2.2. Regularisation functions φ which satisfy assumptions 2 and 3 can be analytic,
and should be distinguished from the well known class of non-analytic Sotomayor–Teixeira
(ST) regularizations. In particular, the regularizations considered herein do not feature an
artificial cutoff at the boundary to the switching layer.
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2.2. PWS preliminaries

It follows from our assumptions that the PWS system (4) is Filippov-type [10]. In particular,
sliding and crossing regions of Σ can be determined in accordance with their usual definitions.

Definition 2.3. Given system (4) and a point p ∈ Σ. Then p ∈ Σ is called a crossing (sliding)
point if the quantity(

Z+ f (p)
) (

Z− f (p)
)

(8)

is positive (negative), where Z± f (·) = 〈∇ f (·), Z+(·,α)〉 denotes a Lie derivative. We denote
the set of crossing (sliding) points by Σcr (Σsl).

It follows from our assumptions on φ that the sliding/Filippov vector field described as a
convex combination in [10] can be written as

ż = −
(
(Z+ − Z−)( f Σ)(z)

)−1 [
Z+, Z−] ( f Σ)(z), z ∈ Σsl, (9)

where [Z+, Z−] denotes a Lie bracket. If f Σ(x, y) = y as in (5), then the sliding/Filippov vector
field is given in the x-coordinate chart by

ẋ =
det

(
Z+((x, 0),α)|Z−((x, 0),α)

)
Z−

2 ((x, 0),α) − Z+
2 ((x, 0),α)

= Zsl(x,α), (x, 0) ∈ Σsl, (10)

where det(Z+((x, 0),α)|Z−((x, 0),α)) denotes the determinant of the 2 × 2 matrix with
columns Z+((x, 0),α), Z−((x, 0),α).

Sliding trajectories can leave Σsl at a point of tangency with either vector field Z±. Depend-
ing on the order of the tangency, such a point may also separate sliding and crossing regions
of Σsl. The following definition characterises the least degenerate case, i.e. quadratic tangency
with either Z±.

Definition 2.4. Given system (4) and a point F ∈ Σ. Then F is a fold point if either

Z+ f (F) = 0, Z+(Z+ f )(F) 	= 0, or Z− f (F) = 0, Z−(Z− f )(F) 	= 0.

(11)

A fold point F with Z+ f (F) = 0 is visible (invisible) if the inequality Z+(Z+ f )(F) 	= 0 is
positive (negative). Conversely, a fold point F with Z− f (F) = 0 is visible (invisible) if the
inequality Z−(Z− f )(F) 	= 0 is negative (positive).

It remains to review the notion of BE singularities and BEB. BE singularities arise when
one or both of the vector fields Z±(zbe,αbe) = (0, 0)T for some zbe ∈ Σ and parameter value
α = αbe. We consider the least degenerate case in which zbe ∈ Σ is a hyperbolic equilibrium
of Z+(·,αbe), and Z− is locally transverse to Σ. Filippov showed in [10], see also [14], that
there are 8 topologically distinct cases depending on:

• The type of equilibrium (focus, node or saddle);
• The orientation of the sliding dynamics (towards or away from zbe);
• In the case that zbe is a node of Z+(·,αbe), its asymptotic stability (stable or unstable);

see again figure 1. As described in [14], the eight cases can be neatly categorised if we let S,
n, N, F denote ‘saddle’, ‘stable node’, ‘unstable node’, ‘focus’ respectively, and let I/O define
inward/outward sliding flow (i.e. towards or away from zbe). Then the possible cases are: SO,
SI, nO, nI, NO, NI, FO and FI.
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Figure 2. Unfolding of the NI BE (cf figure 1) in a BN3 bifurcation.

BE singularities unfold generically under parameter variation in a BEB. Below we provide
a formal definition for BEB in general PWS systems (4).

Definition 2.5. The PWS system (4) has a BEB at z = zbe = (xbe, 0) ∈ Σ for α = αbe if
Z+(zbe,αbe) = (0, 0)T and the following nondegeneracy conditions hold:

Z−
2 (zbe,αbe) 	= 0, det

(
∂Z+

∂α
| ∂Z+

∂x

) ∣∣∣∣
(zbe,αbe)

	= 0,
∂Zsl

∂x

∣∣∣∣
(xbe,αbe)

	= 0, (12)

where Z± = (Z±
1 , Z±

2 )T and det(X|Y) denotes the determinant of the matrix with columns X, Y.
Let λ± and v± denote the eigenvalues and corresponding eigenvectors of the Jacobian

(∂Z+/∂z)|(zbe,αbe). We distinguish the following cases:

(BF) λ± = A ± iB for A, B ∈ R\{0}, (BF);
(BN) λ+/λ− > 0 and v± are transversal to Σ, (BN);
(BS) λ+/λ− < 0 and v± are transversal to Σ, (BS).

The topological classification in [14] shows that generically, the eight BE bifurcations in
figure 1 unfold in 12 topologically distinct BEBs. Specifically, there are five BF bifurcations,
four BN bifurcations and three BS bifurcations. We shall label these by BFi, BNi and BSi for
i ∈ {1, . . . , 5}, i ∈ {1, . . . , 4} or i ∈ {1, 2, 3} respectively, in accordance with the notational
conventions from [32]. The two unidentified BN bifurcations later described in [14] will be
denoted BN3 and BN4. The BN3 unfolding is of particular interest in this work and shown in
figure 2. The fact that there may be more than one unfolding per BE is a consequence of the
relative positioning of separatrices; topologically distinct BEBs can be separated by so-called
‘double separatrices’ [14] which connect equilibria and points of tangency on Σ. The role of
separatrices is also discussed in e.g. [3, 12].

Remark 2.6. The determinant condition in (12) ensures that the equilibrium of Z+(·,α)
collides with Σ transversally under variation in α. To see this, notice that in the extended
(z,α)-space, the vector Tbe := (∇Z+

1 ∧ ∇Z+
2 )|(zbe,αbe) is tangent to the curve defined implicitly

by Z+(z,α) = (0, 0)T. The stated determinant condition follows by the requirement that Tbe

has a non-zero y-component.

Finally, we introduce the notion of singularly perturbed BEB.

Definition 2.7. We say that system (1) under assumptions 1 and 2 has a singularly perturbed
BEB if the PWS system (4) obtained in the singular limit ε→ 0 has a BEB. Notions of singu-
larly perturbed BF bifurcation, singularly perturbed BN bifurcation and singularly perturbed
BS bifurcation are similarly defined.

By definition, the existence of 12 BEBs implies the existence of 12 singularly perturbed
BEBs.
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2.3. Normal form and classification

We show that the normal form derived for singularly perturbed BF bifurcations in [19]
generalises to a single normal form capable of generating all 12 singularly perturbed BEBs.

Theorem 2.8. Consider system (1) under assumptions 1, 2, and assume that the PWS sys-
tem (4) obtained in the limit ε→ 0 has a BEB of type BF, BN or BS at zbe ∈ Σ when α = αbe.
Then there exists constants

τ ∈ R\{0}, δ ∈ R\{0, τ 2/4}, γ ∈ R,

such that system (1) can be smoothly transformed, up to a reversal of orientation, into the local
normal form

(
ẋ
ẏ

)
=

(
τ − γ + φ

(
yε−1

)
(γ − τ + μ+ τ x − δy + θ1(x, y,μ))

1 + φ
(
yε−1

)
(−1 + x + θ2(x, y,μ))

)
=: X(x, y,μ, ε),

(13)

where θi(x, y, μ), i = 1, 2 are real-valued smooth functions such that

θ1(x, y,μ) = O(x2, xy, y2, xμ, yμ,μ2), θ2(x, y,μ) = O
(
x2, xy, y2, xμ, yμ

)
,

and μ is a new bifurcation parameter related to α via μ = g(α), where g : Iα → R is a smooth
function such that g(αbe) = 0 and g′(αbe) 	= 0.

The PWS system

(
ẋ
ẏ

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
μ+ τ x − δy + θ1(x, y,μ)

x + θ2(x, y,μ)

)
=: X+(x, y,μ), (y > 0),(

τ − γ
1

)
=: X−(x, y,μ), (y < 0),

(14)

obtained from (13) in the limit ε→ 0+ has a BEB at the origin forμ = 0, and a Filippov/sliding
vector field given by

ẋ =
μ+ γx + θ1(x, 0,μ) − (τ − γ)θ2(x, 0,μ)

1 − x − θ2(x, 0,μ)
=: Xsl(x,μ), (x, 0) ∈ Σsl.

(15)

Proof. The proof is similar to derivation of the normal form for singularly perturbed BF
bifurcations presented in [19, p 38], and deferred to appendix A for brevity. �

Remark 2.9. Note the qualifier ‘up to a reversal of orientation’ in theorem 2.8. Orientation
should be reversed if the vector field component Z−

2 (z,α) in system (1) satisfies Z−
2 (0, 0) < 0.

A classification of singularly perturbed BEBs with 0 < ε � 1 can be given via the classifi-
cation of the underlying PWS system for ε→ 0. This approach is similar to the classification
of singularities in slow-fast systems in terms of their ‘singular imprint’ for ε = 0.

Similarly to the prototype system given in [14], the PWS normal form (14) can be used
to generate all 12 BEBs by a suitable restriction of parameters in the PWS normal form (14).
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Table 1. Classification for the singularly perturbed BEBs generated by the local nor-
mal form (13), given in terms of a PWS classification for the PWS local normal form
(14) obtained in the singular limit ε→ 0. The classification is equivalent to the PWS
classification in [14, table 1]. Here ± denotes the sign of the corresponding quantity.

Bifurcation Singularity τ δ Δ γ Separatrix

BS1 SI − + − Does not hit Σ̃sl

BS2 SI − + − Hits Σ̃sl

BS3 SO − + +
BN1 nI − + + −
BN2 NO + + + +
BN3 NI + + + −
BN4 nO − + + +

BF1 FO + + − + Hits Σ̃sl

BF2 FO + + − + Does not hit Σ̃sl

BF3 FI + + − −
BF4 FI − + − −
BF5 FO − + − +

Each unfolding can be identified with an open region in (τ , δ, γ)-parameter space determined
by the quantities

τ , δ, Δ := τ 2 − 4δ, γ.

Double-separatrices which connect a visible fold point with an equilibrium on Σsl also play a
role in separating regions corresponding to BF1,2, and regions corresponding to BS1,2. Here the
distinction lies in whether or not the separatrix emanating from the fold point connects to the
region Σ̃sl ⊂ Σsl which is bounded between the fold point and the equilibrium. The resulting
classification, which is equivalent to that in [14, table 1], is given in table 1.

3. Main results

In this section we present our main results. We begin in section 3.1 with an outline of the
sequence of blow-up transformations necessary to resolve all degeneracy associated with sin-
gularly perturbed BEB in system (13). This allows for the identification of a desingularized
system governing the unfolding of the singularity. In section 3.2, we present the unfolding
for all 12 singularly perturbed BEBs. In section 3.3 we present results on the asymptotics of
a homoclinic double-separatrix which separates singularly perturbed BF1,2 bifurcations. The
BS1,2 boundary is also discussed. Finally in section 3.4, we present results on an observed
‘explosion’ in the case of singularly perturbed BN3 bifurcations.

3.1. Resolution via blow-up

We describe the blow-up analysis used to resolve degeneracy in system (13) due to either (i)
the loss of smoothness along Σ, or (ii) the loss of hyperbolicity at fixed points. The sequence
of blow-up transformations is the same as in [19], so we restrict ourselves here to an overview.

System (13) loses smoothness along Σ in the singular limit ε→ 0. To describe this, we
follow [23, 26] and others and consider extended system
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Figure 3. Effect of the cylindrical blow-up (16). (a) The switching manifold Σ is shown
in green, embedded in the extended (x, y, ε)-space. The tangency point is shown in
orange. (b) Dynamics and geometry following cylindrical blow-up of Σ× {0}. The
loss of smoothness along Σ× {0} has been resolved, but a degenerate point Q (also
in orange) stemming from the tangency point persists. An attracting critical manifold S
terminating at Q is identified on the cylinder, and shown here in blue. The local projective
coordinates (x, r1, ε1) defined in (17) and centered at Q are also shown.

{(x′, y′) = εX(x, y,μ, ε), ε′ = 0} ,

with respect to a fast time, recall (13). For this system Σ× {0} is a set of equilibria with a loss
of smoothness. By assumption 3, we gain smoothness via a homogeneous cylindrical blow-up
transformation of the form

r � 0, (ȳ, ε̄) ∈ S1 �→
{

y = rȳ,

ε = rε̄,
(16)

which replacesΣ× {0} by the cylinder {r = 0} × R× S1, see figure 3. The subspace {r = 0}
corresponding to the blow-up cylinder is invariant. After a suitable desingularization amount-
ing to division by ε̄, the dynamics within {r = 0} are governed by a slow-fast system with
a normally hyperbolic and attracting critical manifold, denoted S in figure 3(b) [4, 5, 23,
26, 33, 34]. Moreover, there is a reduced flow on S which is topologically conjugate to the
sliding/Filippov flow induced by (15).

The critical manifold S terminates tangentially to the fast flow at a degenerate point Q ∈
{r = ε = 0}, which is also a point of tangency with the outer dynamics induced by the vector
field X+ within {ε = 0}; see again figure 3(b). Choosing local coordinates of the form

ȳ = 1 : y = r1, ε = r1ε1, (17)

with x unchanged, this degeneracy is identified as a fully nonhyperbolic (i.e. no eigenvalues
with non-zero real part) equilibrium at (x, r1, ε1) = (0, 0, 0).
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The point Q is degenerate for all μ ∈ R, however degeneracy stemming from the presence
of the tangency is resolved via the weighted spherical blow-up

ρ � 0, (x̂, r̂, ε̂) ∈ S2 �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = ρk(1+k) x̂,

r1 = ρ2k(1+k)r̂,

ε1 = ρ1+kε̂,

(18)

where k := k+ ∈ N+ is the decay exponent associated with the regularization function φ,
see equation (6). After another desingularization (division by ρk(1+k)), nontrivial dynamics
are identified within the invariant subspace {ρ = 0} corresponding to the blow-up sphere
{ρ = 0} × S2. The critical manifold S now connects to a partially hyperbolic and (partially)
attracting (i.e. there is an eigenvalue with negative real part) equilibrium pa contained within
the intersection of the blow-up cylinder and blow-up sphere, see figure 4(a). An attracting
center manifold W ∈ {ρ = 0} emanates from pa, thereby ‘extending’ S. Whether or not equi-
libria are also identified along the intersection of the blow-up sphere with {ε = 0} depends on
whether the corresponding BEB is type BS, BN or BF, as well as on the sign of μ; see figures
4(b)–(d) (additional equilibria arising in cases BN and BS are denoted qw and qo as in figure
4(c)).

It follows from previous work [19, 23] that for each fixed μ 	= 0, the blow-up transforma-
tions (16) and (18) are sufficient to resolve all degeneracies in system (13). For μ = 0, an
additional degeneracy persists due to the BE singularity. In this case, W becomes an attracting
critical manifold W0, and connects to another degenerate point Qbeb ∈ {ρ = ε = 0} at the top
of the blow-up sphere [19]. This case is shown in figure 4(a). The point Qbeb is located at the
origin in local coordinates (x2, ρ2, ε2) defined by

r̂ = 1 : x = ρk(1+k)
2 x2, r1 = ρ2k(1+k)

2 , ε1 = ρ1+k
2 ε2, (19)

for μ = 0 only. Appending the trivial equation μ′ = 0 to the system obtained in these coor-
dinates, Qbeb is identified as a nonhyperbolic equilibrium within the extended (x2, ρ2, ε2, μ)-
space. Finally, degeneracy at Qbeb is resolved via the weighted spherical blow-up

ν � 0, (x̌, ρ̌, ε̌, μ̌) ∈ S3 �→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x2 = νk(1+k) x̌,

ρ2 = νρ̌,

ε2 = ν1+kε̌,

μ = ν2k(1+k)μ̌,

(20)

which replaces Qbeb with the three-sphere {ν = 0} × S3. Following this spherical blow-
up, and a desingularization amounting to division by νk(1+k), the critical manifold W0 ter-
minates at a partially hyperbolic and (partially) attracting equilibrium qa contained within
{ν = ρ̌ = μ̌ = 0}, see figure 4. An attracting center manifold J contained within {ν = 0},
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Figure 4. (a) Dynamics and geometry after spherical blow-up of Q via (18). The critical
manifold S in blue connects to the blow-up sphere at an attracting, partially hyperbolic
point pa, and an attracting center manifold W , also in blue, emanates from pa over the
blow-up sphere shown in orange. If μ 	= 0, all degeneracy is resolved. For μ = 0, the
case shown here, W is a critical manifold W0 which connects to the degenerate point
Qbeb (magenta), which corresponds to the BE singularity. Local coordinates (x2, ρ2, ε2)
centered at Qbeb are also shown. (b) Dynamics and geometry following spherical blow-up
of Qbeb via (20) in case BF. By restricting to the invariant set defined by the scaling (22),
the blow-up three-sphere (magenta) can be projected into into (x̌, ρ̌, ε̌)-space as described
in the text, and plotted in 3D. Following blow-up, W0 connects to an attracting, partially
hyperbolic point qa. An attracting center manifold J contained within {ν = 0}, also
in blue, extends from qa onto the new blow-up sphere. Local coordinates (x1, ρ1, ν1)
defined via (24) used to describe the dynamics on the sphere are also shown. (c) resp.
(d) Dynamics and geometry after blow-up in cases BN resp. BS. Here one identifies
additional equilibria within {ν = ε̌ = μ̌ = 0}.

i.e. on the new blow-up sphere, emanates from qa, thereby extending W0. In the case that the
BEB is of either BN or BS type, one also identifies equilibria on the top of the blow-up sphere
within {ν = ε̌ = μ̌ = 0}, see figures 4(c) and (d).

The sequence of blow-up transformations (16), (18) and (20) can be written in the following
form upon composition:
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ν � 0, (x̌, ρ̌, ε̌, μ̌) ∈ S3 �→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x = ν2k(1+k)ρ̌k(1+k) x̌,

y = ν2k(1+k)ρ̌2k(1+k),

ε = ν2(1+k)2
ρ̌(2k+1)(1+k)ε̌,

μ = ν2k(1+k)μ̌.

(21)

Remark 3.1. Note that the μ-coordinate is not shown in figures 4(b)–(d). Due to the
conservation of μ and the original small parameter ε it follows that

μ̂ :=
μ

εk/(1+k)
= μ̌ρ̌−k(2k+1)ε̌−k/(1+k), (22)

is also a conserved quantity, even for ν = 0. This conserved quantity induces a foliation of
the blow-up three-sphere by lower-dimensional two-spheres parameterized by μ̂ ∈ R, thereby
permitting a three-dimensional representation as in figure 4. In the following we will, when it
is convenient to do so, view μ̂ as our bifurcation parameter on the sphere.

Applying (21) to the doubly extended system

{(x′, y′) = εX(x, y,μ, ε), ε′ = 0,μ′ = 0}, (23)

and performing a desingularization which corresponds to division of the right-hand-side by
ν2(1+k)2

ρ̌(1+k)2
ε̌, resolves all degeneracy in system (13). This enables a description of the

unfolding of the singularly perturbed BEBs for all 0 < ε � 1.

Lemma 3.2. A desingularized system governing the singular limit dynamics in the scaling
regime defined by μ = μ̂εk/(1+k) can be obtained from the doubly extended system (23) by an
application of the transformation

(x1, ν1, ρ1, μ̂) ∈ R× R
2
+ × R �→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x = ν2k(1+k)
1 ρk(1+k)

1 x1,

y = ν2k(1+k)
1 ρ2k(1+k)

1 ,

ε = ν2(1+k)2

1 ρ(1+k)(1+2k)
1 ,

μ = μ̂ν2k(1+k)
1 ρk(1+2k)

1 ,

(24)

followed by the desingularization

d̃t = ν2(1+k)2

1 ρ(1+k)2

1 dt, (25)

and finally, restriction to the invariant subspace {ν1 = 0} corresponding to ε = 0. The
resulting system is

x′1 = ρk(1+k)
1

(
(τ − γ)β + μ̂ρk2

1 + τ x1 − δρk(1+k)
1

)
+ kx1 (β + x1) ,

ρ′1 =
1
k
ρ1 (β + x1) ,

(26)

where we write β := β+ = φ+(0). Moreover, system (26) is topologically equivalent to

X′ = (μ̂+ τX − δY) Yk − (γ − τ )β,

Y ′ = XŶk + β,
(27)
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on {Y > 0} via the diffeomorphism defined by

(X, Y) �→

⎧⎨⎩x1 = YkX,

ρ1 = Y1/k.
(28)

Proof. The transformation (24) is simply obtained from (21) by working in the chart ε̌ = 1
with chart-specific coordinates (x1, ν1, ρ1, μ1) defined by

x = ν2k(1+k)
1 ρk(1+k)

1 x1,

y = ν2k(1+k)
1 ρ2k(1+k)

1 ,

ε = ν2(1+k)2

1 ρ(1+k)(1+2k)
1 ,

μ = ν2k(1+k)
1 μ1.

In this chart, μ̂ = μ1ρ
−k(2k+1)
1 , recall (22), which gives the desired result upon using this expres-

sion to eliminateμ1. From this, we obtain (27) by a calculation, see lemma 5.1 below for further
details as well as [19, lemma 3.2 and remark 3.4]. �

Both systems (26) and (27) are useful for describing the unfolding of singularly perturbed
BEB in system (13). System (26) arises from a central projection of the final blow-up trans-
formation, and is preferred for purposes of global computations within the blown-up space.
System (27) is derived by a direct parameter rescaling, and although it is preferred for local
computations pertaining to e.g. bifurcations, it is less suited to global analyses.4

Notice however, that (27) can also be obtained more directly by composing (28) with (24).
This gives

(X, Y, ε, μ̂) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = εk/(1+k)X

y = εk/(1+k)Y,

μ = εk/(1+k)μ̂,

(29)

after eliminating ν1. Inserting this into (13) gives (27) for ε→ 0 upon desingularization.
It is also possible to scale x and y by μ for μ > 0 instead of ε; in fact, this is more well-suited

for μ̂→∞. Therefore if we define

ε̂ = μ̂−(1+k)/k

then

(X̂, Ŷ,μ, ε̂) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = μX̂

y = μŶ ,

ε = μ(1+k)/k ε̂,

(30)

4 See remark 4.2 for more details.
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transforms (13) into following system

X̂′ = (1 + τ X̂ − δŶ)Ŷk − (γ − τ )βε̂k,

Ŷ ′ = X̂Ŷk + βε̂k,
(31)

for μ→ 0 upon desingularization. System (31) is smoothly topologically equivalent to (27) on
μ̂ > 0 through the transformation

(X, Y, μ̂) �→

⎧⎨⎩X̂ = μ̂−1X,

Ŷ = μ̂−1Y.

The limit μ̂→−∞ can be studied via an analogous scaling by −μ for μ < 0, but we will not
need this in our analysis.

Remark 3.3. In this work we focus on the qualitative dynamics near a nondegenerate BE
bifurcation. For general systems (1) with a BE bifurcation at (z,α) = (zbe,αbe), however,
lemma 3.2 offers a direct route to obtain quantitative information about the dynamics without
the need for bringing the system into normal form, by first shifting (̃z, α̃) = (z − zbe,α− αbe),
and then applying the coordinate transformation (24) and desingularization by (25) with
z̃ = (x, y).

3.2. Unfolding all 12 singularly perturbed BEBs

The limiting bifurcation structure can be derived for each case using either of the systems (26)
or (27). We may consider system (27) for simplicity, which by [19, lemma 3.5] has either 0,
1 or 2 equilibria. The corresponding bifurcation diagrams with 0 < ε � 1 are obtained after
lifting results for ε = 0.

Theorem 3.4. Consider system (13). There exists an ε0 > 0 such that for all ε ∈ (0, ε0), the
following assertions hold:

(a) Fix γ/δ > 0. Saddle–node (SN) bifurcation occurs for μ = μsn(γ, ε), where

μsn(γ, ε) =
(1 + k)δ

k

(
kβγ
δ

)1/(1+k)

εk/(1+k) + o
(
εk/(1+k)

)
. (32)

(b) Fix τ < 0 and γ < δ/τ . Supercritical Andronov–Hopf (AH) bifurcation occurs for μ =
μah(γ, ε), where

μah(γ, ε) =
kδ + τγ

k

(
kβ
τ

)1/(1+k)

εk/(1+k) + o
(
εk/(1+k)

)
. (33)

(c) Fix τ > 0. Parameter-space surfaces defining SN and AH bifurcations in (γ,μ, ε)-space
extend to intersect in a curve of supercritical Bogdanov–Takens (BT) bifurcations given
by

(μbt, γbt)(ε) =

(
(1 + k)δ

k

(
kβ
τ

)1/(1+k)

εk/(1+k) + o
(
εk/(1+k)

)
,
δ

τ

)
. (34)
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(d) Fix τ > 0 and 0 < γ < δ/τ . Homoclinic (HOM)-to-saddle bifurcation occurs along μ =
μhom(γ, ε), which is given locally near (μbt, γbt)(ε) by

μhom(γ, ε) =

[(
kβ
τ

)1/(1+k) ( (1 + k)δ
k

+
τ

k

(
γ − δ

τ

))

+O
((

γ − δ

τ

)2
)]

εk/(1+k) + o
(
εk/(1+k)

)
.

There is no HOM bifurcation for γ < 0.
(e) Viewed within the (γ,μ)-plane, the curves μsn(γ, ε), μah(γ, ε) and μhom(γ, ε) are all

quadratically tangent at (γbt, μbt)(ε) and satisfy

0 < μsn(γ, ε) < μah(γ, ε) < μhom(γ, ε),

where all three coexist.

A proof for theorem 3.4 based on an adaptation of the proof of [19, theorem 3.6] is given
in section 4.1. The idea is that bifurcations can be identified first for the desingularized system
(27), for which SN, AH and HOM bifurcations are identified along parameter space curves
given by

μ̂sn(γ) := lim
ε→0

μsn(γ, ε)
εk/(1+k)

=
(1 + k)δ

k

(
kβγ
δ

)1/(1+k)

,
γ

δ
> 0, (35)

μ̂ah(γ) := lim
ε→0

μah(γ, ε)
εk/(1+k)

=
kδ + τγ

k

(
kβ
τ

)1/(1+k)

, γ ∈
(
−∞,

δ

τ

)
, τ > 0,

(36)

and

μ̂hom(γ) := lim
ε→0

μhom(γ, ε)
εk/(1+k)

=

(
kβ
τ

)1/(1+k) ( (1 + k)δ
k

+
τ

k

(
γ − δ

τ

))
+O

((
γ − δ

τ

)2
)

,

(37)

respectively, where μ̂hom(γ) is defined for γ < δ/τ and τ > 0 in a neighbourhood of the BT
point (μ̂bt, γbt) := (limε→0 ε

−k/(1+k)μbt(ε), γbt).
Theorem 3.4 yields four qualitatively distinct two-parameter bifurcation diagrams. These

are shown for the desingularized system (27), i.e. in the limit ε→ 0, in figure 5. Theorem
3.4 asserts that the corresponding diagrams for 0 < ε � 1 sufficiently small are qualitatively
similar. We make the following observations with respect to figure 5:

(a) All 12 singularly perturbed BEBs are represented: BF1,2,3 in (a), BN2,3 in (b), BN1,4 in (c),
and BS1,2,3 in (d). Cases BF4,5 are qualitatively similar to BN1,4 respectively in (c).

(b) Cases for which the underlying PWS BE has an incoming (outgoing) Filippov flow, see
again figure 1 and table 1, are contained within γ < 0 (γ > 0).
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Figure 5. Two-parameter bifurcation diagrams for all 12 unfoldings for the desingular-
ized system (27). SN, supercritical AH, HOM and BT bifurcations are shown in green,
red, magenta and purple respectively. HOM curves were computed numerically using
MatCont [8]. Here (k,β) = (1, 1/2). Unfoldings corresponding to BE singularities with
I/O orientation of the Filippov flow can be plotted on the same diagram since I/O corre-
spond to γ < 0/γ > 0, while γ = 0 is omitted. (a) Cases BF1,2,3, with τ = δ = 1. Cases
BF1,2 are contained within γ > 0 and separated by the homoclinic curve, with BF1
(BF2) on the left (right). BF3 is contained within γ < 0. (b) Cases BN2,3 with τ = 2,
δ = 1/2. BN3 (BN2) is contained within γ < 0 (γ > 0). Note the possibility for oscil-
latory dynamics in case BN2. (c) Cases BN1,4 with τ = −2, δ = 1/2. BN1 (BN4) is
contained within γ < 0 (γ > 0). We do not show cases BF4,5 here, since they are qualita-
tively similar to BN1,4. (d) Cases BS1,2,3 with τ = 1, δ = −1. Cases BS1,2 are contained
within γ < 0 and separated by a (numerically computed) distinguished heteroclinic,
denoted HET and shown in purple (see item (d) in the text). Case BS3 is contained within
γ > 0. The diagrams in (a)–(c) all extend for μ̂ < 0, and the diagram in (d) extends for
μ̂ > 0.

(c) Cases BF1,2 are both contained within γ > 0 in (a). The HOM branch represents the con-
tinuation of the separatrix which constitutes a boundary between the two cases, with BF1

(BF2) lying the the left (right) of this curve. Theorem 3.4 only provides a local parame-
terisation of the HOM curve. A global parameterisation is not given in this work; HOM
curves in figure 5 have been obtained by numerical continuation using MatCont [8]. How-
ever, additional properties of the homoclinic branch in figure 5(a) are also described in
section 3.3.
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(d) Cases BS1,2 are both contained within γ < 0, and separated by a distinguished solution
which connects the unstable manifold of the saddle along the (unique) trajectory which is
tangent to the strong eigendirection of the SN. This is also discussed in section 3.3.

(e) AH and BT bifurcations are supercritical. Subcritical bifurcations are possible in the
equivalent local normal form obtained by reversing time in system (13).

(f ) All bifurcations are ‘singular’ in system (13) in the sense that they occur within an ε-
dependent domain which shrinks to zero as ε→ 0, at a rate prescribed by the scaling (22).

(g) The BN2 bifurcation in (b) features ‘hidden oscillations’, i.e. oscillations which cannot
be identified in the PWS system (14), within the wedge-shaped region bounded by the
AHand HOM curves.

(h) The decay coefficient k ∈ N+ associated with the regularisation does not effect the topol-
ogy of the bifurcation diagrams. It follows that within the class of regularizations defined
by assumptions 2 and 3, the observed dynamics are qualitatively independent of the choice
of regularization.

(i) Each of (non-equivalent) two-parameter bifurcation diagram in figure 5 can be obtained
from any of the others by suitably varying the additional parameters (τ , δ), either across
one of the boundaries δ = 0, τ = 0 or Δ = 0, or through the origin τ = δ = 0; see again
table 1. A complete description of the dynamics involves the unfolding of a (singular)
codimension-four bifurcation at (τ , δ, γ, μ̂) = (0, 0, 0, 0). This unfolding is expected to
involve (singular) codimension-three bifurcations, and the unfolding of these bifurcations
should involve the diagrams in figure 5.

3.3. Separatrices: the boundaries between BF1,2 and BS1,2

In this section we present a result on the homoclinic double-separatrix which constitutes a
boundary between singularly perturbed BF1,2 bifurcations. A heteroclinic double-separatrix
forming a boundary between singularly perturbed BS1,2 bifurcations is also discussed.

The BF1,2 boundary is formed by a saddle–HOM connection, which is (partially) described
in the following result. We define

γhom,0 := − 1
2

e−τ td/2
√
−Δ csc

(√
−Δ

2
td

)
, (38)

where td is the first positive root of

R(t) := 1 + e−τ t/2

(
τ√
−Δ

sin

(√
−Δ

2
t

)
− cos

(√
−Δ

2
t

))
. (39)

Proposition 3.5 (Outer expansion of the homoclinic separating BF1 and BF2).
There exist an E0 > 0 sufficiently small, constants μ+, K > 0 and a continuous function
γouter

hom : [0, E0] × [0,μ+] → R such that for all (ε, μ) in the sector defined by

0 � ε � E0μ and μ ∈ [0,μ+], (40)

system (13) has a saddle–HOM Γouter
hom (ε,μ) along γ = γouter

hom (εμ−1,μ). In particular,

γouter
hom (0, 0) = γhom,0,

and for each fixed μ ∈ (0, μ+), lim
ε→0

Γouter
hom (ε,μ) is a PWS homoclinic.
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(Inner expansion of the homoclinic separating BF1 and BF2) At the same time, there exists
an ε̂0 > 0 small and a continuous function γ inner

hom : [0, ε̂0] → R such that for all μ̂ � ε̂
−k/(1+k)
0 ,

the system (26) has a saddle–HOM Γ̂inner
hom (μ̂) along γ = γ inner

hom (μ̂−(1+k)/k). In particular,

γ inner
hom (0) = γhom,0,

and for each fixed μ̂ � ε̂
−k/(1+k)
0 there exists an ε0 > 0 small enough such that for each

ε ∈ (0, ε0) there exists saddle–HOM Γinner
hom (ε, μ̂) of (13) along γ = γ inner

hom (μ̂−(1+k)/k) + o(1),
μ = εk/(1+k)μ̂. Here limε→0 Γ

inner
hom (ε, μ̂) is just (x, y) = (0, 0).

A proof is given in section 4.2. Proposition 3.5 asserts the persistence of the PWS homo-
clinics in an outer regime and an inner regime. This constitutes a (partial) boundary between
singularly perturbed BF1 and BF2 unfoldings for 0 < ε � 1.

Remark 3.6. Notice that the outer regime covers μ ∼ ε whereas the inner regime covers
μ ∼ εk/(1+k). The two regimes do not overlap for ε→ 0. In principle, we should be able to
cover the gap using our method, but we leave that for future work.

Combining theorem 3.4(d) and proposition 3.5, we have asymptotic information about the
branch of HOM solutions in figure 5(a) for μ̂ ∼ μ̂bt, μ̂ � 1 and μ � 0. Our findings are rep-
resented schematically in figure 6(a), which shows the expected global bifurcation diagram in
(γ,μ, ε)-space after a weighted cylindrical blow-up

η � 0, (ε̃, μ̃) ∈ S1 �→
{
ε = ηε̃,

μ = ηk/(1+k)μ̃,
(41)

which replaces the degenerate line {(γ, 0, 0) : γ ∈ R} corresponding to the BE singularity by
the cylinder {η = 0} × R× S1. After desingularization in the family rescaling chart ε̃ = 1, the
bifurcation diagram in figure 5(a) is identified on the cylinder, i.e. within {η = 0}, which is
invariant. The bifurcation diagram for μ > 0 is bounded above the cylinder in figure 6(a).

Remark 3.7. The BS1,2 boundary is formed by the distinguished heteroclinic connection
which connects saddle and node equilibria, tangentially to the strong eigendirection of the
node. In the PWS normal form (14) obtained in the in the dual limit ε→ 0+, μ→ 0−, this
distinguished heteroclinic connection occurs for

γhet,0 =
τ −

√
−Δ

2
.

It is straightforward to obtain an analogous result to proposition 3.5, describing inner and outer
expansions of such a heteroclinic connection, see the illustration in figure 6(b). For simplicity,
we have decided against including this result. Furthermore, numerical investigations (see figure
5(d)) support the existence of a simple (transverse) connection to the branch of SN bifurcations
with base along {(γhet(0),μ, 0) : μ̂ < μ̂sn(γhet(0))} as shown in figure 6(b).

3.4. Explosion in case BN3

The case BN3 in figure 2 is somewhat special, due to the existence of a continuous family of
PWS HOM cycles for μ = ε = 0. As indicated in figure 7, we parametrize this family using
the negative x-coordinate:

Γ(s) = ΓX+ (s) ∪ Γsl(s), (42)
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Figure 6. Bifurcations and separatrices in (γ,μ, ε)-space. Cylindrical blow-up along
μ = ε = 0 via (41) allows for the representation of both scaling regimes μ = O(εk/(1+k))
and μ = O(1) in a single space. Corresponding bifurcation diagrams from figure 5
appear on the blow-up cylinder. (a) Global bifurcation diagram for singularly perturbed
BFi bifurcations with i = 1, 2, 3. The homoclinic branch in magenta forms a boundary
between singularly perturbed BF1 and BF2 bifurcations. Proposition 3.5 describes the
inner and outer asymptotics of the homoclinic branch for μ > 0 and μ̂ � 1 respectively,
within non-overlapping wedges shown in blue and orange about the point (γhom,0, 0, 0)
given by (38). (b) Expected global bifurcation diagram for singularly perturbed BS
bifurcations, with the distinguished heteroclinic branch forming a boundary between
singularly perturbed BS1 and BS2 bifurcations; see remark 3.7.

Figure 7. Representative PWS HOM orbitsΓ(s1) andΓ(s2) defined by (42), with s2 > s1.

for any s ∈ (0, s0) with s0 > 0 sufficiently small, where ΓX+(s) is the backward orbit of (−s, 0)
following X+|μ=0 while Γsl(s) is the forward orbit of (−s, 0) following Xsl|μ=0. Note that the
orbits Γ(s) are HOM to a BN3 singularity, and should not therefore be confused with HOM
orbits Γhom from proposition 3.5 that are HOM to a hyperbolic sliding equilibrium on Σ.

Since Γ(s) only exists for parameter values μ = ε = 0 corresponding to a BE singularity,
we are motivated to consider the problem within the blown-up space described in section 3.1.
Recall that on the sphere ν = 0 there exists an attracting two-dimensional center manifold
J of a partially hyperbolic point qa. Essentially, this manifold provides an extension of the
critical manifold onto the sphere ν = 0. At the same time, for the present case BN3, there is
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Figure 8. Dynamics on the the blow-up sphere in cases μ̂ = μ̂−, μ̂ = μ̂het and μ̂ = μ̂+,
where μ̂− < μ̂het < μ̂+. A three-dimensional representation is possible after restricting
to invariant subspaces defined by level sets (22). Part of the path followed by the equi-
librium qn(μ̂) under μ̂-variation is shown in green. Jμ̂ and Sμ̂ denote manifolds obtained
from J and S after restriction to {μ̂ = const.} via (22). By lemma 3.8, Sμ̂ and Jμ̂ inter-
sect for a unique parameter value μ̂ = μ̂het, providing a heteroclinic connection from
qa to qw, shown here in blue. This connection breaks regularly as μ̂ is varied over μ̂het.
Dynamics on each side of the connection are also shown, in dark blue and red.

also a hyperbolic point qw on the sphere ν = 0, along ε̌ = μ̌ = 0 with a two-dimensional stable
manifold S :=Ws(qw), see figure 4(c). Let Jμ̂ and Sμ̂ denote the manifolds obtained from J
and S after restriction to the invariant subsets {μ̂ = const.} defined via the scaling (22).

The following result identifies the existence of a heteroclinic connection between qa and qw

which will play an important role in the unfolding of the PWS cycles. The situation is sketched
in figure 8.

Lemma 3.8. For each fixed γ < 0, J and S intersect in a unique heteroclinic orbit
connecting qa with qw.

A similar result was proven in [27, proposition 2] in the context of the substrate-depletion
oscillator, which is degenerate as a BN3 bifurcation (see section 6.1 for further details). Nev-
ertheless, the proof of lemma 3.8, which will be given in section 5, in the course of proving
theorem 3.9 below, will follow the proof of [27, proposition 2]. Using the parameter μ̂ defined
in (22), the heteroclinic will be obtained for a unique value μ̂ = μ̂het(γ) corresponding to an
intersection of manifolds Sμ̂ and Jμ̂ obtained as intersections of S and J with invariant level
sets defined by (22). The existence of a heteroclinic connection produces a family of hetero-
clinic cycles {Γ̄(s)}s∈(0,s0) with improved hyperbolicity properties, see figure 9. In turn, this
enables a perturbation of the PWS HOM (42) into limit cycles for 0 < ε � 1.

Theorem 3.9. Consider system (13). Let

λ :=
2
√
Δ

τ −
√
Δ

,
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Figure 9. Nondegenerate singular cycles obtained when μ̂ = μ̂het by concatenating orbit
segments, after the resolution of all degeneracy via the sequence blow-up transforma-
tions described in section 3.1. The cycles Γ̄(s1) and Γ̄(s2) shown in red correspond to
the PWS cycles Γ(s1) and Γ(s2) in figure 7, respectively. In terms of the dynamics after
blow-up, theorem 3.9 describes the existence and growth of limit cycles obtained as per-
turbations of singular cycles Γ̄(s) with s > 0, i.e. with orbit segments bounded away
from the blow-ups spheres. Perturbations of singular cycles Γ̄s, Γ̄l, and the family of
cycles bounded between (represented here by Γ̄i), are not described by theorem 3.9, see
remark 3.10. It is possible to show as in [19, theorems 3.11 and E.1], however, that these
cycles mediate a connection to limit cycles on the (magenta) blow-up sphere. Transversal
sections Σ1 and Σ2 used in the proof of theorem 3.9 are also shown.

and fix any ν ∈ (0, 1). Then for any c > 0 sufficiently small, there exists an ε0 > 0 and an
s0 > 0 such that the following holds for each ε ∈ (0, ε0): there exists a parameterized family
of stable limit cycles

s �→ (μ(s, ε),Γ(s, ε)) , s ∈ (c, s0), (43)

which is continuous in (s, ε). In particular, limε→0 Γ(s, ε) = Γ(s) in Hausdorff distance, and

μ(s, ε) = εk/(1+k)μ̂het + o(εk/(1+k)),

being C1 in s ∈ (c, s0) for each ε ∈ [0, ε0) with

∂μ

∂s
(s, ε) = O(ενk(1+λ)/(1+k)). (44)

A proof is given in section 5. The limit cycles described in this theorem are O(1) with
respect to ε. Although it is straightforward to use our method to connect these cycles with o(1)
cycles (essentially taking c = Kεk/(1+k) in (43) with K > 0 sufficiently large, see also remark
3.10 below) that are obtained as perturbations of the heteroclinic cycle on the sphere {ν = 0},
we have decided to focus on the O(1) cycles since (i) the result is easier to state, and (ii) we
have not been able to connect the cycles all the way down to the Hopf bifurcation anyways,
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recall theorem 3.4. Such a connection requires global information of the limit cycles on the
sphere, which we have not been able to obtain.

Remark 3.10. As shown in figure 9, there exists a family of nondegenerate singular cycles
Γ̄i bounded between ‘small’ and ‘large’ heteroclinic cycles Γ̄s and Γ̄l respectively. Although
we do not prove a connection between ‘small’ and ‘large’ limit cycles on the blow-up sphere,
one can prove a connection between limit cycles that are O(1) with respect to ε and limit cycles
on the blow-up sphere using arguments similar to those in [19]. The connection is facilitated
by a family of limit cycles obtained as perturbations of the singular cycles Γ̄i.

4. Proof of the theorem 3.4 and proposition 3.5

In this section we prove theorem 3.4 and proposition 3.5. We begin with a proof of
theorem 3.4.

4.1. Proof of the theorem 3.4

We proceed by studying the dynamics of the relevant desingularized system from lemma 3.2.
Theorem 3.4 will follow immediately after lifting system (26) out of the invariant plane {ν1 =
0} into {ν1 ∈ [0, σ)} for sufficiently small σ > 0 and applying the blow-down transformation
given by the inverse to (24) defined on {ε > 0} = {ν1 > 0, ρ1 > 0}.

System (26) has been studied in detail in [19] in the context of singularly perturbed BFi,
i = 1, 2, 3 bifurcations, and we shall refer to this work for many of the computations. It is
shown in this work that system (26) has either 0, 1 or 2 equilibria in {ρ1 > 0} determined by
solutions to the equation

ϕ(ρ1) = γβ − μ̂ρk2

1 + δρk(1+k)
1 = 0, ρ1 > 0, μ̂ ∈ R. (45)

For an equilibrium p∗ = (x1,∗, ρ1,∗) ∈ {ρ1 > 0}, the Jacobian has trace

tr J(p∗) = −kβ + τρk(1+k)
1,∗ ,

and determinant

det J(p∗) = −ρk(1+2k)
1,∗

(
kμ̂− δ(1 + k)ρk

1,∗
)
.

These expressions can be used to show the existence of SN and AH bifurcations along the
parameterized curves defined by (35) and (36) respectively; see [19, pp 41–42]. In particular,
the AH bifurcation is shown to have first Lyapunov coefficient

l1 = − βk3(1 + k)
16(δ − γτ )

(
βk
τ

)−2/k(1+k)

((2 + k)δ − γτ ),

using the software package Mathematica; compare with [30, equation (8.35)]. This implies
a supercritical bifurcation for all k ∈ N+, since by (36) we have γ < δ/τ with δ, τ > 0 and
therefore

(2 + k)δ − γτ > δ − γτ = τ

(
δ

τ
− γ

)
> 0 ⇒ l1 < 0.
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SN and AH curves continuously extend to an intersection

(μ̂bt, γbt) =

(
(1 + k)δ

k

(
kβ
τ

)1/(1+k)

,
δ

τ

)
, (46)

corresponding to BT bifurcation in system (26). In particular, if we let X1(x1, ρ1, μ̂, γ) represent
the right-hand-side in (26) then one can show regularity of the map

((x1, ρ1), (μ̂, γ)) �→ (X1(x1, ρ1, μ̂, γ), tr J(x1, ρ1, μ̂, γ), det J(x1, ρ1, μ̂, γ))

at the BT point by a direct calculation. The additional nondegeneracy conditions

a20(0) + b11(0) 	= 0, b20(0) 	= 0,

on coefficients a20(0), b11(0) and b20(0) defined in [31, theorem 8.4] are shown using the
expressions in the cited work to be satisfied with

a20(0) + b11(0) = −β2δk3(k + 1)
(
βk
τ

)− 1
k2+k

2τ 2
, b20(0) = βk2(k + 1)

(
βk
τ

)− 1
k2+k

,

both of which are nonzero within the parameter regime of interest.
Finally, standard results in bifurcation theory imply the existence of a neighbourhood

Ihom � γbt and smooth function μ̂hom : Ihom → R such that

μ̂hom(γbt) = μ̂bt, μ̂′
hom(γbt) = μ̂′

sn(γbt) = μ̂′
ah(γbt), (47)

and μ̂′′
hom(γbt), μ̂′′

sn(γbt) and μ̂′′
ah(γbt) are all distinct [31]. The local parameterisation in (37)

follows from (47) after Taylor expansion about γ = γbt. In order to see that saddle-HOM
bifurcation cannot occur for γ < 0, we first observe the following:

• For γ < 0, system (26) has a single equilibrium within {ρ1 > 0}, and two equilibria
{(−β, 0), (0, 0)} ∈ {ρ1 = 0};

• The subspace {ρ1 = 0} is invariant.

It follows that a homoclinic orbit cannot exist, since the connecting orbit cannot enclose an
equilibrium.

Lifting the expressions derived above for ν1 ∈ [0, σ) with σ > 0 sufficiently small and
applying the blow-down transformation, in particular the relation

μ̂ = με−k/(1+k),

we obtain the desired result. �
Remark 4.1. In the preceding proof σ must be sufficiently small so that (35), (36), (37) and
(46) can be extended in (x1, ρ1, ν1, μ1)-space via suitable applications of the implicit function
theorem. We omit this argument—which is standard—for the sake of brevity, but refer the
reader to [19, equation (D7)] where the extended system is considered in detail.

4.2. Proof of proposition 3.5

The result for the outer regime with μ > 0 and ε→ 0 is standard, using the estab-
lished correspondence between the Filippov system and the regularization [4, 5, 23,
26, 33, 34], once we introduce the scalings defined by x = μX̂, y = μŶ and ε = μE.
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Indeed, we just perform the cylindrical blowup (X̂, Ŷ, E) = (X̂, 0, 0) for the extended system
{(X̂, Ŷ)′ = EX(μX̂,μŶ,μ,μE), E′ = 0}.

We therefore focus on the inner expansion in the dual limit case, setting ε = μ(1+k)/kε̂ and
letting μ→ 0. For this we consider system (31). The case of k = 1 is easier, so we will also
focus on this case, repeated here for convenience

X′ = (1 + τX − δY)Y − (γ − τ )βε̂,

Y ′ = XY + βε̂,
(48)

where we have dropped the hat notation on X and Y. We leave the discussion of the general
case k ∈ N to the end of the section.

The system (48) is for 0 < ε̂ � 1 a slow-fast system in nonstandard form [20, 38]. Indeed,
for ε̂ = 0 we obtain the layer problem

X′ = (1 + τX − δY)Y,

Y ′ = XY,
(49)

for which {Y = 0} is a manifold of equilibria. Linearisation of any point (X, 0) gives X as
the only nonzero eigenvalue. Consequently, Sa := {(X, 0) : X < 0} is normally hyperbolic and
attracting, (0, 0) is fully nonhyperbolic, and Sr := {(X, 0) : X > 0} is normally hyperbolic and
repelling. Notice also that for Y > 0 we obtain the equivalent system

X′ = 1 + τX − δY,

Y ′ = X,
(50)

upon dividing the right-hand side of (49) by Y . Let φt denote the flow of (50). We then define Γ
as {φt(0, 0)}t∈(0,td] where td > 0 is the first return time to Y = 0. Notice that Γ is well-defined
since (50) is just the linearisation of the vector field X+ having, in the BF case considered, an
unstable focus at (0, δ−1). It is a simple calculation to show that td > 0 is the first positive root
of R(t), recall (39), and that Γ ∩ {Y = 0} = (Xd , 0) with

Xd = −2eτ t2/2

√
−Δ

sin

(√
−Δ

2
td

)
. (51)

Next, setting Y = ε̂Y2 brings (48) into a slow-fast system in standard form. Upon passing
to a slow time and then setting ε̂ = 0, we obtain the following reduced problem on Sa:

Ẋ = −βX−1(1 + γX), (52)

which has a repelling equilibrium at X = −γ−1, seeing that γ > 0. We note that reduced
problem can also be obtained from more general procedures described in [20, 38].

Combining our analysis of the layer problem and the reduced problem, we obtain figure 10.
Specifically, for γ = γhom,0 := − X−1

d we have a singular saddle-homoclinic connection. At the
singular level ε̂ = 0, the connection is clearly transverse with respect to γ; in fact,Γ is indepen-
dent of γ so this is obvious from Xd = Xd(γ). For 0 < ε̂ � 1 we then use Fenichel theory to
perturb the saddle and the result of [28] to track its unstable manifold nearΓ. Defining a section
Σ transverse to Γ within Y > 0, we then obtain a bifurcation equation for the saddle–HOM
connection of the form H(γ, ε̂) = 0, with H, which measures the separation of the stable and
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Figure 10. Singular limit dynamics for the nonstandard form slow-fast system (48) aris-
ing in case k = 1. Attracting and repelling critical manifolds Sa and Sr are shown in blue
and red respectively. The point (0, 0), shown in orange, is a regular fold point. There
is an unstable focus at (0, δ−1), and an equilibrium (−γ−1, 0) which is repelling as an
equilibrium for the reduced flow on Sa; both are indicated as black disks. We show the
situation where γ = γhom,0 = −X−1

d with Xd given by (51), for which there is a singular
homoclinic orbit Γ (shown here in black).

unstable manifolds on Σ, being at least C1 in γ, continuously dependent on ε̂ ∈ [0, ε̂0) and such
that

H(γhom,0, 0) = 0, H′
γ(γhom,0, 0) 	= 0.

The existence of γ inner
hom in proposition 3.5 follows after applying the implicit function theorem

to H(γ, ε̂) = 0 at (γ, ε̂) = (γhom,0, 0). For the final part of proposition 3.5, we fix ε̂ small enough
(i.e. μ̂ large enough) and perturb in μ > 0 (or equivalently ε > 0, having fixed ε̂) small enough.

Remark 4.2. Notice for this last part that the μ-perturbation of (48) will include terms of
the form

φ+(εy−1) = φ+(μ1/kε̂Y−1),

using (30), which are ill-defined for μ = Y = 0. This is in the sense of which the charts (30)
are more ill-suited for global computations. Here, however, fixing ε̂ > 0, where the saddle
connection occurs within Y > 0, we just require that the perturbation is continuous with respect
to μ on this domain. To cover the saddle–HOM case in a full neighbourhood of (ε, μ) = (0, 0),
we have to work with our full blowup system, tracking the saddle across the first blowup sphere.
We leave the details of this to future work.

For k � 2, {Y = 0} is fully nonhyperbolic for ε̂ = 0. We then gain hyperbolicity by blowing
up the points (X, 0, 0) in the extended (X, Y, ε̂)-space via

r � 0, (Ȳ, Ē) �→
{

Y = rȲ,

ε̂ = rĒ,
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followed by a desingularization corresponding to division of the right-hand side by rk−1.
Working in the directional chart corresponding to Ȳ = 1 using chart-specified coordinates
(r1, Y1, E1) defined by Y = r1, ε̂ = r1E1, we find a normally hyperbolic and attracting criti-
cal manifold on r1 = 0, carrying a reduced problem given by (52). We therefore obtain the
result as in the k = 1 case, performing a separate blowup of (X, r1, E1) = (0, 0, 0), replacing
the result of [29], to track the slow manifold for Y > 0 in this case. We leave out the details for
simplicity. �

5. Proof of theorem 3.9

We apply the blow-up procedure outlined in section 3.1. To describe the blow-up transforma-
tion (21) we focus on the following directional charts ε̌ = 1 and ρ̌ = 1 with the chart-specified
coordinates ν1, ρ1, x1, μ1 and ν2, x2, ε2, μ2 defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x = ν2k(1+k)
1 ρk(1+k)

1 x1,

y = ν2k(1+k)
1 ρ2k(1+k)

1 ,

ε = ν2(1+k)2

1 ρ(2k+1)(1+k)
1 ,

μ = ν2k(1+k)
1 μ1,

(53)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x = ν2k(1+k)
2 x2,

y = ν2k(1+k)
2 ,

ε = ν2(1+k)2

2 ε2,

μ = ν2k(1+k)
2 μ2,

(54)

respectively. We have the following smooth change of coordinates

ν2 = ν1ρ1, x2 = x1ρ
−k(1+k)
1 , μ2 = μ1ρ

−2k(1+k)
1 , ε2 = ρ−(1+k)

1 , (55)

for ρ1 > 0. In these charts, we obtain the desingularization by division of the right-hand side

by ν2(1+k)2

1 ρ(1+k)2

1 and ν2(1+k)2

2 ε2, respectively.
In the following lemma we present the desingularized equations in these respective charts.

For this we first define θ̂1 and θ̂2 for z > 0 and q > 0 as follows:

θ̂1(u, v,w, z) := z−1θ1(zu, zv, zw),

θ̂2(u, v,w, q, z) := z−1q−1θ2(zqu, zqv, zw),

both having smooth extensions to z = 0 and q = 0, cf theorem 2.8. Notice then that

θ̂1(u, v,w, 0) = θ̂1(0, 0, 0, z) = θ̂2(u, v,w, q, 0) = θ2(0, 0, 0, q, z) = 0,
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for all u, v,w, q, z.

Lemma 5.1. The desingularized equations in the chart ε̌ = 1 take the following form:

x′1 = f 1(x1, ρ1, ν1,μ1) + kx1g1(x1, ρ1, ν1,μ1),

ρ′1 =
1
k
ρ1g1(x1, ρ1, ν1,μ1),

ν ′1 = − 2k + 1
2k(1 + k)

ν1g1(x1, ρ1, ν1,μ1),

μ′
1 = (2k + 1)μ1g1(x1, ρ1, ν1,μ1),

(56)

where

f 1(x1, ρ1, ν1,μ1) =
(
μ1 + τρk(1+k)

1 x1 − δρ2k(1+k)
1 + θ̂1(ρk(1+k)

1 x1, ρ2k(1+k)
1 ,μ2, ν2k(1+k)

1 )

×
(

1 − ν2k(1+k)
1 ρk(1+k)

1 φ+(ν2(1+k)
1 ρ1+k

1 )
)

− ρk(1+k)
1 φ+(ν2(1+k)

1 ρ1+k
1 )(γ − τ ),

g1(x1, ρ1, ν1,μ1) =
(

x1 + θ̂2(x1, ρk(1+k)
1 ,μ1, ρk(1+k)

1 , ν2k(1+k)
1 )

)
×
(

1 − ν2k(1+k)
1 ρk(1+k)

1 φ+(ν2(1+k)
1 ρ1+k

1 )
)

+ φ+(ν2(1+k)
1 ρ1+k

1 ).

The quantity

μ̂ = μ1ρ
−k(2k+1)
1 , (57)

is conserved for the flow of (56).
The desingularized equations in the chart ρ̌ = 1 take the following form:

x′2 = f 2(x2, ε2, ν2,μ2) − x2g2(x2, ε2, ν2,μ2),

ε′2 = −1 + k
k

ε2g2(x2, ε2, ν2,μ2),

ν ′2 = − 1
2k(1 + k)

ν2g2(x2, ε2, ν2,μ2),

μ′
2 = −μ2g2(x2, ε2, ν2,μ2),

(58)

where

f 2(x2, ε2, ν2,μ2) =
(
μ2 + τ x2 − δ + θ̂1(x2, 1,μ2, ν2k(1+k)

2 )
)

×
(

1 − ν2k(1+k)
2 εk

2φ+(ν2(1+k)
2 ε2)

)
− εk

2φ+(ν2(1+k)
2 ε2)(γ − τ ),

g2(x2, ε2, ν2,μ2) =
(

x2 + θ̂2(x2, 1,μ2, ν2k(1+k)
2 )

)(
1 − ν2k(1+k)

2 εk
2φ+(ν2(1+k)

2 ε2)
)

+ εk
2φ+(ν2(1+k)

2 ε2). (59)
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The quantity

μ̂ = μ2ε
−k/(k+1)
1 , (60)

is conserved for the flow of (58).

Proof. This follows by lengthy, but standard calculations. We defer the proof to appendix B
for expository reasons. �

In the following, we analyse the two charts separately.

5.1. The dynamics in ε̌ = 1

First, we notice that on the set defined by ν1 = 0, the system (58) becomes

x′1 = μ1 + τρk(1+k)
1 x1 − δρ2k(1+k)

1 − ρk(1+k)
1 β(γ − τ ) + kx1 (β + x1) ,

ρ′1 =
1
k
ρ1 (β + x1) ,

μ′
1 = (2k + 1)μ1 (β + x1) .

(61)

using φ+(0) = β and

f 1(x1, ρ1, 0,μ1) = μ1 + τρk(1+k)
1 x1 − δρ2k(1+k)

1 − ρk(1+k)
1 β(γ − τ ),

g1(x1, ρ1, 0,μ1) = x1 + β.

Since μ̂ = μ1ρ
−k(2k+1)
1 is conserved in this chart, recall (57), we can eliminate μ1 from (61)

and in this way we obtain the (x1, ρ1)-system in (26).
On the other hand, within ρ1 = μ1 = 0 we have

x′1 = kx1(x1 + β),

ν ′1 = − 2k + 1
2k(1 + k)

ν1(x1 + β).
(62)

Here we find the fully hyperbolic equilibrium q f with x1 = ν1 = 0. In particular, a simple
calculations shows that within ν1 = 0, q f is a source.

For (62) we also find x1 = −β, ν1 � 0 as the critical manifold W0, see figure 4, of partially
hyperbolic points. Indeed, the linearisation of any point on W0 has a single nonzero eigen-
value −kβ, also at the point qa with coordinates (x1, ρ1, ν1,μ1) = (−β, 0, 0, 0) ∈ W0. At qa,
we therefore have a three-dimensional attracting center manifold. We shall denote the ν1 = 0
subset of this manifold by J , as indicated in figure 4. Using the parameter μ̂, we may foliate
J into invariant subsets Jμ̂. For simplicity, we denote the projection of Jμ̂ onto the (x1, ρ1)-
subspace by the same symbol. Then Jμ̂ becomes an attracting center manifold of the point
(x1, ρ1) = (−β, 0), which we for simplicity also denote by qa, for the system (26). A simple
calculation shows that it takes the following smooth graph form:

x1 = −β +
γ

k
ρk(1+k)

1 (1 +O(ρ1)), (63)

over ρ1 � 0 locally near qa. This gives

ρ′1 =
γ

k2
ρk(1+k)+1

1 (1 +O(ρ1)),
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and ρ1 > 0 is therefore locally increasing on Jμ̂. In conclusion, we have the following.

Lemma 5.2. Consider (26). Then qa is a nonhyperbolic saddle on {ρ1 � 0} and the center
manifold Jμ̂ is unique on this set as the nonhyperbolic unstable manifold of qa for all μ̂ ∈ R.

Finally, we emphasise that on ν1 = 0 we also have the family of equilibria parameterised by
(45) with ρ1 � 0. This is the ‘BN’ qn in this chart, which we also parametrise using μ̂, writing
qn(μ̂) in figure 8. In particular, using (45), qn(μ̂) has coordinates (x1, ρ1) = (−β, ρ1,n(μ̂)) with
ρ1,n(μ̂) being given implicitly by

μ̂ = ρ1,n(μ̂)−k2
βγ + ρ1,n(μ̂)kδ. (64)

Notice that (64) defines a unique ρ1,n(μ̂) > 0 for each μ̂ since γ < 0.
We will need the following result in our proof of lemma 3.8.

Lemma 5.3. There exists a μ̂− such that the ω-limit set of Jμ̂ is qn(μ̂) for all μ̂ � μ̂−.

Proof. The result follows from the center manifold theory, the fact that qn(μ̂) is a stable node
for μ̂ � −1 and finally that qn(μ̂) → qa for μ̂→−∞. �

5.2. The dynamics in ρ̌ = 1

We consider (58). Within the invariant set defined by ν2 = 0 we have

x′2 = μ2 + τ x2 − δ − εk
2β(γ − τ ) − x2(x2 + εk

2β),

ε′2 = −1 + k
k

ε2(x2 + εk
2β),

μ′
2 = −μ2(x2 + εk

2β),

using that

f 2(x2, ε2, 0,μ2) = μ2 + τ x2 − δ − εk
2β(γ − τ ),

g2(x2, ε2, 0,μ2) = x2 + εk
2β.

Specifically, within the invariant set defined by ε2 = ν2 = μ2 = 0 we have

x′2 = τ x2 − δ − x2
2,

producing the two equilibria qw and qo with

x2 = x2,w :=
1
2
τ − 1

2

√
Δ, x2 = x2,o :=

1
2
τ +

1
2

√
Δ, (65)

respectively. Recall thatΔ = τ 2 − 4δ > 0. Both points are fully hyperbolic for (58), but within
ν2 = 0 the point qo, which corresponds to the strong eigendirection, is an attracting node,
whereas qw is a saddle, having a one-dimensional unstable manifold along ε2 = μ2 = 0 and
a two-dimensional stable manifold S :=Ws(qw). Using the conservation of μ̂ = μ2ε

−k/(1+k)
2 ,

we foliate S into invariant subsets Sμ̂ for μ̂ ∈ R and S∞, corresponding to μ̂→∞ contained
within ε2 = 0 where

x′2 = μ2 + τ x2 − δ − x2
2,

μ′
2 = −μ2x2,

(66)
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and S∞ is a stable manifold of (x2, μ2) = (x2,w, 0). Here we find qn,∞, corresponding to qn(μ̂)
when μ̂→∞, as (x2, μ2) = (0, δ), which is a hyperbolic and unstable node. In fact, we have
the following.

Lemma 5.4. The system (66) on {μ2 > 0} is smoothly topologically equivalent with

x′ = τ x − δy,

y′ = x,
(67)

on {y > −δ−1}.

Proof. A simple calculation shows that the diffeomorphism

(x, y) �→
{

x2 = (δ−1 + y)−1x,

μ2 = (δ−1 + y)−1,

{y > −δ−1}, brings (67) into (66), which completes the proof. �
As a corollary, the α-limit set of S∞ is qn,∞. But then by regular perturbation theory, and

the hyperbolicity of qn,∞, we obtain the following result, which we also need in our proof of
lemma 3.8.

Corollary 5.5. There exists a μ̂+ > 0 large enough such that the α-limit set of Sμ̂ is qn(μ̂)
for all μ̂ � μ̂+.

For μ̂ ∈ R, we project Sμ̂ onto the (x2, ε2)-space and denote the projection by the same
symbol. A simple calculation shows that it takes the following local form:

x2 = x2,w − 2

τ +
√
Δ
μ̂ε

k/(1+k)
2 +O(ε2), (68)

for ε2 > 0 small enough.

5.3. Proof of lemma 3.8

To prove lemma 3.8, we combine our analyses in charts ε̌ = 1 and ρ̌ = 1 in order to show the
existence of a unique μ̂het such that Jμ̂het intersects Sμ̂het , transversally with respect to μ̂.

Before we prove the existence of μ̂het, we first show that any heteroclinic
γhet(t) = (x1,het(t), ρ1,het(t)) must be monotonically increasing in ρ1, i.e. ρ′1,het(t) > 0 for
all t ∈ R. By the local analysis near qa and qw, this is true locally (i.e. for t →±∞).
Moreover, using (68) and the change of coordinates in (55) it follows that x′1,het(t) > 0 for
t � 1. Subsequently, recall that qn(μ̂) with coordinates (x1, ρ1) = (−β, ρ1,n(μ̂)) is the unique
equilibrium for ρ1 > 0. Then since the ρ1-nullcline is x1 = −β, it follows that ẋ1 ≷ 0 on
x1 = −β for ρ1 ≶ ρ1,n(μ̂). Consequently, if there is a largest t1 such that ρ′1,het(t1) = 0, then
{γhet(t)}t�t1 and x1 = −β together enclose a region to the left which is backward invariant,
contradicting the definition of γhet. We conclude that any heteroclinic γhet is monotone in ρ1.

Next, for the existence of μ̂het, we use a monotonicity argument as in [27, appendix A].
Specifically, by lemma 5.3 and corollary 5.5 there can be no heteroclinics for
μ̂ � μ̂− or μ̂ � μ̂+.

Lemma 5.6. Consider any μ̂ � μ̂−. Then:

• The ω-limit set of Jμ̂ is qn(μ̂).

7401



Nonlinearity 34 (2021) 7371 S Jelbart et al

• The α-limit set of Sμ̂ is q f .

Consider any μ̂ � μ̂+. Then:

• The ω-limit set of Jμ̂ is qo.
• The α-limit set of Sμ̂ is qn(μ̂).

Proof. This follows from lemma 5.3, corollary 5.5 and the Poincaré–Bendixson theorem;
see figure 8. �

Following this result, we therefore fix an interval I = [μ̂−, μ̂+] of μ̂-values, and then insert
a section Σ at ρ1 = c for c > 0 small enough. The ρ1-nullcline intersects Σ in a tangency point
(x1,t, c) for x1,t := − β so that ρ̇1 ≷ 0 for all points on Σ with x1 ≷ −β. By the previous analy-
sis any heteroclinic connection intersectsΣwith x1 > x1,t. The center manifold calculation, see
(63), shows that the manifold Jμ̂ intersects the section Σ transversally in a point (x1,c(μ̂), c)
for each μ̂ ∈ I with x1,c(μ̂) > x1,t, for all μ̂ ∈ I so that ẋ1 > 0, ρ̇1 > 0 in a neighbourhood
of J ∩ Σ. By lemma 5.6, we have that for μ̂ = μ̂− the manifold Sμ̂ intersects Σ in a point
(x1,s(μ̂−), c) with x1,s(μ̂−) > x1,c(μ̂−). The intersection is therefore transverse and we can con-
tinue x1,s(μ̂) smoothly for larger values of μ̂ > μ̂−. However, by lemma 5.6 we know that Sμ̂

does not intersectΣ for all μ̂ ∈ I. The process of continuing x1,s for larger values of μ̂ > μ̂− will
therefore have to stop when either: x1,s grows unboundedly or x1,s → x+1,t. We can exclude the
former by the analysis in the ρ̌ = 1 chart. Therefore there is a μ̂t > μ̂− such that x1,s(μ̂) → x+1,t
for μ̂→ μ̂−

t . With x1,c(μ̂t) > x1,t we conclude that the smooth function: μ̂ �→ x1,c(μ̂) − x1,s(μ̂)
for μ̂ < μ̂t changes sign at least once. The corresponding root corresponds to a heteroclinic
connection. This connection is unique by the monotonicity of ρ1,het(t) and the fact that the
associated Melnikov integral, being the derivative of the Melnikov distance function, has one
sign. To see the latter,

γhet(t) := (x1,het(t), ρ1,het(t),μ1,het(t)),

satisfying γhet(t) → pw for t →∞ (the limit being understood in the ρ̄ = 1 chart) and
γhet(t) → pa for t →−∞ by demonstrating that the associated Melnikov integral, being the
derivative of the Melnikov distance function, has one sign. For this we consider (26) and notice
that the derivative of the right-hand side with respect to μ̂ is (ρk(2k+1)

1 , 0). Therefore the sign of
the Melnikov integrand [31] is determined by

(x′1,het(t), ρ
′
1,het(t)) ∧ (ρk(2k+1)

1,het (t), 0) = −ρ′1,het(t)ρ
k(2k+1)
1,het < 0. (69)

This also shows that the intersection of J and S is transverse, completing the proof of
lemma 3.8. �

5.4. Finishing the proof of theorem 3.9

In figure 9 we combine our findings into a new figure illustrating the improved singular cycles
Γ(s), see the figure caption for further details. We then obtain the family of attracting limit
cycles in theorem 3.9 with the prescribed growth rate by perturbing Γ(s). For this, we work
near μ̂ ≈ μ̂het and define two sections Σ1 and Σ2 as illustrated in figure 9. We then flow points
on Σ1 forward and backward and measure their separation on Σ2. The sections are defined in
the chart ρ̌ = 1 with coordinates (x2, ε2, ν2, μ2), recall (54), as follows:

Σ1 : ν2 = ξ, x2 ∈ I, 0 � ε2,μ2 � χ,

Σ2 : ε2 = χ, x2 ∈ I, 0 � ν2,μ2 � ξ,

7402



Nonlinearity 34 (2021) 7371 S Jelbart et al

for χ, ν > 0 small enough and I a small enough neighbourhood of x2,w such that the following
local arguments apply near qw = (x2,w, 0, 0, 0), recall (65). The bifurcation equation is then
given by

F(x2, μ̂, ε2) − B(x2, μ̂, ε2) = 0, (70)

where F and B are defined as the x2-coordinates of the points on Σ2 obtained by following ini-
tial conditions (x2, ε2, ξ, μ2) on Σ1 forward and backward, respectively, where μ2 = ε

k/(1+k)
2 μ̂.

Notice, by conservation of ε and μ̂, solutions of (70) with ε2 > 0 define closed orbits. Let J be
a sufficiently small neighbourhood of μ̂ = μ̂het. Then we have the following.

Proposition 5.7. Consider any ν ∈ (0, 1). Then there exists an ε20 such that
I × J � (x2, μ̂) �→ F(x2, μ̂, ε2) and I × J � (x2, μ̂) �→ B(x2, μ̂, ε2) are both well-defined
and C1 depending continuously on ε2 ∈ [0, ε20). In particular,

F(x2, μ̂het, 0) = B(x2, μ̂het, 0), F′
μ̂(x2, μ̂het, 0) 	= B′

μ̂(x2, μ̂het, 0), (71)

for all x2 ∈ I. Moreover, let λ = 2
√
Δ/(τ −

√
Δ) as defined in theorem 3.9. Then there is a

cF > 0 such that

F′
x2

(x2, μ̂het, ε2) = O(e−cF/ε2 ), B′
x2

(x2, μ̂het, 0) = O(ενkλ/(k+1)
2 ).

Before we prove this proposition, we will first show that it implies theorem 3.9. For this,
we first notice that for any c ∈ (0, s0) there exists a ξ(c) > 0 small enough such that ΓX+(s)
for s ∈ (c, s0) intersects Σ1 once in a single point (x2(s), 0, ξ, 0) with x′2(s) > 0. Theorem
3.9 follows after applying the implicit function theorem to (70) and using the properties
described in proposition 5.7. Notice in particular, that this gives a solution of (70) of the form
μ̂ = μ̂(x2, ε2). Seeing that ε2 = ξ−(1+k)ε and μ = εk/(1+k)μ̂ by (54) onΣ1, we obtain the desired
μ(s, ε) = εk/(1+k)μ̂(x2(s), ξ−(1+k)ε).

5.5. Proof of proposition 5.7

The properties of F are standard; see [19]. Here we just summarize the approach. Firstly, as
we flow points Σ1 forward, following ΓX+(s), they are eventually exponentially contracted
towards the slow manifold. We then guide the flow along this manifold, first along W0, and
eventually along Jμ̂ using the center manifold at qa. Seeing that μ̂ ≈ μ̂het, we conclude that
solutions reach Σ2 so that F is well-defined. In particular, F(x2, μ̂, 0) is the x2-value of the
intersection Jμ̂ ∩ Σ2.

For B we proceed more carefully. Firstly, we recall that qw is fully hyperbolic. Indeed, the
linearisation has the following non-zero eigenvalues:

λx2,w, −1 + k
k

x2,w, − 1
2k(1 + k)

x2,w, −x2,w,

where λ = 2
√
Δ/(τ −

√
Δ) as defined in theorem 3.9. To describe the map Σ1 → Σ2 defined

by the backward flow of (58), we use partial linearisations (since resonances in general will
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preclude a full linearisation) within the invariant spaces {ε2 = 0} and {ν2 = μ2 = 0} in order
to obtain the following.

Lemma 5.8. There exists a C1 diffeomorphism bringing (58) into the following system

x′2 = λx2 + εk
2O(ν2k(1+k)

2 + ε2ν
2(1+k)
2 ),

ε′2 = −k + 1
k

ε2,

ν ′2 =
ν2

2k(1 + k)
,

μ′
2 = −μ2,

(72)

upon a regular reparametrization of time.

Proof. See appendix C. �

We now integrate (72) backwards from ν2 = ξ to ε2 = χ. A simple calculation, based upon
a Gronwall-type estimate, gives

x2 �→
(
χ−1ε2

)kλ/(1+k)
x2 +O(ε1/(1+k)

2 ),

which defines B in the new local coordinates. From this, we then similarly obtain the desired
estimate of the x2-derivative of B in proposition 5.7 using the relevant variational equations
(these are taken with respect to system (83) in appendix C). Moreover, it is clear that B(x2, μ̂, 0)
coincides with the x2-coordinate of the intersection Sμ̂ ∩ Σ2. Consequently, (71) holds by
lemma 3.8 and the transverse intersection of J and S. This concludes the proof of proposition
5.7, and therefore the proof of theorem 3.9. �

6. Outlook

The unfolding of BE singularities in BEB under parameter variation is generic in PWS systems.
It follows that singularly perturbed BEB is also generic under parameter variation in singular
perturbation problems which lose smoothness along a codimension-one switching manifold
Σ as a perturbation parameter ε→ 0. In this manuscript the notion of singularly perturbed BEB
is formally defined (see definition 2.5), and a classification based on known classifications for
PWS BEB from [10, 14, 32] is given; see table 1. We showed in theorem 2.8 that the local
normal form (13) first derived in [19] for the analysis of singularly perturbed BF bifurcations
in particular, is capable of generating all 12 singularly perturbed BEBs. It is worthy to note
that a corresponding PWS normal form (14) is also obtained in the limit ε→ 0.

Following the introduction of the normal form (13), we studied its dynamics in parameter
regions corresponding to each singularly perturbed BEB. Using a sequence of blow-up trans-
formations to resolve a loss of smoothness along Σ, and subsequently, degeneracy arising from
the BE singularity itself, we derived two desingularized systems (26) and (27) in lemma 3.2.
Studying the dynamics of these systems allowed for a detailed description of the unfolding for
all 12 singularly perturbed BEBs. This was presented succinctly in theorem 3.4 and figure 5. In
many cases, we were able to provide explicit parameterisations for the location of codimension
1 and 2 bifurcations involved in the unfoldings. It is worthy to note that in general, the bifurca-
tion structure depends quantitatively, but not qualitatively, on the decay rate k determining the
rate at which the system loses smoothness along Σ as ε→ 0; see equation (6). In particular,
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all identified bifurcations are singular, in the sense that they occur within a parameter regime
μ = O(εk/(k+1)) which shrinks to zero in the PWS limit ε→ 0.

We then demonstrated the suitability of our framework for studying the geometry of so-
called double-separatrices, which constitute non-trivial boundaries between cases BF1,2 and
BS1,2 in parameter space. A result on the boundary between cases BF1,2 was presented in
proposition 3.5, but a complete analysis of this and the BS1,2 boundary is left for future work.

Finally, special attention was devoted to the so-called BN3-explosion, which may be con-
sidered a ‘generic analogue’ of the (degenerate) explosion identified already in [27], which
can be considered as the ‘γ = 0 case’ of system (13). We showed that the continuous fam-
ily of singular cycles shown in figure 9 perturbs to a continuous family of stable limit cycles
for 0 < ε � 1. This is described in theorem 3.9, where the growth rate of the cycles is also
quantified as a function of ε and the parameter k determining the rate at which the system loses
smoothness. We emphasise that the focus of [27] was on the existence of relaxation oscillations,
whereas here we focus on the details of the explosion itself.

We conclude with some discussion on the relation to explosive onset of oscillations in clas-
sical slow-fast systems and other singularly perturbed BEBs. Applications, more degenerate
cases of interest, and singular bifurcations of higher codimension are also considered.

6.1. Relation to classical canard explosion and singularly perturbed BF3 explosion

In theorem 3.9 we described a novel explosion mechanism of limit cycles due to the BN3

bifurcation. This ‘explosion’ is reminiscent of the canard explosion phenomenon in classical
slow-fast systems. Here too, an entire family of singular cycles exists for a unique parameter
value. Geometrically both families are upon blow-up identified in a similar way through hete-
roclinic cycles; for theorem 3.9 the heteroclinic cycles occur due to the transverse intersection
of the manifolds Jμ̂ and Sμ̂. Moreover, in both cases, the singular cycles perturb to limit cycles
for 0 < ε � 1, see e.g. [9, 29, 30].

However, the ‘explosion’ described by theorem 3.9 differs from the classical canard explo-
sion phenomenon in a number of important respects. First, for the BN3 bifurcation, there
is only an attracting slow manifold. Since there is no repelling slow manifold, there are no
canards. Instead, repulsion in the BN3 explosion comes from the unstable node. Consequently,
the limit cycles in theorem 3.9 are also always stable since the contraction of the slow manifold
dominates the hyperbolic repulsion from the node; in the canard case the limit cycles can be
either attracting, repelling or neither, the details depending on a slow divergence integral [29].
These differences also manifest themselves through different growth rates. In the BN3 case,
the growth rate (44) is algebraic, whereas the classical canard explosions are characterised by
exponential growth (since (44) is exponentially small in this case).

The onset of oscillations that are O(1) with respect to ε in the singularly perturbed BF3

bifurcation, described in detail in [19], is again different. In the BF3 case one also identifies a
family of singular cycles, but these cycles all lie on the blow-up spheres. As a consequence, the
family of limit cycles obtained after perturbation and blow-down is not explosive in any way.
We will discuss this further in the following section in the context of a regularized stick-slip
oscillator capable of producing both bifurcations BN3 and BF3 (albeit degenerate ones) upon
parameter variations.

6.2. Degenerate singularly perturbed BE bifurcation in applications

Singularly perturbed BN3 explosion of the kind described in theorem 3.9 occurs in a regularized
Gause problem; see [19] for the regularized model, and [11] for the original PWS system. As
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previously stated, a singularly perturbed BN bifurcation also occurs in the model for substrate-
depletion in [27], where it shown to provide a mechanism for the onset of the relaxation-type
oscillations. In the context of the normal form (13), this case is ‘degenerate’ due to γ = 0.
As shown in [27], this produces a critical manifold S with no reduced flow, however with an
additional (infra-)slow timescale.

Similar (degenerate) explosions may also be observed in regularized stick-slip oscillators
under variation of the belt speed, see e.g. [19, section 5.1]. This model takes the form (1)
satisfying assumption 1 with

Z+(x, y,α) =

(
y − α

−x − μ(y)

)
, Z−(x, y,α) =

(
y − α

−x + μ(−y)

)
, (73)

where μ describes the friction law. In [23] it is given as

μ(y) = μm + (μs − μm)e−ρy + cy, (74)

which was proposed by [2] and also studied in [35, 39]. Here μ(0) = μs and μm > μm > 0,
ρ > 0, c ∈ (0, ρ(μs − μm)) to ensure that μ′(0) < 0. The model with (73) has a BEB for
α = 0 at (x, y) = (−μs, 0). An easy calculation, see also [19], shows that this bifurcation can
be either a degenerate BN3 for μ′(0) < −2, or a degenerate BF3 for μ′(0) ∈ (−2, 0). Although
these bifurcations are degenerate with γ = 0, we nevertheless use this example to illustrate
in figures 11 and 12 the differences between these cases. Specifically, in figure 11 we show a
bifurcation diagram for two different sets of parameters: the dotted lines are for

μs = 1, μm = 0.5, c = 0.85 and ρ = 4, (75)

while the full lines are for the same values except with ρ = 7.5, i.e.

μs = 1, μm = 0.5, c = 0.85 and ρ = 7.5. (76)

These two cases giveμ′(0) = −1.10 andμ′(0) = −2.90, respectively, and therefore correspond
to (degenerate) BF3 and BN3 cases. We use a regularization

φ(y) =
1
2

(
1 +

y√
y2 + 1

)
(77)

which satisfies assumptions 1–3 with k = 2, and set ε = 0.001 in system (1). As discussed,
we only see an explosive growth of the limit cycle amplitude in the BN3 case. For further
comparison, figure 12 illustrates examples of limit cycles; (a) in case BF3, and (b) in case
BN3. The colours correspond to the colours of the points in figure 11. See figure captions for
further details.

6.3. Connecting BN2,3 across γ = 0

Since theorem 2.8 applies for all γ ∈ R, it follows that both smooth and PWS normal forms for
degenerate BE bifurcations with γ = 0 are obtained by setting γ = 0 in (13) and (14) respec-
tively. Hence, it is expected that much of the analysis presented herein can be applied in order
to study these degenerate cases, which can be thought of as ‘boundary cases’ separating (sin-
gularly perturbed) BF1,3, BF4,5, BN2,3, BN1,4 and BS1,3 bifurcations; see again figure 5 and the
caption.

The BN2,3 boundary is particularly interesting as (i) it arises naturally in the context of
substrate-depletion oscillations as described above [27], and (ii) there is evidence that upon
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Figure 11. Bifurcation diagram for system (1) defined by (73) with (74) and (77). The
full lines are for the parameter values in (75) whereas the dashed lines are for the parame-
ter values in (76), corresponding to (degenerate) BF3 and BN3 bifurcations, respectively.
The thinner lines track the equilibrium whereas the thicker curves correspond to the limit
cycles (denoted LC in the figure), using max x as a measure of the amplitude, emerging
from the two AH bifurcation points indicated by two black circles. The limit cycles cor-
responding to the purple, blue and red points (disks for the BF case and squares for the
BN case) are illustrated in figures 12(a) and (b), respectively.

Figure 12. Limit cycles of system (1) defined by (73) with (74) and (77). Here (a) and
(b) correspond to the parameter values in (75) and (76) producing (degenerate) BF3 and
BN3 bifurcations, respectively. The thinner black lines show the phase portraits of the
corresponding PWS system at the singular bifurcation α = 0. The switching manifold
along {y = 0} is shown in black, and the dotted cyan curve is the nullcline of Z+(·, 0).

extension through γ = 0, the homoclinic branch identified in case BN2 with γ > 0 connects to
the heteroclinic branch for γ < 0 which is responsible for the explosion in case BN3. Comput-
ing the heteroclinic connection of lemma 3.8 numerically and plotting it over the bifurcation
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Figure 13. Bifurcation diagram from figure 5(b), overlaid with the numerically com-
puted branch of heteroclinics μ̂ = μ̂het(γ) of lemma 3.8. Homoclinic and heteroclinic
branches appear to extend and intersect for γ = 0. The degenerate singularly perturbed
BN bifurcation for γ = 0, i.e. between cases BN2 and BN3, has been described in detail
already in an application in [27]. Corresponding dynamics after blow-up are shown for
γ < 0, γ = 0 and γ > 0.

diagram in figure 5(b), we obtain the diagram in figure 13. Here we see the expected tran-
sition from case BN3 to BN2 as γ crosses zero. Our observations also provide evidence that
μ̂het(γ) < μ̂ah(γ) on γ < 0. Note that if μ̂het(γ) is an analytic continuation of μhom(γ) through
γ = 0, then despite appearances in figure 13, it cannot be linear. This would follow from the
nonlinearity in the local parameterisation of μhom(γ) near the BT point.

6.4. Higher codimensions

As highlighted in observation (i) following the statement of theorem 3.4, the diagrams in figure
5 can be obtained from one another under suitable variation in two additional parameters τ and
δ. In particular, it follows from the classification in table 1 that δ = 0, τ = 0 and Δ = 0 form
boundaries between the cases represented in figure 5. For example, panel (b) is obtained from
panel (a) by crossing from Δ < 0 to Δ > 0 with τ , δ > 0. To see this transition in the blown-
up space, compare figures 4(b) and (c). For Δ = 0, a saddle-node bifurcation occurs on the
intersection of the upper blow-up sphere (shown in magenta) with the plane {ε = 0}, giving
rise to the equilibria qw and qo. Our analysis provides a framework within which transitions
such as these can be analysed, thereby providing a solid foundation and program for future
work.

Additional variation in (τ , δ) leads naturally to higher codimension (singular) bifurca-
tions. Consider for example the effect of crossing δ = 0 for fixed τ > 0. As δ → 0+, the
codimension-two BT point (μ̂bt, γbt)(δ) → (0, 0) in either figure 5(a) or 5(b). Conversely, we
expect that the codimension-two point corresponding to the intersection of the heteroclinic
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and saddle-node curves in figure 5(d) tends to (0, 0) in the limit δ → 0−; see again remark 3.7.
These observations indicate the existence of a codimension-three (singular) bifurcation for
μ̂ = γ = δ = 0, τ > 0, which involves the above-mentioned codimension-two bifurcations in
its unfolding. Moreover, since topologically non-equivalentdiagrams also arise if one considers
instead the same case but with τ < 0, it follows that the dynamics are organised by a singular
codimension-fourbifurcation for γ = μ̂ = δ = τ = 0. The current manuscript therefore serves
as a strong foundation for ample future work in this direction.
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Appendix A. Proof of the normal form theorem 2.8

Following a suitable parameter-dependent coordinate translation we may assume that system
(1) has a nondegenerate BE bifurcation at zbe = (0, 0) when αbe = 0. It follows by arguments
analogous to [19, p 38] (see also [17] for further details) that the system

u̇ = φ
(
yε−1

)
[s1(α) + a(α)u + b(α)y + ϕ1 (u, y,α)] ,

ẏ = 1 + φ
(
yε−1

)
[−1 + s2(α) + c(α)u + d(α)y + ϕ2 (u, y,α)] ,

(78)

can be obtained from system (1) after a smooth invertible local coordinate transforma-
tion of the form u = L(x, y,α), and a transformation of time amounting to division by
Z−

2 ((M(u, y,α), y),α), which is locally nonzero due to (12).5 As described in [19, p 38], the
function L(x, y,α) can be chosen such that local orbit segments of Z−(x, y,α) are given by
level sets L(x, y,α) = const. The quantities a(α), b(α), c(α), d(α) are smooth functions of α
such that a(0) = a, b(0) = b, c(0) = c, d(0) = d are constant, si(α), ϕi(y, y,α), i = 1, 2, are
smooth functions satisfying si(0) = 0, i = 1, 2, s′2(0) > 0, and ‖ϕi(u, y,α)‖ = O(‖(u, y,α)‖2).
Note that due to the transformation of time, the orientation is reversed if Z−

2 ((0, 0), 0) < 0.
System (78) inherits a BEB at (u, y) = (0, 0) for α = 0, of the same topological type as the

BE bifurcation in the original system (1). In particular, it follows from definition 2.5 that the
following nondegeneracy conditions are satisfied:

τ := a + d 	= 0, δ := ad − bc 	= 0, τ 2 − 4δ 	= 0.

Indeed, the requirement that the eigenvectors v±(αbe) in definition 2.5 are transverse to Σ
ensures that either b 	= 0, c 	= 0 or both b, c 	= 0.6 Without loss of generality we may assume

5 The (˙) notation in (78) denotes differentiation with respect to the new (transformed) time.
6 This is immediate for BF bifurcations; transverse intersection of v±(αbe) and Σ is only required for the BN and BS
bifurcations.
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that c > 0.7 System (13) is obtained from (78) after making a linear coordinate transformation

v = c(u + w(α)) + dy, u =
1
c

(v − dy) − w(α),

where w : Iα → R is a smooth function satisfying w(0) = 0, and a suitable application of the
inverse function theorem. This leads to the system

v̇ = d + φ
(
yε−1

) (
−d + μ+ τv − δy + θ̃1(v, y,α)

)
,

ẏ = 1 + φ
(
yε−1

) (
−1 + v + θ̃2(v, y,α)

)
,

where we have defined a new parameter

μ(α) := cs1(α) + ds2(α) − cτw(α) +O(α2),

and w(α) = (s′2(0)/c)α+O(α2), see again [19, p 38] for details. Notice that μ′(0) 	= 0 by
the determinant condition in (12), so that μ = μ(α) is invertible with inverse α(μ) such that
α(0) = 0 and α′(0) 	= 0. Hence we may define θi(v, y, μ): = θi(v, y,α(μ)) for i = 1, 2. Setting
γ := τ − d and (by a slight abuse of notation) v = x, this yields the form in (13).

Finally, the Filippov/sliding vector field Xsl(x, μ) in (15) is obtained directly from system
(14) using the formula (10) with Z± = X±. The form for γ is motivated by

γ = X′
sl(0, 0).

Appendix B. Proof of lemma 5.1

We focus on (56), the details of (58) being almost identical and therefore left out. To obtain (56)
we insert (53) into the extended system {(x′, y′) = εX(x, y, μ, ε), ε′ = 0, μ′ = 0}. The easiest
way to do this is to use the fact that (53) is the composition of three mappings defined by (17),
(19) and finally

x2 = νk(1+k)
1 x1,

ρ2 = νk+1
1 ρ1,

ε2 = νk+1
1 ,

μ = ν2k(1+k)μ1.

(79)

We therefore compute the resulting equations in turn. First, we insert (17) into {(x′, y′) =
εX(x, y, μ, ε), ε′ = 0, μ′ = 0}. This gives

x′ = r1
[
(1 − εk

1φ+(ε1))(μ+ τ x − δr1 + θ1(x, r1,μ)) − εk
1φ+(ε1)(γ − μ)

]
,

r′1 = r1

{(
1 − εk

1φ+(ε1)
)

(x + θ2(x, r1,μ)) + εk
1φ+(ε1)

}
,

ε′1 = −ε1
{(

1 − εk
1φ+(ε1)

)
(x + θ2(x, r1,μ)) + εk

1φ+(ε1)
}

,

(80)

7 The alternative c < 0 leads to an equivalent normal form which can be obtained from system (13) via (x, μ) �→
(−x,−μ) as described in [19, remark 2.7].
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and μ′ = 0, upon desingularizing through the division by ε1 on the right-hand side. Subse-
quently, we insert (19) into (80). This gives

x′2 = a2(x2, ρ2, ε2,μ) − 1
2

x2b2(x2, ρ2, ε2,μ),

ρ′2 =
1

2k(1 + k)
ρ2b2(x2, ρ2, ε2,μ),

ε′2 = −2k + 1
2k

ε2b2(x2, ρ2, ε2,μ),

(81)

along with μ′ = 0, upon desingularization through the division by ρk(1+k)
1 on the right-hand

side, where

a2(x2, ρ2, ε2,μ) = (1 − ρk(1+k)
2 εk

2φ+(ρ1+k
2 ε2))

(
μ+ τρk(1+k)

2 x2 − δρ2k(1+k)
2

+ θ1(ρk(1+k)
2 x2, ρ2k(1+k)

2 ,μ)
)
− ρk(1+k)

2 εk
2φ+(ρ1+k

2 ε2)(γ − μ),

b2(x2, ρ2, ε2,μ) = (x2 + ρ−k(1+k)
2 θ2(ρk(1+k)

2 x2, ρ2k(1+k)
2 ,μ))

× (1 − ρk(1+k)
2 εk

2φ+(ρ1+k
2 ε2)) + εk

2φ+(ρ1+k
2 ε2).

Notice by theorem 2.8 that ρ−k(1+k)
2 θ2(ρk(1+k)

2 x2, ρ2k(1+k)
2 ,μ) in these expressions has a smooth

extension to ρ2 = 0. In particular, a2(x2, 0, ε2, 0) = 0 and b2(x2, 0, ε2, 0) = x2 + εk
2φ+(0) =

x2 + εk
2β, recall (7). Finally, we insert (79) into (81). This produces the final result upon

dividing the right-hand side by the common factor νk(1+k)
1 .

The conservation of the quantities (57) and (60) follows from (22) by setting ε̌ = 1 and
ρ̌ = 1 respectively.

Appendix C. Proof of lemma 5.8

Consider (58) within ε2 = 0. Then Ψ2, defined as the ε2 = 0 restriction of (54):

Ψ2 : (x2, ν2,μ2) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = ν2k(1+k)

2 x2,

y = ν2k(1+k)
2 ,

μ = ν2k(1+k)
2 μ2,

gives a smooth topological equivalence between (58) ε2 = 0 and the μ-extended system
{(x′, y′) = X+(x, y, μ), μ′ = 0} on {y > 0}. The latter system, since X+ just has a hyper-
bolic and unstable node for μ small enough, is itself smoothly conjugated, see e.g. [31], to the
linearisation:

x′ = μ+ τ x − δy,

y′ = x,

μ′ = 0,

(82)

near (x, y, μ) = (0, 0, 0). It is then obvious that Ψ−1
2 gives a smooth topological equivalence

between (82) and the system (58) ε2 = 0 with θi ≡ 0 on ν2 > 0. Putting this together, we have
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a smooth diffeomorphism

(x̃2, ν̃2, μ̃2) �→

⎧⎪⎪⎨⎪⎪⎩
x2 = x̃2 +O1(2),

ν2 = ν̃2(1 +O2(1)),

μ2 = μ̃2(1 +O3(1)),

bringing (58) ε2 = 0 on {ν2 > 0} into the same form with θi ≡ 0, upon a regular reparam-
eterisations of time. It is straightforward to show that this mapping extends smoothly to
{ν̃2 = 0} ⇔ {ν2 = 0}. We therefore define ε̃2 by the condition

ε = ν̃2(1+k)2

2 ε̃2 = ν2(1+k)2

2 ε2,

i.e.

ε̃2 = ε2(1 +O2(1))−2(1+k)2
.

Applying the diffeomorphism (x̃2, ε̃2, ν̃2, μ̃2) �→ (x2, ε2, ν2,μ2), defined in this way, then gives

x′2 = −x2 −
μ2 + τ x2 − δ

x2
+ εk

2h2(x2, ε2, ν2,μ2),

ε′2 = −k + 1
k

ε2,

ν ′2 =
ν2

2k(1 + k)
,

μ′
2 = −μ2,

(83)

upon dropping the tildes, for some smooth function h2, upon dividing the right-hand side by
a positive factor near x2,w (notice in particular that we obtain (83) for ε2 = 0 by dividing the
right-hand side of (58) with θi ≡ 0 by g2, which is positive near (x2,w, 0, 0, 0)).

Next, consider (83) within ν2 = μ2 = 0:

x′2 = −x2 −
μ2 + τ x2 − δ

x2
+O(εk

2),

ε′2 = −1 + k
k

ε2.

For this sub-system, (x2, ε2) = (x2,w, 0) is a hyperbolic saddle, the linearisation having
λ,−(1 + k)/k as eigenvalues, with λ given as in theorem 3.9. Consequently, by Belitskii’s
theorem [1], see also [15], there exists a C1-linearisation of the form

(x̃2, ε2) �→ x2 = h(x̃2, ε2), (84)

with h2(0, 0) = x2,w such that

x′2 = λx2,

ε′2 = −1 + k
k

ε2,

upon dropping the tildes. Lifting (84) to the full space, we finally obtain (72). The order of the
remainder easily follows from the expressions for f 2 and g2.
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