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Abstract

Pathological enlargements of the descending aorta, more commonly known as abdominal aortic
aneurysms (AAAs), belong to the class of vascular diseases and are associated with typical risk
factors such as age, tobacco use and what could be referred to as an unhealthy lifestyle. Although
the clinical treatment of AAAs by either open or endovascular repair is an established procedure,
the decision making for cases at the threshold of the maximum diameter criterion (55 mm for
men, 50 mm for women) can be ambiguous, calling for additional, patient-specific rupture risk
indicators. In particular, a better and predictive assessment of AAA growth is desirable, such
that individual surveillance strategies can be applied and growth-related risks determined. With
the growing amount of diagnostics data and an expanding digital infrastructure, these represent
logical steps in the context of personalized medicine. At the same time, advances in the biome-
chanical modeling of the cardiovascular system and a growing availability of computational
resources have encouraged detailed simulation models in order to predict in-vivo quantities of
interest or the future progression of a disease.

Motivated by these developments and to address the aforementioned challenges in the clinical
management of AAAs, biomechanical approaches to the rupture risk assessment have emerged
as promising supplements to the clinically established maximum diameter criterion. This thesis
builds upon these developments and proposes a comprehensive biomechanical rupture risk as-
sessment framework, which makes use of personalized computational models and where special
attention is paid to the probabilistic treatment of relevant, unknown model parameters using clin-
ically accessible data. It is being argued that to take these uncertainties into account is crucial
in clinical applications, when based on the model’s predictions an educated decision needs to be
made. In particular, it is shown that uncertainties can represent important statistical information
that contribute to model understanding and more reliable results.

Many other computational biomechanics applications limit themselves to deterministic meth-
ods. This is mainly due to the additional computational effort associated with stochastic anal-
yses, which further complicates a possible clinical use of such solutions. A major contribution
of this work lies in the development of efficient uncertainty quantification (UQ) strategies for
the biomechanical assessment of AAAs. Different approaches to the forward and inverse prop-
agation of uncertainties are discussed, adjusted for the purposes of this thesis and demonstrated
in several numerical examples involving retrospective AAA cases. Applications focus on a) the
probabilistic, patient-specific description of invasive vessel wall quantities, b) the biomechanical
rupture risk assessment at the time of data collection in the clinic based on these quantities, c)
the Bayesian calibration of growth parameters based on two consecutive CTA scans, as well as
d) the propagation of these parameters for a predictive rupture risk evaluation at future points in
time.
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Zusammenfassung
Pathologische Erweiterungen der absteigenden Aorta, besser bekannt als abdominale Aortenan-
eurysmen (AAAs), gehören zu den Gefäßkrankheiten und werden mit typischen Risikofaktoren
wie Alter, Tabakkonsum und einem allgemein ungesunden Lebensstil in Verbindung gebracht.
Obwohl die klinische Behandlung von AAAs durch offene oder endovaskuläre Therapie ein
etabliertes Verfahren ist, kann die Entscheidungsfindung für Fälle im Randbereich des maxi-
malen Durchmesserkriteriums (55 mm für Männer, 50 mm für Frauen) nicht eindeutig sein,
sodass zusätzliche, patientenspezifische Indikatoren für die Beurteilung erforderlich sind. Ins-
besondere wäre eine bessere und prädiktive Bewertung des AAA-Wachstums wünschenswert,
sodass individuelle Überwachungsstrategien angewandt und wachstumsbedingte Risiken be-
stimmt werden können. Mit der steigenden Menge an diagnostischen Daten und einer wach-
senden digitalen Infrastruktur sind dies konsequente Schritte in Richtung personalisierte Medi-
zin. Gleichzeitig haben Fortschritte in der biomechanischen Modellbildung des kardiovaskulären
Systems und eine größere Verfügbarkeit von Computerressourcen detaillierte Simulationsmo-
delle ermöglicht, um in-vivo Zustände oder den zukünftigen Verlauf einer Krankheit vorherzusagen.

Motiviert durch diese Entwicklungen und zur Bewältigung der oben genannten Herausfor-
derungen bei der klinischen Behandlung von AAAs haben sich biomechanische Ansätze zur
Bewertung des Rupturrisikos als vielversprechende Ergänzung zum klinisch etablierten maxi-
malen Durchmesserkriterium erwiesen. Die vorliegende Arbeit baut auf diesen Entwicklungen
auf und stellt eine umfassende Vorgehensweise für die biomechanische Bewertung des Rup-
turrisikos vor, welche personalisierte Berechnungsmodelle verwendet und bei der besonderes
Augenmerk auf die probabilistische Behandlung relevanter, unbekannter Modellparameter unter
Verwendung klinisch zugänglicher Daten gelegt wird. Die Berücksichtigung dieser Unsicher-
heiten in klinischen Anwendungen wird als entscheidend eingestuft, da auf der Grundlage der
Modellvorhersagen eine fundierte Entscheidung getroffen werden muss. Es wird gezeigt, dass
Unsicherheiten wichtige statistische Informationen enthalten können, die zum Verständnis des
Modells und zu zuverlässigeren Ergebnissen beitragen.

Verwandte Anwendungen aus der numerischen Biomechanik beschränken sich oftmals auf
deterministische Methoden. Dies ist vor allem auf den zusätzlichen Rechenaufwand zurück-
zuführen, der mit stochastischen Analysen verbunden ist, was eine mögliche klinische Anwen-
dung solcher Lösungen zusätzlich erschwert. Ein wesentlicher Beitrag dieser Arbeit liegt in der
Entwicklung effizienter Methoden zur Quantifizierung von Unsicherheiten für die biomecha-
nische Beurteilung von AAAs. Dazu werden verschiedene Ansätze zur Berechnung des Ein-
flusses von Unsicherheiten diskutiert, für diese Arbeit angepasst und in mehreren numerischen
Beispielen mit retrospektiven AAA-Fällen untersucht. Die Anwendungen konzentrieren sich auf
a) die probabilistische, patientenspezifische Beschreibung invasiver Größen der Gefäßwand, b)
die Rupturrisikoabschätzung zum Zeitpunkt der Datenerhebung in der Klinik, c) die Bayes’sche
Kalibrierung von Wachstumsparametern basierend auf zwei aufeinanderfolgenden CTA-Scans,
sowie d) die Vorwärtsausbreitung dieser Parameter für eine prädiktive Rupturrisikoabschätzung.
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1. Introduction

1.1. Motivation

Abdominal aortic aneurysm

An abdominal aortic aneurysm (AAA) is a slowly progressing vascular disease in the descend-
ing aorta, which causes a regional weakening of the aortic wall and a corresponding dilatation.
It is considered pathological if the aortic diameter exceeds 30 mm, which is twice the standard
deviation above the male and female mean normal aortic diameter of 20 mm [148]. In the lit-
erature, maximum diameter sizes of up to 180 mm can be found [96]. Together with the less
common thoracic aortic aneurysm (TAA) and thoracoabdominal aortic aneurysm (TAAA), the
AAA belongs to the class of aortic aneurysms (AAs).

AAA prevalence has been reported within a range of 1.2% to 3.3% in men aged over 60 years
in western societies, representing a slight decrease from numbers between 3.9% to 7.2% that
have been published in the 1990s [55, 138]. In addition to age and male sex, the most important
risk factors for the development of an AAA are smoking and familial predisposition [29]. From
all cardiovascular diseases, the AAA and peripheral artery disease (PAD) are the ones show-
ing the highest association with smoking [29]. AAAs can be further categorized into infrarenal,
juxtarenal, pararenal or suprarenal [77], with shapes varying from simple and fusiform to sacci-
form, eccentric or highly irregular. In most AAAs an intraluminal thrombus (ILT) forms at the
luminal aortic wall as a result of blood depositions, narrowing the lumen. Fig. 1.1 shows CT
slices from two exemplary cases, where the lumen and ILT geometry can be clearly identified.

While most AAAs develop and grow asymptotically over several years, they can quickly turn
into a serious clinical emergency in case of rupture. More than 50% of patients with a ruptured
AAA (rAAA) die before reaching the hospital [24] and perioperative mortality rates for rAAAs
range from 40% to 60% [118]. Since only very few AAA patients experience any symptoms
beforehand, it is crucial to detect and treat AAAs prior to becoming dangerously large or prone
to rupture.

Clinical guidelines

Today, elective open surgical repair (OSR) and endovascular aneurysm repair (EVAR) are es-
tablished and effective strategies to prevent aneurysm rupture. Both methods are associated with
certain operational risks and post-operative complications. In the famous UK small aneurysm
trial [105], the risk of rupture for small AAAs (40-55 mm) was found to be significantly lower
than for larger-sized aneurysms, justifying a surveillance strategy over elective repair for such
cases. Further studies showed similar results and paved the way for today’s clinical guidelines
on the care of AAA patients [77]. While details can vary between different vascular surgery
societies, there is near consensus on some fundamental recommendations [24, 29]:

1



1. Introduction

Lumen

ILT

Calcifications

Lumen

ILT

Figure 1.1.: Axial (left column), sagittal (center column) and coronal (right column) views of CT slices
from two AAAs. The maximum diameters are 63 mm (top row) and 57 mm (bottom row).
The lumen can usually be easily identified due to a contrast agent that is administered prior
to CT imaging, while the ILT appears much darker and it can be hard to separate it from the
surrounding tissue. The AAA vessel wall is too thin to be visible directly, but can be approx-
imately determined via calcifications (tiny bright spots) in the wall or due to the contrast to
the surrounding tissue.

• Immediate elective repair for patients with a symptomatic or rAAA.

• Elective repair for patients with an aortic diameter greater than or equal to 55 mm in men
and 50 mm in women, or with a growth rate greater than 10 mm per year.

• Individual evaluation of irregular-shaped and exotic AAAs.

• Preferred treatment in high-volume hospital centers.

• Screening in men and women older than 65 years with a history of smoking.

• Regular screening intervals for patients with small-sized AAAs with maximum diameters
up to 55 mm.

• Ultrasonography for screening and surveillance.

• Computed tomography angiography (CTA) or magnetic resonance angiography (MRA)
for pre-procedural imaging, covering the area between the aortic arch and the inguinal
vessels.

2



1.1. Motivation

Treatment possibilities

Open surgical repair is the conventional therapy for AAAs and involves the replacement of the
diseased aorta with a prosthetic graft. OSR has been the only option for elective repair for several
decades and is associated with relatively high hospital mortality rates, especially for elderly
patients. Since the 2000s, the minimally invasive procedure EVAR has increasingly been used.
It requires the deployment of a stent graft (SG) via the patient’s femoral arteries, with the goal to
remove the blood pressure load from the AAA wall. Nowadays, endovascular aneurysm repair
has clearly surpassed OSR in usage [136], which can be attributed to its significant short term
mortality benefit (1.4% compared to 4.2%) [24]. Though clinical guidelines do not yet give a
clear recommendation to favor one method over the other [29], with the growing customizability
of SGs and improved technical equipment, the upward trend of EVAR is expected to continue.

Current limitations for the use of EVAR are mostly associated with the patient’s anatomy and
AAA shape [54]. For example, if there are no appropriate so-called landing zones for the SG
deployment, there is a higher risk for leakages and subsequent re-interventions. While OSR can
be applied almost universally, EVAR is the preferred choice for elderly people and rAAAs [104],
and is associated with a shorter hospitalization.

Despite peri-operative mortality rates are undoubtedly smaller with EVAR, recent meta-analyses
indicate equal or even higher numbers in the long term [1, 48, 79]. In [1], e.g., seven random-
ized control trials comparing the outcomes of EVAR and OSR were analyzed. According to this
study, the 30 day and in-hospital mortality was significantly lower with EVAR, also six months
after the procedure. With further follow-up, however, aneurysm related mortality, re-intervention
and rupture risk rates increased and even exceeded those of OSR in the long term (> 8 years).

Independent from the type of therapy, it is being discussed whether screening for AAAs should
be intensified. While a recent meta-study could not find an all-cause mortality benefit associated
with screening in men aged 65 or older [55], data from Germany reveals that 30% of patients with
a rAAA are not covered by the national screening program (which applies to men ≥ 65 years)
and suggests to include further risk groups [137]. These studies emphasize the complex decisions
surgeons are faced with today. While current guidelines provide recommendations for some
standard AAA cases, the nature of the disease is manifold and patient-specific considerations
imperative.

Computational biomechanics as an additional tool for decision making

Over the last decades, advances in biomechanical modeling, numerical methods and a tremen-
dous increase in computational power have paved the way for the emerging field of computa-
tional biomechanics. Driven by the promises of personalized healthcare, a growing amount of
available medical data and progress in related fields such as mechanobiology, there is still a
tremendous potential for development. Applications range from modeling the vascular system
and its diseases [60, 84, 134] to surgical intervention planning [2, 58] and biomedical engineer-
ing [65], just to name a few.

For the purposes of this thesis, which is concerned with the rupture risk assessment of AAAs,
there are several shortcomings in clinical practice that can be addressed by appropriate computa-
tional approaches. In particular, these tools can be valuable in situations, where doctors are faced
with an ambiguous situation. For example, the Society for Vascular Surgery’s 55 mm recom-
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Figure 1.2.: 3D renderings of the two AAA cases from Fig. 1.1. These have been extracted from the CT
scans via a segmentation software and provide the basis for a computational assessment.

mendation only holds for patients “at low or acceptable surgical risk with a fusiform AAA” [24].
Furthermore, there are no clear or only weak recommendations for women with AAAs of size
50-54 mm, aneurysms with non-fusiform geometries, smaller AAAs [132], or patients at higher
surgical risk. Finally, not all AAAs are suitable for EVAR, with higher complication rates for
cases that are not covered by the instructions for use [101]. A patient-specific modeling and
simulation framework that makes use of the available clinical data could avoid unnecessary in-
terventions [4], enable individual screening intervals and support the clinical decision process
for cases that are not covered by the clinical guidelines. Fig. 1.2 shows 3D renderings of the two
AAA cases from Fig. 1.1, which provide the basis for a computational assessment.

1.2. Research objectives
This thesis is based on previous work regarding the modeling, simulation and rupture risk assess-
ment of AAAs. Past efforts by our group and collaborators have encompassed the modeling of
the in-vivo mechanical state of AAAs [43, 46, 84], tensile testing and characterization of AAA
tissue samples [8, 117] as well as the quantification of growth [68, 69] and model uncertain-
ties [5–7]. Based on the progress achieved in these fields, the clinical motivation from above and
promising studies indicating that biomechanical rupture risk indices are more accurate predictors
than the clinically established maximum diameter criterion [30, 34, 35, 37, 42, 83, 107, 110], the
objectives of this thesis are the following:

1. Establish a patient-specific framework for the quantification of AAA growth and rupture.

2. Incorporate available clinical data and make use of existing data sources.

3. Follow a probabilistic approach and quantify relevant uncertainties.

4. Aim for practical solutions that can be translated into clinical practice.

While patient-specific biomechanical models of AAAs are widely used for the purposes of a
rupture risk assessment, these models can usually only quantify the risk at the time of data acqui-
sition, e.g. at the time of the diagnosis. Moreover, different approaches exist on how to compute
the risk of rupture, depending on model assumptions and the treatment of unknown parameters.
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1.2. Research objectives

The goal of the first objective is to develop a consistent and general approach to rupture risk
assessment and to incorporate a simple growth model in order to predict the risk of rupture at
a future point in time and effectively be able to quantify the progression of the disease. For the
construction of a patient-specific AAA model, any relevant data point will be considered as a
piece of information that should be incorporated into the framework. To that end, a probabilistic
approach will be pursued, where existing information about AAA properties can be combined
with available clinical data of an individual patient to obtain a personalized statistical model. Ef-
ficient strategies for uncertainty quantification (UQ) will be employed to make the computations
feasible. Following the concepts described in [17], an outline of a comprehensive rupture risk
framework is illustrated in Fig. 1.3. All details regarding this methodology are established in the
following chapter and later applied in several examples.

Data base

Data processing

Data generation

Patient-specific model creation

Biomechanical rupture risk assessment

Patient

CTA, hemogram, etc.

Image analysis, segmentation,

data preprocessing

Mesh generation, prediction of

patient-specific parameters

Simulation, postprocessing

%
? Rupture risk & future trend

?

Figure 1.3.: Framework overview for the biomechanical rupture risk assessment of a prospective patient.
After generating data as part of the clinical routine and some preprocessing, it is combined
with existing information about invasive and non-invasive AAA-related properties from a
database. Based on this, a patient-specific, stochastic model is created and employed for the
purposes of rupture risk prediction.
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1.3. Outline
The thesis is organized as follows. In Chapter 2, the theoretical background for the biomechani-
cal rupture risk framework is established. This encompasses the definition of the biomechanical
model, a numerical solution approach to be able to make predictions, as well as a formalism to
deal with uncertainties. Based on this, a probabilistic rupture risk index is formulated that arises
naturally from a mechanical failure criterion. The framework is applied in Chapter 3 and its
feasibility demonstrated in several examples. After discussing the probabilistic treatment of the
available clinical data, the rupture risk assessment is demonstrated on a cohort of retrospective
AAA patients. Extensions for the incorporation of growth are investigated. Finally, relevant find-
ings of this thesis are summarized in Chapter 4 and a short outlook for future work is provided.
Further details on theoretical aspects and practical technicalities are provided in the appendix.
Additionally, different evaluation methods for mechanical testing data are examined in order to
determine elastic properties of the AAA vessel wall.
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2. Theoretical Background

The theoretical background for the proposed biomechanical rupture risk framework is provided
in this chapter. This includes the mathematical AAA model in Section 2.1, which is based on
nonlinear solid mechanics, as well as the corresponding numerical finite element (FE) model
in Section 2.2. To incorporate probabilistic information, stochastic forward and inverse prob-
lems are formulated in Section 2.3, which leads to the definition of a generalized rupture risk
index in Section 2.4. Lastly, UQ tools for the efficient calculation of this index are discussed
in Section 2.5.

2.1. Mathematical AAA model

Biomechanical rupture risk assessment for AAAs is based on the concept that local stress con-
centrations in the aneurysm wall lead to defects that can eventually propagate and cause a rup-
ture. Hence, for the purposes of estimating a risk of rupture, the dominant effects responsible for
the wall stress distribution need to be taken into account. At the same time, the model should
only be as complex as absolutely necessary in order to make a clinical application feasible and to
avoid the introduction of several parameters that cannot be specified on a patient-specific basis.
On a macroscopic level, calculating mechanical AAA properties involves a fluid-structure inter-
action (FSI) problem, where the pulsating downward blood flow from the thoracic descending
aorta interacts with the aortic wall in the abdominal aorta. In the computational study by [78],
however, it was shown that the effect of fluid flow is negliglible in terms of the peak wall stress
when compared to a simple static structural mechanics simulation. As a consequence, blood
flow, dynamic effects and gravity are not considered in this work and it is being focused on the
relevant effects based on the mathematical framework of nonlinear solid mechanics.

2.1.1. Continuum mechanical preliminaries

Continuum mechanics is concerned with the macroscopic behavior of matter, which is assumed
a continuous body, consisting of infinitesimally spaced points and allowing for the application of
mathematical analysis. The following sections review some fundamental continuum mechanical
concepts based on the books [64, 133] and introduce the partial differential equations (PDEs)
governing the biomechanical model of the AAA. The tensor notation applied below is explained
in Section A.1.1.

Kinematics

Introducing a reference configuration Ω0 for the continuous body B, this configuration can be
characterized by the coordinates X of all points that make up the body, so that any point can
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be described as X ∈ Ω0. Correspondingly, a current configuration Ω for the same continuum is
introduced, where each point is characterized by x ∈ Ω. To describe the relationship between
the reference coordinates X of one point in Ω0 to its current coordinates x in Ω, a one-to-one
correspondence φ(X) is considered, where

φ : X → φ(X) = x(X) with φ : R3 → R3. (2.1)

Having the two configurations available, it is straightforward to define a displacement field u as
the difference between their corresponding coordinates

u = x−X. (2.2)

In addition to quantifying the displacement, it is important to have a measure of deformation.
For that purpose, the transformation

dx = F · dX. (2.3)

of an infinitesimal line element dX from the reference to the current configuration dx is con-
sidered. The second-order tensor relating the two line elements is a point-wise measure of defor-
mation – the deformation gradient – and is defined as

F = ∇X ⊗ x = 1 + ∇X ⊗ u, (2.4)

where 1 is the identity tensor. Similarly to the deformation map φ, the deformation gradient F
is required to be invertible, such that its determinant J = detF is nonzero. This implies that the
line element dx can be transformed to the reference configuration as

dX = F−1 · dx. (2.5)

Just like for infinitesimal line elements, it is possible to transform infinitesimal volume and
surface elements using the relations

dv = J dV (2.6)

and

n da = JF−T ·N dA, (2.7)

respectively, whereN is the reference surface normal andn the surface normal corresponding to
the deformed surface in the current configuration. Finally, these relations illustrate that a negative
deformation gradient determinant J is physically implausible, leading to the requirement J > 0.

Strain

For the characterization of material behavior, measures of strain, i.e. measures of changes in
length, need to be established. Since there is no unique way to do so, different strain tensors
have proven suitable for different applications. A popular choice for nonlinear solid mechanics
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2.1. Mathematical AAA model

that will also be used in this work is the Green-Lagrange strain tensor defined as

E =
1

2

(
C − 1

)
, (2.8)

with the right Cauchy-Green deformation tensorC = F T ·F . It is symmetric and invariant with
respect to rigid body motions, which makes it an appropriate choice for problems involving large
displacements and rotations.

Stress

While measures of strain are concerned with describing the deformation of a continuum, stress
is considered responsible for a deformation. Cauchy’s stress theorem

t(x,n) = σ(x) · n (2.9)

states that the relationship between the surface traction t and the outward surface normal n at
an arbitrary point x on a cut surface through a deformed body is linear. The symmetric second
order tensor σ required for this linear transformation is called the Cauchy stress tensor, where
symmetry stems from the conservation of angular momentum, which is not further discussed
here. The theorem can also be formulated in terms of the surface traction T (i.e. with respect to
the undeformed surface), outward surface normalN and reference coordinateX , yielding

T (X,N ) = P (X) ·N (2.10)

with the non-symmetric 1st Piola-Kirchhoff stress tensor P . Another stress tensor particularly
useful for computational analysis is the symmetric 2nd Piola-Kirchhoff stress tensor S. It is fully
expressed in the reference configuration and can be linked to P and σ as

P = F · S and σ = J−1F · S · F T. (2.11)

Balance of linear momentum

In absence of body forces and dynamic effects, the balance of linear momentum for a continuous
body in equilibrium reduces to the expression

∫

∂Ω

t̂ da = 0, (2.12)

requiring the surface integral over all externally applied tractions t̂ at the boundary ∂Ω to be
zero. With Eq. (2.9) this can be transformed into a volume integral, resulting in the more familiar
relation

∫

Ω

∇x · σ dv =

∫

Ω0

∇X · P dV = 0, (2.13)

where the second expression is formulated in the reference configuration.
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Constitutive behavior

The linkage between stress and strain is accomplished via constitutive equations. In continuum
mechanics these are usually phenomenological, i.e. based on fitting parameterized models to ex-
perimental data to describe the macroscopic stress-strain behavior of materials. For the purposes
of this work, materials that can be described by a strain energy density function Ψ(F ) and do
not depend on their deformation history are considered. Such materials are called hyperelastic
and their constitutive behavior is fully determined by Ψ(F ). Under the additional assumption of
isotropy, it can be shown that Ψ can be expressed as a function of the three principal invariants
of C, i.e.

Ψ = Ψ(I1(C), I2(C), I3(C)) (2.14)

with

I1 = trC, (2.15)

I2 =
1

2

[
(trC)2 − trC2

]
, (2.16)

I3 = detC = J2. (2.17)

For some materials, it is beneficial to split the deformation gradient multiplicatively into a vol-
umetric and isochoric part F = F volF iso in order to model the material behavior of both parts
independently from each other, where

F vol = J
1
3 1 and F iso = F with detF = 1. (2.18)

This translates to the relationC = J
2
3C. F andC = F

T ·F are called the modified deformation
gradient and right Cauchy-Green tensor, respectively. Motivated by this split, one can postulate
a decoupled representation of the strain energy density

Ψ = Ψvol(J) + Ψiso(I1(C), I2(C)), (2.19)

with the modified invariants

I1 = trC = J−
2
3 I1, (2.20)

I2 =
1

2

[
(trC)2 − trC

2
]

= J−
4
3 I2. (2.21)

Finally, the 2nd Piola-Kirchhoff stress tensor S, corresponding to a deformation stateC for any
hyperelastic material with strain energy density function Ψ, can be computed via the equation

S = 2
∂Ψ(C)

∂C
. (2.22)

With this, the most fundamental relations required for the mathematical modeling of quasi-static,
hyperelastic bodies under external loads are provided.
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2.1. Mathematical AAA model

2.1.2. Biomechanical modeling and boundary value problem
formulation

While continuum mechanics provides the mathematical framework to create a detailed descrip-
tion of physical reality, using this framework to establish a model for practical purposes is far
from trivial. For example, if too much attention is paid to all the physical and geometrical de-
tails, the model may become too complex, infeasible to evaluate and difficult to interpret. It might
also be not possible to accurately model all the details due to a lack of knowledge about material
properties, boundary conditions, etc. In the present case, we are confronted with both issues,
complexity and uncertainty. At the beginning of this chapter, the AAA model has already been
limited to a nonlinear elastostatics problem. Below, further modeling choices for the purposes
of a biomechanical rupture risk assessment are briefly discussed. These encompass the models
for the AAA wall and ILT constitutive behavior, the boundary conditions, a methodology for
prestressing and an approach to incorporate growth.

Wall material model

The aortic vessel wall is a complex biological organ, which continuously adapts to environmental
changes via growth and remodeling to maintain its functionality [39]. In a healthy state, the aor-
tic wall is multi-layered, consisting of the intima, media and adventitia, and highly anisotropic,
with an increased stiffness in circumferential direction. Its structural properties are mainly de-
termined by the extracellular matrix (ECM) components elastin and collagen. While elastin is
responsible for the stiffness at low strains as well as for the recoiling of the vessel wall during
the diastolic phase, collagen fibers determine the mechanical properties at high strain levels.
Due to its structural design, the aortic wall can be modeled as a fiber-reinforced composite with
dispersed orientation [40, 62], allowing for a detailed description for the individual layers. It is
being referred to [63] or [39] for a comprehensive description and overview over mechanical
properties of the aorta.

The pathogenesis of an AAA goes along with a degradation of elastin in the aortic wall and
a compensating increase in collagen. During the progression from a healthy to an aneurysmatic
aorta, its anisotropic three-layer structure disperses into a collagen-dominated fibrous material,
stimulating enlargement and local wall weakening [39]. To avoid complex material models with
multiple parameters, the aneurysmatic vessel wall material is frequently chosen as single-layered
and isotropic [38, 84]. While different formulations are available in the literature [109], a recent
study suggests that the particular choice in the constitutive model does not have a major influence
on the AAA wall stress as long as an initial and high-strain stiffness component is included [85].
In this work, the popular two-parameter strain energy function from [113] will therefore be
employed. Using the decoupled isochoric/volumetric formulation in Eq. (2.19), this results in

Ψw(Ī1, J) = αw

(
Ī1 − 3

)
+ βw

(
Ī1 − 3

)2
+ Ψvol(J), (2.23)

with stiffness parameters αw and βw, which are in general spatially varying parameters αw(X)
and βw(X). This model is frequently used in the context of AAA biomechanics simulations and
parameter values for αw and βw including their intra-patient variations have been reported by
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different groups [8, 100, 113, 117]. Unfortunately, with the exception of [7], there is hardly any
literature about the variation of these parameters among a single patient.

ILT material model

The majority of AAAs, especially those coming into question for a biomechanical rupture risk
assessment, exhibit a narrowed lumen due to an aggregation of coagulated blood, called the ILT.
It is assumed that the altered blood flow in an AAA plays a major role in thrombus development.
For the purposes of this work, only the impact of an existing ILT on the stress distribution in the
AAA wall is of interest and it is being referred to [150] for a detailed review of biomechanical
thrombus formation. An ILT is an inhomogeneous, porous structure of fibrin bundles that can
be very thin to centimeters thick. Often, a three-layer structure can be identified with different
biomechanical properties, consisting of a luminal, medial and abluminal ILT layer [150]. In
several experimental studies [41, 84, 140, 147], the mechanical behavior of ILT material was
identified as almost isotropic and only slightly nonlinear. This motivates the usage of the strain
energy proposed by [41], which can be expressed in terms of invariants and using a decoupled
formulation as

ΨILT(Ī1, Ī2, J) = cILT(Ī2
1 − 2Ī2 − 3) + Ψvol(J). (2.24)

To take into account the three-layer structure, the stiffness parameter cILT is chosen linearly
decreasing from the luminal to the abluminal ILT surface following [84] and using the stiffness
values from [41], i.e. 2.62 kPa for the luminal, 1.98 kPa for the medial and 1.73 kPa for the
abluminal ILT layer.

The mechanical role of the ILT with respect to the AAA wall stress is controversial [150].
From a mechanical point of view, it has often been attributed with a cushioning effect for the
blood pressure, reducing the load acting on the aortic wall. Measurements, however, could not
verify this [127], showing a constant blood pressure distribution throughout the ILT and indi-
cating a porous composition. In [108], this was further examined via a two-phase simulation
model. While the observation in [127] could be verified, a significant reduction in the aortic wall
stresses due to the ILT’s presence was noted. Finally, the authors demonstrated that these results
are comparable to those from single-phase simulations, which has only recently been confirmed
in a different study [20], justifying the use of the simplified model in Eq. (2.24).

Volumetric component for slightly compressible behavior

The volumetric component in Eq. (2.23) and Eq. (2.24) is chosen following [84] as

Ψvol(J) =
κ

4

(
J2 − 2 ln J − 1

)
, (2.25)

where the bulk modulus has the form

κ =
E(•)

3(1− 2ν)
(2.26)
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and ν denotes Poisson’s ratio. For the employed material models for the vessel wall and ILT,
Young’s moduli can be determined as Ew = 6α and EILT = 24c, corresponding to the respective
initial stiffness under the assumption of uniaxial stress and incompressibility (cf. Section A.1.2).
Following [84], ν is fixed to 0.48.

Boundary conditions

The load associated with the arterial blood pressure p is simulated by means of an orthogonal
surface traction

t̂ = −pn (2.27)

on the Neumann boundary γσ (i.e. the luminal ILT surface) in the current configuration, rep-
resenting a nonlinear follower load. At the proximal and distal end surfaces Γu, a Robin-type
boundary condition (BC) with spring support

(F · S) ·N = −ksu (2.28)

and stiffness parameter ks is applied [92], which is set to 100 kPa/mm in this work. The influence
of surrounding organs is not taken into account, such that there are no external loads acting on
the outer surface of the aorta.

Growth

AAA growth is modeled following a phenomenological approach for the vessel wall as described
in [68, 69], with the goal to provide an extrapolation of the current growth process. The aim is
thus not to describe the growth and remodeling associated with the development of an AAA,
which is a much more complex task, e.g. [15]. To that end, an isotropic volumetric growth
description is incorporated via a multiplicative split of the deformation gradient

F = F g · F e = ϑ(X, t)F e (2.29)

into a growth component F g = ϑ(X, t)1 and an elastic component F e and where ϑ(X, t)
denotes the growth at point X and time t. Assuming a temporally constant growth rate cϑ(X),
the evolution equation for ϑ(X, t) is

∂ϑ(X, t)

∂t
= ϑ̇(X, t) = cϑ(X) (2.30)

with the solution

ϑ(X, t) = ϑ(X, t = t0) +

∫ t=t̄

t=t0

cϑ(X) dt = ϑ0 + cϑ(X) (t̄− t0) . (2.31)

The initial value at the onset of growth is set to ϑ0 = 1.0 everywhere and t̄ is the point in time
for the evaluation of growth. The strain energy function is evaluated with the elastic component
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of the deformation gradient F e, which can be computed as

F e = F−1
g · F =

1

ϑ
F . (2.32)

This means that any partial variation with respect to cϑ(X) only affects quantities derived from
the elastic deformation gradient F e, i.e. quantities associated with the strain energy Ψw(F e),
cf. Section A.2.2.

Boundary-value problem

To summarize, the governing equations for the quasi-static solid mechanics problem are

∇X · (F · S) = 0 in Ω0, (2.33)

σ · n = −pn on γσ, (2.34)

(F · S) ·N = −ksu on Γu. (2.35)

A typical AAA geometry is shown in Fig. 2.1, illustrating where Eq. (2.33)−Eq. (2.35) of the
boundary value problem (BVP) have to be satisfied.

Ω0,Ω

Γσ, γσ
Γu, γu

Figure 2.1.: A typical AAA geometry to illustrate the BVP. Eq. (2.33) has to be satisfied in Ω0, with
different stress responses for the AAA wall and ILT material. The pressure BC from Eq. (2.34)
is applied on the current Neumann boundary, γσ, while the spring support BC from Eq. (2.35)
is applied at the inlet and two outlet surfaces of the AAA.

2.1.3. Variational formulation of the boundary value problem

By multiplying the balance of linear momentum with a sufficiently smooth function δu =
δu(X), where δu : R3 → R3 and δu = 0 on the Dirichlet boundary, a weighted residual for-
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mulation of the BVP is obtained [64]

R(u, δu) =

∫

Ω0

(∇X · (F · S)) · δu dV = 0 ∀ δu. (2.36)

Using the identity

(∇X · (F · S)) · δu = ∇X · (F · S · δu)− (F · S) : (∇X ⊗ δu) (2.37)

and applying Gauss’ divergence theorem, this becomes

R(u, δu) =

∫

Ω0

(F · S) : (∇X ⊗ δu) dV +

∫

γσ

pn · δu da+

∫

Γu

ksu · δu dA = 0, (2.38)

where the surface integral was split up and associated with the corresponding boundary condi-
tions on Γu and γσ. In the context of solid mechanics, δu is often referred to as virtual displace-
ments and this one-field variational formulation is called the principle of virtual work. Making
use of a basic property of double contractions and the symmetry of S

(F · S) : (∇X ⊗ δu) = (F T · (∇X ⊗ δu)) : S

=
1

2
(F T · (∇X ⊗ δu) + F · (∇X ⊗ δu)T) : S

= δE : S = S : δE,

(2.39)

the final formulation is

R(u, δu) =

∫

Ω0

S : δE dV +

∫

γσ

pn · δu da+

∫

Γu

ksu · δu dA = 0. (2.40)

Key to the application of the finite element method (FEM) in Section 2.2.1 is that a solution
to Eq. (2.40) represents a weak solution to the BVP defined by Eq. (2.33)−(2.35).

2.1.4. Lagrangian formulation for gradient-based, PDE-constrained
optimization

In addition to enabling a FEM-based numerical solution, the variational formulation can be em-
ployed in the context of PDE-constrained optimization. Consider a scalar objective function
F(u(θ), θ) and the optimization problem

min
θ
F(u(θ), θ) subject to R(u(θ), δu, θ) = 0 ∀ δu, (2.41)

where θ are unspecified design parameters of the BVP. The notation implies that the parameters
θ directly affect the displacements u = u(θ) as well as the weighted residual itself, such that
R(u, δu) = R(u(θ), δu, θ). The variational formulation ensures that independent of the choice
of δu, the equality conditionR(u(θ), δu, θ) = 0 is always fulfilled. This turns out to be a partic-
ularly helpful property for gradient calculations. To that end and following [69], the Lagrangian
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formulation

L(u(θ),λ, θ) = F(u(θ), θ) +R(u(θ),λ, θ) ∀λ (2.42)

is introduced, where the virtual displacements δu take the role of Lagrange multipliers λ. In Sec-
tion 2.2, the numerical implementation of this concept for the purposes of gradient calculations
is discussed, where the role of the Lagrange multipliers λ will become apparent.

2.2. Numerical AAA model
In order to compute solutions to the BVP defined via Eq. (2.33)−Eq. (2.35), a FE-based numeri-
cal model for the AAA is constructed. After a short review of the FEM in Section 2.2.1, simula-
tion details as well as practical considerations are discussed in Section 2.2.2 and the parameter-
to-quantity of interest (QoI) map is introduced in Section 2.2.3. Finally, the adjoint method for
discrete problems is presented in Section 2.2.4, allowing for the efficient calculation of param-
eter gradients of QoI of the numerical model, which is a fundamental requirement for many of
the UQ tools presented in Section 2.5.

2.2.1. Finite element formulation

Applying the FEM involves the discretization of the reference domain Ω0 into nel sub-domains
(finite elements), the choice of suitable functions (that are square-integrable with a square-
integrable spatial first derivative) for the displacement field u as well as for the virtual dis-
placement field δu, and the utilization of the weak form in Eq. (2.40). Below, a brief summary
of the FEM is provided, covering the basic formalism required for this work. For further details,
it is being referred to the comprehensive works of [3, 151].

Discretization

The idea is to approximate the volume and surface integrals appearing in Eq. (2.40) as a sum
over element-wise contributions and to choose functions for u and δu with local support on
each element. As an example, the volume integrals can then be computed as

∫

Ω0

(•)(X) dV ≈
nel∑

e=1

∫

Ω
(e)
0

(•)(X) dV. (2.43)

In the following, a matrix notation will be employed for quantities associated with the FE ap-
proximation, cf. Section A.2 for all details. The geometry of each finite element is approximated
via an interpolation of the element’s nodal coordinates X̄(e) such that

X ≈X(ξ) = N (ξ) X̄
(e)
. (2.44)

The matrix N (ξ) consists of basis or shape functions, in our case Lagrange polynomials, in so-
called natural coordinates ξ. This implies a map X = X(ξ) between the reference and natural
coordinates, which has to fulfill the same conditions as the deformation map from Eq. (2.1), such
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that the inverse map ξ = ξ(X) exists. Following an isoparametric approach, the displacement
field for each element is formulated using the same shape functions

u ≈ u(X) = N (ξ(X))d(e), (2.45)

where d(e) is the vector of the nodal displacements, i.e. the nodal degrees of freedom. Finally,
the same functions are also used for the virtual displacements

δu(X) = N (ξ(X)) δd(e), (2.46)

where δd(e) corresponds to the nodal virtual displacements. With u ∈ H1(Ω0) and δu ∈ H1
0 (Ω0),

this approach results in the well-known Bubnov-Galerkin method, where H1(Ω0) denotes the
Sobolev space on Ω0 and H1

0 (Ω0) a subspace of H1(Ω0) with functions that vanish on the
Dirichlet boundary. All remaining quantities necessary for the element-wise integration follow
as elaborated in Section A.2. Inserting the interpolation approaches above into the weak form
in Eq. (2.40) and factoring out the virtual displacements δd(e), summarized in δD, a compact
notation for the approximate weighted residual

R(u, δu) ≈ δDTR(D) = 0, ∀ δD. (2.47)

is obtained. Since δD are arbitrary, this is equivalent to the set of nonlinear equations

R(D) = 0, (2.48)

where D includes all nodal displacements d(e) and R ∈ Rndof is the ndof-sized global residual
vector. It is constructed as

R(D) =

nel

A
e=1

r(e)(d(e)) (2.49)

with the assembly operator A and element-wise contributions

r(e)(d(e)) =

∫

Ω
(e)
0

BT[S]6×1 dV +

∫

γ
(e)
σ

pNTn da+

∫

Γ
(e)
u

ksN
TNd(e) dA. (2.50)

B and S are as defined in Eq. (A.23) and Eq. (A.24), respectively. The integration is carried out
in the natural coordinates ξ using Gaussian quadrature. For the volume integrals, this translates
to the expression

∫

Ω
(e)
0

(·)(X) dV =

∫

Ω
(e)
�

(·)(ξ) detJ(ξ) dξ ≈
np∑

p=1

(·)(ξp) detJ(ξp)wp, (2.51)

with np Gauss point coordinates ξp and corresponding weights wp, as well as the Jacobi matrix
J as specified in Eq. (A.20).
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Linearization

The nonlinear system of equations from (2.48) is solved using Newton’s method. To that end,
the discretized residual R(D) is linearized at the current solution Di

R(D) ≈ R(Di) +
∂R(D)

∂D

∣∣∣∣
D=Di

∆Di+1 = 0 (2.52)

⇔ K(Di)∆Di+1 = −R(Di), (2.53)

where K is referred to as the stiffness matrix, with the element-wise contributions

K =

nel

A
e=1

k(e) =

nel

A
e=1

∂r(e)

∂d(e)
. (2.54)

The resulting linear system in Eq. (2.53) is sparse and non-symmetric and can be solved for the
displacement increment ∆Di+1 to update the solution

Di+1 = Di + ∆Di+1. (2.55)

Convergence is checked in terms of the residual vector norm ‖R(Di)‖2 < εres and displacement
increment norm ‖∆Di+1‖2 < εdis.

2.2.2. Modeling and simulation details
The following section is a revised version of part of the author’s work published in [19].

Segmentation and mesh generation

Patient-specific AAA geometries are extracted via a semi-automatic segmentation process from
computed tomography (CT) imaging data using the software ScanIP1 (Synopsys, Mountain
View, California, version 2020.06) and based on a protocol as described in [84]. The minimal
requirement for the spatial resolution of CT scans was 1 mm and for the slice thickness 3 mm.
The upper boundary for the segmentation was the branching of the renal arteries and the lower
boundary below the bifurcation at the iliac arteries. Due to the small thickness of the AAA wall,
its low contrast and the limited resolution of the CT images, it is only possible to extract the
blood lumen and ILT geometries. After segmentation, the ILT geometry is exported as a surface
model for meshing.

In a next step, the software Trelis2 (Coreform, Orem, Utah, version 16.5.4) is used to generate
a mesh of bi-linear quadrilateral elements on the abluminal ILT surface. From this surface mesh,
the arterial wall layer is extruded with a specified, spatially constant thickness tw, resulting in a
tri-linear, single layer, hexahedral mesh for the AAA wall. Finally, linear tetrahedral elements are
employed for the meshing of the complex ILT geometry and a layer of linear pyramid elements
as a transition for mesh compatibility between AAA wall and thrombus. Element sizes were set
to 1.6 mm, corresponding to the median of measured thicknesses of AAA wall specimens in our

1https://www.synopsys.com/simpleware/software/scanip.html (accessed January 19, 2022)
2https://coreform.com/products/coreform-cubit/ (accessed January 19, 2022)
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2.2. Numerical AAA model

database and leading to hexahedral elements of shape 1.6 mm× 1.6 mm× tw for the AAA wall.
The meshing procedure is also described in [59] in more detail. To reduce volumetric locking
effects arising from the employed nearly incompressible material models, the F-bar element
technology [95] is used for the hexahedral elements in the arterial wall as well as for the pyramid
transition layer.

Prestressing and load control

To obtain a pressurized in-vivo configuration, the modified updated Lagrangian formulation
(MULF) prestressing method [43, 46] is used, where the applied load corresponds to the mean
arterial pressure p̄ defined as

p̄ =
1

3
psys +

2

3
pdia. (2.56)

Using a standard load control approach, MULF generates a prestressed state to approximate the
wall stress distribution for the geometry obtained at the time of CTA or MRA imaging. From
this prestressed configuration, the pressure is raised by 50% to simulate elevated blood pressure
conditions [107]. Following [83], the values for the systolic and diastolic pressures were set to
psys = 121 mmHg and pdia = 87 mmHg for all cases, respectively, resulting in a mean arterial
pressure p̄ = 98.33 mmHg.

Performance aspects

Disregarding computational overhead associated with the assembly of K(Di) and R(Di) or in-
put/output operations, the numerical costsCfw (in terms of wall-clock time) for one deterministic
forward solve are governed by the costs Clin associated with the solution of the sparse and non-
symmetric linear system3 in Eq. (2.53) for the displacement increment ∆Di+1, i.e.

Cfw = Clinntn̄iter, (2.57)

where nt is the number of time or load steps and n̄iter the average number of Newton iterations
per time step. To keep Clin at a minimum, a parallel implementation4 of the generalized minimal
residual method (GMRES) method [123] is used, which is preconditioned using algebraic multi-
grid (AMG) [45]. For a reduction of the factor ntn̄iter, the pseudo-transient continuation (PTC)
scheme [44] has proven as a robust modification of the classical Newton scheme, allowing for
larger steps.

2.2.3. Parameter to QoI map

The growth rate parameter cϑ(X) is assumed an element-wise constant parameter cϑ, summa-
rized in the vector cϑ ∈ Rnel . Wall thickness tw, alpha stiffness αw and beta stiffness βw are
assumed spatially constant parameters. In the following, any combination of these model param-
eters will be summarized in the vector θ = [θ1, . . . , θnθ ]

T ∈ Rnθ , where nθ is the total number

3Non-symmetric contributions arise from the pressure load term and the employed F-bar element implementation.
4https://trilinos.github.io/aztecoo.html (accessed Januar 19, 2022).
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of model parameters. A concrete specification of θ will be provided in the different examples
in Chapter 3.

Since usually only a limited number nQ of QoI are of interest, the evaluation of the determin-
istic forward problem is denoted by means of a parameter-to-QoI map

Q : θ 7→ Q(θ) with Q : Rnθ → RnQ . (2.58)

In the context of rupture risk prediction, the relevant QoI is the maximum von Mises stress σmax
vm ,

which is computed as a postprocessing step from the displacements D, so that with

Q = σmax
vm = σmax

vm (D(θ)) = σmax
vm (θ) (2.59)

the evaluation of the QoI at parameters θ is denoted, where

σmax
vm : θ 7→ σmax

vm (θ) with σmax
vm : Rnθ → R+. (2.60)

2.2.4. Calculation of parameter gradients using the adjoint method

Frequently, UQ methods that make use of gradient information of the QoI or some objective
function f(D,θ), i.e.

∇θ σmax
vm =

dσmax
vm

dθ
=

[
dσmax

vm

dθ1

, . . . ,
dσmax

vm

dθnθ

]T
(2.61)

or

∇θ f =
df

dθ
=

[
df

dθ1

, . . . ,
df

dθnθ

]T
, (2.62)

are preferred due to their superior performance and effectiveness. When dealing with nonlinear
systems such as the one in Eq. (2.48), where one evaluation is associated with a considerable
amount of numerical costs and where the number of model parameters nθ is potentially very
high, the adjoint method is the method of choice for gradient calculation.

Adjoint formulation for discrete, quasi-static problems

Let f(D,θ) be a scalar objective function of the ndof degrees of freedom D and nθ model pa-
rameters θ, where

f : (D,θ) 7→ f(D,θ) with f : Rndof × Rnθ → R. (2.63)

Furthermore, let f(D,θ) be subject to the conditions R(D,θ) = 0 from the discretized PDE.
Then, following the Lagrangian formulation in Section 2.1.4, the objective function can be
rewritten as

L(D,θ,Λ) = f(D,θ) + ΛTR(D,θ), (2.64)
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where

L : (D,θ,Λ) 7→ L(D,θ,Λ) with L : Rndof × Rnθ × Rndof → R (2.65)

and Λ ∈ Rndof is a vector of ndof Lagrange parameters. Here, Λ can be associated with the
virtual displacements δD, cf. Eq. (2.47). Taking into account the dependency D = D(θ), the
total derivative with respect to the model parameters becomes

dL(D,θ,Λ)

dθ
=
∂f

∂D

∂D

∂θ
+
∂f

∂θ
+ ΛT

[
∂R

∂D

∂D

∂θ
+
∂R

∂θ

]
=

=

[
∂f

∂D
+ ΛT ∂R

∂D

]
∂D

∂θ
+
∂f

∂θ
+ ΛT∂R

∂θ
.

(2.66)

Since Eq. (2.47) holds for an arbitrary choice of δD, the idea is to choose Λ such that the term
involving the intractable derivative ∂D/∂θ vanishes. This can be achieved by solving a linear
system of equations, the so-called adjoint problem,

∂R

∂D

T

Λ = KTΛ = − ∂f
∂D

(2.67)

for the parameters Λ, resulting in the adjoint-based derivative

df(D(θ),θ)

dθ
=

dL(D(θ),θ)

dθ
=
∂f

∂θ
+ ΛT∂R

∂θ
. (2.68)

The equivalence of df/ dθ and dL/ dθ evolves from the fact that the total derivative dR/ dθ
must always be zero, such that the governing equations are satisfied [81]. Above, the assumption
was made that the objective function only depends on the last displacement state. An extension to
objective functions that involve nt intermediate states {Dt}ntt=1 is straightforward. The objective
function is rewritten as

L({Dt}ntt=1,θ, {Λt}ntt=1) = f({Dt}ntt=1,θ) +
nt∑

t=1

ΛT
t Rt(Dt,θ) (2.69)

and there are nt adjoint equation that need to be solved,

∂Rt
∂Dt

T

Λt = Kt
TΛt = − ∂f

∂Dt

, (2.70)

resulting in the gradient

df({Dt(θ)}ntt=1,θ)

dθ
=
∂f

∂θ
+

nt∑

t=1

ΛT
t

∂Rt
∂θ

. (2.71)

For further theoretical considerations of the adjoint method, it is being referred to [129].
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Practical considerations

While the derivative of the residuals R with respect to the displacements D can be identified as
the well-known stiffness matrix K, there are three terms that require a manual derivation if no
automatic differentiation tools are available:

∂f

∂D
,

∂f

∂θ
and

∂R

∂θ
. (2.72)

Analytical expressions for these terms are presented in Section 2.5.5 and Section 2.5.7, when
gradients appear in the context of UQ methods. To solve the adjoint problem in Eq. (2.67),
the conditions R(D(θ),θ) = 0 need to be satisfied, which requires the solution of a standard
forward problem. For time-dependent problems, if the objective function depends only on the
last time step f = f(Dnt ,θ), this means that only the corresponding adjoint problem needs to
be solved for Λnt , since for all other time steps, Λt = 0, t = 1 . . . nt − 1. As mentioned before,
the numerical costs for the solution of one forward problem Cfw = Clinntn̄iter is governed by the
effort Clin it takes to solve the linear systems during each Newton iteration. For the calculation of
∇θ σmax

vm (θ) or∇θ f(θ), the costs using the adjoint method only increase by an additional linear
system solve as

Cad
∇θ

= Cfw + Clin. (2.73)

The costs using finite differences (FD), on the other hand, are

C fd
∇θ

= Cfw + nθCfw, (2.74)

making it obvious that the FD method is only a feasible choice for a very low number of param-
eters nθ.

2.3. Stochastic AAA model

With the mathematical and numerical models in Section 2.1 and Section 2.2 it is possible to com-
pute the mechanical state of an AAA given its exact geometry and model parameters θ. Since
this is practically impossible for a prospective AAA patient, this thesis follows a probabilistic
approach in order to deal with uncertainties. To that end, below some fundamental aspects of
modern probability theory are presented. Afterwards, the general stochastic forward problem for
QoI is formulated, as well as two types of inverse problems: the classical Bayesian inverse prob-
lem and a stochastic inverse problem based on density-matching. Corresponding applications in
the context of an AAA rupture risk assessment are shortly introduced.

2.3.1. Fundamentals of probability theory

This introduction is based on the works [56, 74]. For an extensive reference book on modern
probability theory, it is being referred to [11]. A more concise and practical treatment can be
found in [32, 129].
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Let (Ω,A,P) be a complete probability space, where Ω is the sample space, A the associ-
ated σ-algebra and P a probability measure. The sample space Ω and probability measure P are
abstract constructs and not further specified. They can be regarded as modeling the sources of
uncertainties responsible for the random variables that can be observed and eventually end up
in a model. A n-variate random variable X is defined as a measurable function of the elements
ω ∈ Ω

X : ω 7→ X(ω) with X : Ω→ X ⊂ Rn, (2.75)

such that the inverse image X−1(A) = {ω ∈ Ω | X(ω) ∈ A} satisfies

X−1(A) ∈ A ∀A ∈ BX (2.76)

and where BX is the Borel-σ-algebra induced by X [56]. It is being noted that in contrast to the
inverse function X−1(X(ω)), which only exists in special cases, the inverse image X−1(A) al-
ways exists. For n > 1, X is also called a random vector. Together with the push-forward proba-
bility measure PX induced by X , the probability space (X ,BX ,PX ) is obtained [56]. Probability
can then be defined by the function

PX : A 7→ PX (A), (2.77)

which assigns any subset A ⊂ X , which is part of BX , a value PX (A). It has the properties [129]

0 ≤ PX (A) ≤ 1 ∀A ∈ BX with PX (X ) = 1, PX (∅) = 0 (2.78)

and

PX
( ∞⋃

i=1

Ai
)

=
∞∑

i=1

PX (Ai) for Ai ∈ BX and {Ai}∞i=1 pairwise disjoint. (2.79)

Thus, the value PX (A) denotes the probability that an element x ∈ X lies in the subset A ∈ BX ,
or simply speaking the probability that event A happens. It is being assumed that all probability
measures that are made use of in this work are absolutely continuous with respect to the Lebesgue
measure, i.e. the standard volume measure, such that they have an associated probability density
function (PDF)

πX : x 7→ πX (x), with πX : X → [0,∞[. (2.80)

This allows to express the probability PX (A) in terms of a volume integral

PX (A) =

∫

A

dPX =

∫

A

πX (x) dx =

∫
1A(x) πX (x) dx ∀A ∈ BX , (2.81)
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where 1A : X → {0, 1} is the indicator function

1A(x) =

{
1 if x ∈ A
0 if x /∈ A ∀x ∈ X . (2.82)

Calculations with random variables

In practice, the specification of PX is often part of an uncertainty modeling process for input
parameters to a model, such that the random variables are transformed to m-dimensional model
outputs Y (X) as

Y : X 7→ Y (X) with Y : X → Y ⊂ Rm. (2.83)

Assuming Y is measurable, cf. Eq. (2.76), leads to the induced probability space (Y ,BY ,PY)
with the Borel-σ-algebra BY and the push-forward probability measure PY . The calculation of
integrals over a measurable function f : y 7→ f(y) with f : Y → R can then be carried out with
respect to either measure PX or PY using the relation

∫

B

f(y) dPY =

∫

Y −1(B)

f(Y (x)) dPX ∀B ∈ BY , (2.84)

or, written in terms of PDFs
∫

B

f(y) πY(y) dy =

∫

Y −1(B)

f(Y (x))πX (x) dx ∀B ∈ BY . (2.85)

In practice, one can think about X as model inputs, Y as model outputs and f some function of
the model outputs. Fundamental characteristics of random variables are:

• The expected value or mean value of the random variable X with respect to PX :

EPX [X] =

∫
x πX (x) dx. (2.86)

• The variance of the random variable X with respect to PX :

VPX [X] =

∫
(x− EPX [X])2 πX (x) dx = EPX [X2]− (EPX [X])2. (2.87)

• The covariance between two random variables X1 and X2 with respect to PX1,X2:

CovPX1,X2 (X1, X2) =

∫
(x1 − EPX1 [X1])(x2 − EPX2 [X2])πX1,X2(x1, x2) dx1 dx2

= EPX1,X2 [X1X2]− EPX1 [X1]EPX2 [X2].
(2.88)
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Conditional probability and Bayes’ rule

An important concept is conditional probability. For A2 ∈ BX with PX (A2) > 0, the conditional
probability is defined as

PX (A1|A2) =
PX (A1 ∩ A2)

PX (A2)
∀A1 ∈ BX . (2.89)

The value PX (A1|A2) denotes the probability that eventA1 happens, given that eventA2 has hap-
pened. This concept gives rise to Bayes’ rule, a formula to compute the conditional probability
as

PX (A1|A2) =
PX (A2|A1)PX (A1)

PX (A2)
(2.90)

In this context, PX (A1|A2) is called posterior and PX (A1) prior probability. PX (A1) can be
thought of as an initial (prior) understanding of the probability of event A1 happening, while
PX (A1|A2) is the updated (posterior) probability, given new information (knowing that A2 has
happened). Conditional probability can also be written in terms of densities. To that end, making
use of the two random variables X and Y with elements x ∈ X and y ∈ Y , the conditional
probability of A knowing Y = y is

PX (A|Y = y) =

∫

A

πX (x|y) dx, ∀A ∈ BX . (2.91)

The introduced conditional PDF πX (x|y) is defined as

πX (x|y) =
πX ,Y(x, y)

πY(y)
(2.92)

with the joint PDF πX ,Y : X × Y → [0,∞[. This allows the expression of Bayes’ rule in terms
of densities

πX (x|y) =
πY(y|x) πX (x)

πY(y)
, (2.93)

where

• πX (x|y) is the posterior PDF,

• πX (x) the prior PDF,

• πY(y|x) the likelihood and

• πY(y) =
∫
πY(y|x)πX (x) dx the integration constant referred to as the model evidence.

Since πY(y) is constant with respect to x, the posterior density is often denoted as

πX (x|y) ∝ πY(y|x) πX (x). (2.94)
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Random processes

A random or stochastic process Xτ (ω) = X(τ, ω) with

X : (τ, ω) 7→ X(τ, ω), X : T × Ω→ Rn, (2.95)

is a function of two parameters τ ∈ T and ω ∈ Ω such that {Xτ (ω), τ ∈ T } is a collection
of random variables on a common probability space (Ω,A,P). The set T can, e.g., represent a
sequence (T = N), time (T = R+) or space (T = R3). If n > 1, Xτ (ω) is called a multivariate
random process. For a fixed ω ∈ Ω, the function Xτ : τ 7→ Xτ (ω) is called the path of ω and
is also referred to as a realization of the random process. Random processes can be described
in terms of the probability distributions they induce on a finite subset of random variables. For
instance, a Gaussian process implies that the random vector [X1, X2, . . . , Xn]T follows a n-
variate Gaussian distribution. The additional parameter τ makes random processes a popular
modeling tool for physical problems involving spatially or temporally varying uncertainties.

Simplified notation

In most cases, the argument of a PDF or expected value already implies the associated probability
measure, such that additional subscripts are not necessary. While these are adequate for specific
purposes, the notation will be simplified whenever this seems appropriate for the remainder
of this work. For example, by π(x) the PDF associated with the random variable X and the
probability space (X ,BX ,PX ) is denoted. Furthermore, the expectation, variance and covariance
of random variables will simply be denoted by E[X], V[X] and Cov[X1, X2], respectively.

An analogy to solid mechanics

For a structural mechanics engineer, it may be helpful to think of a probability measure P as
a more familiar type of measure like mass or area in order not to get too intimidated by the
abstract formalism of probability theory. For example, let Ω0 ⊂ R3 be the set of points defining
the reference configuration of a continuum (cf. Section 2.1). Then, one can define a measure
µm : A 7→ µm(A), which assign any reasonable part A ⊂ Ω0 of the body a mass µm(A), while
the total mass mΩ0 of the continuous body is µm(Ω0). The term “reasonable part” is the actual
reason, why σ-algebras had to be introduced, since formally there cannot exist a measure which
is able to assign a value to any A ⊂ Ω0 [56]. Like the probability measures above, µm can be
associated with a density ρ0 : Ω0 → [0,∞[.

Instead of allowing any measurable function between the reference configuration X and the
current configuration x, however, there are tighter requirements on x(X), cf. the deformation
map in Eq. (2.1). The total mass can be computed with respect to the density ρ0 in the reference
or ρ in the current configuration as

µm(Ω) = mΩ0 =

∫

Ω

ρ(x) dx =

∫

Ω0

ρ0(X) dX (2.96)

with ρ0(X) = Jρ(x), resembling the calculation with respect to different measures in Eq. (2.85)
and dX = dV implying a volume integral. The only difference between P and µm is that the
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probability measure is normalized. Moreover, the center of mass xc can be associated with the
expected value of a random variable as

xc =
1

mΩ0

∫

Ω

x ρ(x) dx, (2.97)

implying that xc is the expected value of x, cf. Eq. (2.86), with respect to the mass measure µm
divided by mΩ0 . As a last example, the moment of inertia can be associated with the variance
and covariance from Eq. (2.87) and Eq. (2.88), respectively. Consider the I11 entry of the inertia
tensor from solid mechanics

I11 =

∫

Ω

(x2
2 + x2

3) ρ(x) dx =

∫

Ω

x2
2 ρ(x) dx+

∫

Ω

x2
3 ρ(x) dx. (2.98)

This expression corresponds to the sum of the variances V[X2] +V[X3] of two random variables
X2 and X3 with zero mean. Likewise,

I12 =

∫

Ω

x1x2 ρ(x) dx (2.99)

is equal to the covariance Cov(X1, X2) of two zero mean random variables X1 and X2. Thus,
just like the center of mass and moment of inertia are characteristics of a continuous body, the
expected value, variance and covariance are characteristics of random variables.

2.3.2. Stochastic forward problem

The stochastic forward problem is the determination of the push-forward probability measure
PY of a probability measure PX under the transformation Y , such that [22]

PY(B) = PX (Y −1(B)) ∀B ∈ BY . (2.100)

For practical cases it suffices to generate samples from the PDF πY associated with PY such
that one can resort to Monte Carlo (MC) approximation methods (cf. Section 2.5.3). Recalling
the QoI map from Eq. (2.58), the model parameters θ ∈ Rnθ are identified as random variables
transformed via the function Y = Q(θ), where Q ∈ RnQ . A typical task is to calculate the
probability that Q lies in some region B

P(B) =

∫
1B(Q) π(Q) dQ =

∫
1B(Q(θ))π(θ) dθ (2.101)

or to compute the expected value of Q

E[Q] =

∫
Qπ(Q) dQ =

∫
Q(θ)π(θ) dθ. (2.102)

More concrete examples will be discussed in detail in Section 2.4 in the context of biomechan-
ical rupture risk assessment, while different strategies for approximating π(Q) are presented
in Section 2.5.
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2.3.3. Bayesian inverse problem

The Bayesian approach to inverse problems results in a conditional measure

P(A|Y = y) =

∫
1A(x) π(x|y) dx ∀A ∈ BX (2.103)

on the model input parameters X given a realization Y = y. In that sense, the posterior den-
sity π(x|y) from Eq. (2.93) represent the solution to the inverse problem [67]. For any practical
purposes, however, the posterior is usually not available in closed form, such that the biggest
challenge in Bayesian inverse problems lies in the calculation of characteristics of the density
π(x|y), e.g. by generating samples using Markov chain Monte Carlo (MCMC) methods. Differ-
ent methods addressing this challenge are presented in Section 2.5.5.

For the specification of the posterior in order to obtain growth parameters for the AAA vessel
wall, the modeling approach from [68, 69] is being followed. While model parameters X are
denoted by θ as before, the realizations Y = y are measurements from CTA and denoted by Ŝ.
Both the model-predicted surfaces S = S(D(θ)) and the surface measurements Ŝ are represented
via a triangulation [68]. The log posterior log π(θ|Ŝ) becomes

log π(θ|Ŝ) ∝ log π(Ŝ|θ) + log π(θ), (2.104)

where π(Ŝ|θ) denotes the likelihood and π(θ) the prior. The likelihood is formulated using a
surface currents based similarity measure [68] as

log π(Ŝ|θ) ∝ −‖Ŝ− S(D(θ))‖2
W?

2σ2
N

= f`(D(θ)), (2.105)

with the measurement noise parameter σN . A total variation (TV) regularization prior [68] is
chosen as

log π(θ) ∝ −αtv

nel∑

i=1

[
ni∑

j=1

wij (θj − θi)2 + ε2
tv

] 1
2

= fp(θ), (2.106)

with the weight wij attributed to the two parameters θi and θj , the number of parameters ni
adjacent to θi and the hyperparameters αtv and εtv. For notational convenience, the objective
function

f(D(θ),θ) = f`(D(θ)) + fp(θ) (2.107)

will frequently be employed in the rest of this work. According to Section 2.2.4, the computation
of the objective function total derivative requires the solution of the adjoint problem

∂R

∂D

T

Λ = −∂f`
∂D

(2.108)
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2.4. Biomechanical rupture risk assessment of AAAs

and the evaluation of

∇θf(θ) =
df(D(θ),θ)

dθ
=
∂fp
∂θ

+ ΛT∂R

∂θ
. (2.109)

For the derivatives of the prior associated term fp(θ) with respect to θ and the likelihood associ-
ated term f`(D(θ)) with respect to D, it is being referred to [68]. In Section 2.5.5, an approach
that makes use of gradients∇θf(θ) in the context of stochastic optimization and results in an ap-
proximate posterior density π(θ|Ŝ) is presented and later applied in the context of AAA growth
in Section 3.4.

2.3.4. Stochastic inverse problem

In accordance with the terminology of the stochastic forward problem, the stochastic inverse
problem is the determination of the probability measure PX , such that the induced push-forward
measure PY satisfies [22]

PX (Y −1(B)) = PY(B) ∀B ∈ BY . (2.110)

For the QoI map Q(θ) this corresponds to finding a probability measure PX for θ ∈ Rnθ such
that the push-forward measure corresponds to the probability measure PY for Q ∈ RnQ . Such
a solution is called a consistent solution to an inverse problem in the sense that Eq. (2.110) is
satisfied. The nature of this particular inverse problem renders it appropriate for the case, where
PY can be determined from repeated experiments in order to obtain a probability measure PX
that represents the statistical properties of the tested samples.

This addresses the problem of determining a PDF for the mechanical properties of AAA tissue
samples from a cohort of patients. In particular, let θ denote the stiffness parameters αw and βw

of the AAA wall material model and Q(θ) the numerical or analytical model of the tensile
test, where Q(θ) represents some QoI that can be associated with the measurement data. The
stochastic inverse problem seeks a density π(θ), such that its push-forward density π(Q(θ))
corresponds to the observed density π(Q̂) of measured responses Q̂ of the QoI. A strategy to
compute π(θ) is presented in Section 2.5.6 and applied for the purposes of determining a cohort-
based density π(αw, βw) in Section A.4.

2.4. Biomechanical rupture risk assessment of AAAs

The following section is a revised version of part of the author’s work published in [19]. From a
mechanical point of view, rupture is an event of local material failure at a point x in the aneurysm
wall, which motivates its definition via a failure function φ(x) and the failure criterion

φ(x) > 0, at any x. (2.111)

Here, only stress-based failure is considered and rupture defined as an event where the local wall
stress measure σ(x) exceeds the local wall strength σγ(x). This results in the failure function
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φ(x) = σ(x)− σγ(x), or the criterion

σ(x) > σγ(x), at any x. (2.112)

Using the equivalent von Mises stress σvm(x) as the local stress measure σ(x) and an assumed
spatially constant wall strength σγ , this criterion can be evaluated as

σmax
vm > σγ, (2.113)

where σmax
vm is the maximum von Mises stress σmax

vm = maxx σvm(x).

Rupture risk estimation for AAAs has been an ongoing research topic over several decades,
with many attempts to establish decision criteria for clinical practice. The maximum diameter
criterion [24] still represents the most widely used criterion for decision making today. It is often
justified by Laplace’s law, which states that the vessel wall stress is proportional to its diameter
in spherical geometries. Based on this and with data obtained from several clinical studies, a
very simple criterion,

d > dmax, (2.114)

has been formulated, relating the patient’s AAA diameter d to a critical maximum diameter
dmax. While established in clinical practice and easy to apply using CT or ultrasound imaging,
this criterion has often been criticized [144] and is an ongoing subject for discussion [132]. This
issue is exemplified by the intra- and inter-observer variabilities in measuring the maximum
diameter [87].

With growing computational resources and advances in the modeling of biomechanical ma-
terial behavior, the simulation of patient-specific AAA models has been advanced by several
research groups. Experiments on harvested AAA samples were able to reveal material param-
eters and failure properties. In addition with regression models [114, 117, 141] for the pre-
diction of the individual wall strength, this enabled the definition of biomechanics-based in-
dices [37, 42, 83, 139], such as the rupture potential index (RPI)

RPI =
σmax

vm

σγ
or RPI(x) =

σvm(x)

σγ(x)
, (2.115)

relating the von Mises stress to the wall strength. Furthermore, it could be shown [30, 42, 83]
that these indices can be better rupture risk indicators than the maximum diameter criterion.
Experimental testing [114, 117, 141] also revealed significant inter- and intra-patient variabilities
in the mechanical properties of AAA tissue, motivating a probabilistic approach to rupture risk
estimation [5, 7, 107] and resulting in the probabilistic rupture risk index (PRRI) [107]

PRRI =

∫ ∞

0

∫ ∞

σγ

π(σmax
vm ) dσmax

vm π(σγ) dσγ, (2.116)

where the authors used densities for the wall thickness and wall strength that were fitted on data
published in [117].
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2.4. Biomechanical rupture risk assessment of AAAs

The current work proposes a probabilistic rupture risk indicator that consistently incorporates
all available statistical information and accounts for correlations among vessel wall properties.
Fig. 2.2 (left) illustrates the rationale for this approach, showing how part of the available data
from a patient is directly involved in the estimation of the risk of rupture, while another part
affects the evaluation of the computational model. In general, this data will be correlated, result-
ing in correlated quantities for the evaluation of the rupture risk. As a consequence, the PRRI
from Eq. (2.116) will be inadequate, since it assumes an independence between the biomechan-
ical model and the wall strength.

Rupture risk 
evaluation

Simulation 
model

�max
vm
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Figure 2.2.: Rationale for this novel formulation (left) and visualization of its estimation (right). The
probability of rupture, Prupt, is calculated as the volume of the PDF π(σmax

vm , σγ) within
the triangular-shaped area marked in red. Reproduced with permission from [19].

To that end and recalling the rupture criterion from Eq. (2.113), the probability of rupture is
calculated over the joint PDF π(σmax

vm , σγ) as

Prupt =

∫
1σmax

vm >σγ π(σmax
vm , σγ) dσmax

vm dσγ, (2.117)

where 1σmax
vm >σγ is defined as

1σmax
vm >σγ =

{
1 σmax

vm > σγ,

0 otherwise.
(2.118)

This formulation can be easily extended to, e.g., spatially varying vessel properties using Eq. (2.111)
or Eq. (2.112) as failure events. Furthermore, it includes the PRRI in Eq. (2.116) as a special
case, when choosing π(σmax

vm , σγ) = π(σmax
vm ) π(σγ). Lastly, it allows for a straightforward visual

interpretation as illustrated in Fig. 2.2 (right). The plot shows the joint PDF π(σmax
vm , σγ) and

visualizes the rupture event area in red. The blue area implies a high probability for the joint
occurrence of the corresponding stress and strength values. The probability of rupture, Prupt, is
simply the volume of this density within the triangular rupture event area. Thus, the larger the
overlap between π(σmax

vm , σγ) and the red area, the higher Prupt.
Eq. (2.117) is general in the sense that it allows arbitrary models for σmax

vm and σγ . In particular,
when growth of the AAA is taken into account, Eq. (2.117) can be evaluated over time, such that
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t0 t1 t2

d(t0)

dmax

d(t)
Prupt(t)

Prupt(t0)

P?rupt

Figure 2.3.: Conceptual illustration for a predictive rupture risk assessment. Using a time-dependent
biomechanical AAA model based on growth, both Prupt (blue, solid and dashed line) as well
as the AAA maximum diameter d (black, solid and dashed) can be simulated and monitored
over time. Here, the growth model involves a calibration phase based on consecutive CTA or
MRA imaging (blue and black circles at t0 and t1) and a prediction phase. The plot shows
exemplary model-estimated values for Prupt and d during the calibration (solid lines) as well
as during the prediction phase (dashed lines). Surveillance intervals can be adapted individu-
ally and predictively based on when the rupture risk index exceeds the critical value P?rupt at
a future point in time (indicated via the red star at t2) or when d(t) exceeds the value dmax

from the maximum diameter criterion. Finally, the model may be re-calibrated at any time to
increase the accuracy in the predictions given new clinical data.

a time-dependent probability of rupture Prupt(t) is obtained. Visually speaking and with regards
to Fig. 2.2 (right), this allows an estimation about where the blue area representing π(σmax

vm , σγ)
moves over time. As a result, it is possible to identify trends about the progression of the AAA
disease. While the interpretation of Prupt at one instance in time can be difficult (cf. Section 3.3),
a negative trend in terms of an increasing probability of rupture can be directly translated to
shorter surveillance intervals for that patient. A conceptual illustration for a predictive rupture
risk assessment is described in Fig. 2.3.

2.5. Uncertainty quantification tools

This section introduces the Gaussian family of PDFs as well as different Gaussian processs
(GPs) as statistical models in Section 2.5.1 and Section 2.5.2, respectively. Furthermore, the
MC method (cf. Section 2.5.3) and a probabilistic multi-fidelity Monte Carlo (MFMC) (cf. Sec-
tion 2.5.4) are presented in order to deal with stochastic forward problems. Strategies for Bayesian
inverse problems are covered in Section 2.5.5 and consistent solutions to stochastic inverse prob-
lems in Section 2.5.6. Lastly, tools for dimensionality reduction of parameterized models are
discussed in Section 2.5.7. There exist a variety of excellent books on modern UQ topics, which
cover some of the presented methods or go far beyond the scope of this work. For a machine
learning (ML) inspired approach, the works of [12, 93] are recommended. A more mathematical
introduction is provided by [129].

32



2.5. Uncertainty quantification tools

2.5.1. Gaussian probability density functions

Univariate Gaussian

A random variable X ∈ R with the PDF

π(x) =
1√
2πσ

exp

[
−1

2

(
x− µ
σ

)2
]

(2.119)

is said to follow a Gaussian or normal distribution, denoted by X ∼ N (µ, σ2), with mean µ ∈ R
and variance σ2 ∈ R+.

Multivariate Gaussian

A random vector X ∈ Rn with the PDF

π(x) = (2π)−
n
2 |Σ|− 1

2 exp

[
−1

2
(x− µ)TΣ−1 (x− µ)

]
, (2.120)

follows a multivariate Gaussian distribution, i.e. X ∼ N (µ,Σ), with the mean vector µ ∈ Rn

and positive semi-definite covariance matrix Σ ∈ Rn×n.

Matrix-variate Gaussian

A normally distributed random matrix X ∈ Rn×m, where X ∼ MN n,m(M ,Σ,Υ), has the
PDF [25]

π(X) =
exp

{
−1

2
tr
[
Υ−1(X −M )TΣ−1 (X −M )

]}

(2π)
nm
2 |Σ|n2 |Υ|m2 (2.121)

with mean M ∈ Rn×m, positive semi-definite row covariance Σ ∈ Rn×n and positive semi-
definite column covariance Υ ∈ Rm×m. The matrix-variate distributionMN n,m(M ,Σ,Υ) can
be reformulated as a multivariate Gaussian

vec(XT) ∼ N (vec(MT),Σ⊗Υ) (2.122)

via vectorization using column-wise stacking.

2.5.2. Gaussian processes

Gaussian process regression

A Gaussian process is a random process with the property that any finite collection of random
variables from the process has a multivariate Gaussian distribution [116]. It is fully specified by
a mean m(τ) = E[Xτ ] and covariance function k(τ, τ ′) = Cov[Xτ , Xτ ′ ], where τ, τ ′ ∈ T . In
the context of regression, the GP is introduced as a Gaussian prior π(f) over functions f(τ) and
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denoted by

f(τ) ∼ GP (m(τ), k(τ, τ ′)) . (2.123)

The process is used for the purposes of approximating the relationship between f and τ based
on a training data set {yi, τi}ntrain

i=1 consisting of ntrain data points. The observed values of the
function f(τi) are assumed to be contaminated by additive Gaussian noise as

yi = f(τi) + εn, εn ∼ N (0, σ2
n). (2.124)

In Bayesian terminology, this gives rise to the likelihood

π(y|f, τ ) =

ntrain∏

i=1

N (yi, σ
2
n) = N (y, σ2

nIntrain
), (2.125)

where y and τ denote the training data and Intrain
is the ntrain × ntrain identity matrix. Condi-

tioning the GP on y and τ results in a posterior over the function f(τ), i.e. π(f |y, τ ), which can
be used to obtain a predictive distribution for y? = y(τ ?) at an arbitrary location τ ?

π(y?|τ ?,y, τ ) =

∫
π(y?|f, τ ?) π(f |y, τ ) df. (2.126)

For GPs, this predictive distribution is obtained by conditioning the multivariate Gaussian π(y?,y|τ ?, τ )
on the observed data and results in another Gaussian distribution [116]

y? ∼ π(y?|τ ?,y, τ ) = N (µ?, σ?
2

). (2.127)

The mean µ? and variance σ?2 are computed as

µ? = m(τ ?) + k?TK−1 (y −m) , (2.128)

σ?
2

= k(τ ?, τ ?)− k?TK−1k?, (2.129)

with

• k?: a vector of size ntrain with entries [ki] = k(τ ?, τi),

• K: a matrix of size ntrain × ntrain with entries [Kij] = k(τi, τj) + σ2
nδij and where δij is

the Kronecker delta,

• y: a vector of size ntrain with entries [yi] = yi,

• m: a vector of size ntrain with entries [mi] = m(τi).

The mean and covariance functions, m(τ) and k(τ, τ ′), usually feature hyperparameters θm and
θk, which need to be set appropriately. While it is possible to introduce further prior distribu-
tions [116, Section 5.2], the Bayesian view on GPs already provides a straightforward way for
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optimizing these parameters along with σn via maximizing the model evidence

π(y|τ ) =

∫
π(y,f |τ ) df =

∫
π(y|f , τ ) π(f |τ ) df (2.130)

with f containing the function values f(τi). For GPs, the log model evidence, which is also
called the log marginal likelihood, becomes

L(ζ) = −1

2
log |K| − 1

2
(y −m)TK−1 (y −m)− ntrain

2
log 2π (2.131)

with the hyperparameters ζ = {θm, θk, σn}.

Multivariate Gaussian process regression

A multivariate GP

Xτ ∼MGP(m(τ), k(τ, τ ′),Υ) (2.132)

is am-variate random process withXτ ∈ Rm such that the random matrix [X1
τ , X

2
τ , . . . , X

n
τ ]

T ∈ Rn×m

of n random vectors X i
τ follows a matrix-variate Gaussian distribution [25, 146]. As for the uni-

variate case, it is defined via a mean m(τ) and covariance function k(τ, τ ′), but features an
additional positive semi-definite matrix Υ ∈ Rm×m. The covariance function k(τ, τ ′) is also
called the row covariance and Υ the column or parameter covariance. There are different possi-
bilities on how to formulate multivariate GPs, especially on how to model the covariances and
noise levels for the different outputs.

Below, the approach from [146] is presented, assuming a zero-mean function m(τ) = 0.
As before, the GP will be defined as a prior over the unknown function f(τ), where f ∈ Rm.
It is being assumed that each component fi of the function f follows the same univariate GP,
i.e. fi ∼ GP(0, k(τ, τ ′)). To correlate the individual components fi, the random vector f is
described by a multivariate Gaussian distribution f ∼ N (0,Υ). Hence, the random matrix of
ntrain vectors [f 1, . . . ,fntrain ]

T follows a matrix-variate Gaussian distribution

[f 1, . . . ,fntrain ]
T ∼MN ntrain,m(0,K,Υ). (2.133)

Given a data set {yi, τi}ntrain
i=1 , the following noise model is assumed

yi = f(τi) + εn, (2.134)

with εn ∼ N (0,D). The diagonal matrixD contains different noise levelsDii ∈ R+, i = 1 . . .m,
for the individual outputs. The matrix-variate Gaussian can be rewritten as a multivariate Gaus-
sian via vectorization. Taking into account the noise levels, this results in

vec(Y ) = [y1T, . . . ,yntrainT]
T
∼ N (0,Υ⊗K +D ⊗ Intrain

), (2.135)

where⊗ denotes the Kronecker product. Following [13, 25, 146], the matrix Υ is parameterized
via the entries Lij of the Cholesky decomposition Υ = LLT. Then, the predictive distribution
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at the arbitrary location τ ? is a multivariate Gaussian such that

y? ∼ N (µ?,Σ?) (2.136)

with

µ? = (Υ⊗ k?)T(Υ⊗K +D ⊗ Intrain
)−1vec(Y ), (2.137)

Σ? = Υ k(τ ?, τ ?) +D − (Υ⊗ k?)T(Υ⊗K +D ⊗ Intrain
)−1 (Υ⊗ k?) . (2.138)

Finally, the log marginal likelihood becomes

L (ζ) =− 1

2
log |Υ⊗K +D ⊗ Intrain

|

− 1

2
vec(Y )T(Υ⊗K +D ⊗ Intrain

)−1vec(Y )− 2ntrain log 2π
(2.139)

and can be optimized with respect to the hyperparameters ζ, which in this case contain param-
eters θk from the covariance function, noise parameters Dii as well as parameters Lij from the
Cholesky decomposition.

Gaussian process surrogate modeling incorporating explicit basis functions

GPs can also be employed as surrogate models by assuming noise-free observations, i.e. y = f(τ),
to obtain cheap approximations to numerically expensive computational models [70]. In this
case, the GP serves as an interpolator on a set of input-output values and the term Kriging is
frequently used instead. Below, a GP-based interpolation model that incorporates explicit basis
functions as proposed in [116] and exemplified by [14, 19] is presented. With such a model, it
is possible to exactly represent functions that can be described by the provided basis. For the
purposes of this work, the goal is to approximate the parameter-to-QoI map as

Q(θ) ≈ f(θ) + h(θ)Tη, (2.140)

where f(θ) ∼ GP (0, k(θ,θ′)) is a zero mean Gaussian process and h(θ) denotes the chosen ba-
sis functions with coefficients η. Assuming a Gaussian prior for the coefficients, η ∼ N (b,B),
this results in the Gaussian process

f(θ) + h(θ)Tη ∼ GP(h(θ)Tb, k(θ,θ′) + h(θ)TBh(θ′)). (2.141)

The dependence on the prior parameters b and B can be resolved, if a vague prior for η is
chosen, i.e. if the limiting case is considered, where B−1 approaches the zero matrix 0. In that
case, the predicted mean and variance for an arbitrary point θ? become

µ?Q = k?TK−1y + rTη̄, (2.142)

σ?
2

Q = k(θ?,θ?)− k?TK−1k? + rT(HK−1HT)
−1
r, (2.143)
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where η̄ = (HK−1HT)
−1
HK−1y, r = h? −HK−1k? and y = [Q(θ1), . . . , Q(θntrain

)]T is
the vector of ntrain model evaluations.H is a matrix containing vectors h(θ) at all training data
points and h? = h(θ?). Finally, the log marginal likelihood is

L(ζ) = −1

2
yTK−1y +

1

2
yTCy − 1

2
log |K| − 1

2
log |A|

− ntrain − rank(HT)

2
log 2π,

(2.144)

where C = K−1HTA−1HK−1 andA = HK−1HT.

2.5.3. Monte Carlo method

The Monte Carlo method [88, 130] can be considered an approach to approximate integrals of
the general form

I =

∫
f(x) π(x) dx. (2.145)

The application of the MC method relies on the law of large numbers [129], which states that
the arithmetic mean of N independent samples from the density π(x) converges to the expected
value

IN =
1

N

N∑

i=1

f(xi)→ I (2.146)

as N →∞ and where xi are independent and identically distributed (i.i.d.) samples from π(x).
IN is called an estimator and is a random variable itself, since it is composed of a sum of random
variables. The estimator is unbiased in the sense that the expected value of the estimator is the
exact value of the integral

E[IN ] =

∫
IN π(IN) dIN =

1

N

N∑

i=1

∫
f(xi) π(f) df = E[f(x)] = I. (2.147)

The variance of the estimator is

V[IN ] =
V[f(x)]

N
. (2.148)

Hence, it depends on the variance of the function f(x) itself and decays with 1/N . The actual
distribution of the random variable IN is provided by the central limit theorem [129], which
states for the sum of Xi i.i.d. random variables

∑N
i=1Xi −NµX√

NσX
→ N (0, 1), as N →∞, (2.149)
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where µX = E[Xi] and σX =
√
V[Xi]. This means that the Monte Carlo error εMC = IN − I

follows a Gaussian distribution εMC ∼ N (0, σ2
X/N) as N → ∞. In practice it usually suffices

thatN is large enough in order for εMC to be approximately Gaussian. Then, using MC estimates
for the variance σ2

X , the MC error can be controlled up to a desired tolerance by choosing a
corresponding sample size N . For the parameter-to-QoI map Q(θ) used in this work, one can
compute integrals using MC sampling as

I =

∫
f(Q)π(Q) dQ ≈ 1

N

N∑

i=1

f(Q(θ(i))) (2.150)

with i.i.d. θi ∼ π(θ). Although simple and inherently parallel, MC sampling can quickly be-
come infeasible for practical problems, where the parameter-to-QoI map Q(θ(i)) is numerically
expensive to evaluate. To that end, frequently surrogate models that are cheap to evaluate, such
as the GP models above, are used for MC integration.

2.5.4. Probabilistic multi-fidelity Monte Carlo method

In Section 2.5.3, it was shown how integrals with respect to an unknown PDF π(x) can be ap-
proximated using the MC method. Due to the high computational costs associated with MC sam-
pling directly on the high-fidelity model, the objective of this section is to generate approximate
yet accurate samples xi from the density π(x) at a fraction of the original costs by employing
numerical models of varying fidelity. Existing multi-level Monte Carlo (MLMC) and MFMC
methods [49, 50, 106] usually only provide moment estimates or are limited to parametric den-
sity estimation [9, 51]. Furthermore, surrogate models and response surface approximation tech-
niques typically suffer from a poor stochastic scalability and become infeasible when the number
of random input variables is large. To that end, a probabilistic MFMC method is presented below
as a general and flexible strategy for UQ purposes. Following the idea of Bayesian MC [115], the
method was introduced in [75], applied to large-scale problems in [5, 7, 111] and has recently
been generalized [98].

The following section is a revised version of part of the author’s work published in [18].
Below, the parameter-to-QoI map Q = Q(θ) will be referred to as the high-fidelity model and
it is assumed that an additional low-fidelity solver q = q(θ) is available, providing a cheap
approximation to the QoI. The joint distribution of both models is denoted as π(Q, q). It is being
noted that the low-fidelity approximation of the QoI can be very poor as long as there is some
statistical dependence between the low-fidelity and the high-fidelity outputs, q(θ) and Q(θ). By
basic rules of probability theory, for the density of the high-fidelity QoI one can write

π(Q) =

∫
π(Q, q) dq =

∫
π(Q|q) π(q) dq. (2.151)

Thus, calculating π(Q) involves constructing a conditional density π(Q|q) between the high-
fidelity and low-fidelity and averaging over q. In practice, a large amount of samples qi are drawn
from π(q), samples Qi|qi generated using the conditional density and it is made use of kernel
density estimation (KDE) to obtain an approximate π(Q). It is critical to mention that while
the parameterization of the random variables θ is not required to be the same for both levels of
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fidelity, it is required that the parameters for the low-fidelity model be a subset of the parame-
ters of the high-fidelity model, or that there exists a relationship between the parameters of the
different models. This is necessary if one wants to construct π(Q|q) using a regression model,
since a training set with corresponding model evaluations needs to be created as demonstrated
below.

The density π(q) can be obtained via simple MC sampling, since every model evaluation q(θ)
is assumed to be relatively cheap. The key ingredient thus is the construction of the conditional
density π(Q|q). The goal is to achieve this using regression models, trained on a sampling set
{Q(θi), q(θi)}ntrain

i=1 involving ntrain high-fidelity and corresponding low-fidelity model evalua-
tions at the same parameter realization θi. Creating this training set naturally is the computa-
tionally most demanding part in the process. In addition to the type of regression model, the
choice of model parameter realizations θi can be a nontrivial task. Finally, using Eq. (2.151), the
classical MC integration tasks from Eq. (2.150) can be expressed via

I =

∫
f(Q) π(Q) dQ =

∫
f(Q)

(∫
π(Q|q) π(q) dq

)
dQ

=

∫ ∫
f(Q) π(Q|q) dQπ(q) dq =

∫
E[f(Q|q)]π(q) dq.

(2.152)

Approximating the conditional densities

While [7, 75] employ a Bayesian regression model for the conditional density π(Q|q), this work
follows [111, 115] and considers GP models due to their simple structure, but great flexibil-
ity. It is being noted, however, that any method providing probabilistic estimates Q|q could be
used. While in their standard formulation, GPs assume a Gaussian likelihood and homoscedas-
tic noise, produce single-output responses and are limited in their scalability, generalizations to
heteroscedastic noise, non Gaussian likelihoods, multiple output variables and scalable versions
have been developed [10, 25, 116, 146]. Using the mean of the GP as a regression model for the
trend of the mapping between two models Q and q is straightforward.

Unfortunately, the assumption of a Gaussian noise model may fail to capture the correct con-
ditional distribution, even for simple models. For the models that appear to have non-Gaussian
conditional distributions, the results using the GP model can be compared with a simple approach
based on a KDE of the noise. This comparison does not require any additional model evaluations
and provides a reasonable indication of the validity of the Gaussian noise assumption. As a fur-
ther remedy, the generalized approach from [98] can be pursued for non-Gaussian conditionals
π(Q|q). The random process is defined as a link between the high-fidelity and the low-fidelity
outputs, Q(θ) and q(θ). The resulting predictive density will serve the MFMC framework as the
conditional density π(Q|q) to generate high-fidelity samples Q? given low-fidelity samples q?.

Training set selection strategies

When it comes to the selection of appropriate training data points for the construction of the GP,
the simplest approach is based on MC sampling, i.e., generating ntrain samples {θi}ntrain

i=1 from
the density π(θ) and evaluating high- and low-fidelity model responses.While this is generally
applicable and possibly the only feasible approach for a high number of QoI, it will lead to a

39



2. Theoretical Background

relatively slow convergence since only few training points will fall in the regions of the regression
model corresponding to the tails of the high-fidelity push-forward. Areas with a high probability
density, on the other hand, will be identified relatively quickly.

An alternative strategy is to try to cover the support of the low-fidelity density π(q) by creating
a set of evenly spaced points, e.g., on a grid, and evaluating the high-fidelity model at a represen-
tative set of corresponding model parameters. This procedure leads to a more stable surrogate
creation process, since the GP captures the trend of the data relatively fast. On the other hand,
a grid-based approach becomes infeasible, as the number of QoI grows. In particular, since the
support of the low-fidelity push-forward is typically not a hypercube and can be highly corre-
lated, constructing a grid of points may be impractical. In this case, one should resort to different
design of experiment strategies.

Algorithmic steps and diagnostics

Applying the probabilistic MFMC framework in practice requires a few simple steps, cf. Alg. (1):

1. Define a high-fidelity model Q(θ) and a low-fidelity model q(θ).

2. Generate N samples from the input density π(θ) and compute the low-fidelity push-
forward of this density using a standard KDE model.

3. Generate a training data set {qi, Qi}ntrain
i=1 .

4. Train a regression model on the training set, generate high-fidelity samples Qi using
π(Q|q) and approximate the high-fidelity push-forward.

To conclude this section, some diagnostics are discussed that are helpful to quantify the epis-
temic uncertainty introduced by the MFMC framework. This uncertainty is due to the trained
regression model and will be dominated by its covariance structure. To simplify the discussion,
the mean estimator

E[Q] =

∫
Qπ(Q) dQ =

∫ ∫
Qπ(Q|q) dQπ(q) dq

=

∫
E[Q|q] π(q) dq ≈

∫
µQ(q) π(q) dq ≈ 1

N

N∑

i=1

µQ(qi) = Q̂

(2.153)

is considered. The first approximation is due to the GP regression model, the second one due to
MC sampling. The mean estimator Q̂ is thus simply an average of the GP predicted means µQ
given qi. To obtain a variance estimate of the mean estimator, one can compute

E[(Q− µQ(q))2] =

∫
E[(Q|q − µQ(q))2] π(q) dq

≈
∫
σ2
Q(q) π(q) dq ≈ 1

N

N∑

i=1

σ2
Q(qi) = VQ̂.

(2.154)
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The mean estimator variance VQ̂ is thus the average of GP predicted variance σ2
Q given qi. Esti-

mator variances can be computed for any expectation as

E[h(Q)] =

∫
E[h(Q|q)]π(q) dq ≈ 1

N

N∑

i=1

h(Qi|qi) = ĥQ. (2.155)

With hQ(q) = E[h(Q|q)], corresponding estimator variances are

E[(h(Q)− hQ(q))2] =

∫
E[(h(Q|q)− hQ(q))2] π(q) dq

≈ 1

N

N∑

i=1

(h(Qi)− hQ(qi))
2 = VĥQ

,

(2.156)

providing a helpful diagnostic value to assess the uncertainty of the regression model and high-
fidelity predictions. To conclude, the following diagnostics can be utilized:

1. The estimated QoI mean Q̂, the absolute and relative mean estimator errors εabs
Q̂

and εrel
Q̂

,
defined as

εabs
Q̂

= V1/2

Q̂
and εrel

Q̂
=

V1/2

Q̂

|Q̂|
. (2.157)

2. The estimated QoI standard deviations V̂ 1/2
Q , where V̂Q is the variance estimate E[(Q− Q̂)2],

the absolute and the relative standard deviation estimator errors εabs

V̂
1/2
Q

and εrel

V̂
1/2
Q

, defined as

εabs

V̂
1/2
Q

=

√
V̂Q + V[V̂Q]1/2 − V̂ 1/2

Q and εrel

V̂
1/2
Q

=

√
V̂Q + V[V̂Q]1/2 − V̂ 1/2

Q

V̂
1/2
Q

. (2.158)

These diagnostics provide a quantitative estimate of the uncertainties of the first and second
moment for the approximated push-forward density π(Q).

Algorithm 1: Generating high-fidelity samples
1: Input: Q(θ), q(θ)
2: Compute N samples {qi}Ni=1 using the input density π(θ).
3: Create a training data set {qi, Qi}ntrain

i=1

4: Train a regression model on the data set {qi, Qi}ntrain
i=1 .

5: for i = 1, . . . , N do
6: Obtain the GP-based predictive density π(Qi|qi) and generate a sample Q?

i .
7: end for
8: Approximate π(Q) from {Q?

i }Ni=1 using a KDE.
9: Output: π(Q), {Q?

i }Ni=1
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2.5.5. Bayesian inference

Bayesian inference is the process of updating beliefs (specified via the prior) using Bayes’ rule as
new information (specified via the likelihood) becomes available. In practice and for the purposes
of this work, Bayesian inference implies exploring the posterior PDF from Section 2.3.3

log π(θ|Ŝ) ∝ log π(Ŝ|θ) + log π(θ), (2.159)

i.e. generating samples, computing statistical moments, etc. The greatest challenge when it
comes to applying the Bayesian paradigm to practical problems with computationally expen-
sive numerical models is the relatively high number of model evaluations that are usually re-
quired. Hence, limited computational budgets and time constraints require an appropriate model
choice or adequate approximation technique. In this section, different methods of varying ap-
proximation capabilities are discussed. Further details on Bayesian inference in general and the
individual methods can be found in the works [12, 129].

MAP estimation and Laplace approximation

Fitting a Gaussian distribution at the maximum a posteriori probability (MAP) of the posterior
π(θ|Ŝ) is called Laplace approximation. The MAP θMAP is the point at maximum probability
density, i.e. the mode of the posterior, defined as

θMAP = arg max
θ

log π(θ|Ŝ) (2.160)

and can be found via non-convex optimization. In particular, for problems involving a high-
dimensional parameter space Rnθ , the Limited-memory BFGS (L-BFGS) [99] algorithm is a
popular choice. As a quasi-Newton method, it approximates the Hessian of the objective func-
tion using gradient information. Here, the objective function is f(θ), with expressions for the
gradient ∇θf(θ) readily available using the adjoint method, cf. Section 2.3.3. In [47], a com-
prehensive discussion of the Laplace approximation method and its application to large-scale
inverse problems is provided.

Markov chain Monte Carlo

The MCMC method was originally introduced for statistical mechanics problems [57, 89] and
has evolved to a popular tool for Bayesian inference with applications to almost all fields of
science and engineering. It is based on the idea of constructing an ergodic Markov chain, which
produces a sequence of samples θi that asymptotically satisfy θi ∼ π(θ|Ŝ) after the chain has
become stationary.

A major challenge with almost all MCMC methods in a high-dimensional parameter setting
is the proper design of proposal densities π(θi+1|θi) for consecutive samples, which can signifi-
cantly affect the number of steps until stationarity. This is particularly important when the costs
for each model evaluation is high. Faster convergence in comparison to the standard Metropolis-
Hastings MCMC algorithm can, e.g., be achieved via the Metropolis-adjusted Langevin algo-
rithm (MALA) [122] that incorporates gradient information of the posterior with respect to θ
into the proposal density. A further issue is the definition of a proper stopping criterion for the
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chain, since asymptotic convergence in practice always implies an approximation error since
computation time is limited.

Sequential Monte Carlo

Sequential Monte Carlo (SMC) methods follow an approach, where, starting from an initial dis-
tribution π0(θ), multiple intermediate distributions πt(θ) are constructed via simulated anneal-
ing [94], with the posterior π(θ|Ŝ) as the final distribution. It involves a set of particles that are
updated from one step to another using transition kernels. In contrast to MCMC methods, SMC
can be straightforwardly parallelized and does not have to be checked for stationarity. However,
the same challenges with high-dimensional parameters arise in the construction of the transition
kernel.

Variational inference

Variational inference (VI) [66, 145] is a method to approximate the posterior π(θ|Ŝ) using a
parameterized PDF qφ(θ) that is available in closed form. Key to this approach is the efficient
optimization of the parameters φ of the density qφ(θ) such that qφ(θ) ≈ π(θ|Ŝ) can be used in
place of the actual posterior. To that end, the Bayesian framework provides a natural optimization
objective via the model evidence [12]

log π(Ŝ) = log

∫
π(θ, Ŝ) dθ = log

∫
qφ(θ)

π(θ, Ŝ)

qφ(θ)
dθ

≥
∫
qφ(θ) log

π(θ, Ŝ)

qφ(θ)
dθ = L(φ).

(2.161)

L(φ) is called the evidence lower bound (ELBO) and it can be shown that the inequality above
becomes an equality if the optimal qφ corresponds to the posterior π(θ|Ŝ). Moreover, maximiz-
ing the ELBO is equivalent to minimizing the Kullback-Leibler (KL) divergence [76]

KL[qφ(θ)‖π(θ|Ŝ)] = −
∫
qφ(θ) log

π(θ|Ŝ)

qφ(θ)
dθ, (2.162)

which is a popular measure of closeness between two probability densities. The ELBO can be
rewritten as

L(φ) =

∫
qφ(θ)(log π(θ, Ŝ)− log qφ(θ)) dθ

= Eqφ [log π(Ŝ|θ) + log π(θ)] + H[qφ(θ)]

(2.163)

where H[qφ(θ)] is the entropy of qφ(θ) defined as

H[qφ(θ)] = −
∫

log qφ(θ)qφ(θ) dθ. (2.164)
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Hence, the VI optimization problem can be formulated as

φ? = arg max
φ
L(φ). (2.165)

For cases, where the measurement noise σN of the likelihood π(Ŝ|θ) is unknown, a non-informative
Jeffrey’s prior

π(σN) ∝ 1

σN
(2.166)

is added [12]. Point estimates corresponding to the MAP value of σN can then be computed
based on the lower bound [16, 36]

log π(σN |Ŝ) = log

∫
π(θ, σN |Ŝ) dθ = log

∫
qφ(θ)

π(θ, σN |Ŝ)

qφ(θ)
dθ

≥
∫
qφ(θ) log

π(θ, σN |Ŝ)

qφ(θ)
dθ = L(φ) + log π(σN).

(2.167)

As before, it is straightforward to verify that the above inequality becomes an equality if qφ
corresponds to the posterior π(θ|Ŝ). This suggests an iterative expectation–maximization (EM)
scheme [12]:

• E-step: the noise parameter σN is fixed and L(φ) is maximized with respect to φ.

• M-step: the parameters φ remain fixed and L(φ) + log π(σN) is maximized with respect
to σN .

Even though arbitrary forms of approximating densities qφ are allowed, in this work the focus is
on multivariate Gaussian distributions N (µ,Σ), parameterized by φ = {µ,Σ}, with the mean
µ ∈ Rnθ and positive semi-definite covariance matrix Σ ∈ Rnθ×nθ .

Stochastic variational inference

Even for Gaussian densities, the optimization objective L(φ) is analytically intractable due to
nonlinearities in θ in the likelihood π(Ŝ|θ) and prior π(θ). Classical VI can thus not be directly
applied, but would require an iterative optimization approach using linearized expression for
the prior and likelihood [36]. To that end, stochastic variational inference (SVI) [61, 103] is
employed, which is based on stochastic optimization. The particular choice for qφ from above
enables the application of the reparameterization trick [73, 120, 135] and a reformulation of
the objective function in order to allow gradient estimation using MC sampling. In general, it
expresses θ = θ(φ, ε) as a function of the optimization parameters φ and a random variable ε
with known density π(ε), which is independent from the parameters φ and easy to sample from.
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With this, the ELBO L(φ) and its gradient can be computed using the estimates

Eqφ [log π(Ŝ,θ)] = Eπ(ε)[log π(Ŝ|θ(φ, ε)) + log π(θ(φ, ε))]

≈ 1

N

N∑

i=1

log π(Ŝ|θ(i)) + log π(θ(i))
(2.168)

and

∇φEqφ [log π(Ŝ,θ)] = Eπ(ε)[∇θ(log π(Ŝ|θ(φ, ε)) + log π(θ(φ, ε)))∇φθ(φ, ε)]

≈ 1

N

N∑

i=1

∇θ(log π(Ŝ|θ(i)) + log π(θ(i)))∇φθ(i),
(2.169)

where θ(i) = θ(φ, ε(i)) and ε(i) i.i.d. samples from π(ε). The gradient∇θ(log π(Ŝ|θ(φ)) + log π(θ(φ)))
can be identified as ∇θf(θ) from Section 2.3.3 and ∇φθ(φ, ε) is derived in Section A.3.2. As
an unconstrained optimization problem, stochastic gradient descent (SGD) can be applied to
construct sequences of the form

φ(k+1) = φ(k) + ρ(k)∇φL(φ(k)) = φ(k) + ∆φ(k), (2.170)

with step size ρ(k) and where k = 0, 1, 2, 3, . . .. Convergence to a local maximum is guaranteed,
provided that the Robbins-Monro criteria [121] for the step size sequence ρ(k)

∞∑

k=0

ρ(k) =∞,
∞∑

k=0

(ρ(k))2 <∞ (2.171)

are satisfied. The celebrated Adam [72] algorithm is employed to obtain exponentially decaying
averages of the first and second moments of the gradient g(k)

j = ∂L(φ(k))/∂φj

m
(k)
j = β1,am

(k−1)
j + (1− β1,a) g

(k)
j , (2.172)

v
(k)
j = β2,av

(k−1)
j + (1− β2,a) (g

(k)
j )2. (2.173)

With the initialization m0
j = 0 and v0

j = 0, a bias correction

m̂
(k)
j =

m
(k)
j

1− βk1,a
, v̂

(k)
j =

v
(k)
j

1− βk2,a
(2.174)

is required5, resulting in the component-wise parameter update

∆φ
(k)
j = ηa

m̂
(k)
j√

v̂
(k)
j + εa

. (2.175)

5Note: βk
1,a and βk

2,a truly means β1,a and β2,a to the power of k in this case.

45



2. Theoretical Background

Appropriate values for the hyperparameters ηa, β1,a and β2,a will be provided for the example
in Section 3.4, while the stability parameter εa is set to 10−8 [72]. To summarize, the ELBO
estimate becomes

L(φ) ≈ 1

N

N∑

i=1

f(θ(i)) + H[qφ(θ)] (2.176)

and its derivatives with respect to the parameters φ

∇φL ≈
1

N

N∑

i=1

∇θf(θ(i))∇φθ(i) +∇φH[qφ(θ)], (2.177)

where the entropy terms H[qφ(θ)] and∇φH[qφ(θ)] remain analytically tractable, cf. Section A.3.2.
The basic algorithmic steps for the application of SVI for the solution of inverse problems are
provided in Alg. (2).

Algorithm 2: SVI for Bayesian inference
1: Initialize φ randomly
2: while not converged do
3: Estimate the gradient: ∇φL(φ(k)) using Eq. (2.177)
4: Update the parameters: φ(k+1) ← φ(k) + ∆φ(k) using Eq. (2.175)
5: Estimate the objective function: L(φ(k+1)) using Eq. (2.176)
6: end while

As mentioned before, a Gaussian distributionN (µ,Σ), parameterized by φ = {µ,Σ}, is uti-
lized as qφ. While full or banded covariance parameterizations of Σ are possible and discussed
in [16], these quickly become infeasible as nθ becomes large. Hence, for reasons of computa-
tional efficiency, a scalable covariance formulation [91, 102] is utilized, which is based on a
diagonal plus low-rank structure and where the number of ranks can be chosen as a trade off
between efficiency and accuracy. Details are presented in Section A.3.2.

2.5.6. Unique solutions to stochastic inverse problems
The following section is a revised version of part of the author’s work published in [18]. In Sec-
tion 2.3.4 above, a stochastic inverse problem that seeks consistent solutions was formulated.
Unfortunately, there exist many measures PX that satisfy this condition. To obtain a unique so-
lution, the approach developed in [21, 22] is made use of, which imposes additional structure to
the problem. Recalling Section 2.3.4, given an observed probability measure Pobs

Y with density
πobs
Y , the stochastic inverse problem seeks a probability measure PX with density πX such that

the subsequent push-forward measure PQY induced by the map Q(θ) satisfies

PX (Q−1(B)) = PQY (B) = Pobs
Y (B), ∀B ∈ BY . (2.178)

As a constraint on the space of solutions, an initial probability measure Pinit
X with density πinit

X is
introduced. Together with the map Q(θ), the initial probability measure induces a push-forward
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measure

PQ(init)
Y (B) = Pinit

X (Q−1(B)), ∀B ∈ BY , (2.179)

and a push-forward density πQ(init)
Y . [21] make use of Bayes’ rule to construct a unique solution

to the stochastic inverse problem, which is referred to as the updated probability measure Pup
X .

The updated density follows as

πup
X (θ) = πinit

X (θ)
πobs
Y (Q(θ))

π
Q(init)
Y (Q(θ))

. (2.180)

The existence of this solution requires a predictability assumption [21], i.e. it is assumed that
there exists a constant C > 0 such that πobs

Y (Q) ≤ Cπ
Q(init)
Y (Q), ∀Q ∈ RnQ . In practice, this

assumption simply requires that the observations have to be predictable by the model. Various
properties of this approach addressing the uniqueness and stability of the consistent solution
are discussed in [21, 22]. A further interesting observation is that the updated density removes
the regularization induced by the initial density within the manifold informed by the data [23].
Lastly, the approach has recently been generalized to allow for non-deterministic maps Q(θ)
subject to noise or other sources of uncertainties.

Algorithmic steps and diagnostics

Approximating the push-forward πQ(init)
Y using MC sampling is simple, but computationally very

demanding. This approach involves sampling from the initial density, computing the model re-
sponses and utilizing KDE to obtain the push-forward density. It is being noted that KDE meth-
ods can quickly become infeasible for multiple QoI due to their poor scalability in higher dimen-
sions. In most practical cases, however, the number of parameters nθ is large, while the number
of QoI nQ will be relatively small. Having calculated the push-forward of the initial density, a
mechanism to generate samples from the updated density is required in order to infer updated
statistics about the model parameters θ and to make predictions. Since the updated density can
be interrogated directly, this can easily be accomplished via rejection sampling [22], cf. Alg. (3).
For a given parameter realization θ, the ratio of the updated density divided by the initial density
is computed and normalized by an estimate of the maximum of the ratio over the whole space
X . For the updated density given in Eq. (2.180), this ratio is given by

r(θ) =
πup
X (θ)

πinit
X (θ)

=
πobs
Y (Q(θ))

π
Q(init)
Y (Q(θ))

. (2.181)

Thus, applying rejection sampling to generate samples from the updated density using samples
from the initial density is equivalent to generating samples from the observed density using sam-
ples generated from the push-forward of the initial. The value of this ratio is then compared with
a sample from the uniform distribution U(0, 1), accepted if the ratio is larger and rejected other-
wise. Rejection sampling is applied to the samples from the initial density and therefore comes at
no additional costs, since model evaluations at the initial samples were already computed in the
calculation of the push-forward. As a result of this, the updated samples will be a subset of the
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initial samples. This makes the approach very attractive to optimal experimental design (OED)
problems as further discussed in [23].

Algorithm 3: Generate samples from the updated density using rejection sampling

1: Input: {θi}Ni=1, {Qi}Ni=1, πQ(init)
Y (Q), πobs

Y (Q)

2: Calculate M = maxi π
obs
Y (Qi)/π

Q(init)
Y (Qi)

3: for i = 1, . . . , N do
4: Compute: ri = πobs

Y (Qi)/π
Q(init)
Y (Qi)

5: Generate a random number from a uniform distribution: ξi ∼ U(0, 1)
6: Compute: ηi = ri/M
7: if ηi > ξi then
8: Accept θi
9: else

10: Reject θi
11: end if
12: end for
13: Output: Accepted samples

An appealing property of this framework for stochastic inverse problems is the possibility
to compute several diagnostic values to examine the obtained updated solution. The following
diagnostics are considered:

(D1) The integral of the updated density

∫
πup
X (θ) dθ =

∫
r(θ) πinit

X (θ) dθ ≈ 1

N

N∑

i=1

ri, (2.182)

where r(θ) is the ratio from Eq. (2.181) and ri = r(θi). This quantity should integrate to
approximately one.

(D2) The push-forward of the updated density, πQ(up)
Y , can be compared with the observed den-

sity. If the observed density has a parametric form, e.g., Gaussian, then the relevant pa-
rameters can be compared. More generally, the push-forward of the updated density can
be estimated using KDE on the model evaluations corresponding to the samples from the
updated solution and this should match the observed density πobs

Y . This can be checked
quantitatively by calculating the KL divergence

KL[π
Q(up)
Y : π

Q(obs)
Y ] =

∫
π
Q(up)
Y (Q) log

π
Q(up)
Y (Q)

π
Q(obs)
Y (Q)

dQ

≈ 1

Nup

Nup∑

i=1

log
π
Q(up)
Y (Qi)

π
Q(obs)
Y (Qi)

,

(2.183)

which should be close to zero and where Nup is the number of accepted samples from the
rejection sampling algorithm.
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(D3) The information gained between the initial and updated densities, measured by the KL
divergence

KL[πup
X : πinit

X ] =

∫
πup
X (θ) log

πup
X (θ)

πinit
X (θ)

dθ

=

∫
r(θ) log(r(θ))πinit

X (θ) dθ ≈ 1

N

N∑

i=1

ri log ri.

(2.184)

(D4) The acceptance rate

τ =
Nup

N
. (2.185)

Diagnostics (D1) and (D2) numerically verify that the predictability assumption was not vio-
lated. Diagnostic (D3) provides insight about how much the solution was updated by the data
and (D4) gives an indication of the effectiveness of the rejection sampling scheme.

Calculating the push-forward density using probabilistic MFMC

As mentioned above, simple MC sampling to approximate the push-forward density πQ(init)
Y (Q)

is computationally prohibitive for practical purposes. To that end, the utilization of the proba-
bilistic MFMC method from above is proposed. This approach is demonstrated in detail in the
author’s work published in [18] and relies on Eq. (2.151) to compute the push-forward via a
low-fidelity model q(θ) as

π
Q(init)
Y (Q) =

∫
π(Q|q)πq(init)(q) dq. (2.186)

Hence, the numerically expensive MC sampling is only necessary for the calculation of the push-
forward πq(init)(q) of the low-fidelity model q(θ). The high-fidelity model, Q(θ), only needs to
be evaluated a few times for the construction of the conditional π(Q|q), cf. Alg. (1), resulting in
significant speed-ups compared to direct MC sampling on the high-fidelity model.

2.5.7. Dimensionality reduction of parameterized models

A frequent challenge in doing UQ with problems of practical interest is the high number of
stochastic parameters nθ, since many established methods suffer from the infamous curse of
dimensionality [12]. While MC methods are not affected by this phenomenon, their applica-
bility is usually numerically infeasible, requiring model evaluations in the order of thousands.
Thus, reducing the number of parameters is a popular strategy to avoid the curse of dimension-
ality in forward and inverse UQ problems, allowing for the application of methods that perform
well in lower dimensional settings, such as surrogate or reduced-order models and grid-based
approaches.
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Principal component analysis

Principal component analysis (PCA) is a dimensionality reduction approach that arises from the
problem of finding the directions of largest variation in a data set {x(k)}nk=1, with data points
x(k) ∈ Rm. It can be shown [12] that this problem corresponds to solving an eigenvalue problem
on the data covariance matrix Cm ∈ Rm×m with entries

Cm
ij =

1

n

n∑

k=1

(x
(k)
i − x̄i)(x(k)

j − x̄j) (2.187)

and where x̄i = 1
n

∑n
i=1 xi is the arithmetic mean for dimension i. The spectrum of Cm can

then be examined for gaps in order to define a threshold at which directions contributing negli-
gible amounts to the variance are truncated. Finally, the r ≤ rank(Cm) eigenvectors ζi ∈ Rm,
i = 1 . . . r, corresponding to the r largest eigenvalues λ2

i form a matrix P ∈ Rm×r, which can
be used to project data points x ∈ Rm from the original to the reduced space and vice versa,

ψ = P Tx and x = Pψ, ψ ∈ Rr. (2.188)

PCA is referred to as an unsupervised method in the context of ML and is frequently used in
a preprocessing step upstream to a supervised ML method. For the case where m > n, the
covariance matrix

Cn
ij =

1

m

m∑

k=1

(x
(i)
k − x̄k)(x

(j)
k − x̄k) (2.189)

withCn ∈ Rn×n can be used, since the non-zero eigenvalues ofCn andCm are identical [112].
In particular, let X ∈ Rm×n denote the centered data matrix, i.e. with entries Xij = x

(j)
i − x̄i,

then

Cm = XXT, Cn = XTX (2.190)

and

Cmζi = λ2
i ζi, Cnξi = λ2

i ξi, (2.191)

with eigenvalues λ2
i and corresponding eigenvectors ζi ∈ Rm and ξi ∈ Rn, respectively. From

the singular value decomposition (SVD) onX , it is known that

Xξi = λiζi, (2.192)

implying that the columns of the projection matrix P ∈ Rm×r can be computed using

ζi =
1

λi
Xξi. (2.193)

To summarize, for the construction of P , an eigendecomposition of either Cm or Cn can be
employed, whichever is computationally more convenient. In the context of reduced basis (RB)
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2.5. Uncertainty quantification tools

methods, m > n is the standard case and the process is referred to as proper orthogonal decom-
position (POD).

Sensitivity analysis

While PCA is solely based on the input parameters, for the case of parameterized models such
as the parameter-to-QoI map Q(θ), it is more common to use sensitivity analysis (SA) methods
in order to quantify the influence of model outputs Q with respect to model inputs θ. If the
sensitivity with respect to one parameter θi is estimated around a fixed value θ̄, the sensitivity
metric Si is referred to as a local sensitivity, e.g.

Si =
dQ

dθi

∣∣∣∣
θ=θ̄

. (2.194)

In contrast, if the sensitivity is computed across the whole parameter domain of θ, these are
called global sensitivities. The latter sensitivity metrics are particularly needed, if the degree of
nonlinearity in the model Q(θ) as well as the uncertainty about the parameters θ is large. In this
case, local SA is no longer an appropriate option.

A class of particularly powerful global sensitivity metrics are Sobol’s indices [125, 131]. They
are based on the analysis of variance (ANOVA) decomposition of the functionQ(θ) into a sum of
variances, allowing for the computation of so-called nth-order and total effect global sensitivity
indices. While the former quantifies the nth-order contribution of the variance associated with
variable θi, the latter represents the total amount of variance due to θi. The computation of
these indices allows for a straightforward ranking of the input parameters θ in terms of their
contributions to the variance of the functionQ(θ). Unfortunately, their MC approximation comes
at the cost of a considerable amount of numerical effort, which is in the order of thousands per
parameter.

Active subspace method

A recently proposed, novel approach to dimensionality reduction and global SA of parameterized
models is provided via the active subspace method (ASM) [26]. It is based on a covariance matrix
defined as

Cnθ =

∫
(∇θQ)(∇θQ)Tπ(θ) dθ, (2.195)

which represents an average of the outer product of gradients ∇θQ(θ) ∈ Rnθ with themselves,
i.e.

Cnθ
ij =

∫
dQ

dθi

dQ

dθj
π(θ) dθ. (2.196)
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The idea behind this definition of Cnθ is to capture the dominating directions of high sensitivity
across the parameter domain. In practice, a MC estimate of Cnθ is employed

Cnθ ≈ 1

N

N∑

i=1

(∇θQi)(∇θQi)
T, (2.197)

with gradient evaluations ∇θQi = ∇θQ(θ)|θ=θi , based on i.i.d. samples θi ∼ π(θ). As before,
a covariance matrix CN ∈ RN×N can also be used, if nθ > N . Finally, carrying out a PCA on
the covariance matrix, a projection of the original parameter space to the active subspace can be
carried out as

ψ = P Tθ, (2.198)

with ψ ∈ Rr and P ∈ Rnθ×r containing the eigenvectors associated with the highest r eigen-
values, allowing for lower-dimensional approximations Q(ψ) ≈ Q(θ). To choose an adequate
number N of MC samples, [26] developed the formula

N = α r log nθ, α ∈ [2, 10], (2.199)

for the approximation of the r first eigenvalues of Cnθ and propose bootstrapping to assess the
variability in the respective estimates. Further applications of the ASM have been presented in
the context of accelerated MCMC [28, 128] and global SA [27]. For a more rigorous mathemat-
ical analysis of the method and discussion regarding its properties, it is referred to [26].

Maximum von Mises stress derivative for the application of the ASM

The application of derivative-based parameter reduction methods such as the ASM requires gra-
dient information ∇θQ(θ) of the parameter-to-QoI map. For the case where Q(θ) corresponds
to the maximum von Mises stress σmax

vm , the adjoint method from Section 2.2.4 can readily be
applied. The general objective function then simply corresponds to

f(D(θ),θ) = σmax
vm (D(θ),θ) = max

e
Σvm(D(θ),θ), (2.200)

where Σvm = {σvm
(e)}nel

e=1 are the element-wise von Mises stresses. The computation of the
objective function total derivative requires the solution of the adjoint problem

∂R

∂D

T

Λ = −∂σ
max
vm

∂D
(2.201)

and the evaluation of

df(D(θ),θ)

dθ
=
∂σmax

vm

∂θ
+ ΛT∂R

∂θ
. (2.202)

The partial derivatives of σmax
vm with respect to D and θ can be derived on an element-wise

basis, cf. Section A.2.3 for details. All remaining terms are already known from Section 2.2.4.
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2.5. Uncertainty quantification tools

In Section 3.5, the ASM will be used for a predictive rupture risk assessment using the calibrated
growth parameters from Section 3.4.
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3. Framework Application

In the following, the biomechanical rupture risk assessment as presented in Section 2.4 will be
exemplified in several numerical examples. The main purpose of this section is to demonstrate
two possible scenarios resulting from this approach:

I. In momento rupture risk: snapshot in time assessment using clinical data from one point
in time. This corresponds to the classical scenario, where one is interested in the risk of
rupture of a prospective patient.

II. In posterum rupture risk: predictive assessment by making use of longitudinal data as part
of a surveillance strategy. This allows for an estimate about the future trend of the risk of
rupture.

The section is organized as follows. After carrying out a correlation analysis between non-
invasive and invasive features from an existing database in Section 3.1, the most relevant prop-
erties are employed for the prediction of the invasive properties of a prospective patient in Sec-
tion 3.2. With this, the rupture risk framework is demonstrated in detail for one patient and
afterwards applied to a cohort of patients with asymptomatic and symptomatic/ruptured AAA
in Section 3.3 (scenario I.). While this analysis did not take into account any effects related to
growth and thus only allows the assessment at the time of data acquisition, a methodology for the
calibration of growth parameters based on consecutive CT images is presented in Section 3.4. Fi-
nally, it is demonstrated how a predictive rupture risk index based on the previous growth model
can be computed in Section 3.5 (scenario II.).

Employed methods and software implementations

In Section A.5, for each of the presented result, an overview of the employed methods from Sec-
tion 2.5 is provided, as well as information regarding the software implementation. In addition,
related publications from the Mechanics & High Performance Computing Group are listed for
contextual reasons or to refer to more details.
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3. Framework Application

3.1. Correlation analysis between invasive vessel wall
properties and non-invasively accessible clinical
parameters

This section is a revised version of part of the author’s work published in [19]. The presented re-
sults make use of clinical and experimental data that has been collected during multiple research
projects on the mechanobiological behavior of AAAs between 2008 and 2017. In particular,
AAA patients undergoing elective OSR at the University Hospital rechts der Isar in Munich,
Germany, were added to the database, whenever one or more tissue samples of the AAA vessel
wall could be extracted. Each data point contains clinically accessible patient information from
anamnesis, CT imaging and a total blood count, as well as results from mechanical testing of
the harvested AAA tissue sample. Details on data collection and experimental testing have been
reported in [8, 117]. In total, the database contains 305 entries from an equal number of tissue
samples that were collected from 139 patients.

tw Wall thickness [mm]
αw Alpha stiffness [kPa]
βw Beta stiffness [kPa]
σγ Wall strength [kPa]

Table 3.1.: Invasive properties represent key vessel wall characteristics for a biomechanical rupture risk
assessment. They cannot be obtained prospectively by using clinically established methods
and will be provided via the statistical model proposed in Section 3.2.

The data can be split into two groups. Invasive properties (cf. Table 3.1), denoted by Θ, rep-
resent key vessel wall characteristics, which have been determined retrospectively from AAA
tissue samples and cannot be obtained for a prospective patient by using clinically established
methods. They are, however, essential for the biomechanical modeling and simulation of AAAs
and the calculation of the probability of rupture using Eq. (2.117). In contrast, non-invasive
properties (cf. Table 3.2), denoted by ξ, can be determined with standard methods in the clinic.

Prior to any analysis, a preprocessing operation on the dataset is essential, since values are
missing both in the invasive and non-invasive properties for several cases in the database. Sim-
ilar to [8], the following preparatory steps are conducted. Non-invasive features, where more
than 30% of the data points had missing values and patients with more than 30% of missing
features were excluded and all other missing non-invasive properties imputed with the corre-
sponding median value across the population. As a consequence, the four parameters calcium,
hsCRP, creatine kinase and fibrinogen were disregarded. Finally, all non-invasive features were
normalized. The resulting dataset D = {ξi,Θi}ndata

i=1 , that was used for the analysis, consisted of
ndata = 251 data points from 113 individual patients.

To examine possible correlations between the non-invasive and invasive properties, an ap-
proach based on Spearman’s rank correlation coefficient and bootstrapping is pursued. In con-
trast to the Pearson correlation coefficient

rP(X, Y ) =

∑ndata

i=1 (xi − x̄)(yi − ȳ)√∑ndata

i=1 (xi − x̄)2
√∑ndata

i=1 (yi − ȳ)2
(3.1)
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3.1. Correlation analysis between invasive vessel wall properties and non-invasively accessible
clinical parameters

General Sex m=1, w=0
Age y
Symptomatic yes=1, no=0
Ruptured yes=1, no=0

Geometry Maximum AAA diameter mm
Maximum thrombus thickness mm
AAA length mm
Subrenal diameter mm

Medication Acetylsalicylic acid (ASA) / clopidogrel yes=1, no=0
Angiotensin-converting enzyme (ACE) inhibitors yes=1, no=0
Statins yes=1, no=0
Beta blockers yes=1, no=0
Antihypertensives yes=1, no=0
Diuretics yes=1, no=0
Oral hypoglycemic agents / insulin yes=1, no=0

Anamnesis Hypertension yes=1, no=0
Diabetes mellitus yes=1, no=0
Hyperlipidemia yes=1, no=0
Smoking status yes=1, no=0
Chronic kidney disease (CKD) yes=1, no=0
Coronary heart disease (CHD) yes=1, no=0
Peripheral vascular disease (PVD) yes=1, no=0

Hemogram Sodium mmol/l
Potassium mmol/l
Calcium mmol/l
high-sensitivity C-reactive protein (hsCRP) mg/l
Fibrinogen mg/dl
Urea mg/dl
Creatinine mg/dl
Creatine kinase 1/l
Leukocytes 1,000/µl
Erythrocytes Mio/µl
Thrombocytes 1,000/µl
Hemoglobin g/dl
Mean corpuscular hemoglobin (MCH) pg/cell
Mean corpuscular volume (MCV) fl
Mean corpuscular hemoglobin concentration (MCHC) gHb/100ml

Table 3.2.: Non-invasive properties overview. These can be determined with standard methods in the clinic
and will be used as feature variables to predict the invasive properties of a prospective AAA
patient. The subrenal diameter is measured directly below the renal arteries. If the aneurysm
reached the renal arteries, the aortic diameter between the celiac artery and the superior mesen-
teric artery minus 2.5 mm was used instead [84]. Reproduced with permission from [19].
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3. Framework Application

between the samples {xi, yi}ndata
i=1 of two variables X and Y , which is a measure of linear corre-

lation, Spearman’s rank correlation coefficient

rS(X, Y ) = rP(rg(X), rg(Y )) (3.2)

assesses the monotonicity of the relationship between X and Y . Spearman’s rank correlation
coefficient is thus not limited to linear relationships. It is computed identically to the Pearson
correlation coefficient, but uses the ranks rg(X) and rg(Y ) of X and Y instead of their values.
For an ordered collection of data points, {xi}ndata

i=1 , the rank rg(xi) is simply the position of xi in
the collection.

Correlation coefficients are often referred to as r-values and reported along with so-called
p-values, which indicate the probability that the observed correlations were produced by an
uncorrelated dataset {xi, yi}ndata

i=1 . Hence, if the p-value associated with a computed r-value is
very small, the null hypothesis of uncorrelated data can be rejected and the alternative hypothesis
of an existing correlation accepted. In view of the known issues associated with interpreting r-
and p-values [142, 149], however, especially when obtained from a small and noisy dataset, the
correlation analysis is carried out using the bootstrapping resampling method. To that end, N
new datasets {D̃j}Nj=1 of the same size are created from the original dataset D via sampling
with replacement. Then, the r- and p-values are computed N times for the individual bootstrap
datasets D̃j , allowing for a straightforward computation of uncertainty estimates.

Here, D = {xi, yi}ndata
i=1 = {ξi,Θi}ndata

i=1 , while N = 100 has proven a reasonable choice.
Results are provided in Fig. 3.1, where in the upper row the bootstrapping analysis is visual-
ized for Spearman’s rank correlation coefficient rS between each invasive property and its six
corresponding highest correlating non-invasive properties. Additionally, in the lower row, corre-
sponding p-values are visualized in order to assess the confidence in the correlations. The figure
reveals a relatively large scattering of the r- and p-value for many of the correlates, especially
those involving the beta stiffness. Apart from that, the results suggest that the geometric param-
eters as well as some of the hemogram parameters are associated with almost all of the invasive
properties. In particular, strongest correlations with reasonable scatter in the p-values can be
observed between:

• Wall thickness and AAA length, maximum AAA diameter, subrenal diameter, MCV.

• Alpha stiffness and subrenal diameter, MCV, MCH, AAA length.

• Beta stiffness and thrombocytes, MCH.

• Wall strength and MCH, MCV, hemoglobin.

While a direct comparison to the correlations in previous works [8, 117] is not possible due
to the extended database and different methodology used here, most of these correlations have
been identified before. However, [8] didn’t provide any quantitative results regarding r- and p-
values, such that Fig. 3.1 may provide further insights on the possible correlations as well as their
remaining uncertainty in the current dataset. It is being noted that the importance of geometric
features has also been confirmed in the recent works of [80, 97, 119], where different approaches
for rupture risk assessment based on the AAA geometry are discussed.
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Figure 3.1.: Computed r- and p-values for the invasive vessel wall properties and corresponding most
important non-invasive properties using Spearman’s rank correlation coefficient. Boxplots
in the upper rows indicate median values, 25% and 75% percentiles as well as maximum
and minimum values, while the black dots represent all N = 100 computed points from the
bootstrapping analysis.
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3.2. Patient-specific probabilistic modeling of invasive
vessel wall properties

This section is a revised version of part of the author’s work published in [19]. Based on the
correlation analysis from the previous section, the goal is to construct a statistical model for the
vessel wall properties Θ(ξ) for a prospective new patient with non-invasive properties ξ, under
the following desiderata:

1. Patient-specific modeling: obtain personalized estimates for the vessel wall quantities Θ
based on correlations with the non-invasive properties ξ of a specific, prospective patient.

2. Probabilistic treatment: take into account the uncertainties in the predictions for Θ (do not
ignore statistical information).

3. Dependencies: model the correlations among the invasive properties Θ in order to ob-
tain a more accurate probabilistic description and avoid physically implausible parameter
configurations.

Previous approaches were either deterministic [84, 141], based on cohort statistics [107], or did
not account for correlations among the vessel wall quantities [8]. While the first point can be
addressed by using any regression model instead of cohort statistics, the latter two points require
a closer examination of the invasive properties. To that end, summary statistics using boxplots
as well as correlations between all possible combinations of tw, αw, βw and σγ are visualized
in Fig. 3.2 and Fig. 3.3. Fig. 3.2 reveals a significant variance in all of the four invasive prop-
erties, which is a result of intra- and inter-patient variabilities and has been reported before on
previous datasets [8, 117]. This reinforces the importance of a probabilistic treatment. In Fig. 3.3,
relatively strong correlations among almost all invasive properties can be observed, which calls
for an approach that is able to take these dependencies into account.

Motivated by [8], where GPs were used as a regression model for the individual invasive prop-
erties, a multivariate GP model (cf. Section 2.5.2 and Section A.3.1) is used for the purposes of
this work and to address the three desiderata above. The relatively small number of available
data, but high number of non-invasive properties, requires a feature selection process to iden-
tify the most important properties in ξ. The results in Fig. 3.1 indicate that a small subset of
noninvasive properties suffices to account for the dominating correlations and already suggest a
pre-selection of features. In an attempt to keep the number of non-invasive parameters small and
employing a sequential forward selection algorithm as in [8], the total number of features was
reduced to a final selection of 8 variables: maximum AAA diameter, maximum thrombus thick-
ness, AAA length, subrenal diameter, thrombocytes, hemoglobin, MCH, MCV. It is being noted
that this does not imply that other non-invasive features such as sex, medication or anamnesis
parameters do not have an influence on the biomechanical properties of the AAA wall.

As a result, given the non-invasive properties ξ of a prospective AAA patient, the natural
logarithm (acting as a positivity constraint) of the corresponding prediction Θ(ξ) will follow a
multivariate Gaussian distribution with predicted mean µlogΘ and covariance matrix ΣlogΘ, i.e.

log Θ(ξ) ∼ N (µlogΘ,ΣlogΘ) = π(log Θ). (3.3)
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Figure 3.2.: Summary statistics for the invasive properties tw, αw, βw and σγ obtained from mechanical
testing. Boxplots indicate median values, 25% and 75% percentiles as well as maximum and
minimum values, while the black dots represent all available data points. Mean values and
standard deviations are provided in the individual plot titles.

Regression model benchmark

Below, a brief comparison between the multivariate GP regression model with existing proba-
bilistic modeling approaches used in the context of AAA rupture risk is provided. To that end,
leave-one-out-cross-validation (LOOCV) is applied to the dataset D to test the predictive capa-
bilities of three different models for π(log Θ):

• Model 1: assuming all variables are log-normally distributed and independent, the joint
distribution

π(log Θ) =
∏

κ

N (µlog κ, σ
2
log κ) (3.4)

is obtained, with κ ∈ {tw, αw, βw, σγ}. The means and variances are calculated across the
whole population using the dataset D, that is

µlog κ =
1

nndata

ndata∑

i=1

log κi and σ2
log κ =

1

ndata

ndata∑

i=1

(log κi − µlog κ)
2. (3.5)

This corresponds to the approach chosen in [107].
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Figure 3.3.: Scatter plots for all combinations of the invasive properties tw, αw, βw and σγ . Corresponding
computed Spearman correlations are provided in the titles.

• Model 2: by training single-output GPs for each output variable separately following [8],
the same decomposition of Gaussian distributions as in Eq. (3.4) is obtained, however,
with means and variances predicted individually for each patient.

• Model 3: the proposed multivariate GP resulting in Eq. (3.3).

In addition to the mean of the patient standardized mean square error (PSMSE) [8], the mean of
the patient predictive entropy (PPE)

E[PPE] =
1

npat

npat∑

i=1

H[πi(log Θ)] (3.6)

is reported, where H[π(log Θ)] is the entropy of the distribution π(log Θ) and a measure of un-
certainty or variance for multivariate distributions. With regards to the different measures, it is
desirable for both PSMSE and PPE to be small, corresponding to a model which is accurate
and produces low-variance estimates. For conciseness, values for the mean of the PSMSE are
averaged over the four predictive variables Θ. It is being referred to [8] for an exhaustive dis-
cussion of the LOOCV and calculation of the PSMSE. The obtained results for the three models
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are shown in Table 3.3, where it can be seen that the model proposed here (Model 3) is able to
consistently achieve the lowest scores, although the differences are rather small.

Model 1 Model 2 Model 3
E[PSMSE] 0.9480 0.9315 0.9226
E[PPE] 3.5778 3.4300 3.3353

Table 3.3.: LOOCV results for the three probabilistic models. The table compares the calculated mean
(E[PSMSE]) of the PSMSE averaged over the four predictive variables Θ as well as the mean
of the patient predictive entropy (E[PPE]). Reproduced with permission from [19].

3.3. Biomechanical rupture risk assessment at the time
of data collection in the clinic

This section is a revised version of part of the author’s work published in [19]. The focus lies
on the biomechanical rupture risk assessment at the time of data collection in the clinic us-
ing Eq. (2.117) and the parameter-to-QoI map Q(θ) = σmax

vm (θ) with θ = [tw, αw, βw]T. Since
the calculation of the probability of rupture Prupt using the high-fidelity, nonlinear finite element
model from Section 2.2.1 is infeasible for a clinical application, a Kriging surrogate model is
proposed to speed up computations inspired by the pioneering works of [70, 124]. It is being
noted that Kriging is by far not the only possible method. In [126], e.g., a POD-based approach
is established for a very similar AAA model. The surrogate model will effectively serve as a
proxy for the maximum von Mises stress σmax

vm (θ) in the AAA vessel wall (cf. Eq. (2.59)) and
allows to make computationally cheap predictions at an arbitrary point θ, i.e.

log σmax
vm (θ) ∼ N (µlog σmax

vm
, δ2

log σmax
vm

), (3.7)

with the predicted mean µlog σmax
vm

and standard deviation δlog σmax
vm

, respectively. For all relevant
details, it is being referred to Section 2.5.2 and Section A.3.1. The high-fidelity model can then
be simply approximated as log σmax

vm (θ) ≈ µlog σmax
vm

(θ), allowing for a direct MC estimation of
the probability of rupture

Prupt = Eπ(logΘ)[1log σmax
vm (θ)>log σγ ] ≈

1

neval

neval∑

i=1

1log σmax
vm (θi)>log σγ,i , (3.8)

where

1log σmax
vm (θi)>log σγ,i =

{
1 log σmax

vm (θi) > log σγ,i,

0 otherwise
(3.9)

and Θi ∼ π(log Θ), i = 1 . . . neval. The Kriging surrogate training process is carried out under
the two demands:

1. As few as possible high-fidelity model evaluations.
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2. Ensure that the Kriging model is accurate where necessary.

To that end, the active learning-MacKay (ALM) strategy from [53] is adopted and extended by
choosing points for high-fidelity model evaluations such as to minimize a density- and stress-
weighted predictive standard deviation objective function

ψ(Θ) = δlog σmax
vm

(θ) π(log Θ)µlog σmax
vm

(θ), (3.10)

where π(log Θ) is the patient-specific PDF for the invasive model parameters Θ = [tw, αw, βw, σγ]
T

from the regression model. The reasoning behind this choice follows from the ALM approach,
where only the predictive standard deviations δlog σmax

vm
(θ) are considered in the objective func-

tion. In the present case, the PDF π(log Θ) is available, so that a higher weight can be attributed
to the more probable regions in Θ. Additionally, special attention is paid to points in the input
space, where the predicted maximum von Mises stresses µlog σmax

vm
are high to ensure the surro-

gate model accurately replicates the full model in these regions. The problem of choosing an
appropriate point θnext for evaluation results in the optimization problem

Θnext = arg max
Θ

ψ(Θ), (3.11)

which is approximated by creating a grid {Θi}ngrid

i=1 over the input space, calculating {ψ(Θi)}ngrid

i=1

using the Kriging surrogate and determining

Θnext ≈ arg max
Θ
{ψ(Θi)}ngrid

i=1 . (3.12)

The next evaluation point θnext = [tnext
w , αnext

w , βnext
w ]

T can then simply be extracted from Θnext.
During the active learning, the average

ψ̂ =
1

ngrid

ngrid∑

i=1

ψ(Θi) (3.13)

is monitored and the training process stopped, when there are no more significant changes in ψ̂
with an increasing number of high-fidelity model evaluations.

Framework summary

Based on the retrospective AAA database of non-invasive and invasive data pairs and a multi-
output GP model fitted to this dataset (cf. Section 3.2), the necessary steps to estimate the prob-
ability of rupture for a prospective patient are:

• Step 1: Data generation in the clinic: CT imaging, determination of the non-invasive pa-
rameters ξ from Table 3.2

• Step 2: Geometry creation: segmentation and meshing of the AAA geometry

• Step 3: Model specification: modeling of the invasive properties Θ(ξ) using the multi-
output GP model from Section 2.5.2
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• Step 4: Surrogate training: fitting of the Kriging model using active learning

• Step 5: Post-processing: estimating the probability of rupture

While CT imaging is essential for geometry creation, the rupture risk analysis can also be carried
out if no non-invasive properties ξ are available for a prospective patient by using cohort statistics
(cf. Model 1) without personalization. The computational procedure is summarized in Alg. (4).
In practice, it has proven feasible to choose ninit = 8 (where it makes sense to include the
predicted mean µlogΘ in the set of initial samples), ngrid = neval = 10,000 and tol = 1.0× 10−4.

Algorithm 4: Calculating the probability of rupture Prupt

1: Input: Input uncertainties π(log Θ(ξ)), simulation model σmax
vm (θ), tol, ninit, ngrid, neval

2: Set iter = 1, ψ̂0 = 0
3: Generate ninit samples {log θi}ninit

i=1 and calculate {log σmax
vm (θi)}ninit

i=1

4: Train a Kriging surrogate using the training data {θi, log σmax
vm (θi)}ninit

i=1

5: Create a grid {log Θi}ngrid

i=1 over the input space and calculate ψ̂1 (cf. Eq. (3.13))
6: while |ψ̂iter − ψ̂iter−1| > tol do
7: Determine θnext using Eq. (3.12) and calculate σmax

vm (θnext)
8: Update the Kriging model with the new data {θnext, log σmax

vm (θnext)} and calculate ψ̂iter

9: Set iter = iter + 1
10: end while
11: Generate neval samples {log Θi}neval

i=1 and calculate Prupt according to Eq. (3.8) using the
Kriging surrogate

12: Output: Prupt

Framework demonstration for AAA Pat17

To illustrate the application of the proposed framework, all steps are demonstrated in detail
below, following the outline as presented in the framework summary above. It is being assumed
that CT imaging data and non-invasive properties ξ for one specific prospective AAA (Step 1),
referred to as Pat17 in the following, are provided. Fig. 3.4 shows the AAA as seen via CT
imaging (I), a 3D rendering of the segmentation result (II) as well as the generated finite element
mesh (III) (Step 2). The mesh consists of 117,218 finite elements and 93,840 nodal degrees of
freedom, with an approximate element size of 1.6 mm.

Table 3.4 shows the relevant 8 non-invasive properties ξ that are used by the regression model
(cf. Section 3.2) to obtain the predictive density π(log Θ(ξ)), which is specific to Pat17. Along
with that, means and standard deviations based on all 113 patients in D are provided. Based
on this data, the mean µlogΘ and covariance ΣlogΘ for Pat17 can be predicted (Step 3). The
obtained density is visualized in Fig. 3.5 and the predictive means and standard deviations are
provided in Table 3.5 along with reference values from the cohort. The entropy of π(log Θ) is
3.3050 and thus slightly lower than the LOOCV mean (cf. Table 3.3).

Given π(log Θ), the stochastic forward problem (cf. Section 2.3.2) for Pat17 is defined. The
probability of rupture for this AAA is approximated using the Kriging surrogate model (Step 4).
Fig. 3.4 (IV) provides a visualization of the von Mises stresses corresponding to µlogΘ, the mean
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(I) (II) (III) (IV)

Figure 3.4.: AAA Pat17 as seen via CT imaging (I), a 3D rendering of the segmentation result (II), the gen-
erated finite element mesh (III) and a visualization of the von Mises stress field corresponding
to the mean µlogΘ of the predictive density π(logΘ) for that AAA (IV). Reproduced with
permission from [19].

Pat17 Cohort (mean ± std)
Maximum AAA diameter [mm] 53.75 62.91 ± 17.57
Subrenal diameter [mm] 21.88 24.58 ± 6.55
AAA length [mm] 85.0 111.84 ± 28.30
Maximum thrombus thickness [mm] 19.11 24.10 ± 11.19
Thrombocytes [1,000/µl] 182.0 221.33 ± 82.10
Hemoglobin [g/dl] 15.1 13.27 ± 2.20
Mean corpuscular hemoglobin (MCH) [pg/cell] 29.0 30.39 ± 2.46
Mean corpuscular volume (MCV) [fl] 85.0 89.95 ± 6.61

Table 3.4.: Non-invasive properties ξ for AAA Pat17 as well as cohort means and standard deviations
(based on all 113 patients in D) for comparison. Reproduced with permission from [19].

Pat17 (mean ± std) Cohort (mean ± std)
log tw 0.415 ± 0.088 0.484 ± 0.105
tw [mm] 1.583 ± 0.481 1.710 ± 0.568
logαw 4.504 ± 0.967 4.543 ± 1.036
αw [kPa] 146.529 ± 187.106 157.676 ± 212.579
log βw 7.723 ± 0.817 7.685 ± 0.758
βw [kPa] 3399.204 ± 811.469 3178.355 ± 3383.842
log σγ 6.729 ± 0.174 6.704 ± 0.183
σγ [kPa] 912.004 ± 397.176 894.182 ± 400.798

Table 3.5.: Predicted means and standard deviations for the invasive properties of AAA Pat17 along with
cohort values over all ndata = 251 samples for comparison. Reproduced with permission
from [19]. The notation was adjusted to be consistent with the one used in this thesis.

parameter combination of π(log Θ). Fig. 3.6 shows the decrease of the objective function over
the number of iterations on the left as well as a comparison of the Kriging-based approximate
density π(σmax

vm ) together with a Monte Carlo reference calculated using 10,000 samples on the
right.

66



3.3. Biomechanical rupture risk assessment at the time of data collection in the clinic

(I) (II) (III)

(IV) (V) (VI)

Figure 3.5.: Visualization of the predictive density π(logΘ) transformed to the physical parameter range
for AAA Pat17. Plots (I)-(VI) show 2D marginal densities over all possible parameter com-
binations between tw, αw, βw and σγ . Reproduced with permission from [19]. The notation
was adjusted to be consistent with the one used in this thesis.

Lastly, the probability of rupture can be estimated using the Kriging surrogate (Step 5), which
amounts to 0.47% for Pat17 (cf. Fig. 3.9 for a visualization). It is important to note that this
value must not be compared to the operative risks associated with OSR or EVAR in order to
make decisions. Rather, it needs to be put into context with results for other AAA patients that
have been computed using the same methodology, which is discussed below.

Comparative case-control study using diameter matched groups

To test the efficacy of the framework as a rupture risk indicator and to compare it with exist-
ing biomechanical indices, diameter matched groups of asymptomatic (group 1, n = 18) and
known symptomatic/ruptured (group 2, n = 18) AAA patients from the database are consid-
ered. The groups were chosen such that their maximum diameter mean and standard deviation
approximately match (group 1: 62.17 ± 7.18 mm, group 2: 63.06 ± 7.56 mm), rendering a
differentiation between the groups based on the maximum diameter criterion ineffective.

For a detailed overview regarding the selection of the two groups, it is being refer to Table 3.6.
After preprocessing of the original dataset, the cohort is restricted to AAAs with a maximum di-
ameter between 50 and 80 mm in order to obtain an intermediate-sized group of patients. As
a result, 64 patients remained, of which 47 had asymptomatic and 17 had symptomatic or rup-
tured AAAs. The latter were put into one group, since symptomatic AAAs are known to be at
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Figure 3.6.: Left: Decrease of the objective function over the number of training iterations, where the
first training iteration corresponds to the Kriging surrogate after ninit = 8 model evaluations.
11 model evaluations were used for the surrogate creation. Right: Estimated Kriging-based
density π(σmax

vm ) along with a Monte Carlo reference. All densities were calculated using
kernel density estimation with Gaussian kernels based on 10,000 samples of the maximum
von Mises stress σmax

vm . Reproduced with permission from [19]. The notation was adjusted to
be consistent with the one used in this thesis.

total no. m w asympt sympt/rupt
original database 139 122 17 100 39

after preprocessing 113 99 14 83 30
diameter filter 64 58 6 47 17

manual selection 19 19 0 10 9
added from [83] 17 12 5 8 9

final cohort 36 31 5 18 18

Table 3.6.: Overview: selection process for the diameter matched groups. Reproduced with permission
from [19].

an elevated risk of rupture [86]. The reason for the much lower number of symptomatic/ruptured
AAAs is that these AAAs often have very large diameters (>80 mm). AAA patients from a
previous case-control study [83], which examined 13 asymptomatic and 12 symptomatic AAA
patients, are included. Finally, 18 asymptomatic and 18 symptomatic/ruptured patients are man-
ually selected based on the following criteria:

• Find two groups with the best match in diameter.

• Preferably include cases where non-invasive data is available and thus patient-specific
invasive properties can be predicted.

• Disregard cases, where CT images are not available or lack a sufficient image quality to
create simulation models.

Detailed information for all AAAs of both groups is provided in Table 3.8. No patient had known
connective tissue disorders. For 10 out of 18 AAAs in group 1 and for 9 out of 18 AAAs in
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group 2 non-invasive data was available and it was thus possible to determine a personalized
input density π(log Θ). For the remaining 8 (group 1) and 9 (group 2) AAAs, the cohort density
(i.e. Model 1) was used.

The framework is applied to all 36 AAAs using an individual prospective scenario, i.e. before
starting the analysis for one AAA, this patient is removed from the database, while the other 35
AAAs are included. In order to provide a comparison of Prupt with other biomechanical indices,
the following additional quantities are calculated:

• Maximum von Mises stress at the input parameter mean (neglects any statistical informa-
tion):

σmax
vm (µlog θ). (3.14)

• Rupture potential index [139] at the input parameter mean (neglects any statistical infor-
mation, but takes into account the wall strength):

RPI =
σmax

vm (µlog θ)

µσγ
. (3.15)

• Probabilistic rupture risk index [107] (takes into account cohort-based uncertainties in the
wall thickness and wall strength according to Model 1):

PRRI = EN (µlog t,σ
2
log t)N (µlog σγ ,σ

2
log σγ

)

[
1log σmax

vm (µlog t)>µlog σγ

]
. (3.16)

Comprehensive results for all patients are listed in Table 3.8 and Table 3.9 and a visualization
of their rupture risk indices, Prupt, is provided in Fig. 3.9 and Fig. 3.10. The average number of
high-fidelity model evaluations to train the Kriging surrogate was 11. Based on these results and
to evaluate the performance of the individual quantities, the following is examined:

I. Relative mean and median differences between group 1 and group 2 (cf. Table 3.7).

II. Boxplots for both groups (cf. Fig. 3.7).

III. receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) [33]
(cf. Fig. 3.8).

dmax σmax
vm RPI PRRI Prupt

∆ mean [%] 1.42 20.84 23.15 122.17 204.45
∆ median [%] 0.81 8.15 9.75 43.24 266.02

Table 3.7.: Relative mean and median differences (in %) of dmax, σmax
vm , RPI, PRRI and Prupt between

the asymptomatic and the symptomatic/ruptured group. Relative differences for a quantity q
between the asymptomatic group result qa and the symptomatic/ruptured group result qs/r are
calculated as ∆q = |qs/r − qa|/qa. Reproduced with permission from [19].
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Figure 3.7.: Boxplots comparing dmax, σmax
vm , RPI, PRRI and Prupt for the asymptomatic and symp-

tomatic/ruptured group. The plots illustrate the interquartile range (green and red color) in-
cluding the sample median as well as the first and third quartiles. Whiskers indicate minimum
and maximum values and black dots represent all values from the respective group. Repro-
duced with permission from [19].

Figure 3.8.: Receiver operating characteristic (ROC) curves showing true positive rates (TPR) over false
positive rates (FPR) and area under the ROC curve (AUC) scores for dmax, σmax

vm , RPI, PRRI
and Prupt. Reproduced with permission from [19].

Discussion

The obtained values for the relative mean and median differences in Table 3.7 confirm that
group 1 and group 2 are indistinguishable based on the maximum diameter criterion. While the
relative differences are higher for σmax

vm and RPI, PRRI and in particular the proposed index
Prupt feature a significantly larger mean and median difference. A similar trend as in Table 3.7
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can be observed in Fig. 3.7, with RPI and PRRI providing a slightly better separation between
the two groups than σmax

vm , while for Prupt the interquartile ranges of the two groups are non-
overlapping. Finally, in Fig. 3.8 one can observe that Prupt outperforms the remaining classifiers
and achieves the best performance among all quantities in terms of the AUC score, followed by
PRRI, RPI and σmax

vm . It is further noted that from the 18 patients in the symptomatic/ruptured
group, 11 had ruptured AAAs (Pat19, Pat23, Pat24, Pat26, Pat27, Pat28, Pat29, Pat30, Pat32,
Pat34, Pat35). The mean Prupt scores for the 11 ruptured AAAs is 6.57 and thus slightly higher
than the mean 5.89 for the 7 symptomatic AAAs. To summarize the key observations:

• The maximum diameter criterion, by design, clearly fails to separate the two groups in all
the comparisons.

• The proposed index Prupt consistently achieves the best separation.

• The results indicate that the more statistical information taken into account, the better the
capability to distinguish between group 1 and group 2.

Before translating these findings into any clinical application, however, there are several limi-
tations that have to be kept in mind. First, this is a non-randomized, retrospective case-control
study with a relatively small cohort size (group 1: n=18, group 2: n=18) and the database de-
scribed above. Second, there was no matching based on other risk factors such as sex, age or
family history, which could be a confounder. Third, since only access to electively repaired or
symptomatic/ruptured AAAs for mechanical testing was possible, the mean diameters of the
two groups (group 1: 62.17 mm, group 2: 63.03 mm) are larger than the Society for Vascular
Surgery’s decision criterion for elective repair (55 mm) [24]. In the future, due to the increasing
use of EVAR, it will be even harder to obtain representative tissue samples from AAAs of rel-
evant size for a database. As a result, caution is advised when interpreting the results presented
here for smaller AAAs, e.g. of size 45-55 mm. Furthermore, all approaches discussed in this
section are unable to make any prediction about the future development of the AAA, such that
the rupture risk assessment only holds for the point in time of data generation. In addition to that,
the biomechanical model does not take into account factors like calcifications and surrounding
organs, which might have an impact on the analysis [71, 82].
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Nr. dmax [mm] σvm
max [kPa] RPI [−] PRRI [%] Prupt [%]

Pat1 63.09 373.14 0.398 6.48 2.01
Pat2 69.23 180.21 0.202 0.20 0.13
Pat3 61.76 368.65 0.362 4.20 1.04
Pat4 50.37 257.04 0.288 1.55 1.22
Pat5 62.94 349.00 0.371 4.15 1.34
Pat6 61.10 324.35 0.363 3.81 4.30
Pat7 54.94 301.55 0.339 3.06 0.76
Pat8 60.14 348.62 0.390 5.36 5.52
Pat9 57.12 380.97 0.382 5.68 1.63
Pat10 57.94 263.15 0.295 1.65 1.46
Pat11 57.63 324.06 0.359 3.93 1.14
Pat12 55.35 343.26 0.356 3.84 1.22
Pat13 66.25 281.44 0.315 2.14 2.32
Pat14 71.25 255.60 0.286 1.49 1.21
Pat15 70.52 394.89 0.442 8.32 8.77
Pat16 79.94 300.20 0.342 4.06 0.76
Pat17 53.75 291.70 0.320 1.93 0.47
Pat18 65.81 344.30 0.393 5.37 1.98

mean 62.17 315.67 0.345 3.73 2.07
std 7.18 53.18 0.053 1.99 2.07

25th percentile 57.25 284.00 0.316 1.98 1.07
50th percentile 61.43 324.21 0.357 3.89 1.28
75th percentile 66.14 348.90 0.379 5.07 2.00

Table 3.8.: Group 1 (asymptomatic, 18 m, 0 f) overview and obtained results for σvm
max, RPI, PRRI and

Prupt. Reproduced with permission from [19].
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Nr. dmax [mm] σvm
max [kPa] RPI [−] PRRI [%] Prupt [%]

Pat19 57.55 230.60 0.282 1.08 0.18
Pat20 70.40 473.52 0.551 16.38 9.77
Pat21 70.76 538.30 0.507 15.16 7.37
Pat22 73.32 380.57 0.452 9.47 4.12
Pat23 77.09 738.58 0.860 30.03 24.87
Pat24 72.80 377.91 0.404 6.51 2.38
Pat25 52.26 197.94 0.220 0.25 0.02
Pat26 60.95 335.47 0.376 4.92 5.02
Pat27 60.30 359.65 0.403 6.21 5.98
Pat28 53.75 309.83 0.347 3.23 3.12
Pat29 55.69 340.56 0.381 4.90 5.16
Pat30 53.53 281.85 0.316 2.47 2.09
Pat31 60.93 412.86 0.462 10.33 10.38
Pat32 70.52 495.17 0.555 17.27 17.66
Pat33 67.10 393.87 0.441 8.40 8.70
Pat34 56.59 328.43 0.368 4.21 4.35
Pat35 60.58 329.85 0.369 4.41 1.44
Pat36 60.93 341.59 0.346 4.11 0.89

mean 63.06 381.47 0.424 8.30 6.31
std 7.56 119.61 0.135 7.18 6.21

25th percentile 56.83 328.78 0.352 4.14 2.16
50th percentile 60.93 350.62 0.392 5.57 4.69
75th percentile 70.49 408.12 0.460 10.12 8.37

Table 3.9.: Group 2 (symptomatic/ruptured, 13 m, 5 f) overview and obtained results for σvm
max, RPI,

PRRI and Prupt. Reproduced with permission from [19].
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Figure 3.9.: Visualization of Prupt for all AAAs in group 1. Reproduced with permission from [19].
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Figure 3.10.: Visualization of Prupt for all AAAs in group 2. Reproduced with permission from [19].
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3.4. Estimation of AAA growth based on consecutive
imaging

The previous section demonstrated the assessment of an in momento risk of rupture at the point
of data generation in the clinic. While this may already provide a useful piece of information for
clinical decision making, an undeniable shortcoming is its limited predictive power, since only
one data point in time is considered. Fortunately, the framework from Section 2.4 also allows for
an in posterum assessment when given a suitable growth model. The biggest challenge associated
with such a model, however, lies in the determination of the parameters to adequately describe
the temporal changes of an AAA associated with growth. The goal of the next two sections is
to enable an efficient in posterum rupture risk assessment with minimal requirements on the
amount of necessary data and at a low added model complexity in comparison to Section 3.3.

To that end, the estimation of AAA growth will be based on the Bayesian inverse problem
from Section 2.3.3, with the likelihood and prior defined in Eq. (2.105) and Eq. (2.106), re-
spectively. Hence, the approach in this thesis follows the modeling framework from [69], where
a simple growth law (cf. Section 2.1.2) is employed and only two consecutive CTA or MRA
scans are necessary for parameter calibration. Starting from this, the following modifications are
proposed:

• Application of the SVI framework (cf. Section 2.5.5) for inference in order to keep the
number of required model evaluations significantly lower in comparison to MCMC meth-
ods, while being more accurate than the Laplace approximation.

• MAP estimation of the measurement noise as part of the inference process as described
in Section 2.5.5. The measurement noise σN of the surface current-based likelihood from Eq. (2.106)
is a priori not known and difficult to estimate in practice, such that this quantity will be
inferred as part of the calibration.

• Spring boundary conditions instead of Dirichlet constraints at the inlet and outlets of the
AAA as well as material and simulation models corresponding to Section 2.1.2 and Sec-
tion 2.2.2.

The result will be an approximate posterior Gaussian PDF π(θ) on the growth parameters θ =

{c(e)
ϑ }nθe=1 = cϑ, which is easy to sample from for uncertainty propagation purposes and where

nθ corresponds to the number of elements of the arterial wall. In particular, this density can be
used in a subsequent step (cf. Section 3.5) to calculate QoI Q(θ, t) like the maximum von Mises
stress in the arterial wall at a certain point in time t, and a time-dependent probability of rupture
Prupt(t) as suggested in Fig. 2.3.

Example AAA case for growth estimation and prediction

The example AAA case for demonstrating growth and prediction in the context of a biome-
chanical rupture risk assessment is a relatively small aneurysm with a maximum diameter of
36.7 mm1. Such a case is typically uncritical and too small to be considered for elective repair

1For consistency with the results below, all maximum diameter values are computed in the same way based on the
computational model including the vessel wall, and are not determined directly from the CTA images.
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and hence needs to be monitored as part of a surveillance strategy. CTA imaging data is available
for this patient with a time difference of 2 years and the time instances of data collection will be
referred to as t0 and t1 = t0 + 2 years, respectively. Over this time span, the maximum diameter
increased to about 39.2 mm, corresponding to a growth rate of approximately 1.25 mm per year.
The example has been studied before in [68, 69], where further details regarding the CTA data
are provided. Axial CT slices at the maximum AAA diameter as well as generated finite element
meshes with an approximate element size of 1.6 mm are visualized in Fig. 3.11. While the mesh
at t0 will be used as the forward model for calibration purposes, the abluminal ILT surface of the
discretization at t1 corresponds to the measurement data Ŝ used for the evaluation of the surface
current likelihood.

Figure 3.11.: Axial CT slices at the maximum AAA diameter as well as finite element meshes of the
example case. First snapshot (left two images) taken at time t0. Second snapshot (right two
images) taken at time t1 = t0 + 2 years.

Calibration process and parameter settings

Starting from a geometry at time instance t0, the calibration process is based on the objective to
find model parameters θ, such that the simulated geometry at time t1 matches the CTA extracted
geometry from this instance under specific prior assumptions on θ. The quality of the match
is quantified via the surface currents based similarity measure of the abluminal ILT surfaces
corresponding to the two AAA geometries. The AAA is first prestressed to the mean arterial
pressure p̄ = 98.33 mmHg (cf. Section 2.2.2) to simulate the physiological conditions at the
time of imaging, t0. Afterwards, growth is initiated using the model from Section 2.1.2 with
the current set of parameters θ until t1. For simplicity and to focus on the effects of growth,
the uncertainties associated with the vessel wall parameters are not taken into account here and
fixed to tw = 1.6 mm, αw = 52.33 kPa and βw = 3112 kPa, corresponding to the median values
reported in [84]. The kernel parameter associated with the surface current likelihood [68] is set to
σW = 1.0 mm and the parameters of the prior to αtv = 100.0 t/mm and εtv = 1.0 × 10−2 mm/t,
respectively.

The number of samples for the estimation of L(φ) and its gradient is set to N = 1, which is a
common choice for practical purposes when the reparameterization gradient (cf. Section 2.5.5)
is used. The parameters β1,a and β2,a from the Adam update rule have proven reliable for
β1,a = β2,a = 0.5 and are fixed to this value for all numerical examples. Similarly, the step size
parameter ηa leads to a stable optimization process for the value ηa = 1 × 10−3. Due to the
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Parameter Value
Surface current likelihood kernel scale σW 1.0 mm
TV prior weight αtv 100.0 t/mm
TV prior parameter εtv 1.0 × 10−2 mm/t
Number of MC samples N 1
Adam parameter β1,a 0.5
Adam parameter β2,a 0.5
Adam step size parameter ηa 1.0 × 10−3

Step size factor η̃a,µ 1.0 ηa
Step size factor for η̃a,ω 10.0 ηa
Step size factor for η̃a,B 0.05 ηa
Step size factor for η̃a,ωN 5.0 ηa
Wall thickness tw 1.6 mm
Alpha stiffness αw 52.33 kPa
Beta stiffness βw 3112 kPa

Table 3.10.: Overview of SVI and model parameters used in this section.

different nature of the parameters φ = {µ, ω, B} and ωN = log σN , individual step size fac-
tors were found useful and determined as η̃a,µ = 1.0ηa, η̃a,ω = 10.0 ηa, η̃a,B = 0.05 ηa and
η̃a,ωN = 5 ηa. After 100 iterations, the step size is gradually lowered to ηa = 1.0 × 10−4 us-
ing a cosine function in order to reduce parameter fluctuations due to the stochastic nature of
the optimization and make it easier to check the convergence behavior. Finding optimal values
for these parameters for a specific problem can be tedious, which is certainly a shortcoming of
SVI. However, this is a general issue with almost all optimization algorithms or other inference
methods. In the author’s experience, even with non-optimal values, the optimization is relatively
robust and it is easy to recognize if the step size ηa was chosen too large or too small. As a
summary, all relevant parameters are provided in Table 3.10.

MAP estimate of the measurement noise

As discussed in [68], the measurement noise σN in the surface current-based likelihood from Eq. (2.105)
is usually unknown and nontrivial to choose. To that end, σN can be treated as a further opti-
mization parameter in the modified ELBO

L̃(φ̃) = L(φ, σN) + log π(σN), (3.17)

where φ̃ = [φ, ωN ]T (with ωN = log σN to allow for unconstrained optimization methods) and
where the dependency of L on σN was made explicit. However, this requires a more precise defi-
nition of the likelihood in terms of σN , which is provided for the surface current framework [31]
in the follow-up work [52] as

log π(Ŝ|θ) ∝ −n∆ log σN −
‖Ŝ− S(D(θ))‖2

W?

2σ2
N

. (3.18)
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3.4. Estimation of AAA growth based on consecutive imaging

Here, n∆ corresponds to the number of triangles in the triangulation of the source geometry used
for the evaluation of the norm ‖ · ‖W? . The derivative with respect to ωN is straightforward

∂ log π(Ŝ|θ)

∂ωN
∝ −n∆ +

‖Ŝ− S(D(θ))‖2
W?

σ2
N

, (3.19)

such that ωN can be treated like the remaining optimization parameters µ and ω in the SVI
framework. It is being noted, that this modified formulation of the likelihood does not change
the inference if σN is fixed, since the additional constant factor n∆ log σN is independent from
the parameters θ.

Choosing a variational model

The following models for the Gaussian covariance matrix are considered:

• Diagonal covariance: Σθ = D2, whereD ∈ Rnθ×nθ
+ is a diagonal matrix.

• Diagonal plus rank-r covariance: Σθ = D2 + BBT, where B ∈ Rnθ×nr is a lower
triangular matrix.

• Smoothed diagonal plus rank-r covariance: Σθ = L(D2 +BBT)LT, where L ∈ Rnθ×nθ

is a linear smoothing operator.

While the diagonal covariance model is simple and efficient, its usage for the purposes of this
work is limited, since the fitted density qφ(θ) does not account for any dependencies between
the growth parameters θ. This becomes obvious, when generating approximate posterior samples
from the fitted variational model in order to predict aneurysm growth. The independence assump-
tion ignores any neighborhood relationship, i.e. it effectively contradicts the TV prior assump-
tion, leading to non-smooth samples of the growth rate field and implausible predictions. For that
reason and to allow for a more accurate variational approximation at a minimal computational
overhead, the diagonal plus rank-r covariance is implemented, as well as a structure-imposing
approach, which enforces a smoothing of the variance via averaging adjacent element-based pa-
rameters based on the available TV neighborhood graph. All relevant derivations regarding these
models are provided in Section A.3.2.

For model selection purposes, a benchmark is carried out to compare the three approaches.
Fixing the measurement noise to σN = 1.0 mm2, different models can easily be compared
in terms of their ELBO, cf. Section 2.5.5. The higher the ELBO, the higher the model evi-
dence and thus the better the available observation can be explained by the model. To keep
the numerical costs moderate for this benchmark, the AAA is discretized with an approximate
element size of 2.5 mm, resulting in nθ = 1,260 growth parameters. The prior weight is ad-
justed to αtv = 50 t/mm for this coarser discretization. The optimizer is run for 500 iterations
and the ELBO from the last 100 iterations are averaged and reported in Table 3.11. The table
clearly demonstrates that more accurate approximations are possible using the smoothed co-
variance approach, while rank updates to the diagonal covariance only seem to result in minor
improvements. The latter observation is probably an effect from the chosen stochastic optimiza-
tion approach, which results in a fairly slow convergence behavior of the additional rank update
parameters B, such that adding many additional components does not pay off with a limited
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3. Framework Application

Model nφ L̄(φ)
Diagonal covariance 2,520 -14,432.870
Diagonal plus rank-r covariance (nr = 1) 3,780 -14,434.998
Diagonal plus rank-r covariance (nr = 2) 5,040 -14,448.375
Diagonal plus rank-r covariance (nr = 3) 6,300 -14,442.581
Diagonal plus rank-r covariance (nr = 10) 15,120 -14,494.413
Smoothed diagonal covariance 2,520 -13,440.135
Smoothed diagonal plus rank-r covariance (nr = 1) 3,780 -13,412.788
Smoothed diagonal plus rank-r covariance (nr = 2) 5,040 -13,411.381
Smoothed diagonal plus rank-r covariance (nr = 3) 6,300 -13,424.968
Smoothed diagonal plus rank-r covariance (nr = 10) 15,120 -13,443.036

Table 3.11.: Benchmark between different variational models after 500 iterations. The provided scores,
L̄(φ), are averaged values over the last 100 MC estimates of L(φ). The selected model is
highlighted in bold letters.

computational budget. Hence, the smoothed diagonal plus rank-1 covariance model was cho-
sen over the rank-2 one as a trade-off between the number nφ of optimization parameters and
accuracy.

Results for the example AAA

The numerical model for the AAA case from Fig. 3.11 consists of 19,892 finite elements and
28,116 degrees of freedom, implying nθ = 2,992 model and nφ = 8,976 optimization parame-
ters for the chosen variational approximation. The stochastic optimization is stopped after 500
iterations. In total, the calibration took about 640 minutes on a workstation with an Intel Xeon
W-2133 (3.60GHz) processor using 10 cores, i.e. on average 1.28 minutes per iteration. In this
case, each iteration involves the solution of one forward problem to estimate the objective func-
tion L̃ and the solution of one adjoint problem for its gradient – besides some computational
overhead.

0 50 100 150 200 250 300 350 400 450 500

−5

−4.5

−4 ·104

Iteration no.

L̃

Figure 3.12.: Objective function over the number of iterations.
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3.4. Estimation of AAA growth based on consecutive imaging

The stochastic optimization progress is visualized in Fig. 3.12 and Fig. 3.13, where the ob-
jective function, L2 norms of the mean, diagonal covariance and rank-1 update as well as the
measurement noise over the number of iterations are plotted. In general, these serve as a help-
ful diagnostic to assess convergence, which is not always easy due to the stochastic nature of
the process. Fig. 3.12 displays typical results with a steep increase in L̃ at the beginning and
a subsequent flattening. Since the objective function itself is estimated via MC sampling, there
is an inherent variability between consecutive estimates L̃. It is being noted, that in contrast to
following the EM scheme from Section 2.5.5, a direct optimization approach is chosen, such
that the measurement noise σ2

N and variational parameters φ are optimized at the same time. As
a consequence, L̃ may show an unfamiliar behavior when compared to a classical deterministic
optimization objective. For example, at iteration number 60 in Fig. 3.12, the estimates for L̃
drop slightly. Looking at the measurement noise σ2

N in Fig. 3.13, this can be explained via the
maximum that is reached at iteration 34 and the significant decrease afterwards, implying a rapid
change in the likelihood and reflecting the poor variational approximation at the beginning of the
optimization.
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Figure 3.13.: L2 norms of the mean (top left), diagonal covariance (top right) and rank-1 update (bottom
left) as well as the measurement noise (bottom right) over the number of iterations.

After about 50 iterations, it becomes increasingly hard to make out any progress by only
monitoring L̃, while the L2 norms of the parameter vectors still change considerably. Finally,
the effect of the decreasing time step size is reflected in smaller fluctuations from iteration to
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iteration and a trend towards a constant value can be made out. Estimated meansµθ and standard
deviations

√
diag (Σθ) of the approximate posterior qφ(θ) ≈ π(θ|Ŝ) are visualized in Fig. 3.14,

while three different realizations c(i)
ϑ = θ(i) from qφ = N (µθ,Σθ) (i = 1, 2, 3) are shown

in Fig. 3.15.

Figure 3.14.: Approximate posterior means (left) and standard deviations (right) of the parameters cϑ.
Highest growth rates concentrate around the aneurysm sac, which is also where the largest
changes in the two geometries from Fig. 3.11 occur.

Figure 3.15.: Three exemplary samples from the approximate posterior. The samples mostly follow the
mean from Fig. 3.14, but introduce an additional noise component.

Discussion

A comparison to the results reported in [68] is not straightforward. Although qualitatively, the
inferred mean values are comparable, quantitative differences are expected due to the modified
numerical model, parameters associated with the posterior, as well as approximation method.
In particular, the optimized measurement noise in Fig. 3.13 is approximately σ2

N ≈ 0.54 mm4,
while [68] used a value of σ2

N = 2.0 mm4 (physical units were adapted2). Furthermore, the vessel

2The parameter σN quantifies the variance of the distance measure ‖Ŝ − S(D(θ))‖2W? originating from the CTA
imaging process and the uncertainty associated with Ŝ. Since the distance measure has physical units mm4, σN
needs to be specified in mm2.
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3.5. Predictive rupture risk assessment

wall thickness in this work was set to tw = 1.6 mm ([68] used 1.0 mm), a different ILT material
model was employed, as well as different stiffness parameters for the wall material model in
order to be consistent with the AAA models throughout this thesis. Hence, it is possible that the
present results and those from [68] perform equally good in terms of matching the two AAA
geometries, however, with different values for the inferred growth rates.

From a methodological point of view, [68] uses a PCA (cf. Section 2.5.7) to reduce the number
of parameters for calibration purposes. In this case, no data points θi = xi are available, however,
information about the input parameters are encoded into the TV prior π(θ). As the covariance
matrix for PCA analysis, [68] proposes to utilize the sparse and symmetric Hessian resulting
from a local quadratic approximation of π(θ) at the MAP (cf. Section 2.5.5). This allows the
reparameterization

θ = θMAP + Pψ, (3.20)

where ψ ∈ Rr denotes the reduced parameters. The original posterior π(θ|Ŝ) can then be refor-
mulated in terms of the reduced parameters π(ψ|Ŝ), making a SMC-based sampling approach
feasible. With this approach, it could be demonstrated that a reduction from 7,428 to r = 30
parameters is possible. While being much more efficient than sampling on the full parameter
space, the numerical costs are still tremendous and the approximation accuracy difficult to as-
sess. The example provided in [68] required 192 SMC steps for 1,680 particles, implying a total
of 322,560 model evaluations – a computational task that is only feasible using a highly par-
allelized implementation on a supercomputer such as the Munich-based SuperMUC, where the
runtime was approximately 15 h.

In the end, there will always be a trade off between accuracy and practicality and it is im-
portant to assess the results in the context of their intended use case. Here, the inferred growth
rates cϑ are to be used in a predictive rupture risk assessment as presented in the next section.
For this purpose, efficiency is the major concern, while the uncertainty estimates are sufficient to
be representative. A complete analysis should be possible overnight without having to rely on a
high-performance computing cluster. This section proposed a methodology to get closer to this
target. Looking at Fig. 3.13, the 500 iterations employed for this example are probably too much
and it is expected that a maximum of 300 iterations would suffice. For prediction purposes, it is
important that the employed growth rate field is relatively smooth in order to produce meaning-
ful von Mises stress estimates. In comparison to the estimated mean in Fig. 3.14, the samples
in Fig. 3.15 using the smoothed diagonal plus rank-1 covariance model still appear a little noisy,
but represent a major improvement to previous results that were obtained using just the diagonal
covariance model.

3.5. Predictive rupture risk assessment

With the calibration result from the previous section, i.e. a PDF qφ(θ) = N (µθ,Σθ) on the
growth rate parameters cϑ, the next steps towards an in posterum rupture risk assessment can
be taken. Here, a predictive rupture risk assessment implies the quantification of Prupt over time
using a growth model. Since Prupt corresponds to an integral involving the density π(σmax

vm , σγ)
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3. Framework Application

(cf. Section 2.4), there are several possibilities with regards to which uncertainties should be
incorporated:

• No model uncertainties: the growth rate parameters cϑ are reduced to their mean value
cϑ = µθ, such that σmax

vm (µθ, t) is deterministic and the rupture risk index becomes

Prupt(t) =

∫
1σmax

vm (µθ ,t)>σγ π(σγ) dσγ. (3.21)

Only one deterministic forward model evaluation is required.

• Growth-based model uncertainties: the approximate posterior from the previous section is
used for propagating the uncertainties from the calibration

Prupt(t) =

∫
1σmax

vm (cϑ,t)>σγ π(cϑ) π(σγ) dcϑ dσγ. (3.22)

A stochastic forward problem with a high number of stochastic parameters cϑ needs to be
solved (nθ = 2,992) for each time step.

• Full model uncertainties: in addition to including qφ(θ), the uncertain vessel wall param-
eters tw, αw and βw are taken into account via the density π(Θ) = π(tw, αw, βw, σγ) from
Section 3.2, such that

Prupt(t) =

∫
1σmax

vm (cϑ,tw,αw,βw,t)>σγ π(cϑ) π(Θ) dcϑ dΘ. (3.23)

As before, a high-dimensional stochastic forward problem with 2,995 input parameters
needs to be solved for each time step.

• Vessel-wall uncertainties: the growth rate parameters cϑ are reduced to their mean value
cϑ = µθ as above, but the uncertainties in the parameters tw, αw and βw are included

Prupt(t) =

∫
1σmax

vm (µθ ,tw,αw,βw,t)>σγ π(Θ) dΘ. (3.24)

For each time step, a stochastic forward problem corresponding to the one from Section 3.3
needs to be solved.

While the first approach is straightforward, it neglects any uncertainties associated with the
growth model and captured in qφ(θ). For the last two approaches, the calibration in Section 3.4
should incorporate the additional uncertainties in tw, αw and βw for consistency. Thus, the second
approach, i.e. Eq. (3.22), will be considered in the following.

Prediction strategy

Although generating samples from qφ(θ) is straightforward (cf. Section A.3.2), the computation
of the rupture risk at some time instance t is computationally prohibitive due to the large amount
of required samples and thus model evaluations using plain MC. As a remedy, the following
procedure is proposed to estimate Prupt(t̄) at a point in time t = t̄:

84



3.5. Predictive rupture risk assessment

1. Reduce the number of input parameters θ at t = t̄ using the ASM forQ(θ, t̄) = σmax
vm (θ, t̄),

such that an approximation Q(ψ, t̄) ≈ Q(θ, t̄) is possible, where nψ � nθ (cf. Sec-
tion 2.5.7).

2. Create a surrogate model forQ(ψ, t̄) based on the evaluations required for the ASM above.

3. Evaluate Prupt(t̄).

The first step involves a sampling stage, where N gradient samples {∇θQ(θ(i), t̄)}Ni=1 using MC
sampling from the density qφ(θ) are computed. For the example AAA case from Fig. 3.11, N
is set to 32, corresponding to the minimum recommended number of samples using Eq. (2.199)
for α = 2, nθ = 2,992 and with the goal to adequately approximate the r = 2 first eigenvalue
and eigenvector pairs. Each sample evaluation involves the solution of a forward problem for
calculating Q = σmax

vm (θ, t̄) as well as the solution of an adjoint problem to evaluate the gradient
∇θQ. Following Section 2.5.7, the N ×N covariance matrixCN is estimated via the computed
gradient samples and a PCA is carried out to obtain the eigenvalues {λi}Ni=1 and corresponding
eigenvectors forming the nθ × r projection matrix P .

0 5 10 15 20 25 30

104

105

106

107

108

Eigenvalue no.

E
ig

en
va

lu
e

Figure 3.16.: Eigenvalue spectrum of the covariance matrix CN for t1 = t0+ 2 y using N = 32 MC
samples.

As an example, this is demonstrated for t̄ = t1 = t0+ 2 y, i.e. for the point in time of the
second CTA screening, while results for further time steps are discussed at the end of the section
below. In Fig. 3.16, the computed eigenvalues of the covariance matrix CN are plotted. The
significant drop after the first few eigenvalues suggests the existence of a low-dimensional active
subspace. This is supported by the scatter plots in Fig. 3.17, where the maximum von Mises
stress is plotted over the r = 2 projected variables ψ = [ψ1, ψ2]T = P Tθ. The data implies that
ψ1, i.e. a one-dimensional active subspace, already explains most of the variability of the QoI
with respect to θ. Hence, a one-dimensional approximationQ(θ, t̄) ≈ Q(ψ1, t̄) appears possible.

While a significant reduction in the input parameters nθ does not lower the costs for MC
sampling, it makes an efficient construction of approximate models feasible. To that end, a simple
GP-based surrogate (cf. Section 2.5.2) is fitted on the training data {Q(θ(i), t̄), ψ

(i)
1 }Ni=1 in order

to model the relationship between the maximum von Mises stress σmax
vm and the active variable

ψ1 probabilistically. The trained GP model is visualized in Fig. 3.18 in terms of the training data,
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Figure 3.17.: Maximum von Mises stress over the first and second active variables for t1.

predicted means and 95% confidence interval (CI). With this, predictions for the QoI at arbitrary
input samples ψ(i)

1 = P 1
Tθ(i) are available at negligible numerical costs

Q(i) = σmax
vm

(i) ∼ N (µQ(ψ
(i)
1 ), σ2

Q(ψ
(i)
1 )) (3.25)

and where P 1 denotes the first column of P .
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Figure 3.18.: Surrogate model to approximate the relationship σmax
vm (ψ1, t̄ = t1) based on N = 32 MC

samples.

It is being noted that by choosing a probabilistic model as a surrogate, there is a connection
to the probabilistic MFMC method from Section 2.5.4. The active variable ψ1 simply takes the
role of the low-fidelity model in Eq. (2.151), such that

π(Q) = π(σmax
vm ) =

∫
π(σmax

vm |ψ1)π(ψ1) dψ1. (3.26)

Thus, the tools developed in Section 2.5.4 can be applied here as well, in particular the diagnos-
tics quantifying the estimator uncertainty introduced by applying the dimensionality reduction.
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3.5. Predictive rupture risk assessment

Furthermore, the GP- and ASM-based approximation of the rupture risk can be rewritten as

Prupt(t̄) ≈
∫ ∫

1σmax
vm (ψ1,t̄)>σγ π(σmax

vm |ψ1) π(σγ) π(ψ1) dσmax
vm dσγ dψ1

= 1−
∫ ∫

Φ

(
σγ − µQ(ψ1)

σQ(ψ1)

)
π(σγ) π(ψ1) dσγ dψ1,

(3.27)

where Φ(x) is the cumulative distribution function (CDF) of the standard normal defined as

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−z

2

2

)
dz. (3.28)

Results

The prediction strategy from above is applied to five additional time steps, which are equally
spaced between t1 and t1+ 1 y, i.e. t2 = t1+ 0.2 y, t3 = t1+ 0.4 y, t4 = t1+ 0.6 y, t5 =
t1+ 0.8 y and t6 = t1+ 1 y. For each time step, N = 32 MC samples of the QoI gradient
are computed, a one-dimensional active subspace created and a GP-surrogate fitted in order to
obtain Prupt(t̄), where t̄ ∈ {t1, . . . , t6}. Since no non-invasive properties for this AAA case are
available, the cohort-based wall strength density π(σγ) from Eq. (3.4) is employed. The results
for the individual rupture risks are visualized in Fig. 3.19. Additionally, the evolution of Prupt

as well as the maximum diameter d over time are shown in Fig. 3.20, following the concept
from Fig. 2.3 in Section 2.4. The means and standard deviations of d are computed based on the
respective N = 32 MC samples and can therefore only be regarded as very rough estimates.
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Figure 3.19.: Visualization of the predictive Prupt at different times in the future. t1 corresponds to the
time where the second CTA screening was carried out, while t6 lies one year away from t1.
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Discussion

From Fig. 3.19 and Fig. 3.20 the propagation of the uncertainties in the growth rates cϑ over
time can be observed by means of Prupt and d. For Prupt this is expressed via a spread of the
blue-colored density π(σmax

vm , σγ) towards higher stress values – and as a consequence a higher
rupture risk – in Fig. 3.19. For d this can be seen in Fig. 3.20 through the increasing error
bars corresponding to one standard deviation. While the maximum diameter increases almost
perfectly linearly over time as a result of the employed growth law with a constant growth rate
(cf. Section 2.1.2), the rupture risk index deviates from its initial linear trend towards higher
values. Fig. 3.19 also illustrates that the wall strength density π(σγ) is assumed constant over
time, which is why there is no change of π(σmax

vm , σγ) along the σγ axis.
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Figure 3.20.: Predictive rupture risk assessment following the concept from Fig. 2.3. Temporal evolution
of the rupture risk Prupt and the maximum diameter d. t1 corresponds to the time where the
second CTA screening was carried out, while t6 lies one year from that in the future.

The relative change in the maximum diameter between t1 and t6 is 3.1% and 518.9% for Prupt,
suggesting that the latter is much more sensitive towards growth than d. The MC-based estimated
maximum diameter at t1 is 39.7 mm and 40.9 mm at t6, implying an increase of 1.2 mm after one
year. Both values are in very good agreement with those from Section 3.4, where a maximum
diameter of 39.2 mm at t1 and a rate of change of 1.25 mm were estimated based on the two
segmented geometries at t0 and t1. However, the predictions for the maximum diameters here
are based on a relatively low number of MC samples, so that there is some remaining uncertainty
in these estimates.
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4.1. Framework summary

A comprehensive framework for the biomechanical assessment of AAA rupture risk and growth
that incorporates available clinical data using a probabilistic approach was presented and demon-
strated in several numerical examples of retrospective AAA cases. To summarize, the major
contributions of this work are:

• The formulation of a general, biomechanical rupture risk index Prupt that is based on a
simple failure criterion and allows to incorporate existing uncertainties.

• The development of several tools for the quantification of forward and inverse uncertainties
that enable an efficient calculation of Prupt for different scenarios.

• An approach for the patient-specific, probabilistic prediction of invasive vessel wall prop-
erties based on non-invasively accessible clinical data that takes into account correlations
in the predicted outputs.

• A retrospective case-control study for an in momento rupture risk assessment of 36 AAA
cases, which demonstrated competitive performance in comparison to existing approaches.

• The Bayesian calibration of growth parameters using SVI to optimize a scalable variational
model as an approximation to the posterior.

• The efficient forward propagation of the uncertainties associated with the inferred growth
parameters using the ASM for dimensionality reduction and allowing for an in posterum,
predictive rupture risk assessment Prupt(t) at a future point of time.

• A quantitative comparison of different approaches to the evaluation of elastic AAA wall
properties based on tensile testing data (cf. Section A.4).

While it is argued that a deterministic approach to the rupture risk assessment is not purposeful
due to unknown model parameters that have a significant influence on the estimated wall stress
distribution, the results in this thesis have shown that a probabilistic treatment is not only more
robust, but can also be more accurate by making use of statistical information. Although com-
putational costs will always be higher compared to deterministic analyses, the developed UQ
strategies provide a feasible alternative and an added value. Hence, the rupture risk index Prupt

can be introduced as a relevant additional piece of information in the clinical decision process
for AAA cases that are not or not unambiguously covered by existing guidelines and recommen-
dations.
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4.2. Outlook
In order to advance this framework to a clinical application, several further aspects need to be
examined. A major challenge lies in the automatic segmentation of the CTA imaging data, which
at the moment requires manual steps by a trained expert and can be time consuming. With the
increasing use of deep learning (DL) methods for medical imaging data, it is expected that this
problem can be dealt with in the future. A promising software framework for this purpose, that
is currently under active development, is MONAI1.

In view of the limitations discussed in Chapter 3, additional studies involving further AAA
cases are desirable to confirm the predictive capabilities of Prupt and its clinical use for decision
making. In particular, a larger, randomized study with risk factor matched groups is desirable.
To validate the growth model, a retrospective case with at least three CTA images or a follow-up
study, where the predicted growth rates can be directly compared to the actual growth of the
AAA, is necessary.

In terms of framework extensions, there is still potential in the methods used for the estimation
and prediction of AAA growth. For example, individual vessel wall uncertainties for tw, αw and
βw could be included in the calibration and prediction process. Furthermore, MAP estimates
could also be computed for additional parameters from the likelihood and prior such as the
kernel scale parameter σW during the calibration process. To reduce the costs associated with the
stochastic optimization, the ASM parameter reduction scheme could already be applied during
the inference as proposed by [28]. Lastly, geometry-based approaches that do not rely on a
growth model, e.g. geodesic shooting [31], could be considered for the purposes of a predictive
rupture risk assessment, allowing for a treatment according to Section 3.3 for the extrapolated
geometries.

1https://monai.io/ (accessed January 19, 2022)
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A. Appendix

A.1. Mathematical model details

A.1.1. Tensor notation

The symbolic tensor notation employed in Section 2.1 is summarized in Table A.1.

order notation
0th a or A
1st a orA
2nd a orA
4th A

Table A.1.: Symbolic tensor notation employed in Section 2.1.

The dot operator (·) defines a contraction between two tensors of order m and n such that a
tensor of order m+n− 2 is returned. The contraction is computed over the last index of the first
tensor and the first index of the second tensor, e.g.

c = a · b =
∑

i

aibi, (A.1)

c = A · b =
∑

j

Aijbj = ci, (A.2)

C = A ·B =
∑

j

AijBjk = Cik. (A.3)

The double dot symbol (:) denotes a double contraction between two tensors such that a tensor
of order m+ n− 4 is returned. The double contraction is computed over the last two indices of
the first tensor and the first two indices of the second tensor, e.g.

c = A : B =
∑

i

∑

j

AijBij, (A.4)

C = A : B =
∑

k

∑

l

AijklBkl = Cij. (A.5)

The tensor product is denoted by ⊗ and results in a tensor of order m+ n, e.g.

C = a⊗ b = aibj = Cij. (A.6)
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The spatial derivatives in reference and current configuration are expressed via

∇X =




∂
∂X
∂
∂Y
∂
∂Z


 and ∇x =




∂
∂x
∂
∂y

∂
∂z


 , (A.7)

respectively, such that ∇X⊗ (•) represents the gradient and ∇X · (•) the divergence of (•) with
respect to the reference coordinates.

A.1.2. Analytical derivation of Young’s modulus for the volumetric
component of slightly compressible behavior

Below, a short derivation of Young’s moduli Ew and EILT for the volumetric component of
the AAA’s wall and ILT material model from Section 2.1.2 is provided. Imagine a rectangular
cuboid under uniaxial load. Under the assumptions of incompressibility, the deformation gra-
dient determinant becomes J = λ1λ2λ3 = 1, where λi are the principal stretches such that λ1

corresponds to the direction of the applied load. Assuming a uniaxial stress state and isotropic
material behavior, λ2 = λ3, such that λ2 = 1/

√
λ1 and the first and second invariants of the

Cauchy-Green tensor become

I1 = λ2
1 + λ2

2 + λ2
3 = λ2

1 +
2

λ1

, (A.8)

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1. (A.9)

With this, the strain energy density function for the wall material model is

Ψw(λ1) = αw

(
λ2

1 +
2

λ1

− 3

)
+ βw

(
λ2

1 +
2

λ1

− 3

)2

, (A.10)

and the relevant first Piola-Kirchhoff stress component

P11(λ1) =
∂Ψw(λ1)

∂λ1

=

(
2αw + 4βw

(
λ2

1 +
2

λ1

− 3

))(
λ1 −

1

λ2
1

)
. (A.11)

Finally, Young’s modulus evaluates to

Ew = C1111 =
∂2Ψw(λ1)

∂λ2
1

∣∣∣∣
λ1=1

= 6αw. (A.12)

Applying the same procedure to the ILT material model results in the strain energy

ΨILT(λ1) = cILT

(
λ4

1 +
2

λ2
1

− 3

)
, (A.13)
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the first Piola-Kirchhoff stress component

P11(λ1) =
∂ΨILT(λ1)

∂λ1

= cILT

(
4λ3

1 −
4

λ3
1

)
(A.14)

and a Young’s modulus of

EILT = C1111 =
∂2ΨILT(λ1)

∂λ2
1

∣∣∣∣
λ1=1

= 24cILT. (A.15)

A.2. Finite element method details

Below, further details regarding the FEM are provided, as well as additional derivations neces-
sary for some of the methods in Section 2.5. Furthermore, the employed matrix-vector notation
is clarified to allow for a straightforward implementation in a FE code.

A.2.1. Notation and fundamental quantities

Two-dimensional arrays of dimension m× n are referred to as matrices and denoted with bold-
faced letters, e.g. A ∈ Rm×n. Vectors are matrices where either m or n equals to one, e.g.
b ∈ Rn×1. Matrix multiplication is denoted as c = Ab, where

[c]i = [Ab]i =
n∑

j=1

[A]ij[b]j. (A.16)

Whenever discrete quantities that have no dependency on spatial coordinates occur, these will be
highlighted using sans-serif bold-faced letters, e.g. the element degree of freedom vector d(e), or
the global stiffness matrix K (in contrast to spatially varying quantities such as the deformation
gradient F = F (ξ)). To be precise with matrix dimensions, the following notation will be used
to make the transformation of a symmetric matrix into the Voigt notation and the vectorization
of an arbitrary matrix apparent:

• Apply the Voigt notation to a symmetric 3× 3 matrixA: [A]3×3→6×1 or simply [A]6×1, if
the dimensions ofA are obvious.

• “Undo” the Voigt notation of a 6× 1 vector a that is known to have a symmetric matrix
representation: [a]6×1→3×3 or simply [a]3×3.

• Vectorize the 3× 3 matrix B using column-wise stacking: [B]3×3→9×1, [B]3×3→1×9 or
simply [B]9×1, [B]1×9.

• “Undo” the vectorization of a 9× 1 vector b: [b]9×1→3×3 or simply [b]3×3.

Specifics regarding the application of the Voigt notation as well as the vectorization of matrices
can be found in [3, Appendix 1]. Before stating the finite element residual equation and its
linearized form, some fundamental quantities are introduced:
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• The 3nnd × 1 vectors of the element nodal degrees of freedom and coordinates

d(e) =




d1
1

d1
2

d1
3

d2
1
...

dnnd
3




and X̄
(e)

=




X̄1
1

X̄1
2

X̄1
3

X̄2
1

...
X̄nnd

3



, (A.17)

respectively.

• The 3× 3nnd shape function matrix

N =



N1 0 0 . . . Nnnd 0 0
0 N1 0 . . . 0 Nnnd 0
0 0 N1 . . . 0 0 Nnnd


 . (A.18)

• The 3× 3nnd matrix of shape function derivatives with respect to the natural coordinates

N ,ξ =




∂N1

∂ξ1
0 0 . . . ∂Nnnd

∂ξ1
0 0

0 ∂N1

∂ξ2
0 . . . 0 ∂Nnnd

∂ξ2
0

0 0 ∂N1

∂ξ3
. . . 0 0 ∂Nnnd

∂ξ3


 . (A.19)

• The 3× 3 Jacobi matrix

J = N ,ξX̄
(e)

=




∂X1

∂ξ1

∂X2

∂ξ1

∂X3

∂ξ1
∂X1

∂ξ2

∂X2

∂ξ2

∂X3

∂ξ2
∂X1

∂ξ3

∂X2

∂ξ3

∂X3

∂ξ3


 . (A.20)

• The 3× 3nnd matrix of shape function derivatives with respect to the reference coordinates

N ,X =




∂N1

∂X1
0 0 . . . ∂Nnnd

∂X1
0 0

0 ∂N1

∂X2
0 . . . 0 ∂Nnnd

∂X2
0

0 0 ∂N1

∂X3
. . . 0 0 ∂Nnnd

∂X3


 . (A.21)

• The 3× 3 deformation gradient matrix

F = 1 +N ,Xd
(e) =



F11 F12 F13

F21 F22 F23

F31 F32 F33


 . (A.22)
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• The 6× 3nnd B-operator matrix [3, Chapter 4.9.2]

B =




F11
∂N1

∂X1
F21

∂N1

∂X1
F31

∂N1

∂X1
. . .

F12
∂N1

∂X2
F22

∂N1

∂X2
F32

∂N1

∂X2
. . .

F13
∂N1

∂X3
F23

∂N1

∂X3
F33

∂N1

∂X3
. . .

F11
∂N1

∂X2
+ F12

∂N1

∂X1
F21

∂N1

∂X2
+ F22

∂N1

∂X1
F31

∂N1

∂X2
+ F32

∂N1

∂X1
. . .

F12
∂N1

∂X3
+ F13

∂N1

∂X2
F22

∂N1

∂X3
+ F23

∂N1

∂X2
F32

∂N1

∂X3
+ F33

∂N1

∂X2
. . .

F11
∂N1

∂X3
+ F13

∂N1

∂X1
F21

∂N1

∂X3
+ F23

∂N1

∂X1
F31

∂N1

∂X3
+ F33

∂N1

∂X1
. . .




. (A.23)

• The 3× 3 2nd Piola-Kirchhoff stress matrix

S =



S11 S12 S13

S22 S23

sym. S33


 . (A.24)

• The 6× 6 constitutive matrix, which is obtained by applying the Voigt notation to the
fourth order elasticity tensor [3, Appendix 1]

Cmat =




C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym. C55 C56

C66



. (A.25)

A.2.2. Derivatives of the residual vector
To calculate the adjoint-based derivative for an arbitrary objective function f(D,θ), partial
derivatives of the residual vector have to be calculated with respect to both D and the parameters
θ. In the following, these derivation will be made for the growth rate parameters cϑ and on an
element-wise basis for clarity. With the above, the 3nnd × 1 vector of element-wise residuals

r(e)(d(e)) =

∫

Ω
(e)
0

BT[S]6×1 dV +

∫

γ
(e)
σ

pNTn da+

∫

Γ
(e)
u

ksN
TNd dA (A.26)

from Section 2.2.1 can be evaluated. The integral involving the blood pressure p features a
3× 1 normal vector n of the surface element da in the current configuration and can be com-
puted following the approach in [3, Section 6.4.5]. Finally, the linearized residuals result in the
3nnd × 3nnd element stiffness matrix

k(e)(d(e)) =

∫

Ω
(e)
0

BTCmatB dV +

∫

Ω
(e)
0

N ,X
TSN ,X dV

+
∂

∂d(e)

∫

γ
(e)
σ

pNTn da+

∫

Γ
(e)
u

ksN
TN dA,

(A.27)
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where for the linearization of the pressure term it is again referred to [3, Section 6.4.5]. For the
derivative with respect to cϑ, only the internal forces term is non-zero [68]

∂r(e)(cϑ)

∂cϑ
=

∂

∂cϑ

∫

Ω
(e)
0

BT[S]6×1 dV =

∫

Ω
(e)
0

BT∂[S]6×1

∂cϑ
dV, (A.28)

where S = ϑ−2Se = ϑ−2∂Ψw(Ee)/∂Ee and

Ee =
1

2

(
1

ϑ2
C − I

)
, C = F TF . (A.29)

The stress derivative follows as

∂[S]6×1

∂cϑ
=

(
− 2

ϑ3
[Se]6×1 +

1

ϑ2

∂[Se]6×1

∂[Ee]6×1

∂[Ee]6×1

∂cϑ

)
∂ϑ

∂cϑ

= −1

ϑ

∂ϑ

∂cϑ
(2[S]6×1 +Cmat[C]6×1) ,

(A.30)

making use of

∂[Se]6×1

∂[Ee]6×1

= Ce,mat = ϑ−4Cmat. (A.31)

Summarizing, the derivative of the element residuals with respect to cϑ is

∂r(e)(cϑ)

∂cϑ
= −

∫

Ω
(e)
0

1

ϑ

∂ϑ

∂cϑ
BT (2[S]6×1 +Cmat[C]6×1) dV. (A.32)

Finally, the partial derivative of ϑ with respect to cϑ is time-dependent and follows from the
growth law (2.30) as

∂ϑ

∂cϑ
=
∂ϑ(tn)

∂cϑ
=

∂

∂cϑ

(
ϑ(t0) +

∫ tn

t0

cϑ dt

)
=

∂

∂cϑ
(tn − t0)cϑ = tn − t0 (A.33)

at an arbitrary point in time tn.

A.2.3. Von Mises stress derivatives

In order to compute the parameter gradient ∇θσmax
vm of the maximum von Mises stress using

the adjoint method, again partial derivatives with respect to both D and θ are required. In the
following, these derivation will be made for the growth rate parameters cϑ and on an element-
wise for clarity. To that end, first the 3× 3 Cauchy stress matrix is

σ =



σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


 = J−1FSF T (A.34)
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is introduced. The element-wise constant von Mises stress σvm
(e)(d(e)(cϑ), cϑ) is computed from

the Gauss point averaged element Cauchy stresses σ = 1/np
∑np

p=1 σp as

σvm
(e) =

√
σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ22σ33 − σ11σ33 + 3 (σ2
12 + σ2

23 + σ2
13). (A.35)

Furthermore, making use of the chain rule

∂σmax
vm (·)
∂(·) =

∂σmax
vm (·)

∂σvm
(e)

∂σvm
(e)

∂σ

∂σ

∂(·) , (A.36)

where

∂σmax
vm (·)

∂σvm
(e)

=

{
1 e = arg max

e
Σvm,

0 otherwise
(A.37)

and Σvm = {σvm
(e)}nel

e=1. The von Mises stress derivatives with respect to the individual Cauchy
stresses are

∂σvm

∂σ11

=
1

2σvm

(2σ11 − σ22 − σ33) ,

∂σvm

∂σ22

=
1

2σvm

(2σ22 − σ11 − σ33) ,

∂σvm

∂σ33

=
1

2σvm

(2σ33 − σ11 − σ22)

(A.38)

and

∂σvm

∂σ12

=
3

σvm

σ12,
∂σvm

∂σ23

=
3

σvm

σ23,
∂σvm

∂σ13

=
3

σvm

σ13. (A.39)

Finally, the derivative with respect to the local degree of freedom di becomes

∂[σ]6×1

∂di
=− J−1[FSF T]3×3→6×1[F−T]1×9Ñ

i

,X

+ J−1
[
F [CmatB

i]6×1→3×3F
T
]

3×3→6×1

+ J−1
[
[Ñ

i

,X ]3×3SF
T + FS[Ñ

i

,X ]
T

3×3

]
3×3→6×1

,

(A.40)
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where Bi and Ñ
i

,X refer to the ith column of B and the 9× 3nnd shape function derivative
matrix

Ñ ,X =




∂N1

∂X1
0 0 . . . ∂Nnnd

∂X1
0 0

0 ∂N1

∂X1
0 . . . 0 ∂Nnnd

∂X1
0

0 0 ∂N1

∂X1
. . . 0 0 ∂Nnnd

∂X1

∂N1

∂X2
0 0 . . . ∂Nnnd

∂X2
0 0

0 ∂N1

∂X2
0 . . . 0 ∂Nnnd

∂X2
0

0 0 ∂N1

∂X2
. . . 0 0 ∂Nnnd

∂X2

∂N1

∂X3
0 0 . . . ∂Nnnd

∂X3
0 0

0 ∂N1

∂X3
0 . . . 0 ∂Nnnd

∂X3
0

0 0 ∂N1

∂X3
. . . 0 0 ∂Nnnd

∂X3




, (A.41)

respectively, i.e.Bi is 6× 1 and Ñ
i

,X is 9× 1. From above, it is already known that

∂[S]6×1

∂cϑ
= −1

ϑ

∂ϑ

∂cϑ
(2[S]6×1 +Cmat[C]6×1) (A.42)

and since only S has an explicit dependency on cϑ, it follows that

∂σ

∂cϑ
= J−1F

[
∂[S]6×1

∂cϑ

]

6×1→3×3

F T. (A.43)

A.3. Uncertainty quantification tools details

A.3.1. Gaussian process applications

Multivariate Gaussian process regression

For the purposes of Section 3.2, where ξ denotes the non-invasive and Θ = [tw, αw, βw, σγ]
T the

invasive vessel wall properties, the covariance function

k(τ, τ ′) = k(ξ, ξ′) = ζ1 + ζ2ξ
Tξ′ + ζ3 exp

[
−ζ4(ξ − ξ′)T(ξ − ξ′)

]
(A.44)

with hyperparameters ζ1, ζ2, ζ3 and ζ4 was chosen. Together with the entries in L from the
Cholesky decomposition and the noise parameters from the matrix D (cf. Section 2.5.2), this
results in the hyperparameter vector

ζ = [ζ1, ζ2, ζ3, ζ4, D11, D22, D33, D44, L11, L22, L33, L44, L21, L31, L41, L32, L42, L43]T, (A.45)

where ζ1, ζ2, ζ3, ζ4, D11, D22, D33, D44, L11, L22, L33, L44 ∈ R+ andL21, L31, L41, L32, L42, L43 ∈ R.
Details regarding the optimization of the marginal log likelihood with respect to the hyperparam-
eters ζ are available in [146].
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Gaussian process surrogate modeling incorporating explicit basis functions

The GP surrogate model in Section 3.3 makes use of a simple squared exponential kernel

k(θ,θ′) = ζ1 exp

[
−1

2
(θ − θ′)TΛ−1(θ − θ′)

]
, (A.46)

where the matrix Λ = diag (ζ2, ζ3, ζ4) ∈ R3×3 is diagonal, leading to the vector of hyperparam-
eters ζ = [ζ1, ζ2, ζ3, ζ4]T, with ζ ∈ R4

+. Furthermore, trilinear basis functions are used for the
model parameters θ = [tw, αw, βw]T, i.e.

h(θ) = [1, tw, αw, βw, twαw, twβw, αwβw, twαwβw]T. (A.47)

Recalling the log marginal likelihood from Section 2.5.2,

L(ζ) =− 1

2
yTK−1y +

1

2
yTCy − 1

2
log |K| − 1

2
log |A|

− ntrain − rank(HT)

2
log 2π

(A.48)

withC = K−1HTA−1HK−1 andA = HK−1HT, the derivative with respect to the individ-
ual hyperparmeters becomes

∂L

∂ζi
=

1

2
yTK−1

∂K

∂ζi
K−1y

+
1

2
yTK−1

[
−∂K
∂ζi

K−1HTA−1H

+HTA−1HK−1
∂K

∂ζi
K−1HTA−1H

−HTA−1HK−1
∂K

∂ζi

]
K−1y

− 1

2
tr

(
K−1

∂K

∂ζi

)

+
1

2
tr

(
A−1HK−1

∂K

∂ζi
K−1HT

)
.

(A.49)

It is being noted that the numerical costs for evaluating this expression remain relatively low,
since the size of the matrixK is usually very small (on average 11× 11 in Section 3.3).

A.3.2. Gaussian variational models for SVI

Below, the variational models employed in Section 3.4 are outlined in detail, including all ex-
pressions necessary for the application of SVI. Starting from the classical diagonal covariance
model, rank updates are discussed, followed by the employed diagonal plus smoothed rank-r
covariance.
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Diagonal covariance

A Gaussian PDF with a diagonal covariance matrix Σ = D2, where D2 = diag (σ2) and σ ∈
Rnθ

+ , corresponds to a product of independent Gaussian PDFs

qφ(θ) = N (µ,D2) =

nθ∏

i=1

N (µi, σ
2
i ), (A.50)

i.e. any correlations are neglected. To apply unconstrained optimization, the standard deviations
are parameterized as σ = exp(ω), with ω ∈ Rnθ and where the exponential function is ap-
plied component-wise, i.e. σi = exp(ωi), i = 1 . . . nθ. Hence, the optimization parameters are
φ = {µ,ω} and qφ simplifies to

qφ(θ) =

nθ∏

i=1

qi(θi) =

nθ∏

i=1

exp(−ωj)√
2π

exp

[
−exp(−2ωi)

2
(θi − µi)2

]
. (A.51)

The associated entropy is

H[qφ(θ)] =
nθ
2

(1 + log 2π) +

nθ∑

i=1

ωi, (A.52)

with derivatives

∂H[qφ(θ)]

∂µi
= 0 and

∂H[qφ(θ)]

∂ωi
= 1. (A.53)

The reparameterization θ = θ(φ, ε) for this model reduces to

θi = µi + exp(ωi) εi, (A.54)

where εi ∼ π(εi) = N (0, 1). For the objective function gradient∇φf(θ), the following component-
wise expressions follow

∂f

∂µi
=
∂f

∂θj

∂θj
∂µi

=

nθ∑

j=1

∂f

∂θj
δji =

∂f

∂θi
, (A.55)

∂f

∂ωi
=
∂f

∂θj

∂θj
∂ωi

=

nθ∑

j=1

∂f

∂θj
δji exp(ωi) εθ,i =

∂f

∂θi
exp(ωi) εθ,i. (A.56)

Diagonal plus rank-r covariance

The diagonal plus rank-r covariance model has been independently proposed by [102] and [91].
It aims at an approximation to the full rank nθ × nθ covariance matrix as

Σ = D2 +BBT, (A.57)
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where B ∈ Rnθ×nr is a lower triangular matrix with nr rank updates as column vectors. For the
inverse of this matrix, it can be shown that

(D2 +BBT)
−1

= D−2 −D−2B(Ir +BTD−2B)
−1
BTD−2 (A.58)

and for the determinant

|D2 +BBT| = |D2||Ir +BTD−2B|. (A.59)

Fortunately, the dense nθ×nθ inverse (D2 +BBT)
−1

does not need to be calculated explicitly,
since it suffices to compute its action on a vector. E.g., the operation y = (D2 +BBT)

−1
xwith

two vectors x and y evaluates to

yi = σ−2
i − σ−4

i

nr∑

k=1

nr∑

j=1

nθ∑

l=1

Bij[(Ir +BTD−2B)
−1

]jkBlkxl. (A.60)

Along with the computation of the nr×nr inverse (Ir +BTD−2B)
−1

and determinant |Ir +BTD−2BT|
this task is computationally feasible as long as nr remains relatively small. With this, the entropy
term can be readily evaluated as

H[qφ(θ)] =
nθ
2

(1 + log 2π) +

nθ∑

i=1

ωi +
1

2
log |Ir +BTD−2BT|, (A.61)

with the parameter derivatives

∂H[qφ(θ)]

∂µi
= 0, (A.62)

∂H[qφ(θ)]

∂ωi
= [(D2 +BBT)

−1
]ii exp(2ωi), (A.63)

∂H[qφ(θ)]

∂Bij

=

nθ∑

k=1

[(D2 +BBT)
−1

]ikBkj. (A.64)

For the computation of ∂H[qφ(θ)]/∂ωi, it suffices to determine the diagonal entries

[(D2 +BBT)
−1

]ii = σ−2
i − σ−4

i

nr∑

j=1

nr∑

k=1

Bij[(Ir +BTD−2B)
−1

]jkBik, (A.65)

while∇BH[qφ(θ)] involves a nr-fold application of the inverse (D2 +BBT)
−1

to the columns
ofB. The reparameterization transformation is

θ(φ, εθ, εr) = µ+Dεθ +Bεr, (A.66)
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with εθ ∼ N (0, Iθ), εr ∼ N (0, Ir) and where π(ε) = π(εθ)π(εr). Finally, the corresponding
objective function derivatives are

∂f

∂µi
=
∂f

∂θi
,

∂f

∂ωi
=
∂f

∂θi
exp(ωi) εθ,i, (A.67)

∂f

∂Bij

=
∂f

∂θk

∂θk
∂Bij

=

nθ∑

k=1

∂f

∂θk
δki εr,j =

∂f

∂θi
εr,j, (A.68)

where ∂f/∂Bij is set to zero, if j > i in order to preserve the lower triangular structure ofB.

Smoothed diagonal plus rank-r covariance

The idea is to smooth the variance term in the reparameterization as

θ(φ, εθ, εr) = µ+L(Dεθ +Bεr), (A.69)

where L ∈ Rnθ×nθ is a linear smoothing operator that averages entries from adjacent elements,
in order to avoid discontinuities during the stochastic optimization. This results in a Gaussian
with covariance

Σ = L(D2 +BBT)LT. (A.70)

and determinant

|L(D2 +BBT)LT| = |L|2|D2||Ir +BTD−2B|. (A.71)

The entropy of this Gaussian is

H[qφ(θ)] =
nθ
2

(1 + log 2π) +

nθ∑

i=1

ωi +
1

2
log |Ir +BTD−2BT|+ log |L|, (A.72)

which implies that derivatives of the entropy remain the same as for the standard diagonal plus
smoothed rank-r covariance approach. Regarding the entropy itself, it suffices to evaluate it up to
the constant term log |L|. The reparameterization gradient can be straightforwardly computed,
resulting in the objective function derivatives

∂f

∂µi
=
∂f

∂θi
,

∂f

∂ωi
=

nθ∑

j=1

∂f

∂θj
Lji exp(ωi) εθ,i and

∂f

∂Bij

=

nθ∑

k=1

∂f

∂θk
Lki εr,j. (A.73)

A.4. Determining stiffness parameters based on tensile
tests of AAA tissue samples

In order to characterize the material behavior of the AAA vessel wall, tensile tests were per-
formed on tissue samples harvested during OSR as already described in Section 3.1. Due to the
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significant inter- and intra-patient variabilities in the obtained mechanical properties and rela-
tively small data set, a careful evaluation is required. Below, the focus is on the determination
of the αw- and βw-stiffness parameters from Section 2.1.2. In previous work [8, 117] and for
the purposes of Chapter 3, the evaluation was based on an analytical model for the stress-stretch
relation of the tensile test, cf. Section A.1.2, where the parameters αw- and βw were fitted to the
measured force-displacement data of rectangular shaped tissue samples with length l0, width b0

and thickness t0. This approach, however, has the following limitations:

• Uniaxial stress state: since in most cases only samples of relatively small dimension could
be obtained [84], the assumption of uniaxial stress is expected to be violated.

• Incompressibility: even though human tissue has a high water content, it is not a perfectly
incompressible material.

• Deterministic results: no estimates about the variance due to noisy measurement data have
been reported.

The purpose of this section is to provide a comprehensive investigation of these deficiencies. In
particular, the goal is to:

1. Examine the impact of the assumptions made by the analytical model by comparing it to
a numerical FEM model in terms of parameter estimates.

2. Investigate the variance of the estimated parameters by treating the fitting procedure as a
Bayesian inverse problem.

3. Provide data-consistent population-based densities for the stiffness parameters using a
stochastic inverse problem.

To that end, the measured data is briefly described and the different calibration methods dis-
cussed. Afterwards, the analytical model and numerical FEM model are introduced and em-
ployed for the evaluation of all tested samples using the deterministic approach for comparison.
Finally, results for the Bayesian and data-consistent approaches are presented.

Mechanical testing and data description

Uniaxial tests were carried out on rectangular shaped tissue samples with undeformed length l0,
width b0 and thickness t0. As testing machines, an ElectroForce 3100 (Bose Corporation, Eden
Prairie, USA) and Zwick/Roell mediX0.1 (Messphysik Materials Testing, Fürstenried Austria)
were used. A sinusoidal load was applied and the 20th cycle used for evaluation purposes [117].
In contrast to Section 3.1, several samples that could not be accurately described by the con-
sidered material model were not considered for the evaluation, resulting in n = 191 remaining
datasets. Force-displacement curves from 50 exemplary samples are shown in Fig. A.1.
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Figure A.1.: Force-displacement curves from 50 exemplary samples.

Deterministic approach using nonlinear least squares

The deterministic approach is based on a nonlinear least squares (NLS) fit algorithm follow-
ing [117]. The corresponding optimization problem for finding optimal values α?w and β?w is

logα?w, log β?w = arg min
logαw,log βw

‖û− u‖2
2, (A.74)

where û = [û1, . . . , ûi, . . . , ûn] are the measured displacements and u = [u1, . . . , ui, . . . , un] the
displacements with ui = ui(F̂i) computed at the force F̂i that corresponds to the measurement ûi.
The parameters αw and βw are log-transformed to be able to apply unconstrained optimization.

Stochastic approach via a Bayesian inverse problem

The stochastic approach utilizes a Bayesian formulation of the inverse problem and MCMC for
inference. The likelihood is

π(û| logαw, log βw) =
1

(
√

2πσu)n
exp

(
− 1

2σ2
u

‖û− u‖2
2

)
(A.75)

and for the prior

π(logαw, log βw) = N (µlogαw , σ
2
logαw

)N (µlog βw , σ
2
log βw) (A.76)

is used, where the means and variances are calculated from the deterministic analysis as

µlogαw =
1

n

n∑

i=1

logα?w,i, µlog βw =
1

n

n∑

i=1

log β?w,i, (A.77)

σ2
logαw

=
1

n

n∑

i=1

(logα?w,i − µlogαw)2, σ2
log βw =

1

n

n∑

i=1

(log β?w,i − µlog βw)2. (A.78)
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An additional chain is run for the measurement noise σu of the likelihood in order to get an
impression about its variability across the tested samples and two testing machines. Moreover,
the delayed rejection adaptive Metropolis (DRAM) implementation from [90] is used as the
MCMC algorithm to generate posterior samples.

Data-consistent cohort density for the stiffness parameters

The task of finding a cohort PDF for the stiffness parameters αw and βw that is consistent with
all available measurements and where the measurement noise is negligible represents a stochas-
tic inverse problem of the sort as described in Section 2.3.4. Hence, the framework presented
in Section 2.5.6 is used to find a unique solution to this particular inverse problem. The sought
density is given by

πup(logαw, log βw) = πinit(logαw, log βw)
πobs(Q)

πQ(init)(Q)
, (A.79)

where Q = Q(θ) with θ = [αw, βw]T. For the initial density, πinit(logαw, log βw), the same
choice as for the prior from Eq. (A.76) is made. To determine the observed density, appropriate
QoI need to be computed from the available data {ûi, F̂i}ni=1. The number of QoI, nQ, should
be as low as possible and the QoI should ideally be statistically independent from each other to
provide as much information as possible.

1 1.05 1.1 1.15 1.2

0

25

50

75

100

125

150

λ1 [-]

P
1
1

[k
Pa

]

Figure A.2.: Preprocessed stress-strain curves from 50 exemplary samples.

In this section, different characteristics of the stress-strain curves are chosen as the QoI:

1. The area under the curve:

Q1 =

∫ λmax
1

1

P11 dλ1, (A.80)

which corresponds to a strain energy.
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2. The length of the curve:

Q2 =

∫ λmax
1

1

√
1 +

(
∂P11

∂λ1

)2

dλ1, (A.81)

which includes the stiffness ∂P11/∂λ1.

To obtain representative values for Q1 and Q2, a preprocessing operation is carried out, where
the sample data is smoothly interpolated between 0 and 150 kPa. 25 samples, which either didn’t
reach 150 kPa during testing or where negative stiffness values appeared, were disregarded from
the analysis, resulting in n = 166 QoI. The results for 50 exemplary stress-strain curves are
shown in Fig. A.2. Finally, both QoI can be approximated via numerical integration of the in-
terpolated or model-predicted stress-stretch data, where the derivative ∂P11/∂λ1 is computed
using forward differences. The observed density πobs(Q) = πobs(Q1, Q2) can then be obtained
using KDE. Note that for evaluation purposes, densities involving logarithmized quantities of
the stiffness parameters can be readily transformed to the physical domain as

π(αw, βw) =
1

αwβw

π(logαw, log βw). (A.82)

Analytical model of the tensile test

The analytical AAA wall material model has been derived in Section A.1.2 as

P11(λ1) =

(
2αw + 4βw

(
λ2

1 +
2

λ1

− 3

))(
λ1 −

1

λ2
1

)
, (A.83)

where P11 = F1/(b0l0) is the first Piola-Kirchhoff stress and λ1 = 1 + u1/l0 the stretch in axial
direction. Note that P11(λ1) is a strictly monotonic function for λ1 ≥ 1, αw > 0, βw > 0, such
that the inverse λ1(P11) exists. Hence, for a given sample geometry with undeformed length l0,
width b0 and thickness t0, parameter choice αw and βw and measured force F̂ , a corresponding
displacement u = u1(F̂ ) can be computed and compared to the measurement data û.

Numerical model of the tensile test

For the numerical model, a finite deformation FEM model of the tensile test is utilized, where the
strain energy function to describe the constitutive behavior is the same as in Eq. (2.23) and where
a Possion’s ratio of ν = 0.495 is used. The left boundary of the tissue sample model is fixed via
a Dirichlet boundary condition and at the right boundary a Neumann boundary condition with
a surface load corresponding to the measured force F̂ is applied. A quasi-static, load-controlled
simulation yields force-displacement curves, consisting of computed axial displacements u(F )
for an applied force F and for a particular sample of dimension l0 × b0 × t0 and parameter
combination αw and βw.

To determine the required mesh resolution for the numerical model, a convergence study is
carried out as illustrated in Fig. A.3 and using the deterministic approach for parameter fitting.
With average deviations of less than 1% with respect to the parameters computed on the finest
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Figure A.3.: Convergence study for the numerical model. Samples 00001 and 10020 are fitted using an
increasing number of degrees of freedom. The y-axis shows the ratio between the optimized
parameters γi, with γ = {α00001

w , β00001
w , α10020

w , β10020
w }, at an increasing number i of de-

grees of freedom and the value at the finest resolution level γmax = γi with i = 8,262.

resolution, a mesh consisting of 2,376 degrees of freedom is chosen for the experiments below.
A finite element model of a typical tissue sample is visualized in Fig. A.4.

Figure A.4.: Finite element model of sample 10020, where the axial displacements u are visualized. The
clamped surface is on the left, while the force is applied on the right side of the tissue sample.
Making use of symmetries, only one quarter of the model is computed, consisting of 550
elements and 2,376 degrees of freedom.

Results

First, the deterministic approach is applied to all n = 191 tissue samples using both the analytical
and numerical models. Force-displacement curves with optimized parameters for two exemplary
samples along with the experimental data are shown in Fig. A.5. Histograms and KDEs for the
cohort densities π(αw) and π(βw) for the analytical and numerical model are shown in Fig. A.6
and Fig. A.7, respectively.

The Bayesian inverse analysis is then carried out using the analytical model for computational
feasibility. 10,000 posterior realizations are computed for each tissue sample using the MCMC
algorithm, where the first 10% are considered as burn-in and disregarded in the analysis. Results
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û, u(F̂ ) [mm]

F̂
[N

]
experiment
numerical

Figure A.5.: Measured and computed force-displacement curves for two exemplary samples using the
analytical model. û is the clamp displacement and F̂ the corresponding measured force, while
u(F̂ ) is the computed displacement using the optimized parameters. Left column: sample
00001 (ElectroForce 3100, l0 = 4.1 mm, b0 = 10.0 mm, t0 = 1.8 mm, analytical model
results: α?w = 44.303 kPa, β?w = 2660.155 kPa, numerical model results: α?w = 33.016 kPa,
β?w = 1896.868 kPa). Right column: sample 10020 (Zwick/Roell mediX0.1, l0 = 7.3 mm,
b0 = 9.9 mm, t0 = 1.7 mm, analytical model results: α?w = 96.495 kPa, β?w = 4532.339 kPa,
numerical model results: α?w = 81.229 kPa, β?w = 3665.191 kPa).

for the two samples from before are shown in Fig. A.8 in terms of a visualization of the computed
posterior π(αw, βw|û). A visualization of the measurement noise posterior means of all samples
is provided in Fig. A.9.

Lastly, the data-consistent approach is analyzed using the analytical model and N = 20,000
samples from the initial density πinit, which are used to compute the push-forward πQ(init).
n = 166 QoI pairs were used for the computation of the observed density πobs. The resulting
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Figure A.6.: Visualization of the optimal parameter values obtained for n = 191 samples using the an-
alytical model and NLS fit algorithm. Left: histogram and KDE for αw (79.327 ± 76.832
[kPa]). Right: histogram and KDE for βw (4215.164 ± 3666.798 [kPa]).
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Figure A.7.: Visualization of the optimal parameter values obtained for n = 191 samples using the nu-
merical model and NLS fit algorithm. Left: histogram and KDE for αw (65.105 ± 66.596
[kPa]). Right: histogram and KDE for βw (3384.542 ± 2986.797 [kPa]).

updated density πup is visualized in histogram Fig. A.10, while diagnostics (cf. Section 2.5.6)
for the method are provided in Table A.2. Accepted samples from the updated density are plot-
ted in Fig. A.11 along with a scatter plot of the optimized parameters using the deterministic
approach for comparison.
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Figure A.8.: Computed posterior samples (black circles) and corresponding contours (shades of blue)
from a KDE of the density π(αw, βw|û) for two exemplary samples. Left: sample 00001
(αw = 44.267 ± 4.656 kPa, βw = 2669.366 ± 134.030 kPa, σu = 0.033 ± 0.002 mm).
Right: sample 10020 (αw = 95.815 ± 5.866 kPa, βw = 4553.745 ± 194.647 kPa, σu =
0.036 ± 0.003 mm).
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Figure A.9.: Histogram visualizing the measurement noise distribution of the cohort (n = 191), using the
respective mean values of σu of each sample. The distribution is bimodal, where the left peak
corresponds to the ElectroForce 3100 test machine (n = 121, σu = 0.025 ± 0.002 mm) and
the right peak to the Zwick/Roell mediX0.1 test machine (n = 70, σu = 0.036± 0.002 mm).

Discussion

Both measured force-displacement curves in Fig. A.5 are fit equally well by the optimized an-
alytical and numerical models. However, since the models are different, the fitted parameters
of both models differ. For the first sample an alpha stiffness of 44.303 kPa vs. 33.016 kPa
and a beta stiffness of 2660.155 kPa vs. 1896.868 kPa was obtained. For the second sam-
ple an alpha stiffness of 96.495 kPa vs. 81.229 kPa and a beta stiffness of 4532.339 kPa vs.
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Figure A.10.: Visualization of the parameter values obtained for Nup = 1,316 samples from the up-
dated density πup(αw, βw) using the analytical model and data-consistent approach. Left:
histogram and KDE for αw (87.609 ± 75.257 [kPa]). Right: histogram and KDE for βw

(4912.664 ± 4510.847 [kPa]).
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Figure A.11.: Scatter plots comparing the n = 191 optimized values using the deterministic approach
(left) and the Nup = 1,316 samples from the updated density πup(αw, βw) (right). Corre-
sponding correlation coefficients are rS(αw, βw) = 0.657163 and 0.645944, respectively.

3665.191 kPa, respectively (analytical vs. numerical model). The stiffness parameters seem to
be slightly higher for the analytical model. This observation is confirmed when comparing the
histograms in Fig. A.6 and Fig. A.7. Reported mean values across all n = 191 investigated sam-
ples amount to 79.327 kPa vs. 65.105 kPa for αw and 4215.164 kPa vs. 3384.542 kPa for βw,
corresponding to an increase of 21.8% and 24.5%. On the other hand, the coefficient of variation
(CV), i.e. the ratio of the standard deviation to the mean, is approximately the same for both
models (0.969 vs. 1.023 and 0.870 vs. 0.882).
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(D1) Updated integral 0.990602
(D2) Consistency KL 0.022731
(D3) Information gain 0.330726
(D4) Acceptance rate 0.065800

Table A.2.: Diagnostic values for the data-consistent approach. n = 166 QoI pairs were used for the
computation of the observed density. N = 20,000 samples from the initial density resulted in
Nup = 1,316 updated samples.

Moving on to the results from the Bayesian analysis, the inferred posterior means for the two
examples in Fig. A.8 are almost identical to those from the NLS analysis. In light of the high-
resolution force-displacement data, this can be expected and the likelihood will dominate over
the a-priori assumptions. More interestingly, the posterior variance provides additional informa-
tion about the sensitivity of the fit with respect to the parameters αw and βw. For the two exam-
ples, the standard deviations are 4.656 kPa and 5.866 kPa for the alpha stiffness, and 134.030 kPa
and 194.647 kPa for the beta stiffness. This corresponds to CVs of 0.105 and 0.061 for αw, and
0.050 and 0.043 for βw, suggesting that the variability in the posterior is smaller than the variabil-
ity between the analytical and numerical model. Furthermore, the noise levels of the two testing
machines are clearly reflected in terms of the two modes of the histogram in Fig. A.9. For the
ElectroForce 3100, σu concentrates around 2.4 × 10−2 mm and for the Zwick/Roell mediX0.1
around 3.5 × 10−2 mm.

Finally, the results for the data-consistent density πup(αw, βw) show slightly higher mean
values compared to those from the deterministic approach (87.609 kPa vs. 79.327 kPa and
4912.664 kPa vs. 4215.164 kPa), corresponding to an increase of 10.4% and 16.5%. Further-
more, Fig. A.11 shows an almost identical correlation structure between αw and βw resulting
from the two methods. However, both results come from fundamentally different approaches,
which makes a direct comparison difficult. The diagnostic values (D1) (close to one) and (D2)
(close to zero) in Table A.2 indicate that a proper updated density was computed. The informa-
tion gain, which is quantified by (D3), is significantly higher than using only Q1 as a QoI, which
results in an information gain of only 0.166920. This implies that Q2 adds important additional
information about the parameters αw and βw. However, it is unclear whether a further QoI would
be necessary to correctly capture all the characteristics of the force-displacement curves. A third
QoI would require a KDE over three parameters with only n = 166 available data points, which
cannot be assumed to deliver meaningful results.

To summarize, the discrepancies between the numerical and analytical model cannot be ex-
plained with measurement uncertainties, but still remain modest. In particular, it is known that
the alpha and beta stiffness parameters have a relatively low influence on the maximum von
Mises stress in prestressed cardiovascular structures [7] and thus these differences are not ex-
pected to play a major role in the context of a rupture risk assessment. The lower values for
αw and βw obtained using the numerical model are, however, in better agreement with biaxial
testing results [143]. The Bayesian analysis provides additional information about the variance
of the two stiffness parameters. Interestingly, αw and βw are negatively correlated among the two
tissue samples in Fig. A.8, while positively correlated among all examined samples in Fig. A.11.
This confirms the observation that the inter- and intra-patient variabilities in the stiffness pa-
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rameters dominate over the uncertainties associated with the measurement noise. Finally, the
data-consistent approach represents a non-parametric tool to obtain a population-based density
π(αw, βw). For a biomechanical rupture risk assessment, it could be used in place of Eq. (3.4) for
patients, where no non-invasive properties are available, to provide a more accurate description
of the correlation structure between αw and βw.

A.5. Overview: methods, implementations and
publications

All computations and data processing tasks were performed using the C++ FEM code “Tar-
taros” and its Python wrapper “PyTartaros”, which are developed at the Mechanics & High-
Performance Computing Group.

• Section 3.1: Correlation analysis between invasive vessel wall properties and non-invasively
accessible clinical parameters

– Implementations:
pytartaros/applications/aaa rupture risk/patspec data

• Section 3.2: Patient-specific probabilistic modeling of invasive vessel wall properties

– Related publications: Biehler et al. [8], Bruder et al. [19]

– Methods: Multivariate Gaussian process regression (Section 2.5.2)

– Implementations:
pytartaros/applications/aaa rupture risk/patspec data

• Section 3.3: Biomechanical rupture risk assessment at the time of data collection in the
clinic

– Related publications: Bruder et al. [17, 19]

– Methods: Gaussian process surrogate modeling incorporating explicit basis functions
(Section 2.5.2), Monte Carlo method (Section 2.5.3)

– Implementations:
pytartaros/applications/aaa rupture risk/rupture risk framework
tartaros/src/drt uq

– Model parameters: θ = [tw, αw, βw]T

• Section 3.4: Estimation of AAA growth based on consecutive imaging

– Related publications: Bruder and Koutsourelakis [16], Kehl and Gee [69]

– Methods: Stochastic variational inference (Section 2.5.5)

– Implementations:
pytartaros/applications/aaa rupture risk/growth
tartaros/src/drt inv analysis

– Model parameters: θ = cϑ
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• Section 3.5: Predictive rupture risk assessment

– Methods: Active subspace method (Section 2.5.7), Gaussian process regression (Sec-
tion 2.5.2)

– Implementations:
pytartaros/applications/aaa rupture risk/growth
tartaros/src/drt inv analysis

– Model parameters: θ = cϑ

• Section A.4: Determining stiffness parameters based on tensile tests of AAA tissue sam-
ples

– Related publications: Biehler et al. [8], Bruder et al. [18], Reeps et al. [117]

– Methods: Markov chain Monte Carlo (Section 2.5.5), Unique solutions to stochastic
inverse problems (Section 2.5.6)

– Implementations:
pytartaros/applications/aaa rupture risk/mech testing

– Model parameters: θ = [αw, βw]T

114



Bibliography

[1] G. A. Antoniou, S. A. Antoniou, and F. Torella, Endovascular vs. Open Repair for Abdom-
inal Aortic Aneurysm: Systematic Review and Meta-analysis of Updated Peri-operative
and Long Term Data of Randomised Controlled Trials, European Journal of Vascular and
Endovascular Surgery 59, 385–397, 2020.

[2] S. Avril, M. W. Gee, A. Hemmler, and S. Rugonyi, Patient-specific computational model-
ing of endovascular aneurysm repair: State of the art and future directions, International
Journal for Numerical Methods in Biomedical Engineering, 2021.

[3] T. Belytschko, W. K. Liu, B. Moran, and K. I. Elkhodary, Nonlinear Finite Elements for
Continua and Structures, Wiley, Chichester, West Sussex, United Kingdon, second edition
Edition, 2014.

[4] D. Bergqvist, M. Björck, and A. Wanhainen, Abdominal Aortic Aneurysm – To Screen or
Not to Screen, European Journal of Vascular and Endovascular Surgery 35, 13–18, 2008.

[5] J. Biehler and W. A. Wall, The impact of personalized probabilistic wall thickness models
on peak wall stress in abdominal aortic aneurysms, International Journal for Numerical
Methods in Biomedical Engineering 34, e2922, 2018.

[6] J. Biehler, Efficient Uncertainty Quantification for Large-Scale Biomechanical Models
Using a Bayesian Multi-Fidelity Approach, PhD thesis, Technical University of Munich,
2016.

[7] J. Biehler, M. W. Gee, and W. A. Wall, Towards efficient uncertainty quantification
in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity
scheme, Biomechanics and Modeling in Mechanobiology 14, 489–513, 2015.

[8] J. Biehler, S. Kehl, M. W. Gee, F. Schmies, J. Pelisek, A. Maier, C. Reeps, H.-H. Eckstein,
and W. A. Wall, Probabilistic noninvasive prediction of wall properties of abdominal aor-
tic aneurysms using Bayesian regression, Biomechanics and Modeling in Mechanobiology
16, 45–61, 2017.

[9] C. Bierig and A. Chernov, Approximation of probability density functions by the Mul-
tilevel Monte Carlo Maximum Entropy method, Journal of Computational Physics 314,
661–681, 2016.

[10] I. Bilionis and N. Zabaras, Bayesian Uncertainty Propagation Using Gaussian Processes,
In R. Ghanem, D. Higdon, and H. Owhadi (eds.), Handbook of Uncertainty Quantifica-
tion, pages 1–45, Springer International Publishing, Cham, 2015.

115



Bibliography

[11] P. Billingsley, Probability and Measure, Wiley Series in Probability and Mathematical
Statistics, Wiley, New York, 3rd ed Edition, 1995.

[12] C. M. Bishop, Pattern Recognition and Machine Learning, Information Science and
Statistics, Springer, New York, 2006.

[13] E. V. Bonilla, K. M. Chai, and C. Williams, Multi-task gaussian process prediction, In
J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis (eds.), Advances in Neural Information
Processing Systems 20, pages 153–160, Curran Associates, Inc., 2008.

[14] F. S. Bott and M. W. Gee, A Strong Form Based Moving Kriging Collocation Method for
the Numerical Solution of PDEs with Mixed Boundary Conditions, International Journal
for Numerical Methods in Engineering, 2020.

[15] F. A. Braeu, A. Seitz, R. C. Aydin, and C. J. Cyron, Homogenized constrained mixture
models for anisotropic volumetric growth and remodeling, Biomechanics and Modeling
in Mechanobiology 16, 889–906, 2017.

[16] L. Bruder and P.-S. Koutsourelakis, BEYOND BLACK-BOXES IN BAYESIAN IN-
VERSE PROBLEMS AND MODEL VALIDATION: APPLICATIONS IN SOLID ME-
CHANICS OF ELASTOGRAPHY, International Journal for Uncertainty Quantification
8, 447–482, 2018.

[17] L. Bruder, B. Reutersberg, M. Bassilious, W. Schüttler, H.-H. Eckstein, and M. W. Gee,
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