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In this paper we study a risk model with claim arrivals based on general compound Hawkes processes
and show that it is suitable to model empirical insurance data. We review a law of large numbers and
functional central limit theorem for this model and derive a pure diffusion approximation which allows
analytical calculation of finite-time and infinite-time ruin probabilities. We use the approximation to
study the influence of replacing the classical Poisson arrival process by a general compound Hawkes
process on optimal investment strategies for an insurer in an incomplete market by applying results
from asset–liability management.
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1. Introduction

In risk theory, a central question is how to model the random
rocess describing claim occurrences. In recent years, several
xtensions to the classical Cramér–Lundberg risk model intro-
uced in Lundberg (1903) have been studied. This is relevant
s in reality insurance claim arrivals cannot generally be as-
umed to follow a memoryless homogeneous Poisson process
e.g. Seal, 1983). One approach is to use a time-dependent inten-
ity which is influenced by external factors such as environmental
hocks. Albrecher and Asmussen (2006) study aggregate claims
istributions and ruin probabilities for a risk process with claims
ccording to a shot noise Cox process (a superposition of a homo-
eneous Poisson process and a Cox process with a Poisson shot
oise intensity process) and Dassios and Jang (2003) use a Cox
rocess to model claim arrivals for the pricing of catastrophe rein-
urance. However, in financial applications it has been observed
hat time-dependence of event arrival rates and particularly tem-
oral clustering of events can often not be entirely explained
y exogenous factors (e.g. news, environmental changes), but
ight be caused by the arrival process itself (e.g. market re-

lexivity, Filimonov and Sornette, 2012; Hardiman et al., 2013).
hus self-exciting Hawkes processes, first introduced in Hawkes
1971), have gained attention due to their ability to reflect en-
ogenously caused clustering. Bacry et al. (2015) give a good

∗ Corresponding author.
E-mail addresses: aswish@ucalgary.ca (A. Swishchuk), zagst@tum.de

R. Zagst), gabi.zeller@tum.de (G. Zeller).
ttps://doi.org/10.1016/j.insmatheco.2020.12.005
167-6687/© 2021 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
overview of the variety of recent applications of Hawkes pro-
cesses in finance, such as modelling market activity (Da Fonseca
and Zaatour, 2013; Lallouache and Challet, 2016; Embrechts et al.,
2011; Chavez-Demoulin and McGill, 2012) and price modelling
in high-frequency trading (Bacry et al., 2013; Zheng et al., 2014;
Fauth and Tudor, 2012).

The first work to consider a risk model with Hawkes claims
arrivals was Stabile and Torrisi (2010) who derive the asymp-
totic behaviour of infinite and finite horizon ruin probabilities
and asymptotically efficient simulation laws assuming light-tailed
claims. Their work was extended by Zhu (2013) who considered
(subexponential) heavy tailed claims. Dassios and Zhao (2012)
consider a risk process with a dynamic contagion process, gener-
alizing the Hawkes process and the Cox process with shot noise
intensity and thus including both self-excited and externally ex-
cited jumps. Jang and Dassios (2013) study a bivariate shot noise
self-exciting process for insurance, including a constant rate of
exponential decay that could be interpreted as the time value
of money. Cheng and Seol (2018) derive diffusion approxima-
tions and expressions for the ruin probabilities of a risk model
with Hawkes claims arrivals, providing numerical examples for
exponential and Gamma-distributed jumps. They find that the
diffusion limit is a Gaussian process which can be decomposed
into a centred Gaussian process and an independent Brownian
motion. Swishchuk (2017a) proposes a risk model with general
compound Hawkes process (claim arrivals as a Hawkes process
and claim sizes as an N-state Markov Chain) and derives a law of
large numbers (LLN) and functional central limit theorem (FCLT)
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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or this model. The FCLT allows to construct a diffusion approxi-
ation which leads to closed-form formulas for finite and infinite
orizon ruin probabilities. A model with a general compound
awkes process has been successfully used for Limit Order Book
odelling in Swishchuk (2017b), but has some drawbacks when
pplied to the insurance context.
In this paper, we use an approach that allows us to employ

he convenient diffusion approximation results from Swishchuk
2017a) while being able to reasonably reflect claim sizes (which
re usually assumed to follow a continuous distribution). We
how that the model is suitable for an empirical insurance data
et. To the best of our knowledge, this is the first work consid-
ring a risk model with Hawkes claims arrivals employing real
mpirical insurance data.
After testing the goodness of model fit and the diffusion ap-

roximations, we apply the results to calculate ruin probabilities.
e then extend the work of Xie et al. (2008), who study the
ean–variance efficient frontier and investment strategy for an

nsurer whose random risk process follows a Brownian motion
ith drift in an incomplete market, to the case of a risk model
ith Hawkes processes. We show how the higher risk of the
awkes process (measured by the variance of the number of
rrivals) influences the strategy and the obtainable return for a
iven risk limit in comparison to a classical Poisson process. In
articular, we show that the analysis of the presence of clustering
n the claim arrival process and the dependence between the evo-
ution of the insurer’s liability and the evolution of the tradeable
isky assets are vital in order to choose an investment strategy
n a way that ensures the allowed risk limit (in the form of a
ariance boundary on the terminal wealth) is adhered to. In the
ase of clustered claims arrivals, this will imply choosing a more
onservative strategy and reducing the attainable expected return
s compared to the case of non-clustered claims arrivals, even
f the expected claim number and size do not differ. The paper
s structured as follows: Section 2 reviews some definitions and
esults about Hawkes processes used in the sequel. In particular,
e highlight the recent work of Swishchuk (2017a) on insurance
isk models with general compound Hawkes processes (RH)1.
ection 3 describes the empirical insurance data set and specifies
he modelling of claim arrivals and claim sizes. We show that
he model accurately reflects the characteristics of empirical data.
ection 4 uses the results from Swishchuk (2017a) on diffusion
pproximations for the RH to calculate finite and infinite time

ruin probabilities. Section 5 addresses the investment problem of
an insurer in an incomplete market whose claims arrive according
to a Hawkes process. Using the mean–variance based approach
by Xie et al. (2008), we show how replacing the classical case
of Poisson arrivals by Hawkes arrivals influences the risk (mea-
sured by the variance of terminal wealth) and thus alters the
investment decision. Economically, this reflects that the insurer’s
claim arrival process might display a clustering effect and long-
term memory, thus at each point in time information from the
whole past of the process has to be considered. Section 6 con-

1 In Swishchuk (2017a) and Swishchuk (2017b), this model respectively the
nderlying process is abbreviated as (RM)GCHP. In particular, this highlights that

it is only one rather general of numerous cases that are investigated in those
works. However, as it is the only model employed in this present work, we
shorten the abbreviation to RH, indicating a Hawkes risk model.
108
cludes the paper by highlighting limitations and future research
opportunities.

2. Background

In this section, we review some well-known definitions and
past work on Hawkes processes and their application for insur-
ance risk models.

2.1. Hawkes processes

2.1.1. Hawkes process: Definition and notation
The Hawkes process introduced by Hawkes (1971) is a simple

point process with self-exciting property, clustering effect and
long-term memory. It can be used to model a sequence of arrivals
into a system over time, such as earthquake occurrences (Ogata,
1999), trade orders (Da Fonseca and Zaatour, 2013), credit de-
faults (Errais et al., 2010) or incoming insurance claims (Stabile
and Torrisi, 2010; Cheng and Seol, 2018). The counting process,
usually denoted N(t), refers to the cumulative number of arrivals
up until a time t ≥ 0, and can be characterized by the corre-
sponding point process T := (t1, t2, . . .), the sequence of random
rrival times at which the counting process N(t) has jumped.
e denote by H(t), t ≥ 0, the history of arrivals up to time t ,

.e. {H(t), t ≥ 0} is a filtration. For an extensive treatment of point
rocesses we refer to Daley and Vere-Jones (2003).
Consider a counting process N(t) with history H(t) for t ≥ 0.

f a non-negative, H(t)-measurable function λ∗(t) exists such that

∗(t) = lim
h→0

E[N(t + h) − N(t)|H(t)]
h

, (1)

then it is called conditional intensity function of N(t). By Daley
and Vere-Jones (2003), if the conditional intensity function exists,
it uniquely determines the finite-dimensional distributions of the
point process and can thus be used as a characterization.

The non-decreasing function

Λ(t) =

∫ t

0
λ∗(s)ds (2)

is called the compensator of the counting process.

Definition 1 (One-dimensional Hawkes Process). Consider
N(t), t ≥ 0, a counting process with history {H(t), t ≥ 0} that
satisfies

P(N(t + h) − N(t) = m|H(t)) =

⎧⎨⎩
λ∗(t)h + o(h), m = 1
o(h) m > 1
1 − λ∗(t)h + o(h), m = 0

(3)

Suppose the conditional intensity function is of the form

λ∗(t) = λ +

∫ t

0
µ(t − s)dN(s) (4)

where λ > 0 is called background intensity and µ : [0, ∞) →

(0, ∞) is called excitation function. Assume that µ(·) ̸= 0 to avoid
the trivial case of a homogeneous Poisson process. The process
N(·) is called a Hawkes process.

Note that using the observed sequence of arrival times (t1, t2,
. . . , tk) up to time t , the conditional intensity can be written as

λ∗(t) = λ +

∑
ti<t

µ(t − ti) (5)

Thus, the Hawkes process is a generally non-Markovian exten-
sion of the Poisson process. Note that the self-excitement of
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he process is reflected in the fact that a new arrival causes an
ncrease in the intensity function and thus temporal clustering
f T. Depending on the choice of λ∗(t), this might even lead to

an explosion of the process (infinitely many jumps would occur
in a finite time interval), an event that should be avoided. In the
one-dimensional case this is achieved by restricting our focus to
so-called stationary Hawkes processes that fulfil the condition

µ̂ :=

∫
∞

0
µ(s)ds < 1. (6)

2.1.2. Exponentially decaying Hawkes process: Definition and prop-
erties

A common choice for the excitation function µ(·) is the one
of exponential decay: µ(t) = αe−βt with parameters α, β > 0.
The conditional intensity function (4) of a Hawkes process with
exponentially decaying intensity thus becomes

λ∗(t) = λ +

∫ t

0
αe−β(t−s)dN(s) = λ + α

∑
ti<t

e−β(t−ti). (7)

In this case, the stationarity condition (6) corresponds to

µ̂ =

∫
∞

0
αe−βsds =

α

β
< 1 ⇐⇒ α < β. (8)

Given an initial condition λ∗(0) = λ0, (7) satisfies the SDE

dλ∗(t) = β(λ − λ∗(t))dt + αdN(t), t ≥ 0 (9)

which can be solved as (Laub et al., 2015)

λ∗(t) = e−βt (λ0 − λ) + λ +

∫ t

0
αe−β(t−s)dN(s), (10)

which is an extension of (7), e.g. for a process that started some
time before the beginning of the observation period. Note that
in the case of exponentially decaying intensity (7), the process
(λ∗(t),N(t)) is a continuous-time Markov process (see Gao and
Zhu, 2017) which is not the case for a general choice of excitation
function in (4). In Da Fonseca and Zaatour (2013), this is used as
the key property which allows to study the distributional prop-
erties of the process and compute explicitly the moments and
autocorrelation function of the number of jumps of an exponen-
tial Hawkes process over a fixed interval. We briefly summarize
their results in the following.

Proposition 1 (Da Fonseca and Zaatour, 2013). Given a Hawkes
process X(t) = (λ∗(t),N(t)) with dynamic given by (9), the long-run
expected value of the number of jumps during an interval of length
τ is given by

E[N(τ )] := lim
t→∞

E(t, τ ) := lim
t→∞

E[N(t + τ ) − N(t)]

=
λ

1 − α/β
τ . (11)

The variance is given by

Var[N(τ )] := lim
t→∞

V (t, τ ) := lim
t→∞

(
E[(N(t + τ ) − N(t))2] − E(t, τ )2

)
=

λ

1 − α/β

(
τ

(
1

1 − α/β

)2

+

(
1 −

(
1

1 − α/β

)2)1 − e−τ (β−α)

β − α

)
.

(12)
109
The covariance of the number of arrivals for two non-overlapping
intervals of length τ with lag δ > 0 is given by

Cov(N(τ ), δ) := lim
t→∞

C(t, τ , δ)

:= lim
t→∞

(
E[(N(t + τ ) − N(t))(N(t + 2τ + δ)−

− N(t + τ + δ))] − E(t, τ )E(t + τ + δ, τ )
)

=
λβα(2β − α)(e(α−β)τ

− 1)2

2(α − β)4
e(α−β)δ. (13)

Note that taking the limit for t → ∞ (putting the process
into its long-run stationary regime) to simplify dependence with
respect to the initial value λ0 requires again the stability of the
process, implying α < β .

Proposition 2 (Da Fonseca and Zaatour, 2013). A direct conse-
quence from the last result is the autocorrelation function of the
number of jumps over intervals of length τ separated by a time lag
of δ:

Acf (τ , δ) =
e−2βτ (eατ

− eβτ )2α(α − 2β)
2(α(α − 2β)(e(α−β)τ − 1) + β2τ (α − β))

e(α−β)δ. (14)

Note that this expression is always positive for α < β (sta-
ionarity condition) and exponentially decaying with the lag δ.

.1.3. Simulation, parameter inference and goodness of fit testing
In this section, we briefly explain the methods we use for

awkes process simulation, parameter inference and goodness
f fit testing of a Hawkes model. All these techniques are well-
nown and a good summary can be found in e.g. Laub et al.
2015). For Hawkes process simulation we rely on the modi-
ied thinning algorithm first introduced in Ogata (1981) which
s an adaption of the thinning algorithm used to simulate an
nhomogeneous Poisson process by Lewis and Shedler (1979).

In order to fit an exponentially decaying Hawkes process to
ur empirical dataset, we use maximum likelihood parameter
nference. The log-likelihood function for a realization of (N(t)),
≥ 0 over [0, T ] as derived in Laub et al. (2015) in this case is

=

N(T )∑
i=1

log(λ + αA(i)) − λT +
α

β

N(T )∑
i=1

(
e−β(T−ti) − 1

)
(15)

here

(i) =

⎧⎪⎨⎪⎩
0 i = 1,
i−1∑
j=1

e−β(ti−tj) = e−β(ti−ti−1)(1 + A(i − 1)) i ∈ {2, . . . , k}.

(16)

Some numerical disadvantages of using the maximum likelihood
estimation method, such as bias for small sample sizes, getting
stuck in local optima and performance issues for large samples
(especially for high-frequency trading applications) have been
addressed by e.g. Da Fonseca and Zaatour (2013), Filimonov and
Sornette (2015). This motivated the derivation of a generalized
method of moments for parameter estimation in Da Fonseca and
Zaatour (2013) based on their results stated in Propositions 1 and
2. However, for our purposes, we found the maximum likelihood
method to be instantaneous and reliable. There are many meth-
ods of checking the goodness of fit of a fitted Hawkes model to
point data, an overview can be found in Laub et al. (2015). We will
use the basic test relying on the random time change theorem
here.
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heorem 1 (Random Time Change Theorem Brown et al., 2002).
Let {t1, t2, . . . , tk} be a realization over time [0, T ] from a point
process with conditional intensity function λ∗(·). If λ∗(·) is posi-
ive over [0, T ] and Λ(T ) < ∞ a.s. then the transformed points
t∗1 , . . . , t

∗

k } = {Λ(t1), . . . , Λ(tk)} form a Poisson process with unit
rate. Λ(·) denotes the compensator of the point process.

As the closed form of the compensator for an exponential
Hawkes process is known from (2), one can test the quality of
the parameter estimation by transforming the original timepoints
and performing standard fitness tests for a unit rate Poisson
process on the transformed datapoints. Many generalizations
of Hawkes processes have been studied and used in financial
applications, e.g. multi-dimensional (self- and mutually-exciting)
Hawkes processes (Embrechts et al., 2011; Aït-Sahalia et al., 2015)
or marked Hawkes processes (Bacry et al., 2013; Fauth and Tudor,
2012; Karabash and Zhu, 2015). In this work, we restrict ourselves
to one-dimensional Hawkes processes with exponential decay.
This seems reasonable for the dataset at hand and considering
that this is the first application of a risk model with Hawkes
processes to real insurance data. Promising ideas for further
studies with more general Hawkes processes are summarized in
Section 6.

2.2. Risk model with Hawkes processes

In general, a risk model intends to describe the available
capital of an insurance company (or part of it) over time and is
of the form

R(t) = u + ct −

Nt∑
i=1

Yi, (17)

here u denotes the initial capital and c denotes the (continuous)
premium rate. N(t) is a counting process describing the number
of claims occurring in the interval (0, t] and {Yi} is a sequence of
on-negative random variables describing the claim sizes. Usu-
lly, the {Yi} are assumed i.i.d. with distribution function G and
inite first two moments E[Y1] = m1 and E[Y 2

1 ] = m2. N(t) and
{Yi} are assumed to be independent. In the classical case N(t) is a
homogeneous Poisson process, but from now on we assume N(t)
to be a stationary Hawkes process with exponentially decaying
intensity.

An important event to study in risk theory is the occurrence
of ruin, i.e. the event that the capital falls below 0 for the first
time (or equivalently another fixed lower bound, e.g. given by
regulatory requirements).

The ruin time given the initial capital u is thus defined as

τ (u) = inf{t > 0 : R(t) < 0 | R(0) = u} where inf ∅ = ∞. (18)

The probability that ruin occurs until a fixed finite time-horizon
t is then

Ψ (u, t) = P(τ (u) ≤ t | R(0) = u)

= P( inf
0<s≤t

R(s) < 0 | R(0) = u), (19)

and the infinite-horizon ruin probability is accordingly

Ψ (u) = lim
t→∞

Ψ (u, t) = P(inf
t>0

R(t) < 0 | R(0) = u). (20)

Even for the classical model, closed-form solutions for these ruin
probabilities are only available for special choices of the claim
size distribution (see e.g. Asmussen and Albrecher, 2010). This
has motivated seeking bounds for the ruin probability, such as
the Lundberg inequality for the classical case (see Asmussen
and Albrecher, 2010) and an adapted version for the Cox case
by Embrechts et al. (1993). Another approach is to approximate
110
the risk process by a diffusion approximation, which for the
classical model was first done by Iglehart (1969) and Grandell
(1977). Schmidli (1994) considered the case where borrowing
money and investing surpluses is allowed and the recent work
of Basu (2016) studies a renewal-process based risk-reserve pro-
cess with dividend payments. As mentioned, many authors have
recently suggested risk models with Hawkes claims arrivals. For
our application, we will focus on the work of Swishchuk (2017a)
who introduces the following risk model.

Definition 2 (Risk Model with General Compound Hawkes Process
(RH) Swishchuk, 2017a). Let N(t) be any one-dimensional Hawkes
process as defined above. Let (Xi) be an ergodic continuous-time
finite (or countably infinite) Markov Chain, independent of N(t),
with state space X , and let a(x) be any bounded function on X .
Then a general compound Hawkes process is defined as

H(t) = H(0) +

N(t)∑
i=1

a(Xi). (21)

Define the risk process R(t) based on a general compound Hawkes
process as

R(t) = u + ct −

N(t)∑
i=1

a(Xi), (22)

where u is the initial capital, c is the premium rate, (Xi) is a
continuous-time Markov Chain on the state space X = {1, . . . , n},
N(t) is a Hawkes process, a(x) is a bounded function on X . N(t)
and (Xi) are independent.

A related model has been successfully used for modelling
Limit Order Book dynamics in Swishchuk (2017b) where the a(Xi)
are interpreted as a conditionally dependent sequence of price
changes which are not fixed to one-tick movements. Likewise, in
many cases in the insurance context, the usual assumption of i.i.d.
claim sizes might be too restrictive such that the above model
offers a possible generalization. In our particular context, we will
adapt the interpretation of the Markov Chain as described in
Section 3.3 in order to appropriately reflect incoming claim sizes.
Swishchuk (2017a) proves a law of large numbers for this model
and uses it to derive a net profit condition and the premium
principle based on the expected value principle.

Theorem 2 (Law of Large Numbers for RH Swishchuk, 2017a). Let
R(t) be the risk model defined in Definition 2, and let (Xi) be a
Markov Chain with state space X and stationary probabilities π∗

i .
We suppose that 0 < µ̂ =

∫
∞

0 µ(s)ds < 1. Then

lim
t→∞

R(t)
t

= c − a∗
λ

1 − µ̂
, (23)

here a∗
=
∑

i∈X a(i)π∗

i .

orollary 1 (Net Profit Condition and Premium Principle Swishchuk,
017a). The net profit condition for RH is given as

> a∗
λ

1 − µ̂
. (24)

he premium principle for RH, based on the expected value principle,
s given as

= (1 + θ )a∗
λ

1 − µ̂
, (25)

where θ denotes the safety loading.
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. Implementation of risk model results with empirical data

In this section, we first explain in detail the empirical insur-
nce data set used in the sequel. We show that the use of a
oisson process for claim arrivals would not be suitable and fit
n exponential Hawkes process to the claim arrival process. We
odel claim sizes according to an adapted version of the RH and

hen show that this model is indeed suitable to reflect the data
et under consideration.

.1. Empirical data

The data set was provided by a large German Insurance group
nd comprises claim occurrences from the class of legal expenses
nsurance, which refers to insurance protection covering the costs
f a legal dispute (e.g. lawyer expenses or fees). For this class of
nsurance, we observe that often once a legal dispute occurs and
s reported to the insurance company, multiple payments from
or triggered by) this case have to be expected in the subsequent
ime period. This might be due to multiple receivables from
awyers and consultants, an appeal of the court case being lodged
r more legal matters being uncovered and reported resulting
rom the initial reporting. Particularly, it might be expected that
lients who once start a legal dispute usually show a higher will-
ngness to continue to pursue it or start another one. Therefore
e suspect a Hawkes process might be suitable to model claim
rrivals for this class of insurance claims.
The dataset used in the following comes from the subclass

f legal insurance against damage compensation in consequence of
ncidents related to traffic. We have conducted the same procedure
for other datasets from different subclasses and an outlook is
given in Section 6.

3.2. Claim arrivals

First, we need to clarify the kind of arrival times we consider.
The empirical data set is divided according to the reporting year
f a claim. This is not necessarily equal to the year of the orig-
nal claim occurrence, indeed there is extensive academic work
edicated to understanding the dynamics of delayed (IBNR and
BNS) claims, for instance Dassios and Zhao (2013), Yuen et al.
2005), Boumezoued and Devineau (2017). For the same claim
ccurrence we often observe multiple payment dates correspond-
ng to cash outflows for the insurance company. It is interesting
or the company to understand the characteristics of these cash
utflows, as for a case which is not typically closed after a single
ayment, it is beneficial to already estimate an amount which
hould be reserved for future liabilities from this known case.
Modelling the endogenous structure of initial payments trigger-
ing future payments by use of a Hawkes process gives rise to
interesting insights about the structure of the claim payment
process.

The dataset we consider consists of claims which occurred in
the years 2007 to 2011, were reported with a delay of three years
during 2010 to 2014 and have corresponding payment dates
during the time period from 01 January 2010 to 28 July 2016. For
a detailed explanation of this data set choice, see Appendix A.1.
For each claim payment, only the day of the payment is recorded
as any finer granularity is not of particular interest to the in-
surance company. As the process is aggregated over multiple
clients and claim occurrences, on some days there are multiple
arrivals with the same timestamp (day). As the Hawkes process
is a simple point process (see Definition 1), multiple arrivals with
the same timestamp are theoretically not possible. In these cases,
we distribute the indistinguishable arrivals uniformly over their

arrival day in order to generate distinct timestamps. Note that

111
Fig. 1. The plot of empirical interarrival times against an exponential
distribution indicates that a Poisson model would not be a suitable fit.

Fig. 2. The number of claim payments per week during the time period 01 Jan
2010 to 28 July 2016 gives further indication as to the presence of clustering.

this modification is only necessary for the parameter estimation
step, as in all further applications we use increments of at least
one day (thus the slightly shifted arrivals will be counted ‘‘in-
distinguishably’’ again). First, we test whether the claim arrivals
could be described by a memoryless Poisson distribution as as-
sumed by the classical model, where we use the same criteria as
in Da Fonseca and Zaatour (2013) for trade clustering in stock and
futures data. In Fig. 1, the interarrival times of claim payments are
plotted against an exponential distribution. The figure indicates
clearly that a Poisson model would not be suitable for the data.
Fig. 2 displays the number of payments per week (7 days) over
the whole time period of 2400 days, where clustering of payment
occurrences over time can be observed.

Next, again following Da Fonseca and Zaatour (2013), we com-
pute the empirical autocorrelation of the number of payments
during intervals of fixed length τ separated by a lag of length δ.
hus we compute (see (12) and (13)):

C(t, τ , δ) =
C(t, τ , δ)

√
V (t, τ )V (t + τ + δ, τ )

. (26)

We choose the interval length as (7, 14, 21, 28) days and let
the lag range from 0 to 240 days by steps of 1. We plot the
resulting autocorrelation values as a function of the time lag δ
in Fig. 3.

We note that the autocorrelation between the number of
payments in two intervals is a decreasing function of the time
lag for all chosen interval lengths. This corroborates the use of
a Hawkes process as it indicates that incoming arrivals in one
period influence closely subsequent periods and this memory
effect decays as time moves on. Note that a Poisson process
would assume independence between the number of arrivals in
subsequent intervals and thus a constant autocorrelation of 0
which is clearly not the case for the data.

Given these insights into the nature of payment arrival times,
we proceed to fit a Hawkes process with exponentially decay-
ing intensity to the arrival process. This process is chosen as
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Fig. 3. Empirical autocorrelation function, as in (26), of the number of claim
ayments on intervals of length τ as a function of the time lag δ between the
ntervals. The overall trend is decreasing for all interval lengths. Clearly, the
umber of claim payment arrivals on consecutive intervals cannot be assumed
ndependent.

Table 1
Parameter estimates λ̂, α̂, β̂ from MLE as well
as the estimated number of arrivals on a unit
interval E[N(1)] =

λ̂

1−α̂/β̂
(see (11)) compared to

its empirical counterpart Ê[N(1)].
Parameter ML Estimate

λ 0.1467
α 0.0260
β 0.0334
E[N(1)] 0.6621
Ê[N(1)] 0.6483

it is able to capture the features of the data such as clustering
and autocorrelation decay (see Figs. 2 and 3) and is analytically
tractable in the sense of Section 2.1.2. To this end, we estimate
parameters λ, α and β from (7) using the maximum likelihood
stimation described in Section 2.1.3. We use the Nelder–Mead
ptimization routine from the R package lme4 to minimize the
egative log-likelihood function. In order to avoid getting stuck
n a local optimum, we repeat the optimization with 100 random
tarting values (λ0, α0, β0) drawn uniformly from the interval
0, 500) (such that α0 < β0) and proceed with the estimations
hich yield the smallest value of the objective. The results are
ummarized in Table 1.
In order to test the goodness of fit of the Hawkes model,

e first use the approach described in Section 2.1.3 and plot
he transformed interarrival times against a unit Exponential
istribution as shown in Fig. 4. We observe an improvement over
he fit of a classical Poisson model in Fig. 1.

Furthermore, using (11), (12) and (14), we compare the theo-
etical expected value (on a unit interval), variance (on intervals
f different length) and autocorrelation (on intervals of different
engths and time lags) of the number of jumps of an exponential
awkes process with parameters from Table 1 with the corre-
ponding values of the empirical arrivals in Table 1, Table 2 and
ig. 5 respectively.
Overall, these tests lead us to conclude that a risk model

ith claim arrivals according to a stationary Hawkes process
 s
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Fig. 4. The plot of transformed interarrival times against a unit exponential
distribution indicates that an exponential Hawkes model with parameters λ̂, α̂, β̂

rom Table 1 would be an acceptable fit.

Fig. 5. Empirical autocorrelation function, as in (26), of the number of claim
payments on intervals of length τ as a function of the time lag δ be-
tween the intervals compared to the corresponding theoretical values from
Proposition 2 for an exponential Hawkes process with parameters λ̂ =

.1467, α̂ = 0.0260, β̂ = 0.0334.

able 2
omparison of the theoretical variance of the number of arrivals of a Hawkes
rocess with parameters λ̂ = 0.1467, α̂ = 0.0260, β̂ = 0.0334 according to (12)
o the corresponding empirical variance.
Interval length (days) Variance (theo.) Variance (emp.)

7 6.9208 6.9995
14 18.2587 19.0570
21 33.7908 36.1109
28 53.3054 58.3725
35 76.6013 81.7779
42 103.4878 112.5545
49 133.7836 152.2974
56 167.3165 191.2224
63 203.9232 207.0156
70 243.4485 265.7647

with exponentially decaying intensity is suitable for our dataset.2

We turn our attention to describing the sizes of outgoing claim
payments in the next section.

2 As we are interested in studying endogenous clustering and the chosen
awkes process already fits the data well, we refrain from a comprehensive
omparison with other classes of arrival processes as this would transcend the
cope of this work.
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.3. Claim sizes

In insurance literature the claim sizes {Yi} are usually sup-
osed to be i.i.d. with distribution G having finite first two mo-

ments E[Y1] = m1 and E[Y 2
1 ] = m2. A common choice for G

is an exponential distribution, say Exp(γ ), as for this choice one
can e.g. obtain closed-form solutions for the ruin probabilities
in the classical case (see e.g. Asmussen and Albrecher, 2010).
Risk models with Hawkes process arrivals and i.i.d. claim sizes
are studied e.g. in Stabile and Torrisi (2010) and Cheng and Seol
(2018). However, for those models, the results are not easily
applicable to empirical data and ruin probabilities can only be
obtained numerically. Thus, we would like to make use of the
theoretical results for RH which assumes claim sizes to follow a
finite number of fixed jump sizes governed by the evolution of a
Markov chain.3 However, as we work with an aggregated portfo-
lio of insurance claims from different payment streams, it would
not be reasonable to assume a dependence of directly subsequent
claim sizes in the overall portfolio. Thus, we ‘‘reinterpret’’ the
Markov Chain (Xi) and the function a(x) from Definition 2 in order
for the modelled claim sizes to approximate an i.i.d. sequence
following the empirical distribution of observed claim sizes. The
approximation can be made arbitrarily well by increasing the
number N of states of the Markov Chain.

Let Ĝ be the empirical distribution function of the claim sizes
and let B be the maximum observed claim size, thus Ĝ(B) = 1.
We set equidistant boundaries (b1, b2, . . . , bN = B) and define
π∗

= (π∗

1 , . . . , π∗

N ) as

π∗

1 = Ĝ(b1)

π∗

2 = Ĝ(b2) − π∗

1

· · · (27)

π∗

N = Ĝ(bN ) −

N−1∑
i=1

π∗

i = 1 −

N−1∑
i=1

π∗

i

Note that by definition
∑N

i=1 π∗

i = 1.
Let (Xi) be a Markov Chain on X = {1, . . . ,N} with transition

matrix

P =

(
π∗

1 π∗

2 · · · π∗

N
· · · · · · · · · · · ·

π∗

1 π∗

2 · · · π∗

N

)
.

We know e.g. by Norris (2009) that, as (Xi) is an irreducible
Markov Chain on a finite state space, it has a unique station-
ary distribution. Indeed, we can easily verify that the stationary
distribution is again given by π∗:

π∗P = (π∗

1 , . . . , π∗

N )

(
π∗

1 · · · π∗

N
· · · · · · · · ·

π∗

1 · · · π∗

N

)

= (π∗

1

N∑
i=1

π∗

i , . . . , π∗

N

N∑
i=1

π∗

i )

= (π∗

1 , . . . , π∗

N ) = π∗. (28)

Furthermore, as the columns of P are constant, for each state
k ∈ X it holds

P(Xi+1 = k | Xi = j) = P(Xi+1 = k | Xi = l) = π∗

k (29)
∀j, l ∈ X, i ∈ N

3 Let us reiterate that while in our particular context, we do not assume
ependence between subsequent claim sizes, in general the Markov Chain
pproach of RH offers a generalization of the usual i.i.d. assumption into

contexts where dependence between claim sizes should be assumed, such as
modelling of claims from natural catastrophes (see e.g. Albrecher and Teugels,
2006, Boudreault et al., 2006, Albrecher and Boxma, 2004).
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Table 3
Boundaries b = (b1, . . . bN ), stationary distribution π∗ , state values a(i) and
expected value a∗ under the stationary distribution for a 5-state Markov Chain
and empirical claim sizes.
Parameter Value

(b1, . . . , b5 = B) (2014.2, 4028.4, 6042.6, 8056.8, 10071)
(π∗

1 , . . . , π∗

5 ) (0.9017, 0.0720, 0.0206, 0.0032, 0.0026)
(a1, . . . , a5) (499.5056, 2821.8888, 4743.6872, 7049.5920, 9199.8750)
a∗ 797.3672
E[X1] 797.3672

and by the Markov property and the law of total probability

P(Xi+1 = k) =

∑
j∈X

P(Xi+1 = k | Xi = j)P(Xi = j)

= π∗

k

∑
j∈X

P(Xi = j) = π∗

k ∀k ∈ X, i ∈ N. (30)

Thus, the probability of realizing one state is independent of the
previous state and (Xi) essentially describes an i.i.d. sequence.

Now, let Y be a random variable with c.d.f. Ĝ, Ai := {ω : Y (ω) ∈

(bi−1, bi]}, and set

a(i) = E[Y | bi−1 < Y ≤ bi] = E[Y | Ai]

=
E[Y1Ai ]

P(Ai)
=

E[Y1Ai ]

π∗

i
(31)

hen

∗
=

N∑
i=1

π∗

i a(i) =

N∑
i=1

E[Y1Ai ] = E[Y ]

and a(Xi) describes an i.i.d. sequence that approximates the dis-
tribution Ĝ arbitrarily close as the number of states N → ∞.

For the empirical example, Table 3 gives the values of the
equidistant boundaries b = (b1, . . . , bN = B), state values ai :=

a(i) and the distribution π∗

i along with the value of a∗ (which
coincides with E[Y1]) for the case of a 5-state Markov Chain. Note
that to replicate empirical claim sizes, usually significantly more
states would be used, for Table 3 the size N = 5 is chosen for
the sake of presentation. Note that the number of states should
be chosen such that there is no segment without observations, as
this would not lead to an irreducible Markov chain.

To corroborate that the generated claim sizes indeed describe
claims with distribution function Ĝ, we compare in Fig. 6 the
distribution function of the empirical claims with its counterpart
from claims generated by the Markov Chain approach with 50
states and draw the corresponding QQ plot. Overall, we conclude
that empirical claim sizes are replicated reasonably well within
the framework of RH.

3.4. Risk process

In order to simulate the risk model from Definition 2, we need
to estimate values for the initial capital u and the premium rate
c. As this information is not inferable from the empirical data set,
we calculate the premium rate using the expected value principle
and Corollary 1 with a safety loading of θ = 0.2 to obtain

c = (1 + θ )a∗
λ

1 − α/β
= 633.5552. (32)

This seems a reasonable number considering the number of poli-
cies in the portfolio and the mean yearly premium for such
contracts. It has to be kept in mind that in practice, the majority
of policyholders are likely to never occur a claim, providing addi-
tional premium income for the company which is not considered
in our data set.
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Fig. 6. The distribution function of claim sizes generated by the Markov Chain
pproach for a 50-state Markov Chain against the empirical distribution function
f claim sizes indicates that the approach replicates claim sizes as assumed. This
s corroborated by the corresponding QQ plot.

We set the initial capital as u = 8000 which seems reasonable
given a mean claim size of around 800 and an expected number
of 0.6483 claims per day. In fact, u is best thought of as a variable
- i.e. how much initial capital has to be provided in order for the
ruin probability over a certain period to be below a given bound.
We generate L = 1000 simulations of a risk process with u and
given above, the arrival process being an exponential Hawkes
rocess with parameters λ̂ = 0.1467, α̂ = 0.0260, β̂ = 0.0334

and claim sizes being generated by a Markov chain with 50 states
according to the procedure described above. Fig. 7 compares the
underlying empirical risk process to the first 50 simulations. In
order to assess whether our simulated paths accurately depict
the empirical one, we compare the fluctuations over time and the
final value at time T = 2400 using the metrics

Ŝ(L) =
1
L

L∑
i=1

max(R̂i(t)) − min(R̂i(t))
max(R(t)) − min(R(t))

, (33)

F̂ (L) =
1
L

L∑
i=1

R̂i(T )
R(T )

, (34)

here L denotes the number of simulated paths, R̂i(t) refer to the
simulated risk processes and R(t) to the benchmark (empirical
process). Note that the metric Ŝ was suggested by Zhang (2016)
in the context of comparing the fit of Hawkes models with expo-
nential and power law kernels to empirical data. Table 4 gives an
overview of the results. Overall, we conclude that RH is able to
describe the empirical data reasonably well.

4. Diffusion approximation and ruin probabilities

After reassuring that RH is suitable for empirical data, we
review that the risk process can be approximated by a jump–
diffusion process following Swishchuk (2017a). From this jump–
diffusion approximation, we construct an approximation by a
pure diffusion process which allows analytical calculation of es-
timates for finite-time and infinite-horizon ruin probabilities.
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Fig. 7. Plotting the empirical risk process with parameters u = 8000 and
c = 633.5552 against 50 simulated paths of RH with arrivals following an
exponential Hawkes process with λ̂ = 0.1467, α̂ = 0.0260, β̂ = 0.0334 and
laims following a Markov Chain as described in Section 3.3. Note that in the first
art of the graph, the empirical process seems to have an extraordinarily high
pward drift and is on the ‘‘upper bound’’ of the simulations. This is reasonable
s for the first period, our data set is naturally missing payments from claims
hich were reported before the start of the observation period and continue to

nduce payments within it. This dynamic disappears as we pass on further in
ime, the high drift vanishes and the empirical process is well covered by the
imulations.

Table 4
We assess how well simulations using a Hawkes ar-
rival process and claim sizes generated by the Markov
Chain approach replicate the empirical risk process using
fluctuations and final capital values as metrics.
Parameter Value

Ŝ 1.2202
F̂ 1.1321
R(T ) (Empirical) 287829.1651
E[R(T )] (Simulation) 325865.5270
√
Var[R(T )] (Simulation) 140836.3261

4.1. Approximation by jump–diffusion process

Theorem 3 (FCLT, Approximation by Jump–Diffusion Process
wishchuk, 2017a). Let R(t) be the risk model defined in Definition 2,
and (Xi) be an ergodic Markov Chain with stationary distribution π∗.
We suppose that

0 < µ̂ =
∫

∞

0 µ(s)ds < 1 and
∫

∞

0 sµ(s)ds < ∞. Then:

lim
→∞

R(t) − (ct − a∗N(t))
√
t

D
= σ̂Φ(0, 1) (35)

(or in Skorokhod topology (see Skhorokhod, 2014))

lim
n→∞

R(nt) − (cnt − a∗N(nt))
√
n

D
= σ̂W (t) (36)

where Φ(·, ·) is the standard Normal c.d.f. and W (t) is a standard
Wiener process.

σ̂ := σ ∗
√

λ/(1 − µ̂), (σ ∗)2 :=

∑
i∈X

π∗

i ν(i)

a∗
:=

∑
i∈X

π∗

i a(i), d(i) := a∗
− a(i)

ν(i) := d(i)2 +

∑
j∈X

(g(j) − g(i))2P(i, j)

− 2d(i)
∑
j∈X

(g(j) − g(i))P(i, j)

∗ −1 ′

(37)
g := (P + Π − I) (d(1), . . . , d(n))
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Fig. 8. Error estimation of jump–diffusion approximation by comparison of
standard deviations of empirical process in (39) and corresponding theoretical
values from Theorem 3. Theoretical values are calculated for a Markov chain with
N = (2, 5, 10, 20, 50) states, where the standard deviation naturally approaches
he empirical value as N increases.

here P is the transition matrix for (Xi) and Π∗ is the matrix of
stationary probabilities of P, meaning that the rows of Π∗ coincide
with the stationary distribution.

Proof. See Swishchuk (2017a).

Note that the theorem holds analogously for a model with
Poisson process arrivals with rate λP and i.i.d. claim sizes {Yi}

with σ̂ :=
√

λP
√
Var[Y1]. The theorem implies that R(t) can be

approximated by the jump–diffusion process

R(t) ≈ u + ct − a∗N(t) + σ̂W (t) (38)

where a∗ and σ̂ are defined above, N(t) is a Hawkes process
and W (t) is a standard Wiener process. To assess the accuracy of
the approximation, we proceed as suggested in Swishchuk et al.
(2019) and compare the standard deviation on the right-hand
side of (36) multiplied by

√
n to its empirical counterpart on the

left-hand side, that is the standard deviation of

R(nt) − (cnt − a∗N(nt)) = u −

N(nt)∑
k=1

(a(Xk) − a∗) (39)

To this end, we choose t as the original time scale of one day and
let n run from 1 day to 30 days by steps of 1 day. At each step
int , we compute the value of the process

(R(int) − (cint − a∗N(int)))−
− (R((i − 1)nt) − (c(i − 1)nt − a∗N((i − 1)nt))).

We compare the standard deviation of these values to the stan-
dard deviation theoretically obtained on the right-hand side of
(36) multiplied by

√
n. Note that this approximation should be

aturally only accurate for large n, however due to our relatively
hort time frame of T = 2400 days, for large n the left-hand side
of (36) is only based on few observations. To ensure statistical
significance, we thus chose the sequence of n such that each
observation for the empirical standard deviation value is based
on at least 80 data points. The results are summarized in Fig. 8
and we can see that for small n (n ≤ 15) they look quite accurate.

.2. Approximation by pure diffusion process

heorem 4 (FCLT 2, Approximation by Pure Diffusion Process). Let
R(t) be the risk model from Definition 2, and let (X ) be an ergodic
i
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Markov chain with stationary distribution π∗. We suppose that
0 < µ̂ =

∫
∞

0 µ(s)ds < 1 and
∫

∞

0 sµ(s)ds < ∞. Then:

lim
→∞

R(t) − (ct − a∗ λ
1−µ̂

t)
√
t

D
= σ̄Φ(0, 1) (40)

(or in Skorokhod topology (see Skhorokhod, 2014))

lim
n→∞

R(nt) − (cnt − a∗ λ
1−µ̂

nt)
√
n

D
= σ̄W (t) (41)

where Φ(·, ·) is the standard Normal c.d.f. and W(t) is a standard

Wiener process and σ̄ =

√
σ̂ 2 +

(
a∗

√
λ

(1−µ̂)3
)2 where a∗ and σ̂ are

defined in Theorem 3.

Note that for the classical case of a Poisson process with rate
λP and i.i.d. claim sizes {Yi} we obtain

σ̄P =

√
λPVar[X1] + E[X1]

2λP =

√
λPE[X2

1 ] (42)

hich is consistent with classical results.

roof. See Appendix A.2.

The theorem implies that R(t) can be approximated by the
ure diffusion process

(t) ≈ u + ct − a∗
λ

1 − µ̂
t + σ̄W (t) (43)

here a∗ and σ̄ are defined above and W (t) is a standard Wiener
process. We use the same approach as above with µ̂ :=

α
β
for the

exponential Hawkes process. This time we compare the standard
deviation of

R(nt)−
(
cnt − a∗

λ

1 − α/β
nt
)

= u−

(N(nt)∑
k=1

a(Xk)− a∗
λ

1 − α/β
nt
)

(44)

ith its counterpart on the right-hand side in (41), that is
n
√
tσ̄ . The results can be seen in Fig. 9. In this case the

approximation is not very accurate. This most likely originates
in the approximation via the CLT which always entails a hardly
measurable approximation error depending on the model param-
eters. Indeed, if we go back to the (more accurate) jump–diffusion
approximation (38)

R(t) ≈ u + ct − a∗N(t) + σ̂W (t),

here σ̂ =

√
λ

1−α/β
σ ∗, N(t) is a Hawkes process and W (t) is

a standard Wiener process, we obtain the variance of the risk
process as

Var[R(t)] = (a∗)2Var[N(t)] + σ̂ 2t

= (a∗)2
(

λ

1 − α/β
t
(

1
1 − α/β

)2

+ (∗)
)

+ (σ ∗)2
λ

1 − α/β
t

= t
(
(σ ∗)2

λ

1 − α/β
+ (a∗)2

λ

(1 − α/β)3

)
− (∗∗)

= t(σ̄ )2 − (∗∗) (45)

where

(∗) =
λ

1 − α/β

(
1 −

(
1

1 − α/β

)2)(1 − e−t(β−α)

β − α

)
(∗∗) = −(a∗)2(∗) > 0

(46)

here we have used the variance of the number of jumps N(t) of
a Hawkes process from (12). We note that the pure diffusion ap-
proximation naturally does not capture the (negative) non-linear
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Fig. 9. (a) Error Estimation of pure diffusion approximation by comparison of standard deviations of empirical process in (44) and corresponding theoretical values
from Theorem 4. Theoretical values are calculated for a Markov Chain with N = (2, 5, 10, 20, 50) states, where the standard deviation increases as N increases. We
bserve that the theoretical values largely overestimate the empirical ones for this data set. (b) Plotting the theoretical standard deviation values from Theorem 4,
orrected by (∗∗) from (46), shows a very close match of theoretical and empirical values.
a
t

nfluence (∗∗) on the variance. Indeed, if we plot the standard
eviation of the process

(nt)−
(
cnt−a∗

λ

1 − α/β
nt
)

= u−

(N(nt)∑
k=1

a(Xk)−a∗
λ

1 − α/β
nt
)

gainst
√

σ̄ 2nt − (∗∗)(nt) in Fig. 9, we see a very close match.
However, the absolute value of the term (∗∗) decreases as the
ifference β −α increases, thus for suitable parameters the addi-
ional error of the pure diffusion approximation becomes almost
egligible. Note that for the classical case of a Poisson process
ith rate λP and i.i.d. claim sizes {Yi}, it holds

Var[R(t)] = E[Y1]
2Var[N(t)] + (

√
λP

√
Var[Y1])2t

= E[Y1]
2λP t + λPVar[Y1]t

= tλPE[Y 2
1 ] = t(σ̄P )2

which is consistent with the approximation by the pure diffusion
process and classical results.

4.3. Ruin probabilities

We now turn our attention to estimating ruin probabilities for
RH using the approximations derived in the last section. In the
case of the (more accurate) jump–diffusion approximation, we
compare numerically the ruin probabilities from simulations of
RH and simulations of the diffusion process with Hawkes process
jumps from (38) and observe in Fig. 10 that they are quite similar
in all cases. Using the pure diffusion approximation, we can apply
well-known formulas for ruin probabilities of diffusion processes
(see Iglehart, 1969; Whitt, 1970; Asmussen and Albrecher, 2010)
to give closed-form expressions for the ruin probabilities for the
case of RH.

Theorem 5 (Ruin Probabilities for RH). The ruin probability in the
interval (0, τ ] for a risk model as in Theorem 4 is given by

Ψ (u, τ ) = Φ

(
−

u + (c − a∗λ/(1 − µ̂))τ
σ̄
√

τ

)
+ e−

2(c−a∗λ/(1−µ̂))
σ̄2 u

Φ

(
−

u − (c − a∗λ/(1 − µ̂))τ
σ̄
√

τ

)
, (47)

nd the ultimate ruin probability for a risk model as in Theorem 4
is given by

Ψ (u) = e−
2(c−a∗λ/(1−µ̂))

σ̄2 u
. (48)
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In Fig. 10, we compute and plot the finite-horizon ruin prob-
ability for increasing t from 1 until 350 days as well as the
infinite-horizon ruin probability. We compare them with values
obtained from 1000 simulations of the corresponding RH and
of the two approximation processes. For the parameters ob-
tained from the original data set, the numerical results from the
jump–diffusion approximation are quite accurate, while clearly
the theoretical and simulated ruin probabilities for the pure dif-
fusion approximation overestimate the simulated ones for RH,
an effect that originates from the large estimation error in (43)
(see Figs. 10(a) and 10(b)). As we have seen above, the diffusion
coefficient tends to overestimate the standard deviation of the
risk process and therefore an exaggerated ruin probability is as-
signed. Assuming the same claim size parameters and a different
set of parameters for the Hawkes arrival process such that β − α

is no longer very close to 0 leads to a significant increase in
the accuracy of the ruin probability estimation via Theorem 5
as displayed in Fig. 10(c). However, for similar parameters but
with a branching ratio close to 1 (indicating a very strong pres-
ence of clustering), we again observe a large estimation error in
Fig. 10(d).4

We conclude that the pure diffusion approximation of RH
is generally suitable for calculating ruin probabilities for a risk
model with Hawkes process claims, however, for any application
it has to be kept in mind that the approximation error can become
very large depending on the model parameters. In any case,
having such a closed-form formula for the ruin probability can
give helpful indications in practice, where an insurer often faces
the challenge of estimating how much capital has to be reserved
at one point in time in order to limit the probability of the event
that the value of (a part of) his insurance portfolio falls below
a certain lower bound during a future time period. Of course,
the relevant threshold here would usually not be 0 (indicating a
positive probability of insolvency), but at least a certain amount
acting as an emergency risk buffer according to regulatory require-
ments. For some claim classes it is thus essential to understand
how dependencies between claim arrivals can cause temporal
clustering and how this feature affects the risk of ‘‘ruin’’. The ruin
probability estimates from our model with self-exciting Hawkes
processes might serve as a helpful tool here.

4 Note that general results for the rate of convergence for the diffusion
pproximation of risk processes are available, see Swishchuk (2000). In this case,
hey are of order C(T )

√
n , 0 ≤ t ≤ T , where T is a horizon time, C(T ) is a constant

and n refers to the scaling of the time axis as above.
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Fig. 10. We calculate finite-time ruin probabilities for intervals [0, t), where t ranges from 1 to 350 days by steps of 1, and infinite-time ruin probability according
to Theorem 5. We compare their values to finite-time ruin probabilities for t from 1 to 350 days by steps of 10 obtained from 1000 simulations of RH and the
ure and jump–diffusion approximation process. We observe that for any parameter set, the simulated probabilities for RH and the jump–diffusion process are quite
imilar. In the case of the pure diffusion process and the theoretical values, the accuracy of the approximation deteriorates whenever the difference between β and
is relatively small (as should be expected from (46)).
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. Optimal investment

As an application of the Hawkes risk model, we would like
o study how replacing the classical Poisson process for claim
rrivals by a self-exciting Hawkes process influences the risk of
he insurance company and their optimal investment decisions.
o this end, we approximate the risk process by the pure dif-
usion process in (43) and regard it as the company’s liability
volving according to a Brownian motion with drift. We then
se the results by Xie et al. (2008) on mean–variance portfo-
io selection with multiple risky assets and one liability in an
ncomplete market where the risk from the liability cannot be
ompletely hedged by trading the available assets and therefore
he event of ruin cannot be excluded. Xie et al. (2008) work in
mean–variance framework, thus the goal is to maximize the
xpected terminal wealth while limiting the variance. They derive
he mean–variance efficient frontier and the optimal strategy by
pplying the general stochastic LQ control technique.

.1. The market model

Let (Ω,F,P,F) be a complete probability space equipped with
he filtration F = (F(t))t∈[0,T ] generated by an (n+1)-dimensional
rownian motion {(W0(t),W1(t), . . . ,Wn(t))′ : t ∈ [0, T ]} for
∈ N, where 0 < T < ∞ is a fixed time horizon, F0 = {∅, Ω},
T = F and the superscript ‘‘′’’ indicates the transpose of a
ector or matrix. Denote by C([0, T ];Rn×k) the class of continuous
ounded deterministic functions on [0, T ] with values in Rn×k.
ssume the company at time t = 0 is equipped with an initial
ndowment of w > 0 and an initial liability l, such that its net
nitial wealth is x = w − l > 0. Consider a financial market with
m + 1) assets being traded continuously, where m ≤ n and the
ssets are labelled i = 0, 1, . . . ,m, where i = 0 refers to the
iskfree asset. Assume the company can dynamically adjust its
nvestment portfolio during the time period [0, T ] without incur-
ing transaction fees or short-selling restrictions. Trading takes
lace self-financing without taking consumption into account.
he price of the risk-free asset S0(t) evolves according to the ODE

S (t) = r(t)S (t)dt, S0 = 1, (49)
0 0 0 a
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here r(t) ∈ C([0, T ];R+) denotes the risk-free interest rate.
he price processes S1(t), . . . , Sm(t) of the risky assets evolve
ccording to the SDEs

Si(t) = bi(t)Si(t)dt + σi(t)Si(t)dW (t), S i0 = si ∈ R, (50)

here i = 1, . . . ,m, W (t) := (W1(t), . . . ,Wn(t))′ and
σi(t) := (σi1(t), . . . , σin(t)) ∈ C([0, T ];R1×n) denotes the

volatility vector of the ith risky asset, thus define the matrix

σ (t) := (σ ′

1(t), . . . , σ
′

m(t))
′
∈ C([0, T ];Rm×n) (51)

and let

b(t) := (b1(t), . . . , bm(t))′ ∈ C([0, T ];Rm×1) (52)

denote the rate of return of the risky assets. Denote the company’s
cumulative liability at time t by L(t) and assume L(t) evolves
according to the SDE

dL(t) = g(t)dt + υ(t)dB(t), L(0) = l, (53)

where {B(t) : t ∈ [0, T ]} is a standard Brownian motion on
(Ω,F,P,F). Denote by ρj(t) the correlation coefficient between
B(t) and Wj(t) for j = 1, . . . , n and let

ρ(t) := (ρ1(t), . . . , ρn(t))′ ∈ C([0, T ];Rn×1) (54)

be the correlation coefficient vector. Thus B(t) can be expressed as

B(t) = ρ(t)′W (t) +

√
1 − ρ(t)′ρ(t)W0(t) (55)

here B(t),W0(t),W1(t), . . . ,Wn(t) are standard Brownian mo-
ions and ρ(t)′ρ(t) ≤ 1 for all t ∈ [0, T ]. Combining (53) and
55), L(t) evolves according to

L(t) = g(t)dt + υ(t)ρ(t)′dW (t) + υ(t)
√
1 − ρ(t)′ρ(t)dW0(t),

L0 = l. (56)

hus, the evolution of the liability is generally assumed to be de-
endent of the risky assets’ prices and in particular for ρ(t)′ρ(t) <

the risk arising from the liability can never be completely
liminated by trading the assets. For ρ(t)′ρ(t) = 1 the assets
nd the liability are driven by the same source of randomness
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ut as long as n > m, the market is incomplete. Only for the
ase n = m and ρ(t)′ρ(t) = 1, the risk from the liability can be
ompletely hedged by trading the m available assets. Assume that
or i = 1, . . . ,m and j = 1, . . . , n, r(t), bi(t), σij(t), g(t), υ(t), ρj(t)
re deterministic functions of t , bi(t) > r(t), and there exists
> 0 such that σ (t)σ (t)′ ≥ ϵIm for any t ∈ [0, T ], where Im

s the m × m identity matrix.
Denote by ηi(t) the number of units of asset i held by the

ompany at time t . Then ϕi(t) := ηi(t)Si(t) denotes the amount of
money invested in asset i at time t . Let ϕ(t) := (ϕ1(t), . . . , ϕm(t))′,
then we call the process ϕ := {ϕ(t) : t ∈ [0, T ]} a trading strategy.

Let X(t) be the net wealth of the company at time t . We only
consider self-financing trading strategies, i.e. assume X(t) evolves
according to

dX(t) =

m∑
i=0

ηi(t)dSi(t) − dL(t), X0 = x > 0. (57)

Inserting (49), (50) and (56), this is equivalent to

dX(t) = (r(t)X(t) + (b(t) − r(t)1)′ϕ(t) − g(t))dt + (ϕ(t)′σ (t)

− (υ(t)ρ(t))′)dW (t) − υ(t)
√
1 − ρ(t)′ρ(t)dW0(t),

X(0) = x, (58)

where 1 denotes the unit vector of length m.
The set of admissible trading strategies for initial wealth x is

defined as

A(x) :=
{
ϕ : ϕ(t) ∈ L2

F ([0, T ];Rm), (X(t), ϕ(t)) satisfies (58)
}
(59)

where L2
F ([0, T ];Rm) denotes all Rm-valued, progressively mea-

surable and square integrable random variables on [0, T ] under P

with
(
E
[∫ T

0 |ϕ(t)|2dt
]) 1

2
< ∞.

A strategy ϕ ∈ A(x) is considered optimal if it solves the
ptimization problem

(χ ) min
ϕ∈A(x)

(
−E[X(T )] + χVar[X(T )]

)
(60)

hich is equivalent to the classical mean–variance model where
∈ [0, ∞) expresses the weight (or importance) assigned to the

objective Var[X(T )] by the company.

5.2. Optimal strategy and mean–variance efficient frontier

Xie et al. (2008) find the solution of problem P(χ ) by intro-
ducing the auxiliary problem

A(χ, ω) min
ϕ∈A(x)

E[χX2(T ) − ωX(T )] (61)

hose relation to the original problem is derived in Zhou (2000).
hey use the general stochastic LQ optimal control theory from
ong and Zhou (1999) to obtain the optimal feedback control and
ptimal cost functional of the auxiliary problem A(χ, ω). Substi-

tuting the obtained solution into the original setting and inserting
the value of the auxiliary variable ω∗, they derive the solution of
he original problem as stated in the following theorem.

heorem 6 (Optimal Feedback Control for P(χ ) Xie et al., 2008). The
ptimal feedback control (i.e. the optimal strategy) of the problem
(χ ) is given by
∗(X(t)) = −τ (t)

(
X(t) + ϑ(t) − γ

)
− ζ (t), t ∈ [0, T ] (62)
 i
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where

τ (t) :=
(
σ (t)σ (t)′

)−1(b(t) − r(t)1
)′

∈ C
(
[0, T ];Rm×1)

ζ (t) :=
(
σ (t)σ (t)′

)−1
σ (t)(−υ(t)ρ(t)) ∈ C

(
[0, T ];Rm×1) (63)

ς (t) := (b(t) − r(t)1)τ (t) ∈ C
(
[0, T ];R+

)
(64)

κ(t) := −(b(t) − r(t)1)ζ (t) − g(t) ∈ C([0, T ];R) (65)

(t) :=

∫ T

t
κ(s)e

∫ t
s r(z)dzds + γ

(
1 − e−

∫ T
t r(z)dz

)
(66)

a0 :=

∫ T

0
κ(t)e

∫ T
t r(z)dz−

∫ T
0 ς (z)dzdt + xe

∫ T
0 (r(z)−ς (z))dz

a1 := 1 − e−
∫ T
0 ς (z)dz, γ := γ ∗

=
1

2χ (1 − a1)
+

a0
1 − a1

.

Note that the expected terminal wealth under an optimal
solution of P(χ ) is then given by

E[X∗(T )] =
2χa0 + a1
2χ (1 − a1)

.

heorem 7 (Mean–variance Efficient Frontier Xie et al., 2008). The
efficient frontier of the mean–variance portfolio selection problem
P(χ ), if it ever exists, is given by

Var[X∗(T )] =
e−

∫ T
0 ς (z)dz

1 − e−
∫ T
0 ς (z)dz

[
E[X∗(T )] − D1

]2
+ D2 (67)

with

D1 := xe
∫ T
0 r(z)dz

+

∫ T

0
κ(t)e

∫ T
t r(z)dzdt

nd

2 :=

∫ T

0

[
υ2(t)(1 − ρ(t)′ρ(t)) + δ(t)′δ(t)−

δ(t)′σ (t)′(σ (t)σ (t)′)−1σ (t)δ(t)

]
e
∫ T
t (2r(z)−ς (z))dzdt

for E[X∗(T )] ≥ D1, where ς (t) and κ(t) are defined in (64) and
65) respectively and δ(t) := −υ(t)ρ(t) ∈ C([0, T ];Rn×1).

Note that D2 ≥ 0 as shown in Xie et al. (2008). In particular,
he only case where D2 = 0 holds, i.e. a risk-free portfolio on
he efficient frontier can be reached, occurs for n = m and
(t)′ρ(t) = 1. In this case σ (t)′

(
σ (t)σ (t)′

)−1
σ (t) = Im and thus

(−υ(t)
√
1 − ρ(t)′ρ(t))2 + δ(t)′δ(t)

− δ(t)′σ (t)′(σ (t)σ (t)′)−1σ (t)δ(t)]
=
[
−υ(t)0 + δ(t)′δ(t) − δ(t)′δ(t)

]
= 0.

his is the case when the financial market is complete and the risk
rom the liability can be completely hedged by trading the assets.
ie et al. (2008) give numerical examples and show how the
ncompleteness of the market and the introduction of a liability
nfluence the efficient frontier. They also show the influence of
arying parameters T , x, g(t), υ(t), ρ(t) on the efficient frontier
nd the optimal strategy. Here, particularly varying the diffusion
(t) of the liability is relevant.

.3. Application to Hawkes risk model

We apply the results of Xie et al. (2008) to see how the
ean–variance efficient frontier and the optimal strategy of an

nsurance company change when claims arrive according to a
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Fig. 11. Comparison of mean–variance efficient frontiers for parameters given in Tables 5 and 7. This is consistent with the observation in Figure 1e of Xie et al.
2008) that increasing the volatility of the liability will shift the frontier away from the vertical axis. However, notice that in the case ρ ̸= (0, 0) the steepness of
he frontier increases such that the frontiers intersect at a certain variance level. This implies that for an investor that is willing to accept a very high level of risk,
he Hawkes process case implies higher attainable expected returns.
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able 5
sset Parameters, taken from (Xie et al., 2008). The initial wealth x was adapted
o fit this example.
Parameter n m T x r b σ = (σ 1, σ 2) ρ = (ρ1, ρ2)′

Value 2 1 1 10 0.06 0.12 (0.15, 0.25) (0.65, 0.10)′

Table 6
Comparison of the expected number and variance of arrivals on an interval of
length t for a Poisson and an exponential Hawkes process. Formulas for the
Hawkes process case are taken from (Da Fonseca and Zaatour, 2013). Note that
for the Poisson case E[N(t)] = Var[N(t)] whereas for the Hawkes case it can be
asily shown that E[N(t)] < Var[N(t)] for any t > 0.
Process Parameters E[N(t)] Var[N(t)]

Poisson λP λP t λP t
Hawkes λ, α, β λ

1−α/β
t λ

1−α/β
(t( 1

1−α/β
)2 + (1 − ( 1

1−α/β
)2) 1−e−t(β−α)

β−α
)

Hawkes process5 instead of a homogeneous Poisson process. For
he assets, we use the parameters from the numerical example
n Xie et al. (2008) which are summarized in Table 5. We use
he pure diffusion approximation from (43) and treat the negative
isk process of the company as the liability, i.e. we set

L(t) := −R(t) ≈ −u +

(
λ

1 − α/β
a∗

− c
)
t + σ̄W (t)

= −u − θa∗
λ

1 − α/β
t + σ̄W (t)

(68)

here we use that W (t) is a standard Brownian motion and
herefore has the same distribution as −W (t). Keeping the pre-
ious notation, this corresponds to l = −u, g(t) ≡ −θa∗ λ

1−α/β

nd υ(t) ≡ σ̄ . For the sake of presentation and comparability,
e will now assume that incoming claim sizes are i.i.d. with

∗
= E[X1] =: m1 = 0.5, Var[X1] = 0.5 and E[X2

1 ] =: m2 = 1. We
ompare claim arrival processes with the same expected number
f arrivals on any interval in order to analyse the difference in
isk arising from the variance of the number of arrivals. Table 6
ives an overview of these quantities for Poisson and Hawkes
rocesses. Table 7 gives the parameter values chosen for our
umerical example where we compare a Poisson and two Hawkes
rocesses.
In Fig. 11 we plot the mean–variance efficient frontiers for all

hree cases using (67). We recognize that changing the Poisson
rocess to a Hawkes process with increasing presence of cluster-
ng will shift the frontier away from the vertical axis and thus lead
o a higher risk for the same expected return level. Table 8 shows
he values of D1 (expected terminal wealth of minimum-variance
ortfolio) and D2 (minimum attainable variance), indicating the

5 Note again that the analysis is restricted to Hawkes processes with
xponentially decaying intensity due to their unique analytical tractability.
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higher risk introduced by the Hawkes process. However, the
frontier becomes ‘‘steeper’’ and, above an intersection point at a
certain level of risk, higher returns can be attained (this is due
to the correlation of the liability and the asset processes — if we
choose ρ = (0, 0), the shift is strictly to the lower right as can
be seen in Fig. 11). As effectively we increase the diffusion of the
liability while leaving other parameters untouched, these results
are consistent with Xie et al. (2008), Figure 1e.

Optimal strategy for given expected return level
In the following, we change the notation from ϕ(X(t)) (used

in the previous section to emphasize dependence on the state
variable X(t)) to ϕ(t), as we like to think of the strategy as dynam-
ically evolving over time. As in Xie et al. (2008), first assume the
company would like to obtain a certain expected return level, say
15%, i.e. E[X∗(T )] = x · 1.15 = 11.5. Table 9 shows the minimum
attainable variance of terminal wealth and the optimal strategy
at the initial time 0 for all three cases. As could be expected from
Fig. 11, in the case of the Hawkes processes, a higher variance
must be accepted in order to attain the desired level of expected
return, which entails the need for a higher initial investment in
the risky asset. For the same expected return level, we plot a
realization of the optimal investment in the risky asset ϕ∗

1 (t) over
time in Fig. 12. To this end, standard Brownian motions W0(t) and
W (t) = (W1(t),W2(t))′ are simulated over [0, T ] = [0, 1] on a
grid of step size 0.001, and the evolution of wealth X(t) and the
optimal strategy ϕ∗(t) are calculated iteratively using Eqs. (58)
nd (62) respectively.

ptimal strategy for given maximum level of risk
Usually an insurance company’s main interest and responsibil-

ty is to limit the risk it is subjected to. So now we want to study
ttainable return levels and corresponding optimal strategies for a
iven level of accepted risk. In the first step, we set the maximum
evel of risk (measured by variance of terminal wealth) to v̄ = 8
and list in Table 10 the corresponding attainable return levels
and corresponding optimal strategies for all three cases. We use
the same pure diffusion approximation as above with parameters
given in Table 7.

It has to be kept in mind that as the computation of the
mean–variance efficient frontier and the optimal strategies rely
on the pure diffusion approximation of the risk process, the
approximation error might be large. Indeed, as we have seen in
Section 4, the approximation tends to overestimate the standard
deviation of the risk process and thus the risk assigned in the
Hawkes case might tend to be exaggerated. Thus in order to get
to a more accurate estimation, we use our knowledge about the
jump–diffusion approximation. By (38) it is given by

L̂(t) := −R(t) ≈ −u − ct + σ̂W (t) + a∗N(t)

= −u − (1 + θ )m1
λ

1 − α/β
t + σ̂W (t) + m1N(t) (69)
=: −u + ĝt + σ̂W (t) + m1N(t)
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Fig. 12. One realization of the optimal investment in the risky asset until the final time T = 1, for ρ = (0.65, 0.1). Standard Brownian motions W0(t) and
(t) = (W1(t),W2(t))′ were simulated over [0, T ] = [0, 1] on a grid of step size 0.001, and the evolution of wealth X∗(t) and the optimal strategy ϕ∗

1 (t) calculated
teratively using Eqs. (58) and (62). One can observe that in Figs. 12(b), 12(c), 12(d), the fluctuations in the absolute/relative investment in the risky asset and the
ealth under the optimal strategy are the larger, the riskier (by our measure the larger the variance of the number of jumps) the chosen point process is.
Table 7
Liability parameters, where the safety loading for the premium calculation is θ = 0.2. Parameters
are chosen such that E[N(1)] and g(t) are equal for all cases as we would only like to study the
difference arising from the change in variance. The second Hawkes process has a higher share of
endogenous events α/β , which corresponds to stronger influence of self-excitement and clustering.
The background rate λ is adjusted accordingly to keep the expected number of arrivals constant.
Process (λ, α, β) E[N(1)] Var[N(1)] g(t) ≡ −θm1E[N(1)] υ(t) ≡ σ̄ Var[L(T )]

Poisson (2.5, −, −) 2.5 2.5000 −0.25 1.3693 1.8750

Hawkes 1 (1.25, 0.5, 1) 2.5 4.0980 −0.25 1.9365 3.4799
Hawkes 2 (0.75, 0.7, 1) 2.5 5.9393 −0.25 2.8626 8.1944
T
O
v
v
e
i
r
t
e

ˆ

Table 8
Values of D1 and D2 for the three processes and two different choices of ρ. Note
hat D1 corresponds to the expected terminal wealth of the minimum-variance
ortfolio and D2 to its variance. As shown in Xie et al. (2008), D2 > 0 unless the
arket is complete and the liability is completely hedgeable by the tradeable
ssets. Naturally, D2 increases for the Hawkes process cases.
Process D1 D2 D1 D2

ρ = (0.65, 0.1) ρ = (0, 0)

Poisson 10.9980 1.6055 10.8760 1.9497
Hawkes 1 11.0486 3.2110 10.8760 3.8994
Hawkes 2 11.1311 7.0167 10.8760 8.5210

Table 9
Optimal strategies ϕ∗(t) at t = 0, X(t) = X0 = x from (62) for a given expected
eturn level of 15%, thus E[X∗(T )] = 11.5. Note that in the Hawkes cases,
more is initially invested in the risky asset in the case ρ = (0.65, 0.1). This
s in accordance with the findings of Xie et al. (2008), Fig. 3b, that the initial
nvestment in the risky asset must increase when the volatility of the liability
ncreases (c.p.) to attain the same expected return level. For the case ρ = (0, 0),
he strategy does not depend on the choice of jump process (as can be seen
rom Eqs. (63) and (62) respectively, ζ and therefore ϕ∗ do not depend on υ),
ut the attainable variance increases in the Hawkes cases. This corresponds to
he observation in Fig. 11 that for attaining this level of E[X∗(T )], a higher risk
ar[X∗(T )] must be accepted.
Process Var[X∗(T )] (ϕ∗

0 (0), ϕ
∗

1 (0)) Var[X∗(T )] (ϕ∗

0 (0), ϕ
∗

1 (0))

ρ = (0.65, 0.1) ρ = (0, 0)

Poisson 7.4294 (−0.0201, 10.0201) 10.9495 (−0.0029, 10.0029)
Hawkes 1 7.9210 (−0.0272, 10.0272) 12.8992 (−0.0029, 10.0029)
Hawkes 2 10.1618 (−0.0389, 10.0389) 17.5208 (−0.0029, 10.0029)

where N(t) is the number of jumps of a Hawkes process with

arameters (λ, α, β) on the interval (0, t]. This corresponds to

120
able 10
ptimal strategies ϕ∗(t) at t = 0, X(t) = X0 = x from (62) for a given maximum
ariance level of v̄ = 8. In the Hawkes case, when restricted to the same level of
ariance, the initial investment in the risky asset must be lowered and a lower
xpected return level E[X∗(T )] can be attained. For the second Hawkes case,
n the case ρ = (0.65, 0.1) part of the initial wealth would be invested in the
iskfree asset instead of short-selling it to allow a higher initial investment in
he risky asset. In the case ρ = (0, 0), the variance restriction of v̄ = 8 would
ven not be attainable for the more volatile Hawkes process.
Process E[X∗(T )] (ϕ∗

0 (0), ϕ
∗

1 (0)) E[X∗(T )] (ϕ∗

0 (0), ϕ
∗

1 (0))

ρ = (0.65, 0.1) ρ = (0, 0)

Poisson 11.5240 (−0.4051, 10.4051) 11.3876 (1.7984, 8.2016)
Hawkes 1 11.5038 (−0.0877, 10.0877) 11.2972 (3.2480, 6.7520)
Hawkes 2 11.3374 (2.5680, 7.4320) − −

l = −u, ĝ(t) ≡ −(1 + θ )m1
λ

1−α/β
and υ̂(t) ≡ σ̂ , where the

values in this case are given in Table 11. Representing the liability
process by L̂(t) instead of L(t), i.e. splitting the random part into
a continuous part (governed by the evolution of the Brownian
motion W (t)) and a jump part (governed by the evolution of a
Hawkes process N(t)), allows to explicitly distinguish between
two sources of randomness: one part of the liability stemming
from a source of financial risk correlated with the asset processes
(represented by a Brownian motion), and the other part coming
from a source of pure insurance risk (namely a jump process
representing incoming insurance claims).

As naturally Theorem 6 is only applicable for a liability follow-
ing a Brownian motion with drift (without jumps), we need an
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Fig. 13. Mean–variance efficient frontier for parameters given in Tables 5 and 11. Note that there is only one frontier in each case as the difference lies in the
jump part which is not depicted in the frontier, but affects the variance boundary. Due to the higher variance of the number of jumps of the Hawkes processes, the
boundary has to be shifted further to the left which implies a lower attainable expected terminal wealth.
Table 11
Liability parameters for the jump–diffusion approximation, where the safety loading for the
premium calculation is θ = 0.2. Note that υ̂ does not differ for the three cases, instead the difference
in variance of the liability process stems from the added jump process N(t). Furthermore, the last
column indicates a smaller difference in variance of the liability process than assumed by the pure
diffusion approximation (last column of Table 7).

Process (λ, α, β) E[N(1)] Var[N(1)] ĝ(t) ≡ −(1 + θ )m1E[N(1)] υ̂(t) ≡ σ̂ Var[L̂(T )]

Poisson (2.5, −, −) 2.5 2.5 −1.5 1.1180 1.8750
Hawkes 1 (1.25, 0.5, 1) 2.5 4.0980 −1.5 1.1180 2.2744
Hawkes 2 (0.75, 0.7, 1) 2.5 5.9393 −1.5 1.1180 2.7347
t
o
s
X
W

L

w
a
P
w

B
N

approximative approach in order to use L̂(t) instead of L(t) for the
iability process. In order to find an approximative optimal strategy
or a given level of accepted risk v̄, we initially omit the jump part
f L̂(t) and use Theorem 6 with the liability process given by

L̂(t) = −u + ĝt + υ̂ρ ′W (t) + υ̂
√
1 − ρ ′ρW0(t)

where ĝ and υ̂ are given in Table 11. This implies that the jumps
are considered to be a part of the liability which is not taken into
consideration when calculating the optimal strategy. This is an
assumption that could be interpreted in practice as a part of the
liability that is not hedgeable by trading the assets in the market
and therefore has to be taken into account through separate
capital acting as a risk buffer. This means that in order to take
nto account the additional variance introduced by the jumps, the
riginal variance boundary has to be adjusted according to

ar[X∗(T )] = Var[A∗(T ) − L̂(T )]

= Var[A∗(T ) − (̃L̂(T ) + m1N(T ))]
jumps indep.

= Var[A∗(T ) −
˜̂L(T )] + m2

1Var[N(T )] !
= v̄

⇐⇒ Var[A∗(T ) −
˜̂L(T )] !

= v̄ − m2
1Var[N(T )] =: ˆ̄v

where A∗(T ) denotes the terminal value of the asset part under the
optimal strategy. The efficient frontier in this case (note that it is
the same for all three processes as the difference lies in the jump
part that is not depicted in the frontier) for both choices of ρ is
shown in Fig. 13 together with the shifted variance boundaries.

When comparing the result, in particular the attainable ex-
pected terminal wealth, to the one from the pure diffusion ap-
proximation in Table 10, the expectation of the jump part, that is
m1E[N(T )] = 1.25 has to be subtracted from the estimate given
by the mean–variance frontier obtained using ˜̂L(t). The results
for parameters in Table 11 are given in Table 12. In order to
corroborate that this approach is feasible, we set the number of
simulation runs to K = 10000 and set the variance boundary for
each case to ˆ̄v. We simulate the continuous part of L̂(t) on a grid
with step size δ = 0.001 over [0, T ] = [0, 1] according to

ˆ(t) = −u + ĝt + υ̂ρ ′W (t) + υ̂
√
1 − ρ ′ρW (t),
0 m

121
Table 12
For two choices of ρ we give the attainable expected terminal wealth (corrected
for jumps) and the corresponding optimal strategy at time t = 0 for an original
variance boundary of v̄ = 8, where we correct for the variance introduced by the
jump part of the liability which is not included in the calculation of the optimal
strategy. We observe that the approach still indicates a lower attainable return
and a lower initial investment in the risky asset in the Hawkes cases. However,
the differences are not as extreme as in Table 10, in particular the variance
restriction is now attainable by the second Hawkes process in case ρ = (0, 0).
This comparison between the processes is more realistic as it eliminates the
large overestimation of risk of the pure diffusion approximation in the Hawkes
cases.

Process m2
1Var[N(T )] ˆ̄v E[X∗(T )](−1.25) ϕ∗(0)

Poisson 0.625 7.375 12.7862 (11.5362) (0.0164, 9.9836)
Hawkes 1 1.0245 6.9755 12.7694 (11.5194) (0.2860, 9.7140)
Hawkes 2 1.4848 6.5152 12.7493 (11.4993) (0.6083, 9.3917)

(a) ρ = (0.65, 0.1)

Process m2
1Var[N(T )] ˆ̄v E[X∗(T )](−1.25) ϕ∗(0)

Poisson 0.625 7.375 12.6770 (11.4270) (1.7815, 8.2185)
Hawkes 1 1.0245 6.9755 12.6598 (11.4098) (2.0564, 7.9436)
Hawkes 2 1.4848 6.5152 12.6393 (11.3893) (2.3853, 7.6147)

(b) ρ = (0, 0)

hen calculate X∗(t) and ϕ∗

1 (t) iteratively using (58) and The-
rem 6 respectively and set ϕ∗

0 (t) = X∗(t) − ϕ∗

1 (t). Over all
imulation runs, we calculate empirical mean and variance of
∗(T ) and compare them with the theoretical values in Table 12.
e then simulate L̂(t) including jumps as

ˆ(t) = −u + ĝt + υ̂ρ ′W (t) + υ̂
√
1 − ρ ′ρW0(t) + m1N(t)

here for each run, the same realizations of W (t) and W0(t) as
bove are used and N(t) is the number of jumps of a Hawkes (or
oisson) process on (0, t].6 For the simulation of the jumps it is
orth noting that instead of simulating a point process on [0, T ]

6 All simulations are conducted using the statistical software R. For the
rownian motions, the increments on a grid as described are drawn as i.i.d.
ormal r.v.; for the Hawkes processes, the simulation routine based on Ogata’s
odified thinning algorithm (Ogata, 1981) from the hawkes package is used.
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or each of the K simulations, we simulate one process on [0, KT ]

nd map the realization of jumps on the interval ((k − 1)T , kT ] to
he interval (0, T ] to be used in the kth simulation. This ensures
hat the theoretical mean and variance of the number of jumps
re met by the simulations and not negatively distorted over the
elatively short time span [0, 1]. This could otherwise happen
s a Hawkes process with an expected value of 2.5 jumps per
ime unit might simply not have enough time to develop any
lustering. The optimal strategy ϕ∗

1 (t), i.e. the optimal amount
nvested in the risky asset calculated from Theorem 6, is kept
ixed as calculated under ˜̂L(t) (thus ϕ̂∗

1 (t) = ϕ∗

1 (t)), but the
ealth process X̂∗(t) is calculated anew according to (58) with

ˆ(t) in place of ˜̂L(t) and the investment in the riskless asset is
djusted accordingly as ϕ̂∗

0 (t) = X̂∗(t) − ϕ̂∗

1 (t). The results of
he simulation are given in Table 13, where we observe that the
ptimal strategy calculated by using the modified jump–diffusion
pproximation with a shifted variance boundary ˆ̄v adheres to the
riginal boundary v̄ when jumps are included, i.e. the theoretical
pproach described above is feasible.
In this chapter we have dealt with the case of an insurance

ompany that can invest in assets traded on the market, but
s burdened by a liability process that continuously affects the
vailable capital and cannot be completely hedged by trading the
ssets. This is relevant in practice as managing asset investments
n a way that maximizes returns while assuring sustainable and
esponsible liability management is a crucial challenge for any
nsurer. The liability process represents the risk process, i.e. the
bligations arising from having to pay claims which arrive ran-
omly (in size and number) over time. By approximating the
isk process as studied in the previous section by either a jump–
iffusion or a pure diffusion process, the application of results
y Xie et al. (2008) to study the mean–variance efficient frontier
nd the optimal dynamic investment strategy (i.e. a scheme to
ecide which portion of the available wealth to invest in a riskless
sset (typically thought of as a bank account) and a risky asset
e.g. a stock index) respectively) under constraints on either the
xpected terminal wealth or – more relevant in practice in this
ase – the variance of the terminal wealth (in this framework
sed to measure overall risk). We have highlighted the economic
mplications of operating under a claim process where claims
end to display clustering as opposed to claims occurring inde-
endently over time by substituting a Poisson claims process by
wo examples of self-exciting Hawkes processes. For a given level
f accepted risk, although the expected claim number and size
ver the observed time horizon is identical, the clustering charac-
eristics of the Hawkes process entails a higher risk which implies
lower risk allowance in the asset investment strategy and thus

ower attainable returns. Therefore, if an insurer observes or
uspects the risk process of his portfolio (or a sub-portfolio for
certain line of business) to display clustering (or generally

verdispersion), he needs to be aware that in general, this affects
he volatility of the liability process in such a way that for a
iven risk boundary, his investment strategy needs to be chosen
ore conservatively, meaning that a higher portion of the overall
ealth must be invested in the riskless asset and thus a lower
xpected return is attainable. In the case where asset and liability
rocesses are assumed uncorrelated (e.g. the liability process is
ssumed to represent pure insurance risk), this observation holds
egardless of the chosen level of risk (recall the shift of the mean–
ariance efficient frontier to the lower right in the right panel
f Fig. 11). The set-up used in this work furthermore allows for
he asset and liability processes to be correlated. In this case, the
rontier is shifted such that the frontiers intersect (recall the left
anel of Fig. 11), however, the above results still hold for all but
nreasonably high levels of allowed risk. We have furthermore
122
tudied the case where the risk process is approximated by a
ump–diffusion process. As we have seen in Section 4, this is
ften the more accurate approximation, and it further allows
o distinguish the random part of the liability process into a
rownian motion part correlated with the asset evolution and
pure jump part independent from it. The jump part can be

nterpreted as a (pure insurance) risk that is not hedgeable by
rading the risky asset and therefore needs an a priori risk buffer
ssigned. The riskier the jump process (in our case, the stronger
he clustering it displays), the more the variance boundary needs
o be adjusted downwards before solving the optimal investment
roblem under the remaining continuous liability process. When
pplying the resulting optimal investment strategy under the
riginal liability process (including jumps), the original variance
oundary is adhered to. Our analysis emphasizes the insurer’s
eed to not only estimate the expected future number and size
f claims accurately, but also their temporal distribution over
he observed period, i.e. the presence of clustering, in order to
ake sure given risk allowances are not breached undeliberately.
o this end, the analysis of the presence of clustering in the
laims process as well as the potential correlation of (part of)
he insurer’s liability with the tradeable assets need to be taken
nto account when deciding on how conservatively an optimal
nvestment strategy must be chosen.

. Conclusion

In this paper, we have introduced a risk model with claim
rrivals based on a general compound Hawkes process (RH) and
hown that it is suitable to model empirical data from the class of
egal expenses insurance. We have studied its theoretical proper-
ies (LLN and FCLT) and derived a pure diffusion approximation
hich allows the calculation of ruin probabilities and application
f results from asset–liability management to study the influ-
nce of a Hawkes claim arrival process on optimal investment
trategies for an insurer in an incomplete market.
Of course, the assumption of a one-dimensional Hawkes pro-

ess with exponential intensity is only a first step. Thus future
ork could be devoted to applying Hawkes processes with dif-

erent intensity functions (e.g. power law). In this work, we
estricted our focus to modelling portfolios with claims from
ne subclass only. A promising generalization would be to use
multi-dimensional marked Hawkes process to study a portfolio
f claims from different subclasses, their mutual influence and
evelopment over time. This is of particular interest to an insur-
nce company for reservation purposes, as it could help classify
laims according to their initial characteristics and thus better
stimate the amount of capital to be reserved. With respect to
he optimal investment problem, the mean–variance approach is
f course only one possibility. As another objective for an insurer
ould be to find an optimal investment strategy given a limit on
he ruin probability, e.g. the results of Browne (1995) could be
sed as a starting point to apply to a Hawkes model case next.
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Table 13
For K = 10000 simulations, we give the original and shifted variance boundaries and the theoretically attainable
expected terminal wealth X∗(T ) under the modified jump–diffusion liability ˜̂L(t) for each case. Comparing these
values with the empirical mean and variance boundary of X∗(T ), we observe that they are matched quite closely.
Keeping the optimal investment in the risky asset fixed and calculating the wealth process X̂∗(T ) under the jump–
diffusion liability L̂(t), we observe that the original variance restriction v̄ = 8 is met. Note that in the case ρ ̸= (0, 0)
some inaccuracy is observable due to the theoretical assumption of independent jumps.

Modified jump–diffusion ˜̂L(t) Jump–diffusion L̂(t)
Process ˆ̄v E[X∗(T )] (theor.) E[X∗(T )] Var[X∗(T )] E[X̂∗(T )] Var[X̂∗(T )]

Poisson 7.375 12.7862 12.7981 7.4314 11.5215 8.0951
Hawkes 1 6.9755 12.7694 12.7625 6.8574 11.4647 7.9095
Hawkes 2 6.5152 12.7493 12.7396 6.4614 11.4333 7.9706

(a) ρ = (0.65, 0.1)

Modified jump–diffusion ˜̂L(t) Jump–diffusion L̂(t)
Process ˆ̄v E[X∗(T )] (theor.) E[X∗(T )] Var[X∗(T )] E[X̂∗(T )] Var[X̂∗(T )]

Poisson 7.375 12.6770 12.7012 7.3738 11.4026 8.0085
Hawkes 1 6.9755 12.6598 12.6805 7.0197 11.3795 8.0556
Hawkes 2 6.5152 12.6393 12.5743 6.5046 11.3495 8.0080

(b) ρ = (0, 0)
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Appendix

A.1. Explanatory note on data set choice

One challenge about working with the data set provided to
us by the insurance company was its overall size with a high
average number of claims per day. This is problematic due to the
aforementioned problem of non-unique timestamps (granularity
of arrival times is per day) which have to be artificially distributed
over the arrival day in order to fit a simple point process. For a
high number of arrival times per day, the majority of interarrival
times would thus be generated artificially, not due to the actual
arrival pattern, which renders the significance of fitting an arrival
process potentially meaningless. The first approach to thin the
portfolio was to filter for the year of the claim occurrence, e.g. only
consider claims which occurred in the year 2010, as we have
the full ‘‘reporting picture’’ for them. The problem with this
approach is that it produces a fairly skewed overall picture with
a high number of payments in the first one to two years after
the occurrence and fewer payments afterwards. Naturally, the
majority of claims is reported and (at least partly) settled within
the first years after its occurrence. Fitting an arrival process to this
dataset would lead to an estimation that essentially tries to unite
several different time periods into one picture and while doing a
fair job of this, falls short to capture either of them accurately.
At this point, it could of course be considered to fit different
years separately. However, one general numerical challenge for
insurance data (again due to the high timestamp granularity) is
the short overall time horizon (e.g. compared to financial data,
where often millisecond time intervals over one trading day are
considered). Thus, we by all means wanted to use a dataset that
makes use of the whole time horizon provided to us by the
empirical data without having to divide it. Thus, we decided to
classify claims according to their delay in reporting, thus from
each of the reporting years we would consider claims that had
occurred a fixed number of years before their reporting. This way
the claim payments include claims occurred in several different
years which mostly avoids the skewed picture mentioned before.
We found claims with a three year delay in reporting to provide
a good overall number of claims.

A.2. Proof of Theorem 4

Proof. We know from Theorem 3 that

lim
R(nt) − (cnt − a∗N(nt))

√
D
= σ̂W (t)
n→∞ n
123
where σ̂ = σ ∗
√

λ/(1 − µ̂) is defined in Theorem 3. Now let us
eplace in the above equation N(nt) by its expected value λ

1−µ̂
nt

nd thus look at

lim
→∞

R(nt) − (cnt − a∗ λ
1−µ̂

nt)
√
n

.

Now we add and subtract the term a∗N(nt) which yields

R(nt) − (cnt − a∗N(nt))
√
n

+
a∗ λ

1−µ̂
nt − a∗N(nt)

√
n

.

We know by Theorem 3 that the first term converges to σ̂W (t)
as n → ∞ with σ̂ as above and W (t) a standard Wiener process.

For the second term we apply the Central Limit Theorem for
Hawkes processes (see Laub et al., 2015, Theorem 1) which yields

lim
n→∞

a∗ λ
1−µ̂

nt − a∗N(nt)
√
n

D
= a∗

√
λ

(1 − µ̂)3
W̄ (t)

here W̄ (t) is a standard Wiener process independent of W (t).
So for the sum of the two limits we obtain

lim
→∞

R(nt) − (cnt − a∗ λ
1−µ̂

nt)
√
n

=

√
σ̂ 2 + (a∗)2

λ

(1 − µ̂)3
Ŵ (t)

here Ŵ (t) is a standard Wiener process independent of W (t)
nd W̄ (t) and a∗ and σ̂ are defined in Theorem 3.
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