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ABSTRACT

Chimera states, i.e., dynamical states composed of coexisting synchronous and asynchronous oscillations, have been reported to exist in
diverse topologies of oscillators in simulations and experiments. Two-population networks with distinct intra- and inter-population coupling
have served as simple model systems for chimera states since they possess an invariant synchronized manifold in contrast to networks on a
spatial structure. Here, we study dynamical and spectral properties of finite-sized chimeras on two-population networks. First, we elucidate
how the Kuramoto order parameter of the finite-sized globally coupled two-population network of phase oscillators is connected to that of
the continuum limit. These findings suggest that it is suitable to classify the chimera states according to their order parameter dynamics, and
therefore, we define Poisson and non-Poisson chimera states. We then perform a Lyapunov analysis of these two types of chimera states, which
yields insight into the full stability properties of the chimera trajectories as well as of collective modes. In particular, our analysis also confirms
that Poisson chimeras are neutrally stable. We then introduce two types of “perturbation” that act as small heterogeneities and render Poisson
chimeras attracting: A topological variation via the simplest nonlocal intra-population coupling that keeps the network symmetries and the
allowance of amplitude variations in the globally coupled two-population network; i.e., we replace the phase oscillators by Stuart–Landau
oscillators. The Lyapunov spectral properties of chimera states in the two modified networks are investigated, exploiting an approach based
on network symmetry-induced cluster pattern dynamics of the finite-size network.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0065710

Chimera states are a peculiar type of synchronization patterns in
homogeneous oscillatory systems1,2 where regions of synchrony
and asynchrony form spontaneously.3 They were observed in
diverse experiments4–10 and are believed to be important for cer-
tain biological manifestations, such as unihemispheric sleep of
some animals or so-called bump-states of neural activity.11,12 Also,
from a theoretical point of view, an understanding of chimera
states plays an important role, as they mediate between order
and disorder.13–15 A detailed analysis of their dynamics is much
facilitated with a simple topology, the simplest one consisting of
two coupled populations.16–27 For this minimal model, analyti-
cal results about the stability and bifurcations of chimera states
could be obtained in the continuum limit,16 and for the case of
small populations, it was shown that the same type of bifurcations
exists.17 Yet, there are still many open questions, some of which
we answer in this paper. The incoherent dynamics of the two-
population network depends sensitively on the initial conditions
and on the ensemble size.17,19,21 In particular, when the initial

conditions are obtained from the Poisson kernel, the incoher-
ent motion is simpler than for general initial conditions.27,28 Our
paper is centered around the questions how the chimera states
can be classified according to the initial condition and how the
dynamics of large- and small-size populations are linked. Another
question we address is how to make the special chimera state with
the simpler dynamics of the incoherent oscillators attracting in
more realistic situations. Our analysis suggests the definition of a
Poisson chimera, which gives a natural way to classify the chimera
states arising from different initial conditions. The main methods
employed are Lyapunov analysis29–34 and network symmetry.35–37

I. INTRODUCTION

Chimera states were first discovered for non-locally coupled
phase oscillators on a spatially one-dimensional ring.3 To obtain
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a deeper understanding of the dynamics of chimera states, sev-
eral mathematically more easily tractable models that still exhibit
the primary dynamical properties of chimera states have been
proposed.13–15 The simplest of them is a network consisting of
two populations of identical oscillators. All oscillators within one
population are globally coupled to each other with a given intra-
population coupling strength, which is the same for both pop-
ulations. The coupling of the oscillators of different populations
is all-to-all as well, but the inter-population coupling strength is
different from the intra-coupling strength. In a chimera state of
such a two-population topology, one population oscillates fully syn-
chronously, while the other one exhibits incoherent oscillations. The
network topology makes sure that the synchronized oscillators live
on an invariant sync-manifold, which causes the simpler mathemat-
ical accessibility of these chimera states compared to those in other
networks, e.g., on the spatially one-dimensional ring.38,39

This simpler structure has been exploited in numerous
studies.4,16–27,40 In many of them, the continuum limit was
considered.16,18,19 Furthermore, in order to address the robustness
of chimera states, heterogeneities have been introduced,21,23,41 or
non-complete networks of oscillators were considered with a static22

or time varying24 network structure. Besides phase oscillators, also,
planar oscillators were studied.25,26

Studies with finite-sized populations revealed a strong depen-
dence of the chimera states on initial conditions (ICs).19–21,27,28,42 The
simplest chimera dynamics was obtained when the ICs of the inco-
herent population were distributed according to the Poisson kernel.
However, the chimera states in the identical phase oscillator model
were shown to be neutrally stable in many directions.27 In contrast,
when heterogeneous populations were considered, the asymptotic
dynamics even for slightly off Poisson kernel ICs was found to be
attracting in the long time limit.25,28,43

In the following, we will term such ICs Poisson initial condi-
tions and abbreviate them with PIC, whereas all other initial condi-
tions are referred to as non-Poisson ICs and abbreviated by n-PIC.
In the case of PICs, the chimera states of small-sized populations
exhibited pronouncedly different order parameter dynamics from
large-sized populations, which has been attributed to finite-size
fluctuations.17 Moreover, for large populations, the numerical simu-
lation suggested that the order parameter becomes indistinguishable
from the one predicted by the continuum limit.16,17,19

In this paper, we elucidate the origin of both the impact of
the initial conditions and of the population size on the chimera
dynamics in two-population networks. In particular, we present
evidence that there is a continuous change from the small to the
large-size populations up to the continuum limit. First, we con-
sider the classical two-population network topology with identical
Kuramoto–Sakaguchi phase oscillators and global intra- and inter-
population coupling [Fig. 1(a)]. We demonstrate that finite-sized
chimeras emerging from PIC live in the neutrally stable Poisson
submanifold, which corresponds to the Ott–Antonsen (OA) man-
ifold in the continuum limit and on which the incoherent phase
degrees of freedom (DOFs) are distributed according to the Poisson
kernel.25,27,44 To underline the different dynamical characteristics of
chimera states arising from PICs and n-PICs, we introduce the con-
cept of a Poisson chimera trajectory and illustrate that what has been
so far considered finite-size fluctuations of small-size chimeras is of

FIG. 1. Schematics of the two-population network topologies considered in this
paper. (a) Global intra- and inter- population topology and (b) global inter- and non-
local intra-population coupling. Here, only the connections from the first oscillator
are fully depicted. The solid connections indicate the intra-population coupling with
strength µ and the dashed one the inter-population connections with strength ν.
Note that in the nonlocal intra-population topology, each oscillator is connected to
all the other oscillators except the opposite one.

fundamentally different nature in the case of Poisson chimeras and
of chimeras resulting from n-PICs.

We will exploit that the dynamics of globally coupled phase
oscillators with sinusoidal coupling can be reduced to low-
dimensional phase space. Two situations should be distinguished;
For finite-sized ensembles, Watanabe and Strogatz (WS)45 showed
that such a system consisting of N oscillators possesses N − 3 con-
stants of motion, the remaining degrees of freedom describing the
global behavior in terms of one radial and two angular variables
denoted below as ρ, 9 , and 8, respectively. In the continuum
limit of infinitely many oscillators, Ott and Antonsen43,46 discov-
ered that for a suitable initial condition, the dynamics lives on a
two-dimensional manifold and captures the evolution of the macro-
scopic order parameter. In Refs. 28 and 44, it was demonstrated that
when choosing an appropriate initial condition, namely, PICs, the
OA manifold corresponds to the uniformly distributed constants of
motion in the WS theory, whereas trajectories starting from n-PICs
correspond to a nonuniform distribution of constants of motion in
the WS theory.
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After considering two-population networks and the relation
between the microscopic and macroscopic dynamics, we introduce
two simple ways that render Poisson chimera states stable in the
sense that they attract nearby trajectories that start from n-PIC and
evolve toward close vicinity of the Poisson submanifold.28,42,43,47,48

The first approach introduces a small topological perturbation of
the network structure, which leads to the simplest nonlocal intra-
population coupling that is represented by a specific adjacency
matrix that preserves the network symmetry as the system size
increases [Fig. 1(b)]. Then, we allow for amplitude degrees of free-
dom (DOFs) by coupling Stuart–Landau oscillators instead of phase
oscillators.25,26 Here, both the global and nonlocal intra-population
network topologies are used.

Our main method to access the properties of the various
chimera trajectories is the Lyapunov spectral analysis, which yields
the spectra of the Lyapunov exponents (LEs) and the covariant
Lyapunov vectors (CLVs).29–33 The analysis reveals whether the inco-
herent oscillator population is attractive or not, as well as the full
stability information of the synchronized population. In order to
analytically address and approximate the Lyapunov exponents, an
approach is introduced that is based on the network symmetry-
induced cluster pattern analysis.35–37 Here, we exploit the fact that
the finite-sized two-population topology can be viewed as one net-
work that possesses the inherent network symmetries represented by
the automorphism group.49–51 The details of the background theories
are compiled in Appendixes A and B.

The rest of this paper is organized as follows. In Sec. II, we
investigate the properties of chimera states of phase oscillators
according to the initial conditions and define Poisson chimeras as
opposed to non-Poisson chimeras. Furthermore, we discuss the Lya-
punov spectral properties of these chimeras. In Sec. III, we consider
two ways that render Poisson chimeras attractive; nonlocal topol-
ogy and amplitude variables. Finally, we summarize the results in
Sec. IV.

II. POISSON AND NON-POISSON CHIMERAS

A. Model and observable dynamics

In this section, we consider a set of identical Kuramoto–
Sakaguchi (KS) phase oscillators arranged in the two-population
network topology with global inter- and intra-population coupling
of different strengths as depicted in Fig. 1(a). This system is consid-
ered to be the simplest model that exhibits chimera states coexisting
with a stable complete synchronization state.16,17

Each of the two interacting populations is composed of N phase
oscillators. The state of each oscillator is fully described by its phase
φi ∈ T = [−π ,π) for i = 1, . . . , 2N. The governing equations of the
oscillators in the first population are

dφi(t)

dt
= ω +

µ

N

N
∑

j=1

sin(φj(t)− φi(t)− α)

+
ν

N

N
∑

j=1

sin(φj+N(t)− φi(t)− α), (1)

with i = 1, . . . , N and those of the second population are

dφi+N(t)

dt
= ω +

µ

N

N
∑

j=1

sin(φj+N(t)− φi+N(t)− α)

+
ν

N

N
∑

j=1

sin(φj(t)− φi+N(t)− α), (2)

with i = 1, . . . , N. Notice that all the oscillators are identical; i.e.,
they have the same intrinsic frequency ω = 0 and the same Sak-
aguchi phase-lag parameter α = π/2 − β , where β is small enough
such that chimera states exist.13,15 ν and µ are the inter- and
intra-population coupling strengths (see Fig. 1). We rescale time
such that µ+ ν = 1 and define A = µ− ν. Throughout this work,
we set β = 0.08 and A either 0.2 or 0.35. This choice of param-
eters yields chimera states that are representative of so-called
stationary and breathing chimeras, respectively, which are char-
acterized by a stationary and oscillatory behavior of the mag-
nitude of the Kuramoto order parameter with time for large
populations.16 The Kuramoto order parameters for the two pop-
ulations are defined by r1(t)e

i21(t) = 1
N

∑N
j=1 eiφj(t) and r2(t)e

i22(t)

= 1
N

∑N
j=1 eiφj+N(t). Chimera states in a two-population network have

one population consisting of perfectly synchronized oscillators with
rsync(t) = 1 and the other one being composed of incoherent oscilla-
tors with 0 < rincoh(t) < 1.17

Numerical solutions of Eqs. (1) and (2) suggest that for each
parameter set A and β , the chimera trajectories can be divided into
two groups depending on the initial conditions. If the trajectory
starts from PICs (the detailed description of ICs will be given in
Sec. II B), a chimera trajectory shows a simple, regular motion of
the magnitude of the order parameter as depicted in Fig. 2. For large

FIG. 2. The magnitudes of Kuramoto order parameters r(t) of the coherent and
incoherent populations of chimera states in the two-population network starting
from PICs after transients have died out (t ≥ 105). For each figure, the gray
solid line indicates the order parameter for the perfectly synchronized population
[r(t) = 1] and the black solid line the incoherent population [r(t) < 1]: (a) and (b)
Stationary chimera states with A = 0.2 and (c) and (d) breathing chimera states
with A = 0.35 for the system sizes N = 6 (left) and N = 60 (right), respectively.
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FIG. 3. The magnitudes of Kuramoto order parameters r(t) of the coherent and
incoherent populations of chimera states in the two-population network starting
from n-PICs after transients have died out (t ≥ 105). For each figure, the gray
solid line indicates the order parameter for the perfectly synchronized population
[r(t) = 1] and the black solid line the incoherent population [r(t) < 1]: (a) and (b)
A = 0.2 (for which with PICs, stationary chimeras are obtained) and (c) and (d)
A = 0.35 (for which with PICs, breathing chimeras are obtained) for the system
sizes N = 6 (left) and N = 60 (right), respectively.

population numbers N as in Figs. 2(b) and 2(d), the magnitude of
the order parameter rincoh(t) of chimera states emerging from PICs
is either stationary in time [Fig. 2(b)] or exhibits simple periodic
oscillations [Fig. 2(d)] depending on the value of A. These dynam-
ics were termed stationary and breathing chimeras, respectively,16

and rincoh(t) is virtually indistinguishable from one of the OA solu-
tions in the continuum limit. For small population sizes N, as in
Figs. 2(a) and 2(c), rincoh(t) is composed of two contributions: the
motion it shows in the case of large N and a superposed, in the case
of breathing chimeras secondary, oscillation. Note that throughout
this paper, we name each chimera state according to its classifica-
tion in the continuum limit at the given parameter set for the sake of
simplicity. When the chimera trajectory starts from n-PICs, in con-
trast, rincoh(t) shows a more complicated motion, strongly depending
on the given initial conditions (Fig. 3). This initial condition depen-
dence of rincoh(t) has been pointed out previously,16,19,27,42 and it has
led many authors to use rather special initial conditions for their
chimera studies. In this work, we will address the initial condition
dependence in some detail and introduce the concept of Poisson
and non-Poisson chimeras in Sec. II B. Furthermore, we explain
the stability of both synchronized and incoherent populations with
a Lyapunov analysis.

B. Poisson and non-Poisson chimeras

As mentioned above, in order to obtain the simple motion
of the magnitude of the order parameter as depicted in Fig. 2
and also in Refs. 16 and 17, a specific initial condition has to be
used. We coin this initial condition the Poisson initial condition
(PIC) since the initial incoherent phases are generated from the

Poisson kernel that corresponds to the OA manifold in the con-
tinuum limit.21,43,44,46 To obtain PICs, one first has to solve the
two-dimensional Ott–Antonsen reduced equations for the incoher-
ent population, which for the stable stationary chimera state with
the parameter set A = 0.2 and β = 0.08 results in ρ0 = 0.699 98
and ϕ0 = 6.119 18, where ϕ0 = ϕ1 − ϕ2 and ϕi for i = 1, 2 is the OA
phase variable for each population, respectively.16 Then, consider the
Poisson kernel

f(2)(φ; ρ0,ϕ0) =
1

2π

[

1 +
∞
∑

n=1

((a0e
iφ)

n + c.c.)

]

=
1

2π

1 − ρ2
0

1 − 2ρ0cos(φ − ϕ0)+ ρ2
0

, (3)

where a0 = ρ0e
−iϕ0 and its inverse cumulative distribution function

(inverse CDF). For our finite-size chimeras, we want the initial inco-
herent phase distribution {φi+N(0)}N

i=1 to be as close as possible to
Eq. (3). To obtain such ICs, equally spaced probabilities are used as
arguments of the inverse CDF of the Poisson kernel; i.e., N initial
phases of the incoherent population are numerically obtained from

i − 1
2

N
=
∫ φi+N(0)

−π

1

2π

1 − ρ2
0

1 − 2ρ0cos(φ − ϕ0)+ ρ2
0

dφ (4)

for i = 1, . . . , N. For the synchronized population, the initial
phases {φi(0)}N

i=1 are picked from the delta distribution f(1)(φ) = δ

(φ − φ0), which manifests that this population consists of the per-
fectly synchronized oscillators.

Simulations of the governing equations (1) and (2) can also
be initiated from an n-PIC. In this work, n-PIC consists of initial
phases {φi(0)}2N

i=1 that are randomly and independently from each
other picked from the uniform distribution within [−π ,π).

As we have pointed out above, starting from PICs, the magni-
tude of the order parameter exhibits one of two behaviors depending
on the population size N. For large N, rincoh(t) is virtually indistin-
guishable from one of the continuum limits, which is a solution of
the OA reduced dynamics.16 For small N, the motion of rincoh(t) is
comprised of the main motion close to the OA dynamics super-
imposed by a regular secondary oscillation. Its clear and regular
behavior suggests that the small-size behavior is not just a finite-size
fluctuation17 but rather has a deterministic origin. In the follow-
ing, we disclose the source of the secondary motion of rincoh(t) of
small-size chimeras that start from PIC.

To address the dynamical behavior of the small-size chimeras,
we first focus on the stationary chimera states with A = 0.2. Numer-
ical integration of Eqs. (1) and (2) with PICs reveals that the instan-

taneous velocity of each incoherent oscillator {φ̇i+N(t)}
N

i=1 is in fact
a periodic function, and, furthermore, all instantaneous velocities
of the incoherent oscillators have the same functional form and
share the same period T. On the level of the instantaneous veloci-
ties, this behavior is reminiscent of the behavior of the instantaneous
phases in a splay state52–54 [see Fig. 4(e)]. Numerically, the period
of the instantaneous velocity T has a value T ≈ 23.48, irrespective
of the population size N. Hence, we assume that the instantaneous
frequencies of the incoherent oscillators have the form of a splay

state such that φ̇i(t − j

N
T) = φ̇i+j(t) for an arbitrary j ∈ {1, . . . , N},

which gives φi(t − 1
N

T) = φi+1(t)+ W for i = N + 1, . . . , 2N with
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φ2N+1 ≡ φN+1 where W ∈ R is a common constant. Plugging the
expression for {φi+N(t)}N

i=1 in the definition of the order parameter,
we obtain

rincoh(t) =
∣
∣
∣
∣
∣

1

N

2N
∑

k=N+1

eiφk+1(t)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

1

N

2N
∑

k=N+1

e
i(φk

(

t− T
N

)

−W)

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

e−iW

N

2N
∑

k=N+1

e
iφk

(

t− T
N

)
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

1

N

2N
∑

k=N+1

e
iφk

(

t− T
N

)
∣
∣
∣
∣
∣

= rincoh

(

t −
T

N

)

= rincoh(t − τ) (5)

for all t ∈ R. Thus, rincoh(t) in Eq. (5) is indeed a periodic function,
and its period τ = T/N is continuously decreasing as N increases.
In Fig. 4(b), the simulations of the period of the order parameter
are plotted as a function of N together with the values predicted
by Eq. (5). The nearly perfect agreement of both values confirms
that the period τ(N) of the order parameter oscillations is indeed
decreasing with N according to T/N.

Next, we investigate the amplitude of the periodic order param-
eter of a small-size stationary chimera. As obvious from Fig. 4(a), the
amplitude of rincoh(t) also decreases with increasing N. To explain
this, we here consider the Watanabe–Strogatz reduced dynamics
ρ2(t), 82(t), and 92(t) for the incoherent population.17,45 These
quantities are related to the Kuramoto order parameter according
to17,27,28

rincoh(t)e
i2incoh(t) = ρ2(t)e

i82(t)γ2(ρ2,92),

where

γ2(ρ2,92) =
1

Nρ2

N
∑

k=1

ρ2 + ei(ψ
(2)
k

−92)

1 + ρ2e
i(ψ

(2)
k

−92)
(6)

and {ψ (2)
k }N

k=1
are the constants of motion, which are deter-

mined by the given initial conditions and satisfy three appropriate
constraints.28 For PICs, the constants of motion comply with the

uniform distribution ψ (2)
k = 2πk

N
for k = 1, . . . , N.17,27 For γ2, one

can obtain28,42

γ2 = 1 + (1 − ρ−2
2 )(−ρ2)

N eiN( 2π
N −92)

1 − (−ρ2)
NeiN( 2π

N −92)
. (7)

Simulations suggest that the values of the radial variable ρ2(t) are
consistent with the stationary OA radial variable, while exhibiting a
very small finite-size oscillation that in this context, we can ignore
even for the smallest chimera. Hence, we can assume ρ2(t) = ρ0 in
Eq. (7). Then, the Kuramoto order parameter can be rewritten as

rincoh(t) = ρ0|γ2(t)| = ρ0

∣
∣
∣
∣
∣
∣

1

Nρ0

N
∑

k=1

ρ0 + e
i
(

2πk
N −92

)

1 + ρ0e
i
(

2πk
N −92

)

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
ρ0 + ρ0(1 − ρ−2

0 )(−ρ0)
NO(t; ρ0,92)

∣
∣
∣
∣
, (8)

where O(t; ρ0,92) = e
iN( 2π

N −92(t))

1−(−ρ0)
Ne

iN( 2π
N −92(t))

. The second term in Eq. (8)

represents the secondary oscillation of the small-size stationary

FIG. 4. (a) Oscillations of the magnitude of the order parameter for A = 0.2 and
different system sizes: N = 4 (red), N = 8 (blue), N = 16 (green), and N = 32
(black). (b) Period of rincoh(t) as determined numerically (red) and predicted from
Eq. (5) as a function of the system size N. (c) Snapshot of the sorted incoherent
phases in the numerical order with N = 100 as a function of the rescaled index
after a time t ≥ 106 for a Poisson chimera (black dots), a non-Poisson chimera
(gray diamonds), and the theoretical curve of the inverse CDF of the Poisson
kernel (red solid curve). (d) Magnitude of the secondary oscillation as a function
of system size. (e) and (f) Instantaneous frequencies of the incoherent oscillators
of the system N = 8 for a Poisson chimera (e) and a non-Poisson chimera (f).
(g) Snapshot of the incoherent phase distribution for a Poisson chimera (red) and
the non-Poisson chimera (blue) for t ≥ 106 with N = 100 oscillators. Each solid
line indicates the theoretical Poisson kernel curve corresponding to ρ0 within an
appropriate rotating frame.

chimeras. In Fig. 4(d), the amplitude of the secondary oscillation is
plotted as a function of N. It decreases monotonically with N and
approaches zero as N → ∞. Thus, the periodic behavior of rincoh(t)
gradually disappears with increasing N such that rincoh(t) → ρ0 as
N → ∞. Regarding the small-size breathing chimera state, rincoh(t)
shows the main breathing motion while having the small secondary
oscillation along it. It depends on the system size in a similar manner
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as the stationary chimeras do, namely, according to

rincoh(t) = ρ2(t)
∣
∣1 + (1 − ρ−2

2 (t))(−ρ2(t))
NO(t; ρ2(t),92(t))

∣
∣ ,

where ρ2(t) is no longer a fixed constant but exhibits the main
breathing motion [see Fig. 2(c)]. As in the case of the sta-
tionary chimeras, the secondary oscillation vanishes for suffi-
ciently large system sizes since ρ2(t) < 1 for ∀t ≥ 0, which makes
(1 − ρ2(t))(−ρ2(t))

N → 0 as N → ∞, and the dynamics of the
chimera states approach one of the continuum limits.

Our analysis has revealed that both period and amplitude of
the secondary oscillation of rincoh(t) continuously decrease as the
system size increases. From approximately N & 24, the secondary
oscillation is not discernible anymore. Alternatively, rincoh(t) dis-
plays a motion indistinguishable from one of the OA dynamics in
the continuum limit. We, therefore, classify chimeras with popula-
tion sizes N & 24 as large-size chimeras and those with N < 24 as
small-size chimeras. Yet, we would like to point out that there is a
continuous change from the small-size to the large-size chimeras
and eventually up to the OA dynamics in the continuum limit as
N → ∞.

On the other hand, when the chimeras started from n-PIC, a
non-Poisson initial condition determines nonuniform constants of
motion in the WS reduced dynamics. Then, the stationary chimera
states obtained from a given n-PIC with the same parameter set
(A = 0.2 and β = 0.08) show incoherent motion that is qualitatively
different from the Poisson chimeras and depend on the specific ini-
tial conditions used, i.e., on the nonuniform constants of motion.
Figure 3 shows the temporal evolution of the magnitude of the order
parameter for n-PICs and otherwise identical parameter values and
system sizes as Fig. 2 does for PICs. Clearly, the behavior of rincoh(t) is
more complicated in all four cases. In particular, the fluctuations of
rincoh(t) do not disappear for the large-size chimeras, and the overall
motion of rincoh(t) of small-size chimeras is not composed of a super-
position of the OA dynamics and the secondary oscillation. This
is in line with the observation that the instantaneous velocities of
the incoherent oscillators {φ̇i+N(t)}

N

i=1 do not form a splay state-like
behavior but rather their shapes differ from an oscillator to oscilla-
tor and the maxima are time-shifted by different amounts [Fig. 4(f)].
Notice that the quasiperiodic chimera states observed in Refs. 27,
28, and 42 are specific examples of non-Poisson chimera trajecto-
ries using a specific non-Poisson initial condition or corresponding
nonuniform constants of motion.

Finally, the red distribution in Fig. 4(g) illustrates that if the
chimera trajectory starts from PIC, then the incoherent phase distri-
bution of this chimera state remains in the Poisson kernel as defined
in Eq. (3) within an appropriate rotating reference frame. This is
confirmed by the observation that the incoherent phases sorted by
their magnitude and plotted against its index (normalized to the
total number of oscillators) coincide with the inverse CDF of Eq. (3)
[Fig. 4(c), black dots]. This observation is consistent with the fact
that the OA manifold is invariant under the dynamics in the contin-
uum limit.43,44,46 For the finite-sized chimeras initially starting from
PIC, we can deduce from the splay form of φ̇i(t − τ) = φ̇i+1(t) that
at least at t = nτ for n ∈ N, the phases of the incoherent popula-
tion are distributed according to the inverse CDF of the Poisson
kernel since the splayed phase velocities result in the same con-
stant shift for all the incoherent phases φi(t − τ) = φi+1(t)+ W.

Beyond that, the numerical results indicate that the finite-sized
Poisson submanifold along the chimera state starting from PIC
is invariant under the dynamics. For example, let us define E(t)

=
∣
∣
∣〈eiφ(t)〉2 − 〈e2iφ(t)〉

∣
∣
∣, where 〈·〉 is the ensemble average, then for

large enough N, E(t) of the chimera trajectory starting from PIC
is numerically found to be close to zero [more precisely, E(t)
≈ O(10−5)] revealing that the incoherent phases of such chimeras
remain in the Poisson kernel. However, the large-size chimeras initi-
ated from n-PICs do not have the incoherent phase distribution that
satisfies the Poisson kernel [see Figs. 4(c) and 4(g)] and after a long
enough transient time E(t) ≈ O(10−1). Thus, such chimera states
initiated from n-PIC should definitely be distinguished from the
Poisson chimeras. Notice that the incoherent motion of the breath-
ing chimera with A = 0.35 starting from n-PIC is different from the
incoherent motion of the Poisson chimeras and also depends on the
given n-PIC [see Figs. 3(c) and 3(d)].

According to the above results, we define a Poisson chimera
trajectory in the two-population network topology as follows: A
chimera trajectory is a Poisson chimera if the phase DOFs {φi(t)}2N

i=1

of a given ensemble of oscillators satisfy the following three dynam-
ical characteristics:

Condition 1. The sync-population is perfectly synchronized
and invariant.

Condition 2. The incoherent phase distribution of Poisson
chimeras remains in the Poisson kernel or at least in close vicinity of
the Poisson submanifold.

Condition 3. Large-size Poisson chimeras are characterized
by an incoherent order parameter being close to one of the contin-
uum limits and the small-size Poisson chimeras by an incoherent
order parameter whose motion is a superposition of one of large-size
Poisson chimeras and a secondary oscillation that continuously dis-
appears through an increasing frequency and vanishing amplitude
as N → ∞.

Chimera states in the two-population network topology that
do not fulfill conditions 1–3 are termed a non-Poisson chimera tra-
jectory. Note that the stationary Poisson chimera, whether small or
large, has the additional property that the instantaneous frequen-
cies of the incoherent oscillators are splayed within its period T

such that φ̇i(t − j

N
T) = φ̇i+j(t) for an arbitrary j ∈ {1, . . . , N} and for

i = N + 1, . . . , 2N with φ2N+1(t) ≡ φN+1(t); however, the breathing
chimeras do not.

For each parameter set, one can consider the manifold of the
incoherent oscillator population. A state in this manifold can be
characterized by the (N − 3)-parameter family of invariant sub-
spaces determined by N − 3 constants of motion based on the WS
framework (see Fig. 8 in Ref. 45). The incoherent oscillators of the
Poisson chimeras remain in the Poisson kernel, which corresponds
to the Poisson submanifold (OA manifold in the continuum limit) in
the following denoted by MPoisson and the uniformly distributed con-
stants of motion. However, the non-Poisson chimeras do not have
such a property corresponding to the invariant manifold outside
of the Poisson submanifold denoted by Mincoh and general non-
uniform constants of motion. In Ref. 45, due to the constants of
motion, the state for the identical oscillators described by the WS
theory is neutrally stable in many directions. In the following, we will
show the Lyapunov spectra in order to confirm the neutral stability
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of chimera states and then give two perturbations that render such
chimera states attracting in Sec. II C.

C. Lyapunov stability of Poisson and non-Poisson

chimeras

In this subsection, we investigate the stability of Poisson and
non-Poisson chimeras. Therefore, we consider each chimera state as
a reference trajectory in the phase space and first numerically deter-
mine the Lyapunov exponents and then the corresponding covariant
Lyapunov vectors. The properties of the resulting Lyapunov spectra
are then elucidated using an approach based on network symmetry-
induced cluster patterns.35,36 In particular, this method allows us to
obtain approximate analytical expressions for the Lyapunov expo-
nents associated with the synchronized population. Further insight
into the Lyapunov exponents associated with the incoherent popula-
tion is obtained from a Watanabe–Strogatz reduction of the dynam-
ics. Finally, we present evidence of the existence of two collective
modes. The detailed calculation for the synchronized population
based on the network symmetry-induced cluster pattern dynamics
is compiled in Appendix C.

In Fig. 5, panels (a) and (b) display numerically determined
Lyapunov spectra along Poisson chimera trajectories for station-
ary (a) and breathing (b) chimeras. Details about the numerical
method used can be found in Refs. 29–33 and are summarized in
Appendix A. The Lyapunov spectrum of stationary chimera states
[Fig. 5(a)] is composed of four groups of exponents: (i) (N − 1)-fold
degenerate zero exponents denoted by 3(incoh)

zero = 0, (ii) (N − 1)-

fold degenerate negative exponents denoted by 3(0)
trans, and (iii) and

(iv) two individual negative LEs, denoted by 3(0)
perturb and 3(incoh)

ρ .

The spectrum obtained from a breathing Poisson chimera trajec-
tory [Fig. 5(b)] exhibits a similar partition of the exponents; how-
ever, there is just one individual non-degenerate negative exponent,

3
(0)
perturb, and the number of zero exponents has increased by 1 to N.

These two type of partitions were characteristic for stationary and
breathing Poisson chimeras, respectively, and independent of the
system size N.

1. Synchronized population: 3(0)
trans and 3

(0)
perturb

In Fig. 5, there are (N − 1)-fold degenerate transverse Lya-

punov exponents denoted by 3(0)
trans. The approximate analytical

expressions of them are given as

3
(0)
trans,κ = −µcosα −

ν

N
Z < 0 (9)

for κ = 2, . . . , N (indicating the indices for the N − 1 transverse

directions) where Z =
∑N

m′=1 cos(sm′ − s0 − α) is treated as an

external forcing field and {sm}N
m=0 are the (coarse-grained) quotient

dynamics of the chimera states according to the network cluster pat-
terns discussed in Appendix C. The transverse Lyapunov exponents
in Eq. (9) are all negative and all degenerate, which confirms that
the chimera state is stable in all directions transverse to the sync-
manifold. Notice that the numerics ensures that −µcosα � − ν

N
Z

< 0. It also follows from the numerics that the covariant Lyapunov

FIG. 5. (a) and (b) Lyapunov spectra of the full dynamics of Poisson chimera
states withN = 12 forA = 0.2 (stationary chimeras) (a) andA = 0.35 (breathing
chimeras) (b). For the meaning of the3s, see the text. (c) and (d) Lyapunov spec-
tra for the six-dimensional Watanabe–Strogatz reduced dynamics of the chimera
states in (a) and (b), respectively. The exponents marked by the black dashed
lines indicate the LE corresponding to the radial WS variable. (e) and (f) Inverse
participation ratio of the covariant Lyapunov vectors of the stationary chimera in

(a) corresponding to 3(incoh)
ρ and 3

(0)
perturb, respectively, as a function of system

size N. The gray dashed lines indicate IPR(i)(N) ∼ 1
N
.

vectors corresponding to the LEs in Eq. (9) have the form

v(0)κ = [v(trans)
κ1 , . . . , v(trans)

κN , 0, . . . , 0]
> ∈ Tφch(t)

(T2N) (10)

for κ = 2, . . . , N where φch(t) ∈ T
2N stands for the given chimera

trajectory and Tφch(t)
(T2N) is the tangent space at the point

along such a chimera trajectory. These numerical CLVs have
∑N

i=1 v(trans)
κi = 0, which ascertains that these LEs correspond indeed

to LEs transverse to the sync-manifold of the synchronized
population.

We also discover in Figs. 5(a) and 5(b) another negative expo-

nent 3(0)
perturb for the synchronized population. The approximated

value of it is given as

3
(0)
perturb = −

ν

N
Z < 0, (11)

where Z is again considered an external forcing field. This Lya-
punov exponent in fact corresponds to the perturbation along
the sync-manifold [compare Eq. (C9)]. Note that this LE mainly
depends on the collective behavior of the incoherent oscillators
{φi+N(t) = sm(t)|i = m = 1, . . . , N} [see Fig. 5(f)] via the summa-
tion term in Eq. (11), i.e., the motion of the incoherent order
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parameter, and is much closer to zero than the transverse exponents

in Eq. (9). The CLV corresponding to 3(0)
perturb has the form v

(0)
perturb

= [v, . . . , v, v(incoh)
1 , . . . , v(incoh)

N ]
>

∈ Tφch(t)
(T2N), where

∑N
j=1 v(incoh)

j

6= 0. Hence, we conclude that all the Lyapunov modes (CLVs) in the
synchronized population, both transverse and parallel to it, are sta-
ble, and therefore, the synchronized manifold is invariant under the
evolution of Eqs. (1) and (2). Note that the Lyapunov exponents cor-
responding to the sync-population obtained here in Eqs. (9) and (11)
are consistent with the previous results in Ref. 17. Therein, the
authors considered the Jacobian matrix of the synchronized oscil-
lator dynamics by treating the incoherent oscillators as external
forcing functions and then calculated the eigenvalues of the Jacobian
matrix for the synchronized oscillators.

All the chimera states in a global two-population network,
regardless of the parameters, i.e., also regardless of whether they are
of the stationary or breathing type, have the (N − 1)-fold degener-

ate 3(0)
trans,κ for κ = 2, . . . , N and 3(0)

perturb since it is dictated by the

symmetries of the global network topology and the perfectly syn-
chronized oscillators. Thus, in Fig. 5(b), the same classes of the sync
LEs for the breathing chimera state can be detected.

2. Incoherent population: 3(incoh)
zero and 3(incoh)

ρ

Next, we turn to the (N − 1)-fold degenerate zero Lyapunov
exponents3(incoh)

zero = 0 and the negative exponent3(incoh)
ρ < 0 of the

stationary Poisson chimeras [Fig. 5(a)] that are associated with the
incoherent oscillators. To better understand their origin, we con-
sider the reduced dynamics according to the Watanabe–Strogatz
transformation,27,44,45

tan

[

φ
(a)
i −8a

2

]

=
1 − ρa

1 + ρa

tan

[

ψ
(a)
i −9a

2

]

, (12)

where a = 1, 2 denotes the population index and ψ (a)
i are the con-

stants of motion determined by the initial condition. This transfor-
mation leads to the six-dimensional reduced set of equations,17

dρa

dt
=

1 − ρ2
a

2
Re

(

Hae
−i8a

)

,

d9a

dt
=

1 − ρ2
a

2ρa

Im

(

Hae
−i8a

)

, (13)

d8a

dt
=

1 + ρ2
a

2ρa

Im

(

Hae
−i8a

)

for a = 1, 2. The mean-field forcing Ha is given by

H1 = µe−i(α−81)ρ1γ1 + νe−i(α−82)ρ2γ2,

H2 = µe−i(α−82)ρ2γ2 + νe−i(α−81)ρ1γ1,

where γa is defined by the same way in Eq. (6) for each popula-
tion. The six-dimensional reduced dynamics in Eq. (13) with the
tangent space dynamics along the corresponding chimera reference
trajectory [ρ1(t) = 1 and ρ2(t) < 1] is associated with six Lyapunov
exponents, which can be determined numerically. In Figs. 5(c)
and 5(d), their values are shown vs the index for the same parame-
ters, which were used in the calculations of the full Lyapunov spectra
depicted in Figs. 5(a) and 5(b). The results give further insight on
the LEs of the incoherent population: the incoherent WS reduced
dynamics resides in an invariant subspace of the phase space of the
incoherent population that is determined by the N − 3 constants of
motion, i.e., by the initial condition45 (here, PICs and the uniform
distribution of the constants of motion consistent with the Pois-
son submanifold), which yield N − 3 neutral directions, i.e., N − 3
zero LEs. In addition, there are two further zero exponents associ-
ated with the incoherent population that come from the two angular
variables (82, 92) in the reduced dynamics.55 Hence, we obtain in
total N − 1 zero exponents. Apart from these zero LEs, there exists
one negative LE that corresponds to the stable fixed point of the
radial variable ρ2(t) ≈ ρ0 = const. whose value is determined by
the parameter set. (Note that the remaining exponents in the WS
reduced dynamics arise from the sync group and the continuous
time-shift symmetry.) Regarding the breathing chimera states, we
find N-fold degenerate zero exponents in the incoherent population;
an additional zero Lyapunov exponent results from the oscillat-
ing nature of the WS radial variable, i.e., the breathing motion of
the order parameter of the incoherent population above the Hopf
bifurcation.16,17

3. Collective modes in Poisson chimeras

As a last step of our analysis of the dynamics of Poisson
chimeras, we investigate whether some of the CLVs correspond to
collective perturbations or modes. Therefore, we calculate the time-
averaged inverse participation ratio (IPR) for various system sizes
according to32,33

IPR(i)(N) =
〈

exp




1

q − 1
log

2N
∑

j=1

∣
∣
∣
∣
v(i)j (t)

∣
∣
∣
∣

2q





〉

t

, (14)

where q = 2 and IPR(i) ∈ [(2N)−1, 1] and v(i)j is the jth compo-

nent of the CLV v(i) ∈ Tφch(t)
(T2N) corresponding to a given expo-

nent denoted by 3i(N) defined in Eq. (A2) for i = 1, . . . , 2N. By
definition, IPR(i)(N) is close to 1 if the given vector is well localized
but close to 1

2N
if the vector components spread out through all the

oscillators. Therefore, a CLV is a collective mode if IPR(i)(N) ∼ 1
N

as

N increases, whereas a CLV is localized when IPR(i)(N) ∼ const. as
N increases.32,33

In Figs. 5(e) and 5(f), the numerically obtained IPRs of the

CLVs corresponding to 3(0)
perturb and 3(incoh)

ρ of the stationary Pois-

son chimera are plotted vs the system size. The proportionality of
IPR(N) ∼ 1

N
for large N strongly suggests that the corresponding

CLVs are indeed Lyapunov collective modes. As discussed above,
these modes are related to the incoherent oscillators and affected
by the incoherent order parameter motion. This observation is con-
firmed by our Lyapunov analysis, i.e., by measuring the localization
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FIG. 6. (a) and (b) Temporal evolution of the magnitude of the Kuramoto order
parameter obtained from non-Poisson chimera times series starting from different
n-PICs after a time t ≥ 106 forN = 12 and A = 0.2. (c) and (d) Lyapunov spectra
corresponding to the dynamics of (a) and (b).

of the covariant Lyapunov vector. We stress that these Lyapunov

modes (3(0)
perturb and 3incoh

ρ ) are collective (non-localized) through-

out all the oscillators and not restricted to the incoherent oscillator
population.

4. Non-Poisson chimeras

Finally, we turn to the Lyapunov exponents of the non-Poisson
chimera trajectories that start from a given n-PIC. Two examples
of the temporal evolution of magnitude of the order parameter of
non-Poisson chimera trajectories that were obtained from different
n-PIC but otherwise identical parameters in the governing equations
are depicted in Figs. 6(a) and 6(b) together with the corresponding
numerically determined Lyapunov spectra (c) and (d). In line with
our discussion in Sec. II B, non-Poisson chimera trajectories show
different incoherent motions of the order parameter depending on a
given n-PIC. In spite of this, since a non-Poisson chimera also lives
on the two-population network, there are also (N − 1)-fold degen-

erate 3(0)
trans,κ for κ = 2, . . . , N of the synchronized population given

by Eq. (9). Likewise, the numerical CLV analysis confirms that these
are indeed transverse to the sync-manifold as in Eq. (10). What is
different from Poisson chimeras, particularly in the synchronized
population, is that the LE arising from the perturbation along the
sync-manifold [Eq. (11)] takes a different value than in Poisson

chimeras. This is because3(0)
perturb strongly depends on the motion of

the incoherent oscillators through Z in Eq. (11), which is determined
by the initial condition.

Concerning the LEs in the incoherent population, (N − 1)-
fold degenerate 3(incoh)

zero = 0 are also found from the WS reduced
dynamics. However, since3(incoh)

ρ strongly depends on the constants
of motion determined by the non-Poisson initial condition, it also
attains a value different from that of a Poisson chimera trajectory;
see Figs. 6(c) and 6(d).

III. TWO WAYS TO ATTRACTING POISSON CHIMERA

So far, many authors have observed that a small heterogene-
ity, e.g., nonidentical natural frequencies or noisy oscillators, makes
the dynamics evolve toward at least a close neighborhood of the
OA manifold and the Poisson submanifold for the continuum limit
and the finite-size system, respectively, and this stabilizing effect
has been reported to be a generic consequence of the heterogene-
ity of the dynamics.21,27,41–43,47,48 In this section, we study two simple
systems with identical oscillator populations that, according to the
Lyapunov analysis, possess attracting Poisson chimeras. In the first
system, we consider a nonlocal intra-population coupling and in the
second one, amplitude degrees of freedom of the oscillators; i.e.,
we employ Stuart–Landau amplitude oscillators rather than phase
oscillators.

A. Topological variation: Nonlocal intra-population

network

While previous studies on nonlocal intra-population networks
focused on randomly but systematically constructed topologies and
on chimera states in the continuum limit,22,24 we consider here the
simplest regular and finite-sized nonlocal network. This allows us
to take advantage of the symmetry of the network. As depicted
in Fig. 1(b), the oscillators of each population are arranged on a
ring. Compared to the globally coupled intra-population network,
each oscillator has one intra-population connection less: it is not
connected to the opposite oscillator. For this purpose, we only
consider even numbers of the oscillators in each population here.
The adjacency matrix of this nonlocal intra-population but global
inter-population network is defined as

A =




















N/2
︷ ︸︸ ︷

0 1 · · · 1

N/2
︷ ︸︸ ︷

0 1 · · · 1

1 0
. . .

... 1 0
. . .

...
...

. . .
. . . 1

...
. . .

. . . 1
1 · · · 1 0 1 · · · 1 0
0 1 · · · 1 0 1 · · · 1

1 0
. . .

... 1 0
. . .

...
...

. . .
. . . 1

...
. . .

. . . 1
1 · · · 1 0 1 · · · 1 0




















, (15)

where the ith oscillator is disconnected to the (i + N
2
)th oscillator of

the same population.
The governing equations of the Kuramoto–Sakaguchi phase

oscillators in the nonlocal intra-population topology are for the first
population

dφi

dt
= −

µ

N
sinα +

µ

N

N
∑

j=1

Aijsin(φj − φi − α)

+
ν

N

N
∑

j=1

sin(φj+N − φi − α) (16)
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for i = 1, . . . , N and

dφi+N

dt
= −

µ

N
sinα +

µ

N

N
∑

j=1

Aijsin(φj+N − φi+N − α)

+
ν

N

N
∑

j=1

sin(φj − φi+N − α) (17)

for i = 1, . . . , N for the second one. Aij is the adjacency matrix that
describes the nonlocal intra-population coupling of each population
defined in Eq. (15).

Although the nonlocally coupled system does not have a cor-
responding OA dynamics, we found that as long as we started from
PIC ∈ MPoisson, chimera trajectories satisfy the dynamical character-
istics of Poisson chimeras as defined in Sec. II B. For this nonlocal
Poisson chimera state, the distribution of the incoherent phases
remains in a close vicinity of the Poisson submanifold defined by
Eq. (3) as the Poisson chimera distributions shown in Figs. 4(c)
and 4(g). Additionally, the nonlocal Poisson chimera also shows
the splay form of the instantaneous frequencies of the incoherent
oscillators if A = 0.2. In Fig. 7, the simple motion of the magni-
tude of the order parameter of nonlocal stationary and breathing
Poisson chimera states is depicted. For the parameter A = 0.2, the
magnitude of the order parameter has a practically constant value
for large size chimeras (slightly different from the global topology),
and the small-size chimera displays the clear periodic motion that
arises from the splayed instantaneous velocities. For the parame-
ter A = 0.35, the order parameter of the large-size chimera state
exhibits a main breathing motion as expected; however, the one
of small-size chimeras does not show the main breathing motion
superimposed by a secondary oscillation but rather it looks like that
of the stationary Poisson chimera state.This might be interpreted as

FIG. 7. The Kuramoto order parameters of the phase oscillators governed by
the nonlocal intra-group coupling. (a) and (b) Chimera states with the parame-
ter A = 0.2 and β = 0.08 corresponding to stationary chimeras for the system
sizes N = 6 and N = 60, respectively. (c) and (d) Chimera states with A = 0.35
corresponding to the breathing chimera states. Gray line: synchronized group
[r(t) = 1]. Black line: incoherent order parameter [r(t) < 1].

a hint that the nonlocality on the two-population network topol-
ogy changes the Hopf bifurcation point for the small-size Poisson
chimera as described for different non-complete networks in Ref. 22.

B. Lyapunov analysis of Poisson chimeras in the

nonlocal intra-population network

1. Synchronized population: 3(0)
trans and 3

(0)
perturb

For the Poisson chimeras on the nonlocal topology, the
Lyapunov spectrum of the nonlocal Poisson chimeras is qualita-
tively different from one of the global Poisson chimeras, as can be
seen in Fig. 8. There are N − 1 transverse Lyapunov exponents con-

sisting of two different values. This splitting of the values of 3(0)
trans

is due to the fact that the transversal variational equations include
two different eigenvalues of the adjacency matrix corresponding to
the same synchronized cluster according to the nonlocal network
symmetry [compare Eqs. (C14) and (C15)]. The analytical approxi-
mate expressions of the N − 1 transverse Lyapunov exponents to the
sync-manifold are

3
(0)
trans,κ =

{

− µ

N
(N − 2)cosα − ν

N
Z < 0, κ = 2, . . . , N/2 + 1,

−µcosα − ν

N
Z < 0, κ = N/2 + 2, . . . , N,

(18)

provided that Z is treated as an external forcing field. The simu-
lation of the CLVs confirms that the LEs in Eq. (18) are indeed
transverse to the sync-manifold since the corresponding CLVs have

the form v(0)κ = [v(trans)
κ1 , . . . , v(trans)

κN , 0, . . . , 0]
> ∈ Tφch(t)

(T2N), while
∑N

i=1 v(trans)
κi = 0 for κ = 2, . . . , N. Note that as N increases, the gap

between the transverse Lyapunov exponents in Eq. (18) is decreas-
ing, and the numerical results in Fig. 8 reflect this fact.

Also, as can be seen in Fig. 8, there is another LE of the
synchronized population, which arises from a perturbation along
the sync-manifold. This perturbation brings forth the very neg-

ative exponent 3(0)
perturb = − ν

N
Z < 0 that strongly depends on the

motion of the incoherent oscillators. Hence, we conclude that in the
nonlocal intra-population topology, the synchronized population of
Poisson chimera states is also stable in both the directions transverse
and parallel to the sync-manifold.

2. Incoherent population: Pairs of two

near-degenerate Lyapunov exponents

Next, we focus on the Lyapunov exponents corresponding to
the incoherent oscillators. Although we cannot apply directly the
Watanabe–Strogatz reduction [Eq. (13)] in the case of the nonlo-
cally coupled oscillators, the classification of the incoherent LEs can
be addressed as follows. The quotient dynamics for the incoherent
population in Eq. (C13) contains discrete symmetries due to the
topology of the nonlocal network [see Fig. 8(a)]. Since each oscilla-
tor is disconnected only from the opposite one, two oscillators sm(t)
and sm+N/2(t) are characterized by the same evolution equation. It
is also known that such discrete symmetries cause near-degeneracy
in the Lyapunov spectrum.34 Thus, N/2 pairs of two nearly iden-
tical exponents occur in the incoherent population [see Figs. 8(b)
and 8(d)]. Therefore, unlike the globally coupled Poisson chimeras,
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FIG. 8. (a) Schematic drawing of the two-population oscillator network with non-
local coupling for N = 6. The same color in the incoherent group indicates that
the oscillators marked by the same color are characterized by the same evolu-
tion dynamics. (b) and (c) The Lyapunov spectra for A = 0.2 with N = 6 and
N = 60, respectively. (d) and (e) The Lyapunov spectra for A = 0.35 with N = 6
and N = 60, respectively.

FIG. 9. Schematic representation of chimera trajectories in the invariant mani-
fold Mincoh (sphere) and the Poisson submanifold MPoisson ⊂ Mincoh (red curve).
Each line schematically represents a trajectory of a chimera state from a given
initial condition. The arrow indicates the time flow in the incoherent phase space.
(a) For the Kuramoto–Sakaguchi phase oscillators on the global intra-group cou-
pling; the incoherent trajectories of the chimeras dwell in the neutrally stable
manifold Mincoh. The Poisson chimera trajectories reside in the invariant and also
a neutrally stable Poisson submanifold only if the trajectory starts from PIC; the
non-Poisson chimera from n-PIC dwells in the manifold outside the Poisson sub-
manifold. Thus, the non-Poisson chimeras exhibit various incoherent motions
according to the given n-PIC. (b) Attracting Poisson chimeras for the nonlocal
intra-group topology or Stuart–Landau oscillators. The trajectories starting even
from n-PIC eventually settle down on or close to the Poisson trajectory.

which are neutrally stable, the incoherent population of nonlocal
Poisson chimeras is stable (see Fig. 9), as suggested by the fact
that all pairs of the incoherent Lyapunov exponents are definitely
negative except for the two zero exponents that are connected to
the continuous symmetries: the phase shift [vps = (δφ0, . . . , δφ0)

>

where |δφ0| � 1] and the time shift [vts ∝ φ̇ch = f(φch)], respec-
tively, which, in fact, do not affect the stability of the trajectory.33

For large-size Poisson chimeras in Figs. 8(c) and 8(e), the near-
degenerate pairs in the incoherent population are getting closer and
closer to one another until eventually, due to the nonlocal network
symmetry, they tend to form two different continuous distributions,
one of which consists of obviously negative LEs, whereas the other
one consists of two (or some) zero and very slightly negative LEs,
corresponding to slow but stable Lyapunov exponents (within our
numerical ability).

On the other hand, we can also think of this attractiveness of
nonlocal Poisson chimeras due to the heterogeneity of the system.
Our nonlocal topology is generated by the least change from the
global topology, and hence if we make global the summation term
in Eq. (C13), then the disconnecting term due to the nonlocal topol-
ogy between the two oscillators sm and sm+N/2 should be included in
the uncoupled term outside the summation and Eq. (C13) becomes

dsm

dt
= ω̃m(t)+ νsin(s0 − sm − α)+

µ

N

N
∑

m′=1

sin(sm′ − sm − α),

(19)

with ω̃m(t) = − µ

N
sin(sm+N/2 − sm − α) ≈ O(N−1). Thus, we can

interpret ω̃m(t) as a small heterogeneity for the globally cou-
pled incoherent oscillator population. Such a heterogeneity is
known to confine the chimeras in a vicinity of the Poisson
submanifold.28,42,43,47,48

C. Dynamical variation: Stuart–Landau oscillators

As the second way to obtain attracting Poisson chimeras, we
consider Stuart–Landau (SL) planar oscillators. This two-population
network of SL oscillators has been studied recently in the contin-
uum limit,25,26 in which attracting chimera states have been reported.
Here, we consider the finite-sized ensemble and give a full Lyapunov
stability analysis, which gives further evidence that amplitude DOFs
render Poisson chimeras attracting. The amplitude degrees of free-
dom introduce a small heterogeneity, which is, however, this time
self-organized.25,41

In an ensemble of Stuart–Landau (SL) oscillators, each oscil-
lator has a phase φi(t) ∈ [−π ,π) and an amplitude ri(t) ∈ (0, ∞)

variable. The governing equations are

dri

dt
= ε−1(1 − r2

i )ri +
µ

N

N
∑

j=1

rjcos(φj − φi − α)

+
ν

N

N
∑

j=1

rj+Ncos(φj+N − φi − α) (20)

Chaos 31, 113101 (2021); doi: 10.1063/5.0065710 31, 113101-11

© Author(s) 2021

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

for i = 1, . . . , N, which depicts the evolution of the amplitude vari-
ables of the oscillators in the first oscillator population and

dφi

dt
= ω − σ r2

i +
µ

N

N
∑

j=1

rj

ri

sin(φj − φi − α)

+
ν

N

N
∑

j=1

rj+N

ri

sin(φj+N − φi − α) (21)

for i = 1, . . . , N, describing the phase dynamics of the SL oscilla-
tors in the same population. The governing equations for the second
population can also be easily obtained in the same way. In our
further study, we fix some parameters: σ = 0.2 and ω = 0. Notice
that as ε → 0, the system approaches the evolution equations (1)
and (2) of the phase-only oscillators whose amplitude ri → 1 for all
i = 1, . . . , 2N.25

To study Poisson chimeras of the SL ensemble, we start from
the PIC on the phase variables in Eq. (21) in one population and
set the phases of the second population to the same value and all
the initial amplitudes in Eq. (20) to ri(0) = 1 for i = 1, . . . , 2N (note
that the definition of Poisson chimeras involves only the phase
DOFs). The states evolving from such a PIC satisfy all the dynam-
ical properties in the definition of Poisson chimeras for the phase
DOFs: one population remains perfectly synchronized, the incoher-
ent phase distribution remains in the Poisson kernel, and finally
large- and small-size behavior emerges according to the system size.
In particular, the stationary chimera states show the splay form
of the instantaneous incoherent frequencies that yield the periodic
order parameter for the small-size stationary chimeras. Regarding
the amplitude variables, all synchronized oscillators have an ampli-
tude ri(t) = 1 for i = 1, . . . , N, and the amplitudes of the oscillators
in the other population show some distribution with the degree of
variation depending on the parameter ε.

For the SL oscillators, the coupling strength ε acts as a bifurca-
tion parameter. For weak coupling strength, i.e., sufficiently small
ε (here, we use ε = 0.01), the dynamics are close to the phase-
reduced behavior. Hence, the evolution of the order parameter is
very close to the one depicted in Fig. 2 for the phase-reduced system;
rincoh(t) is stationary for A = 0.2 and exhibits a breathing motion for
A = 0.35. However, when increasing ε at constant A = 0.2, the sta-
tionary chimera undergoes eventually a Hopf bifurcation, giving rise
to breathing chimeras, which are observed, e.g., for ε = 0.15, which
is in line with findings reported in Ref. 25.

D. Lyapunov analysis on Poisson chimeras of

Stuart–Landau oscillators

To study the Lyapunov exponents numerically, we exploit
the real-valued coordinates of each Stuart–Landau oscillator.33 The
variables of an SL oscillator can be represented by

rk(t)e
iφk(t) =

1
√

2

(

ak(t)+ ibk(t)
)

(22)

for k = 1, . . . , 2N, where ak and bk are real-valued functions of time.
Thus, the perturbation vectors in the tangent space are written in the

form v(i) = (a1, . . . , aN, aN+1, . . . , a2N, b1, . . . , bN, bN+1, . . . , b2N)
>

∈ Txch(t)
(R4N). This coordinate transformation is a unitary transfor-

mation; hence, it can uphold the information on Lyapunov expo-
nents. Such a coordinate transformation is useful to investigate
the covariant Lyapunov vectors. In addition, we also calculated the
LEs in the original coordinate system (phase and amplitude) and
obtained the same result. This fact and some analytical considera-
tions in Ref. 26 and in Appendix C 2 allow the phase and amplitude
LEs to be distinguished.

1. Amplitude degrees of freedom

In Fig. 10, the numerically obtained Lyapunov spectra of
chimera states for strong [ε = 0.1 (a) and (b) and 0.15 (c) and
(d)] coupling are displayed. The spectra are composed of two parts,
which correspond to the phase and amplitude degrees of freedom,
respectively. The former are shown in the left column and the latter
in the middle one.

First, consider the amplitude DOFs of the synchronized oscil-
lators. They have (N − 1)-fold degenerate strongly negative Lya-
punov exponents, which are transverse to the sync-manifold. The
approximate values of these Lyapunov exponents are

3
(amp,0)
trans,κ ≈ ε−1(1 − 3R2

0) < 0 (23)

for κ = 2, . . . , N [see Eq. (C18)]. The numerically obtained CLVs
confirm that these Lyapunov exponents are indeed transverse to the
sync-manifold as they have the following form:

v(amp,0)
κ =

(

a
(amp,0)
κ1 , . . . , a

(amp,0)
κN , 0, . . . , 0,

b
(amp,0)
κ1 , . . . , b

(amp,0)
κN , 0, . . . , 0

)> ∈ Txch(t)
(R4N),

where
∑N

i=1 a
(amp,0)
κi =

∑N
i=1 b

(amp,0)
κi = 0 for κ = 2, . . . , N. In

Figs. 10(b) and 10(d), we observe another negative exponent in the
synchronized population of the amplitude DOFs caused by the per-
turbation along the sync-manifold as in Eqs. (C19) and (C20). For
the analytical value of it, one obtains

3
(amp,0)

perturb ≈ ε−1(1 − 3R2
0)+ µcosα < 0, (24)

which is a slightly greater Lyapunov exponent than the transverse

ones 3
(amp,0)
trans . 3

(amp,0)

perturb , in line with the numerical observations in

Fig. 10. The numerical CLV analysis reveals that this LE has the

form v
(amp,0)

perturb = (a, . . . , a, a(inc)
1 , . . . , a(inc)

N , b, . . . , b, b(inc)
1 , . . . , b(inc)

N )
>

∈ Txch(t)
(R4N), where a, b ∈ R are constant and

∑N
j=1 a(inc)

j 6= 0 and
∑N

j=1 b(inc)
j 6= 0. Hence, we conclude that there is no perturbation

direction in the amplitude DOFs, which corresponds to an unsta-
ble direction of the synchronized manifold; i.e., the sync-manifold
remains invariant under the dynamics since for the sync-population
in the amplitude DOFs, the CLV modes both transverse and parallel
to the sync-manifold are stable. For the other Lyapunov exponents
in the amplitude DOFs, we guess that these stable Lyapunov expo-
nents of the amplitude DOFs are linked to the incoherent oscillators
through their quotient dynamics in Eq. (C21). Therefore, all the
amplitude Lyapunov exponents are strongly negative, and the Pois-
son chimeras are strongly attracting in all the amplitude DOFs. Note
that the amplitude DOFs of the SL ensemble for the weak coupling
(ε = 0.01), depicted in Fig. 11, show the same behavior.
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FIG. 10. Lyapunov exponents vs index of the strongly coupled SL oscillators with global intra-group coupling for A = 0.2, N = 20 and (a) and (b) ε = 0.1 (stationary) and
(c) and (d) ε = 0.1 (breathing). (a) and (c) Lyapunov exponents of phase DOFs. The insets show a magnification of the Lyapunov exponents corresponding to the incoherent
phase DOFs. (b) and (d) Lyapunov exponents corresponding to amplitude DOFs. (e)–(g) IPR vs system size N for ε = 0.15 and Lyapunov modes corresponding to the
exponents in PART 1 (e), PART 2 (f), and PART 3 (g). The black dashed guidelines indicate ≈1/N.

2. Phase degrees of freedom

In the phase degrees of freedom, the synchronized oscillators
also have the (N − 1)-fold degenerate transverse Lyapunov expo-
nents in Figs. 10 and 11, whose analytical approximate expressions

FIG. 11. Full Lyapunov spectra of N = 20 Stuart–Landau oscillators for weak
coupling ε = 0.01 and (a) and (b) stationary Poisson chimeras with A = 0.2 and
(c) and (d) breathing Poisson chimeras with A = 0.35. Left column: phase DOFs.
Right column: amplitude DOFs.

are

3
(0)
trans,κ = −µcosα −

ν

N

N
∑

m′=1

Rm′

R0

cos(sm′ − s0 − α)

= −µcosα −
ν

N
Z̃ < 0 (25)

for κ = 2, . . . , N, where Z̃ =
∑N

m′=1

Rm′
R0

cos(sm′ − s0 − α) should be

considered as an external forcing field. In addition, the LE in the
sync group coming from a perturbation along the sync-manifold

has the value of 3(0)
perturb = − ν

N
Z̃ < 0 and is expected to be found

in the synchronized phase DOFs. The numerical CLV analysis also

confirms that 3(0)
trans,κ and 3(0)

perturb associated with the synchronized

population are indeed transverse and parallel to the sync-manifold,
respectively.

What makes Poisson chimeras of SL oscillators attractive are
the incoherent LEs 3(incoh) in Fig. 10 (see the inset) and Figs. 11(a)
and 11(c). In an appropriate rotating reference frame, the quotient
governing equations for the incoherent phase DOFs in Eq. (C23)
are the same as for the phase-only oscillators in Eqs. (C4) and (C5)
except for the amplitude variables that can be considered a small
self-organized heterogeneity �̃m(t) in the phase governing equa-
tions, Eq. (C23).25 For the strongly coupled systems with ε = 0.1
and 0.15 as in Figs. 10(a) and 10(c), there are clearly negative
Lyapunov exponents in the incoherent phase DOFs. For the sta-
tionary chimera (ε = 0.1), we have, in addition, two zero exponents
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for the breathing chimera (ε = 0.15); besides the negative expo-
nents, there are three zero exponents, one of which arises from
the oscillatory nature of the breathing chimeras. The stable Lya-
punov exponents arise due to the amplitude variables in the phase
governing equations, which present a heterogeneity that, in turn,
renders the chimeras attractive.21,25,28,41–43,47,48 For the weak coupling
case ε = 0.01 in Figs. 11(a) and 11(c), the amplitude fluctuations
are not that strong (Rm ≈ R0 = 1 for m = 1, . . . , N), and as a result,
Eq. (C23) can be approximated by Eqs. (C4) and (C5) like the
phase-reduced model, and the Poisson chimeras and their Lyapunov
exponents follow patterns similar to the ones obtained for the KS
oscillators [see Figs. 11(a) and 11(c) compared to Fig. 5]. However,
there is still a heterogeneity of the amplitude DOFs in the phase
governing equations, and therefore, we can expect the LEs to be
still slightly negative (stable Lyapunov exponents) in the incoherent
phase DOFs. Even for cases where these exponents are very close to
zero in our numerical ability, compared to the KS phase-only LEs
in Fig. 5, they are slightly decreasing to negative values in the index
order, which does not occur in the KS phase-only system. Hence,
we tentatively conclude that also for weak coupling, the stationary
chimeras have only two zero LEs, and all other exponents are weakly
stable. Hence, in all cases, the Poisson chimeras are either at least
weakly stable or clearly attracting compared to the KS phase-only
Poisson chimera states because the amplitude variables introduce a
self-organized heterogeneity in the phase governing equations. As a
consequence, even if starting from n-PIC, the chimera trajectories
eventually approach the Poisson submanifold, as we could confirm
with numerical simulations.

More than this, we also exploited weakly coupled (ε = 0.01) SL
oscillators in the nonlocal intra-population network in order to see
whether the Poisson chimeras are also attracting or not. The detailed
results on the Lyapunov analysis are compiled in Appendix D. In
this case, the nonlocal topology leads to stronger negative Lyapunov
exponents than the globally coupled SL oscillators rather similar to
the phase-only system in Fig. 8. Therefore, the simultaneous per-
turbations also cause the Poisson chimeras to evolve toward a close
neighborhood of the Poisson submanifold, i.e., the Poisson chimera
trajectory (see Fig. 9).

Finally, we also investigate whether the system has a Lyapunov
collective mode or not by numerically evaluating the IPR function
defined in Eq. (14), especially for the case of the breathing chimera
ε = 0.15. As can be seen in Figs. 10(e)–10(g), for at least six Lya-
punov modes, the IPR shows the tendency to decrease according
to IPR(i)(N) ∼ 1

N
as the system size N increases. This strongly sug-

gests that these modes, which correspond to the negative exponents
in PART 1 in Fig. 10, are collective modes (note that the stationary
chimera ε = 0.1 shows the same collective modes, not shown here).
In PARTs 2 and 3 in Fig. 10 for the amplitude DOFs, within our
numerically tractable system sizes, at least one Lyapunov mode satis-
fies the inverse-proportional behavior of the IPR as a function of the
system size in each part, respectively. Consequently, these Lyapunov
modes, 32N+1 in PART 2 and 34N in PART 3, are not localized but
affect all the oscillators collectively (not restricted only on the inco-
herent group, but also spread out over all the oscillators) and are
strongly related to their collective motion in the state space; i.e., they
are also Lyapunov collective modes.

IV. CONCLUSION

In this work, we have dealt with chimera states in two-
population networks of identical oscillators. For the identical
Kuramoto–Sakaguchi phase oscillators, the order parameter dynam-
ics of the incoherent oscillator population strongly depends on
the initial condition and the population size.17,27 Once chimeras
started from a special initial condition where all the initial phases
of one population are in the Poisson kernel, i.e., the Poisson
submanifold,41,44–46 the phases remain in the Poisson kernel for
all times, and we called this chimera a Poisson chimera. Poisson
chimeras show a rather simple motion of the incoherent oscil-
lator population that is virtually indistinguishable from the con-
tinuum limit OA solution for sufficiently large population sizes.16

In contrast, the incoherent motion of a Poisson chimera with a
small population size is drastically different from the simple OA
dynamics.17 This difference is not due to finite-size fluctuations but
has a deterministic origin: The magnitude of the order parameter
of the incoherent oscillator population shows not only the main
motion close to the OA dynamics but also a superimposed sec-
ondary oscillation along the main motion. We demonstrated that
this superposed oscillation is a consequence of the fact that the
instantaneous frequencies of stationary Poisson chimeras exhibit a
splay form. Furthermore, the splayed distribution of the instanta-
neous frequencies bring about that the period of the superposed
oscillation tends to zero with increasing N, while the consideration
of the WS global variables revealed how the amplitude of the sec-
ondary oscillation disappears with increasing N.17,27,28 Consequently,
our investigations have revealed that and how the order param-
eter changes continuously from small-size chimeras to large-size
chimeras up to the continuum limit, eventually showing the same
dynamics as the OA dynamics in the continuum boundary.

In contrast to such Poisson chimeras, the chimeras initialized
outside the Poisson submanifold, called in this work non-Poisson
chimeras, do neither show such a simple order parameter dynam-
ics, regardless of the system size, nor splay-formed instantaneous
frequencies of the stationary chimeras, nor does the phase distribu-
tion stay in the Poisson kernel. Alternatively, they show complicated
fluctuations along the main motion close to the OA dynamics.
This complex, superposed trajectory exists for stationary as well as
breathing chimeras, it does not disappear for the large population
sizes and in the long time limit, and it depends on the particu-
lar initial condition outside the Poisson submanifold, i.e., a set of
nonuniform constants of motion.27,28,42

In our numerical Lyapunov analysis and also in other previ-
ous results,45,55 the stationary chimera states in a two-population
network with global intra- and inter-population coupling topology,
whether it is a Poisson or non-Poisson chimera, are neutrally sta-
ble in N − 1 directions. Note that the other negative LE corresponds
to the degree of the coherence, i.e., the global WS radial variable.
Based on the WS theory, the neutral stability mainly originates from
the constants of motion of the system. Any particular parameter set
determines the value of the OA radial variable in the continuum
limit. The phase DOFs of the neutrally stable Poisson chimeras are
dictated by the Poisson initial condition, i.e., uniform constants of
motion, and remain in the Poisson kernel.44
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In contrast, the initial conditions for non-Poisson chimeras
correspond to a non-uniform set of constants of motion that cause
the different irregular motions of the incoherent oscillators outside
the Poisson submanifold according to the different set of motion
constants, i.e., the non-Poisson initial condition.

In the next step, we have considered two possibilities that make
Poisson chimeras attractive or at least remain in a close vicinity
of the Poisson submanifold. We have introduced two “perturba-
tions” to the Kuramoto–Sakaguchi phase oscillators on the global
two-population network: a nonlocal intra-population topology and
an amplitude degree of freedom, i.e., Stuart–Landau planar oscil-
lators. Previously, many authors showed that the OA manifold in
the continuum limit is attracting in the long time limit if the sys-
tem exhibits some type of heterogeneity.42,43,47 Considering the WS
transformation, it was also shown that a finite-sized system is evolv-
ing toward at least a close vicinity of the Poisson submanifold when
the system has a suitable heterogeneity, such as nonidentical natural
frequencies, noisy oscillators, or experiences a heterogeneous mean-
field forcing.28,48 We have demonstrated that our two perturbations
can be thought of as such a small heterogeneity for the incoher-
ent oscillator population. Correspondingly, the Lyapunov analysis
has revealed that the systems of nonlocally coupled phase oscilla-
tors and globally coupled Stuart–Landau amplitude oscillators have
(slightly) negative Lyapunov exponents associated with the inco-
herent population of phase DOFs and thus an attracting Poisson
chimera trajectory:25,26 Even when starting from non-Poisson ICs,
the chimera trajectory evolved toward the Poisson chimera or to a
close neighborhood of it in the long time limit.

As a concluding remark, we note that in real world systems,
heterogeneities of some type will naturally be present so that the
Poisson submanifold becomes at least weakly attracting, which
underlines the importance of Poisson chimera states.
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APPENDIX A: LYAPUNOV ANALYSIS

To study the spectral properties of a chimera trajectory in the
state space, we perform a Lyapunov analysis. In this appendix, we
review some basic concepts; the detailed descriptions can be found
in Refs. 29–31 and 34.

First, our governing equations are represented by a set of
autonomous ordinary differential equations. In the general vectorial

notation, we consider ẋ(t) = f(x(t)) with an initial condition x(0)
= x0, where x(t) ∈ R

n is the dynamical variable, f is the vector field,
and n is the dimension of the state space. A reference trajectory
xref(t) is a solution of the initial value problem, along which we want
to study the spectral properties. In our context, it, therefore, should
be a chimera state trajectory. Now we consider the tangent space at
each state point along the reference trajectory, wherein the perturba-
tion vector δx(t) resides; i.e., δx(t) ∈ Txref(t)

(Rn). Those perturbation
vectors are governed by the Jacobian matrix of the vector field,
evaluated along the reference trajectory, which can be represented
as δẋ(t) = J(t; xref(t))δx(t) where the Jacobian matrix is defined by

(J)ij = ∂ ẋi
∂xj

∣
∣
xref(t)

. From this, we consider the fundamental matrix

solution such that Ȯ(t) = J(t; xref(t))O(t) with O(0) = In; this solu-
tion defines the tangent linear propagator, M(t0, t) = O(t)O−1(t0),
of the perturbation vector from a given point in time point to the
future time so that δx(t) = M(t0, t)δx(t0).30

Oseledets’ theorem29,56 tells us that the limits (A1) exist and
share the same real positive eigenvalues denoted by µ1 > µ2

> · · · > µn (Here, we only consider the nondegenerate case).
The forward and backward Oseledets matrices are, respectively,
defined by

4+(t) = lim
t2→∞

[

M(t, t2)
>M(t, t2)

]1/(2(t2−t))
,

4−(t) = lim
t1→−∞

[

M(t1, t)
−>M−1(t1, t)

]1/(2(t1−t))
,

(A1)

where > stands for the transpose of a matrix and −> for trans-
pose and inverse of it. The forward/backward Oseledets matrix
probes the future/past dynamics along the given reference tra-
jectory. Those matrices have the eigenspaces spanned by the so-

called forward/backward Lyapunov vectors d
(i)
± (t). However, these

vectors are not covariant under the dynamics; i.e., it does not
bear any information on the local expansion/contraction of the
perturbation vectors. Nevertheless, we can construct Oseledets’
splitting that decomposes the tangent space according to the
local expansion/contraction behavior along the reference trajectory.
We define nested subspaces, which construct Oseledets’ splitting

in the following way: (0(i)(t))
+ =

⊕n
j=i (U

(j)(t))
+

and (0(i)(t))
−

=
⊕i

j=1 (U
(j)(t))

−
, where (U(j)(t))

±
are the eigenspaces of the for-

ward/backward Oseledets matrices spanned by {d(j)± (t)}
n

j=1.
29 There-

fore, we have the decomposition of the tangent space such that

Txref(t)
(Rn) =

⊕n
j=1 �(j)(t), where �(i)(t) = (0(i)(t))

+ ∩ (0(i)(t))
−

is

called Oseledets’ splitting. This Oseledets’ splitting is covariant
under the given dynamics in the sense that �(i)(t) = M(t0, t)�

(i)(t0).
The spanning vectors {v(i)(t)}n

i=1 of such Oseledets’ splittings are
called the Covariant Lyapunov Vectors (CLVs)33 that hold the infor-
mation on the local expansion/contraction direction of the pertur-
bation vectors since they are norm-independent and also covariant
under the dynamics. The exponential rate of such local expan-
sion/contraction along the direction of the CLVs is called Lyapunov
Exponents (LEs) and defined by

3i = lim
t→∞

1

t
log

||M(t0, t)u(t0)||
||u(t0)||

(A2)
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for U(t0) ∈ (0(i)(t0))
+\(0(i+1)(t0))

+
where the nested subspaces are

R
n = (0(1)(t))

+ ⊃ (0(2)(t))
+ ⊃ · · · ⊃ (0(n)(t))

+
. Hence, the Lya-

punov exponents characterize the exponential asymptotic growth
rate ||M(t0, t)v

(i)(t0)|| ∼ ||v(i)(t0)||exp(3it), and the covariant Lya-
punov vectors indicate the stable/unstable directions of the pertur-
bation vectors in the state space.34

APPENDIX B: NETWORK SYMMETRY ANALYSIS

The two-population topology we consider in the main text
can, in fact, be seen as a finite-sized network with 2N nodes. This
holds for both the global and nonlocal intra-population cases. Fur-
thermore, the discrete network symmetries are represented by the
automorphism group of a given network.35,36,49,50 Recently, many
authors have focused on such network symmetries to investigate the
dynamics of various kinds of coupled oscillators on a given finite-
sized network with abundant discrete symmetries.37,51,52,57–59 In the
following, we exploit the same approach to study the spectral prop-
erties of the synchronized population of the chimera states both for
the Kuramoto–Sakaguchi phase oscillators and the Stuart–Landau
amplitude oscillators. In this section, we introduce some important
background theories introduced in Refs. 35 and 36.

The automorphism group denoted by Aut(G ) of a given net-
work G is a mathematical group consisting of all the automor-
phisms. An automorphism is a permutation σ of the set of nodes
that preserve the adjacency relation among the nodes in the way
that Aij = Aσ(i)σ (j).49 Consider the group action under a subgroup
G ≤ Aut(G ). Then, an orbit partition of a given network G under
the subgroup G is a set of orbits defined by ϕ(G, i) = {σ(i)|σ ∈ G},
which defines a mathematical partition such that ϕ(G, i) = ϕ(G, j)
for all j ∈ ϕ(G, i) and ϕ(G, i) ∩ ϕ(G, j) = ∅ if j /∈ ϕ(G, i). This par-
tition of a graph can be a candidate of a cluster-synchronization
(CS) pattern of a given dynamics on the network35–37,51 since each
oscillator in the same orbit should receive the same input from the
others.

Let us now consider two different types of governing equations,
one of which is called here the Pecora-type equation36,37,51 and the
other one the Kuramoto-type equation, which describes diffusively
coupled oscillators,35,52,60

ẋi(t) = F(xi(t))+ K

N
∑

j=1

AijH(xj(t)),

ẋi(t) = F(xi(t))+ K

N
∑

j=1

AijH(xj(t)− xi(t))

(B1)

for i = 1, . . . , N where xi(t) ∈ R
n denotes the dynamical variable,

F(x) governs the uncoupled dynamics, H(x) the coupling function,
and finally K, denotes the coupling constant. For a given candidate
of a CS pattern, we consider the set of all clusters (orbits) {ϕ(i, G)}N

i=1

= {Cm}M
m=1, where M is the number of clusters, including trivial clus-

ters that have only one oscillator in it. An associated CS dynamics
is described by the coarse-grained variables {sm(t) = xi(t)|i ∈ Cm,
1 ≤ m ≤ M} under the quotient adjacency matrix Ãmm′ =

∑

j∈Cm′ Aij

for an arbitrary node i ∈ Cm, which is nothing but the number of
links from an arbitrary node in Cm to all the nodes in Cm′ . Hence,

the quotient dynamics of the CS pattern is given by

ṡm(t) = F(sm(t))+ K

M
∑

m′=1

Ãmm′H(sm′(t)),

ṡm(t) = F(sm(t))+ K

M
∑

m′=1

Ãmm′H(sm′(t)− sm(t))

(B2)

for m = 1, . . . , M.
The set of N-dimensional orthonormal vectors {u(m)κ }|Cm|

κ=1 for
m = 1, . . . , M called the cluster-based coordinates is defined by the

following rules:35 (i) u(m)κi = 0 if i /∈ Cm, (ii) for κ = 1, all the nonzero

elements of u
(m)
1 should be 1/

√
|Cm| that defines the cluster sync-

manifold, and (iii) the other vectors {u(m)κ }|Cm|
κ=2 are mutually orthog-

onal and also to u
(m)
1 . The cluster-based coordinate transformation

can block-diagonalize a relevant matrix such as an adjacency matrix
according to the given cluster pattern, which, therefore, reveals the
spectral properties of the dynamics on each cluster.35,51

To study the spectral properties of the dynamics on each clus-
ter, for the moment, we only consider the Pecora-type equation in
Eqs. (B1) and (B2) and use the given CS pattern as a reference tra-
jectory on which we inflict a small deviation. This, then, yields the
coupled variational equations for all the clusters,

δẋi(t) = DF(sm)δxi + K

M
∑

m′=1

∑

j∈Cm′

AijDH(sm′)δxj (B3)

for i = 1, . . . , N, where δxi(t) = xi(t)− sm(t) for i ∈ Cm and Df and
DH indicate the Jacobian matrices of the given dynamical func-
tions. Notice that each variational equation in Eq. (B3) is coupled
to all the others through the given adjacency matrix. However,
if we see this in the cluster-based coordinates by following η(m)κ

=
∑

i∈Cm
u(m)κi δxi for m = 1, . . . , M and κ = 2, . . . , |Cm|, where η(m)κ

for κ ≥ 2 represents the perturbation of the transverse direction
to the cluster Cm, we get the variational equation for that cluster,
independent of the other clusters, provided that the given cluster
Cm is non-intertwined with the others [for non-intertwined clus-
ters, see Ref. 36 or for independently synchronizable cluster sets
(ISC sets), see the supplementary material in Ref. 35]. Therefore, the
|Cm| − 1 transversal variational equations of the cluster Cm both for
the Pecora-type and the Kuramoto-type are given by35

η̇(m)κ (t) =
[

DF(sm)+ Kλ(m)κ DH(sm)

]

η(m)κ (t),

(B4)

η̇(m)κ (t) =
[

DF(sm)− K

M
∑

m′=1

Ãmm′DH(sm′ − sm)

+ Kλ(m)κ DH(0)

]

η(m)κ (t)

for κ = 2, . . . , |Cm|, where λ(m)κ is the eigenvalue of the adjacency
matrix corresponding to the cluster Cm with the eigenvector U(m)

κ

of the adjacency matrix. From those transversal variational equa-
tions, we can investigate the spectral information on the transverse
direction of each cluster along our chimera states.
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APPENDIX C: LYAPUNOV EXPONENTS BASED ON

NETWORK SYMMETRY-INDUCED CLUSTER PATTERNS

1. Kuramoto–Sakaguchi phase oscillators

As a first step, we identify the cluster-synchronization (CS)
pattern corresponding to the chimera state on the two-population
network by assigning one of the two populations to the synchronized
oscillators and the other one to the incoherent oscillators. The pop-
ulation of the N perfectly synchronized oscillators can be thought of
as just one giant cluster, which we denote by C0, whereas each inco-
herent oscillator in the other population is treated as a trivial cluster
denoted by Cm with m = 1, . . . , N. This gives us the corresponding

cluster-based coordinates U> = [u(0)1 , u(1)1 , . . . , u(N)1 , u(0)2 , . . . , u(0)N ]

for the chimera pattern.35 Here, u
(0)
1 indicates the direction along the

synchronized cluster C0 of the chimera state so that u(0)1j = 1√
N

for

j ∈ C0 and u(0)1j = 0 if j /∈ C0. For the transverse directions, we obtain
∑

j∈C0
u(0)κ j = 0 and u(0)κ j = 0 if j /∈ C0 for κ = 2, . . . , N. Finally, for

the incoherent trivial clusters, we have u(m)1j = 1 if j ∈ Cm and

u(m)1j = 0 otherwise, with m = 1, . . . , N. Note that all the cluster-
based coordinate vectors should be mutually orthonormalized. An
example of a possible candidate of the cluster-based coordinates is61

U> =














1√
N

... ON,N P
1√
N

0
... D ON,N−1

0














, (C1)

where the first column u
(0)
1 = [ 1√

N
, . . . , 1√

N
, 0, . . . , 0]

>
indicates the

sync-manifold direction, D = diag(1, . . . , 1) ∈ R
N×N indicating the

incoherent trivial clusters, each O is a zero-matrix, and P ∈ R
N×N−1

representing the directions transverse to C0, and it can be chosen to
satisfy orthonormality and transversality such as

P =













N−1√
N(N−1)

0 0 0

− 1√
N(N−1)

N−2√
(N−1)(N−2)

0 0

− 1√
N(N−1)

− 1√
(N−1)(N−2)

. . .
...

...
...

. . . 1√
2·1

− 1√
N(N−1)

− 1√
(N−1)(N−2)

· · · − 1√
2·1













.

The cluster-based coordinates decouple the variational equations
according to the given CS pattern, as demonstrated in Appendix B
and in the supplementary material of Ref. 35. Our case is rather sim-
ple since our chimera state has only one nontrivial cluster for the
synchronized oscillators.

Considering the two-population topology as one large net-
work consisting of 2N nodes with appropriately defined coupling
weights and describing a chimera state by a CS pattern defined above
{Cm}N

m=0, the Lyapunov exponents corresponding to the synchro-
nized cluster C0 can be analytically estimated. According to this

approach, the governing equation can be written as

d

dt
φi(t) = F(φi(t))+

2N
∑

j=1

KijB
(c)
ij H(φj(t)− φi(t)) (C2)

for i = 1, . . . , 2N where the uncoupled dynamics is F(φ) = − µ

N
sinα

(here, just a constant) and the coupling function is H(x) = sin
(x − α). This is nothing but the Kuramoto-type equation discussed

in Eq. (B1). The adjacency matrix B(c)ij ∈ R
2N×2N stands for the com-

plete graph with 2N nodes, and the coupling weights are defined by
Kij = µ

N
if i, j belong to the same population and Kij = ν

N
if i, j belong

to different populations, respectively, for i, j = 1, . . . , 2N. From the
CS pattern {Cm}N

m=0, the quotient adjacency matrix is given as

Ã =








N − 1 1 · · · 1
N
... A(c)

N








, (C3)

where A(c) ∈ R
N×N is the adjacency matrix of the complete graph

with N nodes that describes the global intra-population cou-
pling. Note that the quotient adjacency matrix in Eq. (C3) is an
R
(N+1)×(N+1) matrix, and the index is taken from 0 to N for the sake

of simplicity: Ãmm′ for m, m′ = 0, 1, . . . , N. Therefore, we obtain the
(coarse-grained) quotient dynamics corresponding to our chimera
pattern from Eq. (B2) with the CS variables denoted by s0(t)
= φi(t) (synchronized, C0) and sm(t) = φi+N(t) (incoherent, Cm) for
m = i = 1, . . . , N,

ṡ0(t) = F(s0(t))+
µ

N
H(0)Ã00 +

ν

N

N
∑

m′=1

Ã0m′H(sm′(t)− s0(t))

= −µsinα +
ν

N

N
∑

m′=1

sin(sm′(t)− s0(t)− α) (C4)

for the synchronized cluster (C0) where the quotient adja-
cency matrix Ã00 = N − 1 and Ã0m′ = 1 for m′ = 1, . . . , N, and
H(0) = −sinα. The quotient governing equations of the N trivial
clusters (C1, . . . , CN) for the incoherent population read

ṡm(t) = F(sm)+
ν

N
Ãm0H(s0 − sm)+

µ

N

N
∑

m′=1

Ãmm′H(sm′ − sm)

= νsin(s0 − sm − α)+
µ

N

N
∑

m′=1

sin(sm′ − sm − α) (C5)

for m = 1, . . . , N. From the quotient dynamics, we consider the
variational equations of the synchronized oscillators around the CS
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pattern as

δφ̇i = DF(s0)δφi −
N
∑

m′=0

∑

j∈Cm′

KijB
(c)
ij DH(sm′ − s0)δφi

+
N
∑

m′=0

∑

k∈Cm′

KikB
(c)
ik DH(sm′ − s0)δφk

= DF(s0)δφi −
µ

N
Ã00DH(0)δφi

−
ν

N

N
∑

m′=1

Ã0m′DH(sm′ − s0)δφi +
µ

N

∑

k∈C0

B(c)ik DH(0)δφk

+
ν

N

N
∑

m′=1

∑

k∈Cm′

B(c)ik DH(sm′ − s0)δφk (C6)

for each i ∈ C0 where the deviation around the CS pattern is δφi(t)
= φi(t)− sm(t) for i ∈ Cm and m = 0, 1, . . . , N. Next, we want to
obtain Eq. (C6) in the cluster-based coordinate defined in Eq. (C1).

The transverse variations can be written as η(0)κ (t) =
∑

i∈C0
u(0)κi δφi(t)

with U = [u(0)1 , u(1)1 , . . . , u(N)1 , u(0)2 , . . . , u(0)N ]
>

. Then, the variational
equations transverse to the sync-cluster C0 read

η̇(0)κ =
∑

i∈C0

u(0)κi δφ̇i(t)

=
∑

i∈C0

u(0)κi

(

DF(s0)−
µ

N
Ã00DH(0)

× −
ν

N

N
∑

m′=1

Ã0m′DH(sm′ − s0)

)

δφi

+
µ

N
DH(0)

∑

k∈C0

∑

i∈C0

u(0)κi B(c)ik δφk

+
ν

N

N
∑

m′=1

∑

i∈C0

∑

k∈Cm′

u(0)κi B(c)ik DH(sm′ − s0)δφk

=
(

DF(s0)−
µ

N
Ã00DH(0)−

ν

N

N
∑

m′=1

Ã0m′DH(sm′ − s0)

)

η(0)κ

+
µ

N
DH(0)

∑

k∈C0

∑

i∈C0

|C0|
∑

κ ′=1

u(0)κi B(c)ik u(0)
κ ′kη

(0)

κ ′

+
ν

N

N
∑

m′=1

∑

i∈C0

∑

k∈Cm′

|Cm′ |
∑

κ ′=1

u(0)κi B(c)ik u(m
′)

κ ′k DH(sm′ − s0)η
(m′)
κ ′ (C7)

for κ = 2, . . . , N. As shown in Ref. 35, the cluster-based coordinates
can block-diagonalize the adjacency matrix B(c) according to the CS
pattern so that the block corresponding to the sync-cluster C0 can

be represented by the matrix diag(λ(0)2 , λ(0)3 , . . . , λ(0)N ) ∈ R
(N−1)×(N−1)

and the off-diagonal blocks are zero. This, in turn, means that the

last term in Eq. (C7) should be zero and
∑

i∈C0

∑

k∈C0
u(0)κi B(c)ik u(0)

κ ′k

= λ(0)κ δκκ ′ for κ , κ ′ = 2, . . . , N where λ(0)κ are the eigenvalues of the
adjacency matrix since u(0)κ for κ = 2, . . . , N can be chosen to be
the eigenvectors of the adjacency matrix.35,61 Hence, the variational
equations transverse to the sync-manifold are given by

η̇(0)κ =
[

DF(s0)−
µ

N
Ã00DH(0)+

µ

N
λ(0)κ DH(0)

−
ν

N

N
∑

m′=1

Ã0m′DH(sm′ − s0)

]

η(0)κ

=
[

−
µ

N
(N − 1)cosα +

µ

N
λ(0)κ cosα

−
ν

N

N
∑

m′=1

cos(sm′ − s0 − α) ]η(0)κ (C8)

for κ = 2, . . . , N. Notice that for the global intra- and inter- pop-
ulation network, the eigenvalues in Eq. (C8) λ(0)κ = −1 for all
κ = 2, . . . , N. Consider as an example the system with N = 4. Its
block-diagonalized adjacency matrix reads61

UB(c)U−1 =














3 2 2 2 2
2 0 1 1 1
2 1 0 1 1 O5,3

2 1 1 0 1
2 1 1 1 0

−1 0 0
O3,5 0 −1 0

0 0 −1














,

where the lower-right block corresponds to the sync-cluster C0, and
we obtain λ(0)κ = −1 for all κ for our global intra- and inter- popula-
tion topology. Hence, if we consider the summation term in Eq. (C8)
as an external forcing field,17 then it gives approximated values of the
(N − 1)-fold degenerate transverse LEs in Eq. (9).

To estimate the Lyapunov exponent along the sync-manifold

for the synchronized population3(0)
perturb, the perturbation should be

performed along the sync-manifold. This means that we obtain the
variational equation when the small perturbation s0(t) → s0(t)+
δs0(t) where |δs0(t)| � 1 is applied to Eq. (C4),

d

dt
δs0(t) = DF(s0)δs0(t)+

ν

N

N
∑

j=1

DH(sj − s0)(−δs0)

= −
[

ν

N

N
∑

m′=1

cos(sm′ − s0 − α)

]

δs0(t). (C9)

Then, we obtain Eq. (11) provided that Z = ν

N

∑N
m′=1 cos(sm′ − s0

− α) is regarded as an external forcing function.
For the Kuramoto–Sakaguchi phase oscillators in the nonlo-

cal intra-population network, we use the same approach introduced
above where we treated the chimera state as a CS pattern dynam-
ics. We again start the analysis with the governing equation that,
however, now contain the nonlocal adjacency matrix

d

dt
φi(t) = F(φi(t))+

2N
∑

j=1

KijB
(n)
ij H(φj(t)− φi(t)) (C10)
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for i = 1, . . . , 2N, where F(φ), Kij, and H(x) are the same as defined
in Eq. (C2). The matrix B(n) ∈ R

2N×2N, which defines the global
inter- and nonlocal intra-population network, is given by

B(n) =
(

A JN

JN A

)

∈ R
2N×2N,

where A ∈ R
N×N is defined in Eq. (15) and JN ∈ R

N×N is the unit
matrix whose elements are all 1. In this approach, the quotient
adjacency matrix is given by

Ã(n) =








N − 2 1 . . . 1
N
... A

N








, (C11)

wherein the terms Ã(n)
00 = N − 2 and Ã(n)

ij = Amm′ for m, m′ = 1,
. . . , N ensuring that the intra-population topology is not global but
nonlocal. From Ã(n), we obtain the quotient dynamics according
to the CS pattern describing our chimeras with the variables s0(t)
= φi(t) (sync.) and sm(t) = φi+N(t) (incoh.) for i = m = 1, . . . , N,

ds0

dt
= F(s0)+

µ

N
Ã(n)

00 H(0)+
ν

N

N
∑

m′=1

Ã(n)

0m′H(sm′ − s0)

= −
µ

N
(N − 1)sinα +

ν

N

N
∑

m′=1

sin(sm′ − s0 − α) (C12)

for the synchronized population and

dsm

dt
= F(sm)+

ν

N
Ã(n)

m0H(s0 − sm)+
µ

N

N
∑

m′=1

Ã(n)

mm′H(sm′ − sm)

= −
µ

N
sinα + νsin(s0 − sm − α)

+
µ

N

N
∑

m′=1

Amm′ sin(sm′ − sm − α)

= ω̃m(t)+ νsin(s0 − sm − α)+
µ

N

N
∑

m′=1

sin(sm′ − sm − α),

(C13)

where ω̃m(t) = − µ

N
sin(sm+N/2 − sm − α) with Ã(n)

0m = 1 and Ã(n)
m0

= N for m = 1, . . . , N for the incoherent trivial clusters.
As seen in Sec. III B, there are N − 1 transverse Lyapunov

exponents consisting of two different values. This splitting of the

values of 3(0)
trans is due to the two different eigenvalues of the nonlo-

cal adjacency matrix. As clear from Eq. (B4), one has to consider the
eigenvalues of the adjacency matrix associated with the cluster-based
vector, which are the eigenvectors of the adjacency matrix U(m)

κ , to
obtain the transverse variational equations. For the global topol-
ogy discussed above, these eigenvalues λ(0)κ = −1 are the same for
κ = 2, . . . , N. In contrast, the nonlocal adjacency matrix has two dif-
ferent eigenvalues: λ(0)κ = 0 for κ = 2, . . . , N/2 + 1 and λ(0)κ = −2
for κ = N/2 + 2, . . . , N.61 This leads to two different variational

equations with the same method in Eqs. (C7) and (C8),

η̇(0)κ =
[

DF(s0)−
µ

N
Ã(n)

00 DH(0)+
µ

N
λ(0)κ DH(0)

−
ν

N

N
∑

m′=1

Ã(n)

0m′DH(sm′ − s0)

]

η(0)κ

=
[

−
µ

N
(N − 2)cosα +

µ

N
λ(0)κ cosα −

ν

N
Z
]

η(0)κ (C14)

for κ = 2, . . . , N. Therefore, Eq. (C14) yields two different groups of
degenerate Lyapunov exponents transverse to the sync-manifold

3
(0)
trans,κ = −

µ

N
(N − 2)cosα +

µ

N
λ(0)κ cosα −

ν

N
Z

=
{

− µ

N
(N − 2)cosα − ν

N
Z < 0, κ = 2, . . . , N/2 + 1,

−µcosα − ν

N
Z < 0, κ = N/2 + 2, . . . , N,

(C15)

provided that Z, defined in Eq. (9), is treated as an external forc-
ing field. Also, there is another LE of the synchronized popula-
tion, which arises from a perturbation along the sync-manifold.
Here, a small perturbation s0 → s0 + δs0 is imposed on Eq. (C12)
where |δs0| � 1. This perturbation gives3(0)

sync = − ν

N
Z < 0 strongly

depending on the motion of the incoherent oscillators.

2. Stuart–Landau planar oscillators

Let us consider the spectra corresponding to the amplitude
DOFs in more detail. Using the corresponding approach as above,
the evolution of the amplitude DOFs can be expressed as

dri(t)

dt
= F(amp)(ri(t))+

2N
∑

j=1

K
(amp)
ij B(c)ij H(amp)(rj(t)) (C16)

for i = 1, . . . , 2N, where F(amp)(r) = ε−1(1 − r2)r + µ

N
rcosα and

H(amp)(r) = r. Here, we regard the phase variables as external forc-
ing functions, which means that we define the coupling weight in

Eq. (C16) as K
(amp)
ij = µ

N
cos(φj − φi − α) if i, j belong to the same

population and K
(amp)
ij = ν

N
cos(φj − φi − α) if i, j belong to the dif-

ferent populations. This equation is a Pecora-type equation [cf.
Eq. (B1)], and the amplitude Lyapunov exponents can be approxi-
mated as follows.

According to the chimera CS pattern dynamics introduced
in Sec. C 1, we denote the amplitude degrees of freedom by ri(t)
= R0(t) = 1 for the synchronized population and ri+N(t) = Rm(t)
for the incoherent one and, correspondingly, the phase DOFs
by s0(t) = φi(t) (sync.) and sm(t) = φi+N(t) (incoh.) for i = m
= 1, . . . , N. Then, the quotient dynamics of the amplitude DOFs for
the synchronized population with the quotient adjacency matrix in
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Eq. (C3) is governed by

dR0

dt
= F(amp)(R0)+

µ

N
Ã00H

(amp)(R0)cosα

+
ν

N

N
∑

m′=1

Ã0m′H(amp)(Rm′)cos(sm′ − s0 − α)

=
(

ε−1(1 − R2
0)+

µ

N
cosα

)

R0 +
µ

N
(N − 1)R0cosα

+
ν

N

N
∑

m′=1

Rm′cos(sm′ − s0 − α). (C17)

Considering a small deviation around the CS dynamics, i.e., δri(t)
= ri(t)− Rm(t) for i ∈ Cm for m = 0, 1, . . . , N, we obtain the cou-
pled variational equations as

δṙi(t) = DF(amp)(R0)δri +
µ

N
C00

∑

k∈C0

B(c)ik DH(amp)(R0)δrk

+
ν

N

N
∑

m′=1

∑

k∈Cm′

B(c)ik DH(amp)(Rm′)Cm′0δrk

for each i ∈ C0 and Cm′m = cos(sm′ − sm − α) for m, m′ = 0, . . . , N.
Then, viewing these in the cluster-based coordinates with

ξ (0)κ (t) =
∑

i∈C0
u(0)κi δri(t) for κ = 2, . . . , N, the transversal varia-

tional equations in Eq. (B4) read

ξ̇ (0)κ =
∑

i∈C0

u(0)κi δṙi(t) = DF(amp)(R0)
∑

i∈C0

u(0)κi δri

+
µ

N
DH(amp)(R0)C00

∑

i∈C0

∑

k∈C0

u(0)κi B(c)ik δrk

+
ν

N

∑

i∈C0

N
∑

m′=1

∑

k∈Cm′

u(0)κi B(c)ik DH(amp)(Rm′)Cm′0δrk

= DF(amp)(R0)ξ
(0)
κ

+
µ

N
DH(amp)(R0)C00

∑

i∈C0

∑

k∈C0

|C0|
∑

κ ′=1

u(0)κi B(c)ik u(0)
κ ′kξ

(0)

κ ′

+
ν

N

N
∑

m′=1

∑

i∈C0

∑

k∈Cm′

|Cm′ |
∑

κ ′=1

u(0)κi B(c)ik u(m
′)

κ ′k ξ
(m′)
κ ′ Cm′0DH(amp)(Rm′),

where the last term is zero and since the adjacency matrix is block-

diagonalizd in the cluster-based coordinates
∑

i∈C0

∑

k∈C0
u(0)κi B(c)ik

u(0)
κ ′k = λ(0)κ δκκ ′ for κ = 2, . . . , N. Hence, the N − 1 variational equa-

tions transversal to the sync-manifold are given by

ξ̇ (0)κ =
[

DF(amp)(R0)+
µ

N
cosαλ(0)κ DH(amp)(R0)

]

ξ (0)κ

=
[

ε−1(1 − 3R2
0)+

µ

N
(1 + λ(0)κ )cosα

]

ξ (0)κ . (C18)

Here, λ(0)κ = −1 since they are the same as for the global intra-
population network [Eq. (C8)]. Thus, with Eq. (C18), we obtain

the approximate values of the (N − 1)-fold degenerate transverse

Lyapunov exponents in the amplitude DOFs as 3
(amp,0)
trans,κ ≈ ε−1

(1 − 3R2
0) < 0 in Eq. (23) for κ = 2, . . . , N.

Next, to estimate the Lyapunov exponent associated with
the perturbation along the sync-manifold in the amplitude DOFs,
we perform a small perturbation along the sync-manifold R0(t)
→ R0(t)+ δR0(t) with |δR0| � 1 in Eq. (C17) and obtain

δṘ0(t) = DF(amp)(R0)δR0 +
µ

N
cosαÃ00DH(amp)(R0)δR0

=
[

ε−1(1 − 3R2
0)+ µcosα

]

δR0(t). (C19)

Hence, it gives a slightly greater Lyapunov exponent than the trans-
verse ones

3
(amp,0)

perturb ≈ ε−1(1 − 3R2
0)+ µcosα < 0, (C20)

which shows that3
(amp,0)
trans . 3

(amp,0)

perturb .

As for the other negative exponents, we guess that the other
stable Lyapunov exponents of the amplitude DOFs are linked to
the incoherent oscillators governed by the quotient dynamics in
Eq. (B2),

dRm

dt
= ε−1(1 − R2

m)Rm +
ν

N
Ãm0cos(s0 − sm − α)R0

+
µ

N

N
∑

m′=1

Ãmm′Rm′cos(sm′ − sm − α) (C21)

for m = 1, . . . , N.
Next, we deal with the phase degrees of freedom of the Stu-

art–Landau oscillator ensemble. Here, we also exploit the network
structure with appropriately defined coupling weights. With this
approach, the governing equations for the phase DOFs read

dφi(t)

dt
= F(ph)(φi(t))+

2N
∑

j=1

K
(ph)
ij B(c)ij H(φj(t)− φi(t)) (C22)

for i = 1, . . . , 2N, where the uncoupled dynamics is governed by
F(ph)(φi) = −σ r2

i − µ

N
sinα and the coupling function is defined as

H(x) = sin(x − α). The coupling weights are defined by K
(ph)
ij = µ

N

rj

ri

if i, j belong to the same population and K
(ph)
ij = ν

N

rj

ri
otherwise,

provided that the amplitude variables are treated as external forc-
ing functions. Thus, the resulting equation is the Kuramoto-type
equation of Eq. (B2). From the quotient adjacency matrix defined in
Eq. (C3), the quotient dynamics of the synchronized and incoherent
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populations in phase DOFs are obtained as

ds0

dt
= −σR2

0 −
µ

N
sinα

−
µ

N
Ã00sinα +

ν

N

N
∑

m′=1

Rm′

R0

Ã0m′sin(sm′ − s0 − α),

(C23)

dsm

dt
= −σR2

m −
µ

N
sinα +

ν

N
Ãm0

R0

Rm

sin(s0 − sm − α)

+
µ

N

N
∑

m′=1

Rm′

Rm

Ãmm′ sin(sm′ − sm − α)

= �̃m(t)+ ν
R0

Rm

sin(s0 − sm − α)

+
µ

N

N
∑

m′=1

sin(sm′ − sm − α),

where �̃m(t) = −σR2
m(t) for m = 1, . . . , N. The quotient dynamics

reveal that the phase DOFs of the SL oscillator ensemble in the syn-
chronized population also have (N − 1)-fold degenerate transverse
Lyapunov exponents with

3
(0)
trans,κ = −µcosα −

ν

N

N
∑

m′=1

Rm′

R0

cos(sm′ − s0 − α)

= −µcosα −
ν

N
Z̃ < 0 (C24)

for κ = 2, . . . , N, where Z̃ =
∑N

m′=1

Rm′
R0

cos(sm′ − s0 − α) should

be considered an external forcing field, which follows from the
transversal variational equations [Eq. (B4)],

η̇(0)κ =
[

−
µ

N
(N − 1)cosα −

ν

N
Z̃ +

µ

N
λ(0)κ cosα

]

η(0)κ . (C25)

Here, η(0)κ (t) =
∑

i∈C0
u(0)κi δφi(t) for κ = 2, . . . , N; the deviation

along the CS dynamics is δφi(t) = φi(t)− s0(t) for i ∈ C0 and the
eigenvalues λ(0)κ = −1 for all κ . In addition, the LE in the sync-
population coming from a perturbation along the sync-manifold has

the value of 3(0)
perturb = − ν

N
Z̃ < 0 and is expected to be found in the

synchronized phase DOFs.
Furthermore, we can also rationalize the eigenvalue branches

of the synchronized oscillators that were already discussed in the
continuum limit in Ref. 26 as follows. We again consider the real-
valued coordinate of the SL variables in the vector form as xk(t)
= (ak(t), bk(t))

> ∈ R
2 where ak and bk are defined in Eq. (22). Then,

the SL oscillators evolve according to

d

dt
xi(t) = F(xi(t))+

2N
∑

j=1

B(c)ij KijH(xj(t)) (C26)

for i = 1, . . . , 2N, where B(c)ij and Kij are defined in Eq. (C2), and the
uncoupled dynamics is governed by

F(xi(t)) =
[(

ε−1 −ω
ω ε−1

)

+
µ

N

(

cosα sinα
−sinα cosα

)]

xi(t)

−
ε−1

2

(

1 −εσ
εσ 1

)

|xi(t)|2xi(t), (C27)

and the coupling function is written as

H(xi(t)) =
(

cosα sinα
−sinα cosα

)

xi(t) (C28)

for i = 1, . . . , 2N. If we also regard the chimera state as a CS pat-
tern dynamics, xi(t) = s0 (sync.) and xi+N(t) = sm(t) (incoh.) for
i = m = 1, . . . , N, then the variational equations transversal to the
synchronized cluster C0 in the cluster-based coordinates are given by

η̇(0)κ =
[

DF(s0)+
µ

N
λ(0)κ DH(s0)

]

η(0)κ (C29)

for κ = 2, . . . , N where the Jacobians of the dynamical functions in
Eqs. (C27) and (C28) read

DF(s0) =
(

ε−1 −ω
ω ε−1

)

+
µ

N

(

cosα sinα
−sinα cosα

)

−
ε−1

2

(

1 −εσ
εσ 1

)(

3s2
01

+ s2
02

2s01 s02

2s01 s02 3s2
02

+ s2
01

)

(C30)

and

DH(s0) =
(

cosα sinα
−sinα cosα

)

. (C31)

Since for the synchronized SL oscillators we have rke
iφk = eiφ0

= 1√
2
(a0 + ib0) for k = 1, . . . , N, we can rewrite the transversal

variational equations in the following form:

η̇(0)κ =
[(

ε−1 −ω
ω ε−1

)

+
µ

N
(1 + λ(0)κ )

(

cosα sinα
−sinα cosα

)

−
ε−1

2

(

1 −εσ
εσ 1

)(

2 + 4cos2φ0 4cosφ0sinφ0

4cosφ0sinφ0 2 + 4sin2φ0

)]

η(0)κ

= J
(0)
transη

(0)
κ (C32)

for all the directions transverse to the sync-manifold. Notice that
the eigenvalues of the adjacency matrix λ(0)κ = −1 for all κ . If we
consider φ0 as an external forcing function, then the eigenvalues of

the matrix J
(0)
trans are

31 = −
1 +

√
1 − ε2(3σ 2 − 4σω + ω2)

ε
,

32 =
−1 +

√
1 − ε2(3σ 2 − 4σω + ω2)

ε
,

(C33)

which gives 31 ∼ −2ε−1 corresponding to the amplitude DOF
branch and 32 . 0 corresponding to the phase DOF branch for
the synchronized oscillators. This result and our previous analysis
strongly suggest that the negative branch indeed arises from the
amplitude DOFs and the near-zero branch comes from the phase
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DOFs including slow and stable Lyapunov exponents, and both
render the Poisson chimeras attracting.

APPENDIX D: CONCURRENT DYNAMICAL AND

TOPOLOGICAL VARIATIONS: STUART–LANDAU

OSCILLATORS ON NONLOCAL INTRA-POPULATION

TOPOLOGY

Here, both the topological (see Sec. III A and Fig. 1) and
dynamical (see Sec. III C) variations are introduced simultaneously.
Thus, we consider Stuart–Landau amplitude oscillators in the non-
local intra-population network topology and focus on weak coupling
with (ε = 0.01). Starting from PIC, we observe chimera states that
are similar to those in Sec. III A. Hence, the Poisson chimeras with
the parameters A = 0.2 and A = 0.35 follow the similar incoherent
dynamics as in Fig. 7.

The Lyapunov analysis for the nonlocal Stuart–Landau oscilla-
tors obviously results in the properties dictated by the given non-
local topology of the network. From the same method discussed in
Appendixes. A–C, we obtain the two different values of the degen-
erate transverse Lyapunov exponents in the synchronized group of
phase DOFs,

3
(0)
trans,κ = −

µ

N
(N − 2)cosα +

µ

N
λ(0)κ cosα −

ν

N
Z̃

=
{

− µ

N
(N − 2)cosα − ν

N
Z̃, κ = 2, . . . , N/2 + 1,

−µcosα − ν

N
Z̃, κ = N/2 + 2, . . . , N,

where λ(0)κ = 0 for κ = 2, . . . , N/2 + 1 and λ(0)κ = −2 for κ = N/
2 + 2, . . . , N. Also, the negative LE corresponding to the sync-

manifold perturbation is given as 3(0)
perturb = − ν

N
Z̃ < 0, strongly

depending on the collective behavior of the incoherent oscillators.
Finally, in the incoherent population, we obtain the same N/2 pairs
of the two nearly-degenerate exponents that result from the discrete
symmetries of the phase governing equations of the Stuart–Landau
oscillators. Therefore, the Poisson chimera trajectories of this system
are also attracting more strongly than other cases.

Regarding the amplitude DOFs, the N − 1 transverse Lyapunov
exponents also show the two different values of the degenerate
exponents approximated as

3
(amp,0)
trans,κ = ε−1(1 − 3R2

0)+
µ

N
(1 + λ(0)κ )cosα

=
{

ε−1(1 − 3R2
0)+ µ

N
cosα, κ = 2, . . . , N/2 + 1,

ε−1(1 − 3R2
0)− µ

N
cosα, κ = N/2 + 2, . . . , N

(D1)

since for the nonlocal network λ(0)κ = 0 for κ = 2, . . . , N/2 + 1 and
λ(0)κ = −2 for κ = N/2 + 2, . . . , N [distinguished by the gray dashed
line in Figs. 12(b) and 12(d)]. Then, we expect to find the sync-

manifold perturbation exponent of the amplitude DOFs, 3
(amp,0)

perturb

≈ ε−1(1 − 3R2
0)+ µ

N
(N − 1)cosα, which is slightly greater than the

transverse exponents. As for the other exponents, we only know that
they arise from the incoherent governing equations.

Judging from the above observation, we conclude that the Pois-
son chimera states are definitely attracting. A comparison with the
systems that have only one “perturbation” compared to the globally

FIG. 12. Full Lyapunov spectra of the Stuart–Landau oscillators with nonlocal
intra-population topology for (a) the phase degrees of freedom and (b) the ampli-
tude degrees of freedom. The parameter set used here is N = 6, A = 0.2, and
ε = 0.01. (c) and (d) The breathing chimera states with A = 0.35. Note that the
Lyapunov exponents in (a) follow the same behavior as the stationary chimera
state of the phase-only system (compare Fig. 8).

coupled phase oscillators, i.e., either the non-local coupling topology
or the amplitude DOF, suggests that the attraction rate of the phase
DOF is mainly determined by the non-local network topology.
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