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a b s t r a c t 

Perfusion imaging is crucial in acute ischemic stroke for quantifying the salvageable penumbra and irre- 

versibly damaged core lesions. As such, it helps clinicians to decide on the optimal reperfusion treatment. 

In perfusion CT imaging, deconvolution methods are used to obtain clinically interpretable perfusion pa- 

rameters that allow identifying brain tissue abnormalities. Deconvolution methods require the selection of 

two reference vascular functions as inputs to the model: the arterial input function (AIF) and the venous 

output function, with the AIF as the most critical model input. When manually performed, the vascular 

function selection is time demanding, suffers from poor reproducibility and is subject to the profession- 

als’ experience. This leads to potentially unreliable quantification of the penumbra and core lesions and, 

hence, might harm the treatment decision process. In this work we automatize the perfusion analysis 

with AIFNet, a fully automatic and end-to-end trainable deep learning approach for estimating the vas- 

cular functions. Unlike previous methods using clustering or segmentation techniques to select vascular 

voxels, AIFNet is directly optimized at the vascular function estimation, which allows to better recog- 

nise the time-curve profiles. Validation on the public ISLES18 stroke database shows that AIFNet almost 

reaches inter-rater performance for the vascular function estimation and, subsequently, for the param- 

eter maps and core lesion quantification obtained through deconvolution. We conclude that AIFNet has 

potential for clinical transfer and could be incorporated in perfusion deconvolution software. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Stroke is currently the second leading cause of mortality and 

he third leading cause of disability worldwide ( Stroke Unit Trial- 

sts Collaboration, 2013 ). In physio-pathological terms, it is defined 

s an ‘acute neurologic dysfunction of vascular origin with sudden 

within seconds) or at least rapid (within hours) occurrence of symp- 

oms and signs corresponding to involvement of focal areas in the 

rain’ ( Force, 1989 ). Two main types of the disease can be recog-

ised: ischemic and hemorrhagic, representing 85% and 15% of to- 

al cases respectively ( Hinkle and Guanci, 2007 ). We focus on the 

schemic case, where there is a shortage in the blood supply to the 

rain tissue, cutting the provision of oxygen and glucose. During 

he ischemic event, brain tissue might become necrotic (i.e., cells 
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re dead and the tissue is irreversibly damaged, known as core ) or 

n a hypo-perfused but salvageable state (i.e., tissue is at risk but 

ould return to a healthy condition, known as penumbra ). 

.1. Perfusion CT in acute ischemic stroke 

Acute ischemic stroke therapies rely on reperfusion techniques, 

here the main goal is to reestablish the blood flow supply in 

he affected territories by thrombolysis or thrombectomy. Identify- 

ng which patients might benefit from these treatments is critical 

or clinical decision making ( Campbell and Parsons, 2018; Albers 

t al., 2016 ). To this end, assessment and quantification of the core 

nd penumbra tissues are required. In the acute scenario, com- 

uter tomography (CT) is the most widely used imaging technique, 

here perfusion CT (CTP) enables the determination of the core 

nd penumbra areas. An iodinated contrast agent is intra-venously 

njected in the patient for 7–10 s, and continuous CT acquisition 
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Fig. 1. Contrast enhancement curves for different brain tissues. Left: a perfusion CT 

example from ISLES18. Right: Corresponding time curves at the indicated locations. 

Healthy and diseased brain areas have been identified through diffusion weighted 

imaging. The healthy and core time-curves are scaled by a factor of six for visual- 

ization. HU: Hounsfield units. 
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s followed for around 50 s ( Fieselmann et al., 2011 ). As such, 4D

ata is generated, resulting in a brain volume imaged during the 

gent passage through the brain vessels and parenchyma. The pro- 

ess for evaluating brain tissue status is performed by firstly ob- 

aining parameter maps from the CTP time series and by later 

pplying a tissue discrimination rule (mainly, thresholding). Typ- 

cal maps include cerebral blood flow (CBF), cerebral blood vol- 

me (CBV), time to peak (TTP) and time to the maximum of the 

esidue function (Tmax). It is worth saying that there is no gold

tandard for quantifying perfusion metrics ( Lorenz et al., 2006 ), 

nd all methods found in literature provide merely non-exact solu- 

ions. Experimental studies have shown that CBV and CBF discrim- 

nate ischemic and oligemic tissue with 90.6% and 93.3% sensitivity 

nd specificity, respectively, when using histological measurements 

s ground truth ( Murphy et al., 2007 ). The most widely used meth-

ds for CTP parameter map estimation are based on deconvolution 

 Konstas et al., 2009 ), which provides a solution to the indicator 

ilution theory described by: 

 tissue (t) = c art (t) � h (t) (1) 

here c tissue (t) represents the CTP contrast enhancement in a 

oxel of tissue, c art (t) is the contrast enhancement in the arter- 

es (known as arterial input function, from now on ‘AIF’), h (t) 

s the flow-scaled residue function and � represents the convo- 

ution operator. The delay-invariant singular value decomposition 

econvolution is the preferred technique for algebraically solv- 

ng Eq. (1) and it is widely implemented in software packages 

 Fieselmann et al., 2011; Konstas et al., 2009; Kosior and Frayne, 

007; Kudo et al., 2010; Vagal et al., 2019 ). The method has been

xtensively validated in clinical practice, showing better perfor- 

ance compared to similar techniques ( Konstas et al., 2009; Fiesel- 

ann et al., 2011 ) like the maximum slope approach ( Konstas 

t al., 2009; Klotz and König, 1999 ), non-delay invariant decon- 

olution ( Østergaard et al., 1996a,b ), etc. Deconvolution methods 

equire as input to the algorithm the CTP series and two vascu- 

ar functions: the AIF and the venous output function (VOF). These 

ascular functions are reference time-curves representing the con- 

rast concentration inlet and outlet to the tissue under consider- 

tion c tissue (t) . Fig. 1 shows an example case of vascular functions 

i.e. AIF and VOF) and contrast enhancement curves for healthy and 

ore tissue areas. In clinical practice the AIF and VOF are gener- 

lly selected by a radiologist, a time demanding and highly vari- 

ble process that implies selecting in the CTP series the optimal 

andidate voxels. Frequently, a single voxel per vascular function is 

elected, which leads to low SNR curves. Voxel selection is, more- 

ver, subject to the professionals’ training and experience, which 

ot only introduces human bias ( Lorenz et al., 2006 ) but it may

lso affect CBF maps depending which side of the brain the AIF 

s chosen from ( Wu et al., 2003; Thijs et al., 2004 ). The AIF is so
2 
ritical for generating accurate maps that very small changes in 

ts shape and/or location may produce a profound effect over the 

enerated maps ( Mlynash et al., 2005; Mouridsen et al., 2006 ). Be- 

ides, given the acute context of the disease, a fast voxel selection 

as to be performed. It has been shown that for every 30-minute 

elay in reperfusion, the probability of good outcome decreases by 

0% ( Khatri et al., 2014 ). Given these limitations, automatic, fast 

nd reproducible core and penumbra quantification are highly de- 

ired. 

.2. Automatic core and penumbra segmentation 

Automatic machine and deep learning approaches for core and 

enumbra quantification have been explored in two ways: 1) by 

irect parameter maps estimation and 2) by direct lesions seg- 

entation. On one hand, automatic parameters maps estimation 

i.e., bypassing deconvolution) was explored in ( McKinley et al., 

018; Meier et al., 2019; Robben and Suetens, 2018; Ulas et al., 

018a,b ). However, the main drawback of these methods is the 

act that silv er standard maps obtained through deconvolution or 

ther methods (e.g. compartmental models in the case of perfu- 

ion MRI) are approximated. Note that in these approaches there is 

lso an AIF assumption behind the parameter maps ground truth. 

s such, these methods do not improve the perfusion gold stan- 

ard, but aim to reproduce it with a different model. On the other 

and, direct lesion segmentation approaches use native CTP data 

ith or without perfusion maps as model inputs. Thus, the neu- 

al networks are used for finding a non-linear transformation from 

TP and/or CBF, CBV, MTT and Tmax that estimates brain lesions. 

or instance, in ( Bertels et al., 2018 ) and ( Robben et al., 2020 ) di-

ect lesion segmentation is conducted by only using CTP images. 

hile the former work exploits contralateral brain information 

nto a U-Net based architecture, the latter work includes metadata 

nd vascular functions into a multiresolution DeepMedic-based 

 Kamnitsas et al., 2017 ) architecture. Other works include param- 

ter maps obtained through deconvolution as inputs to the model 

 Clèrigues et al., 2019; Abulnaga and Rubin, 2018; Song and Huang, 

018; Wang et al., 2020 ). Similarly as in Bertels et al. (2018) ,

lèrigues et al. (2019) exploit brain symmetry information with U- 

ets. Song and Huang (2018) and Wang et al. (2020) propose, in- 

tead, to synthesize pseudo diffusion weighted imaging (DWI) data 

o improve core lesion segmentation. While deep learning based 

pproaches showed good overall performance, their main limita- 

ion is the poor model’s explainability and lack of quality control. 

ince these fully ‘black-box’ methods do not allow AIF or perfusion 

aps inspection, they preclude physicians to recompute the pa- 

ameter maps with a manually corrected AIF in clinically or tech- 

ically challenging cases. As such, the clinical transferability poten- 

ial of these models is limited. In this work we aim to automatize, 

nstead, the well validated deconvolution process by the automatic 

election of vascular functions. In this way, we avoid approximat- 

ng parameters that can be directly estimated through a physical 

odel while also preserving explainability and quality control in 

linical settings. 

.3. Automatic vascular function selection 

Automatic vascular function selection has been explored for 

erfusion MRI in ( Murase et al., 2001; Mouridsen et al., 2006; 

eruzzo et al., 2011; Shi et al., 2014; Shi and Malik, 20 0 0; Yin

t al., 2015; Fan et al., 2019; Winder et al., 2020 ). These meth- 

ds mainly rely on clustering techniques, where fuzzy c-means 

 Murase et al., 2001 ), K-means ( Mouridsen et al., 2006 ), hier-

rchical clustering ( Peruzzo et al., 2011 ), gamma-variates based 

lustering ( Rausch et al., 20 0 0 ) and affine propagation clustering 

 Shi et al., 2014 ) were explored. Heuristic approaches have also 
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een traditionally used, where some rules are defined for finding 

he best-matching curve, such as in ( Mlynash et al., 2005; Rempp 

t al., 1994 ). Other techniques use normalized cuts ( Shi and Ma- 

ik, 20 0 0; Yin et al., 2015 ) and independent component analy- 

is ( Calamante et al., 2004 ). Moreover, vascular function estima- 

ion using deep neural networks can be conducted through seg- 

entation approaches aiming to detect arterial voxels candidates. 

an et al. (2019) proposed a deep learning segmentation approach 

or delineating AIF candidates in perfusion MRI. The method uses 

wo independently optimized 3D CNNs for conducting arterial tis- 

ue segmentation: one extracting spatial information in the x −
 − z axis, and another one extracting temporal-information in the 

 − y − t axis (with t representing the temporal domain). After- 

ards, the networks’ results are merged using a late-fusion sup- 

ort vector machine. More recently, Winder et al. (2020) proposed 

 binary output CNN for classifying arterial v s non-arterial vox- 

ls in CTP and perfusion MRI. The AIF is then estimated by ge- 

metrically averaging the most probable arterial voxels. Though 

egmentation or classification methods can identify potential good 

urves, they have some limitations: i) They require complete man- 

al annotation of all “good-looking” voxel curves, which is very 

ime demanding and ii) They could not always guarantee optimal 

IF curve selection (for a possible definition of optimal AIF selec- 

ion, see Methods 3.1.2 ) since the algorithms are mainly optimized 

o perform selection based on spatial information rather than on 

ime profiles. Segmentation methods may lead, for instance, to the 

ndesired selection of noise-corrupted, low contrast enhanced or 

ime delayed AIFs, which introduce errors in the deconvolution al- 

orithms. In CTP imaging, however, vascular function selection is 

nder-explored. Excepting the work of Winder et al. (2020) the few 

xisting methods are mostly private and patented. Besides, most of 

he methods developed for perfusion MRI have not been validated 

or CTP. Despite perfusion CT and perfusion MRI having common 

orking points, there are still technical differences that may affect 

he automatic selection of CTP vascular functions (such as lower 

issue-density contrasts and lower SNR of CT compared to MRI). 

oreover, additional challenges in CTP include overlapping den- 

ity distribution of bone, artifacts and calcifications with the iodine 

ontrast. 

In this work we propose AIFNet, an end-to-end supervised con- 

olutional neural network devised for estimating vascular func- 

ions (i.e. AIF and VOF) in perfusion imaging. The model is easy 

o train and deploy given the minimal data annotation required, 

hich can be as little as a single voxel per vascular function. 

IFNet receives 4D CTP series as input and generates as output 

) the estimated AIF and VOF curves and ii) a voxel-wise, inter- 

retable probability map representing the voxelwise contribution 

o the estimated vascular signal. Unlike other approaches, AIFNet 

s optimized at a vascular function level, which helps the network 

o better learn the time-curve profiles. The method preserves clin- 

cal interpretability and also enables quality control of the selected 

IF/VOF brain vasculature, thus enhancing its clinical transferabil- 

ty potential. Through an extensive analysis at signal, parameter 

aps and lesion quantification levels, we show that our method 

erforms almost as good as manual raters on the open ISLES18 

cute stroke database. 

. Methods 

.1. Function estimation with deep learning 

AIFNet is a fully end-to-end deep learning approach for vascu- 

ar function estimation. It works by estimating a 3D probabilistic 

olume that represents the voxelwise contribution to the vascular 

ignal. The advantage of having an averaged curve using multiple 

oxels lies on the higher function’s SNR as well as on the method 
3 
obustness. The network receives as input the 4D perfusion se- 

ies x (t) and outputs the predicted arterial and venous functions 

s ˆ y (t) = AIF Net (x (t )) , being x (t ) = { x t ; t = 1 , 2 , . . . , T } with x t rep-

esenting the sampled time point volumes of dimension M×N×Q . 

e want to find for the considered volume, its corresponding vas- 

ular functions (AIF and VOF, for simplicity not differentiated in 

he notation) represented by ˆ y (t) = { ̂  y t ; t = 1 , 2 , . . . , T } , where ˆ y t 
s the estimated signal at time t (in Hounsfield units). For find- 

ng ˆ y (t) , we represent each time point ˆ y t as a weighted average of 

ll voxels of the volume x t at that t time point as: 

ˆ 
 t = 

Q ∑ 

q =1 

N ∑ 

n =1 

M ∑ 

m =1 

x t (m, n, q ) ∗ P v ol (m, n, q ) (2) 

here P v ol is the 3D probabilistic volume containing the voxelwise 

ontribution to the vascular function and fulfilling: 

Q 
 

 =1 

N ∑ 

n =1 

M ∑ 

m =1 

P v ol (m, n, q ) = 1 (3) 

Our problem is hence confined to finding P v ol . With this aim, 

IFNet receives as input native CTP series, and generates as out- 

uts P v ol and its associated vascular function. To find ˆ y t it is impor- 

ant to optimize the similarity of the shape rather than the ampli- 

ude. This is due to two facts: 1) the absolute contrast values of 

he AIF can be disregarded, since given the high partial volume 

ffect in the arteries, the AIF is later recalibrated with the VOF 

 Fieselmann et al., 2011 ) (also see Section 2.4.1 ) and 2) a subop-

imal deconvolution might occur by selecting delayed input func- 

ions. The penalty in the time domain is introduced by using Pear- 

on’s correlation as loss function as follows: 

 (y (t) , ̂  y (t)) = −
∑ T 

t=1 (y t − y )( ̂  y t − ˆ y ) 
√ ∑ T 

t=1 (y t − y ) 2 
√ ∑ T 

t=1 ( ̂  y t − ˆ y ) 2 
(4) 

here y (t) and ˆ y (t) are the ground truth and predicted vascu- 

ar functions with respective mean values y = 

1 
T 

∑ T 
t=1 y t and ˆ y = 

1 
T 

∑ T 
t=1 ˆ y t . 

.2. Architecture 

AIFNet architecture is shown in Fig. 2 . It uses 3D convolutional 

ayers for volumetric feature extraction, which are finally trans- 

ated into a probabilistic volume through a 3D softmax opera- 

ion. After finding P v ol , a voxelwise multiplication and 3D average 

ooling blocks are used for obtaining ˆ y (t) , by means of Eq. (2) .

ach convolutional layer L k = { k = 1 , 2 , . . . , K} has 2 3+ k filters with

 3 × 3 × 3 kernel with exception of L 1 , which uses a 3 × 3 × 1 one

ith the aim of compensating the lower image resolution along 

he z-axis. The CTP time points are incorporated as channel infor- 

ation into the network. A fixed number of T time points are used 

or all scans. In our experiments we use a T equal to the smallest 

umber of time points found among all scans. Rectified linear units 

re used as activation functions ( Krizhevsky et al., 2012 ). For map- 

ing the convolutional layers to a single probabilistic volume, we 

dd an extra convolution block ( L out ) with only one filter in be-

ween L K and the softmax operator. 

.3. Training phase 

The network is optimized using stochastic gradient descent 

ith momentum. A batch size of one sample is used. Regulariza- 

ion of the model is reached using a perfusion-specific data aug- 

entation approach. 
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Fig. 2. AIFNet architecture. The CTP time points x t ( t = 1 , 2 , . . . , T ) are incorporated as channels in the network. All convolutional layers use 3 × 3 × 3 kernels except L 1 , 

which uses 3 × 3 × 1 . L k is the k − th convolutional layer (with k = 1 , 2 , . . . , K). Inside each feature block the number of channels used is indicated. P v ol is the probabilistic 

volume. The 3D average pooling block averages the volumetric information along the x − y − z axes, such that the predicted vascular function ˆ y (t) is a 1D vector of length 

T . 
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.3.1. Perfusion specific data augmentation 

We adapt the data augmentation strategy proposed in 

 Robben and Suetens, 2018 ) for working at an image level. Two 

erfusion specific phenomena are modelled: i ) the variability of 

he contrast bolus arrival, which depends on the injection proto- 

ol and the patient’s cardiovascular system and ii ) the variability 

f the curve’s peak-to-baseline (PTB) values, which depends on the 

odine concentration in the contrast agent. Bolus arrival changes 

re simulated by randomly shifting the time attenuation curves, for 

hich the first or last CT volumes are replicated (late or early sim- 

lated arrivals respectively). On the other hand, curve PTB changes 

re simulated in a three-step approach. Firstly, the pre-contrast av- 

raged volume is subtracted from the perfusion series. Secondly, a 

andom scaling is applied. Thirdly, the pre-contrast volume is re- 

dded to the perfusion series. Uniform distributions are used for 

imulating the random time shifts and the random PTB scaling. 

.4. Testing phase 

In the testing scenario, vascular function predictions are ob- 

ained by feeding the parametrized AIFNet model with the unseen 

TP scans. The voxelwise multiplication and 3D average pooling 

locks of AIFNet are performed over the full-length CTP perfusion 

eries, with the aim of obtaining vascular function predictions that 

reserve the same number of time points as the native CTP scan. 

or VOF a signal recalibration step is also applied, as detailed be- 

ow. 

.4.1. VOF signal recalibration 

Our multiple signal averaging approach has the disadvan- 

age of underestimating the VOF peaks. Since the VOF’s role in 

econvolution-based perfusion analysis is to compensate for par- 

ial volume effect in the AIF by its recalibration, it is important that 

ts PTB matches the same amplitude as single CTP candidate vox- 

ls. Ideally, a suitable VOF curve has the highest PTB value among 

ll venous voxel candidates. Therefore, we use a probabilistic vol- 

me that encodes voxelwise contribution to the function estima- 

ion. Firstly, we generate a 3D volume encoding the voxelwise PTB 

alues. Secondly, we scale this volume with P v ol in order to ob- 

ain probabilistic-weighted PTB values. The VOF is finally recali- 

rated with the maximal value found in the weighted PTB distri- 

ution. We prefer using weighted PTB instead of only considering 

 v ol , since the highest probability voxel of P v ol might have a low 

TB, thus leading to an underestimation of the VOF PTB value. 
4 
. Experiments 

.1. Data 

.1.1. ISLES18 

The large public multi-center and multi-scanner ISLES18 dataset 

s used for our experiments ( Maier et al., 2017; Kistler et al., 2013;

ereda et al., 2016 ). It consists of 156 CTP acquisitions acquired 

rom 103 acute stroke patients from three US centers and one Aus- 

ralian center. In the ISLES challenge, data is split into a train (94 

TP volumes scanned from 63 patients) and a test (62 CTP volumes 

canned from 40 patients) sets. The mismatch between patients 

nd scans is due to the limited field of view of some scanners, 

hich leads to two independent CTP acquisitions from different 

rain regions in some cases. We have directly accessed the clean 

nd preprocessed data through the ISLES challenge site ( http:// 

ww.isles-challenge.org/) . For each acquisition, CTP and DWI data 

ere performed within 3 hours of each other. The open database 

rovides CTP scans for the whole dataset and infarct core lesion 

asks (delineated in DWI images) for the training set only. Sub- 

ects having more than 50% of the DWI lesion with normal per- 

usion at the moment of the CTP acquisition were excluded, as 

ell as those subjects with bad quality of the baseline CTP data 

nd/or with inappropriate image coregistration due to distortions 

 Cereda et al., 2016 ). CTP volumes have been motion corrected 

nd coregistered for matching the DWI lesion masks. Finally, scans 

ave been spatio-temporally resampled (with a 256 × 256 dimen- 

ion matrix and with a temporal resolution of one volume per sec- 

nd). For a more detailed description of this database the reader is 

eferred to ( Cereda et al., 2016 ). 

.1.2. Vascular function annotation 

All training and testing scans are in-house annotated by two 

ndependent raters (DR & EdlR). A single global AIF and VOF 

er scan is selected (i.e., functions are measured from a major 

rtery/vein and used as global inputs for the tissue in the whole 

rain ( Calamante, 2013 )), where the following AIF time attenuation 

urves are preferred: i ) contralateral voxels to the affected area 

rather than ipsilateral ones) ( Kealey et al., 2004; Calamante, 2013 ), 

i ) Early bolus arrival AIF curves with a large and narrow peak 

nhancement ( Calamante, 2013 ) iii ) Curves with high contrast-to- 

oise ratio and, ideally, less affected by partial volume effect (qual- 

tatively assessed) ( Calamante, 2013 ). The best voxel candidate (fol- 

owing the just mentioned criterion) among the anterior cerebral 

rteries, middle cerebral arteries, internal carotid arteries or the 

asilar artery are chosen as AIF. On the other hand, VOF curves 

re located in the superior sagittal, transverse or sigmoid sinuses, 

hich are large vessels less affected by partial volume effect than 

ther vessels. All vascular function annotations are provided as 

upplementary material. 

http://www.isles-challenge.org/)
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Fig. 3. Vascular function metrics. FWHM: Full width at half maximum; PTB: Peak 

to baseline; T peak : Time at which the curve peak occurs. 
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.2. Performance assessment 

In order to evaluate the performance of AIFNet, we conduct a 

-fold (train 70%, validation 10%, test 20%) cross-validation exper- 

ment using the annotations of rater #1. All training and testing 

ases of the ISLES18 database are used in this experiment. In each 

old, the train set is used to parametrize the network, the vali- 

ation set to apply an early-stopping criterion (with the aim of 

voiding overfitting) and the test set is independently used for pre- 

icting unseen cases. For an in-depth evaluation of the proposed 

ethod, results are assessed at a signal, parametric map and le- 

ion quantification level. 

.2.1. Vascular function 

Since there is no ground truth for the vascular functions we 

ompare the predictions ˆ y (t) against the manual annotations y (t) 

f both the raters (from now on, we specifically refer to our 

ethod as ˆ y AIF Net (t) , to rater # 1 as y r1 (t) and to rater # 2 as

 r2 (t) ). The agreement between y (t) and ˆ y AIF Net (t) is only com- 

uted over the time domain since the AIF absolute contrast val- 

es rely on the VOF rescaling (see sections 2.3 and 2.4.1 ). To this

nd, we measure the time at which the curve peak occurs (namely 

 peak ), which should indicate potential time shifts of the predic- 

ions with respect to ground truth. Moreover, as a measure of 

he function’s width, we quantify the full-width at half-maximum 

FWHM) interval. FWHM points are preferred to the curve’s on- 

et/offset since these are more difficult to measure and in many 

ases the offset point is missing. Besides, for evaluating the VOF 

ecalibration strategy, we assess the whole signal agreement using 

ean squared error and the measured PTB values. All signal met- 

ics are illustrated in Fig. 3 . 

.2.2. Parameter maps and lesion quantification 

Parameter maps (CBF, CBV, MTT, Tmax) are computed using the 

ell known time-delay invariant singular value decomposition de- 

onvolution. The method is the most commonly found in (clinical) 

oftware. Since deconvolution is a mathematically ill-conditioned 

roblem, regularization techniques are necessary. We use Tikhonov 

egularization over the singular values under a Volterra discretiza- 

ion scheme ( Sourbron et al., 2007 ). Absolute and relative parame- 

er maps are computed, where the relative ones are calculated by 

he voxelwise normalization of the absolute ones with the mean 

ontrol tissue region value. Control tissue is defined as the region 

ith normal perfusion (i.e., T max < 6 s ( Lin et al., 2016 )). 

To understand the impact of the vascular functions on the per- 

usion metrics we compare the parameter maps (obtained through 
5 
econvolution) between the automatically and manually annotated 

ascular functions. The same deconvolution strategy is adopted in 

oth cases. In this way we are sure that variations are only due 

o the vascular functions. The assessment of the method in terms 

f lesion quantification is conducted by comparing i ) the hypoper- 

used and core masks obtained from CTP with automatically anno- 

ated vascular functions against the ones obtained using the curves 

abeled by the two experts and ii ) by comparing the obtained core 

asks against the ISLES18 DWI masks. Note that this latter com- 

arison is only done for the ISLES18 training set, since DWI lesion 

asks are not available for the test set. Hypoperfused tissue was 

efined as brain tissue with T max > 6 s ( Lin et al., 2016 ) and core

issue was defined within the hypoperfused area as rCBF < 38% (a 

utoff previously found to be optimal by Cereda et al. (2016) ). 

.2.3. Comparison with other methods 

Besides the comparison with the two manual raters, our 

ethod is compared with an unsupervised clustering AIF selec- 

ion approach ( Mouridsen et al., 2006 ) and with two similar CNNs: 

 regression and a segmentation network, both of them modi- 

ed versions of AIFNet. For having comparable deep learning ap- 

roaches, we keep the network’s architecture and configuration as 

lose as possible to AIFNet. The same perfusion-specific data aug- 

entation of Section 2.3.1 is used for both the segmentation and 

egression networks and a unitary batch size is used. The networks 

re tested following the same 5-fold cross-validation experiments 

sed for AIFNet by assuring that for all the models the same train- 

alidation-test splits are preserved. 

Unsupervised clustering AIF selection We use an in-house 

eimplementation of the unsupervised clustering approach of 

 Mouridsen et al., 2006 ). Firstly, non-arterial voxels are discarded 

sing the area under the curve (with a threshold set at the 

0th percentile of candidates) and the roughness (defined as 
 T 
0 [ C 

′′ (t )] 2 dt , with a threshold set at the 25 % most irregular can-

idates) of each voxels’ time curve C(t) . Secondly, a two-steps K- 

eans (with 5 clusters) is performed for separating other tissues 

nd venous voxels from the arterial cluster. In each K-means iter- 

tion, the arterial cluster is selected as the one having lowest first 

oment of its mean curve. The final AIF is the mean curve with 

owest first moment obtained after applying K-means twice. 

Regression AIFNet The regression CNN has been introduced by 

ur group in ( de la Rosa et al., 2020 ). It consists of a 3D + 2D neu-

al network equipped with six convolutional layers with average 

ooling and with two fully connected layers at the end. The last 

ully connected layer is a 1D vector with same number of neurons 

s time points in the perfusion CTP and represents the vascular 

unction prediction ˆ y Reg (t) . The 3D to 2D data transformation in 

he network is conducted by squeezing the z-axis information by 

eans of average pooling. Homogenizing the z-axis dimension is 

equired for dealing with the variable CTP coverage (varying be- 

ween 2 and 16 slices per scan). The 3D convolution kernels have 

imension 3 × 3 × 3 and the 2D convolution ones have dimension 

 × 3 . Unlike the original work where optimization was carried out 

ith a segmentation loss for the core tissue, in this work the Pear- 

on’s correlation coefficient is preserved as loss function. The net- 

ork is optimized with RMSprop gradient descent ( Hinton et al., 

012 ). 

Segmentation AIFNet This network is fed with AIF binary masks 

s ground truth. It is similar to AIFNet by preserving the whole 

rchitecture except the voxelwise multiplication and 3D average 

ooling blocks (see Fig. 2 ). Besides, the last convolutional block 

 L out ) has two kernels followed by a softmax operation for conduct- 

ng background and foreground segmentation. For compensating 

he large class imbalance, this network is trained using weighted 

ategorical cross-entropy as loss function and is optimized using 

tochastic gradient descent with momentum. The AIF is then esti- 
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Table 1 

AIF agreement among methods and rater # 1 for the AIF signals as a whole, as well as for their T peak and FWHM parameters. Pearson’s correlation coefficients are 

computed between pairs of AIF signals; the mean (standard deviation) and 5 th - 95 th percentile interval are provided. For the T peak and FWHM parameters, Pearson’s 

correlation coefficients and errors (in seconds) are reported across all scans as mean (standard deviation). y r1 (t) , y r2 (t) : AIF annotated by raters # 1 and # 2; ˆ y Kmeans (t) , 

ˆ y Seg (t) , ˆ y Reg (t) , ˆ y AIFNet (t) : AIF estimated with the K-means approach ( Mouridsen et al., 2006 ), with the regression CNN ( de la Rosa et al., 2020 ), with the segmentation 

CNN and with AIFNet, respectively; r: Pearson’s correlation coefficient; T peak : time at which the peak of the curve occurs; FWHM: full-width at half-maximum. P5 th : 

5 th percentile; P95 th : 95 th percentile. Paired significance tests are performed between AIFNet and the other approaches. ∗: p-value < 0.05; † : p-value < 0.01. The values 

in bold indicate the outperforming method for the metric under consideration. 

Signal T peak FWHM 

r r (P5 th , P95 th ) r Error [s] r Error [s] 

Inter-rater 0.971 (0.075) † (0.883, 1) 0.964 –0.14 (1.29) † 0.902 –0.08 (1.74) † 

y r1 (t) vs ˆ y Kmeans (t) 0.610 (0.315) † (–0.101, 0.955) 0.678 –5.37 (5.55) † 0.369 –1.95 (6.27) † 

ˆ y Seg (t) 0.677 (0.15) † (0.393, 0.897) 0.851 –3.95 (3.43) † 0.587 –4.43 (5.03) † 

ˆ y Reg (t) 0.837 (0.260) † (0.563, 0.986) 0.740 –0.30 (3.30) 0.419 –2.86 (3.65) † 

ˆ y AIFNet (t ) 0.965 (0.05) (0.838, 0.997) 0.940 –0.55 (1.75) 0.854 –0.89 (2.14) 
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ated as the average function among the top ranked voxels, such 

hat the AIF Pearson’s correlation is maximized. 

.2.4. Statistical analysis 

For evaluating the vascular signals, Pearson’s correlation coeffi- 

ients are computed between pairs of signals and across all scans 

or the considered metrics (i.e. T peak , FWHM and PTB). Mean, stan- 

ard deviation and (5th, 95th) percentiles are provided. Addition- 

lly, to assess a potential bias of the different metrics, we compute 

he mean and standard deviation of the errors. The assessment of 

he parameter maps is performed using Pearson’s correlation co- 

fficients computed per scan within the brain masks (excluding 

ackground, skull, ventricles and vessels). Hypoperfused and core 

issue segmentations are evaluated by comparing the CTP masks 

btained by the different methods with the CTP masks obtained 

y the experts. Additionally, for the core tissue we compare the ex- 

erts and the different methods CTP masks with the ground truth 

WI masks from ISLES18. The mean volume error and the mean 

bsolute volume error are used for evaluating lesion volumetric 

greement with the ground truth. The Dice coefficient is used as 

 general segmentation performance metric. In all cases, paired 

-tests are performed after visual inspection of the data distribu- 

ions. Under the presence of non-normal distributions, outliers, or 

eteroskedasticity, a paired Wilcoxon-test is preferred. The signifi- 

ance level is set in all cases to α = 0.05. 

. Results and discussion 

All models are trained on a machine with a Tesla K80 Nvidia 

PU (12 Gb dedicated), with 64 gb RAM and an Intel Xeon E5- 

686 v4 multiprocessor. The training stage takes ∼11 hours for an 

IF/VOF model. Manual annotations take between 2 and 4 minutes 

or both functions per scan, depending on the number of slices of 

he volume. On the other hand, predictions take ∼6 seconds per 

ach vascular function per scan. 

.1. Signal agreement 

.1.1. AIF 

Table 1 shows a summary of the different methods’ perfor- 

ance compared to rater # 1. Likewise, the comparison with rater 

 2 is shown in Table S1 (supplementary materials). The automatic 

redictions of AIFNet obtain high agreement with both raters in all 

he metrics considered. There is an overall better agreement with 

 r2 (t) , even when the network is trained using the y r1 (t) anno-

ations, suggesting good generalization at inter-rater level. When 

he entire vascular signal is evaluated, the method obtains Pear- 

on’s r values reaching the raters range. A slightly lower 5 th per- 

entile is observed in the agreement between ˆ y (t) and y (t) 
AIF Net r1 

6 
hen compared with the inter-rater agreement. This discordance 

s, however, not found when comparing ˆ y AIF Net (t) with y r2 (t) , 

hich obtains fully overlapping ranges with the inter-rater perfor- 

ance. The 95 th percentile obtained between AIFNet and the raters 

s, as expected, close to r = 1 but never reaching perfect agree- 

ent, due to the weighted multivoxel selection strategy proposed. 

When the method performance is assessed in terms of T peak , 

 high correlation with the manual annotations is found. It can 

e observed from the inter-rater comparison that the T peak an- 

otations of y r2 (t) are slightly delayed when compared with the 

nes of y r1 (t) . The AIF functions that AIFNet selects are on aver-

ge ∼ 0.5 seconds delayed when compared with the raters. This 

emporal trend toward delayed events explains the slight overall 

ower agreement between AIFNet and both raters. Similarly, the 

greement that is obtained for the FWHM between AIFNet and the 

aters is slightly lower than the inter-raters level. The predicted 

WHM windows are on average ∼ 1 second longer than the man- 

al ones. These time differences found in T peak and FWHM with 

ur method are below the temporal CTP resolution (one frame, 

he minimal possible). The main reason behind these differences 

s the flip side of the coin of the multivoxel selection strategy. 

hus, vascular function estimation based on multiple voxels could 

ot always provide the earliest bolus arrival with the highest and 

arrowest curves, but averaged values over the activated voxels. Se- 

ecting vascular functions with these characteristics is, hence, not 

lways fully possible with our strategy, since generally a single or 

ust a few voxels fulfill these requirements for AIF. 

The comparison of the different methods shows that AIFNet 

as a much better agreement with the raters than the other ap- 

roaches. While the segmentation CNN slightly outperforms the 

-means method, the regression CNN outperforms both the seg- 

entation CNN and the K-means approach ( Table 1 ). The regres- 

ion CNN not only correlates better with the raters at signal level 

ut also localized with less delay T peak than these two other meth- 

ds. There are no statistically significant differences in the T peak 

rrors of the regression CNN and the ones of AIFNet. An explana- 

ion to this observation could be in the optimized loss function: 

he regression network, likewise AIFNet, is optimized at the pre- 

icted time-curve level instead of at the image spatial level (which 

s the case for the segmentation CNN). Another observation is that 

he segmentation CNN (which comprises almost the same archi- 

ecture as AIFNet but optimized with a segmentation loss) ob- 

ained a much worse performance than our proposal. The segmen- 

ation CNN fails in localizing properly the AIF peaks, and provides 

elayed and much wider curves. These results suggest that the 

sed Pearson loss function enhances the task performance by i ) 

ostly activating arterial voxels with good AIF curves and by ii ) 

electively discarding suboptimal arterial voxels whose AIFs are de- 

ayed, highly noise-corrupted or with poor contrast enhancement. 
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Fig. 4. Predicted arterial input functions (AIF) on diverse quality ISLES18 scans. First image: a noise-free scan. Second image: a head-motion corrupted scan. Third image: an 

early bolus arrival scan (the pre-contrast increase signal is missing). Forth image: a truncated perfusion scan (the curve tale is missing). y r1 (t) , y r2 (t) : AIF annotated by raters 

1 and 2; ˆ y Kmeans (t) , ˆ y Seg (t) , ˆ y Reg (t) , ˆ y AIFNet (t) : AIF estimated with K-means ( Mouridsen et al., 2006 ), with the regression CNN ( de la Rosa et al., 2020 ), with the segmentation 

CNN and with AIFNet, respectively. 

Table 2 

VOF agreement between AIFNet and both the raters for the VOF signals as a whole, as well as for their T peak , FWHM and PTB parameters. Pearson’s correlation 

coefficients are computed between pairs of VOF signals; the mean (standard deviation) and 5 th - 95 th percentile interval are provided. For the T peak , FWHM and PTB 

parameters, Pearson’s correlation coefficients and errors (in seconds for T peak and FWHM and in Hounsfield units for PTB) are reported across all scans as mean 

(standard deviation). y r1 (t) − y r2 (t) : annotated VOF signals by raters # 1 and # 2; ˆ y AIFNet (t) : predicted VOF signals with AIFNet; r: Pearson’s correlation coefficient; 

MSE: Mean squared error; HU: Hounsfield units; T peak : time at which the peak of the curve occurs; FWHM: full-width at half-maximum; PTB: Peak-to-baseline; P5 th : 

5 th percentile; P95 th : 95 th percentile. A paired significance test is performed between the inter-rater results and the AIFNet-raters ones. ∗: p-value < 0.05; † : p-value < 

0.01. 

Inter-rater y r1 (t) vs ˆ y AIFNet (t) y r2 (t) vs ˆ y AIFNet (t) 

Signal 

r 0.985 (0.047) 0.981 (0.069) 0.983 (0.051) 

r (P5 th , P95 th ) (0.944, 1) (0.914, 0.999) (0.925, 0.999) 

MSE [HU] 1424 (3622) 1235 (2623) 1558 (3740) 

MSE (P5 th , P95 th ) (0, 7148) (17, 7024) (25, 8213) 

T peak 

r 0.980 0.955 0.963 

Error [s] 0.27 (1.14) –0.07 (1.69) † –0.33 (1.51) † 

FWHM 

r 0.829 0.827 0.911 

Error [s] 0.12 (2.28) –0.04 (2.42) –0.15 (1.74) 

PTB 
r 0.921 0.953 0.919 

Error [HU] 11 (55) 9 (44) –2 (58) 
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n Fig. 4 , AIF predictions with the different methods over different 

uality scans are shown. As it can be seen, AIFNet closely follows 

he manual rater annotations even under challenging scenarios. 

.1.2. VOF 

In Table 2 a summary of the performance of our method for 

OF estimation is shown. A high agreement with the manual an- 

otations is obtained, which is better than the performance ob- 

ained for the AIF estimation. These results can be expected since 

OF compared to AIF is less affected by partial volume effect, 

as higher SNR and hence provides lower inter-rater variability 

 Table 2 ). 

For all the considered metrics excepting T peak there are no sta- 

istically significant differences between the inter-rater agreement 

nd the AIFNet v s raters agreement. When the entire VOF sig- 

als are considered, a high correlation with the manual annota- 

ions is achieved, reaching inter-rater variability ranges. In terms 

f T peak , a good performance is obtained though the same delay- 

ng effect previously described for AIF is found. In this case, how- 

ver, the delays are within the inter-rater range. For FWHM, the 

greement between our method and rater # 2 is much higher than 

mong raters. Unlike the AIF analysis, it is worth noticing that 

here is no flattening or widening of the VOF curves predicted with 

IFNet. The evaluation of the recalibration strategy using the curve 

ean squared error and the PTB metric shows a high agreement 

nd high correlation between AIFNet and the manual annotations 

eaching inter-rater ranges. In the assessment of the mean squared 

rror, the inter-rater’s 5th percentile is zero, which implies that the 

aters have sometimes selected the exact same voxel. The evalua- 

ion of the PTB errors shows no clear trend of our method towards 
7 
nder/over-estimation of the VOF signals, suggesting a good overall 

erformance of the recalibration strategy. 

.1.3. Arterial localization 

The anatomical localization that AIFNet conducts can be as- 

essed from the voxelwise activation encoded in P v ol . Unlike most 

IF selection approaches selecting only few candidates, AIFNet al- 

ows multiple voxel contribution for building the vascular func- 

ions. 

In Fig. 5 the best and worst AIF (in correlations terms) among 

ll predictions are shown. While the prediction with higher agree- 

ent achieves a Pearson’s r = 0.999 (left-side of the figure), the 

ase with poorest agreement achieves an r = 0.674 (right-side of 

he figure). Both raters have chosen the same AIF voxel in the 

est performance scenario. In the top-left part of Fig. 5 it can be 

een that just a few voxels are activated in the displayed CT slice, 

aving high activation values. The AIF voxel selected by the raters 

 y r 1 ,r 2 (t) ) is also being activated by AIFNet, being the second high- 

st value of P v ol . Mainly voxels belonging to the anterior cerebral 

rtery are chosen. Besides, the AIF that our method predicts fol- 

ows closely the raters’ function, with no observable delays and 

ith almost no differences in the curves’ shape. On the other hand, 

ocalization results from the worst Pearson’s correlation case shows 

 different behaviour. Several voxels belonging to different arter- 

es are enhanced by the network with a homogeneous activation 

istribution. The anterior cerebral artery and middle cerebral ar- 

eries are mainly selected. When assessing y r1 (t) and ˆ y AIF Net (t) , it 

s noticeable that the low Pearson’s r is driven by the time shift 

etween the functions (which is 4 seconds measured at the curve 

eaks). In this case, AIFNet outperforms rater # 1 by estimating a 

ascular function with high agreement in morphology, which oc- 
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Fig. 5. Best (left) and worst (right) prediction performance in terms of Pearson’s correlation between AIF functions. Above, the voxels selected by rater #1 ( y r1 (t) ), rater #2 

( y r2 (t) ) and AIFNet ( ̂ y AIFNet (t) ) as arterial input functions. Below, their corresponding vascular function. Note that in the best performance case, both raters have chosen the 

exact same voxel as AIF. In the worst performance case, the selected voxel location for y r2 (t) is not shown since was annotated in a different volume slice. 

Table 3 

Parameter maps agreement among methods in terms of Pearson’s correlation. Mean (standard deviation) values are provided. Correlation has been computed per scan 

using all the voxels within the brain tissue (excluding background, skull, ventricles and vessels). y r1 : Parameter maps obtained after deconvolving the images with the 

AIF of rater 1; ˆ y Kmeans , ˆ y Seg , ˆ y Reg , ˆ y AIFNet : Parameter maps obtained after deconvolving the images with the AIF predicted with K-means ( Mouridsen et al., 2006 ), with the 

regression CNN ( de la Rosa et al., 2020 ), with the segmentation CNN and with AIFNet, respectively. CBF: cerebral blood flow; CBV: cerebral blood volume; MTT: mean 

transit time; T max : time to the maximum of the residue function. The values in bold indicate the outperforming method (in terms of Pearsons’ r) for each parameter 

map. 

Pearson’s r coefficient 

CBF CBV T max MTT 

Inter-rater 0.998 (0.016) 0.987 (0.157) 0.944 (0.086) 0.927 (0.204) 

y r1 vs ˆ y Kmeans 0.967 (0.098) 0.960 (0.274) 0.786 (0.217) 0.772 (0.291) 

ˆ y Seg 0.974 (0.118) 0.947 (0.315) 0.781 (0.237) 0.758 (0.310) 

ˆ y Reg 0.990 (0.027) 0.972 (0.160) 0.809 (0.179) 0.791 (0.253) 

ˆ y AIFNet 0.998 (0.007) 1.000 (0.003) 0.921 (0.094) 0.908 (0.188) 
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urs much earlier than the manually selected one. We consider the 

nnotation of rater # 1 suboptimal, probably because the voxel was 

hosen from an artery branch already affected by the occlusion. 

owever, our prediction follows more closely y r2 (t) (Pearson’s r = 

.980). There is no observable function delay between y r2 (t) and 

ˆ  AIF Net (t) , though a slightly wider FWHM can be appreciated for 

ˆ  AIF Net (t) . 

.2. Parameter maps and lesion quantification 

The parameter maps correlation between rater #1 and the dif- 

erent approaches is shown in Table 3 . Similar results are obtained 

hen comparing the parameter maps with rater #2 (Table S2). Cor- 

elation values are computed for each scan within the brain tis- 

ue (excluding background, skull, ventricles and vessels). Among 

ll the compared methods AIFNet obtains the best agreement with 

he rater for each of the parameter maps, showing consistency 

ith the experts’ results. An outstanding agreement is observed 

etween the raters and AIFNet for CBF and CBV, reaching inter- 
8 
ater performance. For T max and MTT, however, the agreement is 

till high but marginally under the inter-rater performance. We 

ypothesize that the found lower consistency in these parameter 

aps could be driven by the ∼ 0.5 seconds delay in T peak and by 

he ∼ 1 second wider FWHM of AIFNet predictions. It is worth 

o notice that the other automatic AIF selection methods also ob- 

ained better performance for CBF and CBV than for T max and MTT. 

arameter maps and lesion masks obtained with all methods are 

hown in Fig. 6 for the scan with median AIF Pearson correlation 

 y r1 vs ˆ y AIF Net comparison). There is a high qualitative correspon- 

ence between raters and AIFNet at all levels. It is also seen here 

hat there is a better correspondence between rater # 1 and all au- 

omatic AIF selection methods for estimating rCBF than estimating 

 max . 

In Fig. 7 the hypoperfused and core volumes between rater # 1 

nd all the methods are shown. Likewise, the methods’ agreement 

ith rater # 2 follows a similar pattern (please see the Supplemen- 

ary material, Fig. S1). In Table 4 (Table S3), the lesion volumes 

uantification performance is shown for all the methods when 
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Fig. 6. Estimated parameter maps and brain lesions for all the methods, obtained after deconvolving the CTP images with the annotated or predicted vascular functions. 

The shown example is the scan with median AIF Pearson correlation ( y r1 vs ˆ y AIFNet comparison). Hypoperfused tissue is obtained after thresholding T max < 6 s. Core tissue 

is obtained after thresholding the rCBF map at 38% over the entire hypoperfused region. y r1 , y r2 : Results obtained after deconvolving the images with the AIF of rater 1 

and rater 2; ˆ y Kmeans , ˆ y Seg , ˆ y Reg , ˆ y AIFNet : Results obtained after deconvolving the images with the AIF predicted with K-means ( Mouridsen et al., 2006 ), with the regression 

CNN ( de la Rosa et al., 2020 ), with the segmentation CNN and with AIFNet, respectively. rCBF: relative cerebral blood flow map; T max : time to the maximum of the residue 

function map. DWI: Ground truth delineated over DWI in ISLES18. 

Fig. 7. Lesion volume agreement among methods. y r1 , y r2 : Lesion volumes obtained after deconvolving the images with the AIF of rater 1 and rater 2; ˆ y Kmeans , ˆ y Seg , ˆ y Reg , 

ˆ y AIFNet : Lesion volumes obtained after deconvolving the images with the AIF predicted with K-means ( Mouridsen et al., 2006 ), with the regression CNN ( de la Rosa et al., 

2020 ), with the segmentation CNN and with AIFNet, respectively. 

9 



E. de la Rosa, D.M. Sima, B. Menze et al. Medical Image Analysis 74 (2021) 102211 

Table 4 

Brain l esion quantification performance for all the methods, obtained after deconvolving the CTP images with the manual and automatic vascular functions. Mean 

(standard deviation) values are provided. Hypoperfused tissue is obtained after thresholding T max < 6 s. Core tissue is obtained after thresholding the rCBF map at 

38% over the entire hypoperfused region. y r1 : Lesion volumes obtained after deconvolving the images with the AIF of rater 1; ˆ y Kmeans , ˆ y Seg , ˆ y Reg , ˆ y AIFNet : Lesion volumes 

obtained after deconvolving the images with the AIF predicted with K-means ( Mouridsen et al., 2006 ), with the regression CNN ( de la Rosa et al., 2020 ), with the 

segmentation CNN and with AIFNet, respectively. DWI: Agreement obtained when comparing the different CTP approaches with the diffusion weighted imaging ground 

truth provided in ISLES18. VE: Volume error; AVE: Absolute volume error. A paired significance test is performed between AIFNet and the other approaches. ∗: p-value 

< 0.05; † : p-value < 0.01. The values in bold indicate the outperforming method for the metric under consideration. 

Hypoperfused Core 

Dice [ % ] VE [ml] AVE [ml] Dice [ % ] VE [ml] AVE [ml] 

Inter-rater 91.7 (13.8) † 0.5 (13.5) † 6.3 (12.0) † 91.8 (14.1) † 0.1 (2.5) † 0.9 (2.3) † 

y r1 vs 

ˆ y Kmeans 48.3 (28.2) † –36.9 (174.3) 82.7 (157.8) † 58.3 (27.0) † –2.6 (55.2) † 13.3 (53.6) † 

ˆ y Seg 51.3 (19.4) † 26.5 (80.8) † 45.5 (71.8) † 61.9 (20.7) † 1.7 (53.9) † 12.0 (52.6) † 

ˆ y Reg 70.1 (23.4) † –78.5 (198.2) † 94.2 (191.3) † 72.3 (23.3) † –32.0 (136.4) 35.7 (135.5) † 

ˆ y AIFNet 87.3 (13.0) 8.8 (20.3) 12.7 (18.2) 88.3 (13.6) 0.5 (2.3) 1.3 (1.9) 

DWI vs 

y r1 38.3 (19.4) 6.8 (20.0) 14.3 (15.6) 

y r2 38.3 (19.5) 6.6 (20.2) † 14.2 (15.7) 

ˆ y Kmeans 31.5 (19.9) † 1.2 (72.9) † 25.1 (68.4) † 

ˆ y Seg 32.7 ( 19.0 ) † 12.7 (22.2) † 16.4 (19.6) ∗

ˆ y Reg 35.1 (19.8) ∗ –34.2 (154.3) † 52.6 (149.0) † 

ˆ y AIFNet 38.1 (19.5) 7.2 (20.5) 14.5 (16.2) 
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ompared with rater # 1 ( # 2). AIFNet consistently outperforms the 

ther approaches (i.e., with statistically significant comparisons for 

lmost all the core and hypoperfused metrics) and reaches a high 

greement with the experts slightly below the inter-rater perfor- 

ance (there are statistically significant differences between raters 

nd AIFNet as well). While the agreement with the raters for the 

ore volumes is very high, a slight bias in the hypoperfused vol- 

mes can be appreciated, suggesting that AIFNet tends to under- 

stimate these tissue areas. This bias is a consequence of the AIF 

ifferences obtained with AIFNet (described in Section 4.1 ) that 

mpact over T max . 

Furthermore, Table 4 compares the predicted core volumes with 

he ground truth DWI core masks. In this comparison, AIFNet 

losely follows the manual raters performance: except the volume 

rror comparison between AIFNet and rater # 2, there are no statis- 

ically significant differences with the raters in the quantified met- 

ics. Our results suggests that AIFNet estimates the acute brain in- 

arcts as good as manual raters do. The core volume correlation 

etween the different CTP methods and the DWI ground truth is 

epicted in Figure S2. When comparing the core CTP volumes of 

ll the investigated approaches (raters and automatic algorithms) 

ith the DWI ones, there are statistically significant differences 

or all the methods (p-values < 0.01, Wilcoxon test). Nonetheless, 

his cross-modality (i.e. CTP-DWI) performance evaluation should 

e carefully judged, since external source of errors are being in- 

roduced (such as brain perfusion changes due to time acquisition 

ifferences, modality co-registration errors, etc). These limitations 

n cross-modality correspondences explain the low overall Dice co- 

fficients even found for the raters in the CTP-DWI comparison. 

Overall, the parameter maps and lesion quantification analysis 

how that the small AIF differences found with AIFNet (mainly in 

 peak and FWHM) do not produce a large impact over the decon- 

olution process. The main observation related to these AIF dif- 

erences is the bias found in the hypoperfused volumes, showing 

 trend in AIFNet to slightly underestimate this tissue. There are 

o important differences in the core predictions of AIFNet in com- 

arison to the ones of the manual raters. There are neither dif- 

erences in the CTP-DWI core agreement: the raters and AIFNet are 

oth equally consistent compared to the ISLES18 DWI ground truth. 

verall, our analysis of the vascular functions, of the parameters 

aps and lesion volumes obtained after CTP deconvolution show 

hat AIFNet obtaines state-of-the art performance in automatic AIF 

election. The method almost behaves as a manual expert in all 
10 
he considered deconvolution stages and its performance is close 

o the inter-rater one. 

.3. Comparison with other methods 

The comparison of different AIF selection methods shows that 

ur innovative CNN is the most suitable approach among the in- 

estigated ones for performing the task. Unlike AIFNet, the other 

utomatic algorithms predict AIFs that consistently compromise 

he parameter maps quality and, hence, the estimation of the brain 

esions. We also observe that our method can robustly work under 

hallenging perfusion cases, as shown for different quality scans in 

ig. 4 . 

The K-means method ( Mouridsen et al., 2006 ) shows several 

imitations and provides a large performance variability among the 

omputed AIFs (large standard deviations of the AIF metrics). These 

esults could be expected since the method has been originally 

evised for perfusion MRI, which accounts with higher signal-to- 

oise ratio and smoother perfusion curves than CTP. As such, the 

IF unsupervised clustering might better perform in perfusion MRI 

han in CTP. The results from the segmentation CNN show similar 

erformance to the K-means method and, as such, worse than the 

IFNet performance. Our approach not only shows to be quanti- 

atively better than the segmentation CNN, but also provides the 

dvantage of requiring minimal data labels: while classification or 

egmentation approaches would ideally annotate most of the tar- 

et class samples for their training, AIFNet can be trained with 

 single voxel annotation. It is worth reminding the reader that 

he only difference between the segmentation CNN and AIFNet is 

he optimized loss function. The segmentation network works at 

 spatial level by recognising similar anatomical/shape areas to 

he target class, but it fails in selecting good AIF candidate vox- 

ls. We show that the AIF selection task is consistently improved 

hen the network learns from the predicted AIF (as happens with 

he proposed Pearson correlation loss) rather than from the se- 

ected voxels only, as happens when using segmentation loss func- 

ions. While arterial voxels can be extremely similar in terms of 

ensity values, localization and/or anatomical context, their per- 

usion curves can differ significantly. As such, segmentation-based 

ethods can misleadingly activate arterial voxels whose perfusion 

urves are suboptimal. These findings are also supported by the 

etter results obtained with the regression CNN (whose training 

oss is also the Pearson correlation, as for AIFNet) compared to 
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Table 5 

AIFNet ablation performance. K : Number of convolutional layers in the CNN. 

Given GPU memory constrains, the AIFNet experiment with K = 6 is conducted 

with 2 2+ k kernels per layer instead of 2 3+ k (such as the first layer has 8 ker- 

nels and the sixth one 256). DA: Data augmentation; std: Standard deviation; 

Perc: Percentile. The values in bold indicate the outperforming approach for the 

metric under consideration. 

AIFNet #Layers (K) Pearson’s r 

Mean (std) (5th, 95th Perc) 

3 4 5 6 DA 

x 0.943 (0.133) (0.661, 0.999) 

x 0.947 (0.107) (0.669, 0.999) 

x 0.950 (0.088) (0.694, 0.999) 

x 0.946 (0.094) (0.682, 0.999) 

x x 0.957 (0.057) (0.870, 0.999) 
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he segmentation CNN. Nonetheless, the regression CNN results are 

uch worse than the ones of our method. Moreover, fully AIF re- 

ression CNNs as earlier proposed in ( de la Rosa et al., 2020 ) have

ome drawbacks. First, from a qualitative point of view, the model 

oes not provide voxelwise arterial localization, making it less in- 

erpretable than other approaches and less transferable to clinical 

ettings. Second, the model requires that the scans’ duration is ho- 

ogeneous. As such, truncation artifacts might be introduced dur- 

ng this process ( Kasasbeh et al., 2016 ). It is interesting to observe

hat AIFNet overcomes the segmentation and regression CNN lim- 

tations by working as a hybrid segmentation-regression network. 

ts architecture allows voxelwise activation and selection like most 

egmentation approaches, but its optimization is performed like a 

egression CNN, which shows to enhance the performance. In other 

ords, AIFNet explores the advantages of segmentation and regres- 

ion models for improving the AIF estimation. 

Another successful deep learning approach for AIF selection has 

een presented by Winder et al. (2020) . Similar to AIFNet, the ap- 

roach achieves close agreement with the manual raters in the 

election of AIF and in the estimated perfusion lesions. The ap- 

roach differs from AIFNet in several ways. First, the CNN is a 1D 

odel receiving as input single voxel perfusion curves (i.e., there 

s no spatial/contextual information considered but only temporal 

nformation). Second, the method is a binary classifier CNN (AIF 

 s all-the-rest) and hence it is optimized with a classification loss 

unction. Third, the method estimates the AIF by means of a so- 

histicated geometric averaging approach. It is worth noting that 

oth the methods (AIFNet and ( Winder et al., 2020 )) avoid delayed 

IF curves in different ways. On one hand, ( Winder et al., 2020 )

solates potential AIF candidates with the classification CNN and 

hen corrects the time curves with the geometric averaging tech- 

ique. On the other hand, our proposal discards delayed AIF candi- 

ates by restricting the CNN learning through a suitable loss func- 

ion. Some advantages on the usage of AIFNet over the work of 

inder et al. (2020) are i ) the number of manual annotations re- 

uired for the model training (around < 20 times labeled data), ii ) 

lmost no pre-processing required, iii ) the automatic selection of 

he number of voxels to average (which is a parameter to set in 

 Winder et al., 2020 )) and i v ) its full end-to-end framework, which

akes our approach easier and faster to deploy. 

.4. Ablation analysis 

We ablate our network for finding the optimal architecture 

nd training strategy for computing ˆ y AIF Net (t) . The ablation is con- 

ucted for the AIF since it is the most critical input to the decon- 

olution model and it is much more difficult to estimate than the 

OF. These experiments are performed using the original train-test 

ata split of the ISLES18 challenge ( n train = 94, n test = 62). For

raining purposes we randomly exclude 10% of the training data 

nd use it as validation set, assuring that in all the ablation exper- 

ments the same train-validation-test sets are used. 

Results for the ablation analysis are shown in Table 5 . Our ex- 

eriments show that K = 5 convolutional layers are optimal for AIF 

rediction. The usage of less convolutional blocks leads not only to 

ower mean performance but also to higher variability. Besides, re- 

ults do not improve when considering more than K = 5 convolu- 

ional layers. It is worth to point out the considerable improvement 

n robustness when problem-specific data augmentation is consid- 

red for training the models. Overall, a much higher 5 th percentile 

s obtained with rather than without data augmentation, showing 

etter generalization over challenging cases. For VOF prediction, K

 2 convolutional layers are enough to estimate the function at 

nter-rater performance. Thus, less features are required for find- 

ng good VOF voxel candidates. These results are expected given 

he higher task difficulty for selecting AIF over VOF, as shown in 
11 
ables 1 and 2 , where a better agreement between raters is shown 

or VOF than for AIF. 

.5. Limitations and future perspectives 

A limitation of this work is the lesion ground truth used, since 

urrently there is no gold standard for the penumbra and for the 

schemic core. We use, as provided in ISLES18, the core masks de- 

ineated in DWI. However, the acquisition delay between CTP and 

WI imaging may introduce ischemic core modifications. Another 

ource of mismatch between the imaging modalities might be in- 

roduced by the reperfusion therapy, since reversal of the DWI le- 

ion may happen after reperfusion ( Campbell et al., 2012 ). Even 

ore, mismatch errors could also appear during the cross-modality 

mage registration. Consequently, a full correspondence between 

TP and DWI core lesions is unlikely to happen. In our experi- 

ents, this mismatch could explain the statistically significant dif- 

erences found when comparing all CTP volumetric core predic- 

ions (from raters and AIFNet) against the delineated DWI ground 

ruth. For a better understanding of the different methods’ perfor- 

ance, we include a CTP-CTP analysis by considering as hypoper- 

used and core ground truth the volumes obtained by using the 

anual rater annotations in the CTP deconvolution. In such a way, 

he aforementioned cross-modality limitations are no longer affect- 

ng the analysis. 

As future perspectives for this work we could consider the vali- 

ation of AIFNet over a larger database, as well as over other imag- 

ng modalities, such as perfusion MRI and PET images. Given the 

hallenging task behind vascular estimation over CTP, we expect 

he method to be easy to adapt to images of better quality (such 

s MRIs). Exploring whether the technique is generalizable to other 

rgans and pathologies where perfusion analysis is used (such as 

n brain tumors, myocardial infarction, etc.) also constitutes poten- 

ial research lines. 

. Conclusions 

We have presented AIFNet, a new automatic method for vas- 

ular function estimation in brain perfusion imaging. It is devel- 

ped and validated over the public ISLES18 database, which con- 

ists of stroke perfusion CT cases. To our knowledge, this is one 

f the first automatic methods described in literature fully de- 

eloped and validated over perfusion CT data. Most of the ap- 

roaches previously described have been devised and tested over 

erfusion MRI instead. For tackling the problem, we make use of 

 fully end-to-end trainable CNN, that is optimized for the pre- 

iction of vascular functions. We exploit prior knowledge by per- 

orming modality-specific data augmentation during the training 

tage. Our approach consistently differs from the previous ones, 



E. de la Rosa, D.M. Sima, B. Menze et al. Medical Image Analysis 74 (2021) 102211 

w

a

r

t

t

e

e

l

i

a

a

s

d

A

l

t

t

A

f

r

t

m

u

c

t

w

t

p

D

r

t

s

E

C

S

W

C

K

R

i

A

z

S

p

t

“

t

F

S

f

R

A  

A  

 

B  

C

C  

C

C  

 

C  

 

C  

F  

F  

F

H

H

K  

K  

K  

K  

 

K  

K  

K  

K

K

K  

L  

L  
hich mainly rely on clustering or statistical techniques. Addition- 

lly, most of these techniques require the definition of a decision 

ule (mainly a cutoff) for selecting the optimal voxels, a strategy 

hat might be dataset-dependent and, hence, requires parameters 

uning. Unlike these methods, we present a non-heuristic function 

stimation strategy that combines information from multiple vox- 

ls by means of a 3D probabilistic volume. AIFNet allows arterial 

ocalization and, hence, clinical interpretability. The method is eas- 

er to train and deploy compared to other approaches due to its 

rchitecture and due to the minimal voxel annotations required 

s ground truth (one single voxel per vascular function and per 

can is enough to parametrize the network). As a consequence, the 

atabase labeling process is very fast. This is a clear advantage of 

IFNet when compared against segmentation approaches, since the 

atter are more time consuming by requiring a vessel region anno- 

ation and multiple vascular functions checks. We show, as well, 

hat using a suitable loss function enhances the task performance. 

fter validating AIFNet in the ISLES18 dataset, the method outper- 

ormed existing methods and achieved results close to the inter- 

ater agreement, being able to make predictions of vascular func- 

ions, parameter maps and perfusion lesions with similar perfor- 

ance as human experts. Besides, the approach shows to be robust 

nder poor quality-scan scenarios. Our results suggests that AIFNet 

ould be implemented in clinical scenarios and, hence, could po- 

entially be included in future brain perfusion deconvolution soft- 

are. For better reproducibility and direct comparison against fu- 

ure methods, we provide both raters’ vascular annotations as sup- 

lementary material. 
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