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Abstract

In recent times, Graph deep learning has emerged as a powerful machine learning technique
that provides a generalized application of deep neural architectures to non-Euclidean struc-
tured data successfully. Graph-based learning models have found numerous applications in
social sciences, computer vision and graphics, basic sciences and biological sciences. This
thesis focuses on successfully integrating graph deep learning with medical applications such
as disease prediction for Alzheimer’s, Autism, Parkinson’s and Brain imaging. The key objective
is not only to solve clinical problems but also to address a wide variety of technical challenges
still open in the field.

Graph Convolutional Networks (GCNs) can be used in a medical applications by setting the
patients in relation to each other with a neighborhood graph, often by associating them
semantically through non-imaging medical data. On this graph, patients are considered as
nodes, patient similarities are represented as edge weights, and features from e.g., imaging
modalities are incorporated through graph signal processing. GCNs then provide a principled
manner for learning optimal graph parameters that minimize an objective, for example,
disease prediction.

During the whole journey of the thesis, we pose several technical and clinical challenges and
solve them with graph deep learning. This thesis starts by investigating the clinical relevance
in having GCNs for medical applications such as disease prediction and brain imaging. It
is divided into four main chapters dealing with technical challenges such as multiple graph
scenario, graph heterogeneity, graph attention for personalized treatment and graph learning.
Along with the four primary problems mentioned above, certain secondary problems in the
field, such as out of sample extension and dealing with multi-modal datasets are also solved.
Medical applications such as disease prediction, brain imaging, finding the relevance of
meta factors are shown, and non-medical applications such as point cloud segmentation and
zero-shot learning on ImageNet dataset are also considered.

Towards the end, important open questions such as interpretability and robustness of GCNs
are discussed as future directions. This thesis is one of the pioneer works in introducing
graph deep learning to the medical field and demonstrates that GDL has a great potential in
the medical applications due to its high capability to integrate multi-modal complementary
data. In the future, further research areas such as mesh analysis, brain graphs connectomes,
drug-to-drug interaction etc. could be explored.
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Zusammenfassung

In jliingster Zeit hat sich Graph Deep Learning als leistungsstarke maschinelle Lerntechnik
herausgestellt, die eine Verallgemeinerung erfolgreicher tiefer neuronaler Architekturen auf
nichteuklidische strukturierte Daten ermdéglicht. Graphbasierte Lernmodelle haben Anwen-
dung in den Sozialwissenschaften, Computer Vision und Grafik, Grundlagenwissenschaften
und Biowissenschaften gezeigt.

Diese Arbeit konzentriert sich auf die Integration von Graph Deep Learning in medizinischer
Anwendung wie der Vorhersage von Krankheiten bei Alzheimer, Autismus und Parkinson sowie
dem Neuro-Imaging. Ziel ist es nicht nur, klinische Probleme zu 16sen, sondern eine Vielzahl
von technischen Herausforderungen zu bewaltigen, die auf diesem Gebiet ausstehen.

Graph Convolutional Networks (GCNs) konnen in einfachen Worten in einer medizinischen
Anwendung verwendet werden, indem die Patienten mit einem Nachbarschaftsgraphen in
Beziehung zueinander gesetzt werden, hiufig indem sie semantisch durch nicht bildgebende
medizinische Daten verkniipft werden. In diesem Diagramm koénnen Patienten als Knoten be-
trachtet werden, Patientendhnlichkeiten werden als Kantengewichte dargestellt und Merkmale
von z. B. Bildgebungsmodalitdten werden durch Diagrammsignalverarbeitung einbezogen.
GCNs bieten dann eine prinzipielle Methode zum Lernen optimaler Diagrammparameter, die
ein Ziel, beispielsweise die Vorhersage von Krankheiten, minimieren.

Waihrend des gesamten Prozesses der Dissertation stellen wir uns verschiedenen technischen
und klinischen Herausforderungen und 16sen sie mit graphentiefem Lernen. Beginnend mit
der Untersuchung der klinischen Relevanz von GCNs fiir medizinische Anwendungen wie
Krankheitsvorhersage und dem Neuro-Imaging ist die Arbeit in vier Hauptkapitel unterteilt,
die sich mit technischen Herausforderungen wie dem Szenario mit mehreren Graphen, der Het-
erogenitét der Graphen, der Aufmerksamkeit der Graphen fiir die personalisierte Behandlung
und dem Lernen der Graphen befassen.

Zusammen mit den oben genannten vier Hauptproblemen zeigen wir Losungen fiir einige
Nebenprobleme auf dem Gebiet. Zum Beispiel werden medizinische Anwendungsgebiete wie
Krankheitsvorhersage, Neuro-Imaging und die Ermittlung der Relevanz von Metafaktoren
gezeigt und nichtmedizinische Anwendungen wie Punktwolkensegmentierung und Zero-Shot-
Lernen im ImageNet-Datensatz beriicksichtigt.

Gegen Ende werden offene Fragen wie Interpretierbarkeit und Robustheit fiir GCNs als
zukiinftige Forschungsrichtungen diskutiert. Diese Dissertation ist eine Pionierarbeit fiir
die Einfiihrung von Graph Deep Learning im medizinischen Bereich und zeigt, dass GDL
ein grofdes Potenzial in medizinischen Anwendungen hat, da es einen besseren Weg zur



Integration multimodaler komplementéarer Daten aufweist. In Zukunft kénnten Netzanalysen,
Gehirngraphen-Konnektome und Wechselwirkungen zwischen Medikamenten untersucht
werden.
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Introduction

Art is nothing without knowledge.

— Jean Mignot

1.1 Overview

Multi-modal data in health care generally comprises of imaging (Magnetic Resonance Imaging
(MRI), function-MRI, Positron Emission Tomography (PET),X-ray etc.) and non-imaging
(clinical test, demographics, reports, baseline first visit report etc.) information. Such data
is collected together and used by the clinical experts for disease diagnosis and treatment
planning. This diverse nature of the data provides complementary information about the
patient’s condition to make an informed decision.

One brilliant way to incorporate the complementary data into a single pipeline for better
clinical outcome, is by using Graph Convolutional network (GCN). An important component
in GCN models is to build a population graph, where the graph represents pairwise patient
similarities. Very conveniently, either of the complementary data can be used to generate the
graph. Such graph will incorporate the hidden relationships between the patients following the
complementary angles from different data elements. In recent times, GCNs are employed as a
powerful machine learning tool for Computer Aided Diagnosis(CADx) and disease prediction.
This setting was first introduced in [Par+17] for a healthcare application in order to address
the binary disease classification task. There are other methods in the literature that are used
to combine the multi-modal data. Few described in this thesis are early, late and intermediate
fusion. These methods use either conventional machine learning techniques or deep learning
models for training.

In all the methods mentioned above, the features are not considered at an individual level.
For example, in the case of Alzheimer’s disease prediction, the age of the patient plays a
more important role compared to gender. The method that uses GCNs [Par+17] for disease
prediction proposes to combine graphs generated from each non-imaging data elements to
generate one graph. During the analysis of GCNs, it was found that GCNs are sensitive towards
the input graph structure. Furthermore, in the clinical sense, a graph coming from different
features will inherit distinct structure. Eventually, each graph may have a different clinical
relevance towards the task.

Therefore, a technique capable of exploiting the individual characteristics of each multi-modal
data element is required for better disease prediction. We propose a GC based deep model that
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considers the distinctiveness of each element of the multi-modal data. Further, we propose a
novel self-attention layer that weights each element of the non-imaging data by exploring its
semantic relation to the underlying disease. The proposed method is superior in comparison to
other state-of-the-art methods, in terms of computational speed and performance. The weights
learned by the self-attention layer show a clinical co-relation with the disease considered. Do
the population level weights for each element hold good at patient level? Clinical experts
inherently include and infer from the complementarity nature of multi-modal data during
diagnosis and treatment planning. They often consider a varied order of importance for this
heterogeneous data for patient level personalized decisions.

Current learning-based methods, including the method mentioned in the previous paragraph,
have achieved better a performance by paying equal attention to all of the individual infor-
mation. Only a few methods have focused on patient-specific attention learning schemes for
each modality. Towards this, we extend our multi-graph model which focuses on learning
patient-specific order of importance for the multi-modal data elements. In this technique, an
LSTM-based attention mechanism is incorporated with graph convolutions to learn patient
level attention. This method has two advantages, 1) GC learns the class specific representation
for the nodes and 2) LSTM based attention mechanism optimally weights each non-imaging
elements at patient level. This combination provides better patient level disease prediction as
output.

While exploring the multiple graph scenario and analysing the impact of graph structure,
it is interesting to notice that graphs are not necessarily uniform in terms of edge weights,
degree of nodes etc. In other words, graphs are super heterogeneous structures. In this thesis,
such non-uniformity is termed as ’intra-graph heterogeneity’. In the medical domain, GCNs
provide a principled and a versatile technique to integrate multi-modal data. For the scenario
mentioned above, a graph based deep learning method for disease prediction is introduced.
In order to handle both inter and intra-graph structural heterogeneity during training, new

Chapter 1 Introduction



spectral domain based geometric ’inception modules’ are defined. The architecture developed
this way is named ’InceptionGCN’. In these modules, filters with different kernel sizes are
designed. Further, analyses on the behaviour of conventional GCNs and InceptionGCN is
provided for varying input scenarios on simulated data.

Although some key challenges in employing Graph Deep Learning in healthcare applications
are solved by using the methods mentioned above, there still remain a few open questions
associated with their technical aspects. Some of these open questions are:

* Scalability: What if the number of graphs in a multiple-graph scenario increases to a
computationally untrackable number?

* Inductive setting: All the methods above use transductive setting which means includ-
ing training and testing samples during model training. How to handle out of sample
extension?

* All the methods above, use predefined graphs, which are computed during the pre-
processing of the data. However, such graphs might not be optimal, especially in the
medical domain as there is no gold standard procedure to construct a graph. Can the
model learn the latent graph relevant to the task at hand?

The comprehensive solution to the open questions mentioned above is provided in the final
model. A vital aspect of this model is to learn a latent graph for a given population, where
this graph represents the pair-wise similarities among patients. As mentioned in the earlier
section, the graphs have been defined manually based on non-imaging features. Such way of
graph construction lacks a clear definition and requires careful tuning. In the final work, a
novel way to learn a semantic and a clinically relevant graph is detailed. The output graph is
proven to be optimal for a primary task such as disease prediction. The proposed model trains
in an end-to-end fashion along with learning the latent graph dynamically.

In contrast to commonly employed GCN techniques, the proposed method uses a spatial
approach and is also capable of incorporating inductive setting. Furthermore, this method is
generic and scalable. Significant improvements over conventional models are demonstrated
using this approach, thus emphasizing the importance of graph learning for more precise and
robust inferences in medical applications using GCNs.

1.2 Motivation

Deep Learning (DL) is a sub-type of machine learning that leverages a layered algorithmic
architecture to analyze data. Data is filtered or passed through a cascade of multiple layers,
with each subsequent layer using the output obtained from the previous layer for generating
its output. DL models can consequently get more precise as the data grows, progressively
learning from previous outputs to improve their ability to make connections and correlations.
A simple example of a deep learning architecture is shown in the Fig. 1.2. Deep learning is
loosely based on how biological neurons communicate with each other in the brains of animals
to process information. In basic deep learning models, each layer may be assigned a specific

1.2 Motivation
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portion of a transformation task and data might traverse the layers multiple times to refine and
optimize the final output. These “hidden” layers serve to perform the mathematical translation
tasks that turn raw input into meaningful output. In recent literature, deep learning has
achieved enormous success in a large variety of applications. This emerging area of machine
learning has been quickly developing and has been introduced to most conventional fields
of application, as well as to several new fields with more possibilities. The state-of-the
art performance is achieved by using deep learning when compared to traditional machine
learning approaches in the fields of image processing, computer vision, speech recognition,
machine translation, art, medical imaging, medical information processing, robotics and
control, bioinformatics, natural language processing, cyber security, and many others.
Machine Learning (ML) is a subset of Al that has revolutionized several fields over the last
few decades. In recent times, Neural Networks (NN), which is a sub-field of ML has found the
presence of Deep Learning (DL) ubiquitous. DL has been exhibiting remarkable performance
in almost every area of application. Learning is a process consisting of estimating parameters
of the model such that a given task can be performed by the trained model (algorithm). For
example, in Artificial Neural Networks (ANN), the parameters are the weight matrices. DL, on
the other hand, consists of several layers in between the input and the output layers. This
allows for multiple stages of non-linear information processing units to extract representations
for feature learning and pattern classification.

Input Hidden layers Output

A simple neural network that shows the message passing technique used in deep learning models. The
information is transformed and passed forward at each hidden layer (shown in gray).
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1.2.1 Impact of Al on research today

Al can be vaguely defined as computational capability of machines to perform intellectual
processes, typical of human cognitive functions such as learning, reasoning and problem
solving. Since the advent of Al, its application has vastly impacted almost all areas of medicine
and healthcare and is bound to continue in the coming years as well. It has also resulted in
significantly transforming the manner in which medicine is practiced in this day and age of
technology; revolutionizing conventional methods for diagnostic , therapeutic decision-making
and treatment-response evaluation. It will progressively play a key role in preventive medicine
by providing more precise and effective clinical decisions due to which it will become an
integral component of healthcare systems worldwide. Perhaps the most promising role for Al
would be to augment the role of human experts and to contribute towards enhanced efforts
for precision medicine. [He+19].

In medicine and healthcare, Al is poised to play an increasingly influential role. This is due
to advancements in computing resources, learning algorithms, and the availability of huge
datasets from wearable health devices and medical records. Al’s healthcare industry is rising
at a rate of 40% and is projected to hit $6.6 billion by 2021 [SM20]. As learning algorithms
interact with training data, they are getting more reliable and precise, allowing newer
insights into diagnostics, care choices, and patient outcomes.[Est+19]. Deep learning models
are achieving expert-level accuracy at a broad variety of medical tasks such as identifying
moles from melanomas [Est+17; Hae+ 18], diabetic retinopathy, cardiovascular risk, and
referrals from fundus [Gul+16; Pop+18; De +18]. Furthermore, they are also being used
for abnormality detection in Optical Coherence Tomography (OCT) eye images ??, lesion
detection in mammograms [Koo+17], and spinal analysis with Magnetic Resonance Imaging
(MRI) [JKZ16]. It has also been demonstrated that a single deep-learning model is effective in
diagnoses across multiple medical modalities [JKZ16; Ker+18].

Natural Language Processing (NLP) is another sub-branch of DL that focuses on analyzing
and inferring information from text and speech. Recurrent Neural Networks (RNN) based
algorithms play an important role for NLP based applications[SVL.14]. NLP based methods
have been widely applied in healthcare for processing the text such as surgical reports
[Sto+14], [Raj+12] , radiology reports [Men+05], narrative reports [Hri+03], [RGHO8],
[RGHO8], [Byr+14]. [FJD13] clinical reports of severe conditions, [And+15] progress notes
and [Haz+05] patient questionnaire [Wag+12]. Some of the works also use laboratory
reports [FMO08], chest X-ray reports[Wag+ 12], baseline first visit reports [Fis+00]. Treatment
plans and patient summaries are used in [JJB12], short free text [Hun+08]; pathology reports
[Iml+13] and electronic health records are used in [Wat+11] and [Por+09].

1.2.2 Importance of multi-modal data in healthcare

A key limitation of the methods mentioned above is that, they use single modality of data
such as either images or text. However, their algorithmic performance is compared to that
of human experts. This often could be considered as a shortcoming for Computer Aided
Diagnosis(CADx) systems for the diagnostic tasks as the human expert in the real-world
clinical settings has access to both the medical imagery and supplemental data, including the

1.2 Motivation
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patient history, health record, additional tests, patient testimony, etc [esteva2019guid]. Such
data is called multi-modal data. A lot of research has been done [Cai+ 19] towards such multi-
modal data. In order to learn more desirable feature representations for each patient, it is
essential to analyse multi-modal data. Many DL based algorithms have been been successfully
applied to multi-modal data for a wide variety of tasks such as disease diagnosis [Ma+18a],
clinical prediction [Xu+18b], treatment and planning [Rie+08]. Recurrent Attentive and
Intensive Model (RAIM) [Xu+18b] analyzed both continuous monitoring data and discrete
clinical events to predict physiological decomposition and length of stay in the hospital. In
order to investigate the complex correlations between the features and labels of Alzheimer’s
disease diagnosis, ML-MVC [Qia+19] proposed to model multi-view inputs and generate a
latent representation. [Qia+19]. Furthermore, some of the other conventional ways to fuse
multi-modal data are described below.

Early fusion or data-level fusion: Data-level fusion is a common method of combining
multiple modalities of data before conducting the analysis. This method is known as early
fusion or data-level fusion. Two possible approaches of early fusion technique are proposed
in [Kha+13]. The first approach is combining the data by removing the correlation between
two sensors. The second approach is to fuse data at its lower dimensional common space.
There are several mathematical solutions including Principal Component Analysis (PCA),
Canonical Correlation Analysis (CCA) and Independent Component Analysis (ICA) that can
be used to achieve either or both approaches. Early fusion techniques are more applicable
to data obtained from sensors. Poria et al [PCG15] implemented early stage data fusion by
concatenating the features in multi-modal data. A vital drawback of early stage data fusion is
that a significant amount of data could get deducted from the modalities when projecting the
data to a lower dimensional embedding.

Late fusion or decision level fusion: In this technique, each modality is independently
processed and then fused at the decision-making stage. Late data fusion is inspired by
ensemble classifiers [Kun14]. This technique is much simpler than the early fusion method,
particularly when the data sources are significantly diverse from each other in terms of the
units of measurement. Late fusion often performs better compared to early fusion because the
errors of each modality are handled independently.

Intermediate fusion: Among the fusion methods, this method is the most flexible as it
allows the data fusion at various stages of the model training. In intermediate fusion, the
input data is changed into a higher level representation (feature) through multiple layers.
Although it is possible to fuse several modalities at different stages, the training may lead
to model over-fitting. Unlike early level fusion and late fusion, intermediate fusion offers
flexibility to fuse features at different depths. Other fusion techniques: [Kar+14] provides a
“slow-fusion” network. In this technique, the video features are slowly fused across multiple
fusion layers during training. This approach shows a better performance in large-scale
video stream classification problem. Along the same line, other research [Nev+15] shows a
gradual fusion method which involves fusing highly correlated input modalities initially and
then less correlated ones progressively. This work showed a state-of-the-art performance in
communicative gesture recognition.

Chapter 1 Introduction



Further, with the richness of imaging and non-imaging data, it is essential to have models that
are capable of representing a potentially large population and exploiting the heterogeneous
information associated with it, along with the correlation that may exist between patients
and the heterogeneous data. A novel way has been recently introduced which is based on
graphs representing the population. Graphs provide a natural way of representing populations
and their similarities. In such a graph setting, the information of each patient (features from
imaging and non-imaging modalities) is represented by a node. Pairwise similarities between
the patient’s information is represented as edges between these nodes. Such graph based
models provide a powerful and a clinically semantic setup for population-level analysis of
multi-modal data. Unlike linear classifier which relies solely on imaging feature vectors, Graph
Convolutional Networks (GCNs) model the interaction and similarities between the patients
through a graph that encodes these pairwise similarities.

The primary objective of this thesis is to facilitate handling of multi-modal data using GCNs.
Apart from showing how GCNs can be leveraged for the multi-modal data analysis, multiple
technical challenges from the field of Graph Deep Learning (GDL) - a super set of GCNs, are
also solved. [Par+17; DBV16] describes how GCN can be used for population level analysis
using a graph consisting of each patient as a node. First question that is answered in this thesis
is 'What if we have possibility of multiple graphs?’ Answering this question and analysing the
solution is crucial, because having more than one graph for the same set of population helps
gather information under a different light of each graph. This problem is solved in chapter 3.
The thorough analysis for the need of multiple graph is demonstrated, followed by the model
which intelligently merges the multiple graphs together for personalized disease prediction is
demonstrated in chapter 4. The chapter that follows this deals with intra-graph heterogeneity.
The main question is ’Given a graph, do the conventional GCN based methods undertake the
heterogeneity with a graph?’ Here, heterogeneity means the density of edges between the
nodes. The efforts in this chapter are primarily invested on building a model that focuses
on the structure of the graph. In all the chapters, multiple technical and clinical problem
with GCNs are solved. All the methods presented here work on predefined graphs. The core
challenge that the last chapter addresses is specific to graph learning. The detailed outline of
the thesis is given the section below.

1.3 Thesis outline

For the next chapters, we provide an overview and the related literature survey associated
to them. Most of the methods and analysis of this thesis are published or are under review
for major conferences or journal of the suitable field. A complete list of papers is listed in
Appendix A.

Chapter 2. We build the required mathematical foundation inspired from graph signal
processing. This is required to understand basic working of graph convolutional networks. We
detail the spatial and spectral approach followed by the relevant literature survey.

Chapter 3. Based on [Par+17], this chapter discusses 1) influence of graph structure on
training of GCN and its output and 2) a novel model that handles multiple Graph Scenarios for
disease prediction. An attention mechanism that learns the relevance of each graph towards
the task is also explained. The related works are:

1.3 Thesis outline
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e Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Moreno, R.G., Glocker, B. and Rueckert,
D., 2017, September. Spectral graph convolutions for population-based disease predic-
tion. In International conference on medical image computing and computer-assisted
intervention (pp. 177-185). Springer, Cham.

* Kazi, A., Shekarforoush, S., Kortuem, K., Albarqouni, S. and Navab, N., 2019, April.
Self-attention equipped graph convolutions for disease prediction. In 2019 IEEE 16th
International Symposium on Biomedical Imaging (ISBI 2019) (pp. 1896-1899). IEEE.

Chapter 4. Although multi-GCN is capable of employing the distinctiveness of each features
and learning the semantic and hierarchical weighting of each graph, the patient level relevance
of each feature might be different. In this chapter we introduce an RNN based attention
mechanism that evaluate the non-imaging features at patient level. This method is applied to
personalised disease prediction task. The related works are:

e Kazi, A., Shekarforoush, S., Krishna, S.A., Burwinkel, H., Vivar, G., Wiestler, B., Kort{im,
K., Ahmadi, S.A., Albarqouni, S. and Navab, N., 2019, October. Graph convolution based
attention model for personalized disease prediction. In International Conference on
Medical Image Computing and Computer-Assisted Intervention (pp. 122-130). Springer,
Cham.

Chapter 5. Another interesting aspect regarding the heterogeneous structure within the
graph and its influence towards the performance of GCNs is explored in this chapter. We
provide a robust solution for learning better node level representations which boost the model
performance. The related works are:

* Kazi, A., Shekarforoush, S., Krishna, S.A., Burwinkel, H., Vivar, G., Kortiim, K., Ahmadi,
S.A., Albargouni, S. and Navab, N., 2019, June. InceptionGCN: receptive field aware
graph convolutional network for disease prediction. In International Conference on
Information Processing in Medical Imaging (pp. 73-85). Springer, Cham.

Chapter 6. All the methods above still face some common limitations such as 1) scalability:
the models may computationally explode if the number of nodes and number of graphs
exceed certain limit, 2) out of sample extension: all the methods work in transductive setting,
making it difficult to apply the model to a previously unknown node. 3) compulsion on having
pretrained graph: the methods so far have a constraint of having the graph(s) defined during
the preprocessing. In this work, we propose a model that accomodates all the three limitations
in one model and shows superior performance. The related works are:

e Cosmo, L., Kazi, A., Ahmadi, S.A., Navab, N. and Bronstein, M., 2020, October. Latent-
Graph Learning for Disease Prediction. In International Conference on Medical Image
Computing and Computer-Assisted Intervention (pp. 643-653). Springer, Cham. Kazi,
A., Cosmo, L., Navab, N. and Bronstein, M., 2020. Differentiable Graph Module (DGM)
Graph Convolutional Networks. arXiv preprint arXiv:2002.04999.

Chapted 7. Finally we discussion some open questions in the field and conclude the thesis
with future directions.
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Background and Challenges

If we knew what it was we were doing, it would not be
called research, would it?

— Albert Einstein

2.1 Background

The tremendous success of deep learning has boosted research on pattern recognition and
data mining. Deep learning aims at learning complicated semantic concepts by fetching
them from simpler ones in a hierarchical or a multi-layer manner. Different deep learning
paradigms cover a broad range of applications such as object detection [Zha+19; Hu+18],
Segmentation [LXL19; Yao+19], speech recognition [EKK11] etc. and have revolutionized
the approach that was used earlier, wherein several handcrafted features were used to extract
semantic concepts [Wu+20]. As shown in Fig. 2.3 (a) a regular CNN takes an image as
input, applies a filter on it and produces an activation/ feature map as output. A peculiar
quality of all the three components mentioned above are 1) Images are represented as regular
grid in Euclidean space where each pixel to be processed by the filter has a fixed number of
equidistant neighbors 2) Filters are represented in the form of grid and are shared over the
input dataset. Filters run over the image in a zigzag manner depending upon the different
strides. Output of such a convolution is also a grid. Such a setup is shown in Fig. 2.1. Deep
learning models have been objectively successful particularly for speech, image, and video
signals where data lies on a regular grid. More recent efforts are focused on trying to apply
learning on non-Euclidean geometric data. Many applications require such data for example,
applications to point clouds [Wan+19b], [LS18] and [Te+18], human action recognition
[Jai+16], [YXL18], text classification [KW16a], [HYL17a], [Vel+17] etc.

Non-euclidean based data appears in numerous applications. For example, in social networks
each user can be considered as a node on a population based social graph. In genetics, gene
expression data are modeled as signals defined on the regulatory network. In neuroscience,
anatomical and functional structures of the brain can be represented as a graph for connectome
analysis. In computer graphics and vision, three-dimensional (3-D) objects are modeled as
Riemannian manifolds. [Bro+17]

In the following section, the significance of a graph neural networks is illustrated. The
conventional artificial neural networks like CNNs are incapable of handling the graph input
because CNNs need specific ordering of nodes (pixels) which is absent in graph inputs. As
graphs do not have specific ordering, all possible orders have to be considered for obtaining
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Fig. 2.1.

Fig. 2.2.
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Image Filter Output

In this figure a conventional way of convolution on an image is shown. Image (input), filer and the
output all regular grids.

the optimal results, which could either be redundant or computationally expensive. GNNs
solve this problem by propagating on each node respectively, ignoring the input order of
nodes. Therefore, the output of GNNs does not depend on the node order on the input.
Additionally, an edge in a graph represents a certain relationship between two nodes which
could either be prior knowledge or which could be discovered. In the CNNs, this relationship
is just the euclidean distance based pixel neighborhood. Furthermore, incorporating cognitive
like intelligence to artificial neural networks is a very important research topic for future Al.
The reasoning process that occurs in a human brain is almost based on the relationship based
graph which could be mapped by the diverse relations of knowledge and experiences a human
brain has accumulated. Conventional neural networks such as generative models have shown
the ability to generate synthetic data such as images and documents. This is achieved by
learning the distribution of the data. However, these networks still cannot learn the reasoning
graph from large experimental data. GNN on the other hand explores to generate the graph
from unstructured data like scene images or the demographic in a social network which could
be a potential possibility for future high-level Al. Recently, it has been proven that an untrained
GNN with a simple architecture also performs well [Zho+18].

-
Task: Given multi modal
features per patient . @ .
) \ e Graph
X, X'] e » | ®g—>| Convolutional |[—» P
u i » Metwork Nod
, predict the disease Classil?ﬁcz.tinn
e € p r
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In this figure a basic setup of Graph Convolutional Network is shown. Where input is a multi-modal
dataset. X and X' are the different modalities. Y is the label to be predicted for the test nodes.
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2.2 A Brief History of Graph Deep Learning (GDL)

Geometric Deep Learning (GDL) is a sub-field of deep learning with techniques that are able
to generalize (structured) deep neural models to non-Euclidean domains, such as graphs and
manifolds [Bro+17].

One of the very first works in this direction was done by Sperduti et al. (1997) [97] first
applied neural networks to Directed Acyclic Graphs (DAGs). This concept of graph neural
networks was started by Gori et al. (2005) [GMS05] and further elaborated in Scarselli et al.
(2009) [Sca+08] and Gallicchio et al. (2010) [GM10]. Message passing technique within the
neighborhood is used for node’ representation learning in the above works.

GNNs can be categorised mainly into two types the spectral-based and the spatial-based
approaches. One of the first works that focused on spectral-based ConvGNNs was done by
Bruna et al. [Bru+13] which leveraged the spectral graph theory to perform graph convolution.
Following this research, many other advanced works were presented in the spectral-based
ConvGNNs such as [DBV16; KW16a; Lev+18]. The research of spatial-based ConvGNNs
started much earlier than spectralbased ConvGNNs.

Micheli et al. 2019 [24] first addressed graph mutual dependency by architecturally composite
nonrecursive layers while inheriting ideas of message passing from RecGNNs.

However, this work did not gain enough attention until recently after which many other
spatial-based ConvGNNs (e.g., [AT16; NAK16; Gil+17]) emerged. In addition to that, many
architectural variants have also been developed in the past few years such as graph auto-
encoders (GAEs) [KW16b], Spatial-Temporal Graph Neural Networks (STGNNs) [Wan+20]
and Graph Attention Networks [Wan+19a; Wu+20]. In the next section the mathematical
details of both spectral and spatial GCN are provided.

2.2.1 Mathematics of Graph Convolutional Networks (GCNs)

Notation

As a convention in this thesis, the bold uppercase characters denote matrices and bold lower-
case characters denote vectors. Unless particularly specified, the notations used in this thesis
are illustrated in Table I. The minimal set of definitions required to understand GCNs are
defined below. A graph is defined as G = (V, E)) where V is the set of nodes (vertices) and
E is the set of edges. Let v; € V denote a node and ¢;; = (v;,v;) € E to denote an edge
between v; and v;. The neighborhood of a node v is defined as N(v) = {u € V' |(u,v) € E}.
The adjacency matrix A isa N x N matrix with A,;; = 1ife;; € Fand A;; =0ife;; ¢ E. A
graph may have node attributes X, where X € RV*? is a node feature matrix with z; € R?
representing the feature vector of a node .

2.2.2 Affinity graph construction:

The construction of an affinity graph is crucial to accurately model the interactions among the
patients and should be designed carefully. The affinity graph G = (V, E, W) is constructed on

2.2 A Brief History of Graph Deep Learning (GDL)
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All the notation to explain the spatial and spectral version of GCN.
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Graph

Set of Nodes

Set of Edges

ith and j;h node in the population
Edge between i;, and j; node
Neighborhood of node v
Adjacency matrix

Total number of nodes

Feature vector belonging to node v;

Weight matrix representing the weights of
each edge

Non-imaging feature element for node ¢
Threshold to select the edge

Correlation distance

Kernel representing width of the Gaussian
Graph Laplacian matrix

Identity matrix

Degree matrix

Eigen vector matrix of the graph Laplacian
Eigen values matrix

Fourier transform

Learnable function with parameters 6
Kronecker delta function

Output activation matrix for [*" GC layer

element of the weight matrix W representing
edge weight between node 7 and j

Concatenated features for personalised atten-
tion for node v

The weights and biases of the dense layer

The computed shortest path distance be-
tween v; and v;

The sum of all edge weights on the shortest
path from z; to z;

k nearest neighbors
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Fig. 2.3.
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(a) A small 3 x 3 part of an image with central pixel as node n;. Each pixel in an image can be treated
as n; with fixed number of equidistant neighbors. (b) A similar scenario in the graph data where each
node may or may not be connected to equidistant points.

the entire population (including training and testing samples) of the patients, where |V|=
N vertices, F are the edge connections of the graph and W are the weights of the edges.
Considering each patient as a node n; in G, this graph incorporates the similarities between
the patients with respect to the non-imaging data 7. The features z; € R" at every node n;
are fetched from imaging data.

First, a binarized edge graph E € RV < is constructed representing the connections. Mathe-
matically, F can be defined as

1 ifimi—nil < B
B = 2.1)

0 otherwise

where 7; and n; are the values of the non-imaging element for nodes 7 and j respectively, and
(3 is the threshold for the corresponding element. The weight matrix W € RV >N weights the
edges based on the correlation distance between the features at every node. The weight matrix
elements are defined as w; ; = Sim (x;,x;) ,where Sim(z;,z;) = exp(—%) with p
being the ’correlation distance’ and o being the width of the kernel. This weight computation
is identical to the procedure described in [Par+17] for a fair comparison. The final affinity
matrix A is constructed as A = W o E with o being the Hadamard product.

In the next section, the mathematical details of the spatial approach for computing graph
convolution is provided.

2.3 Spatial approach

Similar to the convolutional operation of a conventional CNN on an image, spatial Graph
Convolutional (GC) methods define graph convolutions based on spatial relations that may
exist between the nodes. Consider image as a special case of graph with each pixel being a
node. Each pixel is directly connected to its one-hop neighboring pixels as shown in Fig. 2.3
(a). During convolution a learnable filter is generally applied, for instance, to such a 3x3

2.3 Spatial approach
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patch shown in the Fig. 2.3 (a), by taking the average of the weighted values of n; which is
the central pixel and its neighbors. Similarly, in the spatial approach of graph convolutions the
node feature of the central node is convoluted with its neighbor’s features to get the output
representation of the central node. Similarly, in the spatial graph convolution approaches the
central node representation is convoluted with its neighbors’ representations to derive the
updated representation for the central node, as illustrated in Fig. 2.3 (b). The message passing
in the spatial graph convolutional operation is done by propagating the node information
along the edges.

Neural Network for Graphs (NN4G) [Mic09], is one of the first works to present spatial
GNN. It learns the mutual dependency between the graph and the features through a neural
architecture with independent learnable parameters at each layer. In this work, graph
convolutions are performed by directly summing up a node’s neighborhood information. It
also leverages residual and skip connections to retain the information over each layer. Hence,
NNA4G obtains its next layer node representations by,

-1
WP = w0 z,) + 3 3 e® -y (2.2)

i=1 u€N(u)

where f() is an activation function and ~(0) = 0. Equation 2.2 can also be written in a matrix

form:
-1

H' = f(XW'+> AH'"'@)) (2.3)
i=1
One drawback of NN4G is that, it uses unnormalized adjacency matrix which can cause high
variance in the output representations of the nodes.

Two other important works that define spatial graph convolutions is Graph Attention Network
(GAT) [Vel+17] and GraphSage [HYL17a]. Unlike GraphSage [HYL17a], GAT [Vel+17]
claims that relevance of neighboring nodes to the central node for a particular task are neither
identical nor pre-determined like GCN [KW16a]. GAT proposes an attention mechanism to
learn the relative weights between two connected nodes. The spatial graph convolutional
operation presented here is defined as,

WD =o( Y ol whnl=) 2.4
ueNUv
where 7"} = z,. The attention weight aﬁw measures the edge weight between the node v
and its neighbor u:
av(f’)v = softmaz(g(a” [Wlhfjl ||Wlhfjl||])) (2.5)

where g(-) is a LeakyReLU activation function and a is a vector of learnable parameters. Finally,
a softmax function is applied to the output of the GAT layer that sums up the attention weights
to one over all neighbors of the node v. A multi-head attention is also proposed in this work
to increase the model’s expressive capability. GAT shows an impressive improvement over
GraphSage on node classification tasks.
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2.3.1 Literature survey on spatial approaches for GCN

. NN4G [Mic09] is the first and GAT [Vel+17] is the most important spatial graph convolution
technique. In this sub section a small literature survey on other spatial graph convolutional
approaches is provided. Diffusion Convolutional Neural Network (DCNN) [AT16] considers
graph convolutions as a diffusion process. In this method, it is assumed that the information
transfer between the connecting nodes happens with a certain transitional probability. There-
fore, the information distribution can reach equilibrium after several layers. Similar to NN4G,
Contextual Graph Markov Model (CGMM) [BEM18] proposes a probabilistic model while
maintaining spatial locality. Thus, CGMM has the advantage of probabilistic interpretability.
Diffusion Graph Convolution (DGC) [Li+17] sums up outputs instead of concatenating them
at each diffusion step. Another shortest path based PGC-DGCNN [TNS18] has been proposed
that increases the contributions of distant neighbors. In this method a shortest path adja-
cency matrix A is defined where, if the shortest path between a node v and a node w is of
length j, then A,, = 1 otherwise 0. Partition Graph Convolution (PGC) [YXL18] partitions
a node’s neighbors into Q groups. Later Q adjacency matrices are constructed according to
the defined neighborhood by each group. Subsequently, PGC applies GCN [Kip+18] for the
graph convolution operation with a different parameter matrix to each neighbor group and
sums up these results. Next, Message Passing Neural Network (MPNN) [Gil+17] gives a
generic framework of spatial-based ConvGNNs. Simlar to NN4G, the message passing process
between the nodes is done along the edges directly. MPNN is used to generate many existing
GNNs just by assuming different forms of learnable parameters, such as [Kip+18], [Duv+15],
[Kea+16], [ACT+17]. Gated Attention Network (GAAN)[Zha+18b] proposes a self-attention
mechanism which computes an additional attention score for each attention head, unlike GAT
that assumes the contributions of all attention heads to be equal. On top of applying graph
attention spatially, GeniePath [Liu+19b] proposes an LSTM like gating mechanism to control
information flow across the graph convolutional layers.

Mixture Model Network (MoNet) [Mon+17] proposes node pseudo-coordinates to determine
the relative position between a node and its neighbor. In this way, different weights are
assigned to a node’s neighbors. A weight function is then used to map this relative position
to a relative weight between the two nodes. MoNet is a very generic framework which can
be used to derive other existing approaches for manifold learning such as Geodesic CNN
(GCNN) [Mas+15], Anisotropic CNN (ACNN) [Bos+16], Spline CNN [Fey+18]. Further,
the graph is constructed using a non-parametric weight functions. MoNet can be used to
derive other methods such as GCN [Kip+18], DCNN[AT16]. MoNet also proposes a Gaussian
kernel with learnable parameters to learn the weight function adaptively. In PATCHY-SAN
[NAK16] the neighbors are ordered according to their graph labels and the top q neighbors
are selected. Since each node now will have a fixed number of ordered neighbors, graph-
structured data can be converted into grid-structured data easily. PATCHY-SAN applies a
standard 1-D convolutional filter to aggregate neighborhood feature information where the
order of the filter’s weights corresponds to the order of a node’s neighbors. One of the
drawback of this method is that the ranking criterion only considers graph structures, which
requires heavy computation for data processing. Another method called Large scale Graph
Convolutional Network (LGCN) [GWJ18] ranks the neighbors of a node based on node feature
information.

2.3 Spatial approach
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Now that the mathematical description and the literature survey of the spatial based method
has been detailed, the spectral approach for graph convolution is provided in the next
subsection which will then be followed by a similar literature survey.

2.4 Spectral approach

Spectral-based methods have a solid mathematical foundation in graph signal processing
[Shu+13; SM13]. In such methods, graphs are considered undirected. An undirected
graph is mathematically represented as the normalised graph Laplacian matrix. It can be
defined as L = Iy + D-2AD? where, D is a diagonal matrix of node degrees D;; =
>_; (A; ;). The normalized graph Laplacian matrix being real symmetric positive semi-definite
can be factored as L = UAU”, where U = [ug, uy, uz, ..., uy_1] € RN*N is the matrix of
eigenvectors and A is the diagonal matrix of eigenvalues (spectrum), A is the the diagonal
matrix of eigenvalues (spectrum), A;; = \;. The eigenvectors of the normalized Laplacian
matrix form an orthonormal space, that is U7 U = 1. In the graph signal processing, a graph
signal x; € R? is a feature vector of i*" node of a graph where x; is the value of the i** node.
The Fourier transform to a signal x in graph signal processing is defined as F(z) = UTx,
and the inverse graph Fourier transform is defined as FF~!(%x) = Ux, where % represents
the resulted signal from the graph Fourier transform. Elements of the transformed signal
% are the coordinates of the graph signal in the new space, such that the input signal can
be represented as x = ), Xju; which is exactly the inverse graph Fourier transform. Now
the graph convolution of the input signal x with learnable function gy = diag(6) is defined
as the product of the signal x with gy = diag() in the Fourier domain. This results in
y=Ugo (A)UTz = gg (UAUT) z = go (L) x interpreting gy as a function of the eigenvalues A
[KW16a]. In order to prevent the computationally prohibitive matrix multiplication necessary
to perform the Fourier Transform of signal x, gy can be reformulated using the Chebyshev
polynomial parameterization of the filters gy (A) = Efzo 0, T, (A), where § € R* is a vector
of Chebyshev coefficients with degree k [KW16a; DBV16]. Since LF = (UAUT)* = UA*UT,
go () could be written as a function of gy (L). Therefore, the spectral filtering on a signal =
can be performed with gy x z = Zf:o 0, T,.(L)x. The value of vertex j of the filter gy centered
at vertex i is given by

(90(L)3:); = (90(L))ig = Y Ok(L")s (2.6)
k

where ¢; is Kronecker delta function.

2.4.1 Literature survey on spectral approaches:

As mentioned in the earlier section, spectral-based methods get their mathematical foundation
mainly from graph signal processing [Shu+13], [SM13], [Wu+20]. The first spectral domain
formulation of CNNs on graphs was done by [Bru+13]. Although, this paper was of significant
importance conceptually, it had computational drawbacks. Some of these drawbacks were
later addressed in the followup works of [HBL15] and [DBV16].
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2.5 Impact of GCNs in non-medical doamin

GCNs have shown a broad spectrum of applications across different fields and domains. Apart
from solving generic tasks such as node classification, graph classification, network embedding
and graph generation, other graph related tasks such as node clustering [Wan+17], link
prediction [ZC18], and graph partitioning [KTO18] have also been addressed by GCNs. Few
of the important applications are described below.

In Computer vision GCNs are mainly applied to scene graph generation, point clouds clas-
sification /segmentation, and action recognition. The main goal of scene graph generation
models is to parse an image into a semantic graph that consists of objects and their possible
semantic relationships [Xu+17], [TM20], [Li+18b]. Given the scene graphs, the process of
generating realistic images is done in [JGF18].

In a textual description of the scene, if each word is considered a node, this can become a
promising solution in order to synthesize images from the given text. Classifying and segment-
ing the nodes of such graphs allows a device called LiDAR to understand the surrounding
environment. A point cloud is a set of 3-D points recorded by LiDAR scans. In the following
three works [Wan+19b], [LS18] and [Te+18], point clouds are converted into k-nearest
neighbor graphs and ConvGNNs are used to exploit the topological structure.

In the field of human action recognition, human joints which are linked by skeletons naturally
form a graph. [Jai+16], [YXL.18] use STGNNSs to learn human action patterns from the time se-
ries of human joint locations. Further applications of GNNs includes human-object interaction
[Qi+18], few-shot image classification [GB17], [Guo+18], [Liu+19a], semantic segmentation
[Qi+17], [Yi+17], visual reasoning [Che+18] and question answering [NLS18].

Text classification is a common application of GNNs in natural language processing. Inference
of document labels is done using the inter-relations that exist between the documents using
GNNs [KW16a], [HYL17a], [Vel+17]. Natural language data can also contain an internal
graph structure, such as a syntactic dependency tree, considering the fact that such data
exhibits a sequential order. [MT17] proposes the Syntactic GCN that runs on top of a
CNN/RNN sentence encoder. Furthermore, [Bas+17] and [MBT18] apply the Syntactic GCN
to the task of neural machine translation.

Graph-based recommender systems take items and users as nodes. By defining the relations
between items, users graph-based recommender [BKW17], [Yin+18] and [Mon+17] are able
to provide quality recommendations. GNNs are also applied in the field of Chemistry to study
the graph structure of molecules/compounds or to learn molecular fingerprints [Szl+05],
[Kea+16], to predict molecular properties [Gil+17], to infer protein interfaces [Fou+17] and
to synthesize chemical compounds [Li+18c], [DK18], [You+18].

Forecasting traffic speed, volume or the density of roads is handled in [Zha+18b], [Li+17],
[YYZ17]. The applications of GNNs cover a wide variety of other problems such as program
verification [Li+15], program reasoning [ABK17], social influence prediction [Qiu+18], ad-

2.5 Impact of GCNs in non-medical doamin
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versarial attacks prevention [ZAG18], event detection [NG18] and combinatorial optimization
[LCK18].

2.6 GCN for clinical problems

Some applications of GCNs in the medical domain are electrical health records modeling
[Cho+17], [Cho+18a], brain networks [Kaw+17]. Application in medical test migration
[Ren+20], Autism classification [Liu+20], analyze functional magnetic resonance images
(fMRI) and discover neurological biomarkers [LLD20], for handling an incomplete data for
disease prediction [Viv+20]. Metric learning for brain signal analysis [Kte+ 18], modeling
neuropathophysiological heterogeneity [Dvo+20], brain age prediction [Sta+20].

In the chapters that follow, Some of the challenges faced in the field of healthcare and their
solutions provided using GCNs are illustrated.

The main objective of the GCN based methods described in the upcoming chapters is mathe-
matically defined below. The general task solved in the entire thesis is given as follows. Let
the dataset @ = {X,Y,§}. Here, X € RV*4 represents the feature matrix for N patients and
each patient is provided with d-dimensional features. Let Y be the corresponding label matrix
(one-hot encoded) and § the demographic data matrix. The task is to predict the class label ¥’
for test subjects for K classes. § € RNV*M represents that for each patient, M -dimensional
demographic data is provided. The m!" affinity graphs G("™) € RVN*Y are computed from the
respective 6™ demographic element. The model f(-) to solve the task is derived by

Y = f(X,G™);0). 2.7)

The model takes X and G(™) as input to train the parameters # and generates discriminative
features for tasks such as disease classification, age prediction etc.
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GCN and Multiple Graph
Scenarios

Science is the acceptance of what works and the
rejection of what does not. That needs more courage
than we might think.

— Jacob Bronowsk

In the previous chapter the theoretical and mathematical description of a spatial and spectral
GCN is provided. A forward propagation model is also detailed as well. One peculiar
characteristics about the simple GCN model is that it undertakes only one graph.In this
chapter, a scenario is analyzed where multiple graphs are processed simultaneously. In clinical
routines, multi-modal data is collected comprising of imaging and non-imaging data which is
utilized together for treatment and planning. Each piece of complementary information about
the patients is distinct and important. A model which takes into account the distinctiveness of
each element of the multi-modal data for better disease prediction is been explored in this
part.

3.1 Introduction

Experts investigate patient’s heterogeneous multi-modal data collected by imaging sources
and non-imaging demographics (age, gender, weight, body-mass index, clinical test reports,
health records etc) to take an reasoned decision for disease diagnosis and treatment plan-
ning. Computer Aided Diagnosis systems (CADs) exploit such rich data as complementary
information. Generally, CAD systems combine all the complementary features often by
regressing them [lorenzi2016multimodal] or by using some feature selection techniques
[memarian2015multimodal], or by reducing the dimensionality with an auto encoder
[calhoun2016multimodal; tiwari2011multi; ngiam2011multimodal] or by simply con-
catenating all the features to use deep learning based models [Xu2016]. The methods
mentioned above use the complementary information from all the different modalities at a
global level, however such varied information can be optimally combine further. For example,
the output features are generally biased towards modalities with dominant features where
the non-dominant but may be important features might get neglected [Bis20]. This way
the models surely do not exploit the individuality of each modality. Plus, each demographic
element carries different importance and relevance towards the diagnosis of a disease.

In the first part of this thesis, a model is developed that is capable of evaluating the significance
of every element of the demographic data while performing the prediction task based on the
selective weighting procedure for elements of demographic data. This method boosts the
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Figure describes the Multi-Layered Parallel Graph Convolutional Network with M/ =2. Two branches
have same input features but input affinity matrix.

original task of disease prediction task to incorporate more clinical semantics.

In order to achieve this, graph based deep method is designed. Graphs provides more
elegant way to increase the impact of the modalities which could get neglected due to the

dominant features in representation learning[Par+17; KW16a]. GCNs as is mentioned in the
previous section leverages the similarities between the patients and form an affinity graph
for training. One of the first work on GCNs with medical application [Par+17] presents
an intelligent and novel use case of Graph Convolutional Networks (GCN) for the binary
classification task. The method proposes to use each meta data (demographic information)
separately to construct a neighborhood graph and finally combine all the neighborhood graphs
(by averaging) to get the final affinity graph, unlike the conventional non-graph based meth-
ods, which fuses the information for the prediction task. Inspite of the elegant way of combing
the meta-data in this method, it yields varied results for distinct input neighborhood graphs.
Each of these affinity graphs and indirectly each element of the demographic data carries
distinct neighborhood relationships (based on element dependent criteria) and statistical

properties with respect to the entire population. In this part of thesis we focus on analyzing the
impact and relevance of the neighborhood definitions on the final task of disease prediction.

Further, this part of the thesis is dedicated towards developing a model that automatically
learns relative weighting of meta-data. In this chapter, a model capable of incorporating the
information of each graph separately is proposed which incorporates a ’Self-Attention layer’
which automatically learns the weighting for each meta-data with respect to its relevance to
the prediction task. This model outperforms the state-of-the-art method.

3.2 Methodology

As described earlier in equation 3.1, the task is the following:

A

V = f(X,G;0) (3.1)
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In the multiple graph scenario, the proposed task can be mathematically described as:
Y = f(X,G™):0). (3.2)

Here, model intakes feature matrix X and m graphs G(™) as input to train the parameters
0 and outputs discriminative features for classification. The full pipeline is shown in fig 3.1.
It can be divided into three main parts: a) affinity matrix W construction, b) the forward
propagation model: this is used to produce class-specific output features, and 3) the self
attention layer for weighting output activations of each branch.

Affinity Matrix W (™) Construction: For the multiple graph scenario, we construct M dif-
ferent affinity graphs each corresponding to a demographic element. Let’s say we have M
-dimensional non-imaging feature vector for each patient. Then for each m*" element, an
undirected and unweighted graph G™ = { X, E(m)} is defined. For fair comparison we follow
affinity graph construction technique same as the state of the art [Par+17] and all the M
graphs have a common vertex set X. E(™ e RV*N is a demographic element specific to the
edge matrix. Each graph G(™) reveals distinct intrinsic relationships between the vertices.
Based on the given demographic element, the edges between the nodes can be defined as:

E(m) _ 1 Zf |77i,m - nj,m‘ < ﬂm
I 0 otherwise

(3.3)

where 7, is the corresponding demographic element and f3,, is a threshold. By weighting
the edges, affinity matrices are generated from these binarized graphs. A similarity metric
between the subjects Sim(X;, X;), e.g. correlation coefficient, is incorporated to weight the
edges as

W™ = Sim(Xi, X;) 0 B (Xi, X;) (3.4)

,J
where o is the Hadamard product.
Forward propagation model: The proposed model f(-) is designed such that it trains for
each affinity graph separately. The model bears the parallel setting of M branches as shown
in Fig. 3.1. Each branch is equipped with GC layers based on spectral graph theory. Unlike
grid-based convolutions [KW16a; DBV16], these layers help adopt convolutions on graphs.
The m!" branch of forward propagation model is given by:
_1 _1

Hl(ZLl) -7 (D(m) 2W(m)D(m) 2Hl(m)®l(m)> (3.5)
where, D is the diagonal matrix with D{™ = 3 y Wi(jm). O™ are the trainable layer-
specific filters, which can be derived from a first-order approximation of localized spectral

filters on graphs [KW16a], and Hl(ﬂ) is the feature output of the I layer (H{™ = X).
1

1 1
D™ 21y (m) D(m) 72 is the normalized graph Laplacian, and o(-) is the rectified linear unit
th branch outputs Hypgirs € RV K. Hogis which are fed to the self-attention

layer described below.

function. Each m

Self-Attention Layer: Because of the graphs, the logits for M branches vary with respect to
each other, although features on each vertex are common. In order to rank the demographic
data elements, a linear combination layer is designed to rank the logits from the last hidden
layer as

M
Yy = Softmax (Z mel(;ZEts> , (3.6)

m=1

3.2 Methodology
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where w,, is the trainable scalar weight associated with the demographic element. Each
element of w,, array is branch specific, weighting the logits of each branch. and Y are the
normalized log probabilities. We define our objective function as binary weighted cross entropy
loss on the labeled data to train the model parameter.

3.3 Experiments

The experiments in this chapter are designed to (1) investigate the impact of each affinity
graph on the performance of the models, (2) investigate the performance of the predictive
model with multi-graph setting approaches [Par+17], (3) compare our proposed model with
3 methods, linear classifier, two-layered dense neural network, and baseline GCN [Par+17]
and (4) investigate the clinical insights of self-attention layer with multi-graph setting.
Dataset: A publicly available dataset Tadpole [Mar+18] is used for the prediction of
Alzheimer's disease and our investigation of multiple graph scenario. Tadpole is a sub-
set of ADNI[jack2008alzheimer] with a cohort of 564 patients. The primary task is to classify
each patient into either of the three classes, Normal, Mild Cognitive Impairment (MCI) and
Alzheimer's disease (AD). Each patient comes with a set of multi-modal features collected from
various biomarkers (MR, PET imaging, cognitive tests, CSF biomarkers, etc) together with
the risk factors such as APOE genotyping status and FDG PET imaging which measures the
cell metabolism, where cells affected by AD show reduced metabolism. Further demograph-
ics such as age and gender is provided. Entire data is pre-processed with ADNI’s standard
data-processing pipeline. According to medical literature [shaffer2013predicting], age and
gender are the most important risk factors for the prediction of the disease followed by APOE
and FDG. The data is split into training and validation sets (90%, and 10%, respectively).
Implementation: Number of features d = 354, dropout rate: 0.3, /»- regularisation: 5 x 10~
All the experiments are implemented in Tensorflow! and performed with Nvidia GeForce GTX
1080 Ti 10 GB GPU.The ratio of computational time for the proposed model vs the GCN is 4.51.
We use early stopping criteria to decide the number of epochs for each setting. The model is
evaluated based on the mean classification accuracy (ACC) for 10-fold Cross-Validation.

3.4 Results and Discussion

All the results of the above experiments are discussed in detail below.

Influence of individual affinity matrix: In this set of experiments all the factors such as
node features, model architecture and model parameters are kept constant. The affinity matrix
is the only changing factor. It can be seen from fig. 3.2 that, a) The results vary with change
in affinity graph. We can interpret that each input affinity matrix has unequal relevance to the
task at hand. For instance, the best performance is shown by the age graph where as the model
performs the worst with FDG as the input graph. b) It can be noted that the performance is
decreased when all the graphs are averaged. Such a setting is used in the baseline method
[Par+17]. This shows that an average of the affinity graphs degrades the performance that
otherwise could have been achieved.

Performance with different combinations of graphs: Another experiment is performed

Lyww. tensorflow.org
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Fig. 3.2.

Fig. 3.3.
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(a) Influence of individual affinity with each
showing different mean accuracy matrix
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ZE% . —

0.4
Linear MLP Parisot et al. [6] Proposed

(b) The results over all the comparative meth-
ods with proposed model outperforming.

All the three subfigures show the boxplots
of accuracy over 10-folds cross validation.

using all the various affinity matrices by varying the combination as input. This validates that
if the combination of affinity matrices changes, the performance varies. In the clinical literature
for the diagnosis of AD [perrin2009multimodal], it is stated that age and gender are the
most important factors compared to other risk factors (APOE, FDG). Results are presented in
terms of accuracy boxplots, as seen in fig. 3.3 confirming that different combinations show
heterogeneity in the results. In comparison, the mixture of gender and age reveals the highest
performance, with most combinations using FDG with APOE lower the performance. This
shows the proposed model upholds the same clinical semantic as [perrin2009multimodal].
This experiment also reconfirms that the overall performance decreases when all affinity graphs
are weighted equally and the positive influence of other affinity matrices is deteriorated by
average due to the loss of neighborhood structure for individual graphs. The proposed self-
attention model outperforms all combinations as it captures the proper weighting needed for

0.9 1- Gender

2- Age

3- FDG
0.8 4- APOE
0.7 T
0.6
0.5
0.4 L —

14 13 12 24 23 34 123 124 134 234 Average Proposed

The box plot represents the accuracy obtained with different combinations of the four affinity matrices.
X-axis show the combination of 2, 3 or all affinity matrices where 1,2,3 and 4 stand for Gender, Age,
FDG and APOE respectively (as shown in the box at the top left).

3.4 Results and Discussion

29



30

optimum performance.

Performance in comparison to other methods: As shown in figure 3.2, the proposed
method is compared with three state-of-the-art methods, namely linear classifier[HK70],
neural network and GCN [Par+17]. These methods are chosen to investigate 1) how the
features at each node are class separable? 2) What is the model’s output when the features are
concatenated? 3) What is the significance of incorporating the graph? and 4) how essential is
it to weight the graphs?

One can interpret that the features are class separable since the linear classifier performs very
well in contrast with two other approaches. For fair comparison, the NN model is designed
such that it has same number of hidden layers (2) and hidden unties (16, 3 respectively). In
case of the neural network (NN), the features are concatenated and this becomes the problem.
NN fails to perform well with this architecture, where as the graph based baseline approach
[Par+17] shows better results compared to the NN. This shows the strength of incorporating
the graph. As can be seen, the baseline [Par+17] enhances the performance of the GCN’s
power with respect to NN, but it performs lower than linear and proposed method. This
is attributable to the corrupted combination of the neighborhood. Finally, with the right
weighted combination of neighborhood and Hj,g;:s, the proposed method outperforms other
methods. The GC layers are first trained for 150 epochs and the self-attention layer is trained
further. This helps channelize the learning of weights of GC layers as well as the self-attention
layer. The features at every node are kept simpler to gain more insights about the effect of the
graphs.

Effect of self attention: The weights learned by each branch are also investigated in our
experiments. The self-attention layer learned maximum weight for gender and age (0.35
and 0.27 respectively) and lower weight for FDG and APOE (0.09 and 0.29 respectively).
From [perrin2009multimodal] it is confirmed that age and gender are significant factor for
predicting AD.

3.5 Conclusion

The experiments demonstrated in this chapter go inline with our hypothesis that affinity
graphs influence the performance of GCN models and eventually disease prediction differently.
The combination of affinities changes the possible neighborhood between the subjects. In com-
parison, our proposed self-attention approach explicitly integrates the unequal contributions of
the graphs and outperforms all the setups with large margins. The order of complexity for the
proposed model compared to the baseline model [Par+17] is almost equal as O(n) ~ O(2n),
making it scalable for a larger number of demographic elements.

Clinical statistics provided by the literature further obey the choice of thresholds for generating
the graphs. One might argue that the performance might decrease by splitting a single graph
into many graphs as some connections are lost in the thresholding process. However, the
aggregation of graphs from various sources of information can contribute to the loss of
individual structure and unequal relevance cannot be considered.
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GCN and Personalised Disease
Prediction

A man who dares to waste one hour of time has not
discovered the value of life.

— Charles Darwin

Clinical experts consider the complementary multi-modal data for disease diagnosis and
decision making. Often a varied order of importance for this heterogeneous data is considered
for personalized decisions. Learning patient-specific attention for individual modality has not
been explored in the current literature. In this chapter, a model is introduced that improves the
disease prediction and learns personalised patient-specific order of importance for the multi-
modal data elements simultaneously. The model achieves this by the novel combination of
LSTM-based attention mechanism and graph convolutional networks (GCNs). In this process,
class-specific features are learned by GC layers and the attention mechanism integrates the
multi-modal features into the final outcome, individually for each patient. In this chapter,
the proposed technique is leveraged for the task of disease prediction for Parkinson’s and
Alzheimer’s dataset.

4.1 Introduction

Recent deep learning methods have focused on learning the class-specific representation for
various tasks, in particular disease prediction. However, medical data generally bear high
heterogeneity due to the diverse condition of patients. For example, patients with same
disease stage may have different diagnosis and require personalised treatment planning based
on demographic, clinical and imaging data. In case of Alzheimer’s disease, especially APOE-
targeting ones,drugs may act differently in patients with different APOE genotypes but same
disease condition. Moreover, other than the demographic and genetic factors, brain imaging
and other biomarkers may also be used for patient-specific diagnosis. The importance of such
personalized diagnosis of the disease has been shown in [bu2016toward; peng2016towards]
respectively. A CAD system capable of learning such patient-specific decision is required to
improve the clinical outcome.

Recent literature [ng2015personalized; suo2017personalized] has shown that personalized
models can improve the model performance compared to the general conventional models
[TDG16]. Usually such a pipeline consists of two stages: 1) to measure the similarity among
the patients, and 2) to design a module that evaluates patient-specific disease condition
based on corresponding non-medical features. Such a framework, if build would mimic the
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clinical workflow where experts collect and scrutinize the patients with similar condition
before making any patient specific decision. In the previous chapters and the corresponding
literature GCNs have already shown their superiority over other conventional methods for
extracting the similarity among the patients for disease prediction [kazi2018self; Par+17].

As mentioned in chapter 2, GCNs incorporate the relationships among patients based on
non-imaging features such as demographic, clinical reports, medical history etc. This is
achieved through a neighborhood graph. The nodes (patients) are represented with features
from, e.g., imaging modalities. Finally, GCNs provide a sophisticated framework to learn
the model parameters in order to optimize the objective. Many methods [zhang2018multi;
ma2018multi; Ma+18b] have provided efficient GCNs based models to deal with multi-
modal data (in a multi-graph scenario), by consolidating the heterogeneous information
using techniques such as pooling, concatenation, or averaging at the end. Apart from these,
[Vel+17; Kaz+19c; Fou+17] have proposed a node-level attention mechanism to weigh
the neighbors during training. In comparison to alternative traditional methods, GCNs have
been proven to be far more superior. In this chapter, an end-to-end pipeline that aims to
merge multi-graph setting and node level attention mechanism has been proposed, which is
unlike the methods mentioned above. Personalized diagnosis is achieved by firstly clustering
all similar patients based on certain criteria, and then by learning the patient-specific traits.
Multiple representations that are modality specific are learned for each patient. LSTM based
attention scheme is leveraged to obtain patient-specific weights, for the non-imaging data.
This scheme optimally integrates the multi-modal data to arrive at a final patient specific
decision.

The methodological contributions here are:

* Clustering the patients based on similarity by employing GCNs with multi-graph setting.

* Learning the weights for each non-imaging factor by leveraging LSTM based attention
mechanism to achieve personalized disease prediction.

This method could be extended to other multi-modal datasets for tasks such as disease
prediction etc. In this chapter, two applications are presented, which are: 1) Alzheimer’s
disease prediction, and 2) Parkinson’s disease prediction, using publicly available datasets in
both predictions. The superiority of the proposed model is demonstrated in terms of accuracy,
f1 score, sensitivity, and PPV.

4.2 Methodology

Consider, X denoting the population of N patients. Imaging feature for each patient n; is
denoted by x; € RP. The corresponding non-imaging features are denoted by n; € R,
Overall, the imaging and non-imaging feature matrix for the entire population is denoted
by X € RVXP and n € RV*M | The class labels Y € RV*¢ for C classes (one-hot encoded)
are available only for the training set Y;,.. Given the above information, the final task is to
predict the classes for the test set Y;. m non-imaging elements are employed to integrate the
similarity between the patients. m affinity graphs each denoted by G € RV*¥ are defined
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Fig. 4.1.
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Multi-graph setting
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The end to end pipeline of the proposed method. The red box indicates the GC layers extracting
similarity among patients. The green box produces personalized attention scores later used for
combining representations. In the end, logits and cross-entropy loss are calculated.

corresponding to each element m in 7. Thus, G, ...,G™, ..., GM different graphs are obtained
from distinct elements of non-imaging modality. The graph construction procedure is entirely
described in the chapter 2.2.2.

Given the graph information, the task of disease prediction for test set Y; is redefined as,

—

Vi = U(3,(X,G™, O7), 0,). (4.1)

where, Y, are the predicted labels for the test set, ®,, is a function specific to ™ modal-
ity that learns feature representation for each patient as shown in Fig. 4.1, U is the per-
sonalized attention function which weights the representations corresponding to each n™.
[©1,...,07, ...,0M] and O, represents the set of learnable parameters of both the functions
®,,, and ¥ respectively.

Step 1 of the end-to-end pipeline of the personalized prediction is to obtain the similarity
among patients. GCNs are the rightful choice for achieving the same. Therefore, each ®,, is
defined using a graph convolution operation. In the proposed model, each branch ®,,, consists
of two GC layers. Bidirectional LSTM that learns the attention scores is incorporated to
build the personalized attention mechanism . This LSTM based mechanism learns attention
scores for the representations obtained from each ®,,. The inherent property of LSTM is to
incorporate the inter-relation between each of the inputs. This property of LSTM allows the
proposed model to learn the final representations F;, for each patient individually, retaining
the inter-relationships between the outputs of each ®,,. The entire end to end pipeline is
illustrated in Fig. 4.1.

In the next subsection, mathematical details of both the functions ®,, and ¥ are provided.
Further, the process of building an end to end model using ®,, and ¥ is detailed. The
optimization function used for this model is weighted cross entropy loss to learn the filters.

4.2.1 Definition of ®,,

Spectral approach is chosen to define ®,,, corresponding to each m‘" branch. Therefore, the
Chebyshev polynomial approximated version of graph convolution is defined for each graph
G™. For each node v feature vector x,, where x, € X, is intialized. Mathematically this
spectral operation is defined as hl)" = g4(L™)z, = Zf;ol ¢ T-(L™)z,, where h € R? is

4.2 Methodology
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the output activation corresponding to ™, ¢, € RX is the vector of learnable Chebyshev

RNV*N are the

coefficients, T,.(L™) is the Chebyshev polynomial of order k for L™ and x €
input features. Using the transductive setup, the graph G™ incorporates the entire population
including training and testing patients. The graph G™ plays an important role in spectral
convolution to define the neighborhood for each patient in order to perform convolution. This
information is incorporated in each of the normalized graph Laplacian L™ corresponding to

G™. Further mathematical details on GCNs can be found in chapter 2.

The input to attention obtaining function ¥ is derived by concatenating the outputs of each
Lo R hM
node v. The activation or the node representation k" learnt from m*" branch of GC layers
is specific to the m'" element of non-imaging risk factor. H, then becomes personalized
feature sequence of learnt multi-modal representation for each patient. The required affinity
graph G = (V, E,W) where |V|= N vertices, E € RV*¥ is defined by the binary edge
connections matrix of the graph and W € RV*¥ is the weight matrix. Sim(z;,x;) o ET =

Loif o —n| < ™

0 otherwise

branch. This input is denoted by H,, and can be represented as H, = [h | for

,where Sim(xz;,x;) = emp(—%) with p being the ’correlation

distance, o being the width of the kernel and 3" being the threshold for edge construction.

4.2.2 Personalized attention mechanism

In this section, the LSTM based attention scheme used for personalized attention is mathe-
matically detailed. For H, = [h},...,h™, ..., hM], a scalar attention score s™ is learnt for each
representation A" such that ) s7* = 1. Learning an attention for multiple representations
of the same patient ensures that the attention mechanism defined here outputs a personal-
ized weighted representation for the corresponding patient. The obtained attention scores
[s1,...,s™, ...,sM] represents the importance of the m!" branch, for node v. The step-by-step
details of the proposed node-level attention mechanism is provided below.

Step 1: The concatenated output H, from GCN represents a sequence which is later fed onto
the LSTM attention cell with d units. Let f, and b, represent the forward and backward LSTM
hidden activation for each node v, h,, be the feature representation of the m*" branch, 7,
be the hidden state of bi-directional LSTM and « be the tanh activation function.

Step 2: Node level attention scores for each graph is generated by applying a linear mapping
¢ and a softmax to s, as, s, = softmaz(p {[fs, by]w + b}) where, s, € RM, [, ] stands for
concatenation. ¢ is applied as a dense layer without any non-linear activation, w and b are the
weights and biases of the dense layer respectively.

Step 3: Final representation for node v is fetched by taking the weighted sum of the represen-
tation as Fy, = > s -h"

m ~v v

where F, € R? is the personalized final representation obtained
from weighted aggregation over all graphs. F, is applied to a dense layer in order to output
logits for each class F!. Thus, the weighted cross-entropy loss is minimized. The proposed
node-level attention based method is described in Fig. 4.1
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4.3 Experiments and results

Two publicly available datasets Parkinson’s Progression Markers Initiative (PPMI) (www.ppmi-
info.org/data) and TADPOLE [Mar+18] are used to analyze and evaluate the proposed model.
Dataset description:

The multi-modal dataset PPMI consists of 324 patients out of which 75 are healthy and 249
are diseased cases. Each patient in this dataset comes with brain MRI volume and non-imaging
meta data such as clincal score of Unified Parkinson’s Disease Rating Scale (UPDRS), Montreal
Cognitive Assessment (MoCA) scores and demographics (age and gender). Pre-processing of
the dataset involves co-registering each 2-D image of the MRI volume to the SRI24 ATLAS,
followed by skull stripping using ROBEX and eventually normalizing each volume into the
range [0,1]. 1-dimensional feature representation for each patient is obtained by feeding
the MRI volumes onto a 3D auto-encoder which is pre-trained for anomaly detection. This
pre-processing pipeline is followed from [baur2018deep]. The bottleneck feature vector
from the 3D auto-encoder is obtained for each volume and the size of this feature vector is
empirically chosen to be 320. TADPOLE dataset consists of data associated with 564 patients.
It comprises of 160 normal, 320 Mild Cognitive Impairment (MCI) and 84 Alzheimer’s Disease
(AD) patients. In this dataset, each patient is provided with a 354 dimensional feature vector
pre-extracted from brain MR and PET imaging, CSF, cognitive test and non-imaging risk
factors such as age, gender, APOE genotype, average FDG and PET imaging values.

For both the datasets non-imaging features are leveraged in the affinity graph construction.
Next, the imaging features are used as input feature matrix X. The values of the thresholds
8™ (from equation 2.1) is chosen same as [kazi2018self] for the fair comparison. The task
for both the datasets at hand is to predict the disease for each patient. The datasets are divided
into a spilt of 90% train and 10% test.

The experiments are designed to prove that, 1) LSTM based attention mechanism is a better
fusing scheme in comparison to other representation, as shown in the Table. 4.2, and 2) the
proposed end to end pipeline works better than single/multi-graph global attention mechanism
shown in Table. 4.1. Baseline methods include concatenation, maxpool and average pooling
techniques applied to H,. Further, the proposed method is compared to five state of the art
methods which are categorized into three types as shown in Table. 4.1. The five comparative
methods are briefly described below.

* [kazi2018self] has multi-graph setting with global attention scheme
e [Vel+17] uses personalized attention scheme for node level classification task.

e [Par+17] is a GCN based method using single affinity graph. This single graph is
computed by averaging all the graphs constructed by the technique in [Par+17].

The performance comparison of the proposed model with these two methods prove the
superiority of the multi-graph setting over the single-graph setting. The advantage of graph
based method over conventional non-graph based method is shown by the results of multi-
layered perceptron (MLP).

4.3 Experiments and results
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Performance comparison of proposed method to state of the art methods, in terms of five metrics for
PPMI and TADPOLE dataset. The results obtained are statistically significant in the setting marked by
Asterisk symbol.

PPMI
Accuracy Flscore Sensitivity Specificity PPV

Proposed 91.04+04.68 76.12+14.74 | 79.28+20.57 91.934+05.76 | 75.97+13.18

Kazi et al. | 86.724+06.37* | 53.254+19.77* | 52.85+24.07* | 88.30+07.83 58.72+£19.80*
(a) [kazi2018self]

Ma et al | 45.06£22.86* | 39.57+02.73* | 94.28+09.98* | 14.18+17.36* | 25.18+02.47*

[Ma+18b]

Kipf et al. | 28.39+03.01* | 33.49+08.98* | 43.03+17.96* | 66.71+16.37* | 28.82+08.62*
®) | kwi6a

Parisot et | 86.72+05.00 | 73.27+10.66 79.64+£16.73* | 89.11+04.44 69.13+09.95

al.[Par+17]
(c) | MLP 50.30+£08.50* | 27.53+09.77* | 42.14+18.40* | 52.16+06.75* | 20.63+06.76*

TADPOLE
Accuracy Flscore Sensitivity Specificity PPV

Proposed 83.33+03.89 72.55+11.97 76.87+18.64 | 86.64+09.06 | 72.06 £13.48

Kazi et al. | 82.26+07.75 68.13+14.89 72.50+15.08* | 83.11+11.48 66.47+20.59
() [kazi2018self]

Ma et | 49.46+06.79* | 44.70+05.58* | 75.00+15.30* | 36.48+16.16* | 32.224+04.47*

al.[Ma+18b]

Kipf et al. | 50.88+07.31* | 51.884+06.75* | 76.384+10.22* | 52.84+09.46* | 39.45+05.70*
) [KW16a]

Parisot et | 72.69+08.00* | 61.95+14.59% | 68.75+15.65* | 78.184+09.85* | 57.11+15.31*

al.[Par+17]
(c) | MLP 79.60+07.27 69.63+09.82 80.00+£10.12* | 79.89+ 07.13 | 61.90+10.30

Interpretation: All attention based techniques gain better results in comparison to other
methods with no attention, as shown in Table. 4.1 (a) vs. (b) and (c) respectively. The
proposed method achieves 4.32% and 1.07% improvement in accuracy for PPMI and TADPOLE,
respectively. The reason for this is the personalized attention technique that can weight
different graphs for each patient separately. The ablation study of the proposed attention
mechanism shows its performance in comparison with other fusing mechanisms. Here, an
improvement of 1.01 % and 0.89% over the other methods is obtained which is shown in the
Table. 4.2. A significance test using Kolmogorov-Smirnov test (K-S test) is performed and is
shown by * in all the tables. This means that the results obtained by the proposed methods are
statistically significant compared to the methods mentioned above (p < 0.05). The stability
of the proposed method is depicted in the small variance over the results of 10 folds. For
the thorough evaluation of the method, F1 score, sensitivity, specificity and PPV are reported
for both the datasets as they are highly imbalanced. For most of the reported metrics, the
proposed method outperforms others.

4.4 Discussion and Conclusion

In this chapter, a model for personalized disease prediction is presented and its application
in Alzheimer’s and Parkinson’s disease prediction is shown using two publicly available
datasets.
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The figure illustrates the boxplot of the attention scores learned for each patient, for 10 folds for
TADPOLE. The variance of each boxplot is computed for 10 folds. Each boxplot shows weights learnt for
each class normal (left), MCI (center) and Alzheimer’s (right) per patient (TADPOLE dataset). For PPMI
dataset Normal (left) and abnormal (right) for each patient is shown.
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Performance comparison of the proposed personalized attention method to the baseline methods for
both the datasets. This shows that LSTM mechanism improves the overall classification of the model.
The results presented are statistically significant in the setting marked by Asterisk symbol.

PPMI

Accuracy Flscore Sensitivity Specificity PPV
Proposed | 91.04+04.68 | 76.12+14.74 | 79.284+20.57 | 91.93+05.76 | 75.97+13.18
Concat 90.53+07.01 | 74.08+08.44 | 82.32+15.87* 88.33+04.06* | 68.58+07.45
MaxPool 86.40+05.48 | 72.80+10.43 | 78.75+£14.61*| 88.73+06.25 | 69.39+13.22
AvgPool 87.97+04.62 | 74.75+10.59 | 78.92+16.27*| 90.75+04.27 | 72.65+09.91

TADPOLE

Accuracy Flscore Sensitivity Specificity PPV
Proposed | 83.33+03.89 | 72.554+11.97 | 76.87+18.64 | 86.64+09.06 | 72.06+13.48
Concat 82.44+08.95 | 77.37+08.55 | 92.36+08.22* 80.96+08.82 | 67.13+10.11
MaxPool 68.41+08.02* | 56.58+15.52* | 55.62+20.29 | 85.40*+06.54| 60.40+13.02
AvgPool 70.36+06.36* | 56.82+10.72* | 50.62+11.94* | 88.78+09.97 | 70.65+21.21

The proposed model is built with graph convolutional layers. Each branch with GC layer
intakes modality-specific affinity graph and patient-specific features to perform convolution on
features vectors. The spectral approach is used for this model. Further, the personalized LSTM
based attention mechanism integrates these graph-specific feature representations for each
patient separately. The learned attentions for each graph almost matches the clinical order
of importance and is well suited for personalized disease prediction. Comparison with the
baseline methods (ref. Table 4.2) along with various fusing approaches shows the superiority
of the proposed attention mechanism. The proposed method is compared to five different
state of the art methods (ref. Table 4.1). The superior performance of the proposed model, in
terms of different metrics necessary to analyze the performance on a much harder data setting
including class imbalance is demonstrated in Table 4.1. Fig. 4.2 shows the attention weights
obtained individually for all patients in both the datasets. High heterogeneity in the weights for
a given task is required. The high variance of each boxplot means that the attentions required
for each patient are different. The boxplots also depict a particular pattern for each class for
both the datasets. This shows that the proposed model is able to learn a global pattern for
each class. For Alzheimer’s disease diagnosis, clinicians follow a general order of importance
that is age, followed by gender, APOE and FDG [bu2016toward; peng2016towards]. The
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proposed method follows similar order of importance. For the PPMI dataset, a different trend
is observed for the attentions. Here, the proposed model is slightly incorrect in following the
order of importance. This is because the size of both of our datasets is 564 and 324 patients,
which represents only a sub-sample of the entire population.

The bottleneck aspects of this method are: 1) Scalability to the value of m and N which
means a larger number of affinity graphs and more number of patients. The proposed model
might become computationally bulky if number of parallel branches corresponding to each
meta element increases. Similarly, if the size of graph increases (with higher value of N),
the memory limit of computing machine could be reached, and 2) Out-of-sample extension:
the proposed method uses the transductive approach, which limits its capability to produce
results for a completely unknown patient. However, the spectral convolution designed using
Chebyshev parameterization is computationally inexpensive [DBV16]. In order to overcome
the problem of out-of-sample extension, a spatial graph convolutional approach can used to
design the layers. Such a method will allow graph modifications during training.

Such a technique is not only suitable for out-of-sample extension, but also facilitates learning
from the graphs. In such an approach one graph can be learned from multi-graph setting
along with better representation learning. In this work, the primary focus is to learn patient-
specific attention for each graph using spectral convolutions, in order to make it scalable
and convergent enough to accommodate multiple graphs. The proposed method could be
generalized to other multi-modal datasets. An immediate future work for this method could
be the development of an inductive version of this model in order to address the out-of-sample
extension. Also, the graph learning technique for the spectral domain can be explored.

During the process of analyzing the input data, modelling and training, a new challenge was
faced related to graph structure. As shown in Fig.
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Fig. 4.3. The figure illustrates the heterogeneity within the graph. The graph shown here is obtained from
TADPOLE dataset using the non-imaging feature ’age’ for each patient. Each node represents a patient
and the color represents the class of each patient.
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GCNs and Intra-Graph
Heterogeneity

Nothing in life is to be feared, it is only to be
understood. Now is the time to understand more, so
that we may fear less.

— Marie Curie

In the recent literature and from the previous chapters it can be seen that Geometric deep
learning provides a principled and dynamic way to integrate imaging and non-imaging
modalities in the medical domain. So far, GCNs have been explored for wide variety of
applications. In particular, the Graph Convolutional Networks (GCNs) were investigated on
a broad range of topics such as disease prediction, segmentation, and matrix completion by
using massive, multi-modal datasets. In this chapter a unique spectral domain architecture
is introduced for the application of disease prediction. The innovation lies in the concept
of geometric 'inception modules’ which can catch structural heterogeneity within the graph-
termed as ’intra’ - graph and between different graphs termed as ’inter’- graph heterogeneity
during convolutions. To build the proposed architecture, we design filters that have different
kernel sizes. We present results of our disease prediction on two publicly available databases.
In addition , we offer insight into the behavior of normal GCNs and our proposed model on
simulated data under differing input scenarios.

5.1 Introduction

Graph Convolutional Networks (GCNs) [DBV16] is increasingly focused on for applying deep
learning to unstructured data in the medical domain. Multiple applications have been demon-
strated to date, including prediction of Autism Spectrum Disorder with multiple learning
to distinguish between diseased and healthy brains [Kte+18], matrix completion to predict
missing values in medical data [Viv+18], and finding similarity, the primary task is disease pre-
diction with complementary imaging and non-imaging multi-modal data. In all the mentioned
works, GCNs had a significant effect on the application of multi-modal medical data. The
key difference to previous learning-based approaches is placing patients with a neighborhood
graph in relation to each other, often by associating them with non-imaging data such as
gender, age, clinical scores or other meta-information. Patients can be viewed as nodes on this
graph, patient correlations are defined as edge weights, and characteristics from e.g. image
modalities are integrated by graph signal processing. Then GCNs have a principled way to
learn optimal graph filters that optimize a task. Here, node-level classification is used for the
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primary task of disease prediction.

A simple analogy to node-based population classification is image segmentation with CNNs,
where each pixel is a node, and the graph is the image grid. In such domains, filters with a
constant size can gain semantic features over the entire grid domain, provided a constant
number of neighbors that are equidistant. The number of neighbors and their distance from
one another contributes to heterogeneous density and spatial structure in the case of irregular
graphs. Applying filters over the entire grid domain with a constant kernel size can not
produce semantic and comparable features.

Graphs based on patient data identify similar variation in medical datasets, as each pa-
tient may have a distinct combination of non-imaging data and different number of neighbors.
It gives a clear example in Fig. ?? (left) representing a population graph of 150 Alzheimer’s
disease classification subjects. These subjects are arranged in clusters of varying density
and local topology (regions a, b and c¢). In order to learn the cluster specific features, the
heterogeneity in the graph structure should be taken into account. By applying multi-sized
kernels on the same input, a model capable of producing similar intra-cluster and different
inter-cluster features can be designed. To this end, we propose InceptionGCN, motivated by
the popular implementation of CNNs architecture [Sze+15].The proposed model leverages
spectral convolutions of various kernel sizes and selects optimal features to solve the clas-
sification problem.Recently, there are only few works have focused on receptive field size
of GCN filter such as [Yu+19], [Ros+20], [HC20] .However, the work in this chapter is
the first one to identify the challenge of graph heterogeneity and receptive field size of the
kernel. Many previous works [DBV16; KW16a] use GCNs with constant filter size for the
node-classification task. Even though these methods GCNs superiority, however none of the
method consider the graph’s heterogeneity issue. In [Liu+ 18], a method is proposed that
defines a receptive path for each node, instead of the entire receptive field for performing
the representation learning convolution operations. A DenseNet-like architecture [Hua+17],
in which outputs from consecutive layers are concatenated, is proposed in [Xu+18a]. The
receptive field is addressed indirectly here, since the output activations of successive layers
depend on multiple preceding layers through skip connections. Another work [HYL17a] uses
either preset, hand-designed, or aggregator-based functions. In addition , the method requires
a predefined node number, which is hard to achieve. In this chapter, we show 1) InceptionGCN
is superior than other method in terms of performance and convergence, 2) Analysis of the
effect of graph-structure and filter size on the performance of the model. This motivates the
needs of multiple kernel sizes and 3) A novel InceptionGCN model is proposed with multiple
kernel sizes. InceptionGCN is validated on synthetic data and clinical data. Further, we show
the robustness of model towards different approaches for constructing graph.

5.2 Methodology

Standard models [Par+17] use a constant filter size for all layers, which requires each node ’s
features to be learned with neighbors at a fixed number of hops away without understanding
the scale and shape of the clusters. The proposed InceptionGCN model overcomes this
constraint by adjusting the size of the filters across the GC-layers to generate separable output
features for the class. This property of the proposed model is particularly desirable where
there is a distinct difference in class distribution and/or where the classes heavily overlap.

Chapter 5 GCNs and Intra-Graph Heterogeneity
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Left: Affinity graph with clusters for TADPOLE dataset, different cluster sizes are depicted at points (a),
(b) and (c). Right: Setup of InceptionGCN , feature matrix X is processed by several GC-layers with
considered neighborhood k1, - - - , ks in each inception module. The output of each layer is used in the
aggregator function.

Using this setup, we attempt to solve the task of disease classification by integrating semantics
of varied correlations arising from various graphs within the population. We provide a detailed
description of the model beginning with the construction of the affinity graph followed by the
theoretical concept and a discussion on the proposed architecture.

5.2.1 Mathematical concept for inception modules

In chapter 2, the mathematical details of the spectral convolution is defined. To recap, the
spectral convolution on a signal = can be defined as with gy x 2 = Zﬁ:o 0, T.(L)x here, L is
the graph Laplacian (normalized or unnormalized), and k£ > 0 be an integer (here k stands for
the k' hop neighbor). Given such setting, for any two vertices i and j, we can define:

Q dg(i,j) <k
(L), = J) (5.1)
0 otherwise

,where d (i, j) is the computed shortest path distance between z; and z; and (2 is the sum of
all edge weights on the shortest path from z; to ;. Therefore from eq. 2 the spectral filters
represented by k*" order polynomial of the Laplacian are exactly k-hop localized.

5.2.2 Inception modules

For spectral convolution with signal x, the localization of a filter is defined by taking all the
neighbors at a distance of k£ hops into account. A filter s with a fixed k; used on the full
dataset X can be defined as y, = Zfil T, (L)X0, s. Here y, represents the output of a filter
in a neighborhood distance of k,-hop. Instead of using one filter, we now use S filters with
differing neighborhood k; to account for the different sizes and variances of clusters and
structure in the results. The combination of these s filters is the nucleus of the inception
module as they consider the close proximity of a signal z and the broader neighborhood
scenarios at the same time. Every filter of the inceptionGCN module has its own parameter
vector 5 and they perform a convolution on the dataset X and give out the output y,. The
final output of each filter is combined together with an aggregator-function ¥ to get the output
y of the inception module as y = ¥ (y1,--- ,ys) , where every , € R with entries 0,sisa

5.2 Methodology
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vector of learnable parameter for each filter of the inception module. Further, to merge the
output activations of each filter two aggregators ¥ are proposed,(1) concatenation and (2)
max-pooling. The proposed model architecture is shown in Fig. 5.1 which accommodates
M inception modules. Each inception module consists of S,,, GC-layers. All the S, layer are
structured in parallel fashion with filters of different k, ,,,. ReLU is used at the output of each
GC-layer. A labelled subset of graph nodes are selected for the training. The loss is computed
and gradients are backpropagated only for these training samples. Such setting is considered
as transductive. We chose weighted cross-entropy as our loss function. Due to the graph
connections, the training process on the labelled data is transferred to the unlabeled data by
signal diffusion which corresponds to the behavior of a standard GCN.

5.3 Experiments and Results

In the previous section, the mathematical explanation for the need of the InceptionGCN model
is provided. Here, two main experimental setups are presented main to show firstly, the
influence of spectral convolutions from different graphs and kernel sizes of the filters, and
secondly, the comparison of proposed InceptionGCN to other methods based on accuracy.
Two publicly available multi-modal datasets are thoroughly analyzed for both the baseline
[Par+17] and the proposed method. At last, the insights into generalized design choices for
building a data and task-specific model is provided.

5.3.1 Datasets:

TADPOLE [Mar+18]: This dataset is a subset of the Alzheimer’s Disease Neuroimaging Initia-
tive (adni.loni.usc.edu), consisting of 557 patients with 354 multi-modal features per patient.
The target is to classify each patient into one of the three classes (Cognitively Normal (CN),
Mild Cognitive Impairments (MCI) or Alzheimer’s Disease (AD). Features are extracted from
MR and PET imaging, cognitive tests, CSF and clinical assessments. The protein class APOE
constitutes another factor assisting in patient classification. Testing this gene status provides a
risk factor of developing AD. FDG-PET imaging measures the brain cell metabolism, where
cells affected by AD show reduced metabolism. Furthermore, demographics are provided (age,
gender).

Graph construction: A binarized graph is built with every demographic data element (age,
gender), APOE status, and FDG PET measures. For the rest of the three we chose 8 = 0 and
for age we choose = 2 respectively. The edges are based on the Sim(z;, ;) i.e. the feature
similarity measure. The 'Mixed’ affinity graph is constructed by averaging all the graphs
weighted with W and 'Mixed (noSim)’ without weighting. The weight matrix W imposes the
neighborhood shown in Fig. 5.4 on the binarized graph.

ABIDE [Abr+17]: The Autism Brain Imaging Data Exchange (ABIDE) aggregates data from
20 different sites and openly shares 1112 existing resting-state functional magnetic resonance
imaging (R-fMRI) datasets with corresponding phenotypic elements (gender) for 2 classes
normal and with Autism Spectrum Disorder (ASD). We choose 871 subjects divided into
normal(468) and ASD diseased (403) subjects. For fair comparison, we follow the same pre-
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Fig. 5.2.

Gender

Heat maps for representing the performance of GCN on the TADPOLE dataset with varying kernel size of
the filters. Each heat map comes from the distinct graph mentioned above. The highest and lowest
performing combination of k; and k- are highlighted with a black box and the corresponding k-values
are shown.

processing step as performed in the baseline method [Par+17]. We choose the non-imaging
elements gender and site, to construct two affinity graphs by choosing 8 = 0 for both graphs.

5.3.2 Experiments on medical datasets

Here, both the experimental setups mentioned above are shown and the subsequent findings
on the medical datasets are dicussed.

Effect of different kernel size on spectral convolution This set of experiment is designed
to investigate the optimal kernel size of the filter required for each graph. Each graph may
contain multiple clusters with different variance and structure. The baseline model [Par+17]
with two GC-layers in sequence is used to find out the required graph specific filter sizes
(i.e. value of k). Keeping the input constant (features and graph) we vary k; and k, € [1, 6].
Here, k=1 and k=6 indicate the kernel size of one-hop (smallest) and six-hop neighbors
(largest) respectively. From obtained heatmaps the best performing combination of &, and k-
are chosen for the InceptionGCN model as different kernel sizes. In this way, the sequential
GCN is expected to work at its peak when compared with the proposed model. The validity of
such setting is discussed in the later section.

Results: Fig. 5.2 shows the corresponding results in terms of heatmaps. The local and global
features are learnt by the filters with smaller and larger value of k respectively. The results
vary drastically with an average of 8% with the change in k; and k». It demonstrates models
of spectral convolution are susceptible to k range. All the heatmaps show that the accuracy
increases with the value of k, but saturates after certain value of k. It was observed that in
most of the cases k; > ko is the best combination. This way initial layer filters look at global
features in a same way as conventional CNNs. The accuracy shows variation as the graph
structure and the value of k is changed. A similar trend is seen for ABIDE, which reassures the
concept of sensitivity towards k.

InceptionGCN vs sequential GCN approaches A comparison with four baselines is shown
here. Parisot et al. [Par+17] is the traditional GCN with k; = k; = 3. The same architecture
of [Par+17] is modified with the best combination of the two ks mentioned as baseline
[k1, k2].The aggregator-function ¥ is also evaluated for a proper selection of activations from
all the individual GC-layers of the inception module by comparing them to the baseline [k, k1]
and [kq, k2]. The comparison shows that ¥ is not biased towards any particular kernel size.

5.3 Experiments and Results
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(a) represents the scenario of simulated data, where we change variances v; and vz, (b) shows the
scenario where the features are sampled from random distribution, (c) shows the variation in the
performance in terms of accuracy for all the combinations of v; and v for scenario (a)

Each graph yields a different performance, with such a setting. This shows the effect of
different neighborhood graph on the performance as shown in Tab. 5.2. The proposed model
outperforms the baselines [Par+17] by an average margin of 4.12 % for TADPOLE dataset.
The comparative results for ABIDE are given in Tab. 5.3. The proposed model performs
comparable to the [Par+17] baseline, but can not surpass it. In case of feature-based edge
weighting the performance decreases compared to the other weighting case. This shows the
non-discriminative nature of the features. The images acquired from multiple sites make
learning of the class-discriminative features more challenging for the model.

5.3.3 Experiments on simulated data

Seeing the contradictory performance on the two datasets, we investigate the model in detail
for better understanding of the spectral model and to interpret better design choices for
user-specific tasks. These experiments are specifically designed to investigate only the choice
of the kernel size of the filters.

Two 2-dimensional clusters C; and Cs having normal Gaussian distributions are created.
Each cluster distribution with 300 points each in Euclidean domain representing one class.
The graph is constructed based on the Euclidean distance between the features. The graph
is sparsifed using § = 0.5. Such a setting shows that the graph is highly correlated to the
labels. In order to keep the experiment easy to interpret, we set means [my, ms]=[—1, 1] for
C1 and O, respectively and vary the corresponding variances v; and vs. For the features, two
settings are shown: class-discriminative, here the (x,y)-values of the location of each point
are considered as features and class-indiscriminative, here features are randomly sampled
from a uniform distribution for both the classes. Fig. 5.3 (a) and (b) show both the setting.
For the model architecture, M is kept equal to 1 for both the baseline models [Par+17] and
InceptionGCN. Both the networks are trained for 200 epochs, with learning rate=0.2.

Results and interpretation Boxplots are used to demonstrate the results of this experi-
ment in Fig. 5.3(c). Each box displays the accuracy of the classification for various k values,
ranging from 1 to 10 for the class-discriminative features baseline model. Keeping v; = 0.5,
vy is varied for [0.1, 0.5, 1.0]. This experiments is repeated with v; =1.0. It can be perceived
that the model is less sensitive to the value of £ when two clusters are explicitly separable.
It can also be seen from the last two box plots that the model becomes adaptive to k£ with
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Tab. 5.1.

Tab. 5.2.

The performance of the model in terms of accuracy is represented in the table. v; and v represent the
variances of 2 classes of the simulated 2D Gaussian data. (a) In these cases the graph and corresponding
features are highly correlated to the classes, whereas in (b) only the graph is correlated to the classes.

v = 0.5 v = 1.0
k Vg = 0.1 Vg = 1.0 1}220.1 1)221.0

(a) 1 98.50 + 01.38 94.50 + 01.83 95.67 + 02.49 92.50 + 02.61
10 99.00 + 01.11 93.67 + 04.93 95.50 + 07.98 91.00 + 04.42
Inception- 94.83 + 03.02 97.00 £+ 02.56 92.00 + 03.56 94.33 + 03.56
GCN (1 layer
[k1,k2]=[1,10D)

(b) 1 49.33 £+ 06.84 50.33 £ 07.48 49.50 £ 04.60 50.00 + 06.28
10 60.33 + 16.78 53.50 + 10.99 50.83 + 06.02 55.33 + 14.79
Inception- 66.50+ 17.12 64.00 + 17.95 48.00 £+ 07.88 69.00 + 24.79
GCN 1 layer
[k1,k2]=[1,10D)

Depicts the mean accuracies from stratified k-fold cross validation for all the setups of experiments for
TADPOLE. The values of the chosen [k1, k2] for the graphs are highlighted in the Fig. 5.2.

‘ Affinity ‘ Age ‘ Gender ‘ APOE ‘ FDG ‘ Mixed ‘ Mixed (noSim) ‘
Parisot et al. [Par+17] | 82.55+04.78 | 84.59 +£04.82 | 82.68 +£05.70 | 84.46+05.46 | 82.04 + 05.71 82.11 + 04.94
Baselines

[k1, ko] 86.42 £+ 03.95 87.52 £ 03.51 85.33 £ 04.75 86.61 + 04.53 83.42 £ 05.93 81.95 £+ 05.92

[k1, k1] 85.46 + 05.60 | 86.19 4+ 04.91 85.08 + 05.21 86.55 + 04.55 | 81.85+06.28 81.36 + 05.98

[k2, k2] 86.42 + 03.98 | 84.59 4+ 04.82 | 78.75+04.45 | 84.46+ 0546 | 80.86 + 05.69 80.99 + 04.71
InceptionGCN

concat 88.35 + 03.03 | 88.06 + 04.39 | 88.14 + 03.20 | 86.99 + 03.98 | 84.35 + 06.97 | 83.62 + 06.09

max-pool 88.53 + 03.27 | 88.19 + 03.83 | 88.49 + 03.05 | 87.65 + 05.11 | 84.11 + 04.50 | 83.87 + 05.07

higher variance. Similar patterns are found as the value of v; is changed to 1.0, but v; =
1.0 indicates a clear decrease in accuracy. Filters with a larger receptive field would produce
generalized global features if there is a significant variation in the data.

In addition, we apply our model to simulated data with just one Inception module integrating
two separate [k1, k2]=[1,10] GC layers. For four different settings, the results are compared
of a single-layered GCN with £=[1,5,10] with one layered inception module. The superiority
of our model is seen mainly in the challenging scenarios, where the variance of both classes
is quite high (i.e. v; = 1.0 and v, = 1.0, cf. Tab. 5.1). Here, we report the results for class
indiscriminative features, where the performance drastically drops when features are totally
random for all the models. InceptionGCN outperforms the baseline in most of the cases.

5.4 Discussion and Conclusion

Our results show that both the spectral convolution and the proposed model obtained high
classification accuracies for TADPOLE (cf. Tab. 5.2), with a clear margin of InceptionGCN
over the baselines. In the case of the ABIDE dataset, however, both methods had comparable
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TSNE embedding in 2-dimensional space visualized on raw features for TADPOLE(left) and ABIDE(right)
datasets.

performance, which was considerably lower than on TADPOLE (cf. Tab. 5.3). To investigate
the different performances of both models, we utilized simulated data with i) different degrees
of class overlap in the feature space and ii) entirely random features, forcing the GCN models
to rely on connectivity alone (Tab. 5.1). It can be concluded that while both GCN models are
very sensitive to variance of data, our model shows the superiority in case of having large
variances and overlapping of clusters from different classes. The main factors affecting the
performance of GCN are features, graph and filters. With all the experiments we discuss all
the factors in detail.

Influence of the graph: For the ABIDE dataset, images are collected from 20 different sites
and imaging conditions, which adds considerable heterogeneity to the data. Consequently, the
affinity graph based on site information consists of 20 disjoint clusters. Building a graph based
on site information allows only the neighbors (i.e. samples from the same site) to contribute
to the feature learning. This has less clinical relevance to the classification task, whereas for
TADPOLE, the risk factors and demographics are clinically relevant. Such relevance of the
graph can be determined using the graphs’ energy function provided in [GHK13]. This energy
increases if nodes from different classes are connected with high affinities. When many of

Depicts the mean accuracy from stratified k-fold Cross Validation for all the setups of experiments for
ABIDE. The baseline values of [k1, k2] are [4,5], [6,5] and [4,4] for Gender, Site and Mixed,
Mixed(noSim)respectively.

Affinity Gender Site Mixed Mixed(noSim)
Parisot et al 67.39 £ 04.76 | 67.39+£01.49 | 67.85+00.63 | 69.80 + 04.35
[Par+17]

Baselines

[k1, k2] 68.19 + 05.38 | 69.00 + 04.07 | 70.26 + 03.70 | 70.26 + 04.58
[k1, k1] 66.70 +£ 06.90 | 68.65 + 04.31 69.91 +£ 07.50 | 69.80 + 03.90
[ka, ko] 65.78 £ 06.50 | 68.65 + 04.31 69.00 + 03.80 | 69.46 + 04.69
Inception-GCN

concat 66.36 £ 05.66 | 67.97 +£04.43 | 66.70 £ 06.27 | 69.23 + 06.66
max-pool 67.05 + 05.47 | 67.39 +£05.80 | 66.02+ 0592 | 69.11 + 06.68
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these wrong connections exist, the relevance of the graph for the classification task will be low.
Next, the mixed affinity graph performs worst overall in terms of accuracy (cf. Tab. 5.2 and
Tab. 5.3) and Standard Deviation (SD) (cf. Tab. 5.3). This indicates that a straightforward
creation of the mixed affinity graph by averaging impairs the inherent structure of each graph,
and important clinical semantics from individual graphs may get lost. This is confirmed by the
unequal performance observed for each affinity graph, which may even indicate a ranking of
relevance of each non-imaging element to the objective. A more elegant way to combine all
the affinity graphs is by ranking them while training [Kaz+18].

Influence of the features: The importance of a proper feature choice becomes clear in the
tests on simulated data. When using randomly sampled features for every node (cf. Tab. 5.1)
the overall performance drops drastically. A large standard deviation in the performance shows
that filters are not learned properly and the model does not converge. The same behavior can
be seen for the TADPOLE and ABIDE dataset when comparing the mixed and mixed (noSim)
(cf. Tab. 5.2 and 5.3). Since the features of the ABIDE dataset are not distinguishing the
nodes into different clusters compared to the TADPOLE dataset (Fig. 5.4), the performance of
the models drops for ABIDE when using the feature similarity (Sim), which is used for graph
construction. At the same time, the models receive a performance boost when the meaningful
features of TADPOLE are included into the graph generation process.

Influence of the kernel size: We investigated the effect of features and heterogeneity of the
graph towards the choice of k. Our results show that in case of class separable features, a
larger value of k£ will give more compact features. From Tab. 5.1, it is clear that InceptionGCN
performs better in case that the classes have large and different variances. In such a case,
InceptionGCN with multiple k£, manages to capture the class discriminative features for the
nodes. If the clusters are compact (v=0.1) the choice of k£ does not matter. From Fig. 5.3 (c),
we see that the model is not sensitive to k if the clusters are compact, whereas it becomes
sensitive when the variance increases. In case of class indiscriminative features and a less
relevant graph (as is the case of ABIDE) a larger kernel size helps to learn global class
discriminative feature.

Sequential model vs. InceptionGCN : Choosing the values of the two k from sequential
model (GCN) for a parallel setting might seem ambiguous. In Tab. 5.2, the role of the
aggregator-function is clearly visible in the performance, since the baselines are all the
possible combinations that the final output of our model can get. Furthermore, our proposed
model converges 1.63 times faster in terms of epochs compared to the baseline method when
trained with early stopping criteria with window size of 25 due to a better feature learning
process.

Future scope: Potential improvements of the InceptionGCN model include out-of-sample
inference (i.e. inductive learning), which will highly improve the usability of the model.
Another area of investigation is the integration of multiple affinity graphs into one model.
Furthermore, the InceptionGCN model structure itself can also be optimized, first by using a
learnable pre-processing step to obtain the neighborhood values %, and second, by analyzing
the number of hidden units in each GC-layer and the overall number of inception modules
necessary.

5.4 Discussion and Conclusion
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GCN and Graph Learning

When we strive to become better than we are,
everything around us becomes better too.

— Paulo Coelho

Graph deep learning has recently emerged as a promising ML tool enabling the generalization
of effective deep neural architectures to structured data that are not Euclidean. These
approaches have demonstrated promising results across a wide variety of applications from
social science, particle physics, computer vision, graphics, and chemistry. One of the limitations
of most current graph neural network architectures is that they are often confined to the
transductive setting and rely on a precomputed graph. In other words these methods assume
that the underlying graph is fixed and known. This presumption is not inherently valid in
certain settings, such as those in medical and healthcare applications, because the graph may
be noisy, partly- or even completely unknown, and one is therefore interested in inferring
it from the data. This is particularly important in inductive settings when handling nodes
that are not present in the graph at the time of training. In addition, such a graph may often
itself communicate insights that are far more important than the downstream task. In this
part, Differentiable Graph Module (DGM) is introduced, a learnable function that predicts
the edge probability in the task-relevant graph, which can be combined with convolutional
graph neural network layers and finally trained in an end-to-end fashion. An extensive
evaluation for applications in healthcare (disease prediction), brain imaging (age prediction),
computer graphics (3D dot cloud segmentation), and computer vision (zero-shot learning)
are demonstrated in this chapter. The proposed model offers substantial improvement in both
transductive and inductive settings over baselines, and achieves state-of-the-art performance.

6.1 Introduction

Geometric deep learning (GDL) is a new, emerging deep learning branch that attempts
to generalize deep neural networks to non-Euclidean structured data such as graphs and
manifolds [Bro+17; HYL17b; Bat+18]. Graphs are ubiquitous in various branches of science,
in particular, being general abstract descriptions of relationships and interaction systems.
Graph-based learning models have been successfully applied in social sciences [ZC18; Qi+18],
computer vision and graphics [Qi+17; Mon+17; Wan+19b], physical [Cho+18b; Duv+15;
Gil+17; Li+18c], medical, and biological [Zitnik19; Par+18; Par+17; Mel+19; Kaz+19c;
ZAL18; Gai+19] sciences. The Graph Neural Networks (GNNs) are a common approach
to graph learning. While dating back to at least [Sca+08], GNNs has become a useful and
common tool mainly due to the recent development. Today’s wide variety of GNN architectures
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includes spectral [Bru+13] and spectral-like [DBV16; KW16a; Lev+18; Bia+19] methods,
local charting [Mon+17], and attention [Vel+17; Kon18; BL17; Mon+18]. Battaglia et
al. [Bat+18] showed that most GNNs can be formulated in terms of message passing
[Gil+17]. Assuming that the underlying graph is given and fixed is a notable downside to most
GNN architectures, while graph-like operations usually amount to modifying the node-wise
functionality. Architectures such as message passing neural networks [Gil+17] or primal-dual
convolutions [Mon+ 18] also require updating of the edge features, but the graph topology
still remains the same. This is also a limiting presumption. For some problems, the data
can be assumed to have some underlying graph structure [LWC12], which is called latent
graph, may not have the graph itself. For example, this is the case in medical and healthcare
applications where the graph could be noisy, partially- or even entirely unknown, and one is
therefore interested in infering it from the data. This is particularly important in inductive
settings where some nodes in the graph may be present at testing but not at training. In
addition, the graph can often be much more valuable than the downstream function, as it
conveys some model interpretability. Graph topology inference is a longstanding problem that
has been solved using the [Dong19; Mateos19] signal processing techniques. Several models
dealing with latent graphs have recently been introduced in the machine-learning literature.
Kipf et al. [Kip+18] used a variational autoencoder, where the latent code represents the
interaction graph underlying a physical system, and the reconstruction is based on graph
neural networks. Wang et al. [Wan+19b] proposed dynamic graph CNNs (DGCNN) for point
cloud analysis, where a KNN graph is built on the fly inside the neural network’s feature space.
Zhan et al. [Zha+18a] proposed the construction and combination of multiple Laplacians
with learnable weights. Li et al. [Li+18a] similarly proposed a spectral graph convolution
method, in which a residual Laplacian defined on the feature output from each layer and the
input Laplacian is modified for each layer. With the Laplacians, both the approaches learn the
graph but still require an initial graph. Huang et al. [Hua+ 18] proposed a further variant
of spectral filters which would parameterize the Laplacian instead of the filter coefficient.
Jiang et al. [jiang2019semi] proposed a model where graph learning and graph convolution
are integrated into a unified network architecture, but it is computationally expensive to
learn attention coefficients on node distances. Franceschi et al. [Fra+19] formulated graph
learning as a problem of bilevel optimization, by modeling and optimizing the graph as a
hyper-parameter with a separate loss. This method is transductive and does not increase in
scale. Main contributions In this part a model is proposed that simultaneously learns the
graph and graph convolutional filters on it. Several of the proposed model ’s settings are
demonstrated, including a continuous and discrete differentiable graph construction, and
show how it can be optimized. It is also shown in the preceding graph learning methods
can be considered as our model’s particular settings. A detailed ablation analyses of the
proposed model and evaluation on healthcare and brain imaging applications (disease and
age prediction), computer graphics (3D point cloud segmentation), and computer vision (zero
shot learning) is shown. The proposed model demonstrates substantial changes over baselines
and produces cutting-edge performance in both transductive and inductive environments.

Chapter 6 GCN and Graph Learning



Fig. 6.1.
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Left: Two-layered architecture including Differentiable Graph Module (DGM) that learns the graph, and
Diffusion Module that uses the graph convolutional filters. Right: Details of DGM in its two variants,
c¢DGM and dDGM.

6.2 Background

Given a set of N data points with dimension d, denoted as X € RV *?, a common challenge in
machine learning is to generate a representation that is conscious of the underlying structure
of the data. This structure may be represented as a graph ¢ = (¥, A) where ¥ = {1,...,n}
is the set of vertices and A = (a;;) is a matrix of (weighted) adjacency. A is used to define
the edges of the graph & = {(4, ) : a;; > 0, Ij € V}; the edge weight a;; > 0is the affinity
between xi and x; scales.

Assuming this structure is given with the details, we have a graph attributed to the nodes
denoted as ¢ = (V, A, X) on which a graph neural network (GNN) can be implemented. GNN
attempts to find an embedding Z = fe (X, A) by doing message passing [Gil+17; Bat+18]

zZ;, = Z h@(xi7xj7aij) (61)

JEN;

in a local neighborhood 1; = {j : (4, ) € &} of the node. Here hg denotes a learnable function
shared across nodes, the parameters ® of which are chosen to minimize a downstream loss.
Equation (6.1) is often referred to as edge convolution (EC) [Wan+19b] owing to the extensive
usage of the conventional convolution operation on grid. A special case of (6.1) of node-wise
linear transformation he = a;;®x; by matrix © is called graph convolution (GC) [DBV16;
KW16a]. The node embeddings can be used for node-wise classification, or pooled for graph-
wise classification tasks.

Latent graphs In this part of the thesis, we are interested in learning the unknown graph.
Knowing the graph has two purposes: First, to represent structure of the data. Second, it is
used to achieve the embedding of the data points as support for graph-based convolutions.
Wang et al. [Wan+19b], who proposed the edge convolution (6.1) with h(x;,x; — x;) on a
KNN graph constructed from the data points X, is the most related approach to this paper.
Dynamic Graph CNN (DGCNN) allows the graph to be updated on the fly between the layers of

6.2 Background

Sig;noid soft E
threshold | —> A
,’: x| GraphConv Loss
>
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the network, hence the name of the method. The biggest obstacle to incorporate graph building
as part of the deep learning framework is that it is a discrete, non-differentiable structure.
DGCNN optimizes the graph convolution filters and layer activations for the downstream tasks
of classification and segmentation. However, the graph is constructed ad-hoc using a KNN rule
on the input activation of each layer, without a dedicated loss for the graph to be learned. As
such, the graph is dynamically constructed but not learned, and the underlying latent graph
of the domain is not recovered. The proposed method, described in the next section, aims at
addressing these issues.

6.3 Method

6.3.1 Architecture

In this chapter, a general graph learning strategy is proposed based on the output features of
each layer and the graphs are optimized during training together with the network parameters.
The architecture consists of two major components, the Differentiable Graph Module (DGM)
and Diffusion Module, which are shown in Figure 6.1 and described below.

Differentiable Graph Module: The DGM is dedicated to build a (weighted) graph that
represents the input space. DGM takes as input the feature matrix X € RV*? (and optionally
an initial graph ¢) and gives the output graph ¢. Since the ¢ node set is fixed, its adjacency
matrices Ag, and A can represent the two graphs. The input features X € RV*? are first
transformed into auxiliary features X = fo(X) € RY xd by means of a parametric function
fe, which typically reduces the input dimension (d < d). If the initial graph Gyis given,
the general form fo(6.1) can be used, where new X features are computed by edge- or
graph-convolution on (. Otherwise, fg is applied to each node feature independently, acting
row-wise on the matrix X. Second, the auxiliary features X are used for graph construction.
The edge probability are thus defined as p;;(X; ©,t) = e k%3 = ~tlfo®)—fo()l3,
where ¢ is also a learnable parameter. For the sake of simplicity, Euclidean metric for defining
the edge probability is chosen and other metrics, e.g. hyperbolic [poincare_embeddings;
hyperbolic_fisheye; Kri+10], could also be used. A straightforward way to derive a graph ¢
is to transform the probability matrix P(X; ©,t) into a weighted adjacency matrix, e.g. by
soft-thresholding the distances ||X; — X, || using the sigmoid function a;; = 1/(1+p;;e'T), where
T denotes the threshold. Thus, the adjacency matrix A(X; ®,¢,T) represents the graph and
is parametrized through ©,t and the additional parameter 7', and is differentiable w.r.t. these
parameters. This version of the proposed architecture, is refered to as continuous DGM (¢cDGM).
One of the potential drawbacks of cDGM is that it can generate a dense matrix of adjacence,
i.e. a fully connected graph with several edges having near-zero weight. As an effective
alternative, the Gumbel-Top-k trick[KHW19] can be used to sample edges from the probability
P(X; ©,1) to generate a sparse k-degree graph. Such sampling can be regarded as a stochastic
relaxation of the KNN rule. For each node i, k edges (4,5;1), ..., (i, ;%) are extracted as
the first k elements of argsort(log(p,) — log(—log(q)), where @ € R¥ is uniform i.i.d. in
the interval [0, 1]. The extracted samples thus follow the categorical distribution p;;/ >, pir
[KHW19]. Now, the edge set of this sparse graph ¢ can be constructed as §(X;0©,t) =
{(4,5i1)s---, (4, Jik) ¢ = 1,..., N} and represent it by the unweighted adjacency matrix
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A(X;0,t). The main benefit of this matrix is its sparse nature. Next we demonstrate how to
learn the parameters O, ¢ efficiently. This version of the proposed architecture will henceforth
be referred to as discrete DGM (dDGM). Note that since the sampling scheme for the dDGM
graph is stochastic, the network’s prediction at inference time is not deterministic. Taking
advantage of this, a consensus scheme is implemented. The classification task is run for 8
times in our experiments, and maximum of the cumulative soft predictions is selected as the
predicted class.

Diffusion Module: This module takes as input the G graph generated by the DGM and the X
features, and gives a new set of X’ = g (X) output features. Here, g represents a general
function of the form (6.1); it is either edge- or graph-convolution on ¢ in the following
experiments.

Combined model: A multi-layer network is used in which each node, numbered as [ =
1,..., L, contains a DGM and Diffusion Module, as shown in Figure 6.1. The output of /th
layer is given by,

Y = pD(xO ) KO, A0y A opOETY) gD g (AGHD X0

Assumptions:
o X(0) =X
¢ A =1, if no intial graph is given (i.e., the initial graph is G(©) = (1, 0)))
. fé)o ) is a node-wise function (MLP).

Further, based on the task at hand, the output activations X'*) of the last layer L can be fed as
input to an MLP to obtain the final node predictions. DGCNN can be obtained as one of the
basic setting of our model f® = id in the DGM module and using the Diffusion module for
edge convolution.

6.3.2 Training

The sampling scheme followed in dDGM prevents the gradient of the downstream classification
loss function to flow through our network’s graph prediction branch. Hence the graph
prediction branch only involves graph features X. Here, for the graph optimization we define
a loss inspired from reinforcement learning [Ronald1992], that rewards edges involved in
correct classification and penalizing the ones that led to misclassification. Let the node-wise
labels predicted by the proposed model be y and y the groundtruth labels. The reward
function 6(y;, §;) can then be given by taking value —1 if y; = §; and 1 otherwise. We derive
the graph loss as

N L

Lgraph(®(1)7 R ®(L)) = Z 5(%» gl) Z Z IOg pgé) (@(l)) (62)

i=1 =1 j:(i,j)€8®

The gradient of the above graph loss approximates the gradient of the expectation
Ecm ... .cm)~m@@m),.. p@wm)) 2_; 6(yi, ;) with respect to the parameters of the graphs in
all the layers. The samples from different classes are weighted unevenly by the Equation (??)

6.3 Method
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Classification accuracy in % on Tadpole in the transductive setting. The top three performance scores
are highlighted in color as: First, Second, Third.

Method Accuracy
Linear classifier 70.22+6.32
Multi-GCN [Kaz+19a] 76.061+0.72

Spectral-GCN [Par+17] 81.00+£6.40
InceptionGCN [Kaz+19c] 84.11+4.50

DGCNN [Wan+19b] 84.59+4.33
LDS [Fra+19] 87.06+3.67
cDGM 92.91+2.50
dDGM 94.14+2.12

in the early stages of the training especially when the classification accuracy is poor. This
leads the network to support an uniform estimation of low probabilities for all the edges. The
model weighs positive and negative samples according to the current per-class precision to
avoid this behavior:

#Classes

Lgrapn(®@W,...,0H)) = Z > " elyi i Z S logpl(@Y) (6.3)

i€c =1 j:(i,5)€6M

with 0.(y;, §;) being the class accuracy acc. computed on the current prediction if y; # ¥,
or 0.(yi, J;) = 1 — acc. otherwise. Uneven distribution of the samples between the different
classes in the dataset are dealt with a per-class accuracy rather than a global accuracy. The
addition of Graph loss Lg,.pn and classification loss are then optimised together.

6.4 Experiments and Results

The proposed method is tested on four applications from different domains (healthcare,
computer graphics, computer vision). The four applications specifically are disease prediction,
age prediction, 3D point cloud segmentation and, zero-shot learning.

Healthcare and Brain imaging applications Here two datasets are used. 1) Tadpole [Mar+18]
consists of 564 patients. Each provided with 354 dimensional representation vector derived
from imaging (MRI, fMRI, PET) and non-imaging (demographics and genotypes) features. The
task is to classify each patient as ‘Normal Control’, Alzheimer’s Disease’ and ‘Mild Cognitive
Impairment’. UK Biobank[Mil+16] is selected for the second dataset. This consists of 14,503
individuals, each with a 440 dimensional feature derived from brain MRI and fMRI imaging.
The task here is to classify the age group of the patient (50-59,60-69, 70-79, and 80-89). All
tasks are either transductive or inductive, where all nodes are provided during training in the
former setting but the labels of the test nodes are kept, while in the latter setting test nodes are
completely removed during training and reintroduced only during testing. Previous methods
[Par+17; Kaz+19a; Kaz+19c; Kaz+19b] used GNNs with hand-crafted population graphs
focused on non-imaging meta-functions such as patient age and sex. The proposed method
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Tab. 6.2. Scalability: training and test iteration times for different number of nodes.

Training iteration

Method n =564 5k 10k
DGCNN 6.99ms | 28.2ms | 104ms
LDS [Fra+19] 1.84s >30m >30m
cDGN 7.35ms | 47.8ms | 211lms
dDGN 8.29ms | 37.0ms | 141ms
Test iteration

Method n =564 5k 10k
DGCNN 4.60ms | 25.2ms | 102ms
LDS [Fra+19] 1.84s >30m >30m
cDGN 3.02ms | 15.1ms 51ms
dDGN 3.97ms | 24.6ms | 104ms

Tab. 6.3. Classification accuracy in % for disease and age prediction tasks in the transductive and inductive settings
on the Tadpole (left) and UK Biobank datasets (right). "Does not support inductive setting.

TADPOLE UK Biobank
Method
Transductive Inductive Transductive Inductive
DGCNN 84.594+4.33 82.994+4.91 58.35+0.91 51.8448.16
LDS 87.06+3.67 T OOM 1
cDGM 92.91+2.50 91.85+2.62 61.32+1.51 55.91+3.49
dDGM 94.10+2.12 92.17+3.65 63.22+1.12 57.34+5.32

allows the graph to be learned directly from the input features of the patients, without any
pre-computed graph. The following methods are used as baselines: simple linear classifier as a
non-graph method. Multi-GCN [Kaz+19a], Spectral-GCN [Par+17], InceptionGCN [Kaz+19c]
as graph methods with hand-crafted graph; and DGCNN [Wan+19b] and LDS [Fra+19] as
methods that learn the graph. We note that LDS does not support inductive learning. In
Tables 6.1 and 6.3 shows results using 10-fold cross validation. As can be seen the proposed
method shows significantly better results. In terms of training ans testing times, our model
is on par with DGCNN and about three orders of magnitude faster than LDS as shown in
Table 6.2.

Ablation study

The functions f and g are generic and could be chosen according to the task. In this section,
an ablation study of different configurations of our architecture, in particular, the choice
of functions f and ¢ (identity, node-wise (MLP), graph convolution (GC), edge convolution
(EC)) and the graph construction strategy (cDGM and dDGM) is shown for Tadpole dataset
in transductive setting. The architecture for the ablation study consists of two convolutional
layers with output size of 16. Results are shown in Table 6.4. It was observed that with f = id

6.4 Experiments and Results
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DGCNN is obtained, here a graph based on kNN selection is dynamically computed only on
the space of node representation at each epoch; this setting is significantly inferior to the use
of graph based convolution. The best found is using graph convolution for both f and g.

Computer graphics DGCNN architecture from [Wan+19b] is mimiced for this task. However,
their graph kNN sampling scheme is replaced by our DGM with the feature depth of 16.
Further k£ = 20 and other training parameters are kept same as DGCNN. During inference
time, given the stochastic nature of the predicted graph, the classification of each point is
repeated for 8 times and the argmax of the cumulative soft predictions is chosen.

The mean Intersection-over-Union (mloU) values are reported in Table 6.5. These value
are calculated by averaging the IoUs of all testing shapes. The proposed approach makes
performance improvements on almost all shape groups over the original kNN sampling scheme,
which is considered very difficult. Figure 6.2 shows the sampling probabilities of some points
(denoted by red) on different shapes for two layers of the network respectively. It can be
noticed that the probability of the connecting two points is not related to the point feature
space which is used for classification. However it retains certain spatial information and seems
to be inspecting symmetries of the shape.

Zero-shot learning (ZSL) in computer vision In ZSL, the task is to learn classifiers for the
unseen classes and solve the classification problem for samples belonging to unseen classes
based on training data of only seen classes. The most popular approach is to train a network
to predict a vector representation for a class starting from some implicit prior knowledge, i.e.
semantic embedding [Xia+18]. Recent works showed that using additional explicit relations
between classes in the form of knowledge graphs can help to significantly improve the learning
of classifier for the unknown classes and hence the classification accuracy for unseen data
samples.

Formally, let X € RV*9 be the semantic embeddings (i.e. word vectors) associated with
each category class. The Zero-Shot task loss is defined as the summation over all the M < N
training classes of Zf\il |w; — W;||3, where w; and W; are the predicted and ground-truth
vector representation of the ith class, respectively. Note that, even if in ZSL we deal with a
regression problem, it is straightforward to adapt it to deal with our graph loss defined in

equation 6.3, considering argmin ;||w; — w;||2 as the predicted category for sample x;.

il

Mimicking [Kam+19], our model consists of two graph convolution layers with hidden and
output layer of dimension 2048 and 2049, paired with two DGM layers of dimension 16 for

Ablation study on Tadpole transductive task. Shown is classification accuracy for different architectural
choices. Notation f+g refers to the choice of the DGM and Diffusion modules (GC: graph convolution,
EC: edge convolution; I: identity, MLP: multilayer perceptron). *Configuration equivalent to DGCNN.

I+ EC MLP + GC GC + GC MLP + EC GC + EC
cDGM — 92.424+3.82 | 90.68+4.58 | 92.29+4.18 | 91.78+3.21
dDGM | 84.27+4.20* | 93.47+3.82 | 94.09+£1.81 | 93.27+3.20 | 94.14+2.12

Chapter 6 GCN and Graph Learning




Fig. 6.2.

Tab. 6.5. Comparison of mIoU(%) score in ShapeNet part
segmentation task.

# Shapes | DGCNN | dDGM

Airplane 2690 84.0 84.1

Bag 76 83.4 82.5

Cap 55 86.7 84.6

Car 898 77.8 77.9

Chair 3758 90.6 91.3

Earphone 69 74.7 79.0

Guitar 787 91.2 92.5

ayer 2 over 3 ayer 2 ayer 3 Knife 392 87.5 87.7

Comparison between our DGM and DGCNN Lamp 1547 82.8 83.7

Conoluional layers of the network. In DGM the | L2POP 451 | 957 | 965

colormap encodes the probability of each point to Motorbike 202 66.3 66.8
be connected to the red point. For DGCNN we plot

the exponential of the negative Euclidean distance | Mug 184 94.9 95.1

on feature space. Pistol 283 81.1 | 83.1

Rocket 66 63.5 62.3

Skateboard 152 74.5 77.8

Table 5271 82.6 82.2

MEAN 85.2 85.6

graph representation and k¥ = 3. Each layer is composed by the following convolution on
graphs:
XU+ — ((Dm)fl A<z>x<z>@<z>) 6.4)

where o(-) is a LeakyReLU non linearity, ®") are the learned weights and (D®)~*A(), with
dz(.? =2 al(é) is the non-symmetric normalization of the adjacency matrix A (). Essentially,
our model is the same as SGCN [Kam+19], where we replace the input knowledge graph by

our DGM module for learning A.

Following [Kam+19], we use weights of the last fully connected layer of a ResNet-50 [He+16]
pre-trained on ImageNet 2012 dataset [Den+09] as our target vector representation y; €
R2949_ Input semantic features x; € R3°° are extracted with GloVe text model [PSM14] trained
on Wikipedia dataset.

We train our model on the 21K ImageNet dataset classes, where we have as input the semantic
embedding for all classes, but only the first 1K have a corresponding ground-truth vector
representation. The model is trained for 5000 iterations on a randomly subsampled set of 7K
categories containing all the 1K of training.

6.4 Experiments and Results
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Fig. 6.3.
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T2z 3 4 5 6 1
kering neighborhood on knowledge graph

Example of the 2-ring neighborhood of the "sheep" category on the knowledge graph (left) and on our
predicted graph (center) sampled considering the 5 most probable edges. On the right the average
predicted probability of edges belonging to the k-ring neighborhood (AwA2 test categories). Higher
probabilities corresponding to nearest neighbors suggest that the predicted graph structure is loosely
related to the knowledge graph.

Testing is performed on AWA2 dataset, composed of 37,322 images belonging to 50 different
animal classes. We use the test split proposed in [WYG18] comprising images from 10 classes
not present in the first 1K of ImageNet used for training. Top-1 accuracy for dDGM is 74.7%,
greater than that of GCNZ [WYG18] (70.5%) but lower than DGP (77.3%). Note that, unlike
the last two methods, we do not make use of the knowledge graph. As shown in Figure
6.3, the knowledge graph seems indeed a good graph representation for zero-shot task. Our
predicted graph shows some similarity to it, however, fails to capture its hierarchical structure.
We leave for future work imposing additional constraints on the graph structure, e.g. making
it tree-like.

6.5 Discussion and conclusion

In this chapter, the challenge of graph learning in graph neural networks is addressed. The
proposed Differentiable Graph Module (DGM) predicts a probabilistic graph which allows a
discrete graph to be sampled accordingly. This sampled graph is used further in any graph
convolutional operator. Further, a weighted loss inspired by reinforcement learning allowing
for the optimization of edge probabilities is proposed.

The proposed DGM is very generic and adaptable to any graph convolution based method.
The generic nature of DGM is shown with wide variety of applications mainly in healthcare
(disease prediction), brain imaging (age and gender prediction), computer graphics (3D point
cloud segmentation) and computer vision (zero-shot learning). In these applications we also
deal with multi-modal datasets and inductive settings.

Further, we discuss some open problems with the proposed method. Even though, the
proposed method is computationally more lightweight than the existing approaches (e.g.
[JML19]), quadratic complexity with respect to the number of input nodes still exist. This is
because it requires the computation of all pairwise distances. Limiting probability calculation
in a node neighborhood and using a tree-based algorithm may help minimize the complexity
to O(nlogn). In addition, our selection of sampling k neighbors does not take into account
the graph’s heterogeneity in terms of node degree distribution. Other sampling schemes such
as (e.g. the threshold-based sampling [JML19]) may be explored. It would also be useful to
consider prior knowledge of the graph, e.g. by imposing a node degree distribution, or by
presenting an initial input graph that can be adapted for a particular task.

In a broader perspective, this work addresses a significant gap in graphical neural network re-
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search, addressing the scenario when the graph is unknown. In addition to providing improved
quantitative results on the downstream mission, our approach potentially provides a means
of understanding what geometric deep models are learning. This knowledge exploration is
presented in the form of a graph that matches the data, which may provide useful insights in
certain applications and be even more useful than the downstream task itself.

Encouraging results on patient population databases offer potential use or method for
computer-aided diagnostics, which could have a significant positive impact on healthcare. At
the same time, it is not clear how our approach (and generally graph neural networks) copes
with adversarial attacks that could pose such risks when used in sensitive environments such
as healthcare.

6.5 Discussion and conclusion
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Discussion and Conclusion

An expert is a person who has made all the mistakes
that can be made in a very narrow field.

— Niels Bohr

7.1 Discussion

In terms of effectiveness for solving numerous graph data based problems, GNNs have already
been proven to be powerful, but some open challenges still exist which could be attributed to
the complexity of graphs. Some of these challenges are discussed in this section along with
possible future directions:

Model depth: It is proven in literature that the depth of deep neural models are pivotal for
the success of deep learning [He+16]. In other words the number of layers in a model extract
low to high level information from the input to learn a rich representation [He+16].

In the case of GCNs, [LHW18] demonstrates that as the number of graph convolutional layers
increases the model performance drastically decreases. This behavior can be explained by
analyzing the process of graph convolution. Theoretically, at the first GC layer, the central node
transforms into the weighted summation of its neighbors. In the next layer, the same central
node implicitly accumulates the information from its two-hop neighbors, and this process
continues to occur in all subsequent layers. Eventually, if in theory, the number of GC layers
increases to infinity, then each node will have the mean representation of the population. This
means that all nodes representations will converge to a single point in the data embedding
[LHW18]. Considering this limitation, the depth of the GCN should be assessed for optimal
results on graph data. In particular, this choice could be governed by the dataset size, variance
in the input features with respect to the class distribution, in case of classification and degree
distribution. The larger and more heterogeneous the dataset, the more depth can be increased
accordingly. The degree distribution factor can be used in case the graph is given. The
denser the graph is in terms of the degree distribution, the chances of learning the average
node representations are high. In such a scenario, shallow GCN architectures could be more
suitable.

Scalability trade-off: For GCNs the scalability of models is a crucial factor during deployment.

Scalability associated with GCNs can be measured in the following three ways:
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* Number of nodes: The dataset size is particularly important in the case of transductive
settings as the entire dataset together with the graph needs to be loaded onto the GPU.
This can be solved by iteratively sampling from the entire dataset. This sampled data can
be considered representative of the entire dataset. The mean performance of multiple
such iterations can be then consider as the final performance of the model.

* Number of edges: Fully connected graphs are not a great choice to use during the model
training, as they do not inherit any latent structure and the heat dissipation in the graph
Laplacian would converge all the nodes to a single point. This mean all the nodes will
be acquire the mean representation of all the points. Generally, graphs are pruned using
various methods such as thresholding, pooling, sampling etc.

* Number of graphs: As stated in chapter 3, multiple graphs are essential for the better
performance of the model. However, the increase in the number of graphs would explode
the number of learnable parameters and eventually the computational complexity. One
possible solution to such problem of scalability is solved in chapter 6, where the features
selection process is designed such that the final graph is learned based on weighted
input features, otherwise used to create separate graphs.

Directional and signed graphs: All the methods in this thesis are designed for bidirectional
graphs. However, these graphs can either be directional or signed. Many applications
such as brain signal analysis, cardiac mesh analysis require directional and signed graphs
respectively. Both signed and directional graphs raise additional challenges to the existing
methods [Deb+91]. Hyper-graphs on the other hand representing complex relationships
among multiple objects are studied [DD03]. Only a few works like [LNK19] and [Gul+18] in
the recent past have focused on designing deep learning models to handle such graphs.
Dynamic graphs: Even though in chapter 6, we illustrated a model that learns a graph during
training, the number of nodes still stay constant. However, many real graphs are dynamic
in nature which means nodes and edges may change with time. One such example could
be a gigantic social network like Facebook, where the users (nodes) may develop multiple
connections over time. Further, new users may join and the existing ones may leave. Handling
of such graphs is out of scope of this thesis and could be a potential future direction. Some of
the relevant works in this direction so far are [DMT18] and [Pha+16].

Interpretability: In the medical domain, interpretability is crucial irrespective of the type of
model. For instance, in decision making and treatment planning procedures, interpretability is
important while deploying the deep algorithms into the clinical usage system. Interpretability
for GCNs is not straight forward as the outcome depends mainly on four factors, which are 1)
input features, 2) input/ learned graph, 3) network parameters and 4) network training. Some
of the methods in this direction are [Yin+19; Hua+20; Yua+20]. Interpretability of GCN has
a huge scope in medical domain. One of the latest works in this regard is [Jau+20].

7.2 Conclusion

GCNs have been recently introduced in healthcare. This thesis successfully demonstrated
applications of GCNs in healthcare by: 1) integrating GCN in medical domain for applications
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such as Alzheimer’s classification, age and gender prediction, Autism prediction and Parkinson’s
prediction. On the technical front, four main questions were answered, which are 1) how to
handle multiple graph scenario? 2) how to handle multiple graphs for personalised medicine?
3) how to handle intra-graph heterogeneity? and 4) how to learn a latent graph?

All the models proposed in this thesis exhibit state of the art results on various medical
problems using four publicly available datasets, medical datasets and a few synthesized
datasets. Furthermore, the graph learning method presented in this thesis is also applied
to computer vision problems such as point cloud segmentation and zero-shot learning. All
the models designed and proposed throughout this thesis are robust and computationally
light-weight.

In conclusion, this thesis is one of the pioneer works which establishes that deep learning on
graphs is a promising and a fast-developing area of research for achieving better outcomes
in healthcare applications. Further research in this direction shall provide a critical building
block in modeling CADx systems for both single-modal and multi-modal data. Graph deep
learning is definitely an important step towards ushering in a better era of machine learning
and artificial intelligence, especially in the field of healthcare.

7.2 Conclusion
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Discussed in this Thesis

Simultaneous imputation and disease classification in
incomplete medical datasets using Multigraph Geometric Matrix
Completion (MGMC)

Vivar, Gerome, Kazi, Anees, Burwinkel, Hendrik, Zwergal, Andreas, Navab, Nassir, Ahmadi,
Seyed-Ahmad

Large-scale population-based studies in medicine are a key resource towards better diagnosis,
monitoring, and treatment of diseases. They also serve as enablers of clinical decision support

systems, in particular Computer Aided Diagnosis (CADx) using machine learning (ML). Nu-

merous ML approaches for CADx have been proposed in literature. However, these approaches
assume full data availability, which is not always feasible in clinical data. To account for
missing data, incomplete data samples are either removed or imputed, which could lead to
data bias and may negatively affect classification performance. As a solution, we propose an
end-to-end learning of imputation and disease prediction of incomplete medical datasets via
Multigraph Geometric Matrix Completion (MGMC). MGMC uses multiple recurrent graph
convolutional networks, where each graph represents an independent population model based
on a key clinical meta-feature like age, sex, or cognitive function. Graph signal aggregation
from local patient neighborhoods, combined with multigraph signal fusion via self-attention,
has a regularizing effect on both matrix reconstruction and classification performance. Our

proposed approach is able to impute class relevant features as well as perform accurate classi-

fication on two publicly available medical datasets. We empirically show the superiority of our
proposed approach in terms of classification and imputation performance when compared with
state-of-the-art approaches. MGMC enables disease prediction in multimodal and incomplete
medical datasets. These findings could serve as baseline for future CADx approaches which
utilize incomplete datasets.

arXiv preprint arXiv:2005.06935 (2020)

Multi-modal Graph Fusion for Inductive Disease Classification
in Incomplete Datasets

Vivar, Gerome, Burwinkel, Hendrik, Kazi, Anees, Zwergal, Andreas, Navab, Nassir, Ahmadi,
Seyed-Ahmad
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With the need for adequate analysis of blood flow dynamics, different imaging modalities
have been developed to measure varying blood velocities over time. Due to its numerous
advantages, Doppler ultrasound sonography remains one of the most widely used techniques
in clinical routine, but requires additional preprocessing to recover 3D velocity information.
Despite great progress in the last years, recent approaches do not jointly consider spatial and
temporal variation in blood flow. In this work, we present a novel gating- and compounding-
free method to simultaneously reconstruct a 3D velocity field and a temporal flow profile
from arbitrarily sampled Doppler ultrasound measurements obtained from multiple directions.
Based on a laminar flow assumption, a patch-wise B-spline formulation of blood velocity is
coupled for the first time with a global waveform model acting as temporal regularization. We
evaluated our method on three virtual phantom datasets, demonstrating robustness in terms
of noise, angle between measurements and data sparsity, and applied it successfully to five
real case datasets of carotid artery examination.

arXiv preprint arXiv:1905.03053(2019)

Precise proximal femur fracture classification for interactive
training and surgical planning

Jiménez-Sanchez, Amelia*, Kazi, Anees*, Albarqouni, Shadi, Kirchhoff, Chlodwig,
Biberthaler, Peter, Navab, Nassir, Kirchhoff, Sonja, Mateus, Diana

Purpose: Demonstrate the feasibility of a fully automatic computer-aided diagnosis (CAD)
tool, based on deep learning, that localizes and classifies proximal femur fractures on X-ray
images according to the AO classification. The proposed framework aims to improve patient
treatment planning and provide support for the training of trauma surgeon residents.

Material and methods: A database of 1347 clinical radiographic studies was collected. Ra-
diologists and trauma surgeons annotated all fractures with bounding boxes and provided a
classification according to the AO standard. In all experiments, the dataset was split patient-
wise in three with the ratio 70%:10%:20% to build the training, validation and test sets,
respectively. ResNet-50 and AlexNet architectures were implemented as deep learning classi-
fication and localization models, respectively. Accuracy, precision, recall and [Formula: see
text]-score were reported as classification metrics. Retrieval of similar cases was evaluated in
terms of precision and recall.

Results: The proposed CAD tool for the classification of radiographs into types "A," "B" and
"not-fractured" reaches a [Formula: see text]-score of 87% and AUC of 0.95. When classifying
fractures versus not-fractured cases it improves up to 94% and 0.98. Prior localization of the
fracture results in an improvement with respect to full-image classification. In total, 100%
of the predicted centers of the region of interest are contained in the manually provided
bounding boxes. The system retrieves on average 9 relevant images (from the same class) out
of 10 cases.

Conclusion: Our CAD scheme localizes, detects and further classifies proximal femur fractures
achieving results comparable to expert-level and state-of-the-art performance. Our auxiliary
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localization model was highly accurate predicting the region of interest in the radiograph. We
further investigated several strategies of verification for its adoption into the daily clinical
routine. A sensitivity analysis of the size of the ROI and image retrieval as a clinical use case
were presented.

International Journal of Computer Assisted Radiology and Surgery(2020))

Adaptive image-feature learning for disease classification using
inductive graph networks. In International Conference on
Medical Image Computing and Computer-Assisted
Interventioninternational Conference on Medical Image
Computing and Computer-Assisted Intervention(2019)

Burwinkel, H., Kazi, A., Vivar, G., Albargouni, S., Zahnd, G., Navab, N. and Ahmadi, S.A.,
2019,

Recently, Geometric Deep Learning (GDL) has been introduced as a novel and versatile
framework for computer-aided disease classification. GDL uses patient meta-information such
as age and gender to model patient cohort relations in a graph structure. Concepts from graph

signal processing are leveraged to learn the optimal mapping of multi-modal features, e.g.

from images to disease classes. Related studies so far have considered image features that
are extracted in a pre-processing step. We hypothesize that such an approach prevents the
network from optimizing feature representations towards achieving the best performance
in the graph network. We propose a new network architecture that exploits an inductive
end-to-end learning approach for disease classification, where filters from both the CNN and
the graph are trained jointly. We validate this architecture against state-of-the-art inductive
graph networks and demonstrate significantly improved classification scores on a modified
MNIST toy dataset, as well as comparable classification results with higher stability on a chest
X-ray image dataset. Additionally, we explain how the structural information of the graph
affects both the image filters and the feature learning.

International Conference on Medical Image Computing and Computer-Assisted Intervention(2019)
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