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Abstract— Layover separation has been fundamental to many
synthetic aperture radar applications, such as building recon-
struction and biomass estimation. Retrieving the scattering profile
along the mixed dimension (elevation) is typically solved by
inversion of the synthetic aperture radar (SAR) imaging model,
a process known as SAR tomography. This article proposes a
nonlinear blind scatterer separation method to retrieve the phase
centers of the layovered scatterers, avoiding the computationally
expensive tomographic inversion. We demonstrate that conven-
tional linear separation methods, for example, principle compo-
nent analysis (PCA), can only partially separate the scatterers
under good conditions. These methods produce systematic phase
bias in the retrieved scatterers due to the nonorthogonality of the
scatterers’ steering vectors, especially when the intensities of the
sources are similar or the number of images is low. The proposed
method artificially increases the dimensionality of the data using
kernel PCA, hence mitigating the aforementioned limitations.
In the processing, the proposed method sequentially deflates the
covariance matrix using the estimate of the brightest scatterer
from kernel PCA. Simulations demonstrate the superior per-
formance of the proposed method over conventional PCA-based
methods in various respects. Experiments using TerraSAR-X data
show an improvement in height reconstruction accuracy by a
factor of one to three, depending on the used number of looks.

Index Terms— Blind source separation, kernel principle com-
ponent analysis (PCA), multibaseline InSAR, nonlinear kernel,
synthetic aperture radar (SAR) tomography.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) interferometry is by far
the most popular method for obtaining global digital ele-

vation models, as well as for assessing long-term millimeter-
level deformation over large areas of Earth’s surface. However,
its side-looking imaging geometry causes inevitable layover
in SAR images, especially in mountainous and urban areas.
As an example, Fig. 1 (left) shows the layover phenomenon
in a dense urban area. The buildings are layovered with the
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ground in front of them, appearing as if collapsed toward the
sensor. As a result, the backscattering from the building facade
and the ground is integrated into a single pixel during SAR
image formation. Separating the contributions from different
scatterers within one resolution cell has been the fundamental
to many applications, such as urban 3-D reconstruction, and
deformation monitoring in mountainous areas. It is typically
solved by explicit inversion of the SAR imaging model to
retrieve the scattering profile along the mixed dimension—
that is elevation. This process is known as SAR tomog-
raphy (TomoSAR) or differential TomoSAR (D-TomoSAR),
when the temporal motion of individual scatterers is also
considered.

To further describe the layover effect, Fig. 1 (right)
illustrates the SAR imaging model at a fixed azimuth position,
where γ (s) is the reflectivity profile along the elevation s.
TomoSAR builds a synthetic aperture along s by utilizing
multiple observations at different baselines. The multiple
observations are usually acquired in a repeat-pass manner for
spaceborne SAR sensors. The continuous form of the SAR
imaging model can be expressed as a Fourier transform at
discrete frequencies, as follows:

gn =
∫

s
γ (s)exp

(
− j

4π Bn

λr
s

)
ds (1)

where gn is the complex-valued observation acquired at base-
line Bn, λ and r are the radar wavelength and range to the
object, respectively. Equation (1) can be discretized as

g = Rγ + ε, (2)

where g ∈ C
N is the observation vector with N elements,

R ∈ CN×L is the so-called steering matrix, a discrete Fourier
transform depending on the baselines and the L discrete
elevation values, γ ∈ CL is the discretized reflectivity profile,
and ε ∈ CN is the noise vector usually assumed to be
independent and identically distributed (i.i.d.) complex circular
Gaussian random variables. Due to its layover separation
capability, TomoSAR has become the most competent multi-
baseline SAR interferometry (InSAR) techniques for vari-
ous 3-D reconstruction tasks. The technique has undergone
extensive development since the era of very high-resolution
spaceborne SAR sensors, for example, TerraSAR-X. Some
examples include improving the estimator by introducing
regularization [1], [2] using singular value decomposition,
including nonlinear deformation parameters [3]–[5], improv-
ing the detection of scatterers [6], [7], employing sparse
reconstruction techniques to achieve super-resolution in the
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Fig. 1. (Left) SAR intensity image showing the severe layover effect in a dense urban area (Berlin, Germany). The building “collapsed” toward the range
direction. (Right) SAR imaging model at a fixed azimuth position. TomoSAR retrieves the reflectivity profile γ (s) by building a synthetic aperture along the
direction s using multiple acquisitions (indicated by the black diamonds) at different baselines.

elevation reconstruction [8], [9], as well as fusing SAR imag-
ing geodesy [10] and TomoSAR inversion to obtain absolute
geodetic TomoSAR [11] point clouds. Comprehensive reviews
of TomoSAR algorithms can be found in [9], [12], and [13].

High precision SAR tomographic reconstruction, and those
requiring superresolution is more computationally expensive
than those traditional methods like persistent scatterer inter-
ferometry (PSI). However, future SAR data will eventually
converge to high resolution and wide coverage. For example,
the German X-band high-resolution wide swath SAR sensor
is planned to launch in 2022 [14]. At 0.25-m resolution,
it can cover 30 × 30 km2, which is ten times larger than the
coverage of the current staring spotlight mode of TerraSAR-X.
Therefore, there is an emerging demand for developing compu-
tationally economical TomoSAR algorithms. This article seeks
to answer this question by summarizing the state of the art,
enumerating the challenges, and proposing a new algorithm as
well as directions for future development.

A. Related Work

The higher computational cost of D-TomoSAR relative
to PSI is due to its consideration of multiple scatterers
instead of a single one, as in PSI. In D-TomoSAR, the
parameters of all scatterers, which are the elevations and
deformation parameters, must be searched simultaneously,
exponentially increasing the solution space. In a rough approx-
imation, the computational cost of D-TomoSAR is in the
order of O(LK ), assuming O(L) is the computational cost of
a single-scatterer periodogram in PSI, L is the discretization
level of the parameter space, and K is the number of scatterers.

Reducing the computational cost of multidimensional opti-
mization is often addressed by decomposing the optimization
into several subproblems whose optimization can be performed
independently. This has been reflected in TomoSAR methods
employing principle component analysis (PCA), such as the
CAESAR algorithm [15]. By separating the contributions

from different scatterers, the computational complexity can be
theoretically reduced to O(KL).

In a more general context, this type of decomposition
problem is regarded as blind source separation (BSS), which
separates the contribution of individual sources without know-
ing the mixing matrix. In simple linear mixing case x =
As + n, the goal of BSS is to retrieve both the mixing
matrix A and the source s, given only the observations x
subject to unknown measurement noise n. As an alternative
to model-based approaches, BSS methods have emerged as
data-driven approaches in data science, where the unknown
dynamics of the data are often hard to characterize. The
most well-known BSS algorithms are inarguably those exploit-
ing second order statistics of the data using PCA [16], [17],
and those exploiting higher order statistics using independent
component analysis (ICA) [18], [19]. Extension has been
created using kernel PCA (KPCA) [20] to tackle nonlinear
mixing models [21]–[23]. A great deal of the attention has
also been devoted to the joint diagonalization of a set of
matrices [19], [24], [25], because the underlying key features
of the mixed sources, for example, statistical independence,
can be expressed in terms of diagonal matrices [26]. For
example, PCA is essentially a diagonalization of the data
covariance matrix. The list of literature on BSS is extensive,
since the application of BSS covers vast research fields,
including hyperspectral imaging, medical imaging, radar,
electroencephalogram, audio processing, chemiometrics, and
so on.

Only a handful of studies has addressed BSS in InSAR.
Most of them deal with the problem of polarimetric target
decomposition using PCA and ICA [27], [28]. In the context
of multibaseline InSAR, Fornaro et al. [15] proposes using
PCA to decompose layovered scatterers. However, De Zan [29]
argues that it is difficult to assign a physical interpretation
to the eigenvectors of a data covariance matrix unless only a
single dominant scatterer is present. Nevertheless, a reasonable
result was demonstrated in [15]. We discovered that PCA can
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TABLE I

SYMBOLS AND NOTATIONS

only be applied in certain conditions, and proposed to employ
KPCA to mitigate the errors [30].

B. Contribution of This Article

The BSS is different in SAR tomography than in conven-
tional BSS applications, because the signal of our interest is
often only the phase, instead of the whole complex-value.
There has not been a systematic study of blindly separating
complex multibaseline InSAR signals. The contribution of this
article is as follows.

1) It provides a comprehensive review of the state of the
art and systematically demonstrates the limitations of
conventional methods in scatterers separation, mainly
the low orthogonality between the scatterers.

2) It proposes a nonlinear method to mitigate the phase
bias caused by the limitations of the state-of-the-art
algorithms. The proposed method employs KPCA to
iteratively retrieve the direction of the currently most
dominant scatterer. The contribution of the dominant
scatterer in each iteration is deflated from the covariance
matrix after estimating the intensity using the Rayleigh
quotient. The algorithm is fully nonparametric.

3) We also designed a robust workflow for real data
processing.

C. Notations

This article make use of a bold capital letter to denote a
matrix, bold lowercase letter for a vector, and italic letters
(both upper and lowercase) for a scalar. Frequently appearing
quantities and notations in this article are listed in Table I.

II. PROBLEM FORMULATION

A. Mathematical Model

1) Fully Coherent Model: Assuming the reflectivity profile
is coherent over the multiple acquisitions at different baselines
or acquisition time, the discrete SAR imaging model can be
expressed by (2). In an urban area, the profile γ usually con-
sists of a few scatterers. For a K-scatterer profile, the imaging

model can be simplified to

g = [
r1 r2 · · · rK

]
⎡
⎢⎢⎢⎣

γ1

γ2
...

γK

⎤
⎥⎥⎥⎦ + ε (3)

where rk is the column steering vector corresponding to the
kth scatterer, and γk is the complex-valued amplitude of the
kth scatterer.

The covariance matrix of the observations g is as follows:
Cgg = E

{
RγγH RH + εεH

}

= RE
{
γγH

}
RH + E

{
εεH

}
(4)

where (·)H is the conjugate transpose operator. The profile
γ can be assumed to be uncorrelated, which leads E{γγH }
to a diagonal matrix with the expected intensity of indi-
vidual scatterers. The observation covariance matrix can be
simplified to

Cgg =
K∑

k=1

σ 2
k rkrH

k + σ 2
ε I (5)

where σ 2
k is the expected intensity of the kth scatterer, and

σ 2
ε I accounts for the covariance matrix of the noise. Without

losing generality, we can assume the steering vectors rk are
all normalized.

Such a scattering model can resemble the layover of very
coherent DSs (or even PSs). However, the intensities of the
scatterers across different spatial samples are not assumed to
be deterministic. They are assumed to be Gaussian scatterers
so that (5) holds. This is quite common in urban areas, where
many adjacent scatterers on facades are very coherent over
different (temporal and spatial) baselines, yet their intensities
are stochastic among the adjacent samples. This model is
known in radar jargon as the Swerling II model [31].

2) Decorrelating DS Model: In a more general case,
the decorrelation of the reflectivity profile γ due to geometric
or temporal baselines should be considered. For a K-scatterers
case, the imaging model can be formulated as follows:

C =
K∑

k=1

�kCk�
H
k + σ 2

ε I (6)

where �k is a diagonal matrix constructed from rk , and Ck

is the positive real-valued decorrelation covariance matrix of
the kth scatterer. Under this type of model, K covariance
matrices with a total of N × N × K parameters are to
be estimated, instead of the only K intensities in the fully
coherent model. The fully coherent model is a special case
of the decorrelating model where Ck degenerates to all-ones
matrices. Solving the full covariance matrices as well as the
steering vectors in (6) using BSS remains at a challenge.
We only found solutions under certain specific conditions, for
example, constant coherence. Therefore, the decorrelating DS
model is not considered in this article.

The following content of this article will be based on the
fully coherent model expressed in (5). The goal of BSS is to
retrieve the steering vectors rk of the scatterers, as well as
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the intensities γk , from the observations g without performing
TomoSAR, that is inverting the SAR imaging model and
detecting the scatterer’s location. Depending on the applica-
tions, permutation, scaling, or a constant common phase offset
of the steering vectors may all lead to valid solutions. For
example, all three options are valid for 3-D reconstruction,
because only the relative position of the two scatterers matters
in practice. In the following content, we define that the steering
vectors are sorted in a descending order according to their
corresponding intensity, and the steering vectors have a unit
norm.

B. PCA in TomoSAR Scatterer Separation

The common idea of BSS algorithms is to exploit statistical
independency of the sources. By assuming statistical inde-
pendency, one can seek a diagonalization of the covariance
matrix of the observation. PCA [32] diagonalizes the data
by converting the data into a set of orthogonal basis, known
as principle components, whose variances are subsequently
maximized. Performing PCA on a data covariance matrix that
is semi-positive definite is equivalent to eigenvalue decompo-
sition (EVD). For our BSS problem, we denote the EVD of a
covariance matrix of the observations as follows:

Cgg = UDUH (7)

where U and D are the eigenvectors and the diagonal matrix,
respectively.

Although De Zan [29] mentions that it is difficult to assign
exact meaning to the eigenvectors, U can be approximated as
the steering vectors of the individual scatterers under a strong
orthogonality condition among all the scatterers, as will be
explained in Section II-C. Such approximation was employed
in the CAESAR algorithm [15]. However, if the multibaseline
SAR observation has a single dominant scatterer, the eigen-
vector corresponding to the largest eigenvalue of the data
covariance matrix is an unbiased estimate of the steering vector
of the scatterer. This has been mentioned in [29] and [33].
We show a short proof as follows.

Proof: For a single scatterer, its theoretical covariance
matrix is of the form Cgg = �1C1�

H
1 according to equa-

tion (6), where C1 is a real-valued decorrelation matrix, and
�1 is the diagonal matrix of the steering vector.

1) Cgg can be expressed as Cgg = �1C1�
H
1 =

�1(VDVH )�H
1 , where V and D are the eigenvectors

and the eigenvalues matrix of C1, respectively.
2) Let U = �1V. It can be shown that U = �1V is

orthogonal, hence UDUH is the EVD of Cgg.
3) Since C1 is always real symmetric and positive definite,

V and D are both real, according to [34].
4) Since V is real, the phase of each column of U is

identical to the diagonal of �1.

C. Limitations of PCA

1) Inseparability of Nonorthogonal Sources: The limitation
of PCA is twofold. On one hand, it assumes a linear combi-
nation of orthogonal basis. Hence, it is unable to fully recover
nonorthogonal basis. On the other hand, the directions of the

Fig. 2. (Left) Mixture of nonorthogonal and (Right) Orthogonal 2-D Gaus-
sians of identical standard deviation (set to 1). The solid arrows are the true
directions of the sources, and the dashed arrows are the directions extracted
by PCA. The length of the arrows is three times that of the (estimated)
standard deviation. (Left) Monorthogonal mixture of Gaussian sources cannot
be separated by linear PCA. (Right) Orthogonal mixture of Gaussian sources
with the same variance can also not be unmixed by linear PCA.

sources are indeterminable if the variance of the individual
sources are identical. These can be exemplified by a 2-D
Gaussian mixture shown in Fig. 2. The two subfigures are mix-
tures of nonorthogonal and orthogonal 2-D Gaussian sources
of unit variance, respectively. The solid arrows in the figure are
the true directions of the sources, and the dashed arrows are
the directions estimated by PCA. The length of the arrows is
three times that of the estimated or the true standard deviation.
The left subfigure demonstrates that a nonorthogonal mixture
of Gaussian sources cannot be separated by linear PCA.
Both the direction and the variance of the sources were not
correctly estimated. In contrast, the right subfigure shows that
orthogonal mixture of Gaussian sources of identical variance
can be separated by linear PCA, but subject to a random angle
offset.

Generalizing to our BSS problem in multibaseline InSAR,
the performance of PCA is poor when the orthogonality of
the two scatterers is low. We discovered the following three
common causes of low orthogonality in multibaseline InSAR:

1) a low number of images;
2) a short distance between the two scatterers, that is either

close to or shorter than the Rayleigh resolution; and
3) similar amplitude among the scatterers, which causes a

severe interference.
The degradation of performance is reflected in the phase
bias (as well as in the amplitude bias, which is not of our
primary interest) of the extracted steering vectors of individual
scatterers. An example of this phase bias of the estimated
steering vector is shown below.

2) Systematic Phase Bias: Fig. 3 demonstrates the phase
bias of the eigenvectors extracted by PCA from a simulation
of a two-scatterer mixture. The number of observations was
set to nine. The perpendicular baselines are equally distributed
from −200 to 200 m, with other parameters similar to those
of TerraSAR-X. This leads to a Rayleigh resolution of 27 m in
this simulation. The two scatterers are set to locate at 40 and
80 m. No noise was included in the simulation. The two
curves in each subplot in Fig. 3 correspond to an amplitude
ratio α of 1.2 or 2 between the two scatterers, respectively.
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Fig. 3. Phase bias of the first and second eigenvectors with respect to
the perpendicular baseline, at different amplitude ratios (α = 2, 1.2) of the
two scatterers. The larger amplitude ratio between the scatterers gives less
phase bias, hence better separability of the scatterers. The bias of the second
eigenvector is in general larger than the first one.

The phase bias appears as a periodic undulation with respect to
the perpendicular baseline. Consistent with the analysis shown
in Fig. 2 (right), the phase bias increases as the amplitude ratio
of the two scatterers approaches one. The bias of the second
eigenvector is larger than that of the first. In this example,
the maximum phase bias of the eigenvectors for α = 2 is
about 4◦ and 15◦. This corresponds to about 0.3 m and 1 m
bias, respectively, in elevation. Such precision is sufficient
for certain applications. However, as the amplitude ratio and
SNR vary, large systematic phase bias can be expected from
conventional PCA-based methods.

III. NONLINEAR BLIND SCATTERER SEPARATION

Based on the discussion in Section II-C, the performance
of PCA degrades as the orthogonality of the two scatterers
reduces. As the amplitude ratio of the scatterers in the data
cannot be altered, increasing the dimensionality of the data is
the fundamental strategy to improve the orthogonality in our
proposed algorithm. As it is usually infeasible to increase the
number of images, the proposed method artificially increases
the dimension of the data by projecting them into a higher
dimensional space through nonlinear transformation. The BSS
is then performed in the transformed higher dimensional
space. The proposed algorithm employs the kernel trick [35]
to perform the BSS in a Hilbert space without explicitly
evaluating in the higher dimensional space. This can be easily
realized using KPCA.

The proposed algorithm performs in an iterative manner.
At each iteration, it extracts and demodulates the dominant
scattering contribution from the data covariance matrix, until
no significant scattering is left or the predefined maximum
number of scatterers is reached. The flowchart of the proposed
algorithm is shown in Fig. 4. The algorithm is explained in
detail in the following sections.

A. Dominant Scatterer Extracting via Kernel PCA

We will denote G ∈ C
N×M as the matrix of M ergodic

samples of the multibaseline observation g. The scatterers of
each sample are assumed to be stationary random variables,
that is identical phase centers of the scatterers. In real data,

Fig. 4. Flowchart of the proposed nonlinear blind scatterer separation
algorithm.

we should imagine pixels with similar layover configurations,
for example, a row of pixels on the same floor of a facade
which layovers with flat ground. As the discussion of the
sample selection is out of the scope of this article, we assume
the aforementioned condition is met in this article. This
allows us to make use of the second-order statistics, i.e., the
covariance matrix, of the data. Mathematically, the singular
vectors of G are identical to the eigenvectors of the sample
covariance matrix Ĉ = M−1GGH . In the following derivation,
we will denote C as the input data matrix of BSS, instead of G.

PCA performs a linear separation in the original data
space, i.e., in C. As described above, KPCA is a nonlinear
generalization of PCA. The nonlinear separation is achieved
through a linear separation on a nonlinearly transformation 	
of the data [20], [22], which can be expressed as follows:

	 : C
N → F, c → 	(c) (8)

where F is the transformed vector space which may have arbi-
trary dimension, and c denotes the columns of C. Let us denote
the transformed data as �c = [	(c1), 	(c2), . . . ,	(cN )]. The
KPCA of C basically finds the EVD of the covariance matrix
in the transformed space, which is

C		 = �c�
H
c = U		D		UH

		. (9)

As the nonlinear transformation can have infinite dimension,
EVD is never explicitly evaluated: they are indirectly evaluated
through the kernel trick. It assumes that a Hilbert space of F
can be represented by a certain kernel function of the input
data space, that is

κ
(
ci , c j

) = 	(ci)
H 	

(
c j

)
(10)

where κ(·) is a kernel function, and c j refers to the jth sample
(column) of C. For convenience, we define the kernel matrix
K ∈ C

N×N of the transformed data as

K = �H
c �c. (11)
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Hence, each element of the kernel matrix can be easily
found via (10). The EVD of the kernel matrix is immediately
available as follows.

KV = VS (12)

where V is the eigenvectors, and S is the matrix of eigenvalues.
Multiplying both sides of (12) by �c gives

�c�
H
c (�cV) = (�cV)S (13)

which implies that �cV and S are the eigenvectors and eigen-
values of the covariance matrix C		 = �c�

H
c , respectively.

By properly choosing the kernel function, �cV shall rep-
resent the space spanned by individual scatterers, or at least
one of them. Hence, the data projected onto these eigenvectors
shall represent the array manifold, that is, the steering vectors.
By taking and normalizing the first K eigenvectors of C		 ,
the orthogonal projection basis in the higher dimension can be
obtained as follows:

� = �cV1∼K S−1/2
1∼K (14)

where V1∼K and S1∼K denote the first K columns of V and
S. Although, the eigenvectors and eigenvalues of C		 appear
in (14), the EVD of C		 is never explicitly evaluated. Only
the calculation of the kernel matrix is required [22], [36] when
projecting the data onto this basis. The projected data can be
obtained as follows:

Y = �H
c � = KV1∼K S−1/2

1∼K . (15)

The phase of the first column of Y is extracted as the estimate
of the steering vector of the first scatterer.

B. Selection of the Kernel

We seek a proper kernel function that allows the energy
of different scatterers, or at least the most dominant scatterer,
to be well localized in the individual columns of the trans-
formed data Y. To achieve that, the kernel should be able
to transform the elliptically distributed scatterers into a linear
coordinate where they can be separated. Kernels that have been
extensively discussed in various applications are polynomial
and Gaussian kernels, as they are both able to transform a
radial basis to a near-linear basis.

1) Polynomial Kernel: A polynomial kernel is usually
defined as follows:

κ
(
ci , c j

) = (
cH

i c j + 1
)d

(16)

where cH
i c j emphasizes the angular difference between the

data, while the order d ∈ R+ introduces nonlinearity and
increases the dimension. For integer polynomial order d,
it computes a dot product in the space spanned by all mono-
mials of degree d in the input coordinates [22], [35]. For
example, the second order polynomial kernel of a mixture
of two sources s1 and s2 will be spanned by the monomials
{s2

1 s2
2 , s2

1 s2, s1s2
2 , s2

1 , s2
2 , s1s2, s1, s2}. The dimension under

noninteger polynomial orders can be very high. It is obvious
that polynomial orders greater than two are not feasible for our
BSS problem, since they will introduce artificial scatterers with
higher order phase term into the mixture. Such higher order

scatterers have effective elevations of multiple times of the
original ones, which may cause phase ambiguity.

2) Gaussian Kernel: A Gaussian kernel is defined in the
following:

κ
(
ci , c j

) = exp
(
−∥∥ci − c j

∥∥2
2/

(
2σ 2

))
. (17)

Unlike the polynomial kernel, a Gaussian kernel emphasizes
the Euclidean distance between the data. The standard devi-
ation σ of the Gaussian kernel depends on the Euclidean
distance between the scatterers. Ideally, it should be smaller
than interscatterer distances while larger than innerscatterer
distances. Although, the scatterers are yet unknown, one
can still estimate the innerscatterer distance by finding the
minimum distance between samples [36]. Following the same
idea, we propose an estimator which is expressed in (18). The
min(·) finds the minimum distance among c j to all ci , for
i = 1, 2, . . . , N, i �= j. The mean(·) takes an average over
all the minimum distances. The parameter β in the equation
is for fine-tuning.

σ̂ = βmean
j

(
min

i

(∥∥ci − c j

∥∥
2

))
(18)

C. Sequential Amplitude Estimation and Demodulation

We have not found an explicit expression of the secondary
eigenvectors out of KPCA with respect to the steering vectors
of the scatterers. Therefore, the proposed algorithm can only
make use of the first column of Y that captures the steering
vector of the most dominant scatterer well. The proposed algo-
rithm employs a strategy that sequentially demodulates and
estimates the most dominant contribution. However, a chal-
lenge arises, where the real variances of the scatterers are
lost after the nonlinear transformation in KPCA, i.e., the real
intensity of the scatterer is not represented by the eigenvalues
of Y. Therefore, we estimate the intensity by the Rayleigh
quotient [37], that is

σ̂ 2
1 = 1

N

ȳH
1 Ĉȳ1

ȳH
1 ȳ1

(19)

where ȳ1 denotes the first column of Y with its ampli-
tude dropped. Please note that the amplitude-dropped vector
appears in the equation, instead of the normalized one that
usually appears in the literature. Once the intensity of the scat-
terers is obtained, the covariance matrix can be demodulated
as follows:

Ĉupdate = Ĉ − σ̂ 2
1 ȳ1ȳH

1 . (20)

This KPCA plus demodulation process is iteratively performed
until no more significant scatterers is left or the predefined
maximum number of scatterers is reached.

D. Algorithm Summary

The previous section describes the core of the proposed
blind TomoSAR algorithm. However, in TomoSAR appli-
cations, the processing pipeline shall also perform sample
selection, model order selection, and height estimation, besides
the main steps of the proposed algorithm. We summarize the
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TABLE II

SUMMARY OF THE PROPOSED ALGORITHM

full algorithm for a real SAR image processing in Table II.
Since the scope of this article is mainly on mitigate the
phase bias in the retrieve the steering vectors, we will not
go into details of the other steps. The readers can refer to [38]
and [39] for sample selection, [40] for robust covariance matrix
estimation, [41] for model order selection, and [42] for final
parameters estimation.

E. Extension to D-TomoSAR

Real data InSAR stacks are often multitemporal, meaning
the deformation shall also be considered. In the case of
differential TomoSAR (D-TomoSAR), the reflectivity profile
will be γ (s)δ(p1 − p1(s), . . . , pM − pM(s)) [3], where pi is
the deformation axis and pi(s) is the deformation function
along the elevation. The phase of the corresponding steering
vectors is the sum of the height frequency as well as the
deformation frequency. In discrete form, the dimension of R
and γ will increase according to the number of the deformation
parameters, that is R ∈ CN×(L×P1×P2··· ), and γ ∈ CL×P1×P2···,
where Pi is the discretization level of the ith deformation
parameter.

Since the height and deformation signal act on a scatterer at
a fixed elevation location, the deformation and height signal
of a scatterer can be considered as a single source, which can
be retrieved using the proposed algorithm without any modi-
fication. The only necessary change in the whole processing
pipeline is the last step (height estimation) in Table II. It will
be a multidimensional periodogram, instead of 1-D. The reader
can refer to [30] for the application of the proposed algorithm
on retrieving both the height and periodic deformation induced
by thermal dilation.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
method using simulated data, as well as real TerraSAR-X data.

A. Simulation

The performance of the proposed algorithm is firstly evalu-
ated via simulations. As we are mainly interested in the phase
of the scatterers, we define the angle between the estimated
scatterer steering vector and the ground truth as the quality
metric. The angle is defined as the arccosine of the inner
product of the two vectors, which is shown as follows:

b = cos−1
∣∣r̂H r

∣∣ (21)

where both r̂ and r are assumed to be normalized. Because of
the absolute value in (21), the domain of the angular bias is
[0◦, 90◦]. A wild guess of an unknown signal direction will be
at 45◦. Therefore, an angular bias greater than 45◦ basically
indicates a failed source separation.

The simulation setting was similar to that in Fig. 3. Since
most of the TomoSAR literature assumes two dominant scat-
terers in TerraSAR-X data from urban areas, two-scatterer
mixtures were simulated in our experiments. The number of
images was set to 9. The baselines are equally distributed
from −200 to 200 m. The other parameters (e.g., wavelength,
range distance, etc.) were set to be similar to those of
TerraSAR-X. According to the analysis, the orthogonality and
the variance of the signals heavily affects the performance
of the BSS algorithms. Therefore, we vary the amplitude
ratio, the distance between the two scatterers, and SNR in
the simulation. In the first two experiments, that is amplitude
ratio and scatterer distance, we intend to test the phase bias of
PCA and the proposed algorithm at noise free case. Therefore,
we used 900 looks to estimate a very accurate covariance
matrix. Of course, it is nearly identical to using the theoretical
covariance matrix. In all the experiments, we use 1000 times
Monte Carlo simulation to estimate the mean and the standard
deviation of the angular bias.

1) Performance With Respect to Amplitude Ratio: The first
simulation set out to study the systematic bias of BSS algo-
rithms and so no noise was included in the signal. The distance
between the two scatterers was set to one Rayleigh resolution,
which is 27.3 m in this case. Fig. 5 shows the angular bias
of the steering vectors of the two scatterers estimated using
PCA and the proposed method. The x-axis shows an increasing
amplitude ratio from 1 to 2. As can be seen, very large
phase bias appears in the PCA result when the amplitude
ratio is low. As the amplitude ratio increases, the dominant
direction becomes more prominent, and hence easier for PCA
to capture. The same trend appears in the result of both the
first and the second scatterers. In summary, PCA will not be a
good choice for separating scatterers with similar brightness.
However, the performance of PCA will be comparable to the
proposed method when the amplitude ratio is larger than 2.

2) Performance With Respect to Scatterers Distance : In
this experiment, we varied the distance between the scatterers
from 0.3 to 2 Rayleigh resolution units. The amplitude ratio
of the scatterers was kept at one. Fig. 6 (top) shows the bias of
the estimates with respect to increasing distance between the
scatterers. For analysis, we also plotted the angle between the
true steering vectors of the two scatterers in Fig. 6, which are
shown as yellow curves. First, the proposed method greatly
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Fig. 5. Phase bias in degree of the estimated steering vectors of (Left)
First (brighter) scatterer, and (Right) Second scatterer with respect to dif-
ferent amplitude ratio between the two scatterers. The elevation difference
between the scatterers was set to one Rayleigh resolution (27.3 m in the
simulation). A Gaussian kernel was employed in the proposed algorithm.
A total of 900 looks were used for covariance matrix estimation. No noise
was introduced. The figure shows that PCA is sensitive to the intensity ratio
of the two scatterers. A comparable intensity between the scatterer will almost
result inseparation of the scatterers, even in a noise-free case.

outperforms PCA in the whole range of scatterer distance.
The angular bias of the first steering vector estimated by the
proposed method stays at 2◦–3◦, whereas it is 40◦ for PCA.
Second, the performance of both methods stays relatively
stable when the distance is larger than 0.8 Rayleigh resolution.
Not surprisingly, the performance is clearly affected when it
enters the super-resolution regime (i.e., distance shorter than
one Rayleigh resolution). Interestingly, the results of PCA
have a strong correlation with the original angle of the two
scatterers. PCA, as a nonsuperresolving technique, will detect
the first signal at a location between the two scatterers. Hence,
the angular bias of the first signal decreases as the distance
between the two scatterers decreases. This can be seen in Fig. 6
(bottom), which shows the ratio between the angular bias and
the original angle between the two scatterers (steering vectors).
Fig. 6 (Left) (bottom), the result of PCA stays at 0.5, indicating
that PCA always detects the most dominant signal right in the
middle of the two scatterers (when they are equally bright).

3) Performance With Respect to SNR: The previous experi-
ments show that conventional PCA-based methods have strong
systematic bias even under noise-free case. To evaluate the
performance of the proposed algorithm under real scenario,
we included additional complex circular Gaussian noise in the
simulation. As the number of looks and SNR jointly affect
the performance, their product was considered. Fig. 7 shows
the mean and the standard deviation of the angular bias of
the estimates with respect to an increasing M*SNR. The solid
curves shows the performance under a 1:1 amplitude ratio,
whereas the dashed curves shows the result for the amplitude
ratio of 2. First, the result is consistent with Figs. 5 and 6. It is
nearly impossible to separate two scatterers using PCA when
the amplitude ratio is close to one (red solid curve), regardless
of the SNR. The performance of PCA is comparable to the
proposed method when the amplitude ratio increases to 2. The
SNR mildly affects the performance of the evaluated methods,
especially when M*SNR is greater than 20 dB. In modern

high-resolution spaceborne SAR data, a 20 dB M*SNR is a
rather relaxed condition, for example an SNR of 0 dB with
100 looks.

B. Performance on Real Data

We tested our algorithm on six high-resolution TerraSAR-X
interferograms acquired in pursuit-monostatic mode. The tem-
poral baselines are in the order of seconds, so that the ground
deformation and change in atmospheric phase are negligible.
The optical and the SAR image of the test building are shown
in Fig. 8. The yellow arrows in the images indicate the range
direction. We manually define a iso-height direction parallel
to the building floors, to guide the sample selection. This
direction is shown as the thin red polygon on the amplitude
image. We assume that the pixels in the template have similar
layover configuration, as well as similar scatterer statistics.
This iso-height template slides down one pixel at a time.
We estimate a single reflectivity profile from the covariance
matrix of the pixels in this template at each given position.
In the experiment, we also vary the length of this template to
test the performance of the proposed algorithm under different
number of looks.

Although this type of iso-height template was shown as
an effective sample selection for joint height estimation in
TomoSAR [38], the samples within the template cannot be
guaranteed to be ergodic. Therefore, a robust covariance matrix
estimator was employed in our processing. The sign covariance
matrix (SCM) [40] is a noniterative robust estimator, which is
a good balance between robustness and computational cost.
The SCM can be estimated as follows:

Ĉscm = 1

M

M∑
m=1

�gm�−2
2 gmgH

m (22)

where only the direction of each multivariate sample is con-
sidered. The real covariance is lost as a result.

The proposed algorithm was applied to the test building,
with the template sliding from the top to the bottom of the
building. For each template position, we extract the phase
of the two most dominant components as the estimates of
steering vectors. For conventional PCA, this will be the
first two eigenvectors. For each estimate of steering vectors,
a periodogram was calculated to estimate the corresponding
elevation. In the experiments, we also tested the proposed
algorithm at 50 looks and 500 looks, by varying the length
of the template.

Fig. 9 compares the two-layer elevation retrieved from
PCA and the proposed algorithm. The red dots represent the
first (brighter) layer, and the blue the second layer. The top
row shows the results using only 50 looks, whereas the bottom
row is the result using 500 looks. First, it is apparent that the
proposed algorithm retrieves a much straighter facade line,
whereas small periodic undulations appears on the PCA result.
This is likely due to the systematic bias caused by PCA.
Second, fewer outliers appear in the results of the proposed
method, showing a better robustness against sample noner-
godicity. However, the variance of facade from the KPCA
result shows slightly higher than that from PCA, indicating the
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Fig. 6. (Top) Phase bias (in degree) of the estimated steering vectors of (Left) First (brighter) scatterer, and (Right) Second scatterer with respect to increasing
distance between the two scatterers. (Bottom) Relative angular bias, which is the ratio of the angular bias and the angle between the true steering vectors of
the two scatterers. The amplitude ratio of the scatterers was set to one. A Gaussian kernel was employed in the proposed algorithm. A total of 900 looks
were used for covariance matrix estimation. No noise was introduced in the simulation.

proposed methods requires more number of looks than PCA.
By assuming the facade to be a straight line, the accuracy of
PCA and the proposed algorithm are both ca. 1.0 m using
50 looks. As the number of looks increases, the advantage
of the proposed algorithm become more prominent, since
the bias of the estimates becomes more prominent than the
variance of the estimates. At 500 looks, the proposed algorithm
outperforms PCA by a factor of 1.2 in the accuracy of height
estimation. Last but not least, the proposed algorithm was also
able to retrieved very well the layover between the top facade
and the roof, as well as the layover between the lower facade
and the ground (marked by the red ellipse in Fig. 9). The
roof-facade layover was also shown in the right of Fig. 8.
We can see the minimum distance till which the two layers
cannot be separated anymore is roughly 6 m, which is below
one Rayleigh resolution (11.6 m in this data). These findings
coincide with the finding in the simulation (Fig. 6) that shows
the proposed method has extremely low phase bias, even in
the super-resolution regime.

V. DISCUSSION

A. Kernel Parameter Selection

The proposed algorithm requires the selection of a kernel
parameter: either the polynomial order d for a polynomial

kernel, or the factor β of the standard deviation in a Gaussian
kernel. To obtain an operable range of those parameters,
we measure the performance at different parameter settings
by the ensemble coherence (periodogram) of the first vector
of Y denoted by y1 with the true steering vector of the first
scatterer denoted by r1. As only the phase is of interest to
us, the ensemble coherence (23) is computed based on the
amplitude-dropped vectors of y1 and r1, which are denoted
by ȳ1 and r̄1

η = 1

N

∣∣ȳH
1 r̄1

∣∣. (23)

The ensemble coherence η ranges from 0 to 1. A perfect
reconstruction of the phase will result a coherence of one.

Fig. 10 (left) shows the ensemble coherence with respect
to different polynomial orders applied to the simulated data
used in Fig. 3 (with α = 1.2). The experiment shows that
the ensemble coherence stays at almost one for a wide range
of polynomial orders, which indicates a wide operable range.
The coherence drops rapidly beyond 1.5, which aligns with our
hypothesis in Section III-B that a higher polynomial order will
introduce unwanted artificial scatterers with higher elevation.
Our experiments show that a good starting point of the
polynomial order is between 1.1 and 1.4. The operable range
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Fig. 7. (Top) Mean and (Bottom) Standard deviation of the angular bias of the steering vector estimates with respect to M ×SNR. The solid curve corresponds
to an amplitude ratio of 1, while the dashed curves correspond to a ratio of 2. The distance between the two scatterers was kept at one Rayleigh resolution.
The result is consistent with Figs. 5 and 6. It is nearly impossible to separate two scatterers by PCA when the amplitude ratio is close to one, regardless of
the SNR.

Fig. 8. (Left) Google image of the test building. (Middle) Mean amplitude image of the test building. (Right) Layover configuration of the test
building ([38]). The yellow arrows indicate the range direction. The red line on the amplitude image is a manually marked template of iso-height pixels.
We assume that the pixels in the template have similar layover configuration, as well as similar scatterer statistics. It slides down one pixel at a time.
We estimate a single reflectivity profile from the covariance matrix of the pixels in the template at a given position. In the experiment, we also vary the length
of the template to test the performance of the proposed algorithms under different number of looks.

of β can be examined using the same strategy. Experiment
in Fig. 10 (right) shows that the ensemble coherence stays at
nearly one beyond certain values of β. This demonstrates that
the operable range of β is also very wide. In our experiments,
we set β = 5.

Optionally, those parameters can also be adaptively esti-
mated. The polynomial order d is mainly influenced by
the elevation distance (angular difference) between the two
scatterers because the polynomial order acts as a multiplication
of the phase, whereas the parameter β mainly depends on the
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Fig. 9. Elevation retrieved from the first two principle directions estimated by (Left) PCA, and (Right) Proposed algorithm. The red dots represent the
first (brightest) layer, and the blue is the second layer. The red and yellow ellipses mark two layover regions on the test building. They correspond to the
drawing in Fig. 8 (right).

amplitude ratio of the two scatterers as the L2 norm in the
Gaussian kernel is heavily governed by the signal magnitude.
However, the elevation distance and amplitude ratio are both
unknowns. One can start with an initial value of the kernel
parameter, and refine it with the estimates of steering vectors
and the amplitudes of the scatterers. In general, we found that
a Gaussian kernel usually provides more stable performance
than polynomial kernels in the experiments. The parameter β
is also less sensitive to the change in the data.

B. Limitations of the Proposed Algorithm

First, the proposed algorithm assumes a fully-coherent sig-
nal model. We have shown in Section II-B that it does not
work with the DS of an arbitrary coherence matrix. Additional
constraints, such as coherence models, should be introduced

in the proposed algorithm, to work with general DS models.
However, our experiments do find the proposed algorithm
works with a constant decorrelation matrix.

We also found that the sample selection may be a challenge
in real data processing. This selection is different from many
statistical tests mentioned in SqueeSAR or similar articles
[43]–[45]. Therefore, we manually drew an iso-height template
in the experiment. For a fully automatic processing, we shall
incorporate available GIS building footprints, or resort to
methods like NL-SAR [39]. However, these actions (especially
NL-SAR) will increase the computational cost, which coun-
teracts the motivation of the proposed algorithm.

Last, the proposed algorithm shows certain super-resolution
capability. However, we must note that the knowledge of two
scatterers was given in the experiments, meaning no model
selection/detection was performed. Therefore, integrating a full
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Fig. 10. Temporal coherence (complex correlation coefficient) between the
first column of the dimension reduced data and the true steering vector of the
brightest scatterer, with respect to different kernel parameter settings: order of
polynomial kernel (Left), and factor α (in (18)) of the standard deviation of the
Gaussian kernel (Right). A coherence of 1 refers to a perfect reconstruction.
In the simulation, two scatterers are separated by one Rayleigh resolution,
and have an amplitude ratio of 1.2.

detection step to the proposed algorithm is required for a
complete assessment of its super-resolution power.

VI. CONCLUSION

This article proposed a robust method to blindly perform
layover separation in multibaseline InSAR data. Such blind
separation requires no inversion of the SAR imaging model,
hence reducing the computation cost logarithmically. The
proposed algorithm outperforms the state of the art in various
aspects. We showed that the state of the art could obtain a
reasonable result only under good orthogonality conditions,
that is large elevation and amplitude difference between the
scatterers. The proposed method employs KPCA to artificially
increase the dimension of the data, hence achieving superior
performance. Simulation shows that the proposed algorithm is
nearly optimum in the common range of SNR and number of
looks. Experiments on real data show that the proposed method
outperforms the state-of-the-art method by a factor of one to
three in terms of the height accuracy, depending on the used
number of looks. Surprisingly, the proposed method is also
capable of achieving a reasonable super-resolution capability,
which is not shown in algorithms of the same kind.

This article shows a perspective on the data-driven approach
of multibaseline InSAR algorithms. The long-term goal is to
make good use of massive globally available SAR data. One
immediate objective is to focus on an automatic and effi-
cient sample selection strategies, such as incorporating freely
available GIS building footprints. To further study data-driven
approaches, we shall research subspace learning approaches
in general, with application to TomoSAR. In addition, we can
also investigate other emerging data-driven alternatives, such
as deep learning to reduce the computational cost of TomoSAR
parameter optimization.
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