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Abstract

The correct assessment of vibration and the resulting radiation of sound is required in many
engineering tasks, for example in the design of vehicles, buildings, or machinery. The en-
countered physical phenomena, commonly known as vibro-acoustics, can be described by
mathematical models. Their discretization as numerical models often leads to very large
systems which are difficult and costly to evaluate. To reduce this computational cost, sur-
rogate models representing certain aspects of the system’s behavior are often employed in
engineering practice. However, such models are not universally applicable and require close
investigations of the considered original problem. As an alternative, the computational com-
plexity of numerical models can be reduced using techniques from linear algebra. Many
of these methods project the original system onto a lower dimensional subspace chosen to
contain the desired solution. This is referred to as projection-based model order reduction.
Several state-of-the-art projection-based reduction methods can directly be applied to

reduce the computational complexity of vibro-acoustic systems modeling dissipation effects
by classical viscous damping. However, many damping materials encountered in vibro-
acoustic systems need to be modeled using more complex mathematical models as their
damping effect is typically nonlinearly frequency dependent. Examples are viscoelastic or
poroelastic materials, which are often employed to improve the acoustic performance of
lightweight structures, especially in the design of vehicles and machines. A method to
obtain accurate reduced models of such systems is presented. It automatically approximates
the nonlinear frequency dependency by a polynomial, thus enabling its efficient reduction.
The method is not relying on analytic derivatives and can be employed for different kinds of
frequency dependent material parameters without modification.
The prerequisites for the efficient application of model order reduction methods in the de-

sign workflow of vibro-acoustic structures are a sufficient accuracy of the obtained surrogate
model and the robustness of the reduction procedure. The accuracy of the reduced models
is depending on properties for which reasonable values are typically only available from the
solution of the original system or not known before the reduction process, such as size of
the reduced model or placement of expansion points. Adaptive algorithms can determine
these unknown parameters while still requiring less computational resources than the solu-
tion of the full order system. The main goal is to obtain procedures which require as few
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input parameters as possible, preferably only a frequency range in which the reduced model
should be valid. Such adaptive algorithms often use error estimators to obtain appropriate
locations for expansion points and to derive a reasonable stopping criterion. This approach
is typically employed in greedy methods establishing new expansion points at the location
where the approximation error is estimated to be maximal. An alternative method is to
consider the locations of the reduced model’s eigenvalues. It can be argued that the size of a
reduced model might be too small if all its eigenvalues lie in the frequency range where the
surrogate should be valid and that its size has therefore to be increased further. Examples
for both approaches are presented and applied to different types of vibro-acoustic systems.
The design process of vibro-acoustic structures often includes an optimization regarding

certain model parameters. The large size of the original numerical models prohibits the
repeated evaluation for many different sets of parameters and also the reduction of each in-
dividual parameter realization is not efficient. Reduced models retaining the dependence on
certain parameters are therefore required to use them efficiently in an optimization frame-
work. Two approaches relying on the extraction of the features significant for the parametric
model from a database are presented and applied to vibro-acoustic systems. One finds the
reduced model considering transfer function evaluations of the original system at certain pa-
rameter realizations. This method is non-intrusive in terms of that no access to the original
system matrices is required. The other approach uses regression methods to obtain near-
optimal locations for expansion points for previously not considered parameter realizations.
Here, the original system’s matrices need to be accessed to compute the reduction basis.
This thesis presents techniques to obtain accurate reduced order models of not necessarily

classically damped vibro-acoustic systems and compares them regarding their efficiency. If
applicable, the methods are employed on different types of vibro-acoustic systems. A focus
is put on the robustness of adaptive methods requiring as few input parameters as possible.
This is a prerequisite to make model order reduction available also to users without expert
knowledge regarding the underlying mathematical methods and to use it efficiently in the
design process of various vibro-acoustic structures.
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Kurzfassung

Die Bewertung von Schwingungen und der daraus resultierenden Schallabstrahlung ist essen-
tiell für viele technische Aufgabenstellungen, zum Beispiel bei der Konstruktion von Fahrzeu-
gen, Gebäuden oder Maschinen. Die dabei auftretenden physikalischen Phänomene werden
als Vibroakustik bezeichnet und können durch mathematische Modelle beschrieben wer-
den. Ihre numerische Diskretisierung führt meist zu sehr großen Gleichungssystemen, deren
Auswertung speicher- und zeitintensiv ist. Um den Rechenaufwand zu verringern, werden
in der Praxis häufig Ersatzmodelle verwendet, die bestimmte Aspekte des Systemverhal-
tens darstellen. Solche Modelle sind jedoch nicht universell anwendbar und erfordern eine
genaue Untersuchung des ursprünglichen Problems. Alternativ kann die Komplexität nu-
merischer Modelle durch Methoden der linearen Algebra reduziert werden. Viele dieser
Methoden projizieren das ursprüngliche System auf einen niedrigdimensionalen Unterraum,
der die gewünschte Lösung enthält. Dies wird als projektionsbasierte Modellordnungsreduk-
tion bezeichnet.
Einige solcher Reduktionsmethoden können direkt auf viskos gedämpfte vibroakustische

Systeme angewendet werden. Viele in vibroakustischen Systemen verwendete Dämpfungs-
materialien werden jedoch durch komplexere mathematische Modelle beschrieben, da ihre
Dämpfungswirkung typischerweise nichtlinear frequenzabhängig ist. Beispiele sind visko-
elastische oder poroelastische Materialien, die häufig eingesetzt werden, um die akustischen
Eigenschaften von Leichtbaustrukturen, insbesondere bei der Konstruktion von Fahrzeugen
und Maschinen, zu verbessern. Es wird eine Methode vorgestellt, um genaue reduzierte
Modelle solcher Systeme zu erhalten. Sie approximiert automatisch die nichtlineare Fre-
quenzabhängigkeit durch ein Polynom und ermöglicht so eine effiziente Reduktion. Die
Methode ist nicht auf analytische Ableitungen angewiesen und kann ohne Modifikation für
verschiedene Arten von frequenzabhängigen Materialparametern eingesetzt werden.
Voraussetzung für den effizienten Einsatz von Modellordnungsreduktionsverfahren im Ent-

wurf vibroakustischer Strukturen ist eine ausreichende Genauigkeit des erhaltenen Ersatz-
modells und eine hohe Robustheit des Reduktionsverfahrens. Die Genauigkeit der reduzierten
Modelle hängt von Eigenschaften ab, die typischerweise nur aus der Lösung des ursprünglichen
Systems abgeleitet werden können oder anderweitig vor dem Reduktionsprozess nicht bekannt
sind. Hierzu zählen zum Beispiel die Größe des reduzierten Modells oder die Platzierung
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der Stützstellen. Adaptive Algorithmen können diese Unbekannten bestimmen und benöti-
gen dabei weniger Rechenressourcen als eine volle Lösung des ursprünglichen Systems. Für
die Anwendung solcher Algorithmen muss vorzugsweise nur der Frequenzbereich, in dem
das reduzierte Modell gültig sein soll, definiert werden. Adaptive Algorithmen verwenden
häufig Fehlerschätzer, um geeignete Orte für Stützstellen zu erhalten und ein geeignetes Ab-
bruchkriterium abzuleiten. Dieser Ansatz wird typischerweise in Verbindung mit Greedy-
Algorithmen angewandt, die neue Stützstellen an der Position des höchsten geschätzten
Approximationsfehlers platzieren. Eine alternative Methode besteht darin, die Position und
Anzahl der Eigenwerte des reduzierten Modells zu berücksichtigen. Liegen alle Eigenwerte
in dem Frequenzbereich, in dem ein reduziertes Modell gültig sein soll, kann mit großer
Wahrscheinlichkeit davon ausgegangen werden, dass dessen Dimension zu klein gewählt
wurde und sie daher erhöht werden muss. In der Arbeit werden Beispiele für beide An-
sätze vorgestellt und auf verschiedene Arten von vibroakustischen Systemen angewandt.
Der Entwurfsprozess von vibroakustischen Strukturen beinhaltet oft eine Optimierung

hinsichtlich bestimmter Modellparameter. Eine wiederholte Auswertung hochdimensionaler
numerischer Modelle vibroakustischer Systeme für verschiedene Parametersätze ist aufgrund
limitierter Rechenzeit oftmals nicht möglich und auch die Reduzierung jeder zu berücksichti-
genden Parameterrealisierung ist nicht immer effizient. Daher sind reduzierte Modelle, die die
Abhängigkeit von bestimmten Parametern im reduzierten Raum beibehalten, für eine Ver-
wendung in Optimierungsalgorithmen erforderlich. Es werden zwei Ansätze vorgestellt, die
auf der Extraktion der für das parametrische Modell signifikanten Merkmale aus einer Daten-
bank beruhen und auf vibroakustische Systeme angewendet werden. Ein Ansatz berechnet
das reduzierte Modell unter Berücksichtigung von Messungen der Übertragungsfunktion des
ursprünglichen Systems bei bestimmten Parameterkombinationen. Diese Methode ist nicht
intrusiv, da kein Zugriff auf die ursprünglichen Systemmatrizen erforderlich ist. Der andere
Ansatz verwendet Regressionsmethoden, um nahezu optimale Positionen für Stützstellen zu-
vor nicht berücksichtigter Parameterrealisierungen zu erhalten. Hier muss auf die Matrizen
des ursprünglichen Systems zugegriffen werden, um die Reduktionsbasis zu berechnen.
In dieser Arbeit werden Verfahren zur Berechnung von Modellen reduzierter Ordnung

für nicht zwingend klassisch gedämpfte vibroakustische Systeme vorgestellt und hinsichtlich
ihrer Effizienz verglichen. Falls anwendbar, werden die Methoden auf verschiedene Arten
von vibroakustischen Systemen angewandt. Ein Schwerpunkt liegt dabei auf der Robustheit
adaptiver Methoden, die möglichst wenige Eingabeparameter benötigen. Dies ist eine Vo-
raussetzung, um die Modellordnungsreduktion auch Anwendern ohne Expertenwissen über
die zugrundeliegenden mathematischen Methoden zugänglich zu machen und sie effizient im
Entwurfsprozess verschiedener vibroakustischer Strukturen einsetzen zu können.
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1 Introduction

We are constantly surrounded by sound and noise coming from a variety of sources. Two
main mechanisms generating sound are turbulent airflow—coming from wind, air condition-
ing, or passing vehicles, among others—and radiation of vibrating structures—for example
machines, building ceilings and floors, or the membrane in loudspeakers. Often, these sounds
are generated on purpose, for example in musical instruments or the human voice, but in
many cases, the produced sound is an undesired byproduct of other mechanisms, often struc-
tural vibration. These sounds are considered as noise and a constant exposure to noise is
known to be a large factor in the development of a variety of diseases [192, 244]. It is there-
fore be a major goal to prevent unnecessary noise, especially in densely populated areas and
places where people are required to stay for a longer time, for example their workplaces.

1.1 Vibro-acoustic systems

Vibro-acoustic systems help to understand the processes involved in the creation of noise
caused by the mechanical vibration of elastic structures. Under certain circumstances, the
vibration energy is radiated into the acoustic fluid surrounding the elastic structure and
can then be perceived as sound (or noise). The reverse effect is that pressure oscillations
in the acoustic fluid excite a structure, causing structural vibrations. Both is known as
the vibro-acoustic effect. The radiation effect is, for example, the basis of the functional
principle of loudspeakers, where electric impulses excite a membrane, the vibration of which
is causing the air in its vicinity to oscillate and thus generates sound. The reverse effect is
the basis of many microphones, where the oscillating air is exciting a membrane inside the
microphone, which can then be translated to, for example, electric impulses. Apart from
these applications, where these mechanisms are utilized, machines and vehicles emit noise
caused by vibration of parts of their structure, which is mostly undesirable. Assessing the
vibration properties regarding possible radiation of noise and an accurate modeling of the
vibro-acoustic mechanisms is therefore an important task during the design of structures
which are aimed to be optimal regarding their vibration and acoustic behavior. The focus of
the following work will be put on techniques allowing an efficient assessment and evaluation
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of vibro-acoustic systems.
Numerical models are a common choice to analyze vibro-acoustic systems, as they are

more flexible than physical models and can be modified more easily. An essential mechanism,
which often needs to be assessed and the structures need to be optimized for, is the dissipation
of energy inside vibro-acoustic systems. To reduce structural vibration, damping measures
dissipating the spurious vibration energy are employed. Mathematical models are available
to describe their dynamic behavior and allow the assessment of their effect on the original
system. A considerable amount of research has been conducted in the past to establish
models being able to describe the physical effects governing vibro-acoustic systems [96]. In
the following, exemplary application cases for vibro-acoustic systems are outlined.

1.1.1 Examples for vibro-acoustic systems in practice

Locally resonant materials A main prerequisite for materials and structures used in the
design of vehicles is their high stiffness while weighing as little as possible. The high stiff-
ness is crucial for structural integrity, while the low weight is favorable in terms of energy
consumption of the vehicle. However, this high ratio of stiffness to mass leads to unfavorable
vibration and acoustic properties and the structures are prone to emit noise in an audible
frequency spectrum. Adding mass to a system is a classic method to increase the impedance
in certain frequency bands which leads to more favorable vibration behavior. However, this
contradicts the design goal of having a lightweight structure. Another measure is to add
absorbing materials dissipating the acoustic energy. Depending on the nature of the exci-
tation, a large amount of such materials needs to be added in order to have the desired
effect. These space requirements can often be met if slender structures are required. An
alternative idea, which is further promoted by the emerging possibilities of additive manu-
facturing (i.e. “3d printing”), is to introduce locally resonant substructures which are able
to dissipate vibration energy in a desired frequency range. Such structures are often referred
to as “meta-materials” [84, 185].
An established idea is to attach oscillating mass-spring-systems, so called “tuned mass

dampers” or “tuned vibration absorbers”, to the host structure. These substructures are
tuned to a specific frequency and dissipate vibration energy if the host structure is vibrat-
ing at frequencies near of this tuning frequency. The concept of tuned mass dampers has
applications in civil engineering [242], for example to modify the vibration response of the
London Millennium Bridge [170]. The emergence of additive manufacturing made it possi-
ble to manufacture such tuned vibration absorbers in much smaller scales such that they
can be attached to, for example, honeycomb structures being used in aircraft fuselages [84,
144, 185]. Such periodically distributed microstructures are able to change the vibration
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properties of the host structure in a favorable way. An example is sketched in fig. 1.1.

Figure 1.1: Example of a locally resonant material. A honeycomb panel acts as the host structure, the
local resonance is introduced by cantilevered beams (depicted in blue) added to each cell of
the honeycomb [144].

An alternative approach to designing locally resonant materials is to include local thickness
variations in the host structure. By gradually reducing the thickness of a plate, the wave
speed decreases while the vibration amplitude increases. This may sound undesirable, but
as these effects are highly localized, this surplus energy can be dissipated by using either an
absorbing material or some other dissipative measure. The thickness variation is required
to be smooth such that the waves are not reflected at its boundary and is often following a
circular pattern to further minimize reflection. The resulting substructure is often termed
“acoustic black hole” [86, 159, 207].

Poroelastic materials for sound absorption Porous materials are a typical choice to dis-
sipate acoustic energy in cavities such as vehicle interiors or rooms. Such materials consist
of an elastic solid skeleton, which is surrounded by a fluid filling the material’s pores. The
energy dissipation inside porous materials is governed by structural damping of the elas-
tic frame, thermal losses, and viscous losses due to the sub-wavelength dimensions of the
pores [222]. These complex coupling effects can be described by a variety of models, the
Biot-Allard theory being a prominent example [5, 58, 59]. Porous foams are often applied
in combination with slit gypsum plates to increase sound absorption or to be able to control
undesired sound reflections in rooms.
If applied as sound absorbing materials without attached plates, the main restriction

is that at least a material thickness of one fourth of the wavelength of the waves to be
attenuated is required to observe the dissipation effect [5]. This makes these materials
ineffective for cases where a low frequent excitation has to be damped. Recently, there have
been efforts to design porous materials being able to dissipate energy also for low frequent
excitation by adding resonant inclusions as substructures. Several approaches have been
proposed, for example using Helmholtz resonators [1] or mass-spring-systems [188]. Another
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approach is to combine a porous material for the absorption of high frequent excitation with
a tuned vibration absorber to attenuate low frequent excitation. This concept is exemplarily
illustrated in fig. 1.2, where a unit cell consisting of two metal sheets surrounding a porous
material and an air gap is sketched. A periodic assembly of these unit cells forms a plate-
like structure which can, for example, be used attenuate noise in passenger cabins of vehicles
[182].

Figure 1.2: An example for a unit cell of a periodic structure equipped with a porous material. Multiple unit
cells combined form the resulting periodic structure. The cross section of the unit cell consists
out of two sheets of metal (depicted in gray), a porous material (depicted in orange), and an
air gap. The setup is inspired by [182].

Radiation and scattering The sound radiation caused by machinery needs to be assessed
during the design phase. This can, for example, be conducted experimentally in anechoic
chambers, but numerical models are often employed as they can be altered and evaluated
more flexible. As it would be inefficient to model, for example, the complete anechoic
chamber with the specimen inside, arbitrary boundaries are introduced, where the modeled
domain is truncated. This arbitrary boundary must ensure that it does not prevent any
energy from leaving the system. Additionally, no energy that left the system through this
boundary may reenter the system. Various numerical methods have been established in order
to fulfill this condition and thus allow free radiation of sound. Examples are the boundary
element method [66, 178], infinite elements [16], or adapted boundary conditions for the finite
element method, for example the Dirichlet-to-Neumann operator [119, 152] or the perfectly
matched layer [131, 196]. Figure 1.3 shows an application example of a perfectly matched
layer. A free radiation of the energy is ensured by the boundary condition such that the
wave pattern inside the physical domain is not altered by the artificial truncation boundary.
Acoustic scattering is considered as the effect of surfaces disturbing a sound field, possibly

leading to echoes or backscattering. Figure 1.3 is also an example for a pressure field resulting
from scattering following an example from Bermúdez et al. [56]. Exact knowledge about this
vibration pattern can, for example, be used to obtain information about the location of
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objects inside the wave field. The numerical investigation of such phenomena is typically
complex, as large dimensions need to be considered and a free radiation must be modeled at
the system boundaries. Such localization techniques are especially interesting for underwater
acoustics [275]. The radiation of noise emitted by a vehicle has, for example, been assessed
by Zinner and Duddeck [278].

Figure 1.3: Example for acoustic radiation and scattering. The model is inspired by Bermúdez et al. [56]
and the radiating boundary condition is ensured by a perfectly matched layer.

1.1.2 Numerical evaluation of vibro-acoustic systems

Vibro-acoustic systems, such as the aforementioned examples, are typically assessed and
analyzed using numerical models. Although the available computing power is still constantly
growing, even numerical models for standard vibro-acoustic problems quickly grow too large
to use them efficiently in many cases of engineering practice. The main reason for the
large size of such numerical models is the fine spatial discretization required to resolve wave
phenomena when using an element based method to discretize the governing differential
equations. A rule of thumb is to use around six to ten discretization nodes per wavelength
[142, 176]. A discretization of an acoustic cavity in shape cube with edge lengths of 1 m
filled with air already leads to a numerical system of order n ≈ 27 000 if frequencies up
to 1000 Hz should be considered. Often larger problems and higher frequencies need to be
considered, quickly leading to numerical systems with orders of n ∼ 1·106 and larger. The
numerical complexity is further increased as the coupling between the different phases present
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in vibro-acoustic systems need to be considered. Instead of only solving a pressure field for
an acoustical problem, displacement fields of vibrating structures or the interaction of solid
and fluid phases in porous materials needs to be considered. While mathematical models
to describe these interactions exist, they often require a large number of degrees of freedom
to validly depict the physical behavior. Vibro-acoustic models are typically evaluated using
frequency sweeps, as their response to a possibly wide range of frequencies is of interest.
Using a direct evaluation method requires the solution of one linear system of equations
with the size of the model per frequency step, thus also increasing the computational cost
of the model.
During their design phase, parts of vibro-acoustic systems need to be optimized regard-

ing an often large set of parameters. These can include material properties of employed
damping materials or the geometry of resonant substructures. Even if one numerical model
of the regarded problem can be evaluated with reasonable effort, optimization algorithms
typically require many evaluations of the system under varying parameters, again leading
to very long computation times. A related challenge is the need to consider uncertainties
regarding material or geometry in vibro-acoustic systems. In order to assess the influence of
such uncertainties, the considered system needs to be evaluated many times under varying
parameters, which may be prohibitive for large numerical models. Another challenge is the
nonlinear dependency on the excitation frequency of many damping mechanisms occurring
in vibro-acoustic systems. Classic evaluation strategies for a frequency sweep analysis of
vibro-acoustic systems, such as modal superposition, are not applicable here. So in order
to avoid the costly direct evaluation of such systems, new strategies allowing an efficient
solution need to be employed.

1.2 Model order reduction

One possible remedy to reduce the numerical complexity of vibro-acoustic systems are model
order reduction (MOR) methods. They aim at reproducing the input/output relation of a
large scale system using a reduced system of much lower order. The response of the low order
system can be obtained with a low computational effort. Modal methods are classic com-
plexity reduction methods, where the system modes obtained from an eigendecomposition
are used to compute a set of decoupled linear equations constituting the frequency response
of the original system. Such methods are nowadays a standard part of finite element software
aiming at solving dynamical systems. However, classic modal methods cannot be applied
to all kinds of vibro-acoustic systems and are typically only applicable for special cases of
damping. Additionally, the computational effort necessary to obtain an eigendecomposition
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of a very large system may be prohibitive. Alternative reduction methods have emerged
from the field of electrical engineering, being applicable to a problems modeling a wide
range of physical phenomena. Some of these methods are also applicable to vibro-acoustic
problems [11]. An important task is the reduction of parametric systems while retaining
the dependency on certain parameters in the reduced model. This is especially interesting
for optimization tasks, as the computational burden of evaluating many varying full order
systems can be significantly reduced [47].
Model order reduction methods are typically divided in two separate phases: The offline

phase, in which the original full order model is utilized to obtain a low order representation
of the system, and the online phase, during which the reduced order model is evaluated and
the full scale model is not required anymore. Moreover, two different objectives for model
order reduction can be identified:

1. Obtain a reduced model which is as cheap as possible to evaluate in the online phase.
Such reduced models should be of very small size to allow an efficient direct evaluation.
This is required for models which need to be evaluated in real-time, for example as
they are implemented in embedded control devices. In this case, the cost during the
offline phase may be very high and the result of the full order model is considered to
be available in some cases.

2. Obtain a reduced model under as low as possible computational effort in the offline
phase. The cost of the offline phase is crucial in this use-case and is kept low at the
cost of potential larger reduced models. However, their size is still small compared to
the full-order model and their evaluation is much less computationally expensive. This
strategy is typically applied if the design phase of structures needs to be accelerated
and the full order model is never completely evaluated.

The second case is applicable to many settings where vibro-acoustic systems are encountered,
for example in the design of vehicles or structures. Here, employed measures to reduce noise
and vibration, for example inside the passenger compartment, need to be evaluated efficiently
for many combinations of parameters. A computationally cheap model is necessary in order
to keep the computational costs low, even if many system evaluations are required.

1.2.1 Examples for model order reduction in practice

Various model order reduction methods have been established over the last years and success-
fully applied to obtain efficient models of systems depicting different physical phenomena.
Originally, many reduction methods were employed to obtain efficient models of microelec-
tromechanical systems (MEMS) [164, 232]. Consequently, the methods have been adapted
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to be applicable to a wide range of engineering problems. Some examples showing the benefit
of reduced models are presented in the following. Lieu, Farhat, and Lesoinne [167] reduced
the model of a complete jet plane to a model several magnitudes smaller, which estimates
the aeroelastic damping ratio coefficients given the Mach number. Peherstorfer and Will-
cox [205] proposed a method to update existing reduced models by considering data collected
from sensors. This can, for example, be used to monitor the integrity of vibrating structures.
Model order reduction methods are also frequently used during the design process of me-
chanical structures. For example, Fehr, Holzwarth, and Eberhard [104] used substructuring
techniques to decrease the required amount of computation time for the analysis of vehicle
crash models. Several other examples from the field of mechanical engineering are reported
in [169]. Results of model order reduction methods applied to acoustic and vibro-acoustic
systems are, for example, reported in [92, 153, 254].
Efficient model order reduction methods are an enabling technology for so called “digital

twins”. They can be defined as digital representations of complex systems, such as power
plants, bridges, or machinery, which help design, monitor, and optimize such structures [216].
Without robust and efficient representations of important processes inside these systems,
such digital twins are not possible. Digital twins have been identified as an important
factor in the transition towards “Industry 4.0” and have been established for many products,
processes, and structures [204]. Vehicles are a natural application for digital twins, so there is
the need of robust and accurate reduced order modeling methods being specifically applicable
to vibro-acoustic problems [132].

1.3 Research objectives and achievements

This thesis compiles the efforts underdone to achieve the following research objectives re-
garding reduced order models of vibro-acoustic systems:

Accurate and reliable representation of complex vibro-acoustic systems in reduced

space, especially for systems with frequency dependent material properties Due to
the large size of numerical models of vibro-acoustic systems, methods to reduce the com-
putational complexity are required. Such methods should yield models depicting the in-
put/output relation of the original system accurately while being applicable to a wide range
of vibro-acoustic systems without the need of specialized adjustments for different system
types. This includes systems with frequency dependent material properties, for example
complex damping treatments, as well as systems with radiating boundary conditions, for
example perfectly matched layers.
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Several projection-based model order reduction methods are assessed regarding their ap-
plicability to different cases of vibro-acoustic systems, also including radiating boundary
conditions. This overview compares the efficiency of the employed methods regarding their
ability to compute as small as possible reduced models. A new strategy to reduce systems
with frequency dependent damping behavior based on a higher order Krylov subspace is
proposed, which does not require adding additional states to the system.

Robust and reliable automatic model order reduction methods for the application to

vibro-acoustic systems If the response of the full order system is not available, automatic
methods are required to compute accurate reduced models. These methods should be robust,
i.e. always result in a reduced model depicting the full system’s response under a specified
tolerance, while still be less computationally expensive than solving the full order model. To
achieve this goal, the approximation error of the reduced models needs to be estimated and
adaptive algorithms are required to find appropriate reduced models.

The performance of different error estimation techniques are evaluated regarding vibro-
acoustic systems. They are used in an algorithm which determines the required size of a
reduced model automatically by using a greedy method in combination with a frequency
windowing technique. Additionally, the iterative rational Krylov algorithm (IRKA) in its
second order form is extended such that it automatically finds reduced models valid in a
predefined frequency range without predefining the size of the reduced model.

Model order reduction strategies for parametrized vibro-acoustic systems Efficient
models depending on a set of parameters are required during the design phase of many vibro-
acoustic structures. Techniques to obtain these models under reasonable computational costs
are therefore required and strategies need to be applicable to vibro-acoustic problems. It shall
be evaluated if considering the physics of the underlying problems yields benefits regarding
starting parameters of certain algorithms or the computation of parametrized reduced order
models.

Two different approaches to obtain efficient and parametric reduced models of vibro-
acoustic systems are proposed and evaluated. First, a data-driven method based on the
Loewner framework is applied to a vibro-acoustic system with spatially varying damping
effects. A large amount of data is required for applying this method, which can be computa-
tionally expensive to obtain. Regression models to obtain near optimal frequency shifts for
a model order reduction based on moment-matching are considered in the second approach.
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1.4 Outline of the thesis

The following thesis aims at answering these open questions and proposes methods and
algorithms to solve the associated problems. It is structured as follows: The mathematical
description of general dynamical systems is discussed and applied to vibro-acoustic systems
in chapter 2. The underlying physical relations for acoustic and structural waves as well as
the behavior of poroelastic materials are presented along with corresponding boundary and
coupling conditions. Formulations for a discretization of vibro-acoustic problems using the
finite element method are presented in the following, accompanied by fundamental solving
strategies for such systems. The chapter concludes with benchmark examples for different
kinds of vibro-acoustic problems which will be used throughout the thesis as illustrative
examples.
General methods for model order reduction using projection are presented in chapter 3.

Starting with modal methods, which are classically applied to vibro-acoustic structures,
methods based on system decompositions are presented as well as moment matching meth-
ods. Techniques to assess the error introduced by reducing a large scale system are also
discussed. Following, methods preserving the dependency on parameters in the reduced
space are presented and discussed.
Model order reduction methods specifically applicable to vibro-acoustic systems are dis-

cussed in chapter 4. First, the classic methods presented in chapter 3 are assessed regarding
their applicability to various types of vibro-acoustic systems in section 4.1. Section 4.2 in-
troduces a new method to apply moment matching to systems with material parameters
described by frequency dependent functions. Following are some considerations about H2-
optimal model order reduction applied to vibro-acoustic systems in section 4.3 and strategies
and algorithms for the automatic and adaptive computation of reduced order models for sys-
tems, which full order solution is not available, in section 4.4.
Two strategies for the parametric model order reduction of vibro-acoustic systems are pre-

sented in chapter 5: one is based on the parametric Loewner framework, the other combines
moment matching with data-driven regression methods.
Chapter 6 concludes the thesis with a summary and assessment of the research objectives.

An outlook regarding the considered topics and further research ideas are presented.
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2 Dynamical systems

Many mechanisms and phenomena occurring in nature can be described by a models relating
actions and reactions in a way resembling the real world. Such processes may be described
by systems, which are defined as being enclosed by a boundary, taking a number of inputs,
and providing a number of outputs. Their input/output relation is typically described by a
combination of mathematical laws specifically formulated for the given problem. This leads
to mathematical expressions, often consisting of differential equations, governing the model
and resembling changes of affected variables caused by the considered physical phenomena.
Thus, the investigation of suitable mathematical models allows predicting the behavior of
such processes and the description of natural phenomena by mathematical models is therefore
essential in science and engineering. As the same physical phenomenon can be described by
different mathematical models, the term system is used to describe the behavior of the
corresponding mathematical model, rather than the physical phenomenon [13]. Depending
on the nature of the considered problem and the effects to be modeled, the corresponding
systems have different properties: A system may be linear or nonlinear, time-varying or
time-invariant, deterministic or stochastic or a combination thereof. Although real world
systems are most accurately described by nonlinear relations, linearization is often desirable
and many effects to be modeled can be considered linear in a certain range of interest. We
put a focus on systems describing the change of a variable over time, often termed dynamical
systems.
In the following chapter, the fundamentals for the modeling of dynamical systems in

general and specialized formulations for vibro-acoustic systems will be introduced. Mathe-
matical descriptions of systems governed by first or second-order differential equations are
given in section 2.1. Following, differential equations for physical phenomena occurring in
vibro-acoustic systems are shown: acoustic wave propagation in section 2.2.1, elastic waves
in section 2.2.2, vibration and dissipation behavior of poroelastic materials in section 2.2.3,
and conditions for the coupling of the different phases in section 2.2.4. Formulations for
vibro-acoustic systems discretized by the finite element method are given in section 2.3.1
and boundary conditions enabling free radiation are discussed in section 2.3.2. Methods to
evaluate the dynamic response of vibro-acoustic systems are shortly reviewed in section 2.4
and benchmark examples for different vibro-acoustic problems are presented in section 2.5.
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2.1 Mathematical system descriptions

2.1.1 First-order systems

A linear, time-invariant dynamical system is described by a combination of constant matri-
ces mapping system inputs ǔ (t) ∈ Rm over the system state x̌ (t) ∈ Rn to system outputs
y̌ (t) ∈ Rp

Σ:




E ˙̌x (t) = Ax̌ (t) + Bǔ (t)
y̌ (t) = Cx̌ (t) + Dǔ (t) ,

(2.1)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. n is the number of states in the
system, m the number of inputs, and p the number of outputs. Equation (2.1) is termed a
descriptor state space model. Systems with exactly one input and one output m = p = 1 are
called SISO (single input, single output) systems, other input and output configurations are
considered as MIMO (multiple input, multiple output). The dot operator marks a derivative
with respect to time: ˙̌x (t) = d

dt x̌ (t). The individual matrices stem from a discretization of
the mathematical problem, while this realization is not necessarily unique. Thus, different
sets of matrices (E, A, B, C, D) can result in the same input/output relation. Matrix A is
called state or system matrix, E is called descriptor or mass matrix, B and C resemble the
input and output matrix respectively, and D is the feedthrough matrix of the system. If n
is large, A and E are typically sparsely populated, which will be assumed for the following
considerations. Given an exponentially bounded input ǔ (t), i.e. ǔ (t) approaches a certain
value for t→∞, the descriptor system (2.1) can be transformed to the Laplace domain

y (s) = H (s) u (s) , (2.2)

where y (s) is the system output in the Laplace domain, i.e. the transform of y̌ (t), in terms
of the Laplace transform u (s) of the system input ǔ (t). H (s) defines the system’s transfer
function

H (s) = C (sE−A)−1 B + D, (2.3)

which is a matrix valued rational function of dimensions Cp×m and s ∈ C is the complex
driving frequency. In the following, we consider systems with an equal amount of inputs and
outputs, i.e. m = p. Many dynamical systems are passive, meaning they do not generate
energy. So if the system is given a bounded input, the output will also be bounded. A linear
system is passive if, and only if, its transfer function H (s) is positive real [111]. A matrix-
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valued function H ⊂ Cm×m is positive real, if H has no poles in the right half plane of C,
i.e. no pole has a positive real part, if H (s̄) = H (s) for all s ∈ C, and if Re

(
xHH (s) x

)
≥ 0

for all s with a positive real part and for arbitrary x ∈ Cm. Such matrix functions are also
necessarily stable [111]. Additionally, the system is considered asymptotically stable, if the
matrix pencil sE−A in eq. (2.3) is regular, i.e. is invertible for some finite s ∈ C. If this
is the case, the pencil’s eigenvalues correspond to the poles of the transfer function [12].
Consequently, the eigenvalues of a stable system lie only in the left open half-plane of C.

Observability and controllability are concepts describing if the internal states of a system
can be determined from the system outputs or controlled by system inputs. A linear system
is considered controllable, if

rank
[
λE−A B

]
= n, ∀λ ∈ C and rank

[
E B

]
= n. (2.4)

If a system is controllable, every possible state can be reached by providing suitable values
for the system input. Observability is the analogous principle regarding the system output.
A system is considered observable, if

rank

λE−A

C


 = n, ∀λ ∈ C and rank


E
C


 = n. (2.5)

This means that the internal state of the system can be fully predicted by knowing only its
output [77]. Related concepts are the controllability and observability Gramians which allow
considerations regarding the minimal energy required to reach a certain state, respectively
the maximum observation energy obtained from a certain state. In frequency domain, the
controllability and observability Gramians P and Q of a stable system are defined by

P = 1
2π

∫ ∞

−∞
X (s) BBTX (s)T ds, (2.6)

Q = 1
2π

∫ ∞

−∞
X (s)T CTCX (s) ds, (2.7)

with X (s) = (sE−A)−1. The expression X (s) B in eq. (2.6) maps the system input to
the Laplace transform of the state; CX (s) in eq. (2.7) maps the state’s Laplace transform
to the system output. The Gramians are computed by solving the Lyapunov equations

EPAT + APET = −BBT, (2.8)
EQAT + AQET = −CCT. (2.9)

With help of the Gramians, the minimal energy required to reach a state x1 from a zero
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initial condition is computed from

Ec = xH
1 P−1x1. (2.10)

Similarly, the maximum energy obtained by observing a state x1 is given by

Eo = xH
1 Qx1. (2.11)

These considerations result in measures regarding the degree of controllability and the degree
of observability of the states of a system. If a state is difficult to reach, i.e. the system requires
much energy to reach a certain state, its corresponding eigenvector in P is associated with
a small eigenvalue. Similarly, if a small amount of energy is obtained by observing a state,
its corresponding eigenvector in Q is associated with a small eigenvalue [11].

2.1.2 Second-order systems

Depending on the nature of the considered problem, the structure of eq. (2.1) may differ.
Examples of other system types include bilinear, delay, or higher order systems. As structural
vibration is described by a second order differential equation, it is beneficial to also use a
second order system to model its behavior. Such systems are given by

Σ:




M¨̌x (t) + C ˙̌x (t) + Kx̌ (t) = Fǔ (t) ,
y̌ (t) = Gx̌ (t) ,

(2.12)

where M, C, K ∈ Rn×n resemble the mass, damping, and stiffness matrix of the system and
F ∈ Rn×m and G ∈ Rp×n are the input and output mapping. The first expression related
to the system input is also referred to as equation of motion. How the involved matrices
can be obtained depends on the modeled problem and the discretization method and will
be outlined in section 2.3 for vibro-acoustic systems. After a transformation to the Laplace
domain, the system’s transfer function is given by

H (s) = G
(
s2M + sC + K

)−1
F. (2.13)

As for the first-order systems, a second-order system is called asymptotically stable, if the
eigenvalues λ of the matrix pencil λ2M + λC + K all lie in the left half plane of C, i.e.
have a negative or zero real part. Observability and controllability can be stated similarly
to first-order systems: A second-order system (2.12) is controllable, if

rank
[
λ2M + λC + K F

]
= n, ∀λ ∈ C, (2.14)
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and analogously observable, if

rank
[
λ2MT + λCT + KT GT

]
= n, ∀λ ∈ C. (2.15)

In order to apply also the concepts of controllability and observability Gramians, the
second-order system eq. (2.12) is reformulated to a corresponding first order system

Σ:







J 0

0 M




︸ ︷︷ ︸
E(1)




˙̌x (t)
¨̌x (t)




︸ ︷︷ ︸
˙̌x(1)(t)

=




0 J

−K −C




︸ ︷︷ ︸
A(1)



x̌ (t)
˙̌x (t)




︸ ︷︷ ︸
x̌(1)(t)

+




0

F




︸ ︷︷ ︸
B(1)

ǔ (t) ,

y̌ (t) =
[
G 0

]

︸ ︷︷ ︸
C(1)



x̌ (t)
˙̌x (t)




︸ ︷︷ ︸
x̌(1)(t)

.

(2.16)

The quantities under the braces marked with superscript (1) are the matrices and vec-
tors in the corresponding first-order system and have the dimensions E(1),A(1) ∈ R2n×2n,
B(1) ∈ R2n×m, C(1) ∈ Rp×2n. Matrix J ∈ Rn×n is an arbitrary invertible matrix, for example
identity. This equivalent representation can, for example, be used to obtain the Gramians
eqs. (2.6) and (2.7) given by [217]. Alternative formulations, which can be used with a sin-
gular mass matrix or preserve the symmetry of the original second-order system, are given in
appendix A.1. Alternatively to eqs. (2.14) and (2.15), the controllability and observability of
a second-order system can also be expressed in terms of the corresponding first-order system
(2.16). A second-order system is controllable, respectively observable, if its first-order rep-
resentation is controllable, respectively observable [217]. Converting a second-order system
to a first-order system doubles the size of the involved matrices and vectors and changes the
structure of the system and transfer function, so the original meaning of the system matrices
is not valid anymore. In the following, we will mainly refer to second-order systems, as all
models considered in the scope of this work are described by such systems.

2.1.3 Transfer functions and poles

Contrary to the internal description of systems relying on a state-space representation, exter-
nal descriptions like transfer functions may be simpler to apply and to assess. The transfer
function is the direct representation of the map between system input and output and is
an important tool for assessing the system behavior. Its matrix representations eqs. (2.3)
and (2.13) can be reformulated and sometimes be interpreted physically. Some of these forms
are presented in the following.
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The modal properties of a system are depending on its eigenvalues and can be illustrated
using the pole-residue form of the transfer function of a SISO system. Here, the transfer
function is expressed by relating each pole of the system λi to its corresponding residual ri
using a partial fraction expansion:

H (s) =
n∑

i=1

ri
s− λi

. (2.17)

From this representation it is obvious, that it is not sufficient to only know the eigenvalues
of a system to fully describe its transfer function, as the dominance, i.e. the influence on
the transfer function, of single poles is depending on the corresponding residual. This also
suggests, that H (s) can be approximated using less than n pairs of poles and residuals. If
the expansion term in eq. (2.17) corresponding to a certain pair (ri, λi) evaluates to small
values for all excitation frequencies s, this pair can be excluded from the sum without con-
siderably changing the transfer function. Note, that if the system has poles with Re (λi) = 0,
the value of the transfer function grows towards infinity for s → λi. Classic analysis meth-
ods for structural systems rely on such a modal representation of the dynamical system.
The eigenvalues λi are physically interpreted as resonance frequencies of the system in this
context.

Another way to express a system’s transfer function is by a Taylor series about a frequency
s0 = 0. The expansion is given by

H (s) =
∞∑

i=0
mis

i, (2.18)

where mi is the ith moment of the system. The moments are the transfer function value
and its derivatives at s = 0 and are given by

mi = C
(
A−1E

)i
A−1B, i = 0, 1, . . . (2.19)

for a first-order system, where A is invertible. The moments are matrices mi ∈ Cp×m. An
equivalent second-order representation of the ith moment about zero is given by

mi =
[
G 0

]

−K−1C −K−1M

I 0



i 
−K−1F

0


 , (2.20)

where K needs to be invertible [228]. I is an identity matrix of appropriate size and the
moments are mi ∈ Cp×m in the MIMO case and complex scalar in the SISO case. Similarly,
the transfer function can be given in terms of the impulse response at t = 0 and its derivatives,
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the so called Markov parameters. The corresponding expansion is given by

H (s) =
∞∑

i=0
m−is−i, (2.21)

where m−i is the ith Markov parameter of the system. They are defined by

m−i = C
(
E−1A

)i
E−1B, i = 0, 1, . . . (2.22)

for a first-order system, given that E is invertible. The ith Markov parameter of a second-
order system can be expressed by

m−i =
[
G 0

]

 0 I
−M−1K −M−1C



i 
 0
M−1F


 , (2.23)

assuming that M is invertible [228]. The dimensions of the Markov parameters are the same
as those of the moments. The Hankel matrix is directly related to the Markov parameters
of a system and is an important tool in the analysis of dynamical systems. It is given by

H =




m−1 m−2 m−3 · · ·
m−2 m−3 m−4 · · ·
... ... ... . . .


 , (2.24)

which has infinitely many of rows and columns. The Hankel matrix relates the internal (state-
space) representation of a system given to its external representation given by its Markov
parameters. Finding a system Σ given H is known as the realization problem, which can
be solved if and only if rank H = n < ∞ [11]. The singular values of the Hankel matrix
are related to the singular values of the product PQ of the controllability and observability
Gramians by

σi (H) =
√
λi (PQ). (2.25)

This means, that large singular values σi of the Hankel matrix are associated to high energy
states, which have a high influence on the system behavior.

2.2 Vibro-acoustic systems

Vibro-acoustic systems are characterized by the interaction of structural vibrations and the
waves in a surrounding fluid. Examples are, among others, the vibration of a membrane
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in a loudspeaker radiating sound into the adjacent cavity or free field, or the vibration of
a submarine hull emitting traceable low frequent waves into the surrounding water. The
coupling between the structural and fluid parts of the system is two-fold: the vibrating
structure excites the adjacent fluid, thus emitting waves into the fluid; waves impinging
upon the structure in turn cause a vibration of the structure. The interaction effects between
both regimes are heavily influenced by the frequency and the wave patterns in which the
corresponding parts of the system are vibrating. Energy can enter the system from external
loading of the structure by, for example, pressure forces. The fluid may contain energy
sources such as monopole radiators or be excited by volume flow.
Energy dissipation inside such systems is caused by different effects: The damping of

structural vibration is influenced by the structure’s material and geometry and the frequency
in which the structure is vibrating. It may be governed by viscous, hysteretic, or friction
effects; friction effects also cause energy dissipation in the fluid phase. As vibration energy is
an unwanted byproduct in many applications and may cause noise radiated from the system
or also lead to fatigue related damage, damping mechanisms are introduced into vibro-
acoustic systems to dissipate surplus vibration. These dampers can be distinct devices,
for example dashpot dampers introducing viscous damping into the structural part of the
system, or porous materials dissipating energy from both fluid and solid parts of the system
due to their specific microstructure. The different parts of a vibro-acoustic system and their
interconnections are sketched in Figure 2.1.

Γa
Ωa

Ωe
Γae

Γv

Ωp

Γap Γep

Γp

Figure 2.1: A vibro-acoustic system with acoustic fluid and elastic solid domains Ωa and Ωe, a poroelastic
domain Ωp, different boundary conditions Γp, Γa, Γv, and coupling conditions between the
phases Γae, Γap, Γep.

For analysis of the resulting interconnected systems, a time harmonic or steady state
vibration is often considered, where all parts of the system are oscillating and transient
effects of a beginning vibration are not present anymore. Using this assumption and given
a complex angular driving frequency s ∈ C, the variables for time t and space r can be
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separated as

p̌(r, t) = p (r) est, (2.26)

with scalar fields p̌ and p, typically representing the fluid pressure in this context. In a
Cartesian coordinate system the location vector is given by r =

[
x y z

]T
. The same

concept for separating time and space holds for vector fields, which describe the displacement
of solids in a vibro-acoustic setting. Instead of the complex frequency s, the real valued
angular frequency ω = Im (s) along with a damping factor ξ is often considered in literature
concerning structural dynamics. Both formulations are mainly equivalent but differ for
example in the location of the eigenvalues of resulting systems relative to the coordinate axes
in complex space. We will follow the notation with a complex frequency s, as it is typically
used in the model order reduction context. This separation is the basis for the following
derivations of governing equations for all parts of the vibro-acoustic system. Discretization
and numerical approximation of the solution of the governing equations allows the solution
of arbitrarily shaped systems. In the following section, the relations describing all parts of
vibro-acoustic systems and their coupling are presented along with numerical methods to
solve the response of such systems.

2.2.1 Acoustic waves

Acoustic waves are oscillations of pressure and velocity inside a compressible, ideal fluid.
Oscillations with frequencies from 16 Hz to about 16 kHz are perceived as sound by the
human ear [189]. The wave speed ca =

√
K
ρ
, which is depending on the fluid’s bulk modulus

K and its density ρ, characterizes the propagation in the specific acoustic fluid. Wave
propagation inside the acoustic medium is governed by the wave equation

∂2p̌ (r,t)
∂t2

− c2
a∇ · (∇p̌ (r,t)) = 0, (2.27)

obtained from the linearized equation of motion and the requirement of mass conservation.
p̌ (r,t) is a function of the pressure distribution in the sound field. A complete derivation is
given in [142]. Assuming a steady state, the dependencies of the pressure variable regarding
space and time can be separated as in (2.26) and transformed to the frequency domain by
a Laplace transformation. Given small oscillations and an inviscid and adiabatic fluid, the
transformed acoustic wave equation yields the Helmholtz equation

k2p (r) + ∆p (r) = 0, (2.28)
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with the Laplacian operator ∆ = ∇ · ∇, pressure p and wave number k = Im(s)
ca

. Because of
the lack of shear forces inside the acoustic fluid, only compression waves, where the particles
travel in the same direction as the wave propagates, are transmitted through the medium.
If acoustic sources in the domain need to be considered, a right hand side is added to (2.28)
resulting in the inhomogeneous Helmholtz equation

k2p (r) + ∆p (r) = −q (r) . (2.29)

The source term q is given as q (r) = ρsq0δ (r, rq) for a monopole source with amplitude q0,
the Dirac delta function δ and the location of the source rq.
To be able to solve the Helmholtz equation for the unknown pressure field p, the conditions

at the boundary of the acoustic medium must be known. Three main types of boundary
conditions can be employed for a bounded acoustic wave propagation problem:

• Prescribing the pressure at the model boundaries corresponds to a Dirichlet boundary
condition defined by

p (r)− pΓ = 0 ∀r ∈ Γp, (2.30)

with the value of the prescribed pressure pΓ at the boundary Γp. Setting pΓ = 0
corresponds to a fully reflecting boundary.

• A normal velocity vn or displacement un is imposed by a Neumann boundary condition
given by

1
ρs

∂p (r)
∂n

+ vn,Γ = 0 ∀r ∈ Γv, (2.31)

1
ρs2

∂p (r)
∂n

+ un,Γ = 0 ∀r ∈ Γu, (2.32)

where ∂p
∂n

= ∇p · n is the normal derivative of p with respect to the normal vector
n of the respective boundary pointing outwards of the domain. Imposing vn = 0 is
equivalent to a fully reflecting boundary.

• A Robin boundary condition imposes a normal admittance An,Γ at the boundary,
prescribing the ratio of pressure and normal velocity at the boundary. It is given
by

1
ρs

∂p (r)
∂n

+ pAn,Γ = 0 ∀r ∈ ΓA. (2.33)
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By setting An,Γ appropriately, the absorption effect of dissipative materials or an ad-
jacent acoustic fluid can be modeled.

If an unbounded domain is considered, the Sommerfeld radiation condition is employed at
the boundaries at infinity Γ∞. It ensures that no energy radiating towards infinity reenters
the system and is given by

lim
‖r‖→∞

‖r‖(d−1)/2
(

∂p

∂ ‖r‖ − ikp

)
= 0 ∀r ∈ Γ∞, (2.34)

with the dimension of the modeled problem d [240]. Losses in the acosutic fluid can be
considered by a complex wave velocity introducing an acoustic loss factor ηδ:

c̃δ = c (1− iηδ) . (2.35)

As c =
√

K
ρ
either K or ρ or both can be considered complex to achieve the damping effect.

A complex bulk modulus is related to thermal losses, a complex density to viscous losses
[147]. However, thermal and viscous losses can often be neglected for cavities larger than
most of the considered wavelengths and problems with moderate wave speed.

2.2.2 Structural vibration

We now consider a homogeneous elastic solid in a Cartesian coordinate system. Different
types of waves can propagate through this medium, each with an individual vibration pattern
and wave velocity. For an isotropic material with density ρ, the propagation is described by
the elastic wave equation

−ρ∂
2ǔ (r,t)
∂t2

+ (λ+ 2G)∇∇ · ǔ (r,t)−G∇× (∇× ǔ (r,t)) = −b̌ (r,t) , (2.36)

which also considers the shear forces inside the elastic medium, other than the standard
wave equation for the acoustic fluid (2.27). The vector ǔ =

[
ǔx ǔy ǔz

]T
contains the dis-

placements along the Cartesian coordinate axes and b̌ contains the sources and body forces.
The dependency on space and time is omitted in the following for better readability. The
Lamé parameters λ and G represent the material and can be computed from the material’s
Young’s modulus E and its Poisson ratio ν by

λ = Eν

(1 + ν) (1− 2ν) , (2.37)

G = E

2 (1 + ν) . (2.38)
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Assuming a steady state, (2.36) can be written in frequency domain as

−s2ρu + (λ+ 2G)∇ (∇ · u)−G∇× (∇× u) = −b. (2.39)

Given (∇× u) = ∇ (∇ · u)−∆u [150], eq. (2.39) can be rewritten in the form of the Navier-
Cauchy equation

−s2ρu + (λ+G)∇ (∇ · u) +G∆u = −b. (2.40)

To obtain a relation between the wave equation and the resulting strains and stresses, the
displacements u are related to the strain vector ε = [εx εy εz εyz εxz εxy]T by

ε = Lu =




∂
∂x

0 0 0 ∂
∂z

∂
∂y

0 ∂
∂y

0 ∂
∂z

0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x

0




T

u. (2.41)

The constitutive law linking stress and strain is given by

σ = Dε, (2.42)

with the stress vector σ = [σx σy σz σyz σxz σxy]T and the constitutive matrix D [150]. For
an isotropic material, it is given by

D =




λ+ 2G λ λ 0 0 0
λ λ+ 2G λ 0 0 0
λ λ λ+ 2G 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G




. (2.43)

Introducing eqs. (2.41) and (2.43) into eq. (2.40), we obtain the wave equation for an isotropic
material in Cartesian coordinates:

−s2ρu + LTDLu = b. (2.44)

Unlike in fluids, where only compression waves exist, different types of waves are propa-
gating through elastic structures. By applying the gradient operator on eq. (2.39), we obtain
the equation for compression waves, also labeled pressure waves or P-waves in the context
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of elastic waves. Their wave speed is given by

cP =
√
λ+ 2G
ρ

. (2.45)

Applying the curl operator on eq. (2.39), the wave speed for shear waves, or S-waves, is
obtained. It is given by

cS =
√
G

ρ
. (2.46)

Shear waves are characterized by particles moving perpendicular to the wave’s direction of
propagation. Particularly important for sound radiation of structures are bending waves, as
they are the main wave type occurring in plate like structures. Here, the particles move par-
allel and perpendicular to the propagation direction of the wave and are thus a combination
of S- and P-waves. For a plate plate with thickness h , the bending wave speed is given by

cB =
(

Im (s)2 Eh2

12ρ (1− ν2)

) 1
4

. (2.47)

Other wave types are found in bounded or inhomogeneous media, but are not considered
here. A thorough overview is provided by Cremer and Heckl [87].

Structures which extensions are much larger in one or two dimensions than in the remaining
one, like beams or shells, are typically described by special theories. For slender beams, the
Euler-Bernoulli theory is usually applied; the Timoshenko beam theory also takes shear
deformation of the cross section into account and thus also holds for ticker beams. The
Kirchhoff theory is valid for thin plates where no transverse shear strain is considered, the
Reissner-Mindlin theory holds for thicker shells. The shell theory holds for thin structures
being loaded parallel to its midplane. Formulations for all theories are available in [276].

The typical boundary conditions for structural systems are kinematic and mechanical
boundary conditions. The displacement is prescribed with a kinematic boundary condition
and is chosen to model supports, for example. This boundary condition of Dirichlet type is
given by

u (r)− uΓ = 0 ∀r ∈ Γu, (2.48)

where uΓ is the prescribed value of the displacement at the corresponding boundary Γu.
Similarly, mechanical or Neumann boundary conditions are realized by prescribing the stress
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resultant σn with a value σn,Γ on the corresponding boundary Γσ:

σn (r)− σn,Γ = 0 ∀r ∈ Γσ. (2.49)

Additional to purely elastic materials considered above, viscoelastic materials are often
encountered in a vibro-acoustic setting. They are characterized by a time dependent stress
strain relation. While linear elastic materials show a rate independent linear stress strain
relation, this relation is load history dependent for viscoelastic materials. Loading and
unloading a viscoelastic material dissipates energy; the amount of dissipated energy is char-
acterized by a hysteresis loop in the material’s stress strain relation, illustrated in fig. 2.2.
Because of this behavior, viscoelastic materials are a typical choice to dissipate unwanted
vibration energy in vibro-acoustic systems.

ε

σ

ε

σ

Figure 2.2: Comparison between the stress strain relation of an elastic (left) and a viscoelastic material
(right). The area enclosed by the hysteresis loop of the viscoelastic material resembles the
amount of dissipated energy in one loading cycle.

Their frequency dependent damping behavior is governed by the same constitutive law as
used for standard elasticity (2.39) and can be modeled by, for example, a complex valued
shear modulus G̃. In this context, the real part of G̃ is termed storage modulus and the
imaginary part is termed loss modulus, resembling the energy stored respectively dissipated
during a loading cycle [67]. Various models to determine G̃ depict the viscoelastic behavior
by rheological models using springs with stiffnesses Gi and viscous dampers with damping
coefficients ηj. In these equivalent models, a spring depicts the behavior of the elastic portion
of the material, while the dashpot models the viscous part of the material response. Some
of these models are:
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• Kelvin-Voigt model:

G̃ = G+ i Im (s) η (2.50)

• Maxwell model:

G̃ = Gi Im (s) η
G+ i Im (s) η (2.51)

• Generalized Maxwell model:

G̃ = G0 +
n∑

i=1

Gii Im (s) ηi
Gi + i Im (s) ηi

(2.52)

A generalized Maxwell model with n = 1 is also known as Zener model. In order to model
a more complex time dependent relaxation inside the viscoelastic model, a model based on
the concept of fractional derivatives can be employed. Such empirical models can be tuned
to describe the behavior of viscoelastic materials using only a few parameters, which can be
obtained from measurements [27]. Its complex valued shear modulus is given by

G̃ = G0 +G∞ (i Im (s) τ)α

1 + (i Im (s) τ)α , (2.53)

with static shear modulus G0, asymptotic shear modulus G∞, relaxation time τ , and the
fractional parameter α. An overview over other damping models proposed in literature is
given in [2].

2.2.3 Poroelastic materials

Porous materials have a complex micro structure consisting of an elastic solid matrix which
is surrounded and permeated by a fluid. Such materials are often used to dissipate unwanted
vibration energy and typically labeled as foams of any kind [194, 260]. The friction between
the two phases causes energy dissipation inside the material. Therefore, porous materials
can be used to improve the acoustic properties of a cavity by reducing the overall energy
or by damping unwanted echoes. The Biot theory [58, 59] is often used to model porous
materials with an elastic skeleton. It describes the material’s complex micro structure by an
equivalent homogeneous material, characterized by its porosity. This is the fraction of fluid
volume and the total volume of the material and denoted by φ = Vfluid/Vporous. Additionally,
four elastic coefficients Ã, G, Q̃ and R̃ need to be determined as described in [60] in order
to describe the material. G is the shear modulus of the solid phase, the other coefficients
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are obtained from the effective bulk modulus of the fluid phase K̃f . This is possible, if
the solid phase is comprised of a material with a bulk modulus much higher than both
the bulk modulus of the porous material in a vacuum and the effective bulk modulus of
the fluid phase. Various models to describe this quantity have been proposed, all requiring
different input parameters obtained by measurements [145]. In the following, we consider
the semiphenomenological Johnson-Champoux-Allard model (JCAM) for porous materials
with a non-uniform skeleton [5]. It requires five material parameters to be fully described.
The Johnson-Champoux-Allard-Lafarge model [160] also considers thermal effects in the low
frequency region and requires an additional parameter to be determined. Another extension
is the Johnson-Champoux-Allard-Pride-Lafarge model [212] which additionally considers
possible constrictions in the matrix of the porous material. Eight material parameters need
to be determined for this representation. If the effects of an elastic frame of the Biot theory
are not considered, all these models can also be used to describe the porous material as an
equivalent fluid. In the following, the viscous effects of the porous material are described by
the JCAM and the solid frame is considered to be elastic. For all models described above,
the effective bulk modulus K̃f is a complex valued function of the excitation frequency s.
For JCAM it is given by

K̃f (s) = γP0

γ − (γ − 1)
(

1 + 8µ
i Im(s)PrΛ′2ρf

√
1 + i Im(s)PrΛ′2ρf

16µ

)−1 . (2.54)

An overview over the material parameters required for the JCAM is presented in table 2.1.
The remaining elastic coefficients are then given by

Ã (s) = λ+ Q̃ (s)2

R̃ (s)
, (2.55)

Q̃ (s) = (1− φ) K̃f (s) , (2.56)
R̃ (s) = φK̃f (s) . (2.57)

Here, λ is the first Lamé coefficient. The constitutive relations for stresses in solid and fluid
phase of the porous material as given by Biot are

σs =
(
Ã (∇ · us) + Q̃ (∇ · uf)

)
◦ I + 2Gεs, (2.58)

σf =
(
Q̃ (∇ · us) + R̃ (∇ · uf)

)
◦ I. (2.59)

σs is the Cauchy stress tensor for the solid phase and σf contains the hydrostatic stress
from the fluid pressure inside the material. us and uf describe the macroscopic displacement
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of solid and fluid phase and εs is the strain tensor of the solid phase given small displace-
ments. Biot’s governing equations for the solid and fluid phase of a porous material with
homogeneous material properties under harmonic motion are then given by




∇ · σs (us,uf) = s2 (ρ̃s (s) us + ρ̃sf (s) uf) ,

∇ · σf (us,uf) = s2 (ρ̃f (s) uf + ρ̃sf (s) us) .
(2.60)

The effective densities ρ̃s, ρ̃f , ρ̃sf are linked to the inertial effects between both phases by
considering the tortuosity α∞ of the porous material. Viscous interaction effects are incor-
porated by the frequency dependent viscous drag b̃ (s). The effective densities are given by

ρ̃s (s) = (1− φ) ρs + φρf (α∞ − 1) + b̃ (s)
i Im (s) , (2.61a)

ρ̃f (s) = φρfα∞ + b̃ (s)
i Im (s) , (2.61b)

ρ̃sf (s) = φρf (1− α∞)− b̃ (s)
i Im (s) , (2.61c)

with the density of the solid phase ρs and the fluid phase ρf . The frequency dependent
viscous drag is given by

b̃ (s) = σφ2
√

1 + 4i Im (s)α2
∞µρf

σ2Λ2φ2 . (2.62)

This classic, or (us,uf), formulation requires the solution of two vector fields to obtain the
displacement of both phases. In order to reduce computational complexity, the displacement
of the fluid phase is expressed by the pressure inside the pores in the mixed, or (us,p),
formulation [18]. Instead of solving two vector fields, one for the displacement of both
phases, only a scalar field has to be solved for the fluid phase, which reduces the overall
number of required degrees of freedom. This formulation has been extended in [17] to ease
the coupling to other media. It couples naturally to an adjacent solid phase, while the
standard coupling conditions for coupling a solid to an acoustic fluid phase can be employed
for coupling the porous with the acoustic domain. The mixed formulation reads




∇ · σ̂s (us)− s2ρ̃ (s) us + γ̃ (s)∇p = 0

∇2p− s2 ρ̃f(s)
R̃(s)p+ s2 ρ̃f(s)

φ2 γ̃ (s)∇ · us = 0,
(2.63)
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where σ̂s (us) is the frequency invariant stress tensor of the elastic frame inside a vacuum.
It is given by

σ̂s (us) =
(
Kb −

2
3G

)
∇ · us ◦ I + 2Gεs, (2.64)

with the bulk modulus of the porous material in vacuo Kb, its shear modulus G, and the
strain tensor εs. No inertia effects are considered for this stress tensor. The total stress
tensor of the poroelastic material σt is related to σ̂s by

σt (us,uf) = σ̂s (us)− φ
(
1 + Q̃/R̃

)
p ◦ I. (2.65)

The remaining parameters required to describe the poro-elastic material (2.63) are the ef-
fective density ρ̃, given by

ρ̃ (s) = ρ̃s −
ρ̃2

sf
ρ̃f
, (2.66)

and the parameter γ̃, relating the effective densities and the frequency dependent elastic
coefficients to the porosity, defined as

γ̃ (s) = φ

(
ρ̃sf (s)
ρ̃f (s) −

Q̃ (s)
R̃ (s)

)
. (2.67)

The hysteretic damping of the solid phase is defined by the loss factor ηs and is modeled by
adding an imaginary part to the Lamé parameters of the material

λ̃ = (1 + iηs)λ, (2.68a)
G̃ = (1 + iηs)G, (2.68b)

making the elastic frame’s stress tensor a complex valued quantity. In practice, all parameters
required to describe the porous material can be estimated from sample measurements in an
impedance tube [146]. Different configurations of the impedance tube considering two to
four microphones and various thicknesses of the sample allow the measurement of K̃f and
ρ̃ [193, 198]. The remaining parameters can be obtained by considering the porosity φ and
the flow resistivity σ [146].

Due to the coupling of solid and fluid phase inside the porous material, three types of
waves can propagate through the medium: two compression waves and one shear wave. For
porous materials saturated with air, one compression wave, termed airborne wave, propagates
mostly through the air, while the other, termed frame-borne wave, propagates in both media.
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Table 2.1: Material parameters for poroelastic materials described by the Biot theory.

Parameter Unit Description
φ - Porosity
σ N s m−2 Flow resistivity
α∞ - Tortuosity
Λ m Viscous characteristic length
Λ′ m Thermal characteristic length
ρs kg m−3 Density of the elastic frame
λ Pa First Lamé parameter of the elastic frame
G Pa Shear modulus (second Lamé parameter) of the elastic frame
ηs - Structural damping parameter of the elastic frame
ρf kg m−3 Density of the surrounding fluid
µ N s m−2 Viscosity of the surrounding fluid
P0 Pa Standard pressure of the surrounding fluid
γ - Heat capacity of the surrounding fluid
Pr - Prandtl number of the surrounding fluid

The shear wave is only propagating in the elastic frame of the porous material. The wave
speed of the two compression waves are given by

cp,P1,2 =



2
(
P̃ R̃− Q̃2

)

P̃ ρ̃f + R̃ρ̃s − 2Q̃ρ̃sf ∓√χ




1
2

(2.69)

with P̃ = Ã + 2G and χ =
(
P̃ ρ̃f + R̃ρ̃s − 2Q̃ρ̃sf

)2 − 4
(
P̃ R̃− Q̃2

)
(ρ̃sρ̃f − ρ̃2

sf). The shear
wave speed is given by

cp,S =
(

Gρ̃f

ρ̃sρ̃f − ρ̃2
sf

) 1
2

. (2.70)

The behavior of the different longitudinal waves is governed by the ratio of the velocities
of the respective wave type inside the fluid and solid phase of the porous material [5, 149].
For frequency regions where the ratio is close to one, i.e. no relative motion between the
phases is present, the slower compression wave propagates mainly in the fluid phase, while
the faster compression wave and the shear wave propagate through the solid phase. In this
region, viscous forces inside the material are governing. For higher frequencies, the fast
compression wave propagates in the fluid, while the shear wave and the slower compression
wave propagate mainly in the solid phase.
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2.2.4 Vibro-acoustic coupling conditions

The correct representation of the coupling between the different phases present in vibro-
acoustics is decisive for a correct description of the frequency response of such systems. In
the following, conditions ensuring the continuity between the acoustic fluid, elastic solids,
and poroelastic materials are outlined. Figure 2.3 gives an overview over all considered
coupling surfaces as well as the definition of the corresponding normal vectors. All normal
vectors are defined as pointing outwards of the respective domain.

Γp

Γa
Ωa

Ωe

ΓaeΓv Γap

ne

nanp

Γep
Ωp

na ne

np

Figure 2.3: A vibro-acoustic system with acoustic fluid Ωa, structural elastic domain Ωe, a poroelastic
domain Ωp, different boundary conditions Γp, Γa, Γv. The interfaces between the phases Γae,
Γap, Γep are displayed with their corresponding normal vectors n. na points outwards of the
acoustic domain, ne outwards of the elastic domain, and np outwards of the porous domain.

Acoustic-structural coupling

The coupling between an elastic structure and an adjacent acoustic fluid is realized by relating
the pressure field p in the acoustic domain to the velocity of the structure v at the interaction
surface between the two domains. In the following, an index ·a denotes quantities related to
the acoustic fluid, the elastic structure is denoted by an index ·e. For better readability, the
space dependency r is omitted. The coupling acts in both ways, so variations in acoustic
pressure excite the structure, while structural vibration causes pressure fluctuations. The
velocity continuity at the interface Γae between acoustic fluid and structure is given by

∇pa · na + sρav · ne = 0, (2.71)

where the normal vector na points outside of the fluid domain and ne directs outside of the
structural domain, i.e. inside of the acoustic fluid. Here, the fluid’s density is denoted by ρa.
The above relation is equivalent to the velocity boundary condition given by (2.31), here the
velocity at the boundary is defined by the structural vibration. In the opposite direction,
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the acoustic pressure acts as a pressure load on the structure. This coupling is given by

pana − ne · σe = 0. (2.72)

A special case needs to be considered, if a thin plate-like structure separates the acoustic
fluid into two individual cavities as sketched in fig. 2.4. In this case, the vibrating plate
radiates antiphasic in both directions. The resulting pressure force acting on the plate is
here given by the difference of the pressures pa1 and pa2 in both cavities and the vibration of
the plate excites the acoustic fluids on both sides of the plate. Given the normal direction
definitions as in fig. 2.4, the velocity continuity for both fluids can be written as

∇pa1 · na1 − sρa1v · ne = 0, (2.73)
∇pa2 · na2 + sρa2v · ne = 0. (2.74)

The excitation of structural vibration, governed by the difference of the pressures p1 and p2

is then given by

(pa1 − pa2) na − ne · σe = 0. (2.75)

Given this definition of the normal directions, a pressure p > 0 in the acoustic fluid acts
as compression force on the structure. Obviously, the plate is not excited if the pressure is
equal on both sides of the plate [110].

Ωa1

na2

Ωa2

na1

ne

Ωe

Figure 2.4: Fluid structure fluid coupling of a plate like structure Ωe separating two individual acoustic
cavities Ωa1 and Ωa2 .

Poroelastic-acoustic coupling

We now consider the coupling between an acoustic fluid and a poroelastic material, which
pores are open towards the acoustic fluid and thus a mass flux is possible. Coefficients
associated with the acoustic fluid are denoted by the index ·a, coefficients describing the
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poroelastic phase by the index ·p. The continuity at the interface Γap between both phases
is given by





np · σt − pa · na = 0,
1

ρas2∇pa · na − (1− φ) us · np − φuf · np = 0,

pp − pa = 0.

(2.76)

The first equation relates the total stress tensor of the poroelastic material to the pressure
inside the acoustic cavity and ensures continuity of normal stresses. Continuity between
acoustic pressure and total poroelastic displacement, in terms of us and uf , is ensured by
the second equation and the third equation ensures the continuity of fluid pressure at the
interface [5].

Poroelastic-structural coupling

In order to couple a porous material to an elastic structure, described by its displacement
field ue, the following conditions need to be fulfilled at the coupling interface Γep:





np · σt + ne · σe = 0,

uf · np − us · np = 0,

us − ue = 0.

(2.77)

Relating the normal parts of the total stress tensor of the poroelastic material and the
stress tensor of the elastic structure in the first equation ensures the continuity of normal
stresses at the interface. The positive sign results from the definition of the normal vectors,
pointing in opposite directions. The fact, that no relative mass flux between the two phases
of the poroelastic material is possible at the boundary, is expressed by the second equation.
Continuity of the displacements of the elastic structure and the solid phase of the porous
material are ensured by the third equation [5].

Poroelastic-poroelastic coupling

Two separate poroelastic phases, denoted by subscripts ·1 and ·2, are coupled by relating
their displacement vectors and pore pressures. The following conditions need to be fulfilled
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at the interface between the two materials Γpp to ensure continuity:




np1 · σt1 + np2 · σt2 = 0,

φ1 (uf1 − us1) · np1 + φ2 (uf2 − us2) · np2 = 0,

us1 − us2 = 0,

pp1 − pp2 = 0.

(2.78)

Similar to the poroelastic-structural coupling, the first two equations ensure continuity of
total normal stresses and continuity of relative mass flux at the interface between both
materials. The continuity between displacements of the solid phases is enforced by the third
equation and the fourth equation expresses the pressure continuity of the fluid phases at the
boundary [5].

2.3 Modeling vibro-acoustic systems

A variety of modeling techniques is used to predict the solution of vibro-acoustic systems
following the descriptions derived above. The choice of a specific method is depending on the
properties of the model, such as the considered boundary conditions, if the model is bounded
or unbounded towards infinity, and the frequency range in which the model is evaluated.
Given simple boundary conditions and regular geometries, analytical solutions can be derived
for many vibro-acoustic phenomena. They are typically valid for a wide frequency range and
solutions are available for both bounded and unbounded domains. If more complex boundary
situations as well as arbitrary geometries need to be considered, analytical methods may
not be valid anymore and the continuous domain needs to be approximated by numerical
methods. The choice of the specific method is governed by the considered frequency range.
The number of modes in a specific frequency band of interest is a often considered as a
measure if a problem is considered a low or high frequency problem [172]. The finite element
method (FEM) and boundary element method (BEM) are deterministic approaches and are
typically applied to problems with a low to medium number of modes being present in the
frequency range of interest. Contrary, the statistical energy analysis (SEA) is considered for
systems with a large number of modes. The main concepts of the methods are outlined in
the following.
FEM and BEM or a combination of both can be used for problems with a moderate

amount of modes. Using FEM the domain and its boundary and using BEM only the model
boundaries are discretized as elements of finite size in which the solution is approximated
by shape functions. The spatial discretization must be able to capture all important wave
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phenomena, so the element size shrinks with increasing frequency, leading to very large
and computationally demanding models if high frequency vibration is considered at large
geometries. Contrary to FEM, where the solution is directly approximated in the complete
domain, BEM obtains the field solution in a post-processing step from the solution at the
model boundaries using Green’s functions. This allows the direct modeling of the Sommerfeld
radiation condition allowing, for example, a free radiation at the boundaries. Modeling free
radiation with the FEM requires specialized elements, which will be covered in section 2.3.2.
Although solely discretizing the boundary with the BEM leads to less degrees of freedom
compared to discretizing the same problem with finite elements, the resulting frequency
dependent linear system of equations is densely populated. This prohibits the application
of solving algorithms relying on the sparsity of the system to be solved and thus diminishes
the benefits of a smaller size of the equation system [227]. A coupling of domains discretized
by FEM and BEM is possible. This allows, for example, the modeling of a fluid structure
interaction problem using finite elements and the free radiation into infinity by boundary
elements [114].
An extension to the standard finite element method which can be applied to periodic

structures is the wave finite element method (WFEM). Here, the wave propagation in such
structures is computed by relating the wave solutions at the boundaries of a unit cell, the
smallest recurring element in the periodic setup of the structure. This approach is based on
the Floquet theorem for one-dimensional periodicity and the Bloch theorem for higher order
periodicity, both stating that the wave solution in the periodic structure is also periodic. The
unit cell is discretized with finite elements and the periodic structure is considered infinite
[175]. Applying the WFEM allows to identify frequency ranges in which waves cannot travel
through the periodic structure, making it an important tool for the development of wave
attenuating materials and structures [85, 184, 188].
The accuracy of deterministic approaches like FEM, BEM, and derived methods, is limited

if systems with very large numbers of modes need to be considered. With the increasing mode
order, the dynamic response’s sensitivity to small changes in model geometry, boundary
conditions, or damping behavior also increases. As these model parameters are at least
to some extent subject to uncertainty, a purely deterministic method becomes unreliable.
Additionally, the dynamic influence of the system is dominantly governed by more than
one mode if many modes appear in direct vicinity, making considerations depending on
single modes unreliable. In such cases the overall energy in the system and its subsystems
provides a better measure for the system behavior. The SEA considers the probabilistic
nature of the frequency response of such systems with the help of averaging techniques. Its
main concept is to treat parts of the main system as interconnected subsystems and depict
their vibrational flow by an energy equilibrium [98]. Here, the subsystems are considered
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as groups of similar modes. The energy responses of the subsystems are averaged over a
frequency range containing enough modes to justify this statistical average. Therefore, a
certain modal density, i.e. number of modes in a specified frequency band, is required for
SEA to be applicable [172]. The SEA calculates the energy flow through and storage in
a system by discretizing it as interconnected subsystems. The subsystems store energy,
which is generated by external, often random, sources, transmit it to other subsystems, and
dissipate or radiate energy, which is then not part of the system anymore. All energies are
averaged, which accounts for the uncorrelated state of the overlapping wave patterns at high
frequencies. A generalization of the SEA which allows the coupling of deterministic and
statistical subsystems has been established by Shorter and Langley [236]. The energy flow
analysis introduced by Mace and Shorter [173] follows a similar concept than the SEA but
allows different wave types to be present in a subsystem and has less requirements on the
coupling of multiple subsystems [265, 266].
The frequency region in which the SEA is not yet applicable but the models required for

FEM or BEM tend to be very large is considered as mid-frequency region [174]. Combi-
nations of deterministic and statistical methods, such as the stochastic boundary element
method (SBEM), can be used to model problems which are required to be accurate in this
frequency range. Coupling SEA subsystems with finite element systems is also possible [83].
Another approach are Trefftz methods, a deterministic approach where exact solutions of
the governing differential equations are used as shape functions to approximate the solu-
tion in the domain of interest, allowing accurate solutions also for high frequencies using a
reasonable amount of degrees of freedom. The method, however, yields densely populated
matrices with are often ill-conditioned [258]. Using higher order shape functions in the FEM
can also decrease the number of required degrees of freedom to achieve sufficient accuracy
in the mid-frequency region [54].
In the following, we will focus on the FEM, as it is a widely used method to model low

to mid-frequency vibro-acoustic problems. Additionally, the resulting sparsely populated
system matrices are a prerequisite for many complexity reduction methods described in
chapters 3 and 4.

2.3.1 The finite element method for vibro-acoustic systems

Let A (x) = 0 be a set of differential equations satisfied by an unknown function vector x in
the domain Ω and B (x) = 0 the set of corresponding boundary conditions on Γ. The vector x
contains the field variables being described by the differential equations, for example pressure
or displacements. The finite element method seeks an approximation to this vector function
by employing shape functions N defined by spatial coordinates. For this, the domain Ω is
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divided into a finite number of nodes n which form a number of elements with predefined
shape. The approximate solution of the field variables is then given by the series

x ≈ x̂ =
n∑

i=1
Nixi = Nx̄. (2.79)

The matrix N contains n locally defined shape functions, which evaluate to 1 at node i
and zero at every other node. x̄ is the corresponding set of parameters ensuring a proper
approximation. To obtain a standardized way of evaluating the shape functions also for
distorted elements, the element geometry is typically mapped onto an equivalent element
where the spatial coordinate is defined in the range [−1,1]. This is known as the isoparametric
concept and the necessary mapping operator is given by the element’s Jacobian matrix. This
concept is explained in detail in Zienkiewicz, Taylor, and Zhu [277].

The solution for x̄ in (2.79) is obtained from an integral form approximating A and B
in the domain. As the shape functions do not satisfy the differential equations nor their
boundary conditions, a weighting has to be applied to find a solution for xi with a minimal
error. This in known as the method of weighted residuals. The required integral form is
given by

∫

Ω
wT
AA (x) dΩ +

∫

Γ
wT
BB (x) dΓ = 0, (2.80)

with vectors of arbitrary weighting functions wA, wB of appropriate length. As the integral
expression needs to be evaluated numerically, the derivatives of the employed functions
x must be continuous. Performing an integration by parts lowers the required order of
continuity for x while increasing it for w, resulting in the so called weak integral form. As
the functions in w are often polynomials, the requirements on continuity can be easily met.
To find the weighting functions w satisfying eq. (2.80), they are, similarly to eq. (2.79),
approximated by a sum of shape functions Ni and nodal weights wi as

w ≈ ŵ =
n∑

i=1
Niwi. (2.81)

If the same shape functions are chosen for both approximations eqs. (2.79) and (2.81), the
method is referred to as Galerkin method. Inserting both approximations into the integral
form eq. (2.80) yields

wT
i

(∫

Ω
NT
AA (Nx̄) dΩ +

∫

Γ
NT
BB (Nx̄) dΓ

)
= 0. (2.82)

As the expression needs to be valid for arbitrary weights wi, the function vector can be
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omitted. Again, performing and integration by parts yields an expression with a lower
requirement on continuity for the functions x̄. Performing the necessary discretization steps
and applying all boundary conditions results in a linear system of equations of the form

Ax̄ = b. (2.83)

A is called dynamic stiffness matrix in a vibro-acoustic context, b contains the external
loads, and x̄ is the approximation of the unknown field parameters x under the assumption
of (2.79). Depending on the modeled problem, post-processing steps to obtain derived
quantities, for example stresses, may be required. The approximations performed by the
shape functions can be reused for this procedure. Details on the implementation of the
finite element method in a computer program can be found, for example, in the books of
Zienkiewicz, Taylor, and Zhu [277], Bathe [33], and Hughes [139]. In the following, weak
formulations for the differential equations describing different parts of a vibro-acoustic system
introduced in section 2.2 are presented.

Finite element formulation for structural waves

A weak form of the elastic wave equation (2.40) is is given by
∫

Ω
ŵε ⊗ σ dΩ + s2ρe

∫

Ω
ŵuu dΩ−

∫

Ω
ŵub dΩ−

∫

Γσ
ŵuσn,Γ dΓσ = 0, (2.84)

with prescribed normal stresses σn,Γ at the corresponding boundary Γσ. Following the
Galerkin principle, we use the same shape functions to approximate the test functions w

and the unknowns σ and u. Assembly into matrix form yields a second order dynamical
system given by

Σ:




(
s2Me + sCe + Ke

)
x(s) = feu(s),
y(s) = gx(s).

(2.85)

Here, Ke represents the stiffness distribution in the elastic medium, Ce is the viscous damping
matrix, Me defines the system’s mass distribution, and the external forces are collected in
fe. Stiffness, mass, and loading are given by

Ke =
∫

Ω
BTDB dΩ, (2.86)

Me = ρe

∫

Ω
NTN dΩ, (2.87)

fe =
∫

Ω
NTb dΩ +

∫

Γσ
NTσn,Γ dΓσ, (2.88)
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with matrix B containing the derivatives of the shape functions with respect to L as defined
by eq. (2.41) at each node. The system’s transfer function is

H(s) = g
(
s2Me + sCe + Ke

)−1
fe. (2.89)

The damping matrix can have different forms, which are depending on the employed damp-
ing model. If viscous damping is realized by a complex and frequency dependent shear
modulus, Ce is given by the imaginary part of Ke. Another concept to compute a system’s
viscous damping is using a stiffness and/or mass proportional damping, where Ce is a linear
combination of Ke and Me. Proportional damping matrices are particularly interesting in
the context of modal analysis, as they can be diagonalized in the same way as mass and
stiffness matrices. A widely used form of proportional damping is Rayleigh damping, where
the damping matrix is given by

Ce = αMe + βKe, (2.90)

with two parameters α, β. The damping in the low frequency region is governed by inertia
effects and regulated with parameter α, while the influence of stiffness controlled damping
in the higher frequency region is governed by β. The parameters can be determined by
specifying two loss factors η1 and η2 at two arbitrary frequencies f1 and f2. However, a
single loss factor η = η1 = η2 is often chosen, resulting in a similar damping behavior for
frequencies f1 ≤ f ≤ f2. The resulting damping is lower than η in this frequency region and
higher for all other frequencies. The Rayleigh parameters are then given by

α = 2π ηf1f2

f1 + f2
(2.91)

β = η

2π (f1 + f2) . (2.92)

Figure 2.5 illustrates the influence of both parameters on the resulting loss factor. The loss
factors can, for example, be obtained from measurements or are found in literature.

As the effect of Rayleigh damping is always affecting the complete frequency range in which
the system is evaluated, it may be difficult to tune α, and β according to a more complex
damping behavior over a larger frequency region. Caughey [73] proposed a generalization
of the classical Rayleigh damping allowing n damping parameters d, where n must be lower
than the number of degrees of freedom in the system. The according damping matrix is
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Figure 2.5: Determination of Rayleigh damping parameters α and β by specifying the loss factors at two
distinct frequencies. Influence of α and β on the resulting system damping ratio η.

computed by

Ce = M
1
2e

(
n−1∑

i=0
di

(
M− 1

2e KeM
− 1

2e

) i
p

)
M

1
2e , (2.93)

with an integer p that may be negative, if Ke is invertible. The case p = 1, n = 2 is equivalent
to Rayleigh damping and the damping matrix obtained from eq. (2.93) is also diagonalizable.
The unknown parameters d can be computed from a linear system of equations as described,
for example, in [151, Section 3.5.6]. However, this system is prone to be ill-conditioned
for a large number of n and the resulting parameters might lead to negative damping for
some frequencies or highly oscillating damping behavior between the expansion frequencies.
Additionally, the matrix powers in eq. (2.93) require a substantial computational effort to
compute Ce, especially for higher n.

Finite element formulation for acoustic waves

The weak form of the Helmholtz equation (2.28) and its boundary conditions is obtained
from its integral formulation by integrating by parts. This results in

s2

c2
a

∫

Ω
ŵpp dΩ +

∫

Ω
∇ŵp∇p dΩ + sρa

∫

Γv
ŵpvn,Γ dΓv + sρa

∫

ΓA
ŵp (pAn,Γ) dΓA = 0, (2.94)

with prescribed values vn,Γ for particle velocity in normal direction and normal admittance
An,Γ. Using the Galerkin method, the same shape functions are used to approximate the
pressure p and the corresponding test functions wp. After discretization and assembly, a
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second order system of shape

Σ:





(
s2

c2
a
Ma + sCa + Ka

)
x(s) = fa (s)u(s),

y(s) = gx(s),
(2.95)

is obtained. The matrices and vector are related to (2.94) by

Ka =
∫

Ω
∇NT∇N dΩ (2.96)

Ca = ρa

∫

ΓA
NTAn,ΓN dΓA (2.97)

Ma = 1
c2

a

∫

Ω
NTN dΩ (2.98)

fa (s) = −sρa

∫

Γv
NTvn,Γ dΓv (2.99)

The acoustic mass matrix Ma represents the compressibility of the medium, the acoustic
stiffness matrix Ka its mobility. If an admittance boundary condition is considered, the
acoustic damping matrix Ca is not proportional to Ma or Ka. All three material matri-
ces are typically symmetric. The input mapping fa (s) is frequency dependent due to the
definition of the Neumann boundary condition for the acoustic fluid (2.31). Specifying a
normal displacement boundary according to (2.32) is performed analogously, the frequency
dependency is quadratic regarding s in this case. The system’s transfer function is given by

H(s) = g
(
s2

c2
a
Ma + sCa + Ka

)−1

fa(s). (2.100)

The system described above is only valid for bounded domains, i.e. interior problems. The
treatment of unbounded domains and their finite element discretization is presented in sec-
tion 2.3.2.
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Finite element formulation of poroelastic materials

A weak integral form of the mixed displacement-pressure formulation for poroelastic mate-
rials (2.63) is given in [17] as





∫

Ω
ŵεs ⊗ σ̂s dΩ + s2ρ̃

∫

Ω
ŵus · us dΩ−

(
γ̃ + φ

(
1 + Q̃

R̃

))∫

Ω
ŵus · ∇p dΩ

− φ
(

1 + Q̃

R̃

)∫

Ω
∇ŵus · p dΩ−

∫

Γ
ŵus · σt,n,Γ dΓ = 0,

− φ2

s2ρ̃f

∫

Ω
∇ŵp · ∇p dΩ− φ2

R̃

∫

Ω
ŵp p dΩ−

(
γ̃ + φ

(
1 + Q̃

R̃

))∫

Ω
∇ŵp · us dΩ

− φ
(

1 + Q̃

R̃

)∫

Ω
ŵp∇ · us dΩ− φ

∫

Γ
ŵp (uf,n − us,n) dΓ = 0,

(2.101)

regarding the corresponding test functions ŵ. The index n marks the normal component of a
quantity regarding the corresponding surface Γ, where the normal vector is defined pointing
outwards of the porous domain. The frequency dependency of the parameters marked with
a tilde are not stated explicitly for better readability. Note, that for porous materials where
the bulk modulus of the skeleton structure inside a vacuum is much lower than the bulk
modulus of an elastic solid consisting of the material of which the skeleton is comprised of,
it holds φ

(
1 + Q̃/R̃

)
u 1. The relations regarding the coupling of solid and fluid phase

in (2.101) can therefore be simplified. A complete derivation is given, for example, in [5,
Chapter 13]. A discretization of the equations above leads to the following linear system of
equations


Kp,s + s2M̃p,s −Z̃p,sf

s2Z̃T
p,sf K̃p,f + s2M̃p,f




us

p


 =


 fp,s

s2fp,f


 (2.102)

with the individual matrices representing the stiffness and mass distribution of the solid
phase, the coupling between both phases, and the compressibility of the interstitial fluid.
They are given by

Kp,s =
∫

Ω
BT

s DBs dΩ, (2.103)

M̃p,s = ρ̃
∫

Ω
NT

s Ns dΩ, (2.104)

K̃p,f = φ2

ρ̃f

∫

Ω
∇NT

f∇Nf dΩ, (2.105)
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M̃p,f = φ2

R̃

∫

Ω
NT

f Nf dΩ, (2.106)

Z̃p,sf =
(
γ̃ + φ

(
1 + Q̃

R̃

))∫

Ω
NT

s∇Nf dΩ + φ

(
1 + Q̃

R̃

)∫

Ω
∇NT

s Nf dΩ, (2.107)

fp,s =
∫

Γ
NT

sσt,n,Γ dΓ, (2.108)

fp,f = φ
∫

Γ
NT

f (uf,n − us,n) dΓ. (2.109)

The subscripts ·s and ·f denote the shape functions respectively their derivatives correspond-
ing to the structural or fluid degrees of freedom. In the above relations, Kp,s and Mp,s

represent the equivalent stiffness and mass distribution of the elastic skeleton, Kp,f and Mp,f

the equivalent mobility and compressibility of the interstitial fluid, Zp,sf the coupling be-
tween the phases, fp,s the loading of the skeleton, and fp,f the kinematic coupling between
solid and fluid phase. Note, that all above matrices except eq. (2.103) are complex valued
and frequency dependent. In order to efficiently use the discretized system for frequency
sweep analyses, it is beneficial to make the individual matrices in (2.102) independent from
the excitation frequency s, such that


Kp,s + s2M̃p,s −Z̃p,sf

s2Z̃T
p,sf K̃p,f + s2M̃p,f


 =

n∑

i=1
φi (s) Ai. (2.110)

This allows to perform the computationally expensive assembly process once prior to the
analysis. Afterwards, the linear system of equations in eq. (2.102) can be computed by a
linear combination of n constant matrices A and n scalar functions φi (s) for each frequency
step. A possible decomposition is given in the appendix in eq. (A.3).

Finite element formulation for vibro-acoustic coupling conditions

In the following, the weak forms of the vibro-acoustic coupling conditions outlined in sec-
tion 2.2.4 and the corresponding finite element discretization are summarized. The weak
form of the acoustic-structural coupling governed by eqs. (2.71) and (2.72) is given by

∫

Γ
ŵuepa + ŵpaue dΓ = 0. (2.111)

A discretization leads to two coupling matrices

Zae = −
∫

Γ
NT

e neNa dΓ, (2.112)

Zea = s2ρa

∫

Γ
NT

anaNe dΓ, (2.113)
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where the index ·a marks shape functions corresponding to the acoustic domain and normal
vectors pointing outwards of this domain. Index e marks the respective quantities for the
domain of the elastic structure. The fully discretized system is then given by


s

2Me + sCe + Ke Zae

Zea s2Ma + sCa + Ka




u
p


 =


 fe

fa (s)


 . (2.114)

Using the modified weak integral formulation for poroelastic materials described by skele-
ton displacement and interstitial fluid pressure as proposed by Atalla, Hamdi, and Pan-
neton [17] ease the coupling to other media. Rewriting the boundary integrals regarding an
interface of a poroelastic material and an acoustic fluid using eqs. (2.94) and (2.101) leads
to the coupling term

s2ρa

∫

Γ
ŵpauna,Γ dΓ +

∫

Γ
ŵus · σt,np,Γ dΓ + φ

∫

Γ
ŵp

(
uf,np − us,np

)
dΓ = 0, (2.115)

where index ·p denotes a quantity referring to the porous material and the corresponding
normal vector is pointing outwards of the poroelastic domain. Introducing the boundary
conditions for poroelastic-acoustic coupling eq. (2.76) leads to

∫

Γ
ŵuspa + ŵpus dΓ = 0. (2.116)

This means, that the poroelastic material couples to an acoustic fluid in the same way an
elastic structure couples to an acoustic fluid (c.f. eqs. (2.71), (2.72) and (2.111)). The last
boundary condition from eq. (2.76), pp − pa = 0, can automatically be enforced during the
assembly process.
The boundary integrals at the interface of an elastic structure and a poroelastic medium

can be rewritten as
∫

Γ
ŵuσne,Γ dΓ +

∫

Γ
ŵus · σt,np,Γ dΓ + φ

∫

Γ
ŵp

(
uf,np − us,np

)
dΓ = 0, (2.117)

with the same definition of the normal vectors as above. All terms vanish after substituting
the boundary conditions at the interface given in (2.77) in the boundary integral, meaning
that the coupling between the two phases is enforced naturally. Only the kinematic boundary
condition us−ue = 0 needs to be enforced, which is again ensured by the assembly process.
Combining the weak formulation of the boundary integrals of the interface between two

porous media, denoted by subscripts ·1 and ·2, the following relation is obtained:
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∫

Γ
ŵus1

· σt1,np1 ,Γ dΓ + φ
∫

Γ
ŵp1

(
uf1,np1

− us1,np1

)
dΓ+

∫

Γ
ŵus2

· σt2,np2 ,Γ dΓ + φ
∫

Γ
ŵp2

(
uf2,np2

− us2,np2

)
dΓ = 0. (2.118)

The normal vectors of both materials have opposite directions, each pointing outwards of the
respective domain. By inserting the boundary conditions (2.78), all terms in the equation
above again cancel out. So the only conditions required to be enforced at the interface are
the kinematic boundary conditions us1−us2 = 0 and pp1−pp2 = 0, which are ensured during
the assembly process.

2.3.2 The perfectly matched layer method

In order to perform numerical analysis of wave phenomena using the finite element method,
the discretized domain needs to be truncated at artificial model boundaries to obtain a
reasonably sized problem. As physical waves would travel through these boundaries without
reflection or diffraction, special boundary conditions need to be employed to ensure the
Sommerfeld radiation condition (2.34). This means, that no energy is reflected at or can re-
enter the system from outside the boundary. If this condition is fulfilled, all energy radiates
from the system towards infinity and no energy can radiate from infinity into the bounded
problem [240]. This radiation pattern can be modeled using absorbing boundary conditions
(ABC), for example impedance boundary conditions or Dirichlet-to-Neumann conditions,
infinite elements, or perfectly matched layers (PML).
Impedance boundary conditions are numerically inexpensive as they only require the ap-

plication of a Robin boundary condition as of eq. (2.33). However, they only absorb the
waves impinging the boundary at normal incidence and may therefore yield unsatisfactory
results for arbitrarily shaped boundaries. A remedy is to increase the distance between the
problem of interest and the artificial boundary in order to ensure a direction normal to the
boundaries for the majority of waves, which in turn increases computational complexity [94,
110].
Dirichlet-to-Neumann (DtN) conditions impose the analytic solution of the Dirichlet prob-

lem of the exterior domain on the arbitrary model boundary as a Neumann boundary con-
dition [119, 152]. As the method requires an analytic solution of the problem in the infinite
domain, problems with multiple sources or scatterers require additional treatment [125].
The non-locality of the DtN operator leads to densely populated system matrices, which is
undesirable for many equation solving algorithms [267].
Infinite elements provide a local non-reflecting boundary condition by adding a layer of
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special elements at the radiating boundary [15]. These elements map the solution of decaying
waves traveling outwards of the physical domain of interest towards infinity to a finite set
of nodes on which a numerical integration can be performed [253]. Compared to standard
finite elements, IE require special shape functions which allow a reasonable discretization
of the waves traveling to infinity. After the evaluation of the frequency response in the
system, the solution in the far field can directly be obtained from the infinite elements.
Various formulations for infinite elements exist, differing, for example, in the symmetry of
the resulting system matrices or their inherent frequency dependency [14, 16, 116, 117].
The perfectly matched layer method is also based on adding layers of absorbing material

around the domain of interest of the discretized problem. It is called perfectly matched
because waves can enter this region without reflections, the concept is sketched in fig. 2.6.
Here, the region of interest is termed physical domain; the wave motion inside the perfectly
matched layer is non-physical and only ensures the Sommerfeld radiation condition. The
layer material is chosen in a way that all waves are damped inside the perfectly matches
layer and no energy is reflected at the boundaries of the outermost layer. Thus no energy
can re-enter the domain of interest. After it was originally introduced for electromagnetic
problems [52], the method has been used for various kinds of wave phenomena [53, 56,
148, 195]. Originally defined along coordinate axes, allowing the application for example
for rectangular, circular, or elliptical regions, the locally conformal PML can be used for
an arbitrary convex shape enclosing the domain of interest [196]. This allows to place the
model boundaries closer to the region of interest, resulting in smaller numerical models. A
strategy to automatically compute the grid in the PML region has been proposed recently
[53]. Perfectly matched layers are easy to implement in a finite element framework as already
existing finite element definitions can be reused. Therefore it is a common choice to model
free radiation in engineering practice. The perfectly matched layer method can also be
employed for different types of structural waves, a review over recent methods is given in
[209]. In the following, however, only PML for compression waves in an acoustic fluid
are considered. The locally conformal PML is reviewed and an implementation with finite
elements is given in the next section.
The main concept behind perfectly matched layers is the complex coordinate stretching.

To illustrate this, we consider oscillating waves given by eikr, which satisfy the Helmholtz
equation (2.28). The physical coordinate r is transformed (or stretched) to a complex coor-
dinate r̃, thus introducing a decay in the wave propagation

eikr̃ = eik(Re(r̃)+i Im(r̃)) = eikRe(r̃)e−k Im(r̃). (2.119)

The imaginary part of the stretched coordinate r̃ governs the decay of waves inside the PML.
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Figure 2.6: The concept of PML as an absorbing boundary condition. The free radiation problem with
region of interest Ωa (left) is truncated by an artificial non-reflecting boundary Γt and a PML
in ΩPML is added to prohibit reflections at the truncation boundary (right). The interface is
denoted by Γi.

It is defined as a function ψ (r) of the physical coordinates of the discretized problem; the
stretched coordinate is therefore given by r̃ (r) = r + iψ (r). Choosing a function which
vanishes inside the physical domain and grows smoothly from the interface Γi to the exterior
model boundary Γt, where the numerical model is truncated, ensures a smooth transition
at the boundary, i.e. waves can enter the PML without reflections. Because the stretching
function vanishes for all r outside the PML region, the stretching function can be applied
everywhere in the model without affecting the solution in the physical domain Ωa. Figure 2.7
illustrates the concept of complex coordinate stretching for a one-dimensional wave traveling
along 0 < x < 10. The physical coordinate x is stretched by the function

ψ (x) =





0, 0 ≤ x < 5,

0.04(x− 5)2, 5 ≤ x < 10.
(2.120)

It is obvious that the wave solution is not changed in the region 0 ≤ x < 5, while the wave
is attenuated in the PML region 5 ≤ x < 10.
Similarly, the complex coordinate stretch for a locally conformal PML is given by

r̃ (r) = r− 1
s
ψ (r) n (r) , (2.121)

where the minus results from a different definition of the stretching function. The absorption
vector n (r) defines the direction in which the wave is attenuated an is obtained from

n (r) = r− ri

‖r− ri‖
, (2.122)

where ri ∈ Γi is the nearest node on the PML interface regarding r. Figure 2.8 sketches the
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Figure 2.7: The effect of complex coordinate stretching on a one dimensional wave.

conformal PML with direction n (r) and distance ζ = ‖r− ri‖.
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Figure 2.8: Sketch of the locally conformal PML and the definitions of the absorption vector for the point r
inside ΩPML.

As the physical domain is required to be convex, a unique ri can be found for all r ∈ ΩPML.
The factor 1

s
in eq. (2.121) is typically introduced to make the attenuation rate inside the

PML independent of the frequency. However, Nannen and Wess [191] argue, that retaining
the frequency dependency in the PML formulation leads to models which are less sensitive to
the parameters of the attenuation function. The exact location of ri in a discretized geometry
can be difficult to obtain. Using a node based approach, the direction of n (r) might not
be assessed correctly given unstructured or coarse grids, while discontinuities at discretized
curvatures cause problems for an element based approach. Bériot and Tournour [55] therefore
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suggest to compute n (r) from the boundary value problem

∇2ϕ (r) = 0, ∀ r ∈ ΩPML, (2.123)

where ϕ (r) is a potential field. Given the boundary conditions

ϕ (r) = −1, ∀ r ∈ Γi, ϕ (r) = 1, ∀ r ∈ Γt, (2.124)

the potential flux from the PML interface to the truncation surface is modeled. Normalizing
the corresponding vector field, which is obtained from the potential field by

v (r) = ∇ϕ (r) , (2.125)

yields an approximation for the absorption vector n (r).

The stretching function ψ (r) governs the attenuation effect inside the PML and thus has a
great influence on the effectiveness of the method. A typical polynomial stretching function
is given by

ψ (r) = αca ‖r− ri‖m

m ‖rt − ri‖m−1 , (2.126)

where rt is the location on the truncation boundary obtained by extending a straight line
from ri to r, i.e. the local PML width and ca is the wave speed in the considered acoustic
fluid. α and m are tuning parameters controlling the wave attenuation inside the PML
area. They have to be chosen in a way that all waves can enter ΩPML without reflections at
the interface Γi, the waves decay monotonously inside the PML region, and the remaining
amplitude is negligible at Γt. An extensive study on the choice of the parameters is given in
[196]. Various other stretching functions have been proposed and argued to perform better
in specific cases [56]. As the overall formulation of the PML is not affected by the choice
of the stretching function, we do not explicitly consider other function types. The complex
coordinate transformation is applied to the homogeneous Helmholtz equation (2.28)—source
terms are omitted here, but can be included—which now reads

k2p̃ (r̃) + ∇̃2p̃ (r̃) = 0. (2.127)

p̃ is the analytic continuation of the pressure field inside the PML and the nabla operator in
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complex space ∇̃ is given by

∇̃ = J̃−T · ∇ =




∂x̃
∂x

∂x̃
∂y

∂x̃
∂z

∂ỹ
∂x

∂ỹ
∂y

∂ỹ
∂z

∂z̃
∂x

∂z̃
∂y

∂z̃
∂z




−T

· ∇ (2.128)

Substitution into eq. (2.127) yields

(
J̃−T · ∇

)
·
(
J̃−T · ∇p (r)

)
+ k2p (r) = 0, (2.129)

where the Helmholtz equation in complex space is expressed in terms of real coordinates.
The weak form of the Helmholtz equation for the complete domain is given by

s2

c2
a

∫

Ωa
ŵpp dΩa +

∫

Ωa
∇ŵp∇p dΩa+

s2

c2
a

∫

ΩPML
ŵp̃p̃ dΩPML +

∫

ΩPML
∇̃ŵp̃∇̃p̃ dΩPML = 0, (2.130)

where p is the pressure field inside the physical domain at r and p̃ the pressure field inside the
PML given by the complex coordinate r̃. In order to ensure continuity at the transition from
physical domain to PML, it is sufficient to ensure ψ (r̃) = 0 ∀ r̃ ∈ Γi. The main advantage
of this formulation is, that a standard implementation of the finite element method can be
used. All computations are simply conducted considering the complex coordinate r̃ rather
than r, all other tools, like shape functions and their derivatives, can be reused.
Due to the introduction of the driving frequency in the coordinate transformation in

eq. (2.121), the weak integral formulation of the PML contains a non-separable dependency
on space and frequency. Using this in a frequency sweep analysis means that the PML needs
to be recomputed for each frequency step, making the method computationally demanding.
Vermeil de Conchard, Mao, and Rumpler [259] approximated this frequency dependency by
reusing the same PML for not only one frequency but for a range and proposed strategies
to find a reasonable tuning frequency.

2.4 Analysis of vibro-acoustic systems

The analysis of vibro-acoustic systems is typically performed in frequency domain given a
harmonic excitation. This allows to assess a system’s properties regarding its vibrational
behavior, if the steady state response has a more significant influence on the solution than
transient effects. This representation can also help to identify resonance effects, which cannot
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always be observed in a transient analysis. An overview over the most important analysis
tools for vibro-acoustic systems is given in the following.

2.4.1 Eigenvalue analysis

The eigenvalues of a vibro-acoustic system are often taken into account to describe fundamen-
tal properties of the vibrational behavior as they can be physically interpreted as resonance
frequencies, also termed eigenfrequencies. Together with the damping of the structure, the
eigenfrequencies have a large influence on the system’s transfer function. They are obtained
from the solution of a generalized eigenvalue problem, if a first-order system or an undamped
or proportionally damped second-order system is considered, or from a polynomial eigen-
value problem, if a arbitrarily damped second-order system is considered. The eigenvectors
obtained from the eigenvalue analysis are interpreted as the modes of a system, which are
the vibration patterns at the corresponding eigenfrequencies. The generalized eigenvalue
problem is given by

Av = λBv, (2.131)

with eigenvalue λ, (right) eigenvector v and the problem dependent matrices A and B of
dimensions n×n. Equation (2.131) has n solutions for pairs of eigenvalues and eigenvectors.
The analysis of a general second-order system given by eq. (2.12) requires the linearization of
the originally polynomial eigenvalue problem to obtain a problem with the form of eq. (2.131).
This can be achieved, for example, by substitution and yields the first companion form

A =

 0 I
−K −C


 , B =


I 0

0 M


 . (2.132)

The first companion form is not the only possible linearization for second-order systems
[237, 245], see also appendix A.1. The solution of this problem yields 2n eigenvalues and
2n eigenvectors. Given Hermitian positive semidefinite matrices K, C and a Hermitian
positive definite M, all eigenvalues have a negative real part, i.e. the considered system is
stable, and the eigenvalues are either real or in complex conjugate pairs. If M is regular,
all eigenvalues are finite; eigenvectors corresponding to zero eigenvalues describe a system’s
rigid body motion. Additionally to the right eigenvectors in eq. (2.131), the corresponding
left eigenvectors are computed by

wHA = λwHB, (2.133)
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where w is the left eigenvector. Using both eigenvectors and the eigenvalues, it is possible to
obtain a formulation for the transfer function of a SISO system, similar to the pole-residue
form (2.17)

H (s) =
2n∑

i=1

(gvi)
(
wH
i f
)

s− λi
. (2.134)

Here, the residual is given as a relation of the system input f and output g as well as the right
and left eigenvectors. However, the explicit computation of the above form is not always
efficient, as it is often ill-conditioned [245].

2.4.2 Modal superposition

Instead of directly expressing a system’s transfer function by its poles and eigenvectors as
in eq. (2.134), the modal superposition method uses the eigenvalues and eigenvectors of a
system to transform it into modal space. This yields, under certain conditions, n decoupled
equations describing each mode’s behavior. If the damping matrix C is proportional to K
and M, this system of decoupled equations is obtained by using the modes of the undamped
system. In this context, the modes are the eigenvectors of the system subjected to free
vibration and are given by the generalized eigenvalue problem

(λM + K) v = 0, (2.135)

which is obtained from the homogeneous equation of motion eq. (2.12) using an exponential
approach x̌(t) = veλt and setting C = 0. If all matrices are (semi-)positive definite and real,
there exist eigenvectors such that

XTMX = I, (2.136)
XTKX = Λ = diag (λ1, . . . , λn) , (2.137)

where X =
[
v1 v2 · · · vn

]
is a matrix containing all eigenvectors and Λ is the spectral

matrix. The eigenvalues are related to the undamped real eigenfrequencies of the system by
ω =

√
λ. If C is proportional to either K or M or both, it can be diagonalized using the

undamped eigenvectors:

vT
jCvi = 0, j 6= i, i,j = 1, . . . , n, (2.138)
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This orthogonality condition can be assured by applying a proportional damping method
from section 2.3. The transformation of the equation of motion to modal coordinates is
performed by x̌ (t) = Xq̌. Premultiplying the resulting expression by XT and considering
only one input gives the modal equation

¨̌q (t) + Ξ ˙̌q (t) + Λq̌ (t) = XTf ǔ (t) , (2.139)

with the generalized damping matrix

Ξ = XTCX = diag (2ω1ξ1, . . . , 2ωnξn) , (2.140)

a diagonal matrix containing the modal damping ratios for each mode. No coupling between
the n equations in eq. (2.139) is present. For the case of Rayleigh damping, the modal
damping ratios are given by ξi = α

2ωi + βωi
2 . After solving for q̌, the solution in physical

coordinates is obtained by x̌ (t) = Xq̌. As the individual solutions for each mode are
superposed to form the solution of the complete system, the method is referred to as modal
superposition method. The solution in Laplace domain can also be expressed as

x (s) =
n∑

i=1

vivT
i f

(ω2
i + s2) + 2sξiωi

, (2.141)

which can be transformed to a pole-residue form (2.17) of the transfer function by premul-
tiplication with an output vector g.

If proportional damping cannot correctly model the system behavior, the damped modes
need to be considered for the modal superposition method. They can be obtained by solving
the generalized eigenvalue problem of a system resulting from reformulating the equation of
motion into an equivalent first-order system of order 2n, such as eq. (2.16) or eq. (2.132).
Using again an exponential approach x̌(1)(t) = veλt, a generalized eigenvalue problem of form
eq. (2.131) with the matrix pair (A,B) given by eq. (2.132) is obtained. The solution yields
2n eigenvalues λ in complex conjugate pairs. All eigenvalues of a stable system have a zero or
negative real part, otherwise the solution of the exponential approach would grow to infinity.
Additionally, the right and left eigenvectors vi, wi ∈ C2n are required for the method.
Similarly to the undamped case, the transformation x̌(1) (t) = Xq̌ to modal coordinates
yields 2n decoupled equations

βi ˙̌qi (t) + αiq̌i (t) = wH
i


0
f


 ǔ (t) , (2.142)
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where αi, βi are the diagonal elements of the matrices

YHAX = diag (α1, . . . , α2n) ,
YHBX = diag (β1, . . . , β2n) .

X and Y are the matrices of right respectively left eigenvectors. The solution for x̌ (t)
is obtained from x̌ (t) =

[
I 0

]
Xq̌ (t). These transformations yield a system of order 2n,

thus increasing the computational effort required for solving such problems. Therefore,
proportional damping models have been traditionally considered in many cases. Efficient
solution strategies for cases where proportional damping is not applicable will be addressed
in the following chapters.

2.4.3 Logarithmic scale

Transfer functions, such as frequency response functions, are often given logarithmically in
the decibel scale. It is defined as the logarithm of the square amplitude of the parameter of
interest referenced to a certain reference level; its unit is decibel dB. In acoustics, the sound
pressure level is often given. It is defined by

Lp = 10 log
(
p

p0

)2

= 20 log p

p0
dB, (2.143)

where p0 = 2·10−5 Pa. A change of 1 dB is barely perceived as a change in loudness, and this
expression accounts for the fact that sound pressure is perceived logarithmically instead of
linearly by the human ear [189]. Other level descriptions are frequently used, for example
the sound power level LP, where the measured power is referenced to P0 = 1·10−12 W, so
1 W corresponds to a intensity of 120 dB.

2.5 Numerical examples of vibro-acoustic problems

After defining the governing equations and coupling conditions of the different domains be-
ing present in a vibro-acoustic setting and presenting a discretization with finite elements,
numerical model problems for different kinds of vibro-acoustic systems are introduced. The
type of modeled problem has an influence on the shape of the transfer function which needs to
be evaluated, leading to different requirements for solving and reduction algorithms. There-
fore, we divide the problems into groups defined by the shape of their transfer function. We
will only consider systems with a single input and a single output (SISO), which can be
grouped as follows:
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• Case A: A structural or interior vibro-acoustic system with proportional damping and
no acoustic source following

H(s) = g
(
s2M + s (d1M + d2K) + K

)−1
f ,

where the damping factors d1 and d2 can represent any form of proportional damping,
e.g. Rayleigh damping given by eq. (2.90) or Caughey damping as of eq. (2.93). Sys-
tems with hysteretic damping also belong to this category, here d1 = 0 and d2 ∈ C. The
resulting system matrices may be complex valued if hysteretic damping is considered
and non-symmetric for an interior vibro-acoustic problem.

• Case B: An interior acoustic or vibro-acoustic system with acoustic source following

H(s) = g
(
s2M + sC + K

)−1
f (s) ,

where the damping matrix C is not necessarily proportional to the mass or stiffness
of the system. An exterior radiation problem can be modeled with this system type,
if, for example, a PML is tuned to a single frequency. The frequency dependency
introduced by the acoustic source in f (s) is either linear or quadratic regarding the
excitation frequency s, depending on the imposed boundary condition.

• Case C : An interior vibro-acoustic system with acoustic source and frequency depen-
dent material properties following

H(s) = g
(
s2M + sC + K +

k∑

i=1
φi(s)Ci

)−1

f(s),

where this frequency dependency can be described by an affine combination of k con-
stant matrices Ci and typically non-linear and complex valued functions φi(s). Exterior
problems can be modeled, if the method ensuring the Sommerfeld radiation condition
can be represented by either a constant matrix or a linear combination of matrices and
corresponding frequency dependent functions.

A system with non-proportional damping without acoustic sources is not considered indi-
vidually but as a special case of Case B without the frequency dependent input mapping.
In the above transfer functions, g ∈ R1×n is an n-dimensional row vector. To illustrate the
different vibro-acoustic problem types, numerical examples for typical vibro-acoustic prob-
lems are presented in the following. The models are assessed regarding their requirements
for solving algorithms as well as the applicability of model order reduction methods in the
following chapters. Kratos Multiphysics [88, 179] was used to model the systems.
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2.5.1 Academic example

The first considered system models the vibration of a cantilevered beam, excited by a single
load at the free end. It can be considered an academic example, as the dynamic response can
be obtained from analytic relations. Nevertheless, it can be used to illustrate the effectiveness
of model order reduction techniques as the model is easy to handle and its dynamic behavior
is well-known. Additionally, all poles of the transfer function are well separated, which
also eases the interpretation of results and has therefore often been used as a validation
example [11, 164, 200]. The beam’s geometry is described by its length l and its quadratic
cross section with width and height a. A sketch is given in fig. 2.9a. Young’s modulus E,
density ρ, and Poisson ratio ν describe the beam’s material. In this case, Rayleigh damping
is applied, so the system can be considered as Case A. The transfer function measuring
the displacement in z-direction—the same direction the load is applied—at the free end is
given in fig. 2.9b. Here, the beam is discretized using 100 finite elements governed by the
Euler-Bernoulli beam theory, leading to an order of n = 600 after applying the boundary
conditions. The considered geometric and material parameters are l = 0.8 m with a quadratic
cross section with edge length a = 0.01 m, E = 210 GPa, ρ = 7850 kg m−3, ν = 0.3, and
Rayleigh damping parameters α = 1.64·10−1 s−1, β = 9.1·10−6 s.

a
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(a) Geometry sketch.

101 102 103 104

20

40

60

80

Frequency [Hz]

M
ag

ni
tu

de
[d

B]

(b) Displacement at the load location.

Figure 2.9: Sketch and transfer function of the cantilever beam model.

2.5.2 Structural vibration

The vibration response of strutted plates excited by a single force and considering different
damping methods is modeled in the following example. The plates are simply supported at
all surrounding edged and have dimensions of 0.8 × 0.8 m, a thickness of t = 1 mm and are
made out of aluminum (E = 69 GPa, ρ = 2650 kg m−3, ν = 0.22). They are equipped with
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arrays of tuned vibration absorbers (TVA) tuned to f = 48 Hz to reduce the overall vibration
response in this frequency region. All TVAs are placed on the struts of the plates and are
modeled as spring-damper systems with a total mass of 10 % of the plate structure. A point
load at (x, y, z) = (0.7,−0.05, 0.0) m near a corner of the plate with amplitude 0.1 N excites
the system. The system is sketched in fig. 2.10. A similar system has been experimentally
examined in [84].

F

z

x
y

Figure 2.10: Sketch of the plate model. The TVAs are depicted in blue.

Two damping methods are considered. Proportional (Rayleigh) damping with α = 0.01 s−1,
β = 1·10−4 s is applied to one model, hysteretic damping with η = 0.001 is employed in the
other experiment. The dissipation effect of the TVAs is limited to the frequency region
directly adjacent to their tuning frequency which is clearly visible in the frequency response
plot fig. 2.11 showing the root mean square of the displacement on the plate surface. Both
transfer functions differ especially in the higher frequency region due to the different damp-
ing mechanisms employed. While the poles of the proportionally damped system are only
visible in the lower frequency region, the hysteretically damped system’s transfer function
shows many peaks over the complete frequency range of interest. The discretized system
has an order of n = 201 900 and is evaluated in a frequency range of [1, . . . , 250] Hz. As
only structural loads excite the system, Case A transfer functions are used to describe the
output of both systems. All system matrices are symmetric, respectively complex symmetric
for the case of hysteretic damping, as no interaction effects between structure and fluid are
present. In order to evaluate the root mean square of the displacement at all points on the
plate surface, the displacement result must be recovered from reduced space. This is done
using an output matrix G with dimensions p × n, where p is the number of nodes on the
plate surface mapping the result of each node to an individual output.
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Figure 2.11: Transfer functions of both plate models with different damping mechanisms.

2.5.3 Sound transmission

Radiation of vibrating plates and excitation of a structure by the oscillating acoustic fluid
are modeled in the following example. The system consists out of a cuboid acoustic cavity
where one wall is considered a system of two parallel elastic brass plates with an air gap of
2 cm between them; all other walls are considered rigid. The plates measure 0.2× 0.2 m and
have a thickness of t = 0.9144 mm; the material parameters E = 104 GPa, ρe = 8500 kg m−3,
ν = 0.37 are considered for brass. The receiving cavity is 0.2 m wide and ca = 343 m s−1,
ρa = 1.21 kg m−3 are considered for the acoustic fluid. A uniform pressure load is applied to
the outer plate located at x = 0. The configuration is based on an experiment conducted
in [127] and is sketched in fig. 2.12a along with a plot of the transmission loss between the
input pressure and the middle point of the wall opposite to the elastic plates in fig. 2.12b.
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(a) Sketch of the transmission problem with
pressure load p and evaluation point P1.
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(b) Transmission loss of the sound transmission problem compared
to experimental measurements.

Figure 2.12: Sketch and transmission loss of the sound transmission problem. The reference transmission
loss is taken from the experimental measurements conducted by Guy [127].

Energy dissipation inside the structural part of the system is modeled using proportional
damping with β = 1·10−7 s. The discretized system has n = 95 480 degrees of freedom. The
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model follows the behavior of the experimental setup in a frequency range [1, . . . , 1000] Hz.
No acoustic sources are present, so the excitation vector is frequency independent. Con-
sidering the two way coupling between structure and fluid leads to non-symmetric system
matrices. Thus, a transfer function of Case A with real valued matrices describes the sys-
tem. Rather than evaluating the transmission loss, the transfer function is computed from
the sound pressure level at the midpoint of the rigid wall opposite of the vibrating double
plate configuration. It is given in fig. 2.13.
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Figure 2.13: Transfer function of the sound transmission problem.

2.5.4 Acoustic scattering

We now consider a more complex geometry based on a rigid block with various openings, cav-
ities, and sharp corners radiating into a surrounding acoustic fluid. Hornikx, Kaltenbacher,
and Marburg [138] called this experiment “radiatterer” as both radiation and scattering ef-
fects are taken into account. The basic shape is a box with dimensions 2.5 × 2.0 × 1.7 m
which is enclosed by an acoustic fluid of size 3.5 × 3.0 × 2.7 m; the geometry is described
in detail in [138] and is sketched in fig. 2.14a. For the acoustic fluid, ρa = 1.21 kg m−3 and
ca = 343.5 m s−1 are assumed. A normal velocity of vn = 0.001 m s−1 acts on the complete
surface of the geometry exciting the surrounding acoustic fluid. The free radiation from the
geometry is realized with a PML of thickness d = 0.3 m. It is tuned to f = 500 Hz, elimi-
nating the frequency dependency of the PML matrices [259]. The system’s transfer function
is classified as Case B, as the acoustic source term introduces a frequency dependency to
the system input. The PML leads to complex valued system matrices. As no interaction
between the acoustic fluid and the structure is considered, the system matrices are complex
symmetric. The numerical model has an order of n = 250 000 and is evaluated in the fre-
quency range [1, . . . , 600] Hz. The transfer function measures the sound pressure level at
an evaluation point inside the large cutout with coordinates P5 : (x, y, z) = (0.6, 0.5, 0.8)m.
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Its location is given in fig. 2.14a, the transfer function is plotted in fig. 2.14b. A reference
solution for the same system is available in [177], where the same problem has been analyzed
with a boundary element method.

(a) Geometry sketch and probe location P5 (or-
ange ball).
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(b) Transfer function of the FEM model with BEM model from [177]
as reference.

Figure 2.14: Sketch and transfer function of the “radiatterer” model.

2.5.5 Coupled poroacoustic system

A system with two porous materials coupled to a surrounding acoustic fluid is considered in
the following. The system models an acoustic cavity with non-parallel walls having maximum
extents of 1.122 m×0.82 m×0.982 m. Air with the properties given in table 2.2 is considered
for the acoustic fluid. Two layers of different poroelastic materials cover one side of the
cavity, their material parameters are given in table 2.3. All walls surrounding the acoustic
fluid are considered rigid and a sliding boundary condition is employed between porous
materials and the walls. The system is excited by an acoustic point source inside the cavity
at (1.03, 0.12, 0.30) and the sound pressure level Lp is evaluated at (0.35, 0.80, 0.10). A sketch
of the system and its transfer function are given in fig. 2.15. More detailed information about
the geometry and material parameters for the poroelastic material are available in [149]. A
(u,p) finite element formulation using mixed degrees of freedom in the porous material is used
to discretize the problem, so each node in the porous domain has four degrees of freedom (c.f.
section 2.2.3). Off-diagonal coupling terms ensure the continuity between the poroelastic and
acoustic phase and between the two poroelastic materials, so the resulting system matrices
are complex valued and non-symmetric. The system is discretized by a finite element model1

with 61 460 degrees of freedom and the transfer function is evaluated in the frequency range
[1, . . . , 800] Hz. The discretized system incorporates ten frequency dependent functions:

1The model is courtesy of Stijn Jonckheere. The permission to use is greatly appreciated.
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four for each poroelastic material, one for the acoustic cavity and one for the coupling of
poroelastic material and acoustic fluid. Its transfer function is thus classified as Case C .

Table 2.2: Material properties considered for air and interstitial fluid.

Parameter Value Parameter Value
Density ρf = 1.205 kg m−3 Heat capacity γ = 1.4
Viscosity µ = 1.8208·10−5 N s m−2 Prandtl number Pr = 0.712
Standard pressure P0 = 1.0128·105 Pa

Table 2.3: Material properties for the two employed poroelastic materials.

Parameter Material 1 [260] Material 2 [91]
Porosity φ = 0.93 φ = 0.99
Flow resistivity σ = 8·104 kg m−3 s−1 σ = 2·104 kg m−3 s−1

Tortuosity α∞ = 2.5 α∞ = 1
Viscous characteristic length Λ = 1·10−5 m Λ = 1.5·10−3 m
Thermal characteristic length Λ′ = 1·10−4 m Λ′ = 2.2·10−3 m
Density of the elastic frame ρs = 30 kg m−3 ρs = 60 kg m−3

Young’s modulus of the elastic frame E = 4.3·105 + i · 1·105 Pa E = 2·104 Pa
Shear modulus of the elastic frame G = 1.6·105 + i · 3·104 Pa —
Structural loss factor — ηs = 0.5

source
receiver

(a) Sketch of the poroacoustic system. The dot-
ted lines represent the maximum extents of
the cavity, the solid lines show the walls of
the box.
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(b) Transfer function of the poroacoustic system.

Figure 2.15: Sketch and transfer function of the poroacoustic model.
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3 Model order reduction

After introducing mathematical models describing vibro-acoustic systems and basic meth-
ods to evaluate them, the following chapter is concerned with more specialized solution
techniques for dynamical systems. Discretizing a vibro-acoustic system with a finite element
method typically results in very large linear equation systems, often with n > 1·105 degrees
of freedom. Such high orders are necessary, because a fine spatial discretization is required to
resolve all important wave phenomena in the system. Additionally, these large systems need
to be solved at each frequency step for a frequency sweep analysis, leading to quickly growing
computation times. This ultimately prohibits the efficient evaluation of such models.
To allow an efficient computation of large systems, various techniques to reduce their

complexity have been used. A straightforward approach is to use surrogate models depicting
a—at least regarding some features—similar behavior as the original system. This can, for
example, be a model of a skyscraper where the floors are modeled as point masses, which
are interconnected by beam elements. Compared to a discretized model of the complete
building, this greatly reduces the required number of degrees of freedom, while the main
modal characteristics may be accurately represented by the surrogate. However, this typi-
cally requires extensive knowledge of the original system and is not a suitable approach for
all types of models [151].
Static condensation or Guyan reduction [128] is often used for static structural systems.

Here, the degrees of freedom not subjected to loading can be condensed out of the system
using matrix manipulations. This method can significantly reduce the number of equations
required to be solved for a system and is often used in the definition of finite element
formulations. However, it is only exact for a frequency s = 0 and iterative methods are
required to produce accurate results for dynamical systems [112, 215].
Another technique is to break down a numerical model into smaller parts, which can be

computed individually, and the solution is obtained combining the results of all subsystems.
This is especially relevant, if the original model does not fit into the memory of the simula-
tion machine. Prominent examples for these methods are FETI (finite element tearing and
interconnecting) methods, specifically developed for use with finite element models [99, 154].
Special conditions for the arbitrary boundaries between the subsystems need to be com-
puted in a preprocessing step, making the individual models independent of each other. The
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framework is especially suitable for parallel computing in a distributed memory environment.
Transforming or projecting of a problem from the original space onto a lower dimensional

space, where the model is easier to evaluate, is also a widely used technique. Many different
projection methods have been established in the past, allowing efficient computation of
dynamical systems depicting all kinds of physical problems. Also the modal analysis of
dynamical systems summarized in section 2.4.2 can be grouped into this category. Here,
the transformation from physical to modal coordinates leads to uncoupled equations and
the solution of a large linear system of equations is not required anymore. Projection based
methods are typically divided in two phases: during the offline phase, expensive numerical
operations are performed and the full order model may be used to generate data required
to construct the reduced model; in the following online phase this model is evaluated at
very low computational cost to obtain an approximate solution of the original model. The
effectiveness of these methods can be measured by the achievable size reduction and the
accuracy of the approximation.
We will focus on projection based methods in the following and important methods ap-

plicable to dynamical systems will be presented after the general projection framework is
introduced in section 3.1 and measures for the approximation error are presented in sec-
tion 3.2. Sections 3.3 to 3.6 summarize modal methods, proper orthogonal decomposition,
balanced truncation, and moment matching methods, which are often employed for the re-
duction of dynamical systems. Techniques to retain the dependence on a specified set of
parameters in reduced space are presented in section 3.7.

3.1 Reduction by projection

Consider a linear second-order system of the form (2.12) with transfer function (2.13). The
direct computation of the transfer function requires the solution of a linear system of equa-
tions of order n, so a reduction of the order of this equation system is desirable. At the
same time the original system’s input output relation must be retained, at least in a certain
frequency range, and the original structure of the system as well as properties such as pos-
itiveness or stability should be preserved. The main idea of projection based model order
reduction is to find two subspaces V ⊂ Cr and W ⊂ Cr which contain the solution of the
system instead of computing its solution in the high dimensional solution space Cn. The
order r of V and W should favorably be much lower than n. This projection is defined as:

Find xr (s) ∈ V such that WH
((
s2M + sC + K

)
Vxr (s)− Fu (s)

)
= 0,

then yr (s) := GVxr (s) .
(3.1)
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The resulting reduced order system for a second-order system has the shape

Σr :




(
s2Mr + sCr + Kr

)
xr (s) = Fru (s) ,

yr (s) = Grxr (s) ,
(3.2)

where subscript r denotes the reduced order r � n. The projection is performed using
two projection matrices V, W ∈ Cn×r spanning the two reduction spaces V = span (V) and
W = span (W). The reduced matrices in eq. (3.2) are computed by

Mr = WHMV, Cr = WHCV, Kr = WHKV,
Fr = WHF, Gr = GV.

(3.3)

The reduced system’s transfer function is consequently given by

Hr (s) = Gr

(
s2Mr + sCr + Kr

)−1
Fr. (3.4)

The original states can be obtained from the reduced system’s states by x ≈ Vxr. The
formulation of the projection for first-order systems is analogous. A projection with a left
and right projection basis as in eq. (3.3) is referred to as Petrov-Galerkin projection. If the
original system is symmetric, a one-sided projection with W = V preserves the symmetry
in reduced space [268]. This is referred to as Galerkin projection. A real valued reduction
basis is required if the reduced order is required to have real valued system matrices. It is
obtained by setting V =

[
Re (V) Im (V)

]
, respectively W =

[
Re (W) Im (W)

]
, doubling

the dimension of the reduced model. In any case, the bases must be chosen in a way, that
the response of the reduced system approximates the original system’s response sufficiently.
This can be done, for example, by using the methods which are presented in the following.

3.2 Error assessment

Replacing a full order model of a dynamical system with a more compact surrogate introduces
an approximation error, which is typically measured by the difference of the two systems’
outputs. It is given by

ε (s) = y (s)− yr (s) = (H (s)−Hr (s)) u (s) , (3.5)

expressed either directly by the system outputs or the transfer functions. The corresponding
error system is described by its transfer function Hε (s) = H (s) − Hr (s), which allows
considerations about the approximation quality at each evaluated frequency. If the error
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system’s response approaches zero over the complete considered frequency range, the reduced
model accurately approximates the original system. Equation (3.5) can be normalized by the
original system’s response and often the absolute values of the reduced and original systems’
responses are considered. The absolute relative error of a reduced system with response yr
is thus given by

εr (s) = |y (s)− yr (s)|
|y (s)| . (3.6)

For a SISO system, this relation returns a scalar for each frequency s, while the error is given
per output for a MIMO system.

The H2 and H∞ norms of a resulting error system are typically considered if a single value
for the approximation quality of the model in the complete considered frequency range is
required. Hardy spacesH are used here, which can be referred to as frequency domain spaces
[11]. For a complex-valued function H (s), which is analytic in C+, i.e. the right half-plane
of C, they are given by

‖H‖H∞ = max
ω∈R
‖H (iω)‖2 , (3.7)

‖H‖H2
=
( 1

2π

∫ ∞

∞
‖H (iω)‖2

F

)1/2
dω, (3.8)

where ω is the real frequency and ‖H‖2
F = trace

(
H̄HT

)
. Given a stable system, the H∞

norm of the error system eq. (3.5) is consequently defined as

εH∞ = ‖H−Hr‖H∞ = max
ω
‖H (iω)−Hr (iω)‖2 . (3.9)

A small H∞ norm ensures that, given a bounded input, the output error is small over
all inputs in a root-mean-square sense, i.e.

√∫∞
0 ‖y (t)− yr (t)‖2 dt is small [12]. Simi-

larly, if the output error should be as small as possible for every point in time t > 0, i.e.
maxt>0 ‖y (t)− yr (t)‖∞ is small, the H2 norm is used. It is defined as

εH2 = ‖H−Hr‖H2
=
( 1

2π

∫ ∞

−∞
‖H (iω)−Hr (iω)‖2

F dω
)1/2

(3.10)

for the error system eq. (3.5). Additionally, any other suitable norm can be employed here,
depending on the modeled problem. However, the computation of these norms requires the
solution of the full order model or access to its Gramians; the exact norms are therefore diffi-
cult to obtain. Various techniques to estimate the actual approximation error (3.5) without
relying on the full order system are available and will be further discussed in section 4.4.1.
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The MORscore as introduced by Himpe [137] describes the error of reduced models related
to their order as a scalar value, thus allowing a clear comparison of many different model
reduction methods. It is defined as follows: Given is a relative error graph (e, ε (r)) relating
reduced order r to approximation error ε (r) given by a suitable norm as, for example, H2

or H∞. Both quantities are mapped to the range [0, 1] by

ϕr : N 7→ [0, 1] , r 7→ r

rmax
,

ϕε(r) : (0, 1] 7→ [0, 1] , ε(r) 7→ log10 (ε (r))
blog10 (εref)c

.
(3.11)

Here rmax is the maximum reduced order considered in the experiment and εref the reference
accuracy, often chosen as machine precision εref ≈ 1·10−16. The MORscore is defined as the
area below the normalized error graph

µ (rmax; εref) := area
(
ϕr, ϕε(r)

)
. (3.12)

Normalizing the relative error by εref yields an ε (r) over r graph potentially reaching 1, if the
approximation error is equal to the reference precision. Therefore, a high MORscore states
that the desired accuracy is reached faster, as the area below the graph (3.11) is higher in
this case. This concept is visualized in fig. 3.1. Note, that the definition of the MORscore
does not include considerations about runtime or memory consumption of the used reduction
algorithms.
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Figure 3.1: Illustration of the MORscore concept. Relative error over reduced order on the left, transfor-
mation according to eq. (3.11) on the right. The MORscore µ
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gray area beneath the right curve.
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3.3 Modal reduction

The following methods compute the bases for a projection framework using the modal so-
lution of the original system. They are closely linked to the modal and harmonic analyses
presented in section 2.4.2 and therefore rely on an eigendecomposition of the original system.
They typically benefit from modal damping, i.e. C being proportional to K and M.

3.3.1 Modal truncation

Modal truncation is classically applied to structural or acoustic systems and is often the
standard choice for undamped or proportionally damped systems [90, 215]. Similarly to the
modal superposition method, the mode shapes are obtained from an eigenvalue analysis of
the original system. After selecting all modes with considerable influence on the transfer
function in a frequency range of interest, they are concatenated and form a reduction basis
V. Contrary to the modal superposition, only a subset of modes is chosen, resulting in r

instead of n decoupled equations. Typically the r eigenvalues having the smallest absolute
value are chosen, so that the original system’s frequency response is approximated starting
at s = 0. The system inputs and outputs are not considered, as the free vibration modes
form the projection matrix for a one-sided projection with W = V. It is given by

V =
[
v1 v2 · · · vr

]
, (3.13)

where vi, i = 1, . . . , r are the selected eigenvectors of the undamped system. The accuracy
of a reduction basis obtained by truncating the eigenvector matrix to a certain size may
be increased by including information about the significance of a certain mode given the
input and output situation of the system. Given, for example, a plate with uniform pressure
loading, antisymmetric mode shapes are not excited by this load configuration although their
corresponding eigenfrequency lies inside the frequency region of interest.
The effect of certain modes on the transfer function can be estimated using a dominant

pole algorithm [49, 219, 226], which also considers input and output of the system. The
algorithm measures each mode’s effect on the transfer function and instead of choosing the
r modes with eigenvalues near the imaginary axis, the r modes with the highest dominance
are considered for the reduced model. To obtain a relation about dominance of certain poles,
the transfer function of the original system is rewritten as

H (s) = gX
(
s2I + sΞ + Λ

)−1
XTf =

n∑

i=1

gvivT
i f

(s− ωd+,i) (s− ωd−,i)
, (3.14)

with modal mass, damping, and stiffness matrices as given by eqs. (2.136), (2.137) and (2.140)
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and X the matrix of eigenvectors v. The damped eigenfrequencies ωd±,i appear as complex
conjugate pairs and are given by

ωd±,i = −ωiξi ± ωi
√
ξi − 1. (3.15)

A pole i with a corresponding pair of eigenfrequencies (ωd+,i, ωd−,i) is considered dominant,
if

∥∥∥gvivT
i f
∥∥∥

2
Re (ωd+,i) Re (ωd−,i)

>

∥∥∥gvjvT
j f
∥∥∥

2
Re (ωd+,j) Re (ωd−,j)

∀ j 6= i. (3.16)

The resulting algorithm returns the r most dominant poles of the original system. Their
eigenvectors then form the reduction basis in terms of eq. (3.13). An advantage of the method
is that it results in a system of decoupled equations, making its evaluation very efficient.
However, an eigenvalue decomposition of the original system is required, which computation
may involve a substantial computational effort.
The following numerical example shows the effectiveness of the dominant pole algorithm.

We consider the beam example from section 2.5.1 with proportional damping. Therefore, the
dominant pole algorithm can be applied without modifications. The implementation from
[42] is used in the following. The original model is reduced to r = 10 by finding the ten pairs
of eigenvalues associated to the most dominant poles of the system’s transfer function. The
transfer function of the resulting reduced model as well as its relative approximation error are
given in fig. 3.2. While the approximation quality at the location of the selected dominant
modes is good, the relative error is substantially higher between these expansion points,
especially in the region of the anti-resonances of the transfer function. The approximation
quality over the considered frequency range is, however, acceptable given the relatively small
size of the reduced model.

3.3.2 Component mode synthesis

The component mode synthesis (CMS) is a substructuring method where the substructures
are represented in generalized coordinates instead of physical coordinates. Similar to con-
densation methods, only important degrees of freedom, for example load locations or the
interface between subsystems, are described by physical coordinates, while the remaining
model can be expressed by generalized coordinates [31, 215]. Expressing the inner parts
of the substructure, which are not connected to other parts of the model, by a subset of
the substructure’s modes reduces the size of the assembly of all substructures compared to
the original model. Different types of modes need to be considered in the reduction basis
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Figure 3.2: Transfer functions of the original and a reduced model of order r = 10 obtained from the
dominant pole algorithm applied to the cantilever beam as well as the relative error. The
imaginary parts of the eigenvalues associated with the dominant modes are marked with
circles.

for each substructure to obtain a valid representation. The choice of normal modes, which
are obtained from the substructure alone where all interface nodes are fixed, follows similar
guidelines as the choice of modes in the modal superposition method. Additionally, the
coupling to other substructures must be considered by constraint modes, which are obtained
by applying boundary conditions or constraints to the interfaces. A variety of methods on
how to choose these modes has been established and been used for various structural and
vibro-acoustic systems [144].

The (generalized) Bloch mode synthesis is an adapted version of CMS specifically applica-
ble to periodic structures. Here, only a single unit cell needs to be discretized and its inner
degrees of freedom can be expressed by a truncated set of boundary modes [157, 158]. This
technique was successfully applied to vibro-acoustic systems in, for example, [251].
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3.4 Proper orthogonal decomposition

The proper orthogonal decomposition (POD) is a model order reduction method based on
a decomposition of snapshots in order to find the most important aspects of a system’s
dynamics. The snapshots are measured from the original system given meaningful initial
conditions or inputs and POD tries to obtain a representation of the full system in terms of
the observed system output. It results in a projection matrix in terms of eq. (3.3), which
reduces the size of the original system. POD can be classified as data-driven and is applicable
to a wide range of problems, not limited to physical systems. Also nonlinear systems can
be processed, making POD an often applied method in this context. The snapshot data can
come from different sources, such as experimental measurements or numerical models.

In order to reduce a linear dynamical system in Laplace domain, the snapshot matrix
Y ∈ Cn×k is obtained by concatenation of k snapshots of the system output y (s) at distinct
frequencies si, i = 1, . . . , k by

Y =
[
y (s1) y (s2) · · · y (sk)

]
. (3.17)

The POD finds a set of l < k orthonormal basis vectors in the subspace spanned by the
snapshots, which optimally express the original snapshots in an average sense [11, 123]. This
is an optimization problem and can be solved, for example, by principal component analysis
(PCA), Karhunen-Loève decomposition, or singular value decomposition (SVD) [163]. The
SVD of the snapshot matrix Y is given by

Y = UΣSH, (3.18)

where U ∈ Cn×n and S ∈ Ck×k are matrices containing the left and right singular values,
respectively, and Σ ∈ Rn×k is a diagonal matrix containing the l non-negative singular
values σi, i = 1, . . . , l of X in descending order, such that σ1 ≥ · · · ≥ σl > 0. Given a
rapid decay of singular values, the matrix U can be truncated to Ur containing only the r
most significant singular vectors. This truncated matrix can serve as a basis for Galerkin
projection, such that V = W = Ur ∈ Cn×r. The method is independent of the structure of
the original problem and applying a Galerkin projection preserves this structure in reduced
space. Another advantage is that the approximation error of a system reduced by such
projection is directly linked to the value of the not considered singular values by

ε2
r,POD =

l∑

i=r+1
σ2
i . (3.19)
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In practice, r can be determined by truncating all vectors with corresponding singular values
σi < 10−8 · σ1 or any threshold suitable for the specific model [78].
Being a data-driven method, the performance of the POD heavily depends on the choice of

snapshots in the training phase. If an important aspect of the system dynamics is not present
in the training data, the resulting model cannot show this behavior. The cost of obtaining the
snapshot data can be significant and may be higher than evaluating the model once, so the
solution of the system is typically known a-priori. Therefore and due to the knowledge of the
approximation error (in sense of the provided snapshot data), POD is often used in a context
where very small models of complex and nonlinear problems are required, for example in
embedded control devices. A related method, the proper generalized decomposition (PGD),
finds a similar representation of the system output by separating the dimensions of the
system, for example space and time [79]. The dynamic mode decomposition (DMD) also finds
a representation of an underlying dataset obtained from a dynamical system. While POD
extracts dominant parts of the dataset based on its energy content, the DMD finds modes
and eigenvalues describing the behavior of the observed system in terms of its oscillation or
vibration [213, 230, 247].
Figure 3.3 shows the transfer function and the relative error of a reduced model based on

the cantilever beam from section 2.5.1. Measurements at ns = 50 logarithmically distributed
locations in the considered frequency range are used to form the snapshot matrix Y. Af-
ter performing the SVD, all vectors with corresponding singular values σi < 10−8 · σ1 are
truncated, leading to a reduced model of order r = 20. The reduced model has a very low
approximation error over the complete considered frequency range. As the reduced order
is obtained automatically as a byproduct of the SVD and the method does not require any
input parameters except the desired error tolerance, the method is easily applicable to many
systems. However, the generation of the snapshot matrix involves a substantial amount of
computational effort, which might be unfeasible for very large systems.

3.5 Balanced truncation

Balanced truncation identifies states with little contribution to the energy transfer from
system input to output by balancing the observability and controllability Gramians of the
system introduced in section 2.1.1. Balancing in this context means that the original system
is transformed to a representation where both Gramians are equivalent and can be seen
as a simultaneous diagonalization of the two Gramian matrices P and Q [11]. Doing so
helps identifying states which require much energy to reach and at the same time yield
little energy if observed. Truncating such states from the system has little effect on the
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Figure 3.3: Transfer functions of the original and a reduced model of order r = 20 obtained from a POD
applied to the cantilever beam as well as the relative error. The reduction basis is obtained by
truncating all vectors with corresponding singular values σi < 10−8 · σ1.

overall input/output relation, leading to a more compact system description. Truncating
states from a balanced representation of a system retains the stability of the original system.
Balanced truncation also provides an a-priori computable error bound for the reduction. The
controllability and observability Gramians P and Q introduced in section 2.1.1 and given by

P = 1
2π

∫ ∞

−∞
X (s) BBTX (s)T ds, (2.6)

Q = 1
2π

∫ ∞

−∞
X (s)T CTCX (s) ds, (2.7)

with X (s) = (sE−A)−1 are the basis of the method. Recall, that the Gramians allow
considerations about the energy required to reach a certain state and the energy obtained by
observing a state. The goal is to represent the system to be reduced in terms of a balanced
basis, i.e. P = Q = diag

(
σ1 · · · σn

)
, with σi being the Hankel singular values of the

system. They can be obtained from an eigenvalue decomposition of the sum of the control-
lability and observability Gramians using eq. (2.25). In this representation, the concepts of
controllability and observability are equivalent, meaning that states can be identified which
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are at the same time difficult to reach and difficult to observe. Truncating these states from
the original system will yield a smaller model of order r which approximation error under
the H∞ norm is bounded by the sum of not considered singular values

εr,BT,H∞ ≤ 2
n∑

i=r+1
σi. (3.20)

Given the Gramians of a first-order system Σ, its H2 norm can be obtained from

‖Σ‖H2
=
√

trace (BHQB) =
√

trace (CHPC), (3.21)

which could also be used to obtain a measure on the accuracy of a reduced model if applied
to the corresponding error system [11].

In the following, the procedure to obtain truncation transformation matrices projecting a
first-order system onto a reduced space is outlined. The Cholesky decompositions of both
Gramians

P = RRT, Q = LLT

are used to simultaneously balance the original system. The singular value decomposition

[
U1 U2

]

Σ1 0

0 Σ2



[
S1 S2

]T
= LTER (3.22)

yields a diagonal matrix Σ1 ∈ Rr×r containing the r most dominant Hankel singular values
and their corresponding singular vectors U1, S1. The projection matrices V, W can now be
obtained from

V = RS1Σ
− 1

2
1 , (3.23)

W = LU1Σ
− 1

2
1 . (3.24)

In order to apply balanced truncation to second-order systems, the two required Gramians
are computed from the equivalent first-order system as shown in eqs. (2.8) and (2.9). These
Gramians are partitioned as

P =

Rp

Rv




Rp

Rv




T

, Q =

Lp

Lv




Lp

Lv




T

,

where subscripts ·p and ·v stand for position and velocity Gramians respectively. The
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Cholesky decompositions are partitioned in the same way, resulting in Rp, Rv, Lp, Lv. This
description is based on the method of transforming the second-order system to a first-order
system by expressing the first-order state as a combination of second-order states and the
corresponding derivatives. The balancing (3.22) is now performed for both sets of Gramians
according to

[
Up,1 Up,2

]

Σp,1 0

0 Σp,2



[
Sp,1 Sp,2

]T
= LT

pJRp,

[
Uv,1 Uv,2

]

Σv,1 0

0 Σv,2



[
Sv,1 Sv,2

]T
= LT

vMRv,

(3.25)

where J is the arbitrary invertible matrix chosen in the reformulation of the second-order
system as first-order system. The four corresponding projection matrices Vp, Vv, Wp, Wv

are obtained by

Vp = RpSp,1Σ
− 1

2
p,1 ,

Vv = RvSv,1Σ
− 1

2
v,1 ,

(3.26)

Wp = LpUp,1Σ
− 1

2
p,1 ,

Wv = LvUv,1Σ
− 1

2
v,1 .

(3.27)

The corresponding reduced matrices are given by

Mr = T
(
WT

vMVv
)

T−1, Cr = T
(
WT

vCVv
)

T−1, Kr = T
(
WT

vKVp
)
,

Fr = T
(
WT

vF
)
, Gr = GVp,

(3.28)

with T = WT
pJVv. Other methods to compute the transformation matrices V, W for

second-order systems, some requiring only one singular value decomposition, have been pro-
posed in Reis and Stykel [217] and summarized in [50, 226]. They are reproduced in table 3.1.
The projection names refer to the types of Gramians being used. v and p stand for balancing
regarding velocity and position Gramians and the combinations thereof, fv for free velocity
balancing, and so for second-order balancing. Only for certain cases of projection the sta-
bility of the original second-order system is retained for the reduced model [217]. Given a
symmetric second-order system, truncation using pv and fv preserves stability. The error
bound (3.20) is also not valid for any of the second-order truncation formulas [74].

The balanced truncation can be considered a POD with Petrov-Galerkin projection applied
to the impulse response of a system [11]. In turn, POD can be used to obtain approximations
of the Gramians, as their computation is typically very demanding. Exciting a system with
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Table 3.1: Second-order balanced truncation formulas. The ∗ denotes factors of the SVD not needed, and
thus not accumulated in practical computations [50].

Type SVD(s) Truncation Reference

v UΣST = LT
vMRv W = LvU1Σ

− 1
2

1 , V = RvS1Σ
− 1

2
1 [217]

fv ∗ΣST = LT
pRp W = V, V = RpS1Σ

− 1
2

1 [183]

pv UΣST = LT
vMRp W = LvU1Σ

− 1
2

1 , V = RpS1Σ
− 1

2
1 [217]

vp
∗ΣST = LT

pRv,

U ∗ ∗ = LT
vMRp

W = LvU1Σ
− 1

2
1 , V = RvS1Σ

− 1
2

1 [217]

p
∗ΣST = LT

pRp,

U ∗ ∗ = LT
vMRv

W = LvU1Σ
− 1

2
1 , V = RpS1Σ

− 1
2

1 [217]

so
UpΣpS

T
p = LT

pRp,

UvΣvSv = LT
vMRv

Wp = LpUp,1Σ
− 1

2
p,1 , Vp = RpSp,1Σ

− 1
2

p,1 ,

Wv = LvUv,1Σ
− 1

2
v,1 , Vv = RvSv,1Σ

− 1
2

v,1
[74]

impulses, the POD constructs the controllability Gramian and obtaining snapshots regarding
system input and output and applying a POD results in approximation for both Gramians
[264].
To illustrate the balanced truncation, the cantilever beam model described in section 2.5.1

is reduced using the truncation formulas from table 3.1 provided by the software package
SOLBT [51]. The transfer functions of the reduced models as well as their relative errors
are presented in fig. 3.4. The orders of the reduced models are determined by truncating the
smallest singular values of the balanced Gramians which sum does not exceed a threshold
of εtol = 1·10−8. While this is not an error bound for all employed formulas, it still provides
a reasonable estimate [50]. Except from pv, which order is estimated to be lower than the
other reduced models, all truncation formulas yield models with low relative errors for most
of the considered frequency range.

3.6 Interpolatory methods

Interpolatory model order reduction methods find a reduced representation of a system’s
input output relation by computing an interpolant for its transfer function. An effective way
to find such interpolants is to enforce interpolation at important locations s0 of the transfer
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Figure 3.4: Transfer functions of the original and reduced models obtained from a balanced truncation
using different balancing formulas from table 3.1 applied to the cantilever beam and their
relative errors. The reduced orders are determined by truncating the columns of the Gramians
corresponding to the smallest singular values which sum is smaller than 1·10−8.

function, for example its moments, and possibly some of its derivatives and approximate the
original rational function by a power series. This technique is termed moment matching. If
s0 = 0 is chosen as only expansion point, moment matching is equivalent to a Padé approx-
imation of the transfer function. The underlying problem of approximating the moments of
the original transfer function H by a reduced representation Hr given k interpolation points
s0,i each with an approximation order li is of the form

dji
dsji H (s0,i) = dji

dsji Hr (s0,i) , (3.29)

where i = 0, . . . ,k and with orders of the derivative 0 ≤ ji ≤ li. The choice of the interpo-
lation points is crucial for an accurate and compact representation of the original function.
This interpolation can be achieved by projecting the original system onto a suitable reduc-
tion space [12, 124]. Although the moments in eq. (3.29) are given explicitly by eqs. (2.19)
and (2.20), their direct computation is not efficient and prone to numerical problems. Us-
ing projection bases V, W implicitly matching the desired moments is therefore a classic
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approach to the interpolation problem.

In case of a SISO system, r interpolation points suffice to match up to 2r moments
of the original transfer function. However, tangentially matching moments of a MIMO
system additionally requires tangent directions in which the original system is approximated,
which also affect the quality of the resulting interpolant. The requirements for an successful
interpolation can be derived for first and second-order systems using the generalized coprime
realization of the considered system [12, 37, 268]. For this, the transfer function is rewritten
in the general form

H (s) = G (s) K (s)−1 F (s) , (3.30)

with K (s) ∈ Cn×n, F (s) ∈ Cn×m, and G (s) ∈ Cp×n. Equation (3.30) can be used to
represent a wide range of different system types, not only limited to first and second-order
systems but also parametric models and is valid for SISO and MIMO systems. A first-order
descriptor system can be represented by setting K (s) = sE−A, F (s) = F, and G (s) = G;
a second-order system fits by setting K (s) = s2M + sC + K, F (s) = F, and G (s) = G.
Using this description, the quantities of a reduced order model obtained from projection
with bases V, W is given by

Kr (s) = WHK (s) V,
F r (s) = WHF (s) , Gr (s) = G (s) V.

(3.31)

To achieve interpolation of a SISO system, a reduced order model Hr (s) is required to fulfill

Hr (s0,i) = H (s0,i) and HH
r (s0,i) = HH (s0,i) ∀ i = 1, . . . , r. (3.32)

In the case of MIMO systems, which transfer functions are matrix-valued, an interpolation
of the full matrix function might be inefficient [12]. Therefore, instead of enforcing interpola-
tion at specific points in every direction, interpolation is required only for specific directions
at these points. This concept is known as tangential interpolation [113]. Tangential interpo-
lation of the transfer function H (s) of a MIMO system regarding several expansion points
is then given by

Hr (s0,i) fi = H (s0,i) fi and gT
jHr (σ0,j) = gT

jH (σ0,j) ∀ i,j = 1, . . . , r, (3.33)

with sets of right and left tangential directions {fi}ri=1 ⊂ Cm respectively {gi}ri=1 ⊂ Cp

and the corresponding sets of right and left interpolation points {s0,i}ri=1 , {σ0,i}ri=1 ⊂ C.
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Two-sided or bitangential interpolation at s0,i is achieved, if

gT
i HH

r (s0,i) fi = gT
i HH (s0,i) fi. (3.34)

The requirements for interpolation (3.29) at a distinct expansion point for SISO and MIMO
systems can thus be summarized as follows:

If
[

dj
dsj

(
K (s0)−1 F (s0)

)]
f ∈ span (V) ∀ j = 0, . . . , k,

then dj
dsjHr (s0) f = dj

dsjH (s0) f ∀ j = 0, . . . , k.
(3.35)

If
[

dj
dsj

(
K (σ0)−H G (σ0)H

)]
g ∈ span (W) ∀ j = 0, . . . , l,

then gT dj
dsjHr (σ0) = gT dj

dsjH (σ0) ∀ j = 0, . . . , l.
(3.36)

If (3.35) and (3.36) hold and s0 = σ0,

then gT dj
dsjHr (s0) f = gT dj

dsjH (s0) f ∀ j = 0, . . . , k + l + 1.
(3.37)

Here, k and l are the derivative orders regarding left and right interpolation basis and the
matrix functions are assumed to be analytic at their respective evaluation points. A proof
is given in the book by Antoulas, Beattie, and Gugercin [12]. Note that the tangential
directions in the above relations collapse to 1 in case of a SISO system, i.e. p = m = 1.

Given r interpolation points s0,i, i = 1, . . . , r, with interpolation order ji = 1 each, the
corresponding projection matrices ensuring interpolation are constructed as

V =
[
K (s0,1)−1 F (s0,1) f1 · · · K (s0,r)−1 F (s0,r) fr

]
, (3.38)

W =
[
K (s0,1)−H G (s0,1)H

g1 · · · K (s0,r)−H G (s0,r)H
gr

]
. (3.39)

After deflation, they can be used in the projection framework (3.31) in order to obtain a
reduced model interpolating the frequency response of the original system. Equations (3.35)
to (3.37) show that only linear equation systems of order n need to be solved to compute a
structure-preserving reduced model; recall, that constructing a reduced model from balanced
truncation requires the solution of Lyapunov equations, which is computationally more de-
manding. If series expansion factors of the transfer function are known, the reduction bases
V, W can be obtained using a recursive formulation proposed in [37]. For this, the system
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shifted about s0 needs to be described as a power expansion of the form

K (s0 + s) =
∑

i=0
siKi, F (s0 + s) =

∑

i=0
siF i, G (s0 + s) =

∑

i=0
siGi. (3.40)

Then, the recursion for right and left projection vectors v, w, which form the projection
bases V =

[
v1 . . .vk

]
and W =

[
w1 . . .wl

]
is given by

K0v0 = F0f wH
0 K0 = gHG0

K0v1 = F1f −K1v0 wH
1 K0 = gHG1 −wH

0 K1

K0v2 = F2f −K1v1 −K2v0 wH
2 K0 = gHG2 −wH

1 K1 −wH
0 K2

...

K0vk = Fkf −
k∑

i=0
Kivk−i wH

l K0 = gHGl −
l∑

i=0
wH
l−iKi.

(3.41)

A second-order system directly fits into the above framework and yields a three term re-
currence with K0 (s0) = s2

0M + s0C + K, K1 (s0) = 2s0M + C, K2 (s0) = M, F (s0) = F,
and G (s0) = G. It is possible to compute the projection vectors v, w up to an arbitrary
interpolation order and to combine vectors based on different expansion points s0 in a single
projection basis. Additionally, any transfer function which can be expressed as a polynomial
of order p yields a similar recurrence with p+ 1 terms.

3.6.1 Second-order Krylov subspaces

Krylov subspaces are a classical choice to be used for projection based model order reduction
and have been successfully applied to various kinds of problems, first mainly for first-order
state space systems [28, 124]. Su and Craig [241] introduced a generalized Krylov subspace
for second-order systems exploiting a similar recurrence as shown in eq. (3.41), for which
Arnoldi methods for efficient computation have been established some years later [29, 171].
In the following, the second-order Krylov subspace will be outlined; for analogous techniques
for first-order systems see, for example, Antoulas [11]. Only SISO systems will be considered
in the following, but the approach can be extended for use with MIMO systems [64, 82, 256].
Given a matrix Z ∈ Rn×n and a vector q ∈ Rn, the corresponding Krylov subspace of size

r is spanned by a vector sequence of the form

Gr (Z,q) = span
{
q, Zq, Z2q, . . . ,Zr−1q

}
. (3.42)

A Krylov subspace contains all vectors x which are the solution to x = p (Z) q, with a
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polynomial function p of degree smaller r − 1 [224]. Apart from being used in moment
matching methods, Krylov sequences also have other uses in linear algebra. They are used
for the iterative solution of a linear system of equations Zx = q or the iterative approximation
of the eigenvalues of matrix Z [11].

A Krylov space of the form eq. (3.42) is a suitable projection subspace for the dimension
reduction of a first-order systems given by eq. (2.1). Its transfer function is rewritten as

H (s) = c
(
I− sA−1E

)−1
A−1b (3.43)

and the matrix and vector forming the Krylov sequence are identified as Z = −A−1E and
q = A−1b. In order to arrive at a generalization of this Krylov sequence for second-order
systems as introduced in Su and Craig [241], the following linearization of a second-order
system is considered:

A(1) =

K 0

0 I


 , E(1) =


C M
−I 0


 , b(1) =


f

0


 , c(1) =

[
g 0

]
, (3.44)

where K,C,M ∈ Rn×n, f ,g ∈ Rn, A(1),E(1) ∈ R2n×2n, and b(1), c(1) ∈ Rn. Introducing the
linearization in the Krylov sequence yields

Z = −A(1)−1E(1) =

−K−1C −K−1M

I 0


 =


Z1 Z2

I 0


 and q = −A(1)−1b(1)


K−1f

0


 .

The resulting Krylov vectors Ziq are of dimension 2n and are related by

Ziq =

 ri
ri−1


 , for i ≥ 1. (3.45)

The vectors ri are thus given recursively by

r0 = q,
r1 = Z1r0,

ri = Z1ri−1 + Z2ri−2, for i ≥ 2,

(3.46)

and consequently the rth generalized second-order Krylov subspace defined by the two
matrices Z1, Z2 and the starting vector q spanned by the corresponding Krylov vectors
ri, i = 0, . . . , r − 1 is defined as

Sr (Z1,Z2,v0) = span {r0, r1, . . . , rr−1} . (3.47)
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The moment matching, i.e. expansion about s0 = 0, of a second-order system is thus
performed setting Z1 = −K−1C, Z2 = −K−1M and q = K−1f [29]. If an approximation
about the zero frequency is not optimal for the reduction task, the transfer function is shifted
by a frequency s0 6= 0, yielding the shifted second-order transfer function

H (s) = g
(
(s− s0)2 M + (s− s0) Ĉ + K̂

)−1
f , (3.48)

with Ĉ = 2s0M + C and K̂ = s2
0M + s0C + K. The corresponding second-order Krylov

subspace is given analogously by the matrices Z1 = −K̂−1Ĉ, Z2 = −K̂−1M and the vector
q = K̂−1f . Note, that the structure-preserving method shown above is equivalent to the
second-order Krylov subspace method, if a single expansion point is chosen for the structure-
preserving scheme [37].
An orthonormal basis of Sr (Z1,Z2,v0) can be found using, for example, the second-order

Arnoldi (SOAR) procedure [29, 30] or its extended version TOAR (two-level orthogonal
Arnoldi procedure), which provides increased numerical stability [171]. Again, bases for
subspaces corresponding to different expansion points and with different sizes can be com-
bined to create a single reduction basis. All basis vectors are concatenated into a single
matrix, which, after deflating and thus removing possible overlapping basis vectors, spans
the corresponding reduction space. This potentially increases the frequency range of good
approximation of the reduced model while allowing a smaller reduced order. Additionally,
a certain frequency range, not necessarily starting at s = 0, can be approximated by a re-
duced model given a suitable choice of expansion points. It must, however, be taken into
account, that establishing a Krylov subspace about a shift s0 involves the factorization of
a matrix of order n, while increasing the size of an already available Krylov subspace only
involves matrix vector multiplications. In a computational implementation, the inverses of
K, respective K̂, are not directly computed but factorizations are used.
In the following, the performance of model order reduction using a second-order Krylov

subspace is shown using the cantilever beam model described in section 2.5.1. Two config-
urations which lead to reduced models of the same size are considered: a single expansion
point with interpolation order r0 = 20 and ns = 20 expansion points with interpolation order
r0 = 1 each. The 20 interpolation points are logarithmically distributed in the frequency
range of interest, the single expansion point is located at s0 = 2πi · 400 Hz. The orthonor-
mal subspace of the experiment with ns = 1 is computed with TOAR. For the projection
space with ns = 20, the projection vectors for the first moment at each expansion point are
obtained according to eq. (3.41). The projection basis in this case is obtained from an or-
thogonalization of the matrix containing all projection vectors. The transfer functions as well
as the relative errors of the respective reduced models are given in fig. 3.5. Both models can
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approximate the full model in a wide frequency range. However, the approximation quality
of the model with ns = 1 is very sensitive to the location of the expansion point, which has
been manually adjusted for this example. A reasonable placement of the expansion points
will be discussed in the next section.
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Figure 3.5: Transfer functions of the original and reduced models of order r = 20 obtained from moment
matching using TOAR applied to the cantilever beam and their relative errors. The reduction
bases are obtained using one expansion point ns = 1 with interpolation order r0 = 20 and
ns = 20 interpolation points of order r0 = 1 each. The locations of the expansion points are
marked by circles.

3.6.2 Expansion point selection

The location of expansion points as well as their respective interpolation orders has a large
influence on the performance of interpolatory reduction methods and is unique for every
model. Contrary to balancing methods, it is not generally possible to make an uninformed
a-priori choice, that yields high quality reduced models. A classical starting point is to
choose linearly or logarithmically spaced expansion points in the frequency range of interest.
However, there is not always incidence on how many expansion points should be used or how
high their respective interpolation order should be. This may result in either not accurate
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or unnecessarily large reduced models. Iterative and adaptive methods on the one hand and
averaging methods on the other hand have therefore been introduced to automatically find
locations and/or interpolation orders and to ensure reasonably sized reduced models.
A widely used iterative method is the iterative rational Krylov algorithm (IRKA), orig-

inally presented by Gugercin, Antoulas, and Beattie [126]. Given a fixed number of initial
interpolation points, this method computes a reduced model which is optimal regarding the
H2 error of the approximation. Originally introduced for first-order systems, it was extended
to be used with second-order systems as SO-IRKA, however losing some of its optimality
claims [246, 268]. Another variant, TF-IRKA, is independent of the original system’s real-
ization by relying on the transfer function evaluation of the reduced model [38, 238]. The
general IRKA procedure can be summarized as follows: Given initial expansion points closed
under complex conjugation, compute a reduced model by projection, considering an inter-
polation order of one at each frequency shift. Then compute an eigenvalue decomposition
of the reduced system; for MIMO systems, additionally compute the pole-residue expansion
of the reduced transfer function as, for example, given in [225]. The eigenvalues mirrored
along the imaginary axis are considered as expansion points for the next iteration. If the
change of the expansion points between iterations diminishes, convergence is reached and
optimal locations for the frequency shifts, and thus an optimal reduced model, has been
found. The algorithm for first-order MIMO systems is summarized in algorithm 3.1; the
variant for second order systems will be outlined more precisely in section 4.3. Given com-
plex conjugate pairs of interpolation points, the projection bases obtained from IRKA can
be kept real-valued. Here, the projection bases are built from the real and imaginary parts
of the original reduction bases computed in algorithm 3.1 line 2. Only the matrix columns
referring to one expansion point of each complex conjugate pair are considered, so the size
of the projection basis does not change. IRKA can be computationally demanding, as each
iteration involves the solution of r linear systems of order n. This cost can be leveraged by
using intermediate-sized reduced models, as proposed in [46, 71], on which the optimization
iterations are preformed. It can be shown, that the converged expansion points of the in-
termediate system are also valid for the full model. Another caveat is that IRKA does not
provide an error bound for the reduced model, but finds the optimal reduced model given
a user-provided reduced order r. If this is chosen too low, a good approximation of the full
system response is not guaranteed. The approximation error of a model reduced by IRKA
can only be assessed, if the full model’s solution is known.
IRKA is now applied to find an optimal distribution of expansion points for the can-

tilever beam model described in section 2.5.1. The implementation from [103] is used in
the following. To be applicable, the model is rewritten as a first-order system using the
first companion form given by eq. (A.1). ns = 20 initial expansion points in the frequency
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Algorithm 3.1 The iterative rational Krylov algorithm for tangential interpolation
Require: Original system A,E,B,C, r initial expansion points s0 =

[
s0,1 · · · s0,r

]
∈ Cr,

two sets of initial tangent directions b1, . . . ,br and c1, . . . , cr. Expansion points and
tangent directions must be closed under complex conjugation.

Ensure: Ar,Br,Cr,Er

1: while no convergence do
2: Compute left and right interpolation bases

V =
[
(s0,1E−A)−1 Bb1 · · · (s0,rE−A)−1 Bbr

]

W =
[(
s0,1ET −AT

)−1
CTc1 · · ·

(
s0,rET −AT

)−1
CTcr

]

3: Orthogonalize bases
4: Ar = WHAV, Er = WHEV, Br = WHB, Cr = CV
5: Compute pole-residue expansion of Hr (s):

Hr (s) = Cr (sEr −Ar)−1 Br =
r∑

i=1

ĉib̂
T
i

s− λi

6: Update expansion points and tangent directions s0 ← −λ, b← b̂, c← ĉ

7: end while
8: Project system Ar = WHAV, Er = WHEV, Br = WHB, Cr = CV

range 2πi[1, . . . , 16 000] Hz are used to start the iteration, which converged after 36 iterations
under a tolerance of εtol = 1·10−2. Figure 3.6 shows the transfer functions of the original
and reduced model and the relative approximation error. It can be seen, that the expansion
points converge to the locations of the peaks in the transfer function, leading to a good
approximation over nearly the complete considered frequency range.

To alleviate the issue of defining the reduced order a-priori, adaptive methods based on
estimating the reduction error have been developed [63, 64, 81, 102, 109, 135, 221, 272].
The resulting reduced order is not predefined for these methods and they can therefore be
used in settings, where the solution of the full system is not available. Error estimation
methods are used in these iterative algorithms to measure the approximation quality of the
current reduced model and either increase the interpolation order at an already established
expansion point or add a new frequency shift to the global reduction basis. Typically, the
only inputs required for such algorithms are a frequency range in which the resulting reduced
model should be accurate as well as a desired error tolerance. A variety of error estimators
has been established for different kinds of problems [80, 100, 108, 124, 202] which are often
used in combination with a greedy scheme to find appropriate locations for expansion points.
Here, the next interpolation point is chosen at the location where the approximation error
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Figure 3.6: Transfer functions of the original and reduced models of order r = 20 obtained from IRKA
applied to the cantilever beam and the relative error. Convergence under a tolerance of
εtol = 1·10−2 was reached after 36 iterations. The locations of the expansion points are
marked by circles.

is estimated to be maximal in a specific frequency range. Estimation methods suitable for
second-order vibro-acoustic systems as well as adaptive algorithms relying on error estimation
will be presented in detail in section 4.4.

A different take on ensuring a good approximation quality is based on oversampling. Here,
the initial reduction basis is of intermediate size q > r, which is then reduced to the finally
desired order r. This procedure relies on the estimation, that all important characteristics
of the full model are captured in the intermediate model. Averaging this basis, for example
using a pivoted QR decomposition, and then truncating it yields a reduced model of the de-
sired size. It is also possible to recover representations of the controllability and observability
subspaces from this larger subspace and thus finding a minimal realization of the original
system [44]. The intermediate subspace can also be used to estimate the error of the reduced
model. Computing the larger subspace yields transfer function evaluations at all considered
frequency shifts. This result can be compared to the transfer function of a reduced model
of desirable size and additional basis vectors can be added to the finalized reduction basis
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using a greedy scheme. Here, the basis vectors corresponding to the shifts with the high-
est difference between the intermediate model’s transfer function and the resulting model’s
transfer function are chosen to augment the reduction basis [4, 41]. Examples for strategies
based on oversampling will be given in section 4.1.

3.6.3 Data-driven interpolatory model reduction

The Loewner framework is a data-driven method constructing a rational interpolant of a
system’s transfer function. The reduced model is computed solely utilizing system inputs
and outputs, from which a Petrov-Galerkin projection as of eqs. (3.1) and (3.3) is obtained.
As for POD or DMD, no realization of the original system is required; the method can be
described as matrix-free. For a complete overview over the underlying theory, see e.g. [10,
12]; in the following, only the general procedure for data obtained from a SISO system will
be outlined.
The basis of the technique is the Loewner matrix [180], which arranges two pairs of complex

numbers (s0,i, yi) , i = 1, . . . , k and (σ0,j, zj) , j = 1, . . . , q, where all s0 and σ0 are distinct,
in the Loewner matrix L ∈ Cq×r. In this setting, given an underlying function φ (s), it holds
yi = φ (s0,i) and zj = φ (σ0,j). The Loewner matrix is given by

L =




z1 − y1

σ0,1 − s0,1
· · · z1 − yk

σ0,1 − s0,k
... . . . ...

zq − y1

σ0,q − s0,1
· · · zq − yk

σ0,q − s0,k



. (3.49)

In the interpolatory model reduction context, the entries in the Loewner matrix are de-
fined from sets {s0,i}ri=1 ⊂ C and {σ0,j}qj=1 ⊂ C of right and left interpolation frequencies
producing right and left responses {yi}ri=1 ⊂ Cm and {zj}qj=1 ⊂ Cp. In a MIMO system,
tangential directions {fi}ri=1 ⊂ Cm respectively {gj}qj=1 ⊂ Cp are again used to achieve tan-
gential interpolation. The problem to be solved is to obtain a representation for the unknown
underlying function φ (s), in this case the transfer function of the original system. In the
Loewner framework the rational barycentric form

φ (s) =
k∑

i=1

αiyi
s− s0,i

/
k∑

i=1

αi
s− s0,i

(3.50)

is used because of its numerical stability. The unknown parameters α =
[
α1 · · · αr

]
are

obtained from the null space of L: due to the construction of the Loewner matrix, the
equation Lα = 0 has a nontrivial solution, yielding the unknown factors. Given enough
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samples of the original transfer function, the rank of L is equal to the McMillan degree of
the interpolated function. This means, that the rank of L encodes the minimal order of a
surrogate representation interpolating the complete data used in the Loewner framework.

Instead of directly using the barycentric form (3.50), a realization of the interpolated
system in terms of a state-space model in descriptor form can be obtained. It is given by

E = −L, A = −Ls, B = z, C = y, (3.51)

where Ls is the shifted Loewner matrix introduced by Mayo and Antoulas [180] and given
by

Ls =




σ0,1z1 − y1s0,1

σ0,1 − s0,1
· · · σ0,1z1 − yks0,k

σ0,1 − s0,k
... . . . ...

σ0,qzq − y1s0,1

σ0,q − s0,1
· · · σ0,qzq − yks0,k

σ0,q − s0,k



. (3.52)

No additional computations other than the partitioning in the Loewner matrices are required
to obtain this realization. However, the Loewner matrix might be large, depending on the
source and quantity of the data and also the McMillan degree of the underlying function
might be too high to obtain a reasonably-sized reduced model. In this case, the extraction
of the most relevant data might be necessary to obtain an efficient surrogate. Similarly to
the POD, this can be performed using a singular value decomposition of the Loewner matrix
and afterwards truncating all matrix columns associated to small singular values.

It is also possible to find structure-preserving realizations of systems with a higher order
polynomial transfer function using Loewner matrices [233, 234]. This is especially interesting
in cases where data is being continuously measured from a built structure. This data can be
utilized to find a system representation of the original structure, which is typically second-
order [3, 121]. As measurement data may be heavily influenced by noise, recent works
propose methods to handle noisy input data in the Loewner framework [95, 122].

As an example, the Loewner framework is now used to find a realization of the beam model
from section 2.5.1 given 800 measurements of its transfer function at discrete locations. As
the data is coming from numerical evaluation of the transfer function, no noise has to be
considered in this case. The reduced order r = 27 is obtained by performing the SVD of the
Loewner matrix eq. (3.49) and truncating all of its columns corresponding to singular values
σ < 1·10−8. The resulting reduced model is able to approximate the original model over a
wide frequency range containing most poles visible in the transfer function. In comparison
a realization based on the McMillan degree obtained from rank (L) = 357 interpolates the
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original transfer function in the complete frequency range and therefore shows a very low
approximation error.
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Figure 3.7: Transfer functions of the original and reduced models of order r = 27 and r = 357 obtained
from the Loewner framework applied to the cantilever beam and the relative error.

3.7 Parametric model order reduction

For many problems in optimization, design, and control, multiple parameters need to be
varied during the simulation process. Such parameters include, for example, material or
geometrical properties or types of excitation. Standard reduced order models, as discussed
in the preceding sections, are only valid for a specific set of parameters, so the reduction
basis would need to be recomputed for every new parameter realization, which is typically
not feasible. Therefore, methods for parametric model order reduction (PMOR) have been
established, which preserve the dependency on chosen parameters in reduced space. A review
over many methods used for PMOR is given by Benner, Gugercin, andWillcox [47]. A certain
range of variation of these parameters is thus being represented by a single reduced model
without the need to recompute the reduction basis. A second-order system depending on d
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parameters p =
[
p1 · · · pd

]T
is given by

Σ:




M (p) ¨̌x (t,p) + C (p) ˙̌x (t,p) + K (p) x̌ (t,p) = F (p) ǔ (t,p) ,
y̌ (t,p) = G (p) x̌ (t,p) ,

(3.53)

for which a reduced system of the same shape is sought. To generalize the following con-
siderations for different types of dynamical systems, we extend the generalized coprime
factorization (3.30) to include a parameter dependence:

H (s,p) = G (s,p) K (s,p)−1 F (s,p) . (3.54)

Consequently, the matrices for a second-order system are given by K (s,p) = s2K (p) +
sC (p) + K (p), F (s,p) = F (p), and G (s,p) = G (p). Again, we focus on projection based
model order reduction, so a reduced system regarding the two reduction bases V, W is
obtained from

Kr (s,p) = WHK (s,p) V, F r (s,p) = WHF (s,p) , Gr (s,p) = G (s,p) V. (3.55)

In order to obtain a reduced model for a specific parameter realization p, the full order
system matrices are required for this specific p in the projection framework. This can be
difficult to compute and may require a large amount of memory, so it is favorable to obtain an
affine representation of the full order model. This describes the system with a combination
of constant matrices and possibly nonlinear functions depending on the parameters

K (s,p) = K0 (s) + k1 (p) K1 (s) + · · ·+ kq (p) Kq (s) ,
F (s,p) = F0 (s) + f1 (p) F1 (s) + · · ·+ fq (p) F q (s) ,
G (s,p) = G0 (s) + g1 (p) G1 (s) + · · ·+ gq (p) Gq (s) .

(3.56)

Here, ki (p) , fi (p) , gi (p) , i = 1, . . . , q are scalar valued, possibly nonlinear functions. Using
such representation enables the computation of reduced quantities independent from p. In
order to build the parameter dependent matrices in reduced space only the scalar functions
need to be evaluated and multiplied to the constant matrices. Consequently, the full scale
matrices do not need to be assembled in the online phase and the reduced matrices can be
reused for each new parameter. Although theoretically such an affine representation can
be found for any system, a too large number q of affine parts is not efficient. In this case,
the parameter dependence has to be considered as a black-box. The empirical interpolation
method (EIM) [32] and its discrete form (DEIM) [75] can be applied here and find a param-
eter dependent reduced model [8]. Snapshots of the original system at certain realizations
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of the parameters are required for the method. Subsequently, DEIM chooses which snap-
shots to include in the projection basis using a greedy method. The gappy POD, originally
proposed for nonlinear model order reduction [97, 263], is also frequently used for black-box
parametric model order reduction [47].
The considered methods to compute the reduction bases V, W originate in some of the

methods presented in the previous chapters and start by computing individual bases for each
parameter sample. The parameter sampling performed in this step is crucial for the perfor-
mance of the model order reduction. Full grid or Latin hypercube sampling is a classical
choice for systems with a small or medium numbers of parameters but the computational
costs can grow fast. If the parameter dependence is known to be smooth, sparse grids may
be employed [118]. For more complex situations or a large parameter space (d > 10), more
sophisticated methods including adaptive schemes or techniques based on local sensitivity
analysis have been proposed [70, 76, 140, 248]. Additionally, methods not depending on
parameter sampling have been proposed. Here, the parameter dependent system is refor-
mulated to a non-parametric system where the parameter influence is modeled as additional
inputs to the system [34, 39, 255].
The individual projection subspaces obtained from parameter sampling can be either com-

bined to one global basis or used in a local basis approach. For a global basis, the individual
projection matrices are collected in global left and right projection matrices. As the individ-
ual bases might contain redundant information, an orthogonalization procedure is applied.
The size of this basis and thus the reduced model can grow fast if many parameters need to be
considered. In case an interpolative method has been used to construct the individual bases,
the resulting reduced model interpolates the full solution at all combinations of frequency
and parameter values which were used for the sampling process. PMOR procedures following
this global approach have been presented, for example, in [35, 43, 89]. A global basis can
also be computed by concatenating individual bases obtained from a balancing method. The
resulting reduced model is, however, not necessarily balanced, even for the parameter values
used for generating the individual bases [47]. A related approach is to interpolate between
the local bases, respectively on a manifold of their subspaces [7, 65]. Here, the resulting
projection basis has the same size as the original basis. Using both local and global methods
requires the projection step to be computed for each new parameter realization, if no affine
parameter decomposition is available. To overcome this, methods to directly interpolate the
reduced matrices, rather than the projection bases, have been established [93, 201]. If large
amounts of transfer function measurements of a parametric system are available, directly
interpolating these transfer functions yields surrogates for the full order model. Ionita and
Antoulas [143] introduced an extension to the Loewner framework being able to interpolate
parametrized transfer functions. This method will be outlined in more detail in section 5.1.
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Combining reduced parametric models with different fidelity, so called multifidelity ap-
proaches can be an efficient way to evaluate parametric systems, especially in settings where
uncertain parameters have to be considered. Peherstorfer, Willcox, and Gunzburger [206]
give an overview over techniques applicable for such cases.
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4 Model order reduction for

vibro-acoustic systems

The model order reduction methods presented in the previous chapter are directly appli-
cable to a wide range of vibro-acoustic problems, if their transfer function has a standard
second-order structure. A modification of the methods is, however, required if frequency de-
pendent input or system matrices have to be considered. Additionally, strategies to choose
appropriate locations for expansion points and to determine a reasonable size for the reduced
models are required, especially if the solution of the full order system is not known prior
to the reduction process. The following chapter addresses some open issues in model order
reduction of vibro-acoustic systems. After giving an overview over the applicability of the
state-of-the-art methods described in chapter 3 to different types of vibro-acoustic systems
in section 4.1, a method to compute reduced models for systems with frequency dependent
system matrices is presented in section 4.2. Techniques to obtain surrogate models only
valid in a specific frequency region, which is often desirable in vibro-acoustics, are presented
in section 4.3. Section 4.4 concludes the chapter with strategies assessing the reduction er-
ror and automatically finding reduced order models requiring as less a-priori knowledge as
possible.

4.1 Applicability of model order reduction methods

The performance of the model order reduction methods described in chapter 3 is in the
following assessed using the MORscore presented in section 3.2. The model problems de-
fined in section 2.5 are used as application examples, so the applicability of the reduction
methods to various types of vibro-acoustic problems is discussed. The following section
is based on Aumann and Werner: “Structured model order reduction for vibro-acoustic
problems using interpolation and balancing methods” (2022) [25]. Alternative surveys as-
sessing the applicability of model order reduction methods to vibrating structural systems
are, for example, available in [41, 57, 226]. Hetmaniuk, Tezaur, and Farhat [134] presented a
survey specifically targeting vibro-acoustic systems, where the structure-preserving method
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from section 3.6 has been used to reduce a system with frequency dependent input. Modal
based reduction methods for vibro-acosutic problems with frequency dependent system ma-
trices, including, for example, complex damping measures or radiating boundary conditions
are summarized in [220]. The authors of [254, 270, 272] employ Krylov subspace methods
for these kinds of problems. A different approach to moment matching is the so called
well-conditioned asymptotic waveform evaluation (WCAWE) introduced by Slone, Lee, and
Lee [239], which matches moments of polynomial systems without the need for a lineariza-
tion. The methodology is similar to the moment matching strategy based on the generalized
coprime realization shown in section 3.6. The WCAWE has been applied to vibro-acoustic
problems including radiating boundary conditions in [162] and poroelastic models in [221,
223].
In the following study, we use the models presented in section 2.5 and compare their

applicability and performance regarding the following structure preserving methods:

• equi: Structure preserving interpolation without considering derivatives of the mo-
ments, i.e. an interpolation order of r0 = 1 at each expansion point. The interpolation
points are distributed linearly along the imaginary axis between iωmin and iωmax. ωmin
and ωmax denote the frequency range of interest, which is specified for each model
individually. If required, the initial distribution is augmented by interpolation points
at locations having a large impact on the system’s frequency response.

• avg: An intermediate basis with order q > r is precomputed and orthogonalized for
this method. This medium sized interpolation basis is then truncated to the desired
order r, averaging the large reduction space to obtain the reduction space of desired
size. The expansion points for the large space are distributed linearly in the frequency
range of interest but can be modified similar to equi.

• L∞: This algorithm chooses a subset of interpolation points from a larger presampled
database in order to minimize the approximation error of the resulting reduced model
in the frequency range of interest. Expansion points are subsequently added during
the procedure at the location where the difference between the original transfer func-
tion and the transfer function of the current reduced model is at a maximum. For
this, the transfer function evaluations at each interpolation point in present in the
presampling basis is saved to be able to perform the optimization step with reasonable
computational effort. The method is described in detail in [41].

• minrel: This method follows [44] and aims at computing a minimal realization of the
original dynamical system. Again, an intermediate reduction basis of order q > r is
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computed in a first step. The dominant subspaces of this reduction space are deter-
mined using a singular value decomposition. Subsequently, the parts of the interme-
diate basis with less dominance are truncated to obtain the final projection space of
order r.

• SO-BT : The balanced truncation methods as presented in section 3.5 with the accord-
ing truncation formulas given in table 3.1.

• POD: A proper orthogonal decomposition according to section 3.4. The snapshot
matrix is filled with q samples of the frequency response of the corresponding system
obtained at linearly distributed locations in the frequency range of interest.

The methods avg, L∞, minrel, and POD require a presampling step in which a reduction
basis of order q > r and the evaluation of the transfer function at the expansion points are
computed before applying the reduction method. The locations of the expansion points are
linearly distributed in the frequency range of interest for all following methods and additional
shifts may be introduced in order to capture the original system’s behavior for the complete
transfer function. We apply three different approaches to compute this database for avg,
L∞, and minrel in the following experiments:

• For the standard method, no derivatives at the expansion points are considered and
the presampling basis is computed in the same way as described for equi; this basis is
also used for POD. The transfer function evaluations required for L∞ can be computed
in the same step. Thus, q solutions of a linear equation system of order n are required
for each presampling basis V and W.

• sp: This presampling method is based on the structure preserving interpolation scheme
summarized in section 3.6 and considers the series expansion factors of the transfer
function as presented in [37]. It computes multiple columns of the presampling basis
in the same step, so less than q linear systems of equations have to be solved for a
basis of order q. For each expansion point the recursive formulation (3.41) is used with
an interpolation order r0 = 3 at each frequency shift. This is the lowest interpolation
order allowing a recursion for a second-order system without dropping any polynomial
terms.

• soa: This method uses higher interpolation orders r0, individually set for each model
problem. The method’s name refers to the second-order Arnoldi method from [171],
summarized in section 3.6.1, which is used to obtain the projection bases. Again,
less than q linear systems of equations have to be solved for each projection basis, as
multiple columns are computed from the same matrix decomposition.
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The presampling methods sp and soa leverage the computational costs of computing the
initial basis, as only q

r0
factorizations of the full order system are required. This may of

course also lead to an intermediate basis containing less information about the dynamic
behavior of the original system. Note, that the order of models reduced with L∞ is always
a factor of r0 as all columns associated with the chosen shift are selected for the reduction
basis. The nonlinear frequency dependent contributions arising in Case C systems, for
example the coupled poroacoustic system, cannot straightforwardly be treated in sp and soa,
as the required expansion factors cannot directly be obtained. Therefore, these presampling
strategies are not considered for now. A strategy to include also non-polynomial frequency
dependencies is introduced in section 4.2. sp and soa are not applicable to compute a
presampling basis for POD.
We compare different projections to assess the controllability and observability of the var-

ious systems. Apart from the double-sided projection, we also consider one-sided projections
regarding the system input and output respectively. The input projection is obtained by set-
ting W = V, the output projection by setting V = W. Where applicable, we also compare
complex and real valued projection bases. A real valued basis is obtained from the initial
complex valued basis by V = [Re (V) , Im (V)] and W = [Re (W) , Im (W)], thus having a
dimension of 2r. The considered projections are:

• tsimag: Double-sided projection W 6= V with V,W ∈ Cn×r

• tsreal: Double-sided projection W 6= V with V,W ∈ Rn×2r

• osimaginput: Single-sided projection W = V with V,W ∈ Cn×r

• osrealinput: Single-sided projection W = V with V,W ∈ Rn×2r

• osimagoutput: Single-sided projection V = W with V,W ∈ Cn×r

• osrealoutput: Single-sided projection V = W with V,W ∈ Rn×2r

To allow a one-sided projection regarding the system input for SO-BT , only the controllabil-
ity Gramian is computed and is used as the left and right projection matrices in orthogonal-
ized and truncated form. A one-sided projection regarding the system output is analogously
possible by computing the observability Gramian. No real valued bases are considered for
SO-BT . Only only osimaginput is applicable for POD, as the snapshots are obtained from
measurements of the transfer function given a specific input.
For the following computations of the MORscore, we approximate the relative error under
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the L∞-norm via

ε(r) =
max

ω∈[ωmin,ωmax]
‖H(ωi)−Hr(ωi)‖2

max
ω∈[ωmin,ωmax]

‖H(ωi)‖2
≈ ‖H −Hr‖L∞

‖H‖L∞
, (4.1)

where Hr is the transfer function of a reduced-order model of size r. For simplicity, the
errors are denoted with the L∞-norm in the plots.

4.1.1 Structural vibration

The vibrating plate equipped with tuned vibration absorbers (TVA) described in section 2.5.2
is considered in the following. Two models using proportional damping respectively hysteretic
damping are reduced using the methods described above. SO-BT is not applicable to the
hysteretically damped model, because C = 0 in this system. The standard presampling
for minrel, avg, and L∞ is conducted with ns = 250 frequency shifts distributed linearly
in s = 2πi [1, . . . , 250]. As the models are described by standard second-order transfer
functions, sp yields three columns for each shift. Using ns = 80 shifts linearly distributed in
the same range and augmented by shifts at s = 2πi [46, 47, 48, 50] results in the intermediate
reduction basis with r = 252. The additional shifts were introduced because the behavior
near the tuning frequency of the TVAs is very local and can only be captured by shifts in
this frequency region. For soa presampling a local order of r0 = 10 is chosen for each of
the ns = 21 shifts linearly distributed in s = 2πi [1, . . . , 250] and four additional shifts at
s = 2πi [46, 47, 48, 50]. This again yields an intermediate reduction basis of order r = 250.
Because of the high impact of the TVA on the transfer function near its tuning frequency
the expansion points sampling for equi is modified similarly to the presampling methods.
The shifts at s = 2πi [46, 47, 48, 49, 50] are always considered, the location of the remaining
shifts are linearly distributed in the frequency range of interest. For orders r < 5 only the
first r extra shifts are considered.
All methods are able to compute reasonably accurate models of the hysteretically damped

model, their MORscore referenced to εref = 1·10−6 is given in fig. 4.1. The tolerance is
chosen higher than εref = 1·10−16 because the relative approximation error does not drop
below 1·10−3 for any employed method and the MORscore for the individual methods would
therefore be too close to each other to allow proper comparisons. The projections with
complex valued bases yield very good results for all reduction methods, only L∞ soa falls
short. It has to be noted, that all reduced models computed from a soa presampling need a
higher reduced order r to be as accurate as the other presampling methods. This is because
only 25 shifts and their derivatives are present in the reduction basis, as opposed to 250 and
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Figure 4.1: MORscore µ

(
250; 10−6) of all employed reduction and projection methods for the plate with

hysteretic damping.

84 respectively.
Using L∞ in combination with soa, the order of the reduced models is increased in steps

of 10, which is the chosen size of the second-order Krylov subspaces employed. Therefore, a
larger reduced model is constructed as compared to the other methods, but less computa-
tional effort is required in the presampling process. Figure 4.2 shows the H∞ norm of the
relative errors plotted over the reduced order r. It can be seen, that all methods including
L∞ soa are able to compute reduced models with the same accuracy given a large enough
reduced order r. A characteristic drop in the error norm can be observed for most methods.
This originates from the effect of the employed TVAs which have a local but considerable
influence on the transfer function at their specific tuning frequency of f = 48 Hz. A good
approximation quality can only be achieved, if this behavior is depicted accurately by the
reduced model.
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Figure 4.2: Relative L∞-error for reduced models of the plate model with hysteretic damping computed
by several reduction methods and osimaginput projection.

Applying the reduction methods on the proportionally damped model yields models with
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on overall better accuracy compared to the model with hysteretic damping, as there are
less only slightly damped poles in the transfer function. Because of this, the tolerance
for computing the MORscore is not modified and set to εref = 1·10−16. The MORscore
for each employed method is given in fig. 4.3. Especially avg, L∞, and minrel using the
standard presampling method yield good results, while the models computed from soa and
sp presampling have a slightly lower MORscore. Given the lower computational cost for
computing the presampling basis, especially for soa, the accuracy is still acceptable. Only
L∞ soa yields considerably less accurate models.
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Figure 4.3: MORscore µ

(
250; 10−16) of all employed reduction and projection methods for the propor-

tionally damped plate.

It can be seen in the error-over-order plot fig. 4.4, that the reduced model computed by
L∞ soa reaches the error level of the other methods for a reduced order r = 250. The lower
MORscore is thus also influenced by the fact, that the order r is incremented in steps of
r0 = 10 for L∞ soa. It is also observable, that avg, L∞, and minrel show a very similar
behavior depending on their presampling method. Using the classic presampling, the best
achievable accuracy can be reached with reduced models of order around r = 60, models
computed from sp presampling require r = 90, and using soa yields comparable accuracy for
models larger than r = 100. Of course L∞ soa required a larger reduced order r, because r
is a multiple of r0 = 10 for this model. The other two models computed with soa, however,
are comparable to equi, so the presampling subspace computed by soa is able to capture
the most important features of the original system’s transfer function. The reduced model
computed with the one-sided SO-BT does not reach the accuracy of the other methods and
stagnates for r ≥ 160.
The reason for the stagnation of the approximation error of reduced models computed by
L∞ soa can be observed in the error plot fig. 4.5. The relatively high error in the region of
the tuning frequency of the TVA at f = 48 Hz is present up to models with r = 240. At
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Figure 4.4: Relative L∞-error for reduced models of the plate model with proportional damping computed
by several reduction methods with osimaginput projection. Note the similar performance of
avg, L∞, and minrel based on the employed presampling method.

r = 250, L∞ selects the shift and corresponding subspace, which contains enough information
to approximate the original transfer function also in the region around f = 48 Hz and the
error drops to the level of the models computed using the other reduction methods.
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Figure 4.5: Comparison of original and reduced transfer functions as well as relative errors for reduced
models of the proportionally damped plate computed by L∞ soa. The error peak near the
tuning frequency of the TVA at f = 48 Hz is clearly visible.

In order to compare the different formulas for SO-BT given in table 3.1, a slightly modified
model of the proportionally damped plate is considered. Here, the displacement at the
loading point is evaluated rather than the mean displacement at the surface of the plate.
The result is obtained with a vector g ∈ Rn instead of a matrix, allowing the computation of
a left projection basis W in reasonable time. The corresponding transfer function is given in
fig. 4.6. Additionally, the transfer functions of the reduced models computed using SO-BT
and its various truncation formulas and the corresponding relative errors are reported therein.
All formulas presented in table 3.1 yield reasonably accurate reduced models. Similar to the
results above, the very local effect of the TVAs around f = 48 Hz cannot easily be captured
by the reduction method, resulting in a relatively high error in this frequency region even
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for a reduced order of r = 250. SO-BT so produces a model with slightly higher error than
the other formulas.
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Figure 4.6: Original and reduced transfer functions as well as relative errors for the proportionally damped
plate with a single output and order r = 250. Comparison of the SO-BT formulas. All re-
duced models have their approximation error maximum around the tuning frequency of the
TVA (f = 48 Hz).

Additionally, all other methods have been used to compute reduced models and their
MORscore is given in fig. 4.7. The results are very similar to the ones reported above: all
methods produce accurate reduced models. However, L∞ soa has a lower MORscore, as the
r is incremented in steps of r0 = 10. All reduced models capture the transfer function in the
critical region around f = 48 Hz for large enough reduced orders. As the displacement at the
loading point is evaluated in the transfer function, i.e. input and output vectors are identical,
a two-sided projection does not yield a benefit and tsimag, osimaginput, and osimagoutput
show nearly the same MORscore for each reduction method. It has to be noted, that avg
and minrel with classical presampling yield very similar results for complex and real valued
projection bases.
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Figure 4.7: MORscore µ

(
250; 10−16) of all employed reduction and projection methods for the propor-

tionally damped plate with a single output.

4.1.2 Sound transmission

The sound transmission problem described in section 2.5.3 is assessed regarding the applica-
bility of the reduction techniques described at the beginning of the section. The presampling
for minrel, avg, and L∞ was conducted with ns = 200 frequency shifts distributed linearly
in s = 2πi [1, . . . , 1000]. As the quadratic frequency associated with the mass matrix is
the highest order of s in the transfer function, each shift computed by sp contributes three
columns to the presampling basis. ns = 67 shifts, also linearly distributed in the frequency
range, are chosen such that the global reduction basis is of size r = 201. For soa, a local
order r0 = 10 along with ns = 20 is chosen, yielding an intermediate reduction basis of order
r = 200. Because the numerical model has unstable eigenvalues, the required Gramians for
SO-BT could not be computed.
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Figure 4.8: MORscore µ

(
100; 10−16) of all employed reduction and projection methods for the sound

transmission problem.
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The MORscore given in fig. 4.8 shows, that especially the two-sided projections yield very
good results with the highest MORscore observed in all experiments reported in this study.
As expected, L∞ soa falls a bit short due to the reduced order being incremented in steps
of 10. But also avg soa and minrel soa perform not as good as the other methods, while
still showing a MORscore µ > 0.3 referenced to εref = 1·10−16, which is comparable to
the other models. It can be seen, that using only input or output based projection has a
significant impact on approximation quality. The error comparisons in fig. 4.9 show, that
the approximation error of the one-sided projections stagnates at around 1·10−5, while the
two-sided projections yield models with much better accuracy. As expected, the real valued
projection requires a higher reduced order r but also results in models of comparable accuracy
for higher r.
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Figure 4.9: Comparison of the relative L∞-error for reduced models of the sound transmission problem
computed by equi using different projections. While the two-sided projections reach very
low approximation errors, the approximation error of the models computed with one-sided
projection stagnates at a higher level.

4.1.3 Acoustic scattering

The acoustic scattering problem described in section 2.5.4 is considered a Case B problem
because of its excitation and is in the following assessed regarding the applicability of the
reduction methods. The presampling was conducted with ns = 200 frequency shifts dis-
tributed linearly in s = 2πi [1, . . . , 600]. Again, sp yields three columns for the intermediate
reduction basis, so ns = 67 linearly distributed shifts are chosen to obtain a basis of size
r = 201. For soa, a local order r0 = 5 is chosen, so the ns = 40 expansion points yield again
a presampling basis with order r = 200. SO-BT is not applicable to this problem because
of its frequency dependent input vector.
The MORscore for each applied reduction method is given in fig. 4.10 and it can be

seen, that again a two-sided interpolation with complex valued bases outperforms the other
projection methods. Also in line with the observations from the other models is the lower
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Figure 4.10: MORscore µ

(
200; 10−16) of all employed reduction and projection methods for the scattering

problem.

rate of approximation when using soa. Additionally, the local order k of the second-order
Krylov space employed in soa was reduced compared to the other experiments, as there are
many individual modes present in the transfer function. equi shows also a worse performance
than the other methods. It can be seen in the error-over-order plot fig. 4.11, that the error
stagnates until approximately r = 140 before it drops to the same level as the other methods.
This suggests, that important feature of the system response have not been captured by
the smaller reduction bases. The oscillating behavior of the relative error in the region of
150 < r < 190 is a sign that crucial parts of the transfer function are missed by sampling
with equidistantly distributed expansion points. This is supported by the relative errors in
fig. 4.12. Here, the error over frequency for reduced models computed by equi with order
r = 140 and r = 200 are plotted. While the larger reduced model shows a very low error over
the complete frequency range, more information from the frequency region above 450 Hz than
is available in the smaller model is required in the reduction basis for a proper approximation
of the original system. It is, however, also apparent, that the approximation quality for all
methods is better in the lower frequency range, presumably because of a large number of
modes in the higher frequency region. If this is known a-priori, the locations of the expansion
points can be altered appropriately. If this is not possible, the methods avg, L∞, and minrel
show their benefit. At the cost of computing a larger intermediate reduction basis, the most
relevant information from this basis is chosen, allowing smaller reduced models with better
accuracy.
The error graph for avg soa tsimag in fig. 4.12 shows characteristic spikes at the loca-

tions of the expansion points in the presampling basis. This suggests that the employed
second-order Krylov subspace does not contain enough information to enable an as accurate
approximation as the other presampling methods. A remedy would be to increase the local
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Figure 4.11: Relative L∞-error for reduced models of the acoustic scattering problem computed by sev-
eral reduction methods. equi requires many expansion points until it reaches a comparable
error level as avg, which performs best, at around r = 200. The presampling basis for soa
does not contain enough information to allow a comparable relative error.

order k, which would in turn increase the size of the presampling subspace. Increasing k is
up to a certain bound less computationally expensive than establishing a completely new
shift. Projection regarding the system output using a soa presampling, however, does not
yield a good approximation of the original system at all.

4.1.4 Coupled poroacoustic system

The system modeling the acoustic cavity equipped with two poroelastic materials described
in section 2.5.5 is considered in the following. Because of the frequency dependency in the
system matrices, the presampling methods sp and soa are not applicable; neither is SO-
BT . The presampling for minrel, avg, and L∞ is conducted with ns = 200 frequency shifts
distributed linearly in the frequency region s = 2πi [1, . . . , 800]. The snapshot matrix for
POD consists out of frequency responses at ns = 200 frequency locations distributed linearly
in the same frequency region.
The MORscore reported for all employed methods in fig. 4.13 shows a high approximation

quality for all reduction methods with a MORscore µ > 0.4 for many methods. equi converges
a bit slower thus showing a lower MORscore; it reaches a similar error level as the presampling
methods for reduced orders higher than r = 180, suggesting that this is an appropriate size
for the presampling basis. The corresponding relative H∞ errors over the reduced order
for all employed reduction methods is given in fig. 4.14. The oscillations in the errors for
minrel, avg, and L∞ at higher reduced orders are the result of an ill-conditioning of the
reduced models. Ill-conditioned matrices have also been observed for equi for reduced orders
r > 140. The errors for POD are slightly higher than the other methods, as only input
information is available in the snapshot basis. Comparing the MORscore for all osimaginput
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Figure 4.12: Original and reduced transfer functions as well as relative errors for the scattering problem
reduced with different methods. The lack of information in the higher frequency range for
equi tsimag with r = 140 and avg soa tsimag with r = 200 is clearly visible.

however shows, that its results are comparable to the other reduction methods.

4.1.5 Conclusive remarks

The model order reduction methods described in chapter 3 have been applied on typical
vibro-acoustic systems and have been assessed regarding their performance and applicability.
All methods are able to compute reasonably sized reduced models which are much smaller
than the original models. No a-priori knowledge about the original systems’ responses are
required, but the majority of the methods require a time consuming presampling procedure.
Therefore these methods are especially suited to find small reduced models in settings where
the offline cost is not decisive. However, the naive sampling approach equi is based on is
not applicable well if the reduced order required for the desired accuracy is not known. This
approach is used as a reference in the above experiments showing how large the presampling
basis needs to be to contain enough information for a good performance of the other methods.
Strategies to automatically find locations and interpolation orders without a-priori knowledge
of the system response will be presented in section 4.4. Considering derivatives in the
presampling bases has the potential to save computational resources in the computation of
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Figure 4.13: MORscore µ (1e− 16; 200) of all employed reduction and projection methods for the poroa-

coustic system.

20 40 60 80 100 120 140 160 180 20010−13

10−9

10−5

10−1

Reduced order r

R
el

at
iv

e
L ∞

-e
rr

or minrel
avg
equi
L∞
POD

Figure 4.14: Relative L∞-error for reduced models of the poroacoustic system computed by several re-
duction methods. A two-sided projection with complex valued bases, i.e. tsimag, is consid-
ered for all cases except POD. minrel performs best and also equi yields acceptable results
for a high reduced order r. The oscillations for higher r are the result of an ill-conditioning of
the reduced systems’ matrices.

the basis. The results often show only a small difference regarding the choice of presampling
method. It has to be noted, that if the original model—like the hysteretically damped
plate—has many undamped modes, also the size of the reduced model needs to grow in
order to obtain a reasonably accurate reduced model. Here, it could be beneficial to compute
reduced models valid in a specific frequency region only, if the desired application allows this.
Methods considering such strategies will be presented in section 4.3.
All reduction methods are applicable to basic vibro-acoustic problems from structural

vibration and also fluid-structure-interaction. Only the hysteretically damped plate cannot
be reduced with SO-BT , as no viscous damping matrix is present in this system. SO-BT is
theoretically applicable to the sound transmission problem, but due to unstable eigenvalues
the method did not converge in this specific case. equi and all presampling based methods
can be used with all system types, making them a very flexible choice for structure preserving
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model order reduction. For Case C , where a complex frequency dependency is present in the
system matrices, derivatives cannot be considered without additional measures; so soa and
sp are not applicable for the poroacoustic system. Methods to obtain the required factors
for the derivatives will be presented in section 4.2.

4.2 Reduction of systems with nonlinear frequency

dependent terms

The following section is based on Aumann et al.: “Automatic model order reduction for
systems with frequency dependent material properties” (2021) [19]. Dissipation mechanisms
in vibro-acoustic systems are often depending on the excitation frequency and are, if analyzed
in the frequency domain, described by frequency dependent material properties [96]. Such
material models exist, for example, for constrained layer damping [6, 250] and poro-elastic
materials described by the Biot theory [5, 58, 59, 222]. A perfectly matched layer (PML),
which is often used to model radiation problems, can also be formulated as a frequency
dependent dissipative material [203, 259, 274]. A discretization with finite elements results
in dynamical systems with nonlinear and non-polynomial frequency dependency, so many
classic model order reduction techniques described in chapter 3 cannot directly be applied.
Especially if higher interpolation orders at certain frequency shifts are desired, specialized
methods need to be employed.
We consider a q-th order polynomial system with corresponding constant matrices Aj,

j = 0, . . . , q, where nonlinear effects are introduced by l scalar functions φi (s) , i = 1, . . . , l
which are applied to the system according to l corresponding constant matrices Bi. Such
systems with one input and one output are given by

Σ:








q∑

j=0
sjAj +

l∑

i=1
φi (s) Bi


x (s) = fu (s) ,

y (s) = gx (s) ,
(4.2)

and are described by their transfer function

H (s) = g



q∑

j=0
sjAj +

l∑

i=1
φi (s) Bi



−1

f . (4.3)

An example for such systems are models containing poroelastic materials described by the
Biot theory and discretized with the finite element method. An affine formulation of such
systems which can directly be transformed to the form of eq. (4.3) is, for example, given in
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eq. (A.3). For efficient computation a reduced system of order r � n with the same structure
and transfer function is sought. Due to the nonlinearity in φi (s) many standard reduction
methods cannot be employed directly. If the functions governing the dissipation mechanism
are given as polynomial functions, the structure preserving moment matching framework
relying on the generalized coprime factorization (3.30) can be applied, because the required
series expansion factors can directly be obtained. This has been applied to vibro-acoustic
systems by, for example, Hetmaniuk, Tezaur, and Farhat [134], where a quadratic term in
the system excitation has been considered. Given general differentiable functions describ-
ing the frequency dependency, the analytic derivatives can be used in the well-conditioned
asymptotic waveform evaluation (WCAWE) method to retain the frequency dependency in
reduced space [162, 221, 223]. A similar approach has been shown in [269, 270, 272], where
a truncated Taylor series has been used to approximate the frequency dependency. This
yields a second-order system, which can be reduced using standard model order reduction
methods.

The general idea in this strategy is to approximate the nonlinearity with a polynomial
of degree d = 2, thus yielding a standard second-order system being directly compatible to
many established model order reduction methods. The strategy is briefly outlined: First,
each function φi (s) is expanded about the same frequency shift s0:

φ̃i (s) = φi (s0) + φ′i (s0) (s− s0) + φ′′i (s0)
2 (s− s0)2 + . . . . (4.4)

Inserting all terms up to second order depending on s into eq. (4.3) and shifting about s0

yields a standard second-order system

H (s) = g
(
(s− s0)2 M̂ + (s− s0) Ĉ + K̂

)−1
f , (4.5)

with

M̂ = A2 +
l∑

i=1

φ′′i (s0)
2 Bi,

Ĉ = 2s0A2 + A1 +
l∑

i=1
φ′i (s0) Bi,

K̂ = s2
0A2 + s0A1 + A0 +

l∑

i=1
φi (s0) Bi.

(4.6)

The above representation can now be used with, for example, the generalized coprime fac-
torization eq. (3.41) or the second-order Krylov subspace eq. (3.47) to compute a projection
basis for model order reduction. However, approximating the nonlinear frequency depen-



108 4 Model order reduction for vibro-acoustic systems

dency using a Taylor series requires analytic expressions of the nonlinear functions φi (s), at
least for some frequency ranges, where the series is computed. As each set of Taylor approx-
imations is only valid for a certain physical problem, applying the method to new problems
always requires the solution of multiple differentiation problems. Additionally, the Taylor
series is truncated after the quadratic term to fit the second-order structure of the model
order reduction strategies. This potentially leads to a decrease of approximation quality
with increasing distance from the frequency shift.
In the following, we present a technique to compute reduced order models for systems

with nonlinear frequency dependency, which is automatically approximated by a polynomial
of order d > 2. The resulting system’s transfer function (4.3) is thus approximated by

H (s) ≈ Ĥ (s) = g



q∑

j=0
sjAj +

d∑

i=0
siB̂i



−1

f . (4.7)

The matrices B̂i incorporate the factors obtained from the approximation of φi; these fac-
tors can, as in eq. (4.6), be obtained from a Taylor series, for example. The key aspects of
the proposed method are the employment of higher order Krylov subspaces and the auto-
matic consideration of nonlinear frequency dependent functions without the need for analytic
derivatives. The method considers higher order terms with d > 2 of the frequency depen-
dent functions by employing a Krylov space of order k = max (q,d) acquired by an Arnoldi
method, similar to the method for second-order systems described in section 3.6.1. This
allows a better representation of the nonlinear effects in the reduced space. Instead of a
Taylor expansion, the adaptive Antoulas-Anderson (AAA) algorithm introduced by Nakat-
sukasa, Sète, and Trefethen [190] is used to approximate the nonlinear functions and find a
polynomial representation of the system given by eq. (4.7), which is required for the Arnoldi
method. Because AAA only requires function evaluations to find a rational approximate, nei-
ther analytic expressions nor derivatives of the nonlinear functions describing the frequency
dependent behavior are required. Therefore, damping effects solely described by data points
obtained, for example, from measurements, can be used in this procedure.
Alternative methods to compute reduced order models for systems with nonlinear fre-

quency dependency have been established in the past: The mode displacement method,
typically used for classically damped systems, has been extended to vibro-acoustic systems
with nonlinear damping behavior as presented in [220]. In extension to the iterative rational
Krylov algorithm IRKA [38], general forms of nonlinearity have been considered in [238].
The optimal expansion points for a rational interpolation of the system’s transfer function
are iteratively found using the Loewner framework [180]. Thus, no analytic derivatives are
required, as the algorithm solely relies on transfer function evaluations in the reduced space.
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Most techniques mentioned above and also the following method require an affine represen-
tation of the frequency dependency. In cases where such a form is not available, the concept
of recycling Krylov subspaces for varying values of the frequency dependent function may
be employed to obtain a reduced order model [197].

4.2.1 Automatic approximation of frequency dependent nonlinearities

In the following, we outline a strategy to automatically find approximations to the scalar
functions φi (s) in eq. (4.3) and add them to the original dynamical system in order to arrive
at eq. (4.7). AAA is used to find a representation for φi (s) in a frequency range of interest,
given data points rather than an analytic function. It has been successfully applied to
solve nonlinear eigenvalue problems [166] and to linearize dynamical systems with nonlinear
frequency dependency [165]. Such linearization allows the direct use of standard model
order reduction methods, but the system’s structure is changed and the order is increased
from n to n (d+ 1) prior to the reduction, d being the maximum polynomial order of the
nonlinear terms. In the following approach the nonlinear functions are approximated up to
an arbitrary order d ≥ q and a Krylov subspace of order d is subsequently used to find a
suitable reduction basis. An enlargement of the original system matrices is not necessary
and the reduced system retains the shape of the original system. In the following, the AAA
algorithm as well as the reformulation of the system to a polynomial system using the AAA
approximation are described. The higher order Krylov subspace employed to reduce the size
of the resulting system is presented in section 4.2.2.
AAA automatically finds a rational approximation ri (s) of φi (s) in barycentric form

φi (s) ≈ ri (s) = n (s)
d (s) =

m∑

j=1

wjfj
s− sj

/
m∑

j=1

wj
s− sj

, (4.8)

where m ≥ 1 is the order of approximation, wj are weights, fj are data points, and sj are
support points. At the expansion points, it holds r (sj) = fj for each j. The barycentric
form of the interpolant is potentially better conditioned than, for example, a quotient of
polynomials [190]. As the interpolation is performed based on data points, no analytic
description of the underlying function is required and the M � 1 data points s ⊆ C with
their corresponding function values f ⊆ C are, along with an approximation tolerance, the
only required input to the algorithm, which is summarized in the following. The AAA
algorithm is an iterative process automatically choosing the expansion point locations sj
along with their function values fj in eq. (4.8) in a greedy way, i.e. new expansion points
are chosen where the difference between the original function and the current approximation
is maximal. An intermediate interpolant is computed in each iteration and the difference to
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the data points to be interpolated is computed. If the difference between the two functions
is too large, a new support point sj is chosen at the location where this difference is the
largest. The weights wj, j = 1, . . . ,m required to obtain the interpolant in form of eq. (4.8)
are computed solving a least-squares problem over the set of sample points s(m)\{s1, . . . , sm}
which have not yet been selected as support points. The least-squares problem is given by

minimize ‖fd− n‖s(m) , ‖w‖m = 1, (4.9)

where ‖�‖s(m) is the discrete 2-norm over the set of not selected data points s(m) and
‖�‖m is the discrete 2-norm on vectors containing the weights. Nakatsukasa, Sète, and
Trefethen [190] recommend reformulating eq. (4.9) to the matrix problem

minimize
∥∥∥L(m)w

∥∥∥
M−m

, ‖w‖m = 1, (4.10)

with the (M −m) × m Loewner matrix L relating the selected expansion points to the
non-selected data points (c.f. section 3.6.3). It is given by

L(m) =




f
(m)
1 − f1

s
(m)
1 − s1

· · · f
(m)
1 − fm
s

(m)
1 − sm... . . . ...

f
(m)
M−m − f1

s
(m)
M−m − s1

· · · f
(m)
M−m − fm
s

(m)
M−m − sm




, (4.11)

and the weights are obtained from the right vector of the singular value decomposition of
L. An implementation example of the algorithm is given in [190]. The implementation used
in the following is based on this example. Following [166], the barycentric form of r (s) in
eq. (4.8) can be written in matrix notation as

ri (s) = ai (Di + sE)−1 b (4.12)

with

ai =
[
wi,1fi,1 · · · wi,mfi,m

]
, b =

[
1 0 · · · 0

]T
,

Di =




wi,1 wi,2 · · · wi,m−1 wi,m

−si,1 si,2

−si,2 . . .
. . . si,m−1

−si,m−1 si,m




, E =




0 0 · · · 0 0
1 −1

1 . . .
. . . −1

1 −1




.
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Shifting the system about s0 results in

ri (s) = ai
(
I− (s− s0) D̂i

)−1
b̃i, (4.13)

with D̂i = − (Di + s0E)−1 E , b̂i = (Di + s0E)−1 b, and identity I. As m is typically small,
the computational cost of the matrix operations required for shifting the system can be
neglected. In the vicinity of s0, the matrix inverse in (4.13) can be approximated with a
Neumann series

ri (s) = aib̂i + ai
(
(s− s0) D̂i

)
b̂i + ai

(
(s− s0) D̂i

)2
b̂i + . . . . (4.14)

We now consider the approximations ri (s) in matrix notation instead of the original func-
tions φi (s) in the dynamical system’s transfer function (4.3). After shifting about s0 and
truncating the Neumann series after the d-th term, we arrive at the shifted version of eq. (4.7)

H (s) = g



q∑

j=0
(s− s0)j Âj +

d∑

i=0
(s− s0)i B̂i



−1

f , (4.15)

where

Âi =
q∑

j=i

(
j

i

)
sj−i0 Aj,

B̂i =
l∑

j=1
ajD̂

i

jb̂jBj

Here,
(
j
i

)
= j!

i!(j−i)! is the binomial coefficient regarding j and i, q is the number of constant
matrices corresponding to powers of s in the original transfer function, and l is the number of
constant matrices corresponding to the nonlinear functions φ (s). Contrary to approximating
the nonlinear frequency contributions with, for example, a Taylor series, this method can be
employed automatically without the need for analytic derivatives. Therefore it can be applied
to different kinds of problems with an affine representation of frequency dependent behavior
without the need of problem-specific changes. A k-th order Krylov subspace for systems
with a transfer function of shape (4.15) has been proposed in [168], which is equivalent to
the recurrence in the coprime factorization presented in eq. (3.41). In the following, we will
briefly outline a method to compute an orthogonal basis for a k-th order Krylov subspace.
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4.2.2 Model order reduction with higher order Krylov subspaces

Lin, Bao, and Wei [168] proposed a generalization of the second-order Krylov subspace for
projection based model order reduction of systems with a higher order polynomial transfer
function. For establishing a definition of the higher order Krylov space, we consider the
system with approximated frequency dependency (4.15) in the general form

H (s) = G (s) K (s)−1 F (s) , (3.30)

with G (s) = g, F (s) = f , and the polynomials K (s) = ∑q
j=0 s

jAj + ∑d
i=0 s

iB̂i, which are
combined to matrices Ci for j = i. It follows K (s) = ∑k

i=0 s
iCi with k = max (q,d). The

resulting system’s transfer function can be expressed in linear form as

H (s) = g(k) (M0 + sM1)−1 f (k) = g(k)
(
I−M−1

0 M1
)−1

M−1
0 f (k), (4.16)

with

M0 =




C0 0 · · · 0
0 I · · · 0
... . . . . . . ...
0 · · · 0 I



, M1 =




C1 C2 · · · Cq

−I 0 · · · 0
... . . . . . . ...
0 · · · −I 0



, f (k) =




f
0
...
0



, g(k) =

[
g 0 · · · 0

]
.

Similar as described in section 3.6.1 for the second-order Krylov subspace, the k matrices
Zi, i = 1, . . . , k and the starting vector q, which define the k-th order Krylov subspace, are
obtained from this representation as

Z1 = −C−1
0 C1,

Z2 = −C−1
0 C2,

...
Zk = −C−1

0 Ck,

q = −C−1
0 f .

(4.17)

The resulting Krylov vectors Ziq of dimension qn are related by

Ziq =




ri
ri−1
...

ri−k+1



, for i ≥ k + 1. (4.18)



4.2 Reduction of systems with nonlinear frequency dependent terms 113

Again, the vectors ri are given recursively as

r0 = v0

r1 = Z1r0

r2 = Z1r1 + Z2r0

...
ri−1 = Z1ri−2 + Z2ri−3 + · · ·+ Zkri−k−1.

(4.19)

The resulting space

S(k)
r (Z1, . . . ,Zk,q) = span (r0, r1, . . . , rr−1) . (4.20)

is called the r-th Krylov subspace of order k [168]. An orthonormal basis V of the Krylov
space S(k)

r is found using, for example, an Arnoldi procedure similar to [30, 171]. Wang,
Jiang, and Kong [262] proposed a specialized variant of the Arnoldi algorithm for the q-th
order Krylov subspace having less requirements on the amount of available memory. The
subspace for basis W is found similarly by solving the adjoint problem. Both bases can now
be employed in a projection framework as of eq. (3.31). The same procedure is possible for
a system shifted about a frequency s0. Here, the quantities Ãi and B̃i from section 4.2.1 are
used to build matrices C̃i such that the shift is included in the transfer function

H (s) = g
(

k∑

i=0
(s− s0)i C̃i

)−1

f , (4.21)

with C̃i = ∑k
j=i

(
j
i

)
C̃js

j−i
0 . The choice of subspace size r and location of the shift has a

large influence on the approximation quality of a reduced model. To increase the reduced
model’s accuracy for a wide range of frequencies, it can be beneficial to not only increase
the size of the Krylov subspace, but to combine multiple subspaces with different shifts s0

in a global basis [36, 124]. For each shift added to the projection basis, the solution of up
to two linear systems of order n is required. Increasing the order at an already established
shift only requires matrix vector products if the factorization of Z0 is stored for each shift
and a suitable Arnoldi strategy is chosen [30].

4.2.3 Numerical experiments

The effectiveness of the proposed strategy is evaluated in some numerical experiments. The
following numerical experiments were conducted on nodes of LRZ’s Cool-MUC-2 cluster.
Each node is equipped with a 28 core Intel® Haswell based CPU and 56 GB RAM are
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available per job. The algorithms have been implemented and run using Matlab® R2020a.

Coupled poro-acoustic system

As first example we consider the three-dimensional interior acoustic problem coupled to two
poroelastic materials shown in section 2.5.5. The evaluation of a frequency sweep in steps of
1 Hz in the considered frequency range from 1 to 800 Hz takes tc ≈ 7.8·104 s ≈ 21.7 h on the
employed machine. Viscous drag b̃ (s) and effective bulk modulus of the fluid phase K̃f (s)
are governing the dissipation mechanism in the poroelastic material and are described by
the complex valued functions

b̃ (s) = σφ2
√

1 + 4i Im (s)α2
∞µρf

σ2Λ2φ2 , (2.62)

K̃f (s) = γP0

γ − (γ − 1)
[
1 + 8µ

i Im(s)PrΛ′2ρf

√
1 + i Im(s)PrΛ′2ρf

16µ

]−1 . (2.54)

Their real and imaginary parts in the frequency range [1, . . . , 800] Hz are given in fig. 4.15
for a poroelastic material with the parameters φ = 0.93, σ = 80·103 kg m−3 s−1, α∞ = 2.5,
Λ = 10·10−6 m, Λ′ = 100·10−6 m, ρf = 1.205 kg m−3, µ = 1.8208·10−5 N s m−2, γ = 1.4,
P0 = 1.0128·105 Pa, Pr = 0.712, which is given as Material 1 in table 2.3. The nonlinear
behavior of both functions is clearly visible.
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Figure 4.15: Real and imaginary parts of effective bulk modulus K̃f and viscous drag b̃ (s) for a
polyurethane foam. The material parameters are given in tables 2.2 and 2.3. Material 1
is considered in this figure.



4.2 Reduction of systems with nonlinear frequency dependent terms 115

Automatic approximation of the frequency dependent functions All frequency depen-
dent functions introduced in the transfer function can be approximated by AAA under a
tolerance of 1·10−14 in the frequency range in which the models are evaluated. The complex-
valued projection bases used in the following experiments are obtained by osimaginput, i.e.
single-sided projection with complex-valued projection matrices regarding the system input
and setting W = V. The coupling functions in eq. (A.3) introduce 1

s2 terms, which cannot be
represented well by a polynomial, so the AAA approximation is accurate only in a relatively
narrow band around the expansion point. To overcome this, all functions are multiplied by
s2, which only slightly increases the required order of AAA for some functions but greatly
increases the range of accuracy for the approximated coupling functions. The effect is illus-
trated in fig. 4.16: the relative approximation errors of two reduced models, one using the
original and one using the modified formulation, are compared. Both models are projected
using a Krylov space of order k = 5 with a single expansion point at s0 = 2πi · 400 and have
an order of r = 200. The AAA approximation in combination with a Krylov subspace yields
reduced models which are accurate in nearly the complete frequency range. Additionally
it can be seen, that the modified model has a lower relative error, especially in the higher
frequency region. Given the fact, that the computational complexity of both models is the
same, the modified version is used for the following numerical examples.
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Figure 4.16: Approximation error of the original and modified poroacoustic models. A single Krylov sub-
space of order k = 5 with expansion point s0 = 2πi · 400 is considered. The reduced model
has an order of r = 200.

The influence of the approximation of the matrix inverse in eq. (4.13) by a Neumann series
expansion is examined in the following. The relative error εe(iω) considering the expanded
approximation and the original function is identical to the error of a Taylor series expansion
with same shift and order. It can be seen, that the approximation can become unstable for
s far away from the shift s0. However, the approximation error of the reduced model can
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still be acceptable in these regions, as it is shown in fig. 4.17. Here, the relative errors εr(iω)
of reduced models shifted about s0 = 2πi · 400 with r = 400 and different Krylov subspace
orders k are compared. Additionally, the highest approximation error of the Neumann series
compared to the respective original function is given for each k. The function with the
highest error εe is chosen from the ten frequency dependent functions considered in the
model. It can be seen, that increasing the subspace order k also widens the frequency range
around the chosen shift, where the reduced model is accurate (solid lines in fig. 4.17). Note,
that the size of the reduced models is the same in all cases. Accordingly, the accuracy of
the series expansion increases with increasing order k (dashed lines in fig. 4.17). However,
this expansion has very high relative errors for low frequencies. This does not impair the
approximation quality of the reduced model, as the influence of the function is apparently low
in this frequency region. However, an approximation based on an expansion point located
in this frequency region might have a large influence on the approximation quality of the
reduced model in the higher frequency region. As this is problem dependent, the employed
series expansions should be examined prior to the reduction process in order to avoid placing
expansion points in such regions.
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Figure 4.17: Approximation errors for different Krylov space orders k and the Neumann expansion error
for the respective function with the highest error regarding the poroacoustic model. The
reduced models are expanded about s0 = 2πi · 400 with r = 400.

Influence of subspace order on the accuracy We now investigate the influence of higher
orders k of the Krylov subspace on the approximation quality of reduced models with different
sizes r. The reduced models are computed using reduction bases with a single expansion
point at s0 = 2πi · 400. The maximum absolute relative errors according to eq. (4.1) for
all combinations of r and k are given in fig. 4.18. It can be seen, that a higher order k
leads to more accurate reduced models if the reduced order r is kept constant. The error of
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the models based on subspaces with k = 2 and k = 3 is nearly one magnitude higher than
the other reduced models’, especially for higher reduced orders r. This suggests, that by
truncating after the quadratic or cubic terms of the AAA approximation, important parts
of the frequency dependent functions are neglected. However, the effect of increasing the
subspace order further has a smaller effect in terms of accuracy, suggesting that all functions
are sufficiently approximated.
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Figure 4.18: The maximum relative error in the frequency range [1, . . . , 800] Hz of reduced models of
different sizes r and Krylov subspace orders k. All subspaces are expanded around s0 =
2πi · 400.

The better accuracy of the higher order Krylov subspace comes with increased computa-
tional cost. Figure 4.19 plots the required computation times for the same models as above
with increasing r against their maximum relative errors. The curves begin at r = 1 at their
leftmost points, while the rightmost data points correspond to r = 400. While increasing k
leads to lower maximum errors, the computation time is also increased. It can be seen, that
using lower orders of k in combination with a higher reduced order r has the potential to
yield more accurate reduced models in the same time than employing a higher k in combi-
nation with a lower r. In this example, the reduced order r is the limiting factor regarding
accuracy, as it has a higher influence on the transfer function of the reduced models than the
accurate representation of the frequency dependent functions. The results suggest, that the
benefit of higher orders k is small if the computation times are crucial for the application.
However, the computation times for all models are still much lower than the time required
for the evaluation of the full model.

Multi-point moment matching In order to obtain a reduced model of reasonable size with
high accuracy over a wide frequency range, we combine multiple Krylov spaces to a single
projection basis. We again consider different orders k of the employed Krylov spaces while
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Figure 4.19: The maximum relative error in the frequency range [1, . . . , 800] Hz of reduced models of
different sizes r and Krylov subspace orders k over the required computation time. All models
are computed using a single expansion point s0 = 2πi · 400. The curves begin at r = 1 at
their leftmost points, each mark represents an increased order of 50, and the rightmost data
point corresponds to r = 400.

their size r remains constant. We start with a model computed from four expansion points
s0,i = 2πi [100, 300, 500, 700] in the frequency range of interest. An order r0 = 100 is con-
sidered for each subspace, thus the resulting reduced model has an order of r = 400. Their
relative errors are given in fig. 4.20.
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Figure 4.20: Approximation error of a reduced model approximating the poroacoustic system. Approxi-
mation with different orders k of the Krylov spaces around s0,i = 2πi [100, 300, 500, 700] with
reduced orders r0 = 100. The resulting model is of order r = 400.

Again, the influence of higher orders k can be observed in an increased accuracy between
the expansion points. Comparing the relative errors to the reduced models computed from
a single expansion point reported in fig. 4.17, the benefit of multiple expansion points is
obvious. Despite having the same reduced order, the relative error is lower for a wider
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frequency range if more than one expansion point is chosen. An uninformed a-priori choice
of expansion point locations and reduced order may, however, not be ideal and result in too
large or inaccurate reduced models. Therefore, a method to obtain a reduced model under a
certain accuracy automatically without requiring a-priori knowledge about expansion point
locations or a reasonable reduced order is presented in the following section 4.4.

Viscoelastic sandwich beam model

We now consider a system with only one frequency dependent function. It models a sym-
metric sandwich beam with length l = 0.21 m, consisting out of two layers of cold rolled
steel surrounding a viscoelastic ethylene-propylene-diene core [250]. The beam is clamped
at one side, a sketch is given in fig. 4.21. The system is discretized using finite elements and

Figure 4.21: A sketch of the sandwich beam with viscoelastic core. The steel face sheets are depicted
gray, the viscoelastic core orange.

has an order of n = 3360; the matrices have been taken from [136]. Due to the relatively
small size of the original model, the computation times are not considered in this example.
The beam is excited by a single load at its free end and the displacement is measured at
the same location; the frequency response function is given in fig. 4.23. The dissipation
behavior of the constrained layer damping can be described by a fractional derivative model
(c.f. eq. (2.53)), and is added by a nonlinear function depending on s [6, 229]. The resulting
system’s transfer function is given by

H (s) = g
(
s2A2 + A0 + G0 +G∞ (i Im (s) τ)α

1 + (i Im (s) τ)α B1

)−1

f , (4.22)

where A0, B1 are the stiffness matrices corresponding to the elastic and viscoelastic parts
and A2 is the mass matrix of the system. The parameters for the fractional derivative model
are G0 = 350.4 kPa, G∞ = 3.062 MPa, τ = 8.230 ns, and α = 0.675. The model is evaluated
in the frequency range [10, . . . , 10 000] rad s−1. A AAA approximation of order 12 is able
to approximate the fractional derivative model function in this frequency range under a
tolerance of 1·10−14.
The full order model is reduced using a Krylov subspace with a single expansion point

s0 = 5005i in the middle of the considered frequency range. Figure 4.22 shows the maximum
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relative errors for reduced models of different sizes r compared to the order of the respective
Krylov subspace r. All reduced models achieve a good approximation quality in the desired
frequency range, suggesting that the automatic approximation of the fractional derivative
model function in eq. (4.22) is successful. Choosing a higher subspace order k leads to
an earlier drop in the maximum relative error, showing the potentially higher accuracy of
models based on a higher k given a certain size of the reduced order model r. The observation
that all models reach a similar accuracy regardless of their subspace order k shows that the
damping introduced by the FD model can be approximated well by a second-order function.
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Figure 4.22: The maximum relative error in the frequency range [10, . . . , 10 000] rad s−1 of reduced mod-
els of the sandwich beam regarding different sizes r and Krylov subspace orders k. All
subspaces are expanded around s0 = 5005i.

The benefit of higher subspace orders k can also be observed in fig. 4.23. Again, the
original model is reduced to r = 11 using Krylov spaces of different orders k expanded
about s0 = 5005i. The relative errors of all models are very low in the direct vicinity of the
expansion point, while the approximation quality of the reduced models based on k = 2 and
k = 3 deteriorates in the lower frequency region. Especially the location of the first mode in
the transfer function cannot be exactly approximated by these models, which is observable
in the models’ transfer functions. However, increasing the reduced order r yields reduced
models being accurate for all values of k.

4.2.4 Conclusive remarks

The presented method is able to compute reduced models for systems with frequency depen-
dent material properties. The reduction method automatically adds frequency dependent
contributions up to a specified order and computes the k-th order Krylov subspace. Thus,
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Figure 4.23: Transfer functions and approximation errors of reduced models of the sandwich beam. Ap-
proximation with different orders k of the Krylov subspace around s0 = 5005i with reduced
order r = 11.

it can be used, without modification, for systems with any form of frequency dependent ma-
terial, which can be written in an affine form. No analytic form of the frequency dependent
functions is required, as the incorporated AAA algorithm works on data points only. The
higher order Krylov subspaces have shown to be beneficial, as the range of highly accurate
approximation around the expansion point grows for increasing values of k, while the size
of the reduced model stays the same. This is especially interesting, if small reduced models
are required.

4.3 Frequency-limited approximation of vibro-acoustic

systems

For many application cases, the response of vibro-acoustic systems in predefined frequency
ranges is of special interest. For example, locally resonant materials need to be designed in
a way their dissipative effect reaches a maximum at certain frequencies at which vibration
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of the host structure is to be prevented. The design process of such structures often involves
many iterations to obtain an optimal design, so it is beneficial to use efficient surrogate
models for evaluating the frequency response. Specially adapted model order reduction
methods allow the computation of such surrogates being only valid in a specified frequency
range, thus further reducing the size of the surrogate. Frequency limited balanced truncation
is often employed in this case. Here, the controllability and observability Gramians eqs. (2.6)
and (2.7) are obtained from an integral expression defined in the desired frequency range
rather than for frequencies from −∞ to∞ [48, 115]. The method has recently been extended
for second-order systems [50, 129]. An alternative approach for frequency limited moment
matching is based on IRKA and also utilizes the frequency limited Gramians [211]. In this
case, only one Krylov space is computed directly, the other projection basis is obtained
using one frequency limited Gramian. Instead of 2r solutions of the original system, only r
solutions are required per iteration, the required Gramian is only computed once. Compared
to IRKA, the stability of the original model is always retained. Several algorithms have been
proposed for this use-case, for overviews see [210, 261].
A special case of frequency limited approximation can be considered if second-order sys-

tems are reduced using SO-IRKA. Proposed by Wyatt [268], it extends the applicability of
IRKA to second-order systems while losing some optimality conditions. However, some of
its features can be exploited in order to compute reduced models of second-order systems.
As standard IRKA (algorithm 3.1), the algorithm starts at arbitrary initial expansion points
si and builds a reduced model matching the original system around these points. The mirror
images of the reduced system’s eigenvalues are used as updated expansion points in the next
iteration, until convergence is reached. The algorithm for a SISO second-order system is
sketched in algorithm 4.1. Contrary to first order IRKA, the intermediate reduced second
order systems in SO-IRKA yield 2r eigenvalues λ2r. If all eigenvalues would be chosen as
expansion points for the next iteration, the reduced model’s size would double each iter-
ation. Therefore, only a subset of eigenvalues is chosen as updated expansion points in
algorithm 4.1 line 6. This choice is arbitrary and choosing r of the mirror images of λ2r

closest to the imaginary axis leads to a reduced model valid around s = 0. This strategy can
be extended to choose r of the 2r eigenvalues lying in a specified frequency region. Doing
so, a reduced model matching the original system in this frequency range can be computed
[22].
The following numerical experiment shows the different approaches; all experiments were

conducted on a workstation with an Intel® Xeon® Gold 6136 @ 3.0 GHz and 256 GB RAM
using Matlab® R2020a. The sound transmission model described in section 2.5.3 is reduced
to two models of each r = 20. One model is computed to match the moments starting at
f = 0 Hz, for the second model a convergence interval ςc = 2πi [300, . . . , 600] is chosen. In
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Algorithm 4.1 The iterative rational Krylov algorithm for second order SISO systems,
SO-IRKA
Require: Original system Σ, r initial expansion points s0 =

[
s0,1 · · · s0,r

]
∈ Cr closed

under complex conjugation
Ensure: Reduced system Σr

1: while no convergence do
2: Compute projection bases

V =
[(
s2

0,1M + s0,1C + K
)−1

f · · ·
(
s2

0,rM + s0,rC + K
)−1

f
]

W =
[(
s2

0,1M + s0,1C + K
)−H

gT · · ·
(
s2

0,rM + s0,rC + K
)−H

gT
]

3: Orthogonalize bases V = orth (V) , W = orth (W)
4: Mr = WHMV, Cr = WHCV, Kr = WHKV
5: Solve the quadratic eigenvalue problem (Mrλ

2 + Crλ+ Kr) x = 0
6: Choose r eigenvalues λr from λ2r
7: Update expansion points s0 ← −λr
8: end while
9: Project Σ using V, W to obtain Σr

the first model, the mirror images of eigenvalues closest to the imaginary axis are considered
as expansion points for the following iteration and the complex conjugate pairs of initial
expansion points are distributed linearly in the range s0 = ±2πi [1, . . . , 300]. For the second
model, all mirror images of eigenvalues inside the convergence interval are considered. If
less than r eigenvalues lie in this interval, the remaining expansion points are obtained
from the eigenvalues with the lowest distance to the interval. This also ensures a good
approximation at the borders of the interval, as shifts lying outside the interval can also
have an impact on the solution inside the interval. Here, 10 complex conjugate pairs in
the range s0 = ±2πi [300, . . . , 600] are chosen as initial expansion points. tsreal is used for
projection in both experiments. The results are given in figs. 4.24 and 4.25. Both models
match the original system response in different frequency ranges and show the applicability
of both approaches. The influence of the distribution of the expansion points at convergence
on the approximation quality of the reduced model is clearly visible in both results. While
the reduced models approximate the original transfer function well in vicinity of the shifts,
the approximation deteriorates with increasing distance. This can be used as an indicator of
the range in which the reduced models are valid, as the reduced order has to be fixed before
starting IRKA.
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Figure 4.24: Transfer functions of the sound transmission model and the model reduced with SO-IRKA as
well as relative error. The sound transmission problem is reduced to r = 20 and the mirror
images of the r eigenvalues closest to the imaginary axis are chosen as expansion points
for the consecutive iteration. Filled blue circles mark the imaginary parts of the expansion
points.

4.3.1 Optimization using intermediate models

A drawback of IRKA are its computational costs. During each iteration, 2r linear equation
systems of order n need to be evaluated. This can be prohibitive, especially for large models.
In the following, two strategies are presented which aim at reducing this computational cost
or speeding up the iteration process. Given an original system with a large order n, the
by far most computationally expensive part in SO-IRKA is the repeated computation of
the reduction bases in algorithm 4.1 line 2. In order to reduce this cost, Castagnotto and
Lohmann [71] proposed the confined iterative rational Krylov algorithm (CIRKA) as an
extension to standard first-order IRKA (algorithm 3.1). The main idea is to perform the
costly optimization steps on an intermediate reduced model with order q > r, while still
q � n. Their approach is sketched in algorithm 4.2 and can be outlined as follows: First,
the intermediate model Σm is computed via projection using initial expansion points and
interpolation orders. SO-IRKA is now applied on the resulting model to obtain Σr. After
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Figure 4.25: Transfer functions of the original and a reduced model valid in the range
ςc = 2πi [300, . . . , 600] as well as relative error. The sound transmission problem is
reduced to r = 20, the mirror images of the r eigenvalues closest to the defined frequency
range are considered as expansion points in the next iteration. The convergence interval is
marked in gray, filled blue circles mark the imaginary parts of the expansion points.

convergence, new expansion points for Σ with interpolation order r0 = 1 are established at
the locations of the converged interpolation points regarding Σm obtained from SO-IRKA.
This ensures that all important information from Σ is available in Σm and ultimately ensures
that the optimal expansion points regarding Σm are also optimal regarding Σ. The algorithm
terminates if the expansion points obtained from SO-IRKA converge.

The initial intermediate model Σ0
m computed in algorithm 4.2 line 2 can be obtained using

different strategies. One is to use an Arnoldi method to compute also some derivatives of
the moments at the initial expansion points s0. The approximation quality is improved
near the chosen shifts and although the initial Σm is likely to not approximate the original
system well, enough information for the SO-IRKA optimization steps is present in the model.
Another approach is to perform moment matching around an arbitrary shift s0 with a large
enough interpolation order q. This is likely to be less computational expensive, but the
approximation quality might be acceptable for a smaller frequency range only. The updating
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Algorithm 4.2 Confined IRKA for second order SISO systems, SO-CIRKA
Require: Original system Σ, r initial expansion points s0 =

[
s0,1 · · · s0,r

]
∈ Cr closed

under complex conjugation
Ensure: Reduced system Σr, error estimation ε̂CIRKA
1: i← 0, si0 ← s0
2: Compute intermediate model Σi

m
3: while no convergence do
4: i← i+ 1
5: [Σi

r, si0]← SO-IRKA
(
Σi−1

m , si−1
0

)

6: Compute ε̂CIRKA
7: Update intermediate model Σi

m with shifts at si0 regarding Σ
8: end while

of Σm in algorithm 4.2 line 7 can be conducted by adding all newly obtained shifts from SO-
IRKA to the basis of the intermediate model. Doing so increases the size of Σm by r in
each iteration. Typically it is beneficial to add only new shifts in order to keep q low.
Alternatively, Σm can be reinitialized using only the newly found interpolation points. This
ensures a constant size q but the approximation quality might decrease for some locations.
As the reinitialization based on r interpolation points must yield a basis of order q, again
derivatives of the moments at the considered shifts need to be considered. An estimation of
the approximation error can be obtained in the final step of the algorithm by relating the
frequency responses of Σm and Σr by

ε̂CIRKA (s) = |Hm (s)−Hr (s)|
|Hm (s)| , (4.23)

where Hm (s) is the transfer function of the intermediate model Σm and Hr the reduced
model’s transfer function [71].

Contrary to the original algorithm, we employ the frequency limited variant of SO-IRKA.
Here, the call to SO-IRKA in algorithm 4.2 line 5 also includes the frequency range in which
the model should be valid. As described above, the mirror images of the r eigenvalues closest
to the defined range are chosen as new interpolation points, ensuring a good approximation
in this frequency range. The initial intermediate model is computed using an Arnoldi method
considering the r initial expansion points s0 with an interpolation order d each, i.e. q = rd.
Updating is performed by augmenting Σm by the newly found shifts only.

The performance of the algorithm is presented in a numerical experiment. The sound
transmission problem from section 2.5.3 is considered and reduced to r = 20. The reduced
model should be valid in the range ςc = 2πi [300, . . . , 600] and an initial interpolation or-
der d = 5 is chosen. The 10 initial expansion points are distributed linearly in the range
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s0 = ±2πi [300, . . . , 600]. The projection is performed using tsreal. The results are presented
in fig. 4.26. Contrary to standard SO-IRKA tuned to be valid in the same frequency range in
fig. 4.25, considerably less decompositions of the full-order matrices are required. Standard
SO-IRKA performed 100 decompositions of size n matrices until convergence to obtain the
reduced model presented in fig. 4.25, which has a relative error norm ‖εr‖ = 1.73·10−8 in
the desired range of approximation. The confined algorithm only required the solution of 40
full-order systems, while the relative error norm ‖εr‖ = 1.74·10−8 is comparable. Addition-
ally, the error estimation ε̂CIRKA automatically obtained during CIRKA iterations shows a
good accordance to the actual relative approximation error εr.
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Figure 4.26: Transfer functions of the original and a reduced model obtained from algorithm 4.2 as well
as relative error εr and its estimation ε̂CIRKA. The original system is reduced to r = 20, the
mirror images of the r eigenvalues closest to the frequency range ςc = ±2πi [300, . . . , 600]
are considered as expansion points in the next SO-IRKA iteration inside the CIRKA algorithm.
The convergence interval is marked in gray, filled blue circles mark the imaginary parts of the
expansion points.

4.3.2 Choice of initial expansion points

Another way to reduce the computational cost of IRKA or its variants is to make an educated
guess regarding the initial expansion points. If, for example, similar systems have been
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evaluated before, important features of the transfer function may be known and the initial
expansion points can be put in regions with large influence on the dynamic response. This
is believed to ensure a fast convergence, as the mirror images of the system poles coincide
with optimal expansion points for IRKA. Additionally, the mode count can be a hint for a
reasonable size of the reduced model, which needs to be defined before starting the reduction
process. The following idea, originally presented in Aumann and Müller: “A-priori pole
selection for reduced models in vibro-acoustics” (2019) [22], can be applied to vibro-acoustic
systems and utilizes analytic considerations about the number and location of modes. The
number of mode shapes, i.e. how many wave lengths λ fit into a specific part of a system’s
geometry, can be deduced from geometrical and material properties of the considered system.
From this number, the amount of modes in a frequency band can be determined, which can
be an educated guess for initial expansion points used in an IRKA framework. For a one-
dimensional system of length l, the wavelength of the Nth mode is given by

λN = 2l
N + δBC

, (4.24)

where the term δBC incorporates the effects of boundary conditions. The mode count function
relating number of modes to wave number k = 2π

λ
is thus given by

N (k)1d = kl

π
+ δBC. (4.25)

The superscript 1d indicates the problem dimension. For a simply supported 1d sys-
tem, δBC,s = 0, for a system clamped at one end and no constraint at the other end,
δBC,c ≈ (2N−1)π

2 −N [62]. Similar relations for various types of systems can be derived and
are found, for example, in [87, 172].

A procedure to obtain an educated guess for initial expansion points used in combination
with SO-IRKA or its frequency limited variant presented in the preceding sections is sketched
in the following: We first choose the frequency range [fmin,fmax] in which the reduced model
should be valid. Now the mode count in this frequency region ∆N is evaluated as

∆N = N (fmax)−N (fmin) , (4.26)

where the specific functions for N are chosen according to the system’s geometry. As many
expansion points as computed modes are then distributed linearly within the frequency range
and SO-IRKA is started to match the original system’s moments in the specified frequency
range.

The strategy is now applied to the sound transmission problem described in section 2.5.3
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in order to find a reasonable reduced order r. The model consists out of two acoustic cavities
and two elastic plates, so the mode count functions for these subsystems need to be evaluated.
For clamped plates, the bending mode count is given by

N (f) = k (f)2A

4π + 1, with k (f) =
(

48ρ (1− ν2) π2f 2

Eh2

)1/4

, (4.27)

where A is the area of the plate, ρ material density, ν Poisson’s ratio, E Young’s modulus,
and h plate thickness (c.f. eq. (2.47)). Other types of modes are not present in the considered
frequency range and are thus omitted. The mode count for an acoustic cavity of volume V
is obtained from

N (f) = 4πf 3V

3 (K/ρ)1.5 , (4.28)

where K is the acoustic fluid’s bulk modulus and ρ its density. We aim for a reduced model
valid up to 1000 Hz and obtain a mode count for the complete system of N = 46. SO-IRKA
is started with 46 initial expansion points in complex conjugate pairs distributed linearly in
the range s0 = ±2πi [1, . . . , 1000]. Convergence was reached after six iterations, the transfer
functions of the reduced model and the corresponding relative error are given in fig. 4.27.
The error is sufficiently low in the desired frequency range having a norm of ‖εr‖ = 3.60·10−5,
indicating that the mode count was a good a-priori measure to estimate the required reduced
order. Additionally, no expansion points lie outside of the desired frequency range, so the
reduced order is not overestimated. Note, that adding a tolerance to the computed mode
count might help increasing the accuracy near the boundaries of the frequency range. Again,
the distribution of the expansion points is directly related to the frequency range in which
the reduced model is accurate. This can also be used as a corrective measure to check if the
mode count did underestimate the required number of expansion points.

4.3.3 Conclusive remarks

We presented specializations of the general IRKA framework making it a valuable tool for the
reduction of vibro-acoustic systems. The frequency limited approximation possible with the
SO-IRKA variant is especially interesting for systems with very local effects, for example local
resonances. Rather than choosing the new expansion points only based on their location,
the approach could be extended to consider also the dominance of the respective poles.
Doing so would consider the expansion points with potentially the highest impact in the
desired frequency range rather than all expansion points lying inside this region. As the
iterations inside IRKA can become computationally costly, the CIRKA approach from [71]
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Figure 4.27: Transfer functions of the original and a reduced model obtained from algorithm 4.1 as well
as relative error. According to the computed mode count, the sound transmission problem is
reduced to r = 46, the mirror images of the r eigenvalues closest to the imaginary axis are
considered as expansion points in the next iteration.

has been extended to be used with second-order systems, leading to a considerably lower
computational cost. Again, the strategies for matching moments in a specific frequency
range only can be applied here.

Another issue was to obtain a reasonable estimate for the required reduced order of a
system which should be valid for certain frequencies. Although being a rather specialized
method, the mode count provided an appropriate estimate for the reduced order of vibro-
acoustic systems. For more complex systems, this measure is not applicable anymore, so
other methods need to be employed. The following section presents automatic reduction
methods applicable to more general systems.
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4.4 Automatic model order reduction for vibro-acoustic

systems

Rules regarding a reasonable reduced order and optimal placement of the expansion points
for moment matching model order reduction methods are typically only valid for very spe-
cific cases. Therefore, considerable effort has been put in the design of adaptive algorithms
enabling an automatic generation of high quality reduced models given as few input param-
eters as possible, in the best case only the frequency range, in which the surrogate should be
valid. If such algorithms are employed during the design phase of structures, another goal
is that they should be computationally less expensive than solving the full model, as this
solution would make the exact approximation error (3.5) available and an estimation of it
would not be necessary anymore. A variety of such adaptive methods has been proposed
[63, 64, 81, 102, 109, 135, 221, 272]. They rely on estimating the reduction error ε (s) which
is given for a SISO system by

ε̂ (s) ≈ ε (s) = (H (s)−Hr (s))u (s) . (4.29)

The correct and efficient estimation of the approximation error is still an open issue and a
variety of error estimators has been established for different kinds of problems. Grimme [124]
introduced two heuristic methods to estimate the approximation error of reduced models.
One is based on comparing different reduced models of the same original system. If both
reduced models exhibit the same behavior, it is argued that both models appropriately
approximate the full system’s response. This method has been used, for example, in [130,
270, 272]. The second approach is using the residuals of the reduced system to estimate
the exact residual. Both methods are independent of the employed model order reduction
method and can be applied in a variety of cases. Additional error estimators based on
residual expressions of the reduced system applicable to any projection-based reduction
method have been presented by Feng and Benner [108]. If a Krylov subspace is used for
reduction, an analytic expression for the approximation error of the reduced system at the
location of matched moments can be derived [63, 64, 81]. The location of modes of structural
dynamical systems has been used to define an error estimator in [155]. The modes of the
reduced system are partitioned into modes located in a frequency range of interest and modes
lying outside this range. Using only the modes inside the frequency range of interest and
transforming the reduced model to modal coordinates (c.f. section 2.4.2), an estimation for
the approximation error can be derived [101, 105, 156].
Contrary to estimating the approximation error, bounds for this error can be derived for

some cases. An error bound ε̃ (s) ensures, that the approximation error is always below that
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bound, i.e. ε ≤ ε̃. While this is desirable as it is always on the safe side, many error bounds
for moment matching model order reduction are difficult to obtain or lack tightness [252].
This means, that the actual error may be overestimated and leads to potentially inefficient
reduced models. Some error bounds not depending on a certain reduction method have been
proposed in [106]. An error bound for second order systems is presented in [202], but the
system has to be transformed into a strictly dissipative state space realization destroying
its second order structure. Another error bound for second-order systems is proposed in
[101]; however, the—at least approximate—computation of Gramians is required here. Note
that error bounds are always available if balanced truncation methods are employed. This
comes, however, at the cost of explicitly computing the Gramians, which is computationally
demanding [199]. In the following section 4.4.1, different methods for estimating the error
of vibro-acoustic systems are presented. It is assumed, that the solution of the full order
model is not available. The potential of the estimation methods lies in using them in an
adaptive procedure. In an adaptive multi-point reduction scheme, the interpolation order
of expansion points lying near a region where a high error is estimated are increased, or a
new expansion point is introduced inside this region to get a better approximation of the
full system.

Examples for such algorithms are presented in sections 4.4.2 and 4.4.3. Alternative ap-
proaches for automatic model order reduction based on SO-IRKA and truncation of Krylov
vectors are presented in sections 4.4.3 and 4.4.4. Sections 4.4.1 and 4.4.2 are mainly based
on Aumann and Müller: “Robust error assessment for reduced order vibro-acoustic prob-
lems” (2020) [23]. All following numerical experiments are implemented in Matlab® R2020a
and performed on a machine equipped with an Intel® Xeon®Gold 6136 CPU @ 3.0 GHz and
256 GB RAM.

4.4.1 Estimation of the approximation error

Residual approach

A classical method estimating the error of a reduced system utilizes the right and left resid-
uals. For a second-order system, they are given by

rf (s) = f −K (s) Vxr (s) ,
rg (s) = gT −K (s)H Wxr (s) ,

(4.30)
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with K (s) = s2M+sC+K. They can be computed without large costs using matrix-vector
products. Using the residuals, the exact approximation error ε can be expressed as

ε (s) = rH
g K (s)−1 rf . (4.31)

Due to the matrix inverse in eq. (4.31), the error cannot be computed for large systems, but
the residuals normalized by system input and output respectively can be used as an error
estimate following

ε̂r,f (s) = ‖rf (s)‖
‖f‖ ,

ε̂r,g (s) = ‖rg (s)‖
‖gT‖ ,

(4.32)

where ‖�‖ is a suitable norm. A small residual at a certain frequency si typically implies a
good approximation around si. However, this is not valid, if si is near a pole of the system,
as the values of K (s)−1 get very high and a small residual can still correspond to a large
model error [124]. Practically, using the residual as an error estimator in a vibro-acoustic
setting can yield very promising results [135]. In an adaptive scheme, a new expansion point
for a multi-point moment-matching scheme is added at the location with the highest relative
residual ε̂r until the residual at all evaluation points lies beneath a specified threshold.

An analytic expression for the moment error ε at the expansion point of an Arnoldi method
has been derived in [81] and has been adapted for second order systems with proportional
damping by [64]. The expression can be computed cheaply during an Arnoldi method itera-
tively increasing the order of the reduced model and it shows the exact error of the reduced
model at the expansion point for the next iteration. Motivated by this expression, an error
estimator which can be computed by matrix vector products and the solution of one linear
system of order r has been proposed by Bodendiek and Bollhöfer [63] and is outlined in the
following. The norm of the approximation error (4.29) is bounded by

‖y (s)− yr (s)‖ ≤ ε̃m (s) =
∥∥∥gK (s)−1

∥∥∥ ‖rm (s)‖ , (4.33)

with K (s) = s2M + sC + K and rm (s) = f − H (s) VKr (s)−1 WHf , where Kr (s) =
s2Mr + sCr + Kr. For a proof see [63]. Instead of computing the bound (4.33) with the full
system K (s), using the reduced system Kr (s), as in

‖y (s)− yr (s)‖ ≈ ε̂m (s) =
∥∥∥grKr (s)−1

∥∥∥ ‖rm (s)‖ , (4.34)

yields an estimate of the model error ε̂m (s). This expression is no bound for the error, but it
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highlights regions with a potentially high approximation error, if the reduced model captures
the most important characteristics of the original system.

Complementary approximations

An alternative way for estimating the model error is given by the difference of the transfer
functions of two different reduced SISO models Hr,1 (s) and Hr,2 (s):

ε̂c (s) = Hr,1 (s)−Hr,2 (s) . (4.35)

The reduced models do not have to be computed by the same reduction method. The
estimate is based on the assumption that if Hr,1 (s) and Hr,2 (s) differ, at least one of the
two reduced model does not approximate the original system well. If both reduced models
converge to the same transfer function, ε̂c diminishes and it is argued that both approximate
the transfer function of the original system. As the method is heuristic, it may be possible,
that both reduced models miss important features of the full system’s response but still
converge to the same transfer function. This cannot be detected without knowledge of the
original system response and results in an incorrect estimation of the approximation error.

Instead of comparing two completely different reduced models, Grimme [124] proposed to
compare Hr,1 (s) to the transfer function Hr,12 (s) of a reduced model built combining the
reduction bases of the two complementary models. The combination of both bases results
in a better approximation of the full system, so the comparison (4.35) is assumed to be
nearer to the true error. Another modification is to compare not two completely different
reduced models but two models of different reduced order, based on the same expansion
points [40]. This has lower computational costs, as increasing the order of a Krylov subspace
does not necessarily involve full system decompositions. This approach can easily be used in
an iterative method to find the appropriate size of a reduced order model. If the difference
between the transfer functions of two models sharing the same expansion points but having
different orders diminishes, is is assumed that further increasing the order does not increase
the approximation quality and the reduced model is sufficiently accurate in the vicinity of
the matched poles. However, it cannot be ruled out, that some features of the full system are
missing in the reduced model, making the estimate incorrect. To minimize this risk, both
strategies can be combined: two independent models are created at interlaced expansion
points and their order is increased iteratively. The reduced model is considered accurate in
a specific frequency region, if both models converge to the same frequency response under a
certain tolerance [272].
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4.4.2 A greedy algorithm for automatic model order reduction

The error estimators presented above can be employed in automatic model reduction ap-
proaches. In the following, we present an iterative algorithm, which finds new expansion
points in a greedy way in order to create a reduced model valid in a predefined frequency
region ςc = [smin, smax], similar to the methods from [63, 252]. Greedy methods are heuristic
approaches aiming at finding a local optimum for the posed problem at each step. This
means they do not always find the best solution to a problem, in global sense, but are
typically quicker than global approaches [61]. In the scope of automatic model order re-
duction, the greedy aspect of many algorithms is to establish a new interpolation point at
the location where the estimated approximation error is maximal. Such algorithms typically
consist out of the following steps: Starting with an initial expansion point, the interpolation
order is iteratively increased. Between the iterations, one of the error estimation methods
presented above is employed to detect convergence or stagnation. In the case of stagnation,
i.e. the estimated approximation error does not change if the reduced order is increased,
a new expansion point is chosen at the location, where the maximum error is estimated.
Iteration is stopped, if a defined maximal reduced order is reached or the error is estimated
to be sufficiently low. Algorithm 4.3 sketches the procedure. Here, the two-level orthogonal
Arnoldi (TOAR) procedure [171] is employed to compute the Krylov bases. Algorithm 4.3
can also be modified in order to start with multiple initial expansion points. In this case,
initial projection bases have to be computed before starting the optimization loop in algo-
rithm 4.3 line 2.
We apply the algorithm in combination with different error estimation methods described

above to evaluate it regarding its efficiency to create reduced models of vibro-acoustic sys-
tems. We consider the vibrating beam from section 2.5.1 as an academic example and the
sound transmission problem from section 2.5.3 as a more applied example. The error estima-
tors ε̂c based on complementary approximations eq. (4.35), ε̂r,f based on the right residual
4.32, and ε̂m inspired by the moment error eq. (4.34) are employed. Each reduced model is
computed to be valid in a predefined frequency range ςc = [smin, smax] and the initial expan-
sion point is chosen as s0 = √sminsmax as recommended in [63]. This range is directly fed into
algorithm 4.3 and the error estimators are evaluated at 100 linearly distributed frequencies
in ςc = [smin, smax].

Vibrating beam We consider a system modeling the vibrating beam described in sec-
tion 2.5.1. A full order of n = 600 is chosen for the following experiments. The convergence
interval is set to ςc = 2πi [0,1600]; the greedy algorithm starts with order r0 = 2 and increases
to rm = 10 in steps of 4. The convergence tolerance of all methods is set to εtol = 1·10−8.
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Algorithm 4.3 Greedy method for expansion point selection
Require: Original system Σ, initial expansion point s0,0, frequency range ςc = [smin, smax],

tolerance εtol, minimum and maximum interpolation orders r0 and rm, maximum global
reduced order rmax

Ensure: Reduced system Σr, error estimation ε̂
1: i← 0, ε̂r ← 1, ri ← r0
2: while ε̂ > εtol do
3: [Vi,Wi]← TOAR (Σ, s0,i, ri)
4: V← orth (V0, . . . ,Vi), W← orth (W0, . . . ,Wi)
5: Compute error estimator ε̂ in range [smin, smax]
6: if ri < rm then
7: Increase ri
8: else
9: si+1 ← arg max

s∈ςc
ε̂r

10: ri+1 ← rm
11: i← i+ 1
12: end if
13: if ∑i

j=0 rj > rmax then
14: break
15: end if
16: end while
17: Project Σ using V, W to obtain Σr

The projection is performed following osrealinput, thus a real-valued basis is considered and
by setting W = V, the symmetry of the original system is retained in the reduced space.
Table 4.1 compares the different reduction methods according to the reduced order necessary
to achieve convergence in the proposed interval r, norm of the relative approximation error
‖εr (s)‖ in the convergence interval ςc, and computation time tc.

Table 4.1: Comparison of reduced models for the vibrating beam computed with algorithm 4.3 and different
error estimators. Order of the reduced model r, norm of the approximation error ‖εr (s)‖ in the
convergence interval ςc = 2πi [0,1600], and computation time tc.

Method r ‖εr (s)‖ tc [s]
ε̂c 22 5.91·10−7 0.06
ε̂r,f 32 8.49·10−7 0.75
ε̂m 16 8.49·10−7 0.19

All methods converge and create reduced models achieving a sufficiently low approximation
error in the frequency range of interest. The transfer function and approximation errors are
given in fig. 4.28. The greedy method employing ε̂m converges to the smallest reduced model
of order r = 16, while the model created with ε̂c has order r = 22 but the computation time
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is the lowest. ε̂r,f needs more iterations to reach convergence, resulting in a larger reduced
model and a longer computation time. ε̂c only requires the solution of a linear system of
order r for error assessment, while ε̂r,f and ε̂m perform additional matrix vector products
of order n. Given that all reduced models have a comparable accuracy, no benefit of the
residual based error bounds compared to complementary approximations can be observed
for this model.

101 102 103 10440

60

80

100

120

Frequency [Hz]

M
ag

ni
tu

de
[d

B]

Reference
r = 22, ε̂c
r = 32, ε̂r,f
r = 16, ε̂m

101 102 103 10410−15

10−12

10−9

10−6

10−3

100

Frequency [Hz]

R
el

at
iv

e
er

ro
r

r = 22, ε̂c
r = 32, ε̂r,f
r = 16, ε̂m
ςc

Figure 4.28: Transfer functions and relative errors of reduced models for the beam model computed with
algorithm 4.3 employing the error estimators ε̂c, ε̂r,f , and ε̂m. The convergence interval is set
to ςc = 2πi [0, . . . , 1600].

Sound transmission problem We now consider the sound transmission problem from sec-
tion 2.5.3. In the first example, the convergence interval is chosen to be ςc = 2πi [0, . . . , 500];
the evaluation of the full order model in this frequency range takes tc = 6.79·104 s ≈ 18.9 h.
The projection is performed following tsreal, retaining the realness of the original system. A
two-sided interpolation is chosen because the original system is non-symmetric. The greedy
algorithm 4.3 starts with order r0 = 6 and increases it to rn = 18 in steps of 4. The con-
vergence tolerance the method employing the complementary approximations ε̂c is set to
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εtol = 1·10−5; the other methods’ tolerances are set to εtol = 1·10−3, as they have been found
to overestimate the actual reduction error. Table 4.2 compares the different reduction meth-
ods according to reduced order necessary to achieve convergence in the proposed interval r,
norm of the relative approximation error ‖εr (s)‖, and computation time tc.

Table 4.2: Comparison of reduced models for the sound transmission problem computed with algo-
rithm 4.3 and different error estimators. Order of the reduced model r, norm of the relative
approximation error ‖ε‖ in convergence interval ςc = 2πi [0, . . . , 500], and computation time tc.

Method r ‖εr (s)‖ tc [s]
ε̂c 32 3.05·10−4 647
ε̂r,f 42 4.06·10−10 1013
ε̂m 54 4.07·10−10 1124

All methods yield accurate reduced models at convergence capturing the important fea-
tures of the original transfer function. However, ε̂c underestimates the actual approximation
error and yields a reduced model with a higher error norm than required. The error plots in
fig. 4.29 show, that the double peak around 400 Hz is not approximated as accurate by this
reduced model as by the other two models. The greedy algorithm employing error estimator
ε̂c computes its reduced model in the shortest time with the lowest order r = 32, but has
the highest error. Both error estimators ε̂r,f and ε̂m take longer to converge and result in
larger reduced models of orders r = 42 and r = 54 respectively. Both models have much
lower errors than the required tolerance. This is the result of an overestimation of the actual
approximation error by these estimators. Additionally to requiring more iterations until
convergence, the computation of the more computationally demanding error estimator at
100 sampling points in the frequency region of interest in each iteration adds to the longer
computation times compared to ε̂c.
The same system is now reduced to a model which should be valid in the frequency

range ςc = 2πi [300, . . . , 600] also using tsreal. The evaluation of the full order model in this
frequency range takes tc = 6.33·104 s ≈ 17.6 h. Again, algorithm 4.3 starts with order r0 = 6
and increases the interpolation order to rn = 18 in steps of 4 before establishing a new shift.
The convergence tolerance for the algorithm employing ε̂c is set to εtol = 1·10−5 respectively
to εtol = 1·10−3 for the other two methods. Table 4.3 compares the different reduction
methods according to reduced order necessary to achieve convergence in the proposed interval
r, norm of relative approximation error ‖εr (s)‖ in the range ςc = 2πi [300, . . . , 600], and
computation time tc.
All methods create reduced models with sufficient accuracy, the error plot is presented in

fig. 4.30. Again, the error estimation based on complementary approximations creates a small
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Figure 4.29: Transfer functions and relative errors of reduced models for the sound transmission model
computed with algorithm 4.3 employing the error estimators ε̂c, ε̂r,f , and ε̂m. The conver-
gence interval is set to ςc = 2πi [0, . . . , 500].

reduced model with r = 32 in the fastest time compared to the other estimation methods.
All features of the transfer function could be captured and the actual approximation error
is below the specified tolerance in the convergence region. The models created using ε̂r,f and
ε̂m have higher orders of r = 60 while their approximation error is not considerably lower.
All error estimation methods overestimate the actual error in the specified frequency range.

4.4.3 Frequency windowing for automatic model order reduction

We now present an alternative method to automatically compute reduced models valid in a
specified frequency range. Here, the range is divided in frequency windows, each associated
with a corresponding expansion point at the center frequency. The procedure is outlined in
algorithm 4.4 and is based on Aumann et al.: “Automatic model order reduction for systems
with frequency dependent material properties” (2021) [19]. It can be summarized as follows:
One or more locations for initial expansion points are defined and intermediate reduced mod-
els are obtained which are used to compute the error estimation. For each expansion point, a
local subspace and the corresponding reduced model is computed. For each pair of adjacent
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Table 4.3: Comparison of reduced models of the sound transmission problem valid in ςc =
2πi [300, . . . , 600] computed with algorithm 4.3 and different error estimators. Order of the
reduced model r, norm of the relative approximation error ‖εr (s)‖ in the convergence interval,
and computation time tc.

Method r ‖εr (s)‖ tc [s]
ε̂c 32 3.84·10−10 677
ε̂r,f 60 1.67·10−10 1444
ε̂m 60 1.67·10−10 1411
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Figure 4.30: Relative errors of the reduced models for the sound transmission model computed with algo-
rithm 4.3 employing the error estimators ε̂c, ε̂r,f , and ε̂m. The convergence interval is set to
ςc = 2πi [300, . . . , 600].

expansion points, the corresponding intermediate reduced models are used to estimate the
approximation error in the frequency range between the two expansion points according to
ε̂c (s) given by eq. (4.35). If both reduced models have, under a specified tolerance, similar
transfer functions in this frequency region, this region is considered sufficiently accurate and
both local subspaces are combined in an orthonormal subspace. The involved subspaces are
flagged as inactive, meaning the orders of the respective expansion points are not increased
anymore, as this would not lead to a higher accuracy in the area between them. If the
estimated error between the two shifts is not below the specified tolerance, the interpolation
order at both shifts is increased. After all individual subspaces have been processed, a global
reduction basis is computed from all local subspaces and the global error estimator ε̂c,g (s)
is evaluated. If the estimated error is higher than the specified tolerance, the order of the
subspace with the corresponding expansion point located next to the highest estimated er-
ror is increased. If the maximum estimated approximation error is located next to the same
expansion point for consecutive iterations and is not improving, a stagnation is assumed.
In this case, a new expansion point is established, rather than increasing the order r of the
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respective subspace. Additionally, the order at a specific expansion point is increased up to
a defined maximal order only. If the highest estimated error is between two expansion points
with maximal order or between one expansion point with maximal order and a boundary
of the frequency range, a new shift is introduced between these locations. Also if all local
subspaces are combined and flagged as inactive and the estimated error is higher than the
specified tolerance, a new expansion point is established at the location where ε̂c,g (s) has
its maximum value. If the estimated error is below the defined tolerance or the maximum
number of iterations has been reached, the final reduced model is computed using the current
global basis.
The presented adaptive procedure is used to automatically compute reduced models of the

poroacoustic system described in section 2.5.5. The reduced model is computed to be valid
in s = 2πi [1, . . . , 800]. The algorithm is tested with Krylov space orders from k = 2 to k = 8
and three configurations of initial expansion points are considered. The expansion points
are distributed linearly in the frequency range s = 2πi [100, . . . , 800] and ns = 4, ns = 5, and
ns = 6 initial shifts are considered. The frequency range is chosen to start at 100 Hz rather
than at 1 Hz, because approximating the frequency dependent functions with a shift in the
low frequency region leads to an unstable representation in the higher frequency region (c.f.
fig. 4.17). In order to obtain this information, only AAA evaluations are required, which can
be computed without large computational costs. The initial order of each shift is r0 = 50.
The interpolation order at the shifts is increased in steps of rincr = 10 up to a maximum of
rmax = 100. New shifts are established with an initial order of rmin = 10. The tolerance of
the algorithm is set to εtol = 1·10−5 and the algorithm terminates after 25 iterations.
The results for the numerical experiments are reported in table 4.4, where the size of

the resulting reduced order models r, the maximum error ε and its estimation ε̂1 in the
considered frequency range, the overall computation time tc, and the required iterations are
given for the three starting configurations and different orders of employed Krylov spaces
k. The results are also given in graphical from in figs. 4.31 to 4.33, where the required
computation time and reduced order are compared to the obtained maximum relative error
for each considered order of the employed Krylov subspace k.
Most configurations yield reduced models with a maximum error lower than the defined

threshold, only the configurations ns = 4, k = 3 and ns = 5, k = 2 did not converge
in less than 25 iterations and thus yield models with a higher maximum error. The error
estimation also performs acceptable. Although the estimator tends to underestimate the
exact approximation error, they are in the same order of magnitude. A higher increment
rincr of interpolation order potentially leads to a better error estimation at the cost of larger
reduced order models. The benefit of a higher order k of the employed Krylov spaces lies in
the smaller size of the resulting reduced models. These models have approximation errors
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Algorithm 4.4 Adaptive subspace computation.
Require: Original system Σ, initial expansion points s0,i, i = 1, . . . , p with corresponding

initial orders r0,i, frequency range ςc = [smin, smax], minimum and maximum expansion
point order rmin, rmax, order increment rincr, tolerance εtol

Ensure: Reduced system Σr

1: while max (ε̂c,g (s)) > εtol do
2: Compute Σr,i for each s0,i and corresponding ri
3: Compute ε̂c,ij (s) for each pair of adjacent s0,i and s0,j
4: if ε̂c,ij (s) < εtol then
5: Combine subspaces for Σr,i and Σr,j

6: Flag combined subspaces inactive
7: else
8: ri ← ri + rincr, rj ← rj + rincr
9: end if

10: Compute global subspace from all active local subspaces and reduce Σ
11: Compute global error estimator ε̂c,g (s) in ςc
12: Find s0,j which location is next to max ε̂c,g (s)
13: if rj < rmax then
14: if Stagnation then
15: Add new expansion point at max ε̂c,g (s)
16: else
17: rj ← rj + rincr
18: end if
19: else
20: Find s0,k which location is on the opposite side of max ε̂ regarding s0,j
21: if rk < rmax then
22: rk ← rk + rincr
23: else
24: Add new expansion point at max ε̂c,g (s)
25: end if
26: end if
27: if All local subspaces are flagged inactive then
28: Add new expansion point at max ε̂c,g (s)
29: end if
30: end while
31: Compute Σr with the global subspace

in a similar range than larger reduced models obtained using Krylov spaces with k = 2
or k = 3. The computation times, however, tend to be higher with increasing k, even if
the resulting reduced model is smaller. The choice for either a higher subspace order k or
lower computation time should be motivated from the actual application case of the reduced
model. The initial configurations also have an influence on the resulting reduced models,
again depending on the order k of the employed Krylov spaces. Starting with four expansion
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Table 4.4: Results of the adaptive algorithm applied to the poroacoustic model regarding the three initial
configurations and different Krylov space orders k. Reported are the order of the resulting
reduced order models r, the maximum error ε and its estimate ε̂1 in the considered frequency
range, the overall computation time tc, and the number of iterations.

ns k r max ε max ε̂1 tc[s] Iterations
4 2 500 4.16·10−4 9.08·10−6 2143.1 16

3 590 2.80·10−3 2.76·10−3 3134.2 25
4 370 5.08·10−6 3.51·10−6 2217.7 8
5 290 2.71·10−5 9.24·10−6 1996.6 8
6 330 4.25·10−6 3.28·10−6 2602.3 8
7 280 8.83·10−7 2.73·10−6 2501.7 8
8 280 1.65·10−6 1.38·10−6 2752.5 8

5 2 690 2.31·10−2 4.82·10−3 3391.7 25
3 470 1.32·10−5 7.72·10−6 2321.9 8
4 380 4.18·10−4 7.91·10−6 2288.9 6
5 290 2.44·10−7 3.80·10−7 2011.8 4
6 330 9.14·10−7 3.68·10−7 2632.7 8
7 330 5.81·10−7 4.52·10−7 2926.9 8
8 330 1.05·10−6 1.88·10−7 3235.2 8

6 2 600 2.34·10−5 5.87·10−6 2094.1 5
3 460 1.26·10−5 8.09·10−6 2067.5 4
4 360 3.80·10−7 1.83·10−7 2210.3 5
5 330 7.50·10−7 4.57·10−7 2241.8 3
6 330 9.71·10−7 4.85·10−7 2508.8 3
7 350 6.28·10−7 2.48·10−7 3102.6 5
8 330 6.56·10−7 3.41·10−7 3106.8 3

points distributed in the frequency range of interest yields the smallest reduced models, apart
from the not converged experiment ns = 4, k = 3. For k > 3. For the configuration with
ns = 6, only a few iterations are required to achieve convergence. Here, the initial condition
is already a reasonably accurate model for higher orders k.

4.4.4 Automatic approximation in a frequency range using SO-IRKA

An alternative approach to automatically find an appropriate size for a reduced model is
based on an extension of SO-IRKA. This approach is presented in the following section and
is based on Aumann and Müller: “An adaptive method for reducing second-order dynamical
systems” (2021) [21]. It is based on the fact, that an eigenvalue decomposition of a second-
order system yields twice as many eigenvalues as the size of the system. By choosing a
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Figure 4.31: Comparison of required computation time tc and resulting reduced order r to the obtained

maximum relative errors for the starting configuration with ns = 4 expansion points.
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Figure 4.32: Comparison of required computation time tc and resulting reduced order r to the obtained

maximum relative errors for the starting configuration with ns = 5 expansion points.
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Figure 4.33: Comparison of required computation time tc and resulting reduced order r to the obtained

maximum relative errors for the starting configuration with ns = 6 expansion points.

suitable subset during each iteration, the required order of the reduced model to be accurate
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in a specific frequency region can be found in an adaptive way. As IRKA’s optimization
steps to obtain reasonable expansion point locations for the reduced order model involve
the solution of linear equation systems of the size of the full-order model, its computational
cost is often high. To reduce these costs, we apply SO-CIRKA given in algorithm 4.2. The
only input to the proposed model order reduction method apart from the original system
is a frequency range ςc = [ωmin, ωmax], making the algorithm applicable without requiring
a-priori knowledge about the full order model.
The frequency-limiting of the reduced model regarding a frequency range not necessarily

starting at zero is achieved as follows: Extending the idea from Aumann and Müller [22],
we choose such pairs of eigenvalues for updating the expansion points in each iteration of
SO-IRKA which mirror images lie in ςc. This can be achieved by adapting SO-IRKA (c.f.
algorithm 4.1) as shown in algorithm 4.5. At convergence, this modified variant of SO-
IRKA yields a reduced model being valid in this specified frequency range, as it was shown
in section 4.3. Rather than choosing r updated expansion points during each iteration, we
now determine a suitable size for the reduced order model by considering the locations of all
2r eigenvalues λ2r. This is motivated by the argument, that a reduced model is not likely
to being able to approximate a system in a complete specified frequency range, if all its
eigenvalues lie inside this range. So instead of selecting a subset of λ2r with fixed size r as
potential locations for new expansion points, all mirror images of eigenvalues lying in the
frequency range of interest are considered for the next iteration. Doing so increases the size
of the reduced model and this is repeated until at least one pair of eigenvalues lies outside ςc.
It is argued that the reduced model is now large enough to capture all important dynamics
of the original model in the desired frequency range. After having obtained this reduced
order r, again only r eigenvalues from λ2r are considered as locations for expansion points
during the next iterations until convergence is reached.
The frequency-limiting behavior is revisited by the following numerical example. The

model of the cantilevered beam from section 2.5.1 with modified cross section width and
height a = 0.001 m is reduced using algorithm 4.1 to obtain a model valid in the frequency
range ςc = 2π [1000, 2000]. The algorithm finds two pairs of eigenvalues lying in the specified
frequency range and thus yields a reduced model of order r = 4. Its transfer function
and the corresponding approximation error are given in fig. 4.34. It can be seen, that the
reduced model approximates the original system in the specified frequency range, but the
approximation quality deteriorates near the boundaries of ςc. Therefore, another reduced
model is computed where not only the shifts located inside of ςc are considered but also the
two pairs lying left and right of the interval. This yields a reduced model of order r = 8
which approximates the full order model in ςc with higher accuracy than the model with
r = 4.
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Algorithm 4.5 Adaptive variant of SO-IRKA
Require: Original system Σ, r0 initial expansion points s0 =

[
s0,1 · · · s0,r

]
∈ Cr closed

under complex conjugation, frequency range ςc = [smin, smax]
Ensure: Reduced system Σr

1: while no convergence do
2: Compute projection bases

V =
[(
s2

0,1M + s0,1C + K
)−1

f · · ·
(
s2

0,rM + s0,rC + K
)−1

f
]

W =
[(
s2

0,1M + s0,1C + K
)−H

gH · · ·
(
s2

0,rM + s0,rC + K
)−H

gH
]

3: Orthogonalize bases V = orth (V) , W = orth (W)
4: Mr = WHMV, Cr = WHCV, Kr = WHKV
5: Solve the quadratic eigenvalue problem (Mrλ

2 + Crλ+ Kr) x = 0
6: Choose λnew from λ2r such that λnew ← ‖λ2r‖ ⊂ [smin, smax]
7: Update expansion points s0 ← −λnew
8: end while
9: Project Σ using V, W to obtain Σr

Considering the observations from fig. 4.34, the two pairs of eigenvalues lying left and
right of the frequency range of interest are also considered in algorithm 4.5 to compute the
projection basis. This increases the approximation quality near the boundaries of ςc and
should provide a safe estimation for r. If an estimate for the required order of the reduced
model is available, the algorithm can be provided with it to speed up convergence. Otherwise,
it is started with two pairs of expansion points located at [±iωmin,±iωmax]. Additionally,
we make use of CIRKA to be able to perform the optimization loop on a reduced model of
intermediate size. Algorithm 4.2 can directly be employed but instead of standard SO-IRKA,
the adaptive and frequency-limited variant algorithm 4.5 is called inside CIRKA. In the
following, the initial intermediate model is computed using TOAR. At each initial expansion
point s0,i, with i = 1, . . . , r, a local Krylov space with interpolation order d is computed
and their bases are concatenated to obtain the global projection matrices V,W ∈ Cn×rd.
After the adaptive SO-IRKA converges, the error estimator eq. (4.23) is evaluated in the
frequency range of interest ςc. This estimate is used as a measure for convergence of the
outer CIRKA iterations and the algorithm is stopped, if it falls under a certain threshold for
all points inside ςc. If no convergence is reached, both schemes to update the intermediate
basis described in section 4.3.1 can be employed.

In the following, we evaluate the effectiveness of the adaptive variant of SO-IRKA by
computing reduced models valid in a specific frequency range without pre-defining a re-
duced order r. Additionally, its computational cost is compared to employing CIRKA in
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Figure 4.34: Transfer functions and relative errors of two reduced models of the cantilevered beam ob-
tained from algorithm 4.5 with the locations of the expansion points and the frequency range
of interest ςc.

combination with adaptive SO-IRKA. All following numerical experiments are conducted
on a workstation with an Intel® Xeon® CPU E5-2620 v3 @ 2.4 GHz and 96 GB RAM using
Matlab® R2020a. The only parameter provided to the algorithms is the frequency range
ςc = [ωmin, ωmax], the order is automatically obtained during the procedures. The initial ex-
pansion points are chosen as [±iωmin,±iωmax] and CIRKA is considered converged if the
estimated error eq. (4.23) is smaller than τ = 1·10−3 in ςc.

We start by considering the frequency range between ωmin = 2π · 1 rad s−1 and ωmax =
2π · 500 rad s−1. The transfer functions and corresponding relative errors of the reduced
models obtained from CIRKA employing the adaptive SO-IRKA and adaptive SO-IRKA
alone are reported in fig. 4.35. The reduced models obtained from SO-IRKA and CIRKA
with augmenting the intermediate-sized model’s basis after each run of SO-IRKA (marked
by CIRKA aug.) show comparable relative errors which are low over the complete frequency
range of interest. The reduced model computed with CIRKA using the update strategy
re-initializing the intermediate bases after each inner run of SO-IRKA (marked by CIRKA
res.) has a lower overall approximation quality. The relative error is especially high near the



148 4 Model order reduction for vibro-acoustic systems

double peak in the transfer function at 400 Hz.
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Figure 4.35: Transfer functions and relative errors of reduced models of the sound transmission problem
valid in ςc = 2π [1, 500] obtained from the adaptive algorithms.

The resulting reduced orders r, maximal relative errors in the frequency range of interest
max εr, and the number of required decompositions of matrices of order n, nLU, are given
in table 4.5. While SO-IRKA and CIRKA aug. yield models with similar accuracy and
reduced orders r, the re-initialization of the intermediate model’s basis after each inner run
of SO-IRKA leads to a smaller reduced order r but also the maximal error is magnitudes
higher than for the other models. SO-IRKA requires nLU = 186 decompositions of full order
matrices until convergence is reached, more than ten times as many as the methods based
on CIRKA.

Table 4.5: Comparison of the different reduced models valid in ςc = 2π [1, 500].

Method r max εr nLU

CIRKA aug. 22 2.37·10−5 14
CIRKA res. 10 2.97·10−1 14
SO-IRKA 24 1.73·10−5 186

In a second example we apply the same algorithms to obtain a model valid in the range
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ςc = 2π [700, 1000]. A double peak in the transfer function is located near the lower bound of
the range, so the benefit of including the two nearest outlying pairs of eigenvalues as locations
for expansion points can be evaluated. All three algorithms yield models approximating the
original transfer function in ςc and their transfer functions as well as relative errors are given
in fig. 4.36. Again, CIRKA aug. performs well with low errors in the desired frequency
range. SO-IRKA alone and CIRKA res. yield similar results having both a peak in the
relative error near the anti-resonance at 950 Hz.
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Figure 4.36: Transfer functions and relative errors of reduced models of the sound transmission problem
valid in ςc = 2π [700, 1000] obtained from the adaptive algorithms.

The reduced orders and maximal relative errors of the three resulting models are reported
in table 4.6. Both SO-IRKA and CIRKA res. yield models with a reduced order r = 10,
while the model obtained from CIRKA aug. has an order of r = 28. However, the maximal
error is much lower in this case while still requiring less matrix decompositions than SO-
IRKA without CIRKA. The overall higher errors compared to the previous example can
be explained by the fact, that less modes are located in this frequency range, requiring the
individual shifts to approximate a wider frequency range.



150 4 Model order reduction for vibro-acoustic systems

Table 4.6: Comparison of the different reduced models valid in ςc = 2π [700, 1000].

Method r max εr nLU

CIRKA aug. 28 2.19·10−4 28
CIRKA res. 10 9.51·10−2 14
SO-IRKA 10 1.03·10−1 40

4.4.5 Conclusive remarks

Different algorithms to automatically compute reduced order models relying on as few a-
priori information as possible have been presented in the preceding section. First, we pre-
sented some techniques to assess the approximation error of reduced order models and a
greedy algorithm to use them in an automatic reduction framework, which does not need
many inputs from the user. Only by specifying the convergence interval, in which the reduced
model should be valid, reduced models of vibro-acoustic systems can be created automati-
cally with high accuracy in a reasonable time. All presented error estimators were able to
guide the greedy algorithm towards reasonable expansion points, also resulting in accurate
reduced models. However, the estimators based on moment error and residual lack tightness
and the models created with these estimators tend to be larger. Comparing complementary
approximations of two reduced models with increasing order was found to provide the best
trade-off between model accuracy and computation time. Important features of the transfer
functions of all considered models could properly be reproduced by this method. Instead
of a greedy method, a windowing approach can be more suited for models where a high
accuracy is required for a wide frequency range. High quality reduced models incorporating
frequency dependent material properties could be computed using this approach. Addition-
ally, the number and location of eigenvalues of a reduced system computed during SO-IRKA
can provide a measure for an appropriate reduced order. Only specifying the range, reduced
models of the beam and the sound transmission problem could be obtained with high ac-
curacy. The use of CIRKA succeeded at decreasing the computational cost required by the
adaptive variant of SO-IRKA.
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5 Parametric model order reduction for

vibro-acoustic systems

Many vibro-acoustic systems depend on a set of parameters which is subject to optimization
during the design phase of engineering structures. This optimization regarding, for exam-
ple, the noise and vibration of vehicles towards a high level of comfort for the passengers,
requires many repeated evaluations of high fidelity models under varying parameters. Such
parameters can include material properties, locations of excitation, or variations in the model
geometry. The transfer function of a SISO second-order parametric system is given by

H (s,p) = g (p)
(
s2M (p) + sC (p) + K (p)

)−1
f (p) , (5.1)

where all system matrices, the input, and the output vector are depending on a set of
parameters p. Because of the high computational costs of the high fidelity models and the
need of their repeated evaluation, low dimensional representations retaining the dominant
features of the original model are required.
Parametric model order reduction methods achieve this by, for example, combining the

projection bases obtained for different parameter realizations of the full model [47]. Many of
these methods require an affine representation of the parametric system, i.e. the parameter
dependence can be expressed by functions which are multiplied with constant matrices (c.f.
eq. (3.56)). Such representations can often be acquired if the parameters are material con-
stants, but are typically hard or inefficient to obtain for geometric parameters. Data-driven
methods do not require insight in the structure of the dynamical system at all and compute
parametric reduced models solely based on system output data [68, 143, 190, 218]. However,
these methods seldom preserve the structure of the original system. However, specialized
methods that obtain also the structure of the original system from data have been proposed
[69, 234]. The sampling of the parameter space has a large influence on the quality of the
parametric reduced model. Beattie, Gugercin, and Tomljanović [39] proposed a data-driven
method retaining the dependence on parameters in reduced space without the need of sam-
pling the parameter space. However, this method requires an affine representation of the
original system.
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Parametric model order reduction is an important tool enabling an efficient design process
of vibro-acoustic systems and its value has frequently been shown: Parametric models of
vibrating structures with a radiation boundary condition were computed by van Ophem,
Deckers, and Desmet [255] using Krylov subspaces. Here, the original system’s parametric
dependence is rewritten as additional inputs to the system, allowing the computation of the
reduced model without requiring a sampling of the parameter space. A classic parametric
reduction method employing quasi-random sampling in the parameter space has been em-
ployed in [271] to obtain reduced models of vibrating plates with spatially differing damping
properties. Lappano et al. [161] computed reduced models of poroelastic systems using a
POD. The method presented in Ullmann, Sicklinger, and Müller [248] combines a Krylov
method with adaptive sampling in the parameter space and is therefore able to compute
efficient reduced models of systems with a high-dimensional parameter space. Purely data-
driven methods based on regression algorithms have been used by Melo Filho et al. [181] to
compute a parametric model of a locally resonant structure.
In the following chapter, we will present two strategies to compute reduced models retain-

ing the dependence on one or more parameters from the full order model. The first method
utilizes the Loewner framework and its extension to parametric systems. This data-driven
method relies on a database of system evaluations, which are obtained form a presampling
performed by models reduced with SO-IRKA. Convergence of the algorithm is enhanced by
using the converged, i.e. somewhat optimal, expansion points of one parameter combination
as starting point for the next IRKA run performed for a model with similar parameters as
it is believed to have a similar frequency response. The method is described in section 5.1
along with numerical examples. The second method is also based on SO-IRKA, but can also
be used with any moment-matching technique. Here, a regression model is trained to map
model parameters to near-optimal locations of expansion points for moment-matching. The
method is further outlined in section 5.2 and applied to two parametric models.

5.1 Parametric model order reduction using the Loewner

framework

This section is based on Aumann, Miksch, and Müller: “Parametric model order reduction
for acoustic metamaterials based on local thickness variations” (2019) [20]. The Loewner
framework discussed in section 3.6.3 and has already been successfully applied to reduce
dynamic and vibro-acoustic systems [120, 165, 208]. In the following, its extension for para-
metric systems, the parametric Loewner framework, is employed to compute reduced models
of vibro-acoustic systems while retaining the dependence on a specified set of parameters
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[143]. Transfer function evaluations of the original system under varying parameters are
required, which are computationally costly to obtain. We therefore follow an idea from Ben-
ner and Grundel [45] to alleviate the computational burden. The main idea is to compute
reduced models for a set of parameters using SO-IRKA and use the reduced models to com-
pute the frequency response for each parameter. The obtained data are then used as input
for the parametric Loewner framework. The convergence for the different SO-IRKA runs
can be accelerated, if the expansion points used at convergence for one parameter are reused
as starting point for the following parameters. Often, the overall system response does not
change drastically, if a parameter is changed. This is illustrated with an example using the
beam model from section 2.5.1. Figure 5.1 shows transfer function evaluations of beams with
length l = 0.8 m and quadratic cross sections of different heights ai = [0.005, . . . , 0.05] m. It
can be observed, that the transfer function peaks of systems based on only slightly varying
parameters lie in a similar region. So even while the best IRKA expansion points for one
parameter are not necessarily the best for a second parameter, the reused expansion points
are a good start for the following iterations and the algorithm probably converges faster.
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Figure 5.1: The frequency response functions of a parametric beam evaluated at different cross section
heights a.

The parametric Loewner framework is the base of the employed model order reduction
method and is shortly summarized in the following. The barycentric interpolation formula
(3.50) is extended to include not only frequency s with corresponding expansion points s0,i,
but also parameters p with expansion points πj. The two-variable case reads:

φ (s,p) =
k+1∑

i=1

q+1∑

j=1

αijyij
(s− s0,i) (p− πj)

/
k+1∑

i=1

q+1∑

j=1

αij
(s− s0,i) (p− πj)

, αij 6= 0, (5.2)

where k and q are the order in frequency and parameter respectively [9]. The parameters
αij are obtained as follows: First, transfer function measurements for a set of parameters
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pj, j = 1, . . . ,M at frequencies si, i = 1, . . . , N are computed as of eq. (5.1) and partitioned
into a matrix Φ with entries φij = H (si,pj). The partitioning is performed according to

[s1, · · · ,sN ] = [s0,1, · · · , s0,n] ∪
[
σ0,1, · · · , σ0,n

]
,

[p1, · · · ,pM ] = [π1, · · · ,πm] ∪
[
ν1, · · · ,νm

]
,

(5.3)

where n + n = N and n = bN/2c and m + m = M and m = bM/2c. The resulting matrix
is given by

Φ =




y11 · · · y1m φ1,m+1 · · · φ1M
... . . . ... ... . . . ...
yn1 · · · ynm φn,m+1 · · · φnM

φn+1,1 · · · φn+1,m z11 · · · z1m
... . . . ... ... . . . ...

φN,1 · · · φNm zn1 · · · znm




. (5.4)

The entries in block Φ11 are the measurements yij = H (s0,i, πj), block Φ22 contains the
measurements zij = H (σ0,i, νj). The transfer function samples Hij can have various origins:
results from numerical simulations can be used as well as experimental measurement data
or a combination of both. The resulting two-variable Loewner matrix [143] is given by

L2 =




z11 − y11

(σ0,1 − s0,1) (ν1 − π1) · · · z11 − y1m

(σ0,1 − s0,1) (ν1 − πm)
...

znm − y11(
σ0,n − s0,1

) (
νm − π1

) · · · znm − y1m(
σ0,n − s0,1

) (
νm − πm

)

∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·

· · ·

· · ·

· · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

z11 − yn1

(σ0,1 − s0,n) (ν1 − π1) · · · z11 − ynm
(σ0,1 − s0,n) (ν1 − πm)

...
znm − yn1(

σ0,n − s0,n
) (
νm − π1

) · · · znm − ynm(
σ0,n − s0,n

) (
νm − πm

)



.

(5.5)

Analogously to the single-variable case, the coefficients αij are obtained from the null space
of this matrix, i.e. solving L2α = 0.

In order to approximate the full order system, from which the measurements in Φ are
obtained, rather than interpolate its response, Ionita and Antoulas [143] presented L̂2 as
a generalization of eq. (5.5). A main idea of this framework is that the required orders to
interpolate the underlying data are encoded in L2. For this the order k associated with
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frequency is determined by k = max
j

rankLpj from the Loewner matrices Lpj , which are the
j Loewner matrices obtained from the j columns of Φ. Analogously, order q in the parameter
variable is computed as q = max

i
rankLsi from the i Loewner matrices Lsi associated with

the i rows of Φ. The generalized version L̂2 of eq. (5.5) relying on the partitioning based on
k and q is given by

L̂2 =
[
L̂T
σ L̂T

π LT
2

]T
, (5.6)

where

L̂σ =




Lσ1

. . .
Lσk+1


 , Lσi =




Φ12 (i,1)− yi1
ν1 − π1

· · · Φ12 (i,1)− yi,q+1

ν1 − πq+1
... . . . ...

Φ12 (i,m)− yi1
νm − π1

· · · Φ12 (i,m)− yi,q+1

νm − πq+1



, (5.7)

and

L̂π =




Lπ1 (: ,1)
. . .

Lπq+1 (: ,1)

∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣

Lπ1 (: ,k + 1)
. . .

Lπq+1 (: ,k + 1)


 ,

Lπj =




Φ21 (1,j)− y1j

σ0,1 − s0,1
· · · Φ21 (1,j)− yk+1,j

σ0,1 − s0,k+1
... . . . ...

Φ21 (n,j)− y1j

σ0,n − s0,1
· · · Φ21 (n,j)− yk+1,j

σ0,n − s0,k+1



.

(5.8)

The notation � (: ,i) in eqs. (5.7) and (5.8) refers to the ith column of a matrix. It is shown,
that a function of shape (5.2) with orders k+1, q+1 interpolates all data given in Φ and that
the required coefficients α can be obtained from the null space of the generalized two-variable
Loewner matrix L̂2. If no null space is found for L̂2, coefficients for an approximation of the
original function can be obtained from a singular value decomposition of L̂2. In this case, the
reduced model approximates the measurements and the approximation error is proportional
to the smallest singular value of L̂2 [143].
A natural limitation of the method is that only data contained in the measurements can

be interpolated and a too coarse sampling in either frequency or parameter domain results in
reduced models of bad quality compared to the full system response. A reasonable number of
transfer function measurements N and M cannot be directly related to the order of the full
model n, but can be adjusted using the ranks k and q of the Loewner matrices. If k+ 1 = n
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(respective q + 1 = m), not all features of the transfer function can be kept in the reduced
model and a finer grind in frequency (respective parameter) space should be considered.

5.1.1 The parametric model order reduction algorithm

We now combine the parametric Loewner approach described in the previous section with
SO-IRKA, presented in algorithm 4.1. The transfer function measurements required for
populating the Loewner matrix are obtained from numerical models being first reduced
with SO-IRKA to save computational resources. To enable faster convergence of IRKA,
the converged expansion points for one parameter combination are considered as the initial
expansion points for the neighboring parameter. The procedure is sketched in algorithm 5.1.

Algorithm 5.1 Parametric model reduction using IRKA and the Loewner framework
Require: Original parametric system Σ (p), r initial expansion points for SO-IRKA s0 ∈ Cr

closed under complex conjugation, set of evaluation frequencies sn, n = 1, . . . , N , set of
parameters pm, m = 1, . . . ,M

Ensure: Coefficients for the two-variable rational barycentric formula αij, yij, s0,i, πj
1: for m = 1 : M do
2: Compute Mm ←M(pm), Cm ← C(pm), Km ← K(pm) constituting Σm

3: [Σm
r , s

m
0 ]← SO-IRKA

(
Σm, sm−1

0

)

4: Compute the frequency response of Σm
r for sn and save it in Φnm

5: end for
6: Obtain orders k and q from L2
7: Partition s and p accordingly
8: Construct the parametric Loewner matrix L̂2 from eq. (5.6)
9: Compute α such that L̂2α = 0

While SO-IRKA is structure preserving, the parametric model resulting from the Loewner
framework can only be represented by a state-space model. Realizations for higher order
systems are available for the single-variable case [234], but have not been established for the
parametric case.

5.1.2 Numerical examples

In the following, we will present numerical experiments showing the effectiveness of the
proposed strategy. It is applied to a parametrized version of the clamped beam from sec-
tion 2.5.1 and a more complex system modeling the response of a vibrating plate with local
thickness variations and a constrained layer damping. All experiments have been conducted
on a computer equipped with an Intel® Xeon® W-2135 3.70 GHz and 32 GB RAM. All codes
are implemented with MATLAB® R2018a.
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First, the parametric Loewner framework without the application of SO-IRKA is evaluated
using the beam model. It is parametrized with respect to the cross section height a, all other
parameters remain constant. Frequency responses for a set of 12 linearly distributed cross-
section sizes ai = [0.005, . . . , 0.05] m evaluated at 400 frequencies logarithmically distributed
in the range [10, . . . , 1·105] rad s−1 are given as input to the parametric Loewner framework.
The framework returns the coefficients for eq. (5.2), which can be evaluated for any frequency
and parameter value in range of the snapshot data. The reduced model has dimensions of
k = 66 in the frequency space and q = 5 in the parameter space. The frequency response
of the reduced model is now evaluated for a cross section height of a = 0.0425 m, which is
exactly in the middle between two parameters in the set the reduced model is built upon.
The frequency response and approximation error evaluated regarding a = 0.0425 m are given
in fig. 5.2. The corresponding error norm ‖εr‖ = 1.538·10−6 in the frequency range of interest
is low. Due to the fact, that the transfer function for each parameter ai has to be computed
to populate the Loewner matrix, the computation time for the offline phase to = 3.966 s
is significantly higher than the evaluation of one specific transfer function tf = 0.244 s.
After computing the reduced order model, the evaluation time of the transfer function for
any parameter ai in the parameter space reduces to te = 0.065 s. In order to reduce the
computational effort in the offline phase, the method presented in algorithm 5.1 obtains the
transfer functions from already reduced models. Its application is presented in the following.
We are now considering the numerical model of an aluminum plate with material param-

eters E = 69 GPa, ν = 0.22, ρ = 2650 kg m−3 and dimensions 0.6× 0.5× 0.003 m. The plate
has a circular thickness variation with diameter d = 0.2 m. The remaining plate thickness
in the middle of the circle is h = 0.001 m. In the circular region, a damping material is
applied on the opposite side of the plate and clamped by a layer of aluminum, as shown in
fig. 5.3. Such localized structures can have a beneficial effect on the host structure regarding
vibration and structure-borne noise [86, 235]. The main idea is that waves entering the zone
with reduced thickness are slowed while their amplitude increases. This increased amount
of vibration energy is then dissipated by the damping material applied in this region. In
order to prevent reflections of waves at the beginning of the zones with reduced thickness,
a smooth transition of the plate thickness needs to be ensured. Optimal coefficients for the
geometry of these zones have been established [186, 187]. Different damping coefficients are
applied to the aluminum and the damping material. The discretized model has a dimension
of n = 61 671. To test the capabilities of algorithm 5.1, we parametrize the model regarding
different damping materials.
A model reduced to r = 30 using SO-IRKA can approximate the full system up to

5000 rad s−1 with good accuracy with an error norm ‖εr‖ = 4.289·10−6. The computa-
tion time to generate one reduced model using SO-IRKA is tc = 43.6 s and the evaluation
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Figure 5.2: Beam model reduced with the parametric Loewner framework evaluated at a = 0.0425 m.
Frequency response at the cantilever tip of the full and the reduced model and approximation
error with respect to the direct solution.

time of the reduced model in the frequency range of interest is te = 0.119 s. This is an
improvement compared to the direct solution time of the full system taking tf = 838.5 s.
A parametrized reduced model is now generated using algorithm 5.1. 50 different damp-
ing materials are used in the offline presampling with damping-to-stiffness ratios between
p = [9.0·10−9, . . . , 4.098·10−6]. Due to the constant update of the initial expansion points,
SO-IRKA converges fast, usually already after the second iteration. The frequency response
of the reduced model evaluated at p = 2.1·10−8 is shown in fig. 5.4. This parameter lies in
the middle between two parameters of the original evaluation set pi.

The resulting parametric model has the dimensions k = 47 in the frequency space and
q = 26 in the parameter space, which indicates, that snapshots for more parameters are
required to interpolate the measurement data, rather than approximate it. Nevertheless,
the reduced model is able to approximate the full model up to a frequency of 5000 rad s−1.
The resulting error norm ‖εr‖ = 6.377·10−4 shows, that the reduced model is accurate in
the frequency range s = [10, . . . , 1·105] rad s−1. The reduced parametric model is generated
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Figure 5.3: Plate with ABH and applied constrained layer damping (orange).
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Figure 5.4: Frequency response function of the parametric reduced plate model evaluated at
p = 2.1·10−8. Total energy normalized with input power compared to direct solution on the
left, error plot on the right.
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within tc = 14.7 s, the evaluation of the reduced model for a parameter takes te = 0.23 s.
It is clear, that the generation of the transfer function snapshots for 50 parameters results
in a longer computation time than solving the system for one distinct parameter. But if
the reduced model is to be evaluated for many parameters, for example in an optimization
study, the initial overhead of generating the reduced model is compensated.

5.1.3 Concluding remarks

Algorithm 5.1 exploits the fact, that poles of parametric models evaluated at similar pa-
rameters lie in a similar frequency region and reuses the expansion points at convergence of
one IRKA run as starting point for the next. The a-priori selection of nearly optimal poles,
as discussed in section 4.3.2, has the potential to speed up convergence also in the first
IRKA run. An alternative approach to obtain near optimal expansion points for a moment
matching method is presented in the following section.
Regarding the Loewner framework part in algorithm 5.1, it is crucial to provide an appro-

priate sampling in frequency and parameter space. The rank for the parameter space encoded
in the Loewner matrix only has a valid meaning, if all features of the original models have
been captured in the frequency response function snapshots. Without prior knowledge of the
system response, valid parametric models can only be created using a rather dense parameter
space. An adaptive greedy procedure to detect optimal sampling points in the parameter
space could, for example, be used.

5.2 Prediction of near optimal interpolation points for

parametric model order reduction

We now show a strategy combining moment matching methods and data driven regres-
sion methods to a physics informed strategy for parametric model order reduction of vibro-
acoustic systems, presented in Aumann and Müller: “Predicting near optimal interpolation
points for parametric model order reduction using regression models” (2021) [24]. The main
idea is linked to the observation, that parametric systems with similar parameters also have
similar optimal pole locations (c.f. fig. 5.1). Rather than computing a reduced model directly
yielding the approximated frequency response, we try to find a relation between parameters
of the full order model and the locations of appropriate frequency shifts. Using these shifts,
a reduced model of good quality can be computed without the need of optimizing the shift
locations. Similar approaches have been studied in [46, 273]. Our strategy is outlined as
follows: Firstly, we iteratively compute the optimal frequency locations for a moment match-
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ing method for different parameter realizations, for example using SO-IRKA. Secondly, the
locations are processed such that each snapshot location resembles a physical pole of the
transfer function. Following, we train a data-driven model to learn the map between the
model parameters and the optimal frequency shifts. We consider regression models, which
are outlined in section 5.2.1. Querying the trained model with a yet unknown combination
of parameters now yields a good approximation for the optimal locations, which are used to
project the system onto the lower dimensional subspace.
By characterizing the resulting system by appropriate expansion points, rather than the

actual system output, the result space of the learned model stays low-dimensional while
containing the most important features of the physical model. Additionally, the model’s
physical behavior is included in the learning framework and the resulting reduced model
preserves the original system structure. Learning strategies not solely relying on data are of-
ten termed physics informed machine learning [68, 214]. In an engineering context, machine
learning methods have been combined with model order reduction for example to find coeffi-
cients for proper orthogonal decomposition (POD) in [243]; a neural network was trained in
[181] to predict the vibration behavior of resonant substructures used to control structural
vibrations; Ibañez et al. [141] reconstructed constitutive laws for finite element simulations
from data.
The quality of the reduced model greatly depends on the choice of the expansion points

s0, which are not known a-priori. A valid choice are the mirror images of the full system’s
eigenvalues, reflected at the imaginary axis. However, a full eigenvalue decomposition is not
always available or feasible in the scope of an efficient reduction algorithm. The iterative
rational Krylov algorithm (IRKA) and its extension to second-order systems SO-IRKA [268]
is therefore used to find optimal interpolation (or expansion) points. Upon convergence, the
reduced system’s eigenvalues are the mirror images of the used interpolation points. In each
iteration, IRKA needs to solve 2r linear systems of equations of order n (respectively r linear
systems of equations, if the system is symmetric), making the method computationally rather
expensive. So if a set of nearly optimal expansion points is known a-priori, the number of
iterations until convergence can be reduced, while the quality of the resulting reduced model
is not affected.

5.2.1 Regression methods

The proposed parametric reduction strategy can be used with different data-driven interpo-
lation or “machine learning” methods. In the following and for the numerical experiments,
a nearest neighbors regression, a multivariate polynomial regression, and a support vector
machine regression model are considered. The strategies are summarized in the following.
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Nearest neighbors regression

A k-nearest neighbor (kNN) model fits the predicted value ŝ0,i (p) given a parameter set p
not present in the training data based on the k data points in the training dataset having
the shortest distance in a defined metric. The fit is defined as

ŝ0,i (p) = 1
k

∑

pj∈Nk(p)
wjs0,ij, (5.9)

where pj are the k closest points to the new parameter set p, Nk (p) defines the neighborhood
of p according to a metric, wj is a weighting factor, and s0,ij is the i-th expansion point
regarding the j-th neighbor of the queried value. So the value of the approximation ŝ0,i (p)
is defined as the weighted mean between the k values ŝ0,i (pj) with the smallest distance
between p and pj in parameter space [133]. We choose the Euclidean distance as metric and
the inverse of the distance as weighting function. This assigns a higher weight to a point
from the training data with a smaller distance, allowing a smoother approximation of the
original solution space. For the numerical experiments covered in the following, the kNN
models were found to be able to approximate also higher dimensional solution spaces with
good accuracy.

Multivariate polynomial regression

In the context of multivariate polynomial regression (MPR), the function s0,i (p) of the
location of the ith expansion point can be approximated by a polynomial of order q of the
form

ŝ0,i (p) = α0 +
l∑

j1=1
αj1pj1 +

l∑

j1=1

l∑

j2=j1
αj1j2pj1pj2 + . . .

+
l∑

j1=1

l∑

j2=j1
· · ·

l∑

jq=jq−1

αj1...jqpj1pj2 · · · pjq ,
(5.10)

with coefficients αj0 , αj1 , . . . αj1...jq [72, 249]. The coefficients are obtained by solving an
overdetermined equation system and minimizing the mean squared residual error, also known
as least squares fitting. If the individual parameter values in p greatly differ in size, the
parameters should be scaled to have a similar magnitude before fitting the polynomial.
Otherwise, the least squares problem is likely to be ill-conditioned. Also a high order q
might lead to an ill-conditioning of the least squares problem. However, in the considered
models, the functions s0,i (p) are relatively smooth, so a sufficient accuracy can be achieved
with a relatively low q. Compared to the local approach of the kNN regression, the MPR



5.2 Prediction of near optimal interpolation points for parametric model order reduction 163

is fitted to the global parameter space allowing a better generalization if the solution space
is smooth, but being not as accurate regarding jumps or discontinuities in the solution
space. Increasing the polynomial order to approximate this behavior is very likely to lead
to a numerically ill-conditioned least squares problem. MPR therefore has the potential to
perform better in approximating smooth functions.

Support vector regression

A support vector machine (SVM) finds an n-dimensional tube with a certain width ε con-
taining most samples from a set of training data [26, 257]. This tube is found by solving an
optimization problem regarding the given error tolerance ε and weighting all samples lying
outside this tube by a loss function. The resulting manifold is described by the so called
support vectors, wich can be used for regression analyses. This methodology is a general-
ization of a SVM and termed support vector regression (SVR). Predictions for new input
parameters are found by

ŝ0,i (p) =
l∑

j=1

(
αj − α∗j

)
G (pn,p) + b, (5.11)

where the parameters α, α∗ are found by solving a minimization problem, b is the intercept
of the regression, and G (·) is a Gram matrix built using a kernel function. This function
can be a radial basis function G (pi,pj) = exp

(
−‖pi − pj‖2

F

)
, for example.

5.2.2 Parametric model order reduction algorithm

We now combine the regression models with a moment matching method based on SO-IRKA
to obtain an algorithm for parametric model order reduction. Similar to the other model
order reduction methods, it is split in an offline and an online phase. The map σ : P → S
between the realizations of the parameter set p ∈ P and the corresponding optimal expansion
points σ (p) ∈ S obtained from SO-IRKA is sought during the algorithm’s offline phase. The
vector valued function σ (p) returns a set of optimal expansion points for a model under
parameters p. It can be seen as the result of SO-IRKA. Full order models with different
parameter realizations p are used to fill a database of optimal expansion points σ (p). The
gathered data will be termed training data. We then use a regression method to learn the
map from the parameter input p to the interpolation points σ (p). In the online phase,
appropriate interpolation points for a new parameter set pnew are retrieved from this map
and used to compute the reduction bases V, W without the need for iterations in SO-IRKA.
Projecting the full model onto this basis yields a new reduced model which is not optimal
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in the sense of the H2-norm, but is expected to approximate the full order system with a
comparable level of accuracy.
Up to 2r linear systems of equations of size n have to be solved during the online phase for

each reduced model, which can be of considerable computational cost. Benner, Grundel, and
Hornung [46] suggest using intermediate models of moderate size but not necessarily optimal
quality to compute the actual reduced model . Here, the projection matrices computed in
the training phase are reused to compute projection matrices V,W, which project the full
system onto a subspace of order q > r. This intermediate model is then used to compute
the projection matrices for an unknown set of parameters during the online phase. However,
the original system matrices are required to be in affine form, which is not applicable for
all cases, especially if the geometric location of parts of the model is parametrized. In the
following, we will assume the computational costs of solving r equation systems of size n
to be affordable during the online phase. To speed up the creation of the dataset, it is
advisable to reuse the expansion points at convergence of a model with a similar parameter
configuration as initial expansion points as outlined in section 5.1.
Rather than interpolating the complete set valued function σ (p) at once, we learn r

independent models, one for each interpolation point. By doing so, we obtain r scalar
valued functions σi (p) , i = 1, . . . , r. For vibro-acoustic systems, these functions can be
considered smooth and do not exhibit jumps or discontinuities. They can therefore be
approximated with high accuracy by interpolation methods. For each model in the training
dataset, the expansion points are ordered by their absolute value before training the data-
driven model. This means, there will be one model for the “first” expansion point (i.e.
with the lowest absolute value), another for the “second”, and so on. To illustrate this,
fig. 5.5 plots the absolute value of the first expansion point for a model of a cantilevered
beam over different parameter values for the beam length and its Young’s modulus. It can
be seen, that the function surface is smooth and no jumps are present, as the number of
modes per frequency band changes smoothly depending on geometric or material properties
of the model. This is the case for many vibro-acoustic systems [172]. After querying each
model, the obtained interpolated expansion points are combined to a new set σnew and the
corresponding projection matrices V, W are computed using the full order model.
If the expansion points are matched one by one, i.e. the order of the reduced systems in the

training data is not constant, it is necessary to determine a reasonable order of the reduced
model for a new parameter set p. For this, an additional model is trained, which maps the
parameter sets in the training data to the acquired reduced orders. Again, the required orders
change relatively smoothly with varying parameters, so a reasonable interpolation quality
can be achieved. Figure 5.6 plots the required orders for the beam model, if a frequency
range from zero to 10 kHz is to be matched.
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Figure 5.5: The absolute value of the first expansion point |s0| of a cantilevered beam excited by a point
force at the free end. Parameters are the beam length l and Young’s modulus E.

Not all optimal interpolation points obtained from SO-IRKA are necessarily mirror images
of poles of the corresponding transfer function [12, p. 87]. This means, that SO-IRKA can
yield multiple interpolation points around one physical pole for one set of parameters but
not for the neighboring set, for example. Therefore, the interpolation points need to be
processed in a way, that the “first” point in the sense of fig. 5.5 resembles the “first” pole,
and so on. We achieve this by converting the reduced model’s transfer function into the pole
residual form

Hr (s) =
r∑

i=1

Ri

s− λi
, (5.12)

with the reduced system’s eigenvalues λi, which are, up to the convergence tolerance, iden-
tical to the mirror images of the interpolation points obtained from IRKA, and the corre-
sponding residuals Ri. The residuals can be computed from an eigenvalue decomposition of
the reduced system [225, 226], which is computationally cheap to perform. The higher the
absolute value of a residual, the higher the corresponding pole’s dominance in the transfer
function; so removing expansion points with a small residual does not affect the system’s
transfer function considerably. Because we only want to use expansion points corresponding
to physical poles to train the regression models, we only use the expansion points λi with a
residual Ri larger than a certain threshold to compute the projection bases V, W. As well
as removing these residuals from the transfer function, removing the corresponding expan-
sion points from the projection bases has only little effect on the transfer function of the
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Figure 5.6: The required orders for IRKA to compute a reduced model of a cantilevered beam valid up to
10 kHz.

reduced system. The resulting sets of interpolation points for different parameters can now
be ordered in a way, that the first entry in the set corresponds to the first physical pole and
so on.
The resulting algorithm’s offline phase is given in algorithm 5.2. The postprocessing step

in algorithm 5.2 line 5 includes the computation of the expansion points’ residuals and
discarding expansion points which residuals have low values as described above. Any of the
methods overviewed in section 5.2.1 can be used to learn the map in algorithm 5.2 line 8.

Algorithm 5.2 Offline phase
Require: Parametrized model Σ (p), parameter samples P = [p1, . . . ,pk]
Ensure: A trained regression model representing map σ : p→ σ (p)
1: Initialize S
2: for i = 1, . . . , k do
3: Build full model Σ (pi)
4: Compute optimal expansion points σi using SO-IRKA
5: Postprocess σi
6: S (: ,i) = σi
7: end for
8: Use P and S to train a regression model to find map σ : p→ σ (p)

The following online phase is summarized in algorithm 5.3. The projection matrices V, W
computed in algorithm 5.3 line 3 are obtained from multi-point moment matching while
considering an interpolation order of 1.
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Algorithm 5.3 Online phase
Require: Map σ : p→ σ (p) as trained regression model, parameter set pnew
Ensure: Reduced model Σr (pnew)
1: Build full model Σ (pnew)
2: Query regression model to obtain σ (pnew)
3: Compute projection matrices V, W using σ (pnew)
4: Obtain Σr (pnew) by projection

5.2.3 Numerical experiments

To assess the performance of the different regression models employed in the algorithm,
two parametrized models of vibro-acoustic systems are considered: the clamped beam from
section 2.5.1 and an acoustic cavity, excited by a vibrating membrane attached to a bound-
ary of the cavity. Due to the vibro-acoustic coupling, the cavity model’s system matrices
are not symmetric and the damping behavior is spatially varying, making it an interesting
experiment to assess the methods in a vibro-acoustic context.

The performance of the parametric reduced order models regarding the different regression
models and underlying reduction procedures is measured using the normalized root mean
square error (NRMSE)

εNRMSE = ‖y− yr‖√
nf (max (|y|)−min (|y|)) , (5.13)

where y is the frequency response of the full order model in the considered frequency range,
yr the response of the reduced model obtained with predicted expansion points, and nf the
number of frequency samples in the response. All computations have been performed on a
workstation with an Intel® Xeon® Gold 6136 CPU @ 3.0 GHz with 256 GB RAM.

Beam model

We model the vibration of two sets of clamped Euler-Bernoulli beams with square cross
sections A = 1·10−6 m2 subjected to a harmonic load at the free end using a finite element
model of order n = 300. Proportional Rayleigh damping is applied, such that C = αM+βK.
Set P1 is parametrized regarding length l and Young’s modulus E, set P2 additionally
regarding material density ρ and proportional damping parameters α, β. The parameter
sampling for both datasets is summarized in Table 5.1.
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Table 5.1: Parameter ranges, number of samples, and sample distribution for the two beam datasets.

Parameter Range n samples Distribution
P1 P2

l [1.5, . . . , 2.5] m 10 5 linear
E [2.1·109, . . . , 2.1·1011] Pa 20 5 linear
ρ [6000, . . . , 8000] kg m−3 - 5 linear
α [1.64·10−4, . . . , 1.64·10−2] s−1 - 3 logarithmic
β [9.1·10−8, . . . , 9.1·10−6] s - 3 logarithmic

Each combination of the parameters is present in the dataset, resulting in 200 samples for
P1 and 1125 samples for P2. The training data for both sets contain every third parameter
combination of the complete dataset, the rest of the dataset is used for testing the approxi-
mation. The training set for P1 contains 67 samples and the resulting models are tested with
the remaining 133 samples; the training set for P2 contains 375 samples, its test set contains
750 samples. For each set of models P1, P2, two datasets are computed: one with SO-IRKA,
reducing the original model to a fixed size of r = 20, and one using the adaptive SO-IRKA
strategy described in section 4.4.4 for a frequency range of s = [0, . . . , 10 000] rad s−1.
Increasing l and ρ shifts the transfer function peaks towards lower frequencies, increasing

E shifts them towards higher frequencies. Increasing α or β decreases the amplitude of
the transfer function but has little effect on the location of the peaks. The effect of the
parameters on the transfer function is shown in fig. 5.7. Comparing the model with the
most response peaks to the one with the fewest, it is obvious that different reduced orders
are required to reduce these two models efficiently and setting a fixed reduced order for all
samples in the dataset would either lead to a poor approximation for some parameter sets
or to an overestimation of the required order for the other parameter sets, thus reducing the
efficiency of the reduced model.
For each sample, the expansion points are predicted according to the chosen regression

method. The according reduced model is computed and the NRMSE over the frequency range
s = [0, . . . , 10 000] rad s−1 is computed. Fig. 5.8 shows the NRMS of the approximation error
for all models created with kNN, MPR, and SVR with the training data from P1, Fig. 5.9
for the training data from P2. The boxes mark the lower and upper quartile, the horizontal
lines in the boxes show the median error, and the whiskers reach to the maximum and
minimum values of the NRMSE. The kNN model is fit for k = 3 neighbors and a Gaussian
kernel function G (pi,pj) = exp

(
−‖pi − pj‖2

F

)
is used in the SVR. MPR is employed using

a quadratic polynomial (q = 2) as well as a polynomial of order q = 8. The least squares
problem is well-conditioned for all considered cases.
The computation times to fit the different models for the two parameter case are tkNN =

0.076 s for the kNN model, tMPR,2 = 0.057 s and tMPR,8 = 0.063 s for the MPRs, and tSVR =
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Figure 5.7: Transfer functions of two beam models from P2 at different parameter samples. p1081 is the
sample with the highest number of response peaks in the considered frequency range, p37
the sample where the peaks are at locations furthest away from zero.
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Figure 5.8: NRMSE for the reduced models obtained with expansion points from kNN, MPR, and SVR
models with parameters from test data from P1.

4.358 s for the SVR; for the five parameter case the models take tkNN = 0.351 s, tMPR,2 =
0.133 s, tMPR,8 = 4.428 s, and tSVR = 28.485 s to be fitted. The SVR did not succeed in
robustly approximating the location of expansion points for projection in the five parameter
setting, possibly due to a too small set of training data. kNN and MPR yield good results,
even for the high dimensional parameter space of P2. For the two parameter case P1,
all methods performed similarly with comparable median errors. Using SO-IRKA with
an adaptive order and learning an additional model with this order does not have a large
influence on the median approximation error for P1. However, learning the required reduced
order for P2 using a MPR yields a model prone to underestimating the required order for
parameter combinations at the boundaries of the sampled region. In this case, the local
approach of kNN outperforms the global approach of the MPR. The resulting outliers have
very high errors compared to the kNN models. The actual approximation quality of the
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Figure 5.9: NRMSE for the reduced models obtained with expansion points from kNN and MPR models
with parameters from test data from P2. The SVR does not succeed in approximating the
expansion point locations due to a too small set of training data. The last two data points
plot the errors of reduced models where the order is obtained from a kNN model and the
expansion points are interpolated by a MPR.

sampling point locations is of comparable quality for kNN and MPR, so combining a kNN
model for the required order with a MPR approximation for the sampling point locations
yields better results. The SVR with adaptive order also produced some outliers originating
from an underestimated required order of the reduced system. The order of the polynomial
employed in the MPR does not have a large influence on the approximation quality. Despite
the rather sparse parameter sampling in P2, the models fit with kNN and MPR perform
well. The average order of all considered models is r = 10.4 for P1 and r = 12.9 for P2,
compared to the fixed order of r = 20. By fitting also the reduced orders, the computational
cost of computing the projection basis can therefore be potentially decreased by around 40 %
in this case. The kNN method showed better results for fitting the required order of the
reduced model. Here, the NRMSE is in the same order of magnitude than for the fixed
order experiments. A global fitting using MPR is, however, not as suited for estimating the
required reduced order.

To show the validity of the approach to use near-optimal expansion point locations fig. 5.10
exemplary plots the transfer functions for one parameter realization. The full model’s trans-
fer function is compared to the transfer functions of the reduced model computed with
SO-IRKA and the reduced model computed with interpolated expansion points obtained
from a kNN model. It can be seen that the approximation errors of both reduced models
are nearly the same.
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Figure 5.10: Transfer functions and relative errors for dataset p1038, which has the highest εNRMSE in the
training data from P2. Adaptive SO-IRKA converges to a reduced order r = 42, approxi-
mating the full model’s transfer function well in the frequency range of interest. The kNN
model to determine the required order also predicted r = 42, the reduced model based on
the interpolated expansion points also shows a very low relative error.

Acoustic cavity model

The second considered example consists out of a two-dimensional rectangular acoustic cavity
with rigid walls parallel to the coordinate axes. At the wall along x = 0, a vibrating beam-
like structure of height a attached to an aperture in the middle of the wall is excited by a
harmonic pressure load and radiates into the acoustic fluid of the cavity. For the structure,
the material parameters E = 69 GPa, ρ = 2650 kg m−3, and ν = 0.22 and proportional
damping with α = 1.64·10−2 s−1 and β = 9.1·10−8 s are considered. The cavity is filled with
air which compression wave speed is set to ca = 343.5 m s−1. The acoustic pressure resulting
from the excitation of the structure is measured at a location near the middle of the cavity.
Figure 5.11 sketches the system. The system is discretized using a finite element model
of order n = 3000, which is parametrized regarding the size of the vibrating membrane
a = [0.05, . . . , 0.2] m and the cavity length in x-direction l = [0.4, . . . , 0.7] m. The parameter
space is sampled with 10 linearly distributed membrane sizes ai and 20 linearly distributed
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Figure 5.11: Sketch of the 2d acoustic cavity with length l, height h and membrane size a. The black walls
are reflecting, the orange membrane is flexible.

cavity lengths li, so the complete dataset contains 200 samples. The training dataset contains
67 samples, the remaining 133 samples represent the test dataset. The parameters are
sampled according to a linear distribution between the respective minima and maxima and
the training data is chosen to be every third parameter combination. Contrary to the beam
model, increasing parameter a does not shift the peaks of the transfer function in whole, but
changes the distribution of the peaks, as plotted in fig. 5.12. Because of the parametrization
of the model’s shape in a, it is not trivial to find an affine parameter representation of the
model, which is a prerequisite for many parametric model order reduction methods.
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Figure 5.12: Transfer functions of two cavity models at different parameters.

Figure 5.13 compares the NRMS approximation errors of the reduced models using the
parameters from the test dataset regarding the different regression models. All learning
methods yield reduced models of comparable quality with acceptable accuracy. The median
errors are slightly higher than those present in the beam model and outliers with errors of
some magnitudes higher than the median can be observed. The models based on fixed and
adaptive order IRKA again perform similarly. Contrary to the beam models, not all moments
in the transfer function are well separated and some modes may overlay each other. This
results in locations of the expansion points lying on a not as smooth surface as it is the case for
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the beam model (see figs. 5.5 and 5.6) and thus a higher overall error. Additionally, a mode
being overlaid by other modes for a certain parameter combination might be required for a
good approximation of a model with similar parameters. In this case, the interpolation misses
this expansion point location, again resulting in a higher approximation error. Nevertheless,
all errors are in an acceptable range and no reduced model fails to approximate the full
system response completely. The computation times to fit the different models for the two
parameter case are tkNN = 0.063 s for the kNN model, tMPR,2 = 0.054 s and tMPR,8 = 0.082 s
for the MPRs, and tSVR = 1.767 s for the SVR. This shows, compared to the two-parameter
beam model, that the time to fit the models is independent of the full model order n.
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Figure 5.13: NRMSE for the cavity reduced models obtained with expansion points from kNN, MPR, and
SVR models with parameters from the test dataset.

5.2.4 Conclusive remarks

We presented a strategy for parametric model order reduction of vibro-acoustic systems
using regression models. The regression model yields expansion point locations for a moment
matching MORmethod which ensure a reduced model of good approximation quality without
the need for iterations. After having obtained the database with optimal expansion points
for a number of parameter samples, the main computational cost lies in projecting the full
order model onto the reduced space, requiring at most 2r decompositions of a matrix of
order n. Especially the kNN regression model is able to robustly predict valid locations for
the expansion points. The computational cost of fitting the kNN model from the previously
obtained data is low compared to the computations necessary to find the expansion point
locations using the full order model. The MPR also performs well, also for a high number of
parameters, if the parameters vary smoothly over their considered range. The SVR yields
good results for smooth solution spaces, but could not be fit for a larger number of parameters
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given a dataset of limited size in the presented experiment. However, fitting the SVR has
a substantially higher computational cost than the other two methods. It should be noted
that the fitting of all models is independent of the full model order n and is only affected by
the number of parameters and the amount of training data.
The algorithm is invasive, as it requires access to the original model and the system needs

to be assembled for each chosen parameter before the reduction. To obtain a non-invasive
parametric reduced model independent from the original model, the parametric Loewner
framework discussed in section 5.1 can be employed in a postprocessing step. In this setting,
the regression method computes reduced models of the original system for various parameter
realizations. Their transfer function evaluations are then used in the parametric Loewner
framework to obtain a parametric reduced model independent of the full order system. The
use of the regression method decreases the high computational cost of obtaining all necessary
transfer function data. As the rank of the Loewner matrix is related to the amount of data
necessary for an accurate approximation of the original system, additional data for yet
not considered parameter sets can be added to the Loewner database with relatively low
computational effort.
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6 Conclusions and Outlook

In order to design and optimize vibro-acoustic structures regarding their radiated noise or
general vibration behavior, engineers rely on mathematical models describing the encoun-
tered physical phenomena. The numerical representation of these models, however, often
leads to very large models which cannot be evaluated with appropriate efforts regarding
time and computational resources. Therefore, strategies to reduce the computational com-
plexity of such models are inevitable in engineering practice. The main goal of this work was
to investigate efficient and robust strategies to compute reduced models for complex vibro-
acoustic systems and establish frameworks for model order reduction applicable to a wide
range of problems. Appropriate reduced models are much less computationally demanding
regarding memory and storage requirements and can be used as sufficiently accurate surro-
gates for the original models. A prerequisite for their application in engineering practice is,
however, an efficient and robust generation process.
Such robust model order reduction processes are required to meet certain criteria: Firstly,

it is important to have reduction methods which are able to depict the input/output relation
of the original system as accurate as possible. Another important factor in assessing if a
method is applicable in engineering practice is its robustness and usability. Here, a lower
accuracy is often acceptable as long as it stays in certain bounds; it is more important, that
the algorithms require only few input parameters and still yield acceptable results if some
of these parameters are not optimally chosen. Additionally, the cost of obtaining the result
is often a very important factor in engineering practice. As many engineering tasks involve
the optimization of systems regarding model parameters, efficient surrogate models should
be valid for a certain range of model parameters. The works presented in this thesis are
aimed at providing approaches to these different fields in order to help establishing efficient
evaluation techniques applicable in engineering practice.

6.1 Assessment of research objectives

The research objectives stated in the beginning of the thesis are now assessed regarding the
achievements presented throughout the work:
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Accurate and reliable representation of complex vibro-acoustic systems in reduced

space, especially for systems with frequency dependent material properties A main
objective in successful model order reduction is to obtain models which approximate the
original system using a surrogate model with an as low as possible order. In section 4.1,
established model order reduction methods were assessed regarding their applicability to
vibro-acoustic systems. The considered systems showed different properties, for example
symmetry or frequency dependency of the system matrices, which lead to differently shaped
transfer functions. Most methods were found to be applicable and the resulting reduced
models reached acceptable to very good accuracy. Limitations of the methods were identi-
fied, as original models with a too high amount of undamped modes cannot be represented
well by low order reduced models. Additionally, very localized effects in the transfer func-
tion may easily be missed, if the methods are applied without taking the original system’s
response into account. This results in inaccurately reduced models.
The complex frequency dependent damping mechanisms encountered in various vibro-

acoustic applications, such as poroelastic systems or specific cases of viscoelastic damping,
required a new reduction technique. The new method presented in section 4.2 extended a
standard moment matching method by automatically approximating the frequency depen-
dent terms, such that this dependency could be considered in reduced space. Compared
to existing methods based on a Taylor approximation, this method can be applied auto-
matically and also higher order derivatives can be considered without modifications. The
consideration of higher order derivatives also showed the possibility to generate smaller re-
duced models while having a comparable accuracy. The proposed method is not limited
to vibro-acoustic systems but can be applied to any form of transfer function containing
non-polynomial terms.
Vibro-acoustic models are often required to be valid in a specific frequency region only.

An extension to the iterative rational Krylov algorithm (IRKA) for second order systems
being able to approximate an original system in a specific frequency region only was shown
in section 4.3. This method relies on the second-order structure of the original system and
a strategy to reduce the computational cost of the optimization iterations inside IRKA has
been presented.

Robust and reliable automatic model order reduction methods for the application to

vibro-acoustic systems As observed for some models in the applicability study in sec-
tion 4.1, an inappropriate choice of expansion points has a large influence on the approx-
imation quality of moment matching methods. The other degree of freedom which has to
be considered before reducing a system is a reasonable size of the reduced order model.
While optimal locations for the expansion points can be obtained using iterative methods,
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an appropriate choice for the required reduced order is not easy to obtain a-priori. There-
fore, methods estimating the approximation error of reduced models need to be employed,
if the original system’s response is not available. Automatic algorithms finding an appro-
priate reduced order and valid locations for expansion points in an adaptive way have been
investigated and compared in section 4.4.
Two algorithms combining Krylov subspace methods with techniques for error estimation

have been applied to different vibro-acoustic systems and yielded reasonably sized reduced
models showing a good accuracy. Most employed error estimators could also be successfully
applied, with some having difficulties with ill-conditioned system matrices. The most promis-
ing method for estimating the approximation error was comparing the frequency response of
two reduced models obtained using different reduction parameters and using this difference
as error estimation. This is convenient, as it is straightforward to apply and the required
reduced models are a byproduct of the proposed adaptive algorithms. The algorithms are
independent of the employed moment matching method, so they could be applied to any
kind of vibro-acoustic system.
Another investigated method was to use the location of a reduced system’s eigenvalues

computed during the application of IRKA as indicator whether the considered reduced order
is large enough. The strategy increases the size of the reduced model adaptively by selecting
all eigenvalues of the reduced system which lie in a specified frequency region as locations
for new expansion points. While adaptive methods relying on error estimators are prone to
overestimate the required reduced order, this modification of IRKA typically yields smaller
reduced models but is also computationally more expensive. A combination with CIRKA
was found to successfully reduce the computational cost while still ensuring accurate reduced
order models.

Model order reduction strategies for parametrized vibro-acoustic systems Many vibro-
acoustic structures are subject to exhaustive optimization studies regarding possibly large
sets of parameters during their design phase. Reducing the computational cost of the required
system evaluations has the potential to save a large amount of time and computational re-
sources. Strategies to obtain reduced models retaining the dependence on a set of parameters
have therefore been investigated in chapter 5. The possibility to compute a reduced model re-
lying only on transfer function evaluations is especially interesting in a vibro-acoustic setting,
as measurement data from real world structures is often available. This data can be used,
for example, to create models for systems which cannot be fully described by mathematical
models, for example because of uncertainties in the material properties.
Additionally, a method learning the map between model parameters and near optimal

locations for expansion points for a moment matching method was proposed. Here, the
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underlying physics of the model are used to obtain classifiers for the full scale model, which
can be processed by data driven regression methods. Given enough input data, the ob-
tained expansion point locations have a good quality and the resulting reduced models are
accurate. At the same time, the data-driven regression models predicting the expansion
points are of moderate size, as they only process distinct values. This is especially benefi-
cial compared to classic parametric model order reduction methods, where each considered
parameter significantly increases the size of the projection bases.

6.2 Suggestions for future work

By achieving the research results presented above, new questions regarding some of these
topics emerged. They can be the basis of future work and are summarized in the following:

• The automatic method to include frequency dependent material properties in a Krylov
subspace presented in section 4.2 can be applied to various other problems. An in-
teresting choice would be to apply it to systems where a free radiation is modeled
with a perfectly matched layer (PML). Using a standard formulation, a PML leads
to frequency dependent and complex valued system matrices. Unlike the problems
considered in this thesis, this frequency dependency cannot be easily written in an
affine form. This means, that the system matrices need to be reassembled for every
considered frequency step. Studies showed, that it is possible to use a PML tuned to
a specific frequency also for a larger range of frequencies under an acceptable loss of
accuracy [259]. The choice of this expansion frequency is, however, subject to optimiza-
tion as no universal a-priori measure is available. Lenzi et al. [162] used an alternative
formulation of a PML, which made it possible to write the frequency dependency as
polynomial functions of higher order. This formulation could be used together with
the method from section 4.2 in order to compute efficient models for radiation and
scattering problems.

• In this thesis only standard second-order systems have been analyzed with itera-
tive Krylov methods. While this leads to interesting possibilities regarding finding
an appropriate order for the reduced model in an adaptive way or limiting the fre-
quency range of approximation, the methods are not applicable to general vibro-
acoustic systems. The realization-independent variant of IRKA proposed by Beattie
and Gugercin [38] could be used to find optimal locations for expansion points also
for poroacoustic systems, for example. This, however, comes at the cost of losing the
benefits of having twice as many eigenvalues as required for finding expansion point
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locations. This fact was exploited for standard second-order systems throughout sec-
tions 4.3 and 4.4.

• It would also be interesting to investigate strategies to not only obtain expansion points
for SO-IRKA considering the locations of the reduced system’s eigenvalues, but to also
take their corresponding dominance into account. It would be interesting to see, if it
is possible to create even more compact reduced models if only the eigenvalues with
a certain dominance lying in a specified frequency range are considered as locations
for expansion points, instead of considering all eigenvalues located in this frequency
range. As the transfer function of the intermediate reduced model inside the IRKA
iterations can be obtained without high computational effort, an automatic procedure
to determine which expansion points should be kept and which can be omitted can be
employed. Here, the least dominant eigenvalues are successively truncated until the
transfer function changes more than a defined tolerance.

• The error estimation methods and the resulting algorithms for automatic model or-
der reduction presented in section 4.4 were found to result in accurate reduced order
models. There is, however, still room for improvement, as the methods are sensitive
to some parameters, which can only be determined heuristically. These include, for
example, the increment size for the associated Krylov spaces. Also a stagnation of
approximation quality is not always directly recognized by the algorithms, potentially
leading to unnecessarily large reduced models. This “too large” reduced model could
be reduced to a smaller model in a second step by employing a standard, non-iterative
method. In this setting, the solution of the intermediate reduced model is available and
can therefore be used for error assessment of the final reduced model. Additionally,
other error estimators, as for example proposed by Feng et al. [106, 107, 108] may be
assessed regarding their applicability and performance on vibro-acoustic systems.

• A combination of the two parametric model order reduction methods presented in
sections 5.1 and 5.2 would be beneficial. The first step in generating the required data
is the same for both methods and consists out of obtaining reduced models and their
optimal expansion points using an iterative Krylov method. The transfer function
measurements of the reduced models are then used to compute the parametric model
using the Loewner framework and the expansion points are the basis to learn the map
between input parameters and expansion point locations using a regression model. The
parametric Loewner framework encodes the required amount of training data to obtain
a good quality model; so if more data is required to obtain an accurate parametric
model, additional training data can be generated using reduced models computed with
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the interpolated expansion points resulting from the regression model.

• The possibility to use other methods than standard regression models in the paramet-
ric model order reduction method from section 5.2 should be investigated. This could
include, for example, prediction based on polynomial chaos expansion [231]. Addition-
ally, it could be investigated if it is beneficial to employ regression methods based on
neural networks in the vibro-acoustic setting, similar to Swischuk et al. [243]. This
could have the potential of allowing a sparse sampling of the parameter space while
still being able to yield good predictions for near-optimal expansion points.

d
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A Appendix

A.1 Equivalent first-order systems for second-order

systems

Various formulations to rewrite second-order systems as equivalent first-order systems are
available and can be found. Salimbahrami [228] gives an overview. The formulations ref-
erenced in this thesis are given in the following. Here, a matrix J denotes an arbitrary
invertible matrix of dimensions n× n.

• First companion form. Note: If K and M are symmetric and invertible, choosing
J = −K preserves the symmetry of the original second-order system:

A(1) =

 0 J
−K −C


 ,B(1) =


0
F


 ,C(1) =


GT

0




T

,E(1) =

J 0

0 M


 (A.1)

• Second companion form:

A(1) =

−K 0

0 J


 ,B(1) =


F

0


 ,C(1) =


GT

0




T

,E(1) =

C M

J 0


 (A.2)

A.2 A decomposed FE formulation for poroelastic materials

The weak formulation for poroelastic Biot materials eq. (2.102) can be decomposed into
an affine representation of frequency dependent function φ (s) and corresponding constant
matrices A. The individual parts of eq. (2.102) are reproduced for reference:

Kp,s =
∫

Ω
BT

s DBs dΩ, (2.103)

M̃p,s = ρ̃
∫

Ω
NT

s Ns dΩ, (2.104)

K̃p,f = φ2

ρ̃f

∫

Ω
∇NT

f∇Nf dΩ, (2.105)
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M̃p,f = φ2

R̃

∫

Ω
NT

f Nf dΩ, (2.106)

Z̃p,sf =
(
γ̃ + φ

(
1 + Q̃

R̃

))∫

Ω
NT

s∇Nf dΩ + φ

(
1 + Q̃

R̃

)∫

Ω
∇NT

s Nf dΩ, (2.107)

fp,s =
∫

Γ
NT

sσt,n,Γ dΓ, (2.108)

fp,f = φ
∫

Γ
NT
f (uf,n − us,n) dΓ. (2.109)

Under the assumption φ
(
1 + Q̃/R̃

)
u 1, which is the case for the majority of porous mate-

rials used in a vibro-acoustic setting, a possible affine decomposition of eq. (2.102) into one
constant matrix without a frequency dependent function and six constant matrices with a
corresponding frequency dependent function φi (s) is given by

6∑

i=0
φi (s) Ai =


Kp,s −

∫
Ω NT

s∇Nf dΩ− ∫Ω∇NT
s Nf dΩ

0 0
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0 0
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+ s2φ2
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0 0

0
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f Nf dΩ
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.

(A.3)

Here, 0 denotes a zero matrix of appropriate size.
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