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Abstract—Conventional nonlinear subspace learning tech-
niques (e.g., manifold learning) usually introduce some draw-
backs in explainability (explicit mapping) and cost effectiveness
(linearization), generalization capability (out-of-sample), and rep-
resentability (spatial–spectral discrimination). To overcome these
shortcomings, a novel linearized subspace analysis technique with
spatial–spectral manifold alignment is developed for a semisuper-
vised hyperspectral dimensionality reduction (HDR), called joint
and progressive subspace analysis (JPSA). The JPSA learns a
high-level, semantically meaningful, joint spatial–spectral feature
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representation from hyperspectral (HS) data by: 1) jointly learn-
ing latent subspaces and a linear classifier to find an effective
projection direction favorable for classification; 2) progressively
searching several intermediate states of subspaces to approach
an optimal mapping from the original space to a potential more
discriminative subspace; and 3) spatially and spectrally aligning
a manifold structure in each learned latent subspace in order
to preserve the same or similar topological property between
the compressed data and the original data. A simple but effec-
tive classifier, that is, nearest neighbor (NN), is explored as a
potential application for validating the algorithm performance
of different HDR approaches. Extensive experiments are con-
ducted to demonstrate the superiority and effectiveness of the
proposed JPSA on two widely used HS datasets: 1) Indian
Pines (92.98%) and 2) the University of Houston (86.09%) in
comparison with previous state-of-the-art HDR methods. The
demo of this basic work (i.e., ECCV2018) is openly available at
https://github.com/danfenghong/ECCV2018_J-Play.

Index Terms—Dimensionality reduction (DR), hyperspectral
(HS) data, joint learning, manifold alignment, progressive learn-
ing, semisupervised, spatial–spectral, subspace learning (SL).

I. INTRODUCTION

HYPERSPECTRAL (HS) data are often characterized by
rich and diverse spectral information, which enables us

to locate or identify targets more easily. However, their high
dimensionality also raises some crucial issues that need to be
carefully considered, including information redundancy, com-
plex noise effects, the need for large storage capacities and
high-performance computing, and the curse of dimensional-
ity. A general way to address this problem is to compress the
original data to a low-dimensional and highly discriminative
subspace with the preservation of the topological structure. In
general, it is also referred to as dimensionality reduction (DR)
or subspace learning (SL).

Over the past decade, SL techniques have been widely
used in remote sensing data processing and analysis [2]–[11],
particularly hyperspectral DR (HDR) [12]. Li et al. [13] car-
ried out the HDR and classification by locally preserving
neighborhood relations. In [14], spectral-spatial noise estima-
tion can largely enhance the performance of DR, and the
proposed method not only can extract high-quality features
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but also can well deal with nonlinear problems in hyperspec-
tral (HS) image classification. Huang et al. [15] introduced
the sparseness property [16] into the to-be-estimated subspace
in order to better structure the low-dimensional embedding
space. Rasti et al. [17] extracted the HS features in an unsuper-
vised fashion using the orthogonal total Variation component
analysis (OTVCA), yielding a smooth spatial–spectral HSI
feature extraction. In [18], spatial–spectral manifold (SSM)
embedding was developed to compress the HS data into a
more robust and discriminative subspace. Wang et al. [19]
proposed selecting representative features hierarchically by the
means of random projection in an end-to-end neural network,
which has shown the effectiveness in the large-scale data. Very
recently, Huang et al. [20] followed the trail of drawbacks
of spatial–spectral techniques, and fixed them by designing
a new spatial–spectral-combined distance to select spatial–
spectral neighbors of each HS pixel more effectively. In the
combined distance, the pixel-to-pixel distance measurement
between two spectral signatures is converted to the weighted
summation distance between spatially adjacent spaces of the
two target pixels.

Despite the good performance of these methods in HDR,
yet most of them only adhere to either the unsupervised or
the supervised strategy, and fail to jointly consider the labeled
and unlabeled information in the process of HDR. Some
recent works for semisupervised HDR have been proposed
by the attempt to preserve the potentially global data structure
that lies in the entire high-dimensional space. For example,
Liao et al. [21] simultaneously exploited labeled and unla-
beled data to extract the feature representation from the HSI
in a semisupervised fashion, called semisupervised local dis-
criminant analysis (SELD). Different from [21] that utilizes
the similarity measurement to construct the graph structure,
in [22], the performance of local discriminant analysis (LDA)
is enhanced with the joint use of the labels and “soft-labels”
predicted by label propagation, yielding a soft-label LDA
(SLLDA) for semisupervised HDR. A similar semisupervised
strategy was presented in [23] to reduce the spectral dimen-
sion of HSI by embedding pseudolabels obtained using the
pretrained classifier into local Fisher discriminant analysis
(LFDA), called semisupervised LFDA (SSLFDA). The use
of “soft-labels” or “pseudolabels” is effective for the process
of low-dimensional embedding. Since more pixels consid-
ered can help us better capture the global manifold of the
data, even though these soft or pseudolabels could be noisy
and inaccurate. It should be noted that these techniques are
commonly applied as a disjunct feature learning step before
classification, whose limitation mainly lies in a weak connec-
tion between features by SL and label space (see the top panel
of Fig. 1). It is unknown which learned features can accurately
improve the classification. In [24], the features can adequately
be exploited by using the t-distributed stochastic neighbor
embedding and a multiscale scheme, and the proposed neural
network shows outstanding and reliable performance in HS
image classification.

A feasible solution to this problem can be generalized into
a joint learning framework [26] that simultaneously learns a
linearized subspace projection and a classifier, as illustrated in

Fig. 1. Motivation interpolation from separately learning subspaces and
training classifier [25], to jointly learning subspaces and classifier [26], to
joint and progressive learning multicoupled subspaces and classifier again [1].
The green bottom line from left to right indicates a gradual improvement in
feature discriminative ability. Ideally, the features (subspaces) learned by our
model are expected to have a higher discrimination ability, which benefits
from the proposed joint and progressive learning strategy.

the middle panel of Fig. 1. Inspired by it, a large amount
of work has been proposed for various applications, such
as cross-modality learning and retrieval [27], and heteroge-
neous joint features learning [28]. Although these works have
tried to make a connection between the learned subspaces
and label information using regression techniques (e.g., lin-
ear regression) to adaptively find a latent subspace in favor of
classification, they fail to find an optimal subspace. It is that
the representative ability only using a single linear projection
remains limited for the complex transformation from the orig-
inal data space to the potential optimal subspace. Similar to
the joint learning model, deep neural networks (DNNs) have
attracted increasing attention due to its powerful ability in
HS feature extraction. Chen et al. [29] designed a stacked
autoencoder (SAE) for feature extraction and classification of
HSI. Kemker and Kanan [30] investigated the performance
of self-taught feature learning [e.g., convolutional autoencoder
(CAE)] by jointly considering the spatial–spectral information
embedding with the application to HSI classification.

A. Motivation and Objectives

To sum up, these aforementioned methods can be approx-
imately categorized into linear HDR and nonlinear HDR
techniques. Consequently, the strengths and weaknesses of the
two methods can be summarized as follows.

1) Theoretically, nonlinear HDR strategies, such as man-
ifold learning [31] and DNN-based DR methods (e.g.,
SAE and CAE) [32], can overfit the data perfectly, owing
to their powerful model learning capability. However,
this type of method is relatively sensitive to complex
spectral variability inevitably caused by complex noise,
atmospheric effects, and various physical and chemical
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Fig. 2. Illustration of the proposed JPSA framework.

factors in HS imaging. Because the spectral variability
tends to be absorbed by the DNN-based methods [33],
the discriminative ability of the dimension-reduced fea-
ture gets possibly hurt.

2) In turn, the linearized SL methods, such as princi-
pal component analysis (PCA) [34], linearized manifold
learning (e.g., locality preserving projection (LPP) [35],
LDA [25], and LFDA [36]) can well address the above
drawbacks, yet they usually provide limited performance
due to the defects of the model itself, that is, the single
linearized model is lack of data representation ability.

The above tradeoff motivates us to develop a multilayered
linearized SL technique for HDR with more discriminative
and robust data representation and to preserve the structural
consistency between the compressed data and the original data.

B. Method Overview and Contributions

To effectively pursue high spectral discrimination and
preservation of the spatial–spectral topological structure in
compressing the HS data, we propose a novel joint and
progressive subspace analysis (JPSA) to linearly find an
optimal subspace for the low-dimensional data representation,
as shown in the bottom panel of Fig. 1. A promising idea
of simultaneous SL and classification is used to form the
basic skeleton of the proposed JPSA model. In the frame-
work, we learn a series of subspaces instead of a single
subspace, making the original data space being progressively
converted to a potentially optimal subspace through multicou-
pled intermediate transformations. To avoid trivial solutions,
a self-reconstruction (SR) strategy in the form of regulariza-
tion is applied in each latent subspace. Furthermore, we not
only consider structure consistency (topology) between the
compressed data and the original data in both spatial and

spectral domains but also align the two (spatial and spec-
tral) manifolds in each latent subspace, yielding the SSM
embedding in the process of HDR.

Beyond previous existing works, that is, [1] and [37], the
main contributions of our work can be summarized as follows.

1) We develop a novel semisupervised HDR framework
(JPSA) for better learning the spatial–spectral low-
dimensional embedding by modeling relations between
superpixels and pixels in a joint and progressive fashion.

2) With the SR term simultaneously performed on super-
pixels and pixels, the linearized JPSA shows its robust-
ness and effectiveness in handling the spectral variability
over many nonlinear HDR approaches, which will be
well demonstrated in the following experiment section.

3) SSMs are preserved in each latent subspace and are
further aligned for spatial–spectral structure consistency
between the compressed data and the original data,
where the manifold structure in spectral space is com-
puted by Gaussian kernel function, and the spatial
manifold structure is determined by superpixels, e.g.,
simple linear iterative clustering (SLIC) [38].

4) To avoid falling into bad local optimums, a pretraining
model, called autoreconstructing unsupervised learning
(AutoRULe), is proposed as an initialization of JPSA to
jointly initialize the branches of pixels and superpixels.

5) An iterative optimization algorithm based on the alter-
nating direction method of multipliers (ADMMs) is
designed to solve the newly proposed model.

II. JPSA: JOINT AND PROGRESSIVE SUBSPACE ANALYSIS

Fig. 2 illustrates the workflow of the proposed JPSA.
Intuitively, the JPSA is a two-stream multilayered regression
model involving the two input sources: 1) pixelwise and
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2) superpixelwise spectral signatures and the same output
(ground truth). In the learning process of the two-stream
model, the to-be-estimated parameters (projections) are shared
with a spatial–spectral alignment constraint in each latent sub-
space. Moreover, each learned subspace is expected to be
capable of projecting back to its former high-dimensional
product, which is measured by the reconstruction loss.

A. Review of Joint Regression

Before introducing our JPSA, we first briefly introduce the
basis of developing our method: a joint regression model [26],
in which SL and classification are simultaneously performed
to reduce the gap between the estimated subspace and labels.
This model has been proven to be effective in extracting
the discriminative low-dimensional representation [39]. Let
X = [x1, . . . , xk, . . . , xN] ∈ R

d0×N be an HS data matrix
with d0 bands by N pixels, and Y ∈ {0, 1}L×N be the one-
hot encoded class matrix corresponding to labels, whose kth
column is defined as yk = [yk1, . . . , ykt, . . . , ykL]T ∈ R

L×1,
we then have

min
P,�

1

2
‖Y− P�X‖2F +

α

2
‖P‖2F s.t. ��T = I (1)

where ‖•‖F represents a Frobenius norm, P ∈ R
L×dm (dm

denotes the dimension of the latent subspace) is regression
matrix to explicitly bridge the learnt latent subspace and
labels, and the projection � ∈ R

dm×d0 is usually called
as intermediate transformation and the corresponding sub-
space �X is called the latent subspace. It has been proven
in [40] that the feature is prone to be structurally learned and
represented in such a latent subspace.

Furthermore, by considering the graph structure measured
by an adjacency matrix W ∈ R

N×N as a regularizor [41], the
joint regression model in (1) can be extended to the following
improved version [37]:

min
P,�

1

2
‖Y− P�X‖2F +

α

2
‖P‖2F +

β

2
tr
(
�XLXT�T)

s.t. ��T = I (2)

where Dii = ∑
j Wij is defined as a degree matrix and the

Laplacian matrix L can be computed by L = D −W [42].
The third term of (2), that is, graph regularization, can pro-
vide additional prior knowledge by modeling relations between
samples, thereby improving the regression performance.

B. Problem Formulation

A single linear transformation is hardly capable of describ-
ing the complex mapping relationship between the data and
labels well, particularly for HS data suffering from a vari-
ety of spectral variabilities. On the other hand, although the
nonlinear techniques (e.g., manifold learning or DL) hold
a powerful representation ability for the HS data, yet they
are usually vulnerable to the attack of spectral variabil-
ity, inevitably degrading the quality of dimension-reduced
features. As a tradeoff, we propose to progressively learn mul-
ticoupled linear projections on the basis of the joint regression
framework. Thus, the resulting JPSA with necessary priors

can be formulated as the following constrained optimization
problem:

min
P,{�l}ml=1

1

2
ϒ
({�l}ml=1

)+ α

2
E
(
P, {�l}ml=1

)+ β

2
�
({�l}ml=1

)

+ γ

2
�(P)

s.t. Xl � 0, ‖xlk‖2 � 1, Xsp
l � 0,

∥∥xsp
lk

∥∥
2 � 1 (3)

where {�l}ml=1 ∈ R
dl×dl−1 are defined as a set of intermediate

transformations, m is the number of subspace projections, and
{dl}ml=1 stand for as the dimensions of those latent subspaces.
Moreover, Xl denotes the lth layer subspace features, where X0
represents original data (X), while Xsp

l denotes the superpixel
representation of Xl. To effectively solve the two-stream joint
regression model in (3), several key terms are featured in the
following.

1) SR Loss Term ϒ({�l}ml=1): Without any constraints
or prior, jointly estimating multiple successive variables in
JPSA can hardly be implemented, especially when the num-
ber of estimated variables gradually increases. This can be
well explained by gradient missing between the two neigh-
boring variables estimated in the process of optimization. In
other words, the variations between two neighboring variables
approach to a tiny value or even 0. When the number of esti-
mated projections accumulates to a certain extent, most of
the valid values could only gather a few projections, making
other projections being close to the identity matrix and become
meaningless. To address the above-mentioned issue, a kind of
autoencoder-like scheme is adopted to reduce the information
loss in the process of propagation between two neighboring
spaces. The benefits of the scheme are two-fold. On the one
hand, this term can prevent overfitting of the data to a great
extent, especially avoiding all kinds of spectral variabilities
from being considered, since we found that those variabilities
are difficult to be linearly reconstructed. On the other hand, it
can also establish an effective link between the original space
and the subspace, enabling the learned subspace to project
back to the former one as much as possible. Such a strategy
can be formulated by simultaneously considering pixels and
superpixels of HSI

ϒ
({�l}ml=1

) =
m∑

l=1

∥∥[Xl−1 Xsp
l−1

]−�T
l �l

[
Xl−1 Xsp

l−1

]∥∥2
F
.

(4)

Note that we propose to utilize (4) in each latent subspace to
maximize the advantages of this term.

2) Prediction Loss Term E(P, {�l}ml=1): This term is to min-
imize the empirical risk between the original data and the
label matrix through a set of subspace projections and a linear
regression coefficient, which can be written as

E
(
P, {�l}ml=1

) = ∥∥[Y Y]− P�m · · ·�l · · ·�1
[
X Xsp]∥∥2

F.

(5)

Theoretically, with the increase of the number of estimated
subspaces, the variations between neighboring subspaces are
gradually narrowed down to a very small range. In this case,
such small variations can be approximately represented via a
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linear transformation. This allows us to find a good solution
in a simple way, especially for the nonconvex model.

3) Alignment-Based SSM Regularization �({�l}ml=1): As
introduced in [43], the manifold structure is an important prior
for compressing high-dimensional data, which can effectively
capture the intrinsic structure between samples. For this rea-
son, we not only embed the locally spectral manifold structure
computed between the pixels but also model the nonlocal-like
spatial manifolds constructed by superpixels. Therefore, the
two graph structures can be formulated as

Wp
i,j =

{
exp
−‖Xi−Xj‖2

2
2σ 2 , if Xj ∈ φk(Xi);

0, otherwise,
(6)

Wsp
i,j =

⎧
⎨

⎩
exp
−
∥
∥
∥Xsp

i −Xsp
j

∥
∥
∥

2

2
2σ 2 , if Xsp

j ∈ φk
(
Xsp

i

)
;

0, otherwise
(7)

where φk(Xi) and φk(X
sp
i ) are the k neighbors of the pixel Xi

and the superpixel Xsp
i , respectively.

In addition, we also align the SSMs in each learned
subspace to enhance the model’s ability to distinguish and
generalize, further yielding the structure consistency of the
two-stream joint regression model. The alignment operator can
be expressed by the form of a graph

Wa
i,j =

{
1, if Xi ∈ φ

(
Xsp

j

)
;

0, otherwise
(8)

where φ(Xsp
j ) denotes the pixel set in the jth superpixel.

By collecting the above subgraphs, we have the final graph
structure (Wf ) by considering spatial and spectral neighbors
of each pixel as well as their alignment information

Wf =
[

Wp Wa

Wa Wsp

]
. (9)

Thus, the resulting manifold alignment-based spatial–spectral
regularization can be written as

�
({�l}ml=1

) =
m∑

l=1

tr
(
�l
[
Xl−1 Xsp

l−1

]
Lf [Xl−1 Xsp

l−1

]T
�T

l

)

(10)

where Lf can be computed by Df −Wf . In this study, each
pixel’s spatial neighbors are other pixels in the same segment
obtained by SLIC, while its k spectral neighbors are selected
with the Euclidean measurement on a kernel-induced space.
Fig. 3 illustrates the spatial–spectral graph structure.

4) Regression Coefficient Regularization �(P): This regu-
larization term ensures a reliable solution and improves the
generalization ability of the model, which is

�(P) = ‖P‖2F. (11)

HS data are non-negative either in radiance or reflectance.
To inherit this physical nature, we expect to learn non-negative
features with respect to each learned low-dimensional fea-
ture (e.g., {Xl}ml=1 � 0). The hard orthogonal constraint with
respect to the variable � could lead to nonconvergence of the
model or reach a bad solution. To provide a proper search
space of the solution, we, therefore, relax the constraint by

Fig. 3. Showcase to illustrate the graph structure used in the alignment-based
SSM regularization term.

imposing a sample-based norm constraint [44] on each latent
subspace as ‖xlk‖2 � 1 ∀k = 1, . . . , N and l = 1, . . . , m.
Note that these constraints are similarly applicable to the
superpixel-guided optimization problem.

C. Model Learning

Considering the fact that we need to successively estimate
multicoupled variables in JPSA, which obviously results in the
increasing complexity and the nonconvexity of our model, a
group of good initial approximations of subspace projections
{�l}ml=1 would greatly reduce training time and help finding a
better local optimal solution. This is a common tactic that has
been widely used to address this issue [45]. Inspired by this
trick, we pretrain our model by simplifying (3) as

min
�l

1

2
ϒ(�l)+ η

2
�(�l) s.t. X̃l � 0,

∥
∥x̃lk

∥
∥

2 � 1 (12)

where [Xl Xsp
l ] is collectively rewritten as X̃l for convenience

of writing and model optimization.
We call (12) as AutoRULe. Given the outputs of AutoRULe

to the problem of (3) as the initialization, {�l}ml=1 and P tend
to obtain the better estimations. In detail, Algorithm 1 sum-
marizes the global algorithm of JPSA, where AutoRULe is
initialized by LPP.

We propose to use the ADMM-based optimization method
to solve the pretraining method (AutoRULe), hence an equiv-
alent form of (12) is considered by introducing multiple
auxiliary variables H, G, Q, and S to replace X̃l, �l, X̃+l ,
and X̃∼l , respectively, where ()+ denotes an operator for con-
verting each component of the matrix to its absolute value
and ()∼ is a proximal operator that solves the constraint of∥
∥x̃lk

∥
∥

2 � 1 [46]. Therefore, the resulting expression is

min
�l,H,G,Q,S

1

2

∥
∥∥X̃l−1 −GTH

∥
∥∥

2

F
+ η

2
tr
(
�lX̃l−1Lf X̃T

l−1�
T
l

)

s.t. X̃l = �lX̃l−1, Q � 0, ‖sk‖2 � 1.

X̃l = H = Q = S, �l = G. (13)

The constrained optimization problem in (13) can be con-
verted to its augmented Lagrangian version by introducing the
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Algorithm 1: JPSA: Global Algorithm

Input: Y, X̃, Lf , and parameters α, β, γ and maxIter.
Output: {�l}ml=1.

1 Initialization Step:
2 Greedily initialize �l corresponding to each latent subspace:
3 for l = 1:m do
4 �0

l ← LPP(X̃l−1)

5 �l ← AutoRULe(X̃l−1, �0
l , Lf )

6 X̃l ← �lX̃l−1
7 end
8 Fine-tuning Step:
9 t = 0, ζ = 1e− 4;

10 while t > maxIter do
11 Update P by solving a subproblem in Eq. (16).
12 for i = 1:m do
13 Update �t+1

l by solving a subproblem in Eq. (18).
14 end
15 Compute the objective function value Objt+1 and check the

convergence condition:

16 if |Objt+1−Objt

Objt | < ζ then
17 Stop iteration;
18 else
19 t← t + 1;
20 end
21 end

Lagrange multipliers {�n}4n=1 and the penalty parameter μ,
where the non-negativity and norm constraint can be relaxed
by defining two kinds of proximal projection operators l+R (•)
and l∼R (•). More specifically, l+R (•) can be expressed as

max(•) =
{•, • 	 0

0, • � 0
(14)

while l∼R (•k) is a sample-based normalization operator

proxf (•k) =
{ •k‖•k‖2 , ‖•k‖2 	 1
•k, ‖•k‖2 � 1

(15)

where •k is the kth column of matrix • in our case.
Algorithm 2 lists the optimization procedures of AutoRULe,

and the solution to each subproblem is detailed in the
Appendix.

After running the AutoRULe, its outputs can be fed into
JPSA for the model initialization, and then the two sub-
problems (solve P and {�l}ml=1) in (3) can be optimized
alternatively as follows.

Optimization With Respect to P Subproblem: Typically, this
is a Tikhonov-regularized least square regression problem,
which can be formulated as

min
P

α

2

∥∥∥Ỹ− P�m · · ·�l · · ·�1X̃
∥∥∥

2

F
+ γ

2
‖P‖2F (16)

where the variable Ỹ is a collection of [Y Y] similar to the
variable X̃. Intuitively, the analytical solution of (16) can be
directly derived as

P←
(
αỸVT

)(
αVVT + γ I

)−1
(17)

where V is assigned to �m · · ·�l · · ·�1X̃ ∀l = 1, . . . , m.

Algorithm 2: AutoRULe: Initialization Step for JPSA

Input: X̃l−1,�0
l , Lf , and parameters η and maxIter.

Output: �l.
1 Initialization:

H0 = �0
l X̃l−1, G0 = 0, Q0 = P0 = 0, �0

2 = 0, �0
1 = �0

3 =
�0

4 = 0, μ0 = 1e− 3, μmax = 1e6, ρ = 2, ε = 1e− 6, t = 0.

2 while t > maxIter do
3 Fix Ht, Gt, Qt, Pt to update �t+1

l by Eq. (26).

4 Fix �t+1
l , Gt, Qt, Pt to update Ht+1 by Eq. (28).

5 Fix Ht+1, �t+1
l , Qt, Pt to update Gt+1 by Eq. (30).

6 Fix Ht+1, Gt+1, �t+1
l , Pt to update Qt+1 by Eq. (32).

7 Fix Ht+1, Gt+1, �t+1
l , Qt+1 to update Pt+1 by Eq. (34).

8 Update Lagrange multipliers using Eq. (35).
9 Update penalty parameter using μt+1 = min(ρμt, μmax).

10 Check the convergence conditions:

11 if
∥
∥
∥Ht+1 −�t+1

l X̃l−1

∥
∥
∥

F
< ε and

∥
∥
∥Gt+1 −�t+1

l

∥
∥
∥

F
< ε

and
∥
∥∥Qt+1 −�t+1

l X̃l−1

∥
∥∥

F
< ε and

∥
∥
∥Pt+1 −�t+1

l X̃l−1

∥
∥
∥

F
< ε then

12 Stop iteration;
13 else
14 t← t + 1;
15 end
16 end

Optimization With Respect to {�l}m
l=1: When other variables

are fixed, the variable �l can be individually solved, hence
the optimization problem for any �l can be written in the
following general form:

min
�l

1

2

∥∥∥X̃l−1 −�T
l �lX̃l−1

∥∥∥
2

F
+ α

2

∥∥∥Ỹ− P�m · · ·�1X̃
∥∥∥

2

F

+ β

2
tr
(
�lX̃l−1Lf X̃T

l−1�
T
l

)

s.t. X̃l = �lX̃l−1, X̃l � 0,
∥∥x̃lk

∥∥
2 � 1. (18)

Likewise, the problem of (18) can basically be solved by fol-
lowing the framework of Algorithm 2. (More details regarding
the variable optimization can be found in the Appendix.) The
only difference lies in the optimization of the subproblem with
respect to H. Herein, we supplement the optimization problem
of the variable H as follows:

min
H

1

2

∥∥∥X̃l−1 −GTH
∥∥∥

2

F
+ α

2

∥∥∥Ỹ− PlH
∥∥∥

2

F

+ �T
1

(
H−�lX̃l−1

)
+ μ

2

∥∥
∥H−�lX̃l−1

∥∥
∥

2

F
s.t. Pl = Pl−1�l+1, P0 = P (19)

whose analytical solution is given by

H← (
αPT

l Pl +GGT + μI
)−1

×
(
αPT

l Ỹ+GX̃l−1 + μ�lX̃l−1 −�1

)
. (20)

Finally, the aforementioned optimization procedures are
repeated until a stopping criterion is satisfied.

D. Convergence Analysis

The iterative alternating strategy used in Algorithm 1 is
nothing but a block coordinate descent, whose convergence
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(a)

(b)

Fig. 4. Convergence analysis of J-Play and JPSA with different m values of 2, 4, 6, 8 (left to right) was experimentally performed on the two HS datasets.
(a) Indian Pines dataset. (b) University of Houston dataset.

is theoretically guaranteed as long as each subproblem of
(12) is exactly minimized [47]. Each subproblem optimized in
Algorithm 2 is strongly convex, and thus the ADMM-based
optimization strategy can converge to a unique minimum when
the parameters are updated in finite steps [48], [49]. Moreover,
we experimentally illustrate to clarify the convergences of
J-Play and the proposed JPSA on the two HS datasets, where
the relative errors of the objective function value are recorded
in each iteration (see Fig. 4).

III. EXPERIMENTS

A. Description of the Data

The experiments are performed on two different standard
HS datasets, corresponding to different contexts, different
sensors, and different resolutions.

1) Indian Pines AVIRIS Image: The first HS cube was
acquired by the AVIRIS sensor with 16 classes of vegetation.
It consists of 145× 145 with the spectral 220 bands covering
the wavelength range from 400 to 2500 nm in a 10-nm spec-
tral resolution. A set of widely used training and test sets [1]
with the specific categories is listed in Table I. A false-color
image of the data is given in Fig. 5.

2) University of Houston Image: The second HSI was pro-
vided for the 2013 IEEE GRSS data fusion contest. It was
acquired by an ITRES-CASI-1500 sensor over the campus
of the University of Houston, Houston, USA, with a size of
349 × 1905 × 144 in the wavelength from 364 to 1046 nm.
The information regarding classes as well as training and test
samples can be also found in Table I. The first image of Fig. 6
shows a false color image of the study scene.

B. Experimental Setup and Preparation

We learn the subspaces for the different methods on the
training set and then the test set can be simply projected to

TABLE I
SCENE CATEGORIES, THE NUMBER OF TRAINING (TR), AND TEST (TE)
SAMPLES FOR EACH CLASS ON THE TWO DATASETS: INDIAN PINES AND

UNIVERSITY OF HOUSTON

the subspace where training and test samples can be further
classified by the nearest neighbor (NN). The reason for select-
ing the simple but effective classifier in our case is that the
NN classifier tends to avoid the confusing evaluation, as it
is unknown whether the performance improvement originates
from either the classifiers or the features themselves if more
advanced classifiers are used.

Moreover, the original spectral features (OSFs) without DR
and ten popular and advanced methods are compared with our
JPSA, including:

1) Unsupervised HDR: PCA [34], OTVCA [17];
2) Supervised HDR: LDA [25], LFDA [36], and J-Play [1];
3) Semisupervised HDR: SELD [21], SLLDA [22], and

SSLFDA [23];
4) DNN-Based HDR: SAE [29], CAE [30].
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Fig. 5. False color image, the distribution of training and test sets with category names, and classification maps of the different algorithms obtained using
the NN classifier on the Indian Pines dataset.

Fig. 6. False color image, the distribution of training and test sets with category names, and classification maps of the different algorithms obtained using
the NN classifier on the University of Houston dataset.

Furthermore, we maximize the performances of the different
algorithms by tuning their parameters, such as dimension (d),
regularization parameters (α, β, γ ), etc., using ten-fold cross-
validation on training data. Regarding the dimensions ({dl})
which are common parameters for all algorithms, they can be
selected ranging from 10 to 50 at an interval of 10. For the
number of NNs (k) and the standard deviation of the Gaussian
kernel function (σ ) in those algorithms that need to construct
the graph structure (e.g., LFDA, SELD, SSLFDA, J-Play, and
JPSA), we select them in the range of {10, 20, . . . , 50} and

{10−2, 10−1, 100, 101, 102}, respectively, and three regulariza-
tion parameters (α, β, γ ) in J-Play or JPSA are all chosen
from {10−2, 10−1, 100, 101, 102}. For the OTVCA algorithm,
we directly used the parameter setting suggested in [17]: that
is, d is equal to the number of classes, and λ can be automat-
ically determined by 1% of the maximum intensity range of
the datasets.

We adopt three criteria to quantitatively assess the algorithm
performance, including overall accuracy (OA), average accu-
racy (AA), and Kappa Coefficient (κ). They can be formulated
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TABLE II
QUANTITATIVE PERFORMANCE COMPARISONS OF DIFFERENT ALGORITHMS ON THE INDIAN PINES DATASET WITH THE OPTIMAL PARAMETER

COMBINATION IN TERMS OF OA, AA, AND κ , AS WELL AS THE ACCURACY FOR EACH CLASS. THE BEST ONE IS SHOWN IN BOLD. JPLAY4 MEANS A

FOUR-LAYERED J-PLAY MODEL (m = 4), WHILE JPSA4 DENOTES A FOUR-LAYERED JPSA MODEL (m = 4)

by using the following equations:

OA = Nc

Na
(21)

AA = 1

C

C∑

i=1

Ni
c

Ni
a

(22)

and

κ = OA− Pe

1− Pe
(23)

where Nc and Na denote the number of samples classified cor-
rectly and the number of total samples, respectively, while Ni

c
and Ni

a correspond to the Nc and Na of each class, respectively.
Pe in κ is defined as the hypothetical probability of chance
agreement [50], which can be computed by

Pe =
N1

r × N1
p + · · ·Ni

r × Ni
p + · · · + NC

r × NC
p

Na × Na
(24)

where Ni
r and Ni

p denote the number of real samples for each
class and the number of predicted samples for each class,
respectively.

C. Results Analysis and Discussion

1) Indian Pines Dataset: Table II presents the classification
performances of the different methods with the optimal param-
eter setting tuned by cross-validation on the training set using
the NN classifier. Correspondingly, the classification maps are
given in Fig. 5 for visual assessment.

Overall, PCA provides similar performances with the base-
line (OSF), as the PCA more focuses on maximizing the

information but could fail to excavate the potential data struc-
ture that lies in reality. By smoothing the spatial structure of
HSI, OTVCA enables better identification of the materials than
OSF and PCA. For the supervised HDR methods, the classifi-
cation performances of classic LDA are even lower than those
previously mentioned, due to the limited amount of training
samples. Holding a more powerful intraclass homogeneity and
interclass separation, LFDA obtains more competitive results
by locally focusing on discriminative information, which is
obviously better than those of the baseline, PCA, and LDA
around 8%. However, the features learned by LFDA are
relatively difficult to be generalized, due to the small-size
labeled samples. Comparatively, SELD learns a robust low-
dimensional feature representation with a higher generalization
ability, since unlabeled samples are involved in the process of
model training. In SELD, the unlabeled information is embed-
ded by computing the similarities between samples, which is
more effective than that using the pseudolabels (e.g., SLLDA
and SSLFDA) to some extent. However, these semisupervised
methods are still bad at handling noisy data. A direct proof can
be shown in Fig. 5 that there exist obvious salt-and-pepper-like
noises in classification maps of SELD, SLLDA, and SSLFDA.
Likewise, although the SAE holds a strong nonlinear learning
ability in data representation, its performance is still limited
by complex spectral variability and pixelwise feature embed-
ding. Thanks to the spatial information modeling, CAE locally
extracts the spatial information and thus obtains a relatively
smooth classification result. With the benefit of a multilinear
regression system, the J-Play algorithm performs much better
(at least 7% OAs) than DNN-based nonlinear HDR (SAE and
CAE). Such a strategy makes the learned features more robust
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TABLE III
QUANTITATIVE PERFORMANCE COMPARISONS OF DIFFERENT ALGORITHMS ON THE UNIVERSITY OF HOUSTON DATASET WITH THE OPTIMAL

PARAMETER COMBINATION IN TERMS OF OA, AA, AND κ , AS WELL AS THE ACCURACY FOR EACH CLASS. THE BEST ONE IS SHOWN IN BOLD.
JPLAY3 MEANS A THREE-LAYERED J-PLAY MODEL (m = 3), WHILE JPSA3 DENOTES A THREE-LAYERED JPSA MODEL (m = 3)

against various spectral deformation and degradation, in spite
of without accounting for the spatial information.

The performances of the proposed JPSA are superior to the
other methods, which indicates that JPSA can learn a more
discriminative and robust spectral embedding. The alignment-
based SSM embedding enables us to identify the materials at
a more accurate level on a small-scale training set. As shown
in Fig. 5, the classification map obtained by JPSA is smoother
than others, demonstrating that our method is capable of effec-
tively aggregating the spatially contextual information in the
process of HDR by means of superpixels. It is worth noting
that the JPSA not only outperforms others from the whole per-
spective but also obtains highly competitive results for each
class, particularly for Corn, Soybean-Notill, Soybean-Mintill,
Soybean-Clean, and Building-Grass-Trees that have a dramatic
improvement of about 10% in classification accuracy.

2) University of Houston Dataset: Fig. 6 shows a visual
comparison among the different algorithms, and the specific
classification accuracies for various compared methods, which
were optimally parameterized by cross-validation as listed in
Table III.

Generally, there is a basically consistent trend in classi-
fication performance between OSF and PCA: around 72%
OA as a baseline. For another unsupervised HDR method,
OTVCA approximately yields a 2% improvement on the basis
of OSF and PCA. Owing to the use of total variation opera-
tor in OTVCA (see the smooth classification map in Fig. 6),
it shares similar performances with discriminant analysis-
based approaches, such as LDA and LFDA. This reason why
the unsupervised OTVCA is comparable to the supervised
HDR methods could be, to some extent, two-fold. On the
one hand, the local smoothing strategy is a good fit for HS
feature extraction and HDR tasks; on the other hand, the

small-size training set hinders the supervised LDA and LFDA
finding a generalized or transferable discriminative subspace.
Nevertheless, LFDA is capable of steadily performing better
than OTVCA owing to the consideration of local manifold
structure. This might be seen as indirect evidence to show
the effectiveness of the manifold embedding in HDR. More
intuitively, the performance of semisupervised methods is
superior to that of those only considering the labeled samples,
where the SSLFDA achieves the best classification results.
This demonstrates the effectiveness of embedding unlabeled
samples in improving the generalization ability of the learned
model. Although these semisupervised methods show the dis-
criminative power between different classes, yet there is still
room for improvement in spatial information modeling and
model learning ability. As a member of deep learning, SAE
is capable of better reducing the gap between the original
data and compressed data, thus yielding better classification
performance. Another DL-based technique for HDR is CAE,
which can extract a low-dimensional spectral representation
with the attention of spatial contextual information. As a result,
CAE performs better than the pixelwise SAE with an about
1% slight increase of OA. Due to the lack of modeling spec-
tral variability, SAE or CAE fails to transfer the trained model
to out-of-sample (i.e., test set) effectively, even though there
is a powerful learning ability in SAE and CAE. Unlike them,
J-Play adopts a multilinear modeling strategy with the SE con-
straint in order to remove the spectral variabilities effectively
and maintain the learned features as discriminative as possi-
ble, which results in basically the same results with CAE and
slightly higher than SAE.

JPSA outperforms other HDR algorithms significantly,
which indicates that the proposed method is capable of
effectively approximating an optimal mapping from the
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TABLE IV
CLASSIFICATION PERFORMANCE (OA, AA, AND κ ) WITH THE DIFFERENT

NUMBER OF LEARNT PROJECTIONS (m) ON THE TWO DATASETS

original space to the label space by fully considering a tradeoff
between spectral discrimination and subspace robustness, thus
providing a robust and discriminative low-dimensional fea-
ture representation. Further, the embedding of spatial–spectral
information enables semantically meaningful object-based HS
classification results. Notably, JPSA is able to more effectively
eliminate the effects of shadow covered by clouds in image
acquisition, compared to other methods as shown in Fig. 6.
Accordingly, JPSA also shows the superiority in identifying
different materials, as quantified in Table III, especially for
those challenging classes, such as Commercial, Highway, and
Parking Lot1.

D. Parameter Sensitivity Analysis of JPSA

The quality of low-dimensional feature embedding, to some
extent, depends on the parameter selection, it is, therefore,
indispensable to investigate the sensitivity of parameter setting
in JPSA. Five main parameters involved in the JPSA, which
need to be emphatically analyzed and discussed, would result
in a significant effect on dimension-reduced features and even
final classification results. They include three regularization
parameters (α, β, and γ ) in (3), subspace dimension (d), and
the number of layers (m).

Significantly, we start to analyze the effects of different m
for JPSA. With the different number of learnt projections,
we successively specify the proposed model as JPSA1, . . . ,
JPSAl, . . . , JPSAm ∀l = 1, . . . , m. To investigate the trend
of OAs, m is uniformly set up to 8 on the two datasets. We
experimentally set the number of clusters in SLIC as 10% of
the total samples. As listed in Table IV, with the increase of
m, the performances of JPSA with SSM embedding steadily
increase to the best with around 3 layers for both datasets
and then gradually decrease with a slight perturbation. This
might be explained by overfitting and error accumulation of
the model in the multilayered regression process, since our
model is only trained on a limited number of samples. Note
that more results about the JPlay in terms of the parameter m
can be found in [1], and the code is openly available from the
link: https://github.com/danfenghong/ECCV2018_J-Play.

Apart from the parameter m, the regularization parameters
and subspace dimension also play a crucial role in improv-
ing the model’s performance. More specifically, the resulting
quantitative analysis of the two datasets is given in Fig. 7,
where the parameter combinations of (α = 1, β = 0.1, γ =

0.1, d = 20) and (α = 1, β = 0.1, γ = 0.1, d = 30)

achieve the best classification performance on the test sets
for the first and second datasets, respectively. The resulting
parameter selection for the two sets of datasets is basically
consistent with that determined by ten-fold cross-validation on
the training set (see Section III-B for more details). The cross-
validation is, therefore, an effective strategy to automatically
determine the model’s parameters so that other researchers are
able to produce the results for their own tasks. More specifi-
cally, the optimal parameters can be determined by testing all
of the parameter combinations. Furthermore, we only show the
2-D figures (see Fig. 7) for the convenience of visualization,
where other variables are set to be the optimal ones except for
the current investigated variable.

Moreover, we can observe from Fig. 7 that with the increase
of d, the JPSA’s performance increases to the optimal value
with the dimension of 20 for the Indian Pines dataset and 30
for the University of Houston dataset, respectively, then starts
to reach a relatively stable state, and finally decreases with a
slight perturbation when the subspace dimension is approach-
ing to that of original spectral signature. For the variable α that
mainly controls the prediction errors between the input data
and labels, it is a very important factor that needs to be care-
fully considered in the model learning, since the setting of α is
sensitive to the feature embedding and even to the final classi-
fication results. Similarly, the terms of SR and SSM alignment
also have great effects on the classification performance, which
indicates the importance of the two terms. What is more, the
subspace dimension is a noteworthy factor as well, although
the OAs with different dimensions are relatively stable when
the variable d reaches a larger value (e.g., 10).

E. Ablation Studies of JPSA

In addition, we analyze the performance gain of JPSA by
stepwise adding the different components, that is, SR term,
SSM alignment term, etc. Table V details the increasing
performance when different terms are fused. As it turns out
successively embedding each component into the JPSA would
lead to a progressive enhancement in feature representation
ability. This demonstrates the advancement and effectiveness
of the proposed JPSA model for HDR.

IV. CONCLUSION

In this article, we proposed a JPSA technique to learn an
optimal mapping for effective HS data compression along
the spectral dimension. JPSA is expected to find a dis-
criminative subspace where the samples can be semantically
(label information) and structurally (SSM or topology per-
severation and alignment) represented and thereby be better
classified. Oriented by assessing pixelwise HS classifica-
tion performances, we conduct extensive experiments using
JPSA in comparison with some previous state-of-the-art HDR
methods. The desirable results using JPSA demonstrate its
superiority and effectiveness, particularly in handling vari-
ous complex spectral variabilities compared to other nonlinear
DR techniques (e.g., DL-based methods). In the future, we
will further develop and apply the JPSA framework to the
multimodality learning.
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Fig. 7. Parameter sensitivity analysis of JPSA for three regularization parameters (α, β, and γ ) and the subspace dimension (d) on the two datasets.

TABLE V
ABLATION ANALYSIS OF JPSA WITH A PROGRESSIVE COMBINATION OF

DIFFERENT TERMS ON THE TWO DATASETS

APPENDIX

SOLUTION TO AUTORULE

The solution to problem (12) can be transferred to equiva-
lently solve the problem (13) with ADMM. Considering the
fact that the object function in (13) is not convex with respect
to all variables simultaneously, but it is a convex problem
regarding the separate variable when other variables are fixed,
therefore we successively minimize L μ (13) with respect to
�l, H, G, Q, S, {�n}4n=1 as follows.

�l Problem: The optimization problem for � is

min
�l

η

2
tr
(
�lX̃l−1Lf X̃T

l−1�
T
l

)
+ μ

2

∥∥∥H−�lX̃l−1

∥∥∥
2

F

+ �T
1

(
H−�lX̃l−1

)
+ μ

2
‖G−�l‖2F +�T

2 (G−�l)

+ μ

2

∥∥
∥Q−�lX̃l−1

∥∥
∥

2

F
+�T

3

(
Q−�lX̃l−1

)
+ l+R (Q)

+ μ

2

∥∥∥S−�lX̃l−1

∥∥∥
2

F
+�T

4

(
S−�lX̃l−1

)
+ l∼R (S)

(25)

which has a closed-form solution

�l ←
(

μHX̃T
l−1 + μG+ μQX̃T

l−1 + μPX̃T
l−1

+�1X̃T
l−1 +�2 +�3X̃T

l−1 +�4X̃T
l−1

)

×
(
η
(

X̃l−1Lf X̃T
l−1

)
+ 3μ

(
X̃l−1X̃T

l−1

)
+ μI

)−1
.

(26)

H Problem: The variable H can be estimated by solving the
following problem:

min
H

1

2

∥∥
∥X̃l−1 −GTH

∥∥
∥

2

F
+ μ

2

∥∥
∥H−�lX̃l−1

∥∥
∥

2

F

+ �T
1

(
H−�lX̃l−1

)
(27)

its analytical solution is given by

H← (
GGT + μI

)−1
(

GX̃l−1 + μ�lX̃l−1 −�1

)
. (28)

G Problem: The optimization problem can be written as

min
G

μ

2
‖G−�l‖2F +�T

2 (G−�l) (29)

which can be effectively solved as

G← (
HHT + μI

)−1
(

HX̃i + μ�l −�2

)
. (30)

Q Problem: The optimization problem of Q is

min
Q

μ

2

∥
∥∥Q−�lX̃l−1

∥
∥∥

2

F
+�T

3

(
Q−�lX̃l−1

)
+ l+R (Q). (31)

Here, the update rule for Q can be expressed as

Q← max
(
�lX̃l−1 −�3/μ, 0

)
. (32)

S Problem: The variable S is estimated by solving

min
S

μ

2

∥∥∥S−�lX̃l−1

∥∥∥
2

F
+�T

4

(
S−�lX̃l−1

)
+ l∼R (S) (33)

whose solution can be updated in each iteration by the vector-
based projection operator of (15)

S← proxf

(
�lX̃l−1 −�4/μ

)
. (34)

Lagrange Multipliers ({�i}4
i=1) Update: Before stepping

into the next iteration, the Lagrange multipliers are updated
by

�1 = �1 + μ
(

H−�iX̃l−1

)
, �2 = �2 + μ(G−�i)

�3 = �3 + μ
(

Q−�iX̃l−1

)
, �4 = �4 + μ

(
P−�iX̃l−1

)
.

(35)
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