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A B S T R A C T   

The intensity of land use and management in permanent grasslands affects both biodiversity and important 
ecosystem services. Comprehensive knowledge about these intensities is a crucial factor for sustainable decision- 
making in landscape policy. For meadows, the management intensity can be described by proxies such as the 
mowing frequency, usually, a higher number of cuts indicate higher intensities. Dense time series of medium 
resolution (10–30 m) remote sensing data are suitable for the detection of mowing events. However, existing 
studies revealed a general lack of consensus about the most appropriate input data set for a consistent and 
reliable mowing detection. 

We systematically evaluated the synergistic use of acquisitions from Sentinel-1, Sentinel-2, and Landsat 8 to 
detect the occurrence, frequency, and date of mowing events as an indicator of grassland management intensity. 
Dense time series of NDVI (Sentinel-2 and Landsat 8), γ0 backscatter, backscatter cross-ratio, backscatter second- 
order texture metrics as well as 6-day interferometric coherence (Sentinel-1) were used as input features. All 
possible combinations of input features were tested to train a one-dimensional convolutional neural network, 
which enables enhanced exploitation of the temporal domain of the data. The evaluation was conducted on 64 
meadows for an overall of 257 mowing events from 2017 to 2019 in Germany. 

Our results revealed that the combination of input features improves the detection performance. The highest 
overall accuracy was reached by a combination of NDVI, backscatter cross-ratio, and interferometric coherence 
with an F1-Score of 0.84. The mowing frequency was predicted with a mean absolute error of 0.38 events per 
year, while the date of the events was missed by 3.79 days on average. NDVI time series alone mostly under-
performed in comparison to optical/SAR combinations but clearly outperformed input-sets that were solely 
based on SAR features. The proposed model performed well for meadows with low to medium management 
intensities but further testing is recommended for highly intensive managed parcels. 

The results clearly demonstrate the additional value of fusing time series of the three present Earth observation 
systems that deliver a freely available global coverage of the land surface at medium resolution.   

1. Introduction 

The increasing intensity of land use and management in agricultural 
areas of the mid-latitudes is an important driver of biodiversity loss 
(Benton et al., 2003; Gossner et al., 2016; Hallmann et al., 2017; IPBES, 
2019). For conservation of biodiversity and sustainable decision-making 
in landscape policy and planning, comprehensive knowledge about the 
parameters that represent land use intensity in agricultural areas is a 

crucial factor (Billeter et al., 2008; Foley et al., 2005; Tscharntke et al., 
2005). In the context of climate change mitigation, permanent grass-
lands (i.e. land used as grassland for five years or more) are in general 
treated as soil carbon sinks in comparison to cropland (Poeplau et al., 
2020). The management intensity of grassland impacts the quality of the 
sink where intensively used grasslands are assumed to contribute to soil 
carbon loss and greenhouse gas emissions (Conant et al., 2001; Hörtnagl 
et al., 2018; Jones et al., 2005; Sándor et al., 2018). In permanent 
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grasslands, the management intensity can be described by parameters 
such as the mowing frequency on meadows (Weiner et al., 2011). 
However, area-wide information on mowing events, e.g., from public 
statistics or farmer surveys, is missing in most agricultural regions. 

Time series of optical and radar imagery provide a valuable data 
basis for the generation of area-wide information on grassland man-
agement intensity, indicated by a growing body of literature (Reiner-
mann et al., 2020). Besides animal grazing, fertilization, and irrigation 
approaches, the detection of mowing events makes up the largest part of 
the literature. A comprehensive overview of previous research on 
remote sensing of grassland management was provided by Reinermann 
et al. (2020). Several studies investigated the relationship between 
remote sensing time series and mowing events based on the rationale 
that cutting of the grass leads to an abrupt change in the remote sensing 
signal (De Vroey et al., 2021; Kolecka et al., 2018; Stendardi et al., 2019; 
Voormansik et al., 2020). Based on this relationship, different methods 
for the automatic detection of mowing events were developed. 

Commonly used input features are vegetation indices derived from 
optical sensors like, e.g., the normalized difference vegetation index 
(NDVI) (Estel et al., 2018; Griffiths et al., 2020; Kolecka et al., 2018; 
Lobert et al., 2021) and the Enhanced Vegetation Index (EVI) (Halabuk 
et al., 2015). Vegetation indices are strongly related to vegetation vi-
tality and show a clear response to changes in biomass, which makes 
them straightforward to interpret in this context. The indices are mostly 
derived from medium-resolution Sentinel-2 (S2) and Landsat 8 (L8) 
imagery and coarser resolved imagery as from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) (Estel et al., 2018; Halabuk et al., 
2015). However, the main drawback of optical satellite data is the 
imperviousness of clouds towards the used domain of the electromag-
netic spectrum. Consequently, data gaps occur in optical time series, and 
cloud detection algorithms and interpolation strategies are required. For 
mowing detection, this might lead to the omission of mowing events. 
Moreover, undetected clouds can be misclassified as mowing events 
(Griffiths et al., 2020). 

This limitation can be overcome by the use of radar systems, which 
are not affected by clouds and enable to derive equidistant time series. 
Several studies have shown that changes in time series of the Synthetic 
Aperture Radar (SAR) backscatter coefficient, e.g., acquired by X-band 
COSMO-SkyMed (CSM), can be related to mowing events (Grant et al., 
2015; Siegmund et al., 2016; Zalite et al., 2016, 2014). The same 
behavior was also observed in time series acquired by C-band Sentinel-1 
(S1) (De Vroey et al., 2021; Grant et al., 2015; Lobert et al., 2021; 
Siegmund et al., 2016; Stendardi et al., 2019; Taravat et al., 2019). 
Taravat et al. (2019) have shown that second-order texture metrics 
derived from S1 backscatter coefficient were also able to improve the 
results of a mowing detection algorithm. This can be explained by 
changes in the field (i.e. equal grass heights due to mowing) that affect 
the texture of the meadows. 

Besides radar backscatter, several studies reported the potential of 
the interferometric coherence as an input feature for mowing detection 
(De Vroey et al., 2021; Tamm et al., 2016; Voormansik et al., 2020; 
Zalite et al., 2016, 2014). The temporal decorrelation of the scatterers in 
a grassland parcel increases with grass height and decreases significantly 
after a mowing event. This leads to very low coherence between the 
image pair where one image was taken before and the other one after the 
event. On the contrary, the next pair, where both images are acquired 
after the event, has a significantly higher coherence due to higher 
temporal correlation. Tamm et al. (2016) observed the coherence to 
remain on a higher level for up to 36 days after an event. However, this 
pattern is not consistent with every mowing event (Chiboub et al., 2019) 
and De Vroey et al. (2021) concluded that coherence alone is not suf-
ficient for the detection. Furthermore, interferometric coherence is also 
influenced by precipitation and dew, which can lead to ambiguities 
according to Tamm et al. (2016). The effect of dew, however, can be 
reduced when only imagery acquired in the afternoon is considered. 

To overcome the mentioned limitations of each sensor system, 

Stendardi et al. (2019) investigated the potential of using both optical 
and radar data as input features for the detection of mowing events. 
Based on their comparative analysis of S1 backscatter and S2 NDVI time 
series, they concluded that uncertainties in one input feature caused by, 
e.g., clouds in case of S2, could be resolved with the complementary data 
source. Yet, they did not present an approach that combines S1 and S2 
data for mowing detection. The detection of mowing events based on S2 
LAI and S1 coherence is implemented within the Sentinels for Common 
Agriculture Policy system (Sen4CAP). The independently detected 
events are merged ex-post using confidence levels, where S2 is assumed 
to be more reliable than S1 (de Vendictis et al., 2019). However, only a 
technical report was provided missing a validation. Lobert et al. (2021) 
used S1 backscatter cross-ratio, as well as S2 and L8 NDVI as input 
features. Since their results revealed shortcomings of the chosen feature 
combination, they suggested further improvements by adding more 
features and performing a feature selection. 

Recent studies explored the analogies between optical and SAR data 
over agricultural areas for the possibility of using SAR data to fill gaps in 
optical time series (Holtgrave et al., 2020) and also included the gen-
eration of synthetic time series where, e.g., gap-free NDVI time series 
were produced based on a recurrent neural network (RNN) fed by S1 and 
S2 data (Garioud et al., 2020, 2019). This may be a promising approach 
as it uses the strengths of optical vegetation indices for the detection of 
mowing events while also tackling the weakness of data gaps in optical 
time series by the use of SAR data. 

In literature, we identified two general pathways to detect mowing 
events, which are either based on classic change detection or machine 
learning (ML) algorithms. Both pathways assume that mowing events 
are indicated by significant changes in the time series. The first aims to 
distinguish these changes by derivatives of time series (Grant et al., 
2015; Siegmund et al., 2016), rule sets that are applied to key points 
within the growing season (Courault et al., 2010; De Vroey et al., 2021; 
Grant et al., 2015; Kolecka et al., 2018; Stendardi et al., 2019) or 
idealized annual trajectories (Estel et al., 2018; Griffiths et al., 2020). 
These approaches partially depend on predefined thresholds that can 
vary between investigated regions and periods and the number of 
detected events may differ according to the chosen threshold (Garioud 
et al., 2019). At the same time, these approaches are based on sound 
empirical assumptions. 

The second pathway uses ML algorithms to detect changes in time 
series induced by mowing events. For these methods, the derived time 
series are transformed into a supervised classification problem. This is 
mostly done by segmenting the time series into smaller sequences that 
are labeled as mown or not mown. Halabuk et al. (2015) investigated the 
performance of the Classification and Regression Trees (CART) algo-
rithm and were able to predict mowing events with an overall accuracy 
of 85%. However, their test setup did not allow to infer the date and 
number of mowing events within the year, but only whether a grassland 
parcel was mown at all. Taravat et al. (2019) trained a multilayer per-
ceptron (MLP) on short sequences of a multivariate time series. They 
detected 75% of the mowing events correctly and reached an overall 
accuracy of 85.7%. A shortcoming was the small number of 10 reference 
meadows and the short study period of one year. Lobert et al. (2021) 
used a Support Vector Machines (SVM) and a one-dimensional con-
volutional neural network (1D-CNN) classifier. Both models showed 
shortcomings in terms of accuracy, yet, the CNN achieved more robust 
results. 

The presented studies show a wide range of opportunities for the 
detection of mowing events from satellite time series and highlight the 
overall potential of dense Earth observation time series and ML for the 
monitoring of grassland management intensity. However, most of the 
studies were evaluated with little reference data from small regions, 
which limits the transferability of the proposed approaches (Reiner-
mann et al., 2020). Further, no consensus could be identified about an 
optimal feature combination that allows for a reliable mowing detection 
under varying environmental conditions. 
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With this study, we aimed to fill this research gap by systematically 
evaluating the performance of input features derived from dense time 
series of S1, S2, and L8 data for detecting mowing events. Therefore, we 
derived the most common optical and SAR input features from the time 
series that have been proven useful in previous studies for the detection 
of mowing events. We used a comprehensive set of reference data for 
meadows in three different biogeographic regions in Germany to train 
and evaluate a 1D-CNN model that enables the exploitation of the 
temporal domain of the satellite data (Wang et al., 2017) with all 
possible combinations of the input features. Based on this setting we 
investigated the following three research questions:  

1. What is the best combination of optical and SAR input features for 
the identification of mowing events in dense annual time series?  

2. How well can we predict measures of mowing intensity (mowing 
frequency, date of mowing) from the best input feature combination?  

3. Are there temporal and/or regional differences and similarities in the 
accuracy of the predictions that allow for a generalization of the 
overall findings? 

2. Study area and data 

2.1. Study area and reference data 

We used reference data from three sites in Germany that are part of 
the Biodiversity Exploratories (BE) project (Fischer et al., 2010). The BE 
include 150 standardized grassland parcels that are intensively studied 
since 2006 regarding their functional biodiversity. The three sites are 
Schorfheide-Chorin (SCH), Hainich-Dün (HAI), and Schwäbische Alb 
(ALB) with 50 parcels each (Fig. 1). All three sites are within the con-
tinental climate zone Dfb according to Köppen & Geiger, with a humid 
climate and a warm summer (Beck et al., 2018). The three different 
regions represent different agricultural management systems and soil 
qualities. 

The BE are focused on land use gradients in grasslands and the 
grassland parcels that are studied range from extensive to relatively 
intensive management. The 50 parcels per site consist of pastures that 
are grazed only, meadows that are mown only, and mown pastures 
where both activities occur. For our study, we considered all parcels 
indicated as meadows from 2017 to 2019, which yielded a reference 
dataset of 257 mowing events on 64 distinct parcels. We digitized the 
parcel boundaries manually using high-resolution aerial imagery. A 
buffer to the boundary was omitted to exclude pixels influenced by the 
boundary and adjacent land cover. The years 2018 and 2019 were 
dominated by very warm and dry conditions compared to the long-term 
average, while 2017 was less warm and more humid. Detailed infor-
mation is provided in Table 1 and Fig. 2. 

For each parcel, comprehensive information about the grassland 
management practices was provided, including the date of mowing, 
respective cutting heights, grazing intensity, and fertilization practices 
among many others that are recorded annually in accordance with the 
farmers (Vogt et al., 2019). The three sites represent the variations of 
cultivation and management types of grassland in Germany and differ in 
their management and land use intensity (Fischer et al., 2010). ALB has 
the highest land use intensities with a mowing frequency of up to five 
times per year (average 2.4), while the mowing frequencies in HAI and 
SCH are relatively low with a maximum of 2 mowing events per year, 
respectively (average 1.3 and 1.5 for HAI and SCH). 

2.2. Remote sensing imagery 

2.2.1. Sentinel-1 
We used two different SAR-based parameters as the basis for this 

study, namely the interferometric coherence and the gamma naught (γ0) 
backscatter coefficient. Data were acquired by the S1 constellation that 
operates in C-band (5.4 GHz, 5.5 cm) with dual-polarization primarily in 
VV (vertical transmit and vertical receive) and VH (vertical transmit and 
horizontal receive). We chose the standard acquisition mode of S1, the 
interferometric wide swath (IW), which covers a swath of about 250 km 
(Torres et al., 2012). For the estimation of the interferometric coher-
ence, the full information of the SAR acquisition is required, including 
both amplitude and phase information. For S1, this information is 
included in the Single Look Complex (SLC) product type. To process the 
SAR backscatter coefficient, the phase information of the acquisition is 
not required. We therefore used the Ground Range Detected (GRD) 
product type, which is comparably smaller in size. 

Since the S1 constellation consists of the two satellites S1A and S1B, 
the interval between S1 acquisitions from the same orbit is 6 days. We 
chose a single relative orbit for each site that covers all respective 

Fig. 1. Location and bounding-boxes of the of the three study sites.  

Table 1 
Geographical and meteorological characteristics and the mowing frequency of 
the study sites (Source: Deutscher Wetterdienst).   

Schwäbische Alb Hainich-Dün Schorfheide- 
Chorin 

Elevation [m] 670–785 250–450 15–75 
Avg. mowing frequency 

[a− 1] 
2.4 1.3 1.5 

Avg. parcel size [ha] 3.6 3.7 2.9 
Prevailing grassland 

species 
Alopecurus 
pratensis 

Poa pratensis 
aggr. 

Poa trivialis  

Mean temperature [◦C] 
1981–2010 7.3 8.4 9.0 
2017 8.0 9.2 9.8 
2018 9.0 10.0 10.6 
2019 8.5 9.8 11.0  

Precipitation [mm a− 1] 
1981–2010 1000 740 530 
2017 1030 810 740 
2018 770 490 420 
2019 970 610 460  
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parcels. This ensures a consistent acquisition geometry of the time se-
ries. Furthermore, we only selected ascending orbits, as they are ac-
quired in the late afternoon in local time. This reduces the risk of 
influence from dew. The chosen orbits were 117 for ALB and HAI, and 
146 for SCH. For each of the chosen orbits, we acquired all scenes for the 
months March to November from 2017 to 2019 for analysis to cover the 
whole vegetation period in the respective years. This resulted in 414 S1 
scenes in total for all three sites. We accessed the S1 data through the 
Copernicus Data and Exploitation Platform - Deutschland (CODE-DE; 
Benz et al., 2020). 

2.2.1.1. Coherence preprocessing. The magnitude of the interferometric 
coherence describes the degree of correlation between two complex 
radar images (Moreira et al., 2013). Besides instrument and acquisition 
parameters, it is affected by topography and properties of the object that 
is imaged, e.g., the soil and vegetation structure. We carried out the pre- 
processing steps to compute the interferometric coherence based on the 
S1 SLC data using the Graph Processing Tool (GPT) of the Sentinel 
Application Platform (SNAP). For each image, we selected the corre-
sponding image acquired six days earlier. For both, we updated the exact 
orbit position. We then coregistered the image pair using back- 
geocoding to ensure that the image-pairs align with subpixel accuracy. 
Afterward, we estimated the coherence using a window size of 2 pixels 
in azimuth and 10 in range direction, which is the SNAP default value, to 
obtain approximately square pixel size. Finally, we merged the indi-
vidual bursts of the coherence image followed by a terrain correction to 
a pixel size of 10 m using the Shuttle Radar Topographic Mission (SRTM) 
3 arc-second global digital elevation model (DEM; Farr et al., 2007). 

2.2.1.2. SAR backscatter preprocessing. To process the SAR backscatter 
coefficient, we first applied border and thermal noise removal to the S1 
GRD scenes. Then, we calibrated and radiometrically flattened the data 
to obtain γ0 backscatter coefficient in VV and VH polarization. Gamma 
naught represents the ratio between the incident power and the scat-
tered power for a reference area that is perpendicular to the line of sight 

from the sensor to an ellipsoidal model of the ground surface (Small, 
2011). We terrain corrected and resampled the images to a pixel size of 
10 m using the SRTM DEM. Finally, we converted γ0 from linear scale to 
dB. Again, we used the GPT for these steps. 

Furthermore, to exploit the information content of the backscattered 
signal in both polarizations, we calculated the backscatter cross-ratio 
(CR): 

CR = γ0
VH [dB] − γ0

VV [dB] (1)  

which was observed to be strongly affected by structural changes in 
crops like winter cereals (Holtgrave et al., 2020; Schlund et al., 2021; 
Vreugdenhil et al., 2018). Moreover, Schlund and Erasmi (2020) re-
ported that the CR stays relatively stable in dense time series over longer 
periods when agricultural areas are observed, because the effect of 
terrain and soil properties on the radar signal is similar for both polar-
izations and, thus, the ratio or difference (in dB) reduces the impact of 
these factors on the CR signal. 

Additionally, we calculated second-order texture metrics for γ0 based 
on the grey-level co-occurrence matrix (GLCM) (Haralick et al., 1973). 
The GLCM summarizes the relative frequency distribution of neigh-
boring pixel values. It can be used to augment the input data for several 
tasks such as image classification and mowing event detection (Haralick 
et al., 1973; Taravat et al., 2019). As stated by Hall-Beyer (2017), many 
of the metrics calculated from the GLCM are highly correlated. We 
therefore only derived a subset of the measures from the GLCM in this 
study, that we expected to be least correlated and to provide the most 
information gain (Table 2). For the generation of the GLCM, we quan-
tized the γ0 pixel values in dB to 32 distinct grey-levels. We used a 
moving window of 7 × 7 pixels and aggregated the results for all four 
directions (0◦, 45◦, 90◦, and 135◦). 

2.2.2. Sentinel-2 & Landsat 8 
S2 acquires imagery in 13 bands with pixel sizes from 10 m to 60 m. 

The bands relevant for this study were band 4 (red, 665 nm central 
wavelength) and 8 (near-infrared, 833 nm), both in 10 m resolution. L8 

Fig. 2. Variation of temperature and precipitation in the study sites during the studied years and long-term average (1981–2010) of the respective site (Source: 
Deutscher Wetterdienst). 
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has 12 bands with pixel sizes from 15 m to 100 m. The corresponding 
bands to S2 were band 4 (red, 655 nm) and band 5 (near-infrared, 865 
nm), both with 30 m pixel size. We obtained L8 as Level-L1TP and S2 as 
Level-1C data. For further analysis, we considered all available scenes 
that cover at least one parcel in the study period and have a cloud 
coverage of less than 75%, which resulted in an overall of 465 scenes for 
the three study sites. We note that all three sites are within areas where 
S2 orbits overlap, resulting in two acquisitions each five days instead of 
one. We corrected all data for radiometric and geometric effects using 
the Level 2 processing system in FORCE (Frantz, 2019). Clouds, 
including their shadows, were masked out using the Fmask algorithm 
(Frantz et al., 2018; Zhu et al., 2015; Zhu and Woodcock, 2012). We 
organized the data in a data cube structure for which they were tiled and 
reprojected. We adjusted the pixel size of L8 to the size of S2 using 
nearest neighbor resampling. 

Studies based on optical data so far focused on vegetation indices. 
The rationale of the most common optical vegetation indices is com-
parable and mostly based on the relation between VIS and NIR reflec-
tance. The temporal signatures of different vegetation indices of 
grasslands mostly differ in the range of the index values and are not 
expected to have a considerable impact on the features of a time series 
that are relevant in our study (e.g. position of local extrema, inflection 
points, succession of the signal in general). Halabuk et al. (2015) 
confirmed the similarity and replaceability of NDVI and EVI for mowing 
detection and even found the NDVI to yield slightly higher accuracies 
compared to EVI. Most other studies on the subject used the NDVI. On 
this basis, we decided to use NDVI and calculated it as follows: 

NDVI =
(ρNIR − ρRED)

(ρNIR + ρRED)
(2)  

where ρNIR is the reflectance in the near-infrared band and ρRED is the 
measured reflectance in the red band of the respective satellite (Tucker, 
1979). 

3. Methods 

3.1. Time series composition 

The analysis concept in our study builds on the parcel level. Thus, the 
first step in the time series generation process was to derive median 
values per parcel for each observation using the meadows’ parcel 
boundaries. A technical prerequisite for the used 1D-CNN classification 
algorithm is an equidistant time series data set. Since the SAR data 
already provided an equidistant time interval of six days, we linearly 
interpolated the NDVI time series to match the dates of the SAR obser-
vations. For this step, we fused the NDVI time series from S2 and L8 and 
treated them like a single data set. An example is shown in the appendix 
(Fig. A1). 

To smooth the time series, we applied a Savitzky-Golay filter to each 
parcel and year (Savitzky and Golay, 1964) for all optical and SAR 
features. After iterative testing, we chose a filter order of 5 and a filter 
length of 7 observations to achieve the best trade-off between remaining 

noise and smoothing out important information. To test the impact on 
the result, we ran each model with and without smoothing. 

As the last step of time series generation, we applied a linear 
normalization to the values per input feature, meadow, and year to the 
value range between zero and one. This improved the comparability of 
the approach for the different parcels, sites, and years and ensured that 
all of the input parameters are in the same value range, which can ease 
the learning process during model training (Bishop, 1995). 

3.2. Sequencing & labelling 

For the classification approach used in this study, the input dataset 
had to be transferred to the form of a supervised classification problem. 
This form consists of multiple samples that hold both a number of fea-
tures and a categorical label or class. In the case of this method, one 
sample corresponded to a period of time for a given grassland parcel. 
The values of the remotely sensed parameters within the period formed 
the features of each sample. Lastly, the assigned label indicated whether 
a mowing event occurred during the period or not. 

In order to achieve this format, we applied the moving window 
approach to split the time series into a number of short sequences 
(Dietterich, 2002). This approach includes the stepwise moving of a 
window over the time series with a given size and creating new se-
quences out of the values that fall into the window at each step. Sub-
sequently, we labeled the sequences as mown or not mown depending on 
whether a mowing event occurred at the midpoint of the sequence 
(Fig. 3). 

We set the number of the steps by which the window is shifted, the 
so-called stride, to one timestep (6 days). This ensured, that every 
observation occurred as the middle time step of exactly one sequence 
and therefore represents a potential date that can be classified as mown. 
The size of the sliding window, i.e., the number of observations before 
and after the middle time step of a sequence, controls how much in-
formation is available to the model before and after an observation that 
is to be classified. We tested window sizes of 4, 5, and 6 leading to se-
quences of 9, 11, and 13 observations, respectively. With regard to the 
observation interval of six days, these window sizes include 24, 30, and 
36 days before and after the middle time step, respectively. To simplify 
matters, we refer to the window sizes as ±4, ±5, and ±6 hereafter. 

Since the reference mowing events do not necessarily fall on the 
observation interval of the created time series, we assigned the label 
mown to the sequence whose middle step happened on or after the 
mowing event. However, we applied this displacement of the dates only 
for the labeling process; the reference data used for the evaluation of the 
predicted mowing dates remained unaffected by this step. 

3.3. Deep learning model 

Machine learning algorithms are widely used for classification or 
regression tasks in remote sensing applications (Khatami et al., 2016; Yu 
et al., 2014). In the last years, especially Artificial Neural Networks 
(ANN) started to be applied more and more and achieved competitive 
results (Ma et al., 2019). A simple form of an ANN is the multilayer 
perceptron (MLP). MLPs are well-performing in various tasks and were 
already used for the detection of mowing events in time series of satellite 
data by Taravat et al. (2019). For a detailed overview of this subject, we 
refer the reader to Goodfellow et al. (2016). 

MLPs share an important lack among many other machine learning 
algorithms. MLPs do not exploit the sequential order and in this case the 
temporal dimension of the data. The order of the input values is ignored 
during the training process as long as it is consistent in any sample 
(Pelletier et al., 2019). Convolutional Neural Networks (CNN) can 
overcome this shortcoming and are a well-suited method to exploit the 
temporal dimension of data (Di Mauro et al., 2017; Pelletier et al., 2019; 
Zhong et al., 2019). As the name suggests, CNNs convolve the input data 
in a way, that consecutive values are combined, and higher-level 

Table 2 
Texture measures used in this study (only for S1 γ0; Hall-Beyer, 2017). i 
and j refer to the respective columns and rows of the GLCM, Pi, j is the 
probability of occurrence for the value pair i and j, N is the number of grey 
values, and μ and σ denote the mean and standard deviation of the GLCM.  

Texture Measure Formula 

Homogeneity (Hom) ∑N− 1
i,j=0

(
Pi,j

1 + (i − j)2

)

Entropy (Ent) ∑N− 1
i,j=0Pi,j −

(
lnPi,j

)

Correlation (Cor) 
∑N− 1

i,j=0Pi,j

⎡

⎣
(i − μi)

(
j − μj

)

σiσj

⎤

⎦
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features are extracted. This makes them a frequently applied method in 
the domain of deep learning (Kattenborn et al., 2021). 

3.3.1. Implementation 
In this study, we used an adaption of a 1D-CNN proposed by Wang 

et al. (2017) to classify the labeled sequences into mown and not mown. 
In a comprehensive study, Wang et al. (2017) tested eleven different 
algorithms on the UCR Time Series Classification Archive (Chen et al., 
2015) that consists of 44 datasets belonging to time series classification 
tasks. The 1D-CNN performed best, while state-of-the-art models for 
time series classification, as well as an MLP and a Residual Network 
(ResNet), were among the inferior algorithms. 

We implemented the 1D-CNN with Keras (Chollet and others, 2015) 
and TensorFlow (Abadi et al., 2016) as backend using the R interface to 
Keras (Allaire and Chollet, 2020; R Core Team, 2021). The original 
model was developed to classify univariate sequences into multiple 
classes. To match the given classification problem, we adapted the 
model to run on multivariate input data and give binary classification 
output. Since the initial model was built to classify time series from other 
domains with greater lengths and higher densities, we further reduced 
the model’s depth in terms of convolutional layers (ConvLayers) and the 
size of the applied filter kernels. This reduction decreased the risk of 
over-fitting and speeded up the training time significantly. 

The final model proposed here consists of two convolutional layers 
with kernel sizes five and three, respectively. The output of the con-
volutional layers was zero-padded to remain the same size as the input. 
Batch-normalization and a rectified linear unit (ReLU) activation func-
tion were applied after each layer. The ReLU function converts all 
negative values to zero, while positive values are preserved. The utili-
zation of activation functions allows to find non-linear relationships and 
model non-linear problems (Graves, 2012). The two convolutional 
layers were followed by a global average pooling and finally a single 
densely connected and sigmoid-activated neuron to give the final 
output. To find the best number of filters applied at each convolutional 
layer, we tested different filter numbers. We chose the values 64, 128, 
and 256 as possible filter numbers for the first layer, while the second 
layer always had twice the number of filters. The schematic architecture 

of the used model is shown in Fig. 4. 

3.3.2. Training 
For model training, we split the input data set into three parts: 

training, validation, and test data. The training dataset was used to train 
the model, while after each training epoch, the current performance was 
evaluated on the validation set to monitor the convergence and trigger 
learning parameter changes. The test set was not used by the model 
during the training and is applied to estimate the final model perfor-
mance. The splitting was conducted along randomly chosen meadows. 
This ensured, that time series from different years for the same meadow 
did not appear in the test and training set at the same time. Additionally, 
it was always ensured that the same number of meadows was chosen 
from each of the three test sites in order to minimize the variance be-
tween the folds. 

Within the training of ANNs, the loss function measures the error 
between the predictions and the reference data and represents the 
objective function to be minimized. The loss function we chose for the 
training process here was binary cross-entropy, which considers not only 
the correctness of the predicted class but also the certainty of the 
respective prediction. This makes it the function of choice for most DL 
models (Goodfellow et al., 2016). We used the Adam optimization al-
gorithm (Kingma and Ba, 2015) to minimize the loss function with a 
batch size of 64 and an initial learning rate of 1e− 4. The batch size is the 
number of samples that are fed to the model before updating the 
weights, the learning rate controls the degree to which these weights are 
updated. The other parameters were left as the Keras default values. 

Furthermore, we implemented an early stopping mechanism that 
stops the training after not improving the loss function for the validation 
set for ten epochs to avoid over-fitting. To overcome plateaus of the loss 
function without improvement, the learning rate was multiplied by 0.1 if 
the loss function for the validation set did not improve for five epochs. 
We set the maximum number of epochs to train a model to 100. 

A problem with the classification of mowing events is the frequency 
of their occurrence. The studied meadows are mown between one and 
four times per year making the class of mowing events very rare 
compared to the class of not mown sequences. If a model is trained on 

Fig. 3. Exemplary excerpt from the time series for a parcel in 2019 that is segmented into four shorter sequences using the moving window approach. Here, a 
window size of ±3 observations (±18 days) originating from the middle time step is shown. The window is moved over the time series with a stride of 2 observations 
(12 days). Depending on whether there was a mowing event on the middle time step of a sequence, it is labeled as mown or not mown. 
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such a highly imbalanced dataset, it is very likely to develop a prediction 
bias towards the majority class. The random oversampling method 
(ROS) randomly duplicates the samples belonging to the minority class 
until the class-distribution is balanced, whereas the values of the se-
quences remain unchanged. Despite its simplicity, ROS has shown to 
perform competitively to other state-of-the-art methods when applied 
for the training of CNNs (Buda et al., 2017). We therefore applied ROS to 
the training set before the training of the model, while this was not done 
for the validation and test data. 

3.4. Evaluation 

With this study, we aimed to reveal the best combination of remotely 
sensed input features for the detection of mowing events. Exhaustive 
testing of feature combinations, however, is time and resource- 
consuming. We therefore subsumed several of the processed time se-
ries into one feature each. For example, the time series for coherence in 
VV and VH polarizations were subsumed to the feature COH and the 
time series of homogeneity, entropy, and correlation in VV and VH 
polarizations to the feature GLCM (Table 3). I. e., where the feature COH 
is included in a model, the time series of coherence in VV and VH are 
meant, and so on. 

Based on these five features, we formed all possible combinations 
from one up to all five features. This resulted in 31 different input-sets 

(five single-input sets, ten double-input sets, ten triple-input sets…). 
We identified the best performing input-set by a comparative evaluation 
after training a model for each input-set. 

Different hyperparameters such as smoothing of the time series, the 
window size chosen for the moving window approach, or the number of 
filters within the ConvLayers may lead to the optimal results for each 
input-set under test. We therefore conducted a grid-search, testing all 
possible combinations to find the best hyperparameters for every input- 
set (Table 4). 

The results slightly vary with each training cycle due to the sto-
chastic behavior of the learning process in DL. Furthermore, the chosen 
split into training, validation, and test data can influence the results and 
introduce bias. We conducted a repeated ten-fold cross-validation to 
tackle both problems. For every model, we split the whole dataset into 
ten equally sized folds. We then trained the model ten times while every 
time a different fold was chosen as the test set. The nine remaining folds 
became the training set (80%) and validation set (20%). We repeated 
this procedure three times to further account for the stochastic effects of 
the fold definition. We summarized the results of the trained models per 
model setup from the grid-search afterward (Fig. 5). 

Before evaluation, we conducted one more postprocessing step. Due 
to the ability of CNNs to extract higher-level information, successive 
sequences for the same meadow may appear similar to the CNN. Oper-
ations like global pooling can even increase this. Hence, it was very 
likely that not only the sequence with the mowing event in the middle 
time step is classified as mown but also one or multiple previous and 
following sequences. To solve this ambiguity, we clustered successive 
predictions of the model and defined the mean of the dates as the final 

Fig. 4. Schematic architecture of the proposed 1D-CNN adapted from (Wang et al., 2017). The model shown here consists of an input layer with three input features 
of nine timesteps each. The input layer is followed by two convolutional Layers (ConvLayers) with three filters, each with a filter kernel of length three. Next is a 
global pooling layer, summarizing each filter to its average. The last layer is a densely connected and sigmoid-activated output neuron. 

Table 3 
List of the five tested features and the individual time series they subsume.  

Feature Individual time series 

BSC γ0 backscatter coefficient VV 
γ0 backscatter coefficient VH 

COH interferometric coherence VV 
interferometric coherence VH 

CR backscatter cross-ratio 
GLCM homogeneity VV 

homogeneity VH 
entropy VV 
entropy VH 
correlation VV 
correlation VH 

NDVI Normalized Difference Vegetation Index  

Table 4 
Hyperparameters tuned in the grid-search and respective values. Window size 
is expressed in observations before and after the middle time step of the time 
series sequences. Filter numbers refer to the first and second ConvLayers in 
the CNN, respectively.  

Hyperparameter Values 

Smoothing ∈{True,False} 
Window size ∈{±4,±5,±6} 
Filter numbers ∈{(64,128); (128,256); (256,512)}  
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prediction. 
The grid-search resulted in 558 (31*2*3*3) different model setups 

consisting of input-sets and the other hyperparameters defined by the 
grid-search. For each of the model setups, we conducted three 10-fold 
cross-validations which made 16,740 training cycles in total. We then 
averaged the results of the cross-validation for each of the 558 model 
setups. Since the main goal of the study was to identify the best per-
forming input-set, only the best performing hyperparameter combina-
tion for the 31 different input-sets in terms of the F1-Score was 
considered hereafter. 

The following model evaluation included the overall accuracy 
assessment, the number of mowing events that were detected (mowing 
frequency) as well as the dates of the detected individual mowing 
events. First, we conducted an accuracy assessment of the classification 
results for the entity of all mowing events using binary classification 
metrics. The recall metric states how many of the mowing events in the 
test set were detected correctly by the model. The precision measures 
how many of the events predicted by the model were correct. To sum up 
both, we chose the F1-Score, as it is a better choice for imbalanced 
classification problems compared to the frequently chosen overall ac-
curacy (Sokolova and Lapalme, 2009). 

We calculated the metrics as follows: 

Recall =
True Positive

True Positive + False Negative
(3)  

Precision =
True Positive

True Positive + False Positive
(4)  

F1 − Score = 2*
Precision*Recall

Precision + Recall
(5) 

The F1-Score reaches from 0, where either the precision or the recall 
of the model is zero, to 1, where both precision and recall are 1, which 
would mean that all events are detected without any false positives. Due 
to the sensing interval of the satellites and occurring cloud gaps in the 
NDVI time series, the probability of predicting an event to the exact day 
was low. Therefore, a tolerance of twice the time series interval (12 

days) was considered to be sufficient to evaluate a prediction as true. 
Based on the F1 score, the best input set was selected, to which further 
evaluations were limited. 

Second, the predicted mowing frequency for the reference meadows 
was evaluated. The mowing frequency is the sum of the mowing events 
within a time period (here: one year). It is a measure of the general 
management intensity of a meadow. We derived the predicted mowing 
frequency by summarizing all predictions made by the model for each 
meadow and year regardless if they were true or false. Various metrics 
were used for this purpose, namely the mean error (ME), mean absolute 
error (MAE), and normalized mean absolute error (nMAE): 

ME =
1
n
∑n

i=1
Ŷ i − Yi (6)  

MAE =
1
n
∑n

i=1

⃒
⃒
⃒Ŷ i − Yi

⃒
⃒
⃒ (7)  

nMAE =
1
n

∑n

i=1

⃒
⃒
⃒
⃒
⃒
⃒

Ŷ i − Yi

Yi

⃒
⃒
⃒
⃒
⃒
⃒

(8)  

where n is the number of meadows, Ŷ i is the predicted mowing fre-
quency for each meadow, and Yi is the reference mowing frequency. 

The ME is the plain average of all residuals. While it is not suitable to 
determine the magnitude of the error, it indicates a general tendency of 
the model to over- or underestimate the target value. The MAE measures 
the average error regardless of its sign and gives the magnitude of the 
error in the same unit as the prediction, in this case, the mowing fre-
quency. Since the mowing frequencies of the meadows in the reference 
data vary, the nMAE was calculated as well. In addition to the MAE, the 
nMAE is related to the reference mowing frequency of the predicted 
meadow and therefore allows for a better comparison between meadows 
or test sites of different management intensities. 

Finally, the exact prediction of the date of mowing was evaluated. 
The date of mowing is of relevance for applications that are related to 
the checking of compliance measures in agricultural policy as well as for 

Fig. 5. Model training cycle and validation scheme including cross-validation (dotted line) and the three repetitions (dashed line).  
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the monitoring of nature protection schemes in grassland in general. 
This was done by calculating the MAE between the predicted and the 
reference date for each individual mowing event instead of the mowing 
frequency. This gives an overview of the temporal error of the 
predictions. 

In summary, Fig. 6 illustrates the processed features from the optical 
and SAR time series together with the main attributes of the reference 
data that were used for the evaluation of the predicted mowing events. 

For reasons of clarity, not all tested remote sensing features are shown. 
The four shown graphs represent the most common patterns of true/ 
false positive and negative predictions that are likely to occur. 

Fig. 6. Time series for a subset of Sentinel-1/-2 and Landsat-8 features on four different meadows that represent frequent patterns of true and false predictions. The 
reference events took place at the center of the grey-shaded areas. 
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4. Results 

4.1. Accuracy assessment 

The main results of the overall accuracy assessment of the grid- 
search are summarized in Table 5. For each tested input-set, only the 
best hyperparameter setup in terms of the F1-score is shown. A full list of 
the performance parameters for all 588 model setups is compiled in the 
appendix to this publication (Table A1). It can be observed from the 
summary that the model based on NDVI, BSC, and COH was able to 
detect the highest number of events in the reference dataset correctly 
with a recall of 88.8% (true positives). The least false detections (false 
positives), were achieved with the model based on NDVI, COH, and 
GLCM, with a precision of 87.1%. However, the best trade-off between 
detecting a high number of events and predicting only a few false pos-
itives was reached, when NDVI, CR, and COH were used in combination, 
which is stated by the highest F1-Score of 0.839. This input-set was 
therefore identified as the best-performing combination of input 
features. 

When looking at the input-sets consisting of only one feature, NDVI 
performed superior to the other features with an F1-Score of 0.762. All 
SAR-based features yielded lower F1-Scores, led by COH (0.674) and 
followed by BSC (0.576) and CR (0.519). GLCM reached the worst result 
with an F1-Score of 0.363. 

The models built solely on the SAR-based input features resulted in 
lower F1-Scores than for any input set that included the NDVI. While 
improvements through the combinations of multiple SAR-based features 
were observed, not a single one outperformed the NDVI alone. However, 
adding SAR-based parameters to the NDVI improved the performance in 
most cases. Only four combinations of NDVI and SAR-based features 
reduced the performance of the NDVI used alone. These four combina-
tions included GLCM without exception. 

BSC alone outperformed CR. Yet, when combined with NDVI and 
COH, the input-set containing CR yielded a clearly higher F1-Score 
(0.839) compared to the input-set containing BSC (0.828). 

When combined with NDVI and BSC, CR and COH reached the same 
F1-Score. However, the input-set including COH was able to detect 
88.8% of the mowing events compared to 82.9% (NDVI, BSC, CR). At the 
same time, the latter yielded more precise predictions with 83.2% of the 
events predicted by the model being true positives, compared to the 
input set of NDVI, BSC, and COH with a precision of 77.8%. In every 
case, adding GLCM to an input-set reduced the F1-Score. The input-set 
including all tested input features yielded lower F1-Scores than input 
sets with fewer features. The average standard deviation of the F1-Score 
per model setup was 0.083. 

Due to its best performance, the remainder of the results is presented 
only for the model based on NDVI, CR, and COH. The confusion matrix 
of the predictions is presented in Table 6. 

4.2. Mowing frequency 

Meadows with a mowing frequency of up to two cuts per year 
showed a positive ME of 0.31 and 0.083 (Table 7). The sign of the ME 
changed for meadows mown more than two times. Meadows with three 
cuts showed an ME of − 0.3 and meadows with four cuts a much lower 
ME of − 1.44. This indicated an overestimation of mowing events by the 
model on meadows mown up to two times, while meadows mown three 
or four times tended to be underestimated. 

The MAE was in a comparable order of magnitude for meadows with 
one to three mowing events per year, with 0.369, 0.321, 0.420 events 
per year, respectively. Yet, it was considerably higher for meadows 
mown four times a year with 1.44. 

Since the three study sites differ in their average mowing frequency 
(compare Table 1), we compared the predicted mowing frequencies 
between them (Fig. 7). In terms of ME, ALB was the only study site where 
the yearly number of mowing events tended to be underestimated, 

Table 5 
Main results of the grid-search sorted by F1-Score. For each combination of input 
features (feature-sets), the best model setup in terms of F1-Score is shown. Filter 
number denotes the number of filters in the first ConvLayer of the CNN. The 
highest value of each metric is printed in bold.  

Input 
Features 

Window 
size 

Smoothing Filter 
number 

Recall 
[− ] 

Precision 
[− ] 

F1- 
Score 
[− ] 

NDVI, 
CR, 
COH 

±5  128 0.859 0.824 0.839 

NDVI, 
BSC, 
CR 

±5 Yes 128 0.829 0.832 0.828 

NDVI, 
BSC, 
COH 

±4  64 0.888 0.778 0.828 

NDVI, 
BSC, 
CR, 
COH 

±5  256 0.798 0.864 0.827 

NDVI, 
COH 

±4  128 0.855 0.788 0.815 

NDVI, 
BSC, 
CR, 
COH, 
GLCM 

±4 Yes 64 0.798 0.803 0.799 

NDVI, 
CR, 
COH, 
GLCM 

±4  64 0.800 0.795 0.795 

NDVI, 
CR 

±5 Yes 128 0.852 0.735 0.786 

NDVI, 
BSC, 
COH, 
GLCM 

±4 Yes 256 0.732 0.850 0.781 

NDVI, 
BSC 

±4  128 0.859 0.716 0.777 

NDVI, 
CR, 
GLCM 

±4  128 0.777 0.770 0.768 

NDVI ±6 Yes 128 0.794 0.742 0.762 
NDVI, 

COH, 
GLCM 

±4  256 0.693 0.871 0.755 

NDVI, 
BSC, 
CR, 
GLCM 

±4 Yes 64 0.797 0.720 0.755 

NDVI, 
BSC, 
GLCM 

±4 Yes 64 0.784 0.725 0.748 

NDVI, 
GLCM 

±4  64 0.793 0.707 0.739 

BSC, CR, 
COH 

±4  128 0.745 0.734 0.736 

CR, COH ±5  128 0.756 0.695 0.720 
BSC, 

COH 
±4 Yes 256 0.696 0.708 0.698 

COH ±4  256 0.696 0.665 0.674 
BSC, CR, 

COH, 
GLCM 

±4 Yes 128 0.647 0.686 0.660 

BSC, 
COH, 
GLCM 

±4  128 0.602 0.709 0.643 

CR, 
COH, 
GLCM 

±5  256 0.568 0.745 0.638 

COH, 
GLCM 

±5 Yes 256 0.575 0.662 0.605 

BSC, CR ±5  256 0.597 0.584 0.581 
BSC ±4 Yes 256 0.639 0.535 0.576 
BSC, CR, 

GLCM 
±4  64 0.571 0.492 0.524 

(continued on next page) 
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whereas for HAI and SCH the opposite was the case. 
The largest MAE was observed for HAI and ALB and was similar with 

slightly above 0.4 events per year. For SCH, the MAE was considerably 
smaller with under 0.3 events per year. To compare the error between 
the sites, it had to be put into the context of the test sites’ mowing fre-
quency, therefore the nMAE was used. The nMAE revealed that the 
model predicted the mowing frequency with the least nMAE for ALB 

(17%), followed by SCH (24%), and lastly HAI (38%). 
The observed pattern, however, was not stable throughout the full 

study period (Fig. 8). The underestimation for ALB was clear for 2018 
(− 0.317) whereas for 2017 and 2019 the ME was close to 0. 

Similarly, the MAE and nMAE varied over time for the individual 
sites. The average MAE and nMAE decreased from 0.52 (2017) to 0.23 
(2019) and from 39.1% (2017) to 15.8% (2019), respectively, and thus 
both have more than halved. Considering the nMAE, the mowing fre-
quency was estimated with the highest error for HAI in 2017 (60%) 
while the least error was observed for SCH in 2019 (5.6%). 

4.3. Date of mowing 

Fig. 9 shows the deviation between the day of the year (DOY) from 
the reference events and the DOY of the respective events predicted by 
the model based on the best performing input-set from the accuracy 
assessment (NDVI, CR, COH). A list of the performance parameters for 
all 32 input-sets is compiled in the annex to this publication (Table A2). 
When the exact dates were compared, no systematic error depending on 
the DOY or the number of cuts was observed. The ME was 2.35 days, 
which shows that the prediction was usually slightly behind the actual 
event. However, the MAE for all predicted events was 3.79 days, which 
can be considered low in the context of the observation interval of 6 
days. It has to be noted, that these deviations were only calculated for 
reference events and their nearest matching prediction within 12 days 
tolerance (compare section 3.4). 

The observed MAE for the predicted date of the mowing events did 
not show a generally applicable pattern for the individual study sites and 
years (Fig. 10). Yet, the average MAE differed between the sites with HAI 
having the lowest MAE (3.37 days) and a high variance between the 
years, and SCH having the highest MAE (4.48 days) with a comparably 
higher MAE in 2018 (6.41 days). The MAE in ALB was relatively stable 
throughout the study period with an average of 3.61 days. 

5. Discussion 

5.1. Main findings 

5.1.1. Overall accuracy 
With regard to the overall accuracy in detecting mowing events from 

dense time series of Earth Observation data, our findings were in line 
with other studies when we trained our models only on single features of 
optical or SAR data (Halabuk et al., 2015; Kolecka et al., 2018; Taravat 
et al., 2019). Here, the single use of the NDVI yielded higher accuracies 
compared to all tested single SAR features and also to all possible 
combinations of SAR features (F1-score 0.762). This outcome confirms 
the broad perception in literature that states the general potential of 
time series of optical visible / near infrared indices for the assessment of 
phenological patterns and abrupt changes in vegetation state, e.g. by 
management activities (Gao et al., 2020; Sakamoto et al., 2005; Vrieling 
et al., 2018; Zeng et al., 2020). We also assume that the combined use of 
S2 and L8 contributed to the performance of the NDVI in comparison to 
only using S2 (Kolecka et al., 2018; Stendardi et al., 2019), as already 
reported by Griffiths et al. (2020). By using data from both sensors, the 
number of potential observations was substantially increased, which 
allowed detection of events even in frequently clouded periods when 
recordings from one sensor alone would not have been sufficient to 
detect the event. Such a situation where observations from only one 
sensor could have missed events can also be observed in Fig. A1 in the 
appendix. 

Looking at SAR-only input-sets, the model based on COH achieved 
the highest overall accuracy of all tested single SAR input-features (F1- 
score 0.674). Comparable results were reported by De Vroey et al. 
(2021) who also underlined the importance of repeat-pass coherence 
time series from Sentinel-1 for detecting mowing events. The general 
information content of Sentinel-1 coherence data for mowing detection 

Table 5 (continued ) 

Input 
Features 

Window 
size 

Smoothing Filter 
number 

Recall 
[− ] 

Precision 
[− ] 

F1- 
Score 
[− ] 

CR ±4  128 0.679 0.424 0.519 
BSC, 

GLCM 
±5 Yes 256 0.455 0.544 0.487 

CR, 
GLCM 

±4  128 0.533 0.448 0.477 

GLCM ±6  256 0.369 0.374 0.363  

Table 6 
Confusion matrix of the best performing model, based on NDVI, CR, and COH 
with window size ±5, 128 filters in the first convolutional layer of the CNN and 
no smoothing applied. Values represent the whole-numbered average of the 
three cross-validations.  

Prediction Reference Total 

Not mown Mown 

Not mown 4334 35 4368 
Mown 45 214 259 
Total 4380 249 4629  

Table 7 
Mean error (ME), mean absolute error (MAE), and normalized mean absolute 
error (nMAE) of the predicted number of mowing events grouped by the refer-
ence number of mowing events.  

Reference mowing frequency [a− 1] ME [a− 1] MAE [a− 1] nMAE [− ] 

1 0.310 0.369 0.369 
2 0.083 0.321 0.161 
3 − 0.304 0.420 0.140 
4 − 1.440 1.440 0.360  

Fig. 7. Mean error (ME), mean absolute error (MAE), and normalized mean 
absolute error (nMAE) between the predicted and reference mowing frequency. 
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was also investigated by Tamm et al. (2016) who stated a significantly 
higher coherence values for both polarizations (VH and VV) for up to 36 
days after the first image pair after mowing compared to the period 
before the event. Similar patterns of a sharp increase in coherence after 
mowing could in general be observed in our study as exemplarily shown 
in Fig. 6. However, on the other hand, the closer evaluation of the 
temporal signatures for both polarizations also depicts that the timing 
and level of increase are variable, which might be a consequence of the 
revisit cycle of the Sentinel-1 satellites and environmental factors 
(Tamm et al., 2016). Compared to COH, the other tested SAR features 
(BSC, CR, GLCM) performed considerably worse with GLCM leading to 
the overall poorest result (F1-score 0.363). This is also reflected exem-
plarily by the signatures for CR in Fig. 6 where no clear patterns of signal 
evolvement are visible after a mowing event. 

A considerable increase in the overall detection accuracies was 
achieved when we combined features from both, optical and SAR data. 
This general outcome further strengthens the assumption that the 
combination of optical and SAR input features is beneficial for the 
performance of mowing detection algorithms, as already implicated by 
other studies (De Vroey et al., 2021; Stendardi et al., 2019). 

Our results revealed that except for input-sets that contained GLCM 
features, all combinations of NDVI and SAR-based features 

outperformed models that were built on NDVI or SAR features alone. 
The best combination of NDVI and SAR features (NDVI, COH, CR) 
improved the model based on NDVI by more than 10%, and the best 
model only based on SAR features (BSC, CR, COH) by more than 12%. 
This clearly demonstrates the synergy of both sensor types. In addition, 
four out of the top five input-sets with regard to the overall accuracy of 
feature combinations contained the COH (compare Table 5). This con-
firms the overall sensitivity of the interferometric coherence to abrupt 
changes in vegetation physiognomy and phenology that was also re-
ported for cropland management events (e.g. harvest) (Kavats et al., 
2019; Nasirzadehdizaji et al., 2021; Schlund and Erasmi, 2020; Shang 
et al., 2020). This overall improvement in accuracy could give evidence 
that certain mowing events that are missed by models based on optical 
data caused by, for example, cloudiness show a response in SAR time 
series, as suggested by Stendardi et al. (2019). The other way around, 
events missed by SAR time series, e.g. induced by soil moisture changes 

Fig. 8. Mean error (ME), mean absolute error (MAE), and normalizes mean absolute error (nMAE) between the predicted and reference mowing frequency.  

Fig. 9. Reference day of the year (DOY) for the mowing events and the DOY 
predicted by the model. Predictions for all three sites combined are shown. 

Fig. 10. MAE between predicted and reference date of the individual mowing 
events by study site and year. 
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or wind, still might show a detectable signal in the NDVI. Yet, the recall 
of the best model still indicates that not all mowing events can be 
detected with the combined data sources. These omissions could in 
general be a consequence of a combination of confounding factors for 
both systems, optical and SAR. 

With particular regard to the SAR features that are built from the 
backscatter signal (BSC, CR, GLCM), CR outperformed BSC when 
included in optical / SAR input-sets. A possible cause is that the learned 
signal in CR is more unique to mowing events. This goes in line with the 
findings of Schlund and Erasmi (2020) that CR is more stable than BSC 
and less prone to short-term signals (shifts and noise) since both polar-
izations are affected equally by, e.g., changes in soil moisture. Shifts and 
noise in BSC are at risk to be misinterpreted by the model, which reduces 
the precision. 

The GLCM features derived from the backscatter coefficient even 
weakened the performance of the input-sets. This is in opposite to the 
findings of Taravat et al. (2019) who significantly improved their model 
performance by adding GLCM parameters to their input features. Thus, 
our results do not confirm their findings and rather imply S1 texture 
metrics to be unsuitable for mowing detection. 

Our findings are based on the average accuracy measures for all 
cross-validation runs. Even if the standard deviation of the F1-Score 
indicated noticeable variation in the results within the cross-validation 
runs, we observed it to be comparably stable throughout all input-sets 
and the variations seemed normally distributed. We therefore assume 
the average of the cross-validation runs to be representative for our 
results. 

5.1.2. Measures of mowing intensity 
With regard to the prediction of the mowing frequency within one 

season, we determined a clear positive connection between increasing 
prediction errors and increasing management intensity. An increasing 
mowing frequency reduces the temporal distance between individual 
mowing events and consequently the number of available satellite ob-
servations. From the grassland perspective, it leads to varying signals in 
the remotely sensed time series since the phenology between two cuts 
and the state of the meadow right before a cut might be different ac-
cording to the time span since the last cut. 

In general, mowing frequency in extensive meadows was over-
estimated and intensive meadows faced an underestimation. Where the 
underestimation might be a consequence of the reduced number of time 
steps between two events, the overestimation could be caused by the 
long time span within the observed period where no management ac-
tivities occur. Here, long grass is prone to weather extremes like heavy 
rainfall, wind, or drought. These extremes could have effects on the 
temporal signature of the time series that resemble mowing events and, 
hence, could increase the probability of false detections. This is partic-
ularly of relevance for input features of SAR data that are known to be 
sensitive to changes in the vertical and horizontal structure of the 
grassland volume (Taravat et al., 2019; Voormansik et al., 2016). The 
impact of management intensity on the prediction of mowing frequency 
was also identified by Griffiths et al. (2020). However, their findings 
were contrary to our results and, in general, showed an underestimation 
in extensive meadows compared to a general tendency of overestimation 
in meadows that were mown more than three times. 

Considering the inter-annual variation of our results, an overall trend 
of decreasing prediction errors is noticeable from 2017 to 2019. Overall, 
the absolute error of the predicted mowing frequency was highest in 
2017. In this year, summer precipitation was clearly above the long-term 
annual mean (compare Fig. 2) and thus, the frequent occurrence of 
clouds, reduced the number of valid observations in optical time series 
and led to higher omissions. On the other hand, limitations in the cloud 
masking process can also lead to false positive detections when the 
masking process fails to remove a cloud-affected pixel (Griffiths et al., 
2020; Kolecka et al., 2018). Another factor that might explain the 
overall higher errors for the mowing frequency in 2017 is the generally 

lower number of available observations from Sentinel-2 due to the start 
of the operational phase in July 2017, only. Hence, the first cut in all 
meadows could only be detected based on Sentinel-2A data which 
halved the observation frequency from 5 to 10 days. 

This constraint in data availability also had a potential impact on the 
detection of the exact mowing date of a single event. However, a clear 
increase in prediction error for 2017 could only be observed in one out 
of the three test sites. The MAE of 3.79 days over all sites and years can 
be considered remarkably low with regard to the temporal interval of S1 
and the interpolated time series of S2 and L8 (Δt = 6 days). However, it 
has to be noted that this error only accounts for correctly detected events 
(true positives), since predicted events with a distance of more than 12 
days from a reference event were assumed to no longer relate to the 
reference event itself. In comparison, Griffiths et al. (2020) reported a 
MAE between 53 and 94 days which is a multiple of the error presented 
in this study. However, it has to be mentioned that this included all 
detected events, not only true positive predictions. Stendardi et al. 
(2019) evaluated the end-of-season (EOS) in meadows in Northern Italy 
and got an MAE of 20 for S1 and 8 for S2 time series, respectively. 
Considering the lower resolution of the underlying time series (12 days 
for S1; 10 days for S2) the results are comparable to our results but the 
numbers base upon a very small sample. 

In general, mowing events were detected slightly later than the 
reference date (i.e. positive ME). This is a consequence of the pre- 
processing where mowing events from the reference data were 
assigned to the next following sequence. This necessary technical 
constraint led to the overall late detections. The time lag is relatively 
stable throughout the three years and the three sites, indicating that 
there is no major influence of management intensity or climatic condi-
tions on the prediction of mowing dates. 

5.2. Limitations and outlook 

A number of limitations and potential error sources of the data and 
methods that were used in this systematic evaluation of optical and SAR 
features for mowing detection have to be specified. The most obvious 
limitation was the inferior potential of all tested SAR features compared 
to the NDVI in spite of the consistent acquisition interval and the 
insensitivity of SAR sensors to clouds. 

Many studies that use SAR data for vegetation monitoring, reported 
humidity (atmosphere, plant) and moisture (soil) as possible sources for 
uncertainties in the detection of vegetation characteristics. This 
included both backscatter coefficient and interferometric coherence 
(Grant et al., 2015; Siegmund et al., 2016; Taravat et al., 2019; Voor-
mansik et al., 2020; Zalite et al., 2016). In our study, we minimized the 
risk of influence by dew on plants in choosing S1 orbits with afternoon 
local acquisition time. Meteorological data in general were not consid-
ered as a feature in our study. For future studies, e.g., the precipitation 
sum of a number of days before a S1 acquisition could be introduced to 
the CNN as additional feature and provide a basis for the model to weigh 
or compensate for changes in SAR features in relation to rainfall (Gar-
ioud et al., 2020). For COH, wind is a factor that might cause temporal 
decorrelation due to movement of the grass and lead to false positives, as 
mentioned by Tamm et al. (2016) and Voormansik et al. (2020), that 
could also be tackled with suitable data. 

Another aspect that has an impact on predicting mowing events in 
general is the composition of the reference data that is used for training. 
In a pre-test to our study, we found that reference data sets that contain 
more extensively managed meadows introduce a bias in the trained 
model. This led to a gain in omissions of mown sequences in more 
intensively used meadows. We accounted for this issue by stratifying the 
reference data to ensure that meadows from different intensity levels 
were included in equal proportions in each training set (compare Section 
3.3.2). However, even though we used a comprehensive reference data 
set, we did not cover the far end of highly intensively used grasslands in 
Germany with up to 6 mowing events. Wadoux et al. (2021) observed 
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accuracy assesments of spatial predictions conducted with cross- 
validation to be biased. We must therefore assume that our results are 
only an estimate of the true error of a map that is produced with the 
model. 

One constraint of the proposed processing and analysis framework 
was the definition of the parcel as the smallest prediction unit. This 
enables a direct evaluation of grassland management intensity in terms 
of agricultural monitoring purposes, e.g., for compliance regulations in 
agricultural policy. On the other hand, it creates dependencies on the 
availability of data on field boundaries. These data, however, are 
available for various countries or alternatively can be derived from 
remote sensing as well (Gómez Giménez et al., 2017; Tetteh et al., 2020). 
Another issue of using parcels is that grassland management activities 
are not always homogenous in space and time throughout the parcel 
which might lead to false detections. 

Another limitation that has to be addressed is the restriction of our 
study to meadows. Future work should include the separation of 
meadows, pastures, and mixed grassland types (mown pastures) into the 
analysis framework to be able to account for other land use activities (e. 
g. grazing) in the analysis of the temporal signature of grasslands. This is 
important not least because meadows only made up about 40% of per-
manent grassland in Germany in 2020 (Federal Statistical Office, 2021). 
De Vroey et al. (2021) stated grazing as one of the major sources of false 
positive detections. Since grazing reduces the grass height, changes in 
NDVI or SAR features are expected as well. However, the amount of 
livestock and lengths of grazing periods are likely to show variations in 
the observed signals. Another source of false positive detections can be 
introduced by fertilization practices on the parcels (e.g., manure) as 
reported by Kolecka et al. (2018). Here, the signal of the time series 
could be influenced by a layer of manure or changes of the grass after 
vehicles entered the meadow. De Vroey et al. (2021) also reported that 
the impact of varying regrowth rates of the grass between the seasons 
can further impact the detection performance. Yet, no systematical 
behavior indicating this was found in our study. 

From the technical perspective, the linear interpolation of the optical 
data to the S1-interval was a convenient step. However, this modified 
the actual recorded values and time points and might lead to the 
omission of mowing events. Our systematic evaluation concept allowed 
new insights on the capabilities, synergy, and limitations of multi- 
system and multi-sensor Earth Observation time series and provides a 
benchmark for future monitoring activities for grassland management 
intensity. Yet, due to the vast amount of data and possible variable 
combinations, not all single features could be treated separately. E.g., a 
separation of the individual polarizations of the SAR time series or the 
texture metrics within the evaluation could give deeper insight. Here, De 
Vroey et al. (2021) found coherence in VV to show better results in 
comparison to the VH polarized time series. 

All our study sites are located in the orbit overlap areas of S2. This 
fact, in addition to the combination of both sensors (S2 & L8), will have 
contributed to a large extent to the high density of the NDVI time series. 
This has to be considered for wide-area monitoring tasks, that are likely 
to include non-overlap areas, since the observation density could be 
considerably reduced. Therefore, the evaluation of the model on refer-
ence data from non-overlap areas is an important task to study the 
impact on mowing detection. 

For future studies, it is worth mentioning that alternative optical (e. 
g., PlanetScope) and SAR Earth Observation systems (e.g., ICEYE) as 
well as future missions (e.g., Landsat Next, ESA BIOMASS, and CHIME) 
could complement the data that was used. Especially the improved 
revisit-times that reach up to (potentially) daily coverage could sub-
stantially reduce the probability of missing rapidly changing phenom-
ena like mowing events (Roy et al., 2021). But, at present and for the 
time being the three sensors that provided the basis for this work 
represent the state-of-art in freely available Earth Observation data that 
are able to capture land use processes at high temporal and medium 
spatial resolution. 

6. Conclusion 

We demonstrated the impact of choice and combination of optical 
and SAR input features for the parametrization of management practices 
in permanent grasslands in Germany. In general, our study verified the 
capability of dense earth observation time series data and machine 
learning algorithms to detect mowing events. The expected synergy of 
optical and SAR satellite data was confirmed by the overall improve-
ment in classification performance when multiple input features from 
different sensors were combined. Here, the input-set of NDVI (from S2 / 
L8) together with the 6-day interferometric coherence and backscatter 
cross-ratio (from S1) yielded the overall best performance. Single 
mowing events could be detected with a temporal mean absolute error 
of 3.79 days, which can be considered low in the context of the temporal 
resolution of the underlying satellite time series. Limitations of the 
approach were recognized on intensively managed meadows where the 
mowing frequency tended to be underestimated. 

This study was the first to systematically investigate the impact of the 
combination of the most common input features from optical and SAR 
satellite systems for the detection of mowing events. Even if the evalu-
ation of a particular classification algorithm was not the main aspect, 
our work offered insights into the classification power of satellite time 
series with 1D CNNs and provides a basis for further evaluation 
regarding both the optimization of classification algorithms for dense 
satellite time series analysis and the complementarity of auxiliary input 
data for further improvement of the prediction accuracy. 

A key strength of the study was the availability of a consistent and 
extensive reference data set that represents different biogeographical 
regions and management intensity levels. This allowed for a detailed 
evaluation of the model performance and an outlook towards the 
transferability of the proposed approach to larger regions and other 
agricultural landscapes. 

Overall, the outcome of this study can support the development of 
satellite-based monitoring strategies for grassland management in-
tensity on state or national levels. Possible applications are targeted 
towards the evaluation of compliance schemes in agricultural policy or 
the assessment of grassland use intensity as an indicator of environ-
mental quality and biodiversity in agricultural landscapes. In terms of 
transferability, the general outcome of our work underlines the addi-
tional value of combining multiple optical and SAR time series features 
for Earth Observation applications. 
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