
at – Automatisierungstechnik 2021; 69(12): 1026–1039

Methods

Birgit Vogel-Heuser, Felix Ocker* and Tobias Scheuer

An approach for leveraging Digital Twins in
agent-based production systems
Ein Ansatz zur effizienten Erstellung agentenbasierter Produktionssysteme mittels Digitaler
Zwillinge

https://doi.org/10.1515/auto-2021-0081
Received June 4, 2021; accepted September 7, 2021

Abstract: To cope with individualization and the high
costs of downtimes, modern production systems should
be flexible, adaptable, and resilient. Multi-Agent Systems
are suitable to address these requirements by decentral-
izing production systems. However, the agent paradigm
is still not widely applied. One of the key reasons is that
the agents’ knowledge bases had to be created manu-
ally, which is cumbersome, error-prone, and insufficiently
standardized. Digital Twins have the potential to solve this
issue, as they describe relevant information in a standard-
ized way. This paper presents an approach to leveraging
Digital Twins, i. e., the Asset Administration Shell, to re-
alize Multi-Agent Systems in the production context. For
this, a parser automatically extracts relevant information
from theDigital Twins and initializes the individual agents
in a Multi-Agent System, i. e., PADE.

Keywords: Digital Twins, Multi-Agent Systems, smart fac-
tories, Knowledge Base

Zusammenfassung: Um der Individualisierung und den
hohen Kosten von Stillstandszeiten gerecht zu werden,
müssen moderne Produktionssysteme flexibel, anpas-
sungsfähig und resilient sein. Multi-Agenten Systeme sind
geeignet, um diesen Herausforderungen zu begegnen, in-
dem sie moderne Produktionssysteme dezentralisieren.

*Corresponding author: Felix Ocker, Institute of Automation and
Information Systems, Department of Mechanical Engineering, TUM
School of Engineering and Design, Technical University of Munich,
Munich, Germany, e-mail: felix.ocker@tum.de
Birgit Vogel-Heuser, Institute of Automation and Information
Systems, Department of Mechanical Engineering, TUM School of
Engineering and Design, Core Member of MDSI and Member of
MIRMI, Technical University of Munich, Munich, Germany, e-mail:
vogel-heuser@tum.de
Tobias Scheuer, Institute of Automation and Information Systems,
Department of Mechanical Engineering, TUM School of Engineering
and Design, Technical University of Munich, Munich, Germany,
e-mail: tobias.scheuer@tum.de

Allerdings ist das Agenten-Paradigma noch nicht weit ver-
breitet. Einer der Hauptgründe dafür ist, dass dieWissens-
basen der Agenten bisher manuell erstellt werden, was
umständlich, fehleranfällig und unzureichend standardi-
siert ist. Digitale Zwillinge haben das Potenzial, dieses
Problem zu lösen, da sie standardisierte Beschreibungen
relevanter Informationen bereitstellen. In diesem Beitrag
wird ein Ansatz zur Nutzung Digitaler Zwillinge, speziell
der Verwaltungsschale, vorgestellt, um Multi-Agent Syste-
me im Produktionskontext zu realisieren. Dafür extrahiert
ein Parser automatisiert relevante Informationen aus Di-
gitalen Zwillingen und initialisiert die einzelnen Agenten
mit dem Multi-Agenten Framework PADE.

Schlagwörter: Digitale Zwillinge, Multi-Agenten Systeme,
Intelligente Fabriken, Wissensbasis

1 Motivation

Modern manufacturing systems face significant chal-
lenges resulting from globalized and customer-driven
markets as well as an ongoing acceleration of techno-
logical development. Shorter product life cycles and cus-
tomization are essential trends that make increased flexi-
bility and manufacturing concepts necessary [1]. To cope
with these challenges, production systems have to evolve
into smart factories. One promising technology are Multi-
Agent Systems (MASs). Here, all the resources, i. e., ma-
chines, and products within the production system are
represented by autonomous intelligent entities. These in-
telligent agents communicate and negotiate to reach their
individual goals, which are aligned with the companies’
goal to create products for their customers. To do so, the
intelligent agents require information about their envi-
ronment, their abilities, their needs, and their goals. This
information is stored in each agent’s Knowledge Base
(KB). Even though several sound agent frameworks are
available, the creation of the agents’ KBs remains a major

Open Access. © 2021 Vogel-Heuser et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/auto-2021-0081
mailto:felix.ocker@tum.de
mailto:vogel-heuser@tum.de
mailto:tobias.scheuer@tum.de


B. Vogel-Heuser et al., Digital Twins for agent-based production systems | 1027

challenge that impedes the adoption of MASs. This is be-
cause the creation of such KBs is cumbersome, and they
should be created in a standardized way to support com-
munication between the agents and thus interoperability.
Digital Twins (DTs) are a possibility to provide the needed
information and standardized structure [2].

This paper presents an approach for leveragingDTs for
MASs in the context of production systems. Here, we focus
three research questions. First, it has to be analyzedwhich
information is required by the different agents and what
can and cannot be provided byDTs (RQ1). Second, it needs
to be researched how aMAS can be created from these DTs
(RQ2). Third, the operation of the DT-based MAS needs to
be investigated (RQ3).

The rest of the paper is structured as follows. Sec-
tion 2 gives an overview of related literature, while Sec-
tion 3 presents the framework for creating a MAS based
on DTs. Section 4 describes a demonstrator and the pro-
totypical implementation, which is evaluated using a sim-
ulation. Section 4 also discusses the framework’s oppor-
tunities and limitations, and the paper concludes with a
summary and an outlook in Section 5.

2 Related literature

This section provides an overview of related work regard-
ing established MAS, DTs, and how the two concepts can
be combined.

2.1 Multi-Agent Systems

MASs aim to support decentralized control and come in
many different forms, thus adapting to the individual ap-
plication. Vogel-Heuser et al. [3] define MASs as a “com-
putational paradigm introduced in the distributed arti-
ficial intelligence field, characterized by the decentral-
ization and parallel execution of activities based on au-
tonomous agents”. The underlying agents are intelligent
entities, which are characterized by their autonomy, their
encapsulation, and their goals [4]. For this, agents usu-
ally rely on believes regarding their environment, desires,
i. e., their goals, and intentions, i. e., the actions they have
committed themselves to, resulting in the term Believes
Desires Intentions (BDI) agent. Similarly, the VDI [5] de-
scribes an agent as “an encapsulated hardware or soft-
ware entity with specified objectives regarding the control
of a technical system (or part thereof)”. MASs replace cen-
tralized control architectures with distributed decision-

making by the agents, which enables the production sys-
tem to adapt itself to changing environments and tasks au-
tonomously [3].

In order to realize MASs in the production context,
several types of agents are oftentimes used. Cruz et al. [6]
classified these agent types and summarized them as pat-
terns. They conclude that most MASs include the agent
types Agent Management System (AMS), Communication
Agent, Resource Agent, and Process Agent [6, 7]. An AMS
keeps track of all active and connected agents, as well
as their communication addresses, while Communication
Agents (CAs) act as interfaces for the MAS to legacy sys-
tems. Resource Agents (RAs) represent manufacturing re-
sources, including transportation resources. A RA “drives
its resource (actuation) and keeps its internal state model
synchronized with the resource through appropriate in-
put (sensor readings)” [8]. Process Agents are responsi-
ble for coordinating the production processes by moni-
toring them, e. g., using co-simulations. A related type
of agent is the Product Agent (PA), which is a “software
component that is responsible for fulfilling production re-
quirements for an associated physical part through inter-
actions with other agents in the system” [9]. Its objective
is to request and schedule operations from the system’s
resources based on the customer specification [9]. Two
types of PAs can be distinguished [9]. First, there are rule-
based PAs, which are used, e. g., in PROSA [8], PABADIS
[10], ADMARMS [11], or ADACOR [12]. Second, there are
model-based PAs, which are mostly implemented in the
form of Finite State Machines [13]. Rule-based agents en-
sure timeliness of the decision-making process, which is
crucial whenever there are real time requirements, e. g.,
on the field-level. However, rule-based intelligence is dif-
ficult to scale to larger, more complex systems as the rule-
set’s size is related to the number of interactions among
agents. Model-based architectures on the other hand seem
more adequate to address scalability, but there are less
approaches available [9]. Various software frameworks
have been developed for creating MASs. Prime examples
are the established Java Agent Development Framework
(JADE) [14] and the actor framework akka.1 For both exist
Python implementations, namely Python Agent Develop-
ment Framework (PADE) [15] and Pykka,2 respectively. Ad-
ditionally, custom frameworks can be developed. In order
to realize intelligent agents, several aspects have to be con-
sidered [16]. Anagent’s behavior is influencedby theobjec-

1 https://akka.io/ last accessed: November 24, 2021.
2 https://pykka.readthedocs.io/en/stable/ last accessed: November
24, 2021.

https://akka.io/
https://pykka.readthedocs.io/en/stable/


1028 | B. Vogel-Heuser et al., Digital Twins for agent-based production systems

tives it is trying to accomplish,which are also referred to as
desires. Examples are providing and executing an ability,
or reaching a certain destination. In case an agent has sev-
eral objectives, theyhave tobe integrated into a joint objec-
tive function. These objectives can be predefined, defined
during run-time, or they may even change as the agent
learns. In order to make informed decisions, information
about the environment, oftentimes referred to as believes,
is needed and saved in a so-called environmentmodel. This
includes information such as locations of the agent itself,
but also its surroundings, potential transportation path-
ways, available sensor inputs, capabilities, and communi-
cation addresses of other resources. Lastly, all internal ac-
tions and interactions with its surroundings are described
in an agent’s abilities, e. g., all abilities to control subor-
dinated machine parts, or the ability to manipulate an-
other physical entity. Even though these KBs are crucial for
MASs, their creation is still cumbersome, and there are no
standardized ways for creating them, which is a prerequi-
site for interoperability.

2.2 Digital Twins

Theuprising technologyofDTshas thepotential to provide
standardized KBs for agents in MASs. A DT is understood
as a “dynamic virtual representation of a physical object
or system across its lifecycle” [17]. Such a virtual counter-
part to a physical object, i. e., an asset, aims to capture all
the asset’s relevant information, including its abilities and
status. Thus, DTs present a promising possibility for real-
time simulations and knowledge accumulation through-
out the entire lifetime of a product [18]. Applications of DTs
are diverse and can be categorized according the lifecy-
cle phase, i. e., primarily design or operation. During de-
sign, DTs seem valuable for configuration, inconsistency
management, and testing, but they may also be benefi-
cial for decentralized operation and process optimization
in later phases [19]. Further applications include produc-
tion management and control, systems engineering, es-
peciallywhen simulation-based, schedulingoptimization,
and monitoring, e. g., for fault diagnosis [20]. Moyne et al.
[21] also identified predictive maintenance, model-based
process control, and real-time scheduling including dis-
patch as potential applications.

By now, there are various DT frameworks available. In
the following, we briefly introduce three of them. The As-
set Administration Shell (AAS) is being developed by the
German Industry 4.0 Initiative [22]. It is a virtual represen-
tation of any I4.0 component in an I4.0 system. The AAS
aims to ensure interoperability in anaprioriwayby relying

on a rigorously standardized description of data, informa-
tion, and services using a shared metamodel. That way,
the AAS helps overcome the “information silo problem”
[23], which means that information is kept in silos and
cannot be used across systems. Key concepts included in
the AAS metamodel include a class for assets, but also a
top class for the AAS, i. e., the DT itself [22]. The AAS class
aggregates different submodels and submodel elements to
capture information about the asset in question. These
descriptions can be refined, e. g., using the classes prop-
erty and capability. Using the information captured, three
different types of AASs can be realized [24]. The passive
AAS is a file that provides a standardized way to exchange
information associated with the asset. It is typically ex-
changed as an aasx file. Similarly, the reactive AAS is a
passive AAS, but it is connected to the asset to ensure
timeliness of data, and it can be accessed via an Appli-
cation Programming Interface (API). Lastly, the proactive
AAS also provides CRUD (create, read, update, delete) ca-
pabilities but can additionally communicate and bid with
otherAASusing the I4.0 language [24, 25]. TheDigital Twin
Definition Language (DTDL)3 is a “language for describing
models for IoT Plug and Play devices, device digital twins,
and logical digital twins” developed by Microsoft. Com-
pared to the AAS it is minimalist in its specification, but
the DTDL still enables the semantic description of a DT’s
abilities. DTDL uses the JSON variant JSON-LD and relies
on the six core classes Interface, Telemetry, Property, Com-
mand, Relationship, and Component. Additionally, there
are custom approaches such as the DT architecture refer-
ence model Cloud-based Cyber-Physical Systems (C2PS)
[26]. It focuses on the key CPS properties computation,
control, and communication. C2PS uses a Bayesian net-
work and fuzzy logic-based rule set for decision-making.
Communication occurs either directly in the physical layer
or through the cloud layer, but is not further specified [26].

2.3 Leveraging Digital Twins in Multi-Agent
Systems

While MASs provide a suitable architecture to create de-
centralized and highly adaptable autonomous production
systems, DTs have the potential to bring this vision into
practice by providing standardized models, API access,
and data exchange. Individually, there have been numer-
ous advances in both fields. Also, some approaches that

3 https://github.com/Azure/opendigitaltwins-dtdl last accessed:
November 24, 2021.

https://github.com/Azure/opendigitaltwins-dtdl


B. Vogel-Heuser et al., Digital Twins for agent-based production systems | 1029

leverage both technologies have already been developed
for other domains. In order to support spacecraft testing,
Zhang et al. [27] developed a DT and MAS based architec-
ture, which reduced the time spent on product test de-
sign and implementation by 20%, and increased the pre-
cision of these by 15%. For the farming sector, Laryukhin
et al. [28] designed a Cyber-Physical System (CPS) using
MASs and DTs to represent farms, plants, soil, and fertil-
izer tomaximize yield. For logistic processes in CPSs in the
postal industry, Niati at al. [29] developed a DT that con-
sists of models created using the Business Process Mod-
eling Notation and the Unified Modeling Language’s Ac-
tivity Diagrams. Using JADE, they derive a MAS that uses
these behaviour models. However, they do not leverage
current standardization efforts for DTs, such as the AAS.
For the manufacturing domain, Zheng et al. [30] present
an approach to quality assurance, which relies on a MAS
and DTs. Even though they suggest using a top-level on-
tology for increasing interoperability, their approach re-
lies on engineers using the ontology editor Protégé instead
of building on a widely accepted format for DTs, such as
the AAS or the DTDL. These heterogeneous approaches in-
dicate the potential of the combination of DTs and MASs
also for the production domain. This potential has also
been theoretically confirmed in other related work [2, 31].
Vogel-Heuser et al. [2] gathered requirements for selected
Industry 4.0 challenges, and analyzed industrial and re-
search MAS applications. They conclude that MASs are
a suitable technology to solve challenges imposed by In-
dustry 4.0 and that AASs are a suitable supplement. How-
ever, no specific framework is provided that leverages DTs
for MASs. Regarding the analysis of the AAS’ suitability
for capturing relevant information (RQ1), we intend to ex-
tend our own theoretical prior work [31]. However, to the
best of our knowledge, DTs and agents, specifically the
AAS, have not yet been combined in the production do-
main. Hence, there is a need for a framework that sup-
ports engineers in leveragingDT for creating (RQ2) andop-
erating (RQ3) MAS. Here, practical implementation chal-
lenges in the manufacturing context shall be identified
and solved.

3 Approach for leveraging Digital
Twins to create a Multi-Agent
System

This section describes the assumptionsmade and gives an
overview of the different agent types we consider in a pro-

duction system, cp. Figure 1. For these agents,wedelineate
the tasks they execute, the information they require, and
how this information is captured using a DT, specifically
the AAS. Subsequently, we describe the recursive architec-
ture developed. To adequately represent the hierarchical
structure of a production system, each resource agent may
also serve as a Directory Facilitator (DF), cp. Figure 1, for
its subordinate resources. The section concludes with de-
tails regarding the agents’ initialization process, and their
decision-making process.

3.1 Assumptions

Within the context of this paper, we make several sim-
plifying assumptions. Regarding the available DTs for re-
sources, we assume that they are modularized sensibly as
Distributed Digital Twins (DDTs) according to the produc-
tion system’s structure. Also, we assume that engineers
specify these DDTs so that they include the relevant infor-
mation for the respective physical entities, i. e., products
and resources. For this, engineers may either rely on tools
for DT creation such as the Asset Administration Shell ex-
change format (AASX) Package Explorer4 or automate DT
creation. Furthermore, we expect the product description
to be available in the formof processes to be executed. This
is a simplification, as products are usually described via
features. However, this assumption may be lifted by rely-
ing on approaches for feature-process matching as used
in prior work [32]. Regarding the layout, we assume sim-
plified coordinates, i. e., resources and products are repre-

Figure 1: Framework for combining Digital Twins and Multi-Agent
Systems.

4 https://github.com/admin-shell-io/aasx-package-explorer last ac-
cessed: November 24, 2021.

https://github.com/admin-shell-io/aasx-package-explorer


1030 | B. Vogel-Heuser et al., Digital Twins for agent-based production systems

sented using 2D-point-coordinates. The resources are con-
nected via fixed transport resources such as conveyors, so
far we disregard automated guided vehicles, though. Even
though these do not represent reality, the approach could
be extended by leveraging more advanced layout checks
[33]. Finally, this paper focuses on the combination of DTs
andMASs.Hence, the resulting framework is evaluatedus-
ing a simulation of the production system and the prod-
ucts. This allows us to ignore the connection of the individ-
ual agents to the respective physical entities. In practice,
the agents may either be connected directly to the assets if
only passive AAS are available, or they can be connected
to their assets via their “reactive” DTs. In both cases, en-
gineers may rely on state of the art technologies [34] for
connecting the virtual entities to their physical counter-
parts.

3.2 Agent types, tasks, and relevant
information

Within the context of this work, we focus on agents that
represent resources and products. For both types of phys-
ical entities, there are usually DTs available, while, e. g.,
process DTs are less common. RAs are suitable to represent
all kinds of resources, ranging from individual machines
to entire plants. In all cases, a RA has to offer production
capabilities to PAs upon request. Hereby, it has to take into
account the physical resource’s current status, e. g., if the
capabilities are limited due to degradation. Additionally,
the RA has to initiate the actual production processes by
controlling thephysical resource. In case aRAhas subordi-
nate RAs, it also serves as a DF. PAs on the other hand rep-
resent the products. Hence, they have to request the capa-
bilities required for realizing the desired product features
from RAs. To do this in a goal-oriented manner, they have
to keep track of the product’s status, and make decisions
how to schedule the next steps within the production pro-
cess. In order to fulfil these tasks, the agents require var-
ious pieces of information, ranging from a description of
their capabilities for RAs to the production status for PAs.
Table 1 gives an overview of the information required by
RAs and PAs.

Fortunately, the AAS’ metamodel explicitly provides
a class for representing resource capabilities, to describe
“implementation-independent description[s] of thepoten-
tial of an asset to achieve a certain effect in the physical
or virtual world” [22]. The more generic class submodel
element can be used to describe and differentiate assets
and is thus suitable to capture an agent’s objective func-
tion or a process required by a product. Several submodel

Table 1: AAS notions for representing information relevant for
agents based on [31].

Agent
type

Information AAS concept

RA Resource capability Capability
Objective function Submodel element
Parameters; costs; status
information

Property or Range

PA Set of required processes Submodel element collection
Required process Submodel element
Static parameters; variables;
production status

Property or Range

elements representing processes required can be aggre-
gated using a submodel collection. For specifying single
attributes, the AAS’ metamodel provides properties and
ranges. Together, these classes are sufficient to capture the
information required by both RAs and PAs.

3.3 Recursive architecture

Taking into account the hierarchical structure of produc-
tion systems, we rely on a recursive architecture, inspired
by holonic systems [35], for RAs, which is complemented
by PAs, cp. Figure 2. A RAmay consist of an arbitrary num-
ber of subordinate RAs. For instance, a plant’s RA aggre-
gates its machines’ RAs. These subordinate RAs register
themselves and their capabilities with the superordinate
RA, which serves as a directory facilitator. As an entry
point for the RA structure, a single top-level RA has to be
specified, which we call the coordinator. This coordinator
is responsible for initiating the creation of all its subordi-
nate RAs, but it also serves as a DF for PAs. Hence, PAsmay
request services from this top-level RA,which provides the
addresses of the appropriate subordinate RAs. Also, PAs
may negotiate the order of resource usage based on their
assigned or calculated priority if they need the same re-
source. All agents within the MAS are connected to the
respective asset, and they include a KB, which is gener-
ated from the respective DT. Each agent’s KB includes the
agent’s environment model, i. e., its believes, and an ob-
jective function, i. e., its desires.

3.4 Environment models for agents

To enable decentralized decision-making, agents require
information about their surroundings, the so-called en-



B. Vogel-Heuser et al., Digital Twins for agent-based production systems | 1031

Figure 2: Recursive architecture for the DT-based MAS framework.

Figure 3: Example for an environment model represented as a di-
rected graph.

vironment model. In the context of this work, the envi-
ronment model includes an overview of the resources,
their capabilities, and their connections via transport re-
sources, which is stored in the form of a transport graph.
Since all crucial decisions are made by PAs, the environ-
ment models are crucial only for PAs and the RAs that
serve as DFs. In contrast, the other RAs require only de-
scriptions of their capabilities. A transport graph is a po-
tentially cyclic and labelled graph, which represents re-
sources as nodes, transport processes as edges, and the
costs for transport processes as weights associated to the
edges, cp. Figure 3.

For ensuring efficiency, the KBs of agents are limited
to the information that is actually relevant for them. There
are multiple ways for an agent to receive an environment
model. It can be stored in their KB before initialization,
they can build it themselves by exploration, or another
entity creates and provides it to the agent. While a pre-
constructed environment model saves time and computa-
tion resources during run time, it is static. If agents cre-
ate their environment themselves by perceiving their sur-
roundings they are completely independent fromother en-
tities, but the environment model may be incomplete, and
its creation is potentially computationally expensive. To
reduce computational cost for the individual agents, they

may also exchange information regarding their shared sur-
roundings. This, however, results in an increase in com-
munication required. As a compromise between these op-
tions, we rely on an environment model which is centrally
created by the coordinator for each agent from the respec-
tive DT. This happens when the individual agents are ini-
tialized, but before they start up. To represent changes
in the layout, e. g., due to degradation, stalled RAs or
disruptive employees, the agents KBs are continuously
adapted, though, similar to existing approaches [9]. The
responsibility for keeping track of changes and initiating
KB changes falls to the coordinator, as it has an overview
which information and thus which changes are of rele-
vance forwhich agents. Pragmatically, the coordinator can
base this overview of which RA needs which information
on its prior interactions with the RAs, which already re-
quested certain information.

3.5 Instantiating individual agents from
Digital Twins

To leverage DTs for MASs, we suggest automatically cre-
ating the MAS’ agents from the respective DTs, cp. Algo-
rithm 1. To do so, we first create the coordinator and the
AMS, as all other agents depend on them. The coordinator
then uses its own KB, to infer which RAs it has to create
for its subordinate resources. Hereby, it relies on the links
RDT_files to the subordinate DTs specified in the coordina-
tor’s DT. These RAs then parse their DTs to initialize their
KBs. RAs and PAs read the respectively relevant informa-
tion, such as capabilities and required processes, from the
DTs and store this information in a KB, which can be ac-
cessed easily and quickly during runtime. As the DTs in-
clude all relevant information like properties and abilities
required for decision-making and bidding processes, the
agents can create their KBs completely autonomously from



1032 | B. Vogel-Heuser et al., Digital Twins for agent-based production systems

Algorithm 1 Agent initialization
1: procedure agentInit(coordinatorFile, pdtFiles)
2: initializePadeMas()
3: initCoordinator(coordinatorFile)
4: for all rdt in coordinator.rdtFiles do
5: ra = coordinator.createRaInPade()
6: ra.parse(rdt)
7: ra.writeToKb()
8: for all pdt in pdtFiles do
9: pa = createPaInPade()
10: pa.parse(pdt)
11: pa.writeToKb()

the DTs. Subsequently, the coordinator builds a model
of the entire production system that revolves around the
transport graph. Whenever a product is to be produced, a
PA is created, which initializes its KB from a DT that in-
cludes relevant static information regarding dimensions,
but also priority, destination, and processes required. For
this, we assume that a list of DTs for the products is pro-
vided. The PA’s dynamic status information such as cur-
rent location and remaining processes required are up-
dated continuously. Subsequently, the PA requests an en-
vironment model from the coordinator to be able to start
its pathfinding algorithm. The coordinator as a centralized
entity keeps track of the entire plants status in the form
of the transport graph, which it provides to other agents.
It updates this transport graph upon its initialization, but
also whenever the plant’s layout changes due to engineer-
ing modifications or if a resource breaks. These changes
are either communicated by the asset’s RA, or detected by
the AMS. Either way, the coordinator is prompted to up-
date its environmentmodel and communicate the changes
to all agents.

3.6 Decision-making process

The decision-making process consists of two core parts,
namely the bidding process and the path finding algo-
rithm.While the bidding process is the basis for determin-
ing which resources execute the processes a product re-
quires, the path finding algorithm aims to find the shortest
path to that next resource. For the bidding process, we rely
on the established auction protocols defined by the Foun-
dation for Intelligent Physical Agents (FIPA) [36], cp. Fig-
ure 4. Here, the PAs and RAs register with the DF. Then,
any PA can request the addresses of agents with the ca-

Figure 4: Excerpt of the sequence diagram representing the bidding
process between agents.

pabilities required from the DF and directly contact these
RAs to inquire their availability, these are so-called calls
for proposals. Based on the proposals made by the RAs,
the PAs can optimize their next step regarding their objec-
tive function, in our case simply for time, anddecidewhere
to be manufactured. Subsequently, the PAs inform the RA
about their decision by accepting or rejecting the RAs pro-
posals.

Upon receiving the RAs’ proposals, the PA optimizes
its next step, taking into account the offers of the RAs in-
cluding cycle times and waiting times as well as trans-
port costs, including transport times. Hereby, “shortest”
may also denote “the least expensive”, depending onwhat
is encoded into the transport graphs labels. For finding
the shortest path, we use the established Dijkstra algo-
rithm. Algorithm 2 gives an overview of the entire pro-
cedure of PAs negotiating with RAs and optimizing their
path. Here, nextPath is a PA-specific ordered list of nodes,
startingwith theproduct’s current location asnextPath[0],
followed by the locations of the RAs to be visited. The
CycleTime is the time a resource needs from starting a pro-
cess for a product until it is ready to execute a process on
another product, while the WaitingTime is the sum of all
currently scheduled processes of a resource. Note that the
function optimizeWithDijkstra returns exactly one possi-
ble shortest path. After havingmade an informed decision
where to be processed further, the PA notifies the respec-
tive RAs by accepting or rejecting the RA’s proposal, cp.
Figure 4.



B. Vogel-Heuser et al., Digital Twins for agent-based production systems | 1033

Algorithm 2 Pathfinding
1: procedure PathFind-
ing(network, tasklist, location, destination)

2: while tasklist and location ̸= destination do
3: if tasklist then
4: for all task ∈ tasklist do
5: for all ra ∈ task.ras do
6: requestRaOffer(ra, cycleTime,waitingTime)
7: network.insertNode(virtualNode)
8: network.insertWeightedEdge(cycleTime)
9: network.insertWeightedEdge(waitingTime)
10: possiblePaths = [optimizeWithDijkstra(network,

location(pa), location(ra)) for ra in task.ras]
11: nextPath =min(possiblePaths)
12: confirm(ra(nextPath))
13: reject(ra) for ra in task.ras if ra ̸= ra(nextPath)
14: for all node ∈ nextPath[1 :] do
15: requestTransport(node)
16: if task.done == True then
17: tasklist.remove(task)
18: else if location ̸= destination then
19: nextPath = optimizeWithDijkstra(network,

location(pa), destination)
20: for all node ∈ nextPath do
21: requestTransport(node)
4 Implementation and discussion

This section gives an overview of the demonstrator, de-
scribes details of the implementation, provides details re-
garding the approach’s applicability through a simulation-
based evaluation, and discusses the results.

4.1 Demonstrator

The extended Pick and Place Unit (xPPU) is a demonstra-
tor for industrial plant automation in general and evolving
production systems in particular [37]. The basic Pick and
Place Unit (PPU) consists of a stack, a crane, and a ramp.
This configuration was extended to include conveyors, a
PicAlpha module, several ramps, RFID readers, a stamp-
ing module, safety modules, switches, and more. How-
ever, even the advanced evolution scenarios of the xPPU
include still little redundancy in the resources. Specifi-
cally, the original layout is close to a static production line,
which makes the decision-making process of PAs trivial,
as there is only exactly one RA available for each task. To

Figure 5: Adapted layout of the extended Pick and Place Unit (xPPU).

demonstrate the potential of an agent-based approach, we
created a more complex scenario that includes redundan-
cies, cp. Figure 5. This extended version of the xPPU in-
cludes more conveyors, two more cranes, a second stamp-
ing module, a painting module, a resource that can apply
stickers, and gluing modules. The resulting decision mak-
ing processes for PAs are non-trivial and thus the layout
is suitable to validate that the architecture works as in-
tended.

We created DTs for all the resources in this extended
layout, which include relevant information such as capa-
bilities, but also the resource’s location. For an excerpt see
Figure 6. For this, we relied on available engineering doc-
uments whenever possible, but had to curate the informa-
tion mostly manually.

4.2 Implementation details

For both MASs and DTs, there are various established and
tested frameworks available. Hence, we had to make two
essential choices regarding the frameworks to be used for
the prototypical implementation.

Established MAS frameworks we considered include
JADE [14], its Python counterpart PADE5 [15], and Pykka.
JADE is fully FIPA-compliant, and PADE supports at least
Agent Communication Language (ACL)-messages and se-

5 PADE: https://pade.readthedocs.io/en/latest/ last accessed:
November 24, 2021.

https://pade.readthedocs.io/en/latest/


1034 | B. Vogel-Heuser et al., Digital Twins for agent-based production systems

Figure 6: Excerpts of the AASs for the xPPU, its stack and a workpiece.

lected protocols out of the box, while both have to be im-
plemented manually for Pykka. Both JADE and Pykka run
onmultiple threadswhile the PADEplatform runs on a sin-
gle asynchronous thread. JADEautomatically runs anAMS
and a DF, where the AMS creates and destroys agents, and
the DF lists all active agents on the platform. PADE also
starts up an AMS, which works differently. In PADE, each
agent has a table with all active agents and their commu-
nication addresses. If a new agent starts up, it has to get
registered by the AMS which then tells all active agents
about the new one. Both PADE’s and JADE’s AMSs try to
restart agents if they fail. Additionally, PADE supports se-
rializing objects with the Python library pickle and send-
ing them as ACL-message content. PADE was chosen for
its AMS, Python usage, and its ability to send serialized
objects. An included AMS reduces the implementation ef-
fort and the versionusedbyPADE fulfils the tasks assigned
to the AMS in the architecture, such as agent registration
and restarting. Furthermore, we relied on Python libraries
for XML-file reading and editing,6 graph creation and path
finding using Dijkstra’s algorithm (specifically NetworkX’
single_source_dijkstra function),7 graph plotting,8 and ob-
ject serialization.9 Further, PADE allowed us to send the
serialized objects as the content of ACL-messages. In the
context of our implementation, these objects are transport
graphs and location dictionaries. If necessary, one could

6 Python Software Foundation’s etree module: https://docs.python.
org/3/library/xml.etree.elementtree.html last accessed: November
24, 2021.
7 NetworkX: https://pypi.org/project/networkx/ last accessed:
November 24, 2021.
8 Matplotlib’s pyplot module: https://matplotlib.org/stable/api/
pyplot_summary.html last accessed: November 24, 2021.
9 Python Software Foundation’s pickle module: https:
//docs.python.org/3/library/pickle.html last accessed: Novem-
ber 24, 2021.

also send entire AAS-files, which can be serialized as XML
files [22].

Regarding the DT format, the approach presented re-
quires passive or reactive DTs only, which are able to store
information in a standardized format and structure. These
DTs, which serve as basis for the agents KB should be eas-
ily accessibly and editable. C2PS focuses on the architec-
ture and decision-making process of a DT and does not
provide details for how to store the data. Additionally,
only a reference architecture is provided, which means
that the framework would have to be re-implemented.
Both the DTDL and AAS specification provide a structure
and format for storing the DT’s information. Even though
both can be extended with self-defined properties and
models, the AAS metamodel provides more details rele-
vant for the production context out of the box. Further-
more, various editors are available for the AAS. For ini-
tially creating the AASs for the xPPU’s resources, we used
the AASX Package Explorer.10 An excerpt of the xPPU’s
stamp’s AAS, including its stamping capability, is depicted
in Figure 7.

There are advanced tools available for editing AAS
files, e. g., the PyI40AAS.11 PyI40AAS is a module that en-
ables modeling of AASs as Python objects, (de-)serializa-
tion of AAS objects from and to JSON and XML, reading
and writing of AASX package files, and compliance check-
ing of AAS files. However, we only have to make minor
modifications to the agents’ AASs files, e. g., marking re-
quired processes as executed. Hence, for simplicity, we
chose Python’s etree package for interacting with the AAS
files.

10 https://github.com/admin-shell-io/aasx-package-explorer last
accessed: November 24, 2021.
11 https://git.rwth-aachen.de/acplt/pyi40aas last accessed: Novem-
ber 24, 2021.

https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://pypi.org/project/networkx/
https://matplotlib.org/stable/api/pyplot_summary.html
https://matplotlib.org/stable/api/pyplot_summary.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://github.com/admin-shell-io/aasx-package-explorer
https://git.rwth-aachen.de/acplt/pyi40aas


B. Vogel-Heuser et al., Digital Twins for agent-based production systems | 1035

Figure 7: Exemplary capability modeled in the AAS.

4.3 Evaluation

For evaluating the framework developed, we ran a quan-
titative performance assessment and assessed it qualita-
tively regarding the Cyber-Physical Production Systems
(CPPSs) requirements defined by Ribeiro andHochwallner
[38].

For evaluating performance, we relied on the use case
described in Section 4.1. The resulting MAS consisted of
8 PAs and 19 RAs. So far, the initialization of the agents
was unexpectedly slow with approximately 10 s per agent.
However, these initializations do not occur often and are
not time critical. Spikesmay be due to inefficient exchange
of environment models and shall be optimized for per-
formance in future work. Even without performance op-
timization, the agents’ mean reaction times, cp. Figure 8,
seem acceptable compared to the typical production pro-
cess and transport times. Also, PADEhasbeenproven to be
able to perform well, even for large and potentially indus-
trial MASs with up to 400 agents being run in parallel [15],
allowing the conclusion that the current proof-of-concept
framework can be optimized appropriately. First, the num-
ber of threads increases steadily as threads are started for
the individual agents. Later, the number of threads varies
as the agents start and stop further threads as required for
someasynchronous tasks like thePAs’ decision-makingal-
gorithms or the RAs’ schedule tracking.

Ribeiro and Hochwallner [38] propose assessing
CPPSs regarding adaptability, convertibility, and integra-
bility. Their scale ranges from local autonomy and ba-
sic protocols (level 1) up to cyber-physical autonomy and
the ability to dynamically change the system’s structure
(level 5). According to their analysis, current production
systems reach level 2 while some research projects can
reach level 4. Regarding adaptability, the agents make de-

Figure 8: Reaction times of the agents depending on the number of
threads. Time between reactions = time that passes between execu-
tion of the line of code that sends a message and the execution of
the line of code that triggers the respective response.

cisions based on their environmentmodels, which are cre-
ated from DTs and are updated in case the production sys-
tem changes. In the current implementation, these up-
dates are initiated by the coordinator and the focus was
not put on perceiving abilities of agents so that they could
update their environmentmodels autonomously. Also, the
framework does not yet provide learning capabilities. It
may be extended for both aspects, though. Optimal adap-
tion is realized for certain production aspects, as the PAs
can implement several path finding algorithms. Resilience
is supported by enabling restarts of agents and recalcu-
lation of paths in case of broken resources. However, the
physical layout of the production resources can not be
changed by the system itself. Since we assume that the
PAs only request single processes, the framework is not
built to support collaboration of RAs within the same pro-



1036 | B. Vogel-Heuser et al., Digital Twins for agent-based production systems

cess, but only in the overall production process. Convert-
ibility is in principle supported, as we assume the CPPS
to have amodular physical structure. Additionally, agents,
especially when based on modular KBs, are intrinsically
quick to adjust to changing environments. Integrability is
addressed by relying on the AAS as a basis for standard-
ized KBs. This a priori standardization, especially when
combinedwith the ECLASS standard, ensures semantic in-
teroperability between agents. However, it is based on the
assumption, that all stakeholders involved adhere to the
standard chosen. The aspects diagnosability, safety, and
security have not been explicitly considered, but they can
be addressed by relying onwork developedwithin existing
agent frameworks [2, 10, 13]. In summary, this contribution
focuses on leveragingDTs forMASs and does not explicitly
address all the requirements for CPPSs defined by Ribeiro
and Hochwallner [38]. However, it does so implicitly, as it
relies heavily on the agent paradigm.

4.4 Discussion
Intelligent agents in a MAS in the production context re-
quire various pieces of information to make decisions au-
tonomously. DTs in general, and the AAS in particular,
have been shown to be able to provide this information
for both RAs and PAs, cp. Table 1 (RQ1). However, such a
priori approaches intrinsically require that all stakehold-
ers involved have the same understanding of the under-
lying metamodel. Different understandings would reflect
not only in the DTs’ structure, which could theoretically
be identified automatically, but also in the way informa-
tion is represented. Due to the complexity of theAASmeta-
model, freedom with regard to its use, e. g., the way sub-
models are nested, and the fact that it is still under de-
velopment, using it correctly is still challenging. The same
challenges apply to ensuring semantic interoperability via
ECLASS. Lastly, it is cumbersome to create DTs manually,
even though there are tools available, such as the AASX
Package Explorer.

Since the information relevant for RAs and PAs can
be captured using DTs, these agents can be initialized
from their DTs (RQ2). Here, it is of importance that the
DTs’ structure represents the production system’s modu-
lar architecture and that hierarchical relations are appro-
priately represented. After specifying the top-level DT as
an entry point, the approach can automatically identify all
subordinate resources and create RAs for them. PAs on the
other hand can be added on the fly, which corresponds to
the paradigm of order controlled production [2]. Automat-
ically extracting the information from the DTs is enabled

by the AAS specification [22], which also clearly defines
the serialization. Potentially, information can be fed back
into the DTs analogously. The prototype showed promis-
ing results, even thoughperformancewould need to be im-
proved for industrial applications.

Regarding the operation of MAS (RQ3), DTs can be
integrated flawlessly with existing MAS frameworks and
standards, e. g., PADE. This allows engineers to build on
established technologies, but leverage DTs to overcome
previous limitations. Even though there are still challenges
in applying the AAS as a commonmetamodel and ECLASS
for avoiding ambiguities, this standardization would pave
the way to unambiguous communication and thus greatly
benefits MAS too. This potential has been demonstrated
using a simulation of a scaled-up version of the lab-scale
demonstrator xPPU. Future work will evaluate how this
system performs when connected to the physical system,
for different plants and also in an industrial setting. There,
further challenges shall be researched, for instance re-
garding timeliness. Finally, it has to be noted that the
system developed aims to create RAs and PAs, which are
not required to meet hard realtime requirements. For the
fieldlevel, a more hierarchical structure with dominant
and submissive agents instead of negotiating ones would
be more appropriate. Even though we believe that such
realtime-capable architectures would also benefit from
leveraging DTs, it still has to be investigated how the dif-
ferences in DTs for fieldlevel components compared to
higher-level modules would influence the approach’s ap-
plicability.

5 Summary and outlook
Even though MASs have the potential to realize flexible
and adaptable production systems, their application is
still limited by ambiguities in the agents’ communication
and the effort for creating the individual agents’ KBs. The
approach presented leverages DTs in the form of AASs
to address this challenge. As a basis, we presented an
overview of information required by the different agents
and showed that it can be represented using theAASmeta-
model (RQ1). Using DTs with this information as an input,
we showed how a MAS can be created and how the indi-
vidual RAs and PAs can be automatically initialized from
their respective DTs (RQ2). As a proof of concept, we pre-
sented how DTs can be leveraged to set up a MAS in PADE
for an extended version of the demonstrator xPPU (RQ3).
The approach was evaluated using a simulation of this ex-
tended PPU. In summary, this approach shows the poten-
tial of leveraging DTs for MASs, which will hopefully pave



B. Vogel-Heuser et al., Digital Twins for agent-based production systems | 1037

theway towardsmakingMASsmainstreamand eventually
easily applicable for industry.

However, there are still several open research chal-
lenges to be addressed in future work. The effort for cre-
ating DTs, e. g., with the AASX Package Explorer, is prob-
lematic, as it will prevent acceptance. Hence, approaches
should be developed that would ideally automatically
create DTs, for instance from existing engineering docu-
ments, or at least support engineers in creating the DTs.
Also, we assumed that products are described in terms
of required production processes. To lift this assumption,
an automated matching of product features to production
processes would be required. Even though this is chal-
lenging, it would greatly benefit the combination of the
perspectives product and resource, and their respective
agents. Lastly, it is essential that the DT accurately rep-
resents the asset, especially if it is used as an input for
creating an agent’s KB. Only if the KB is up to date can
the agent make appropriate decisions, if necessary also
using a more complex objective function, which also mir-
rors criteria such financial costs and quality instead of
time only. For this, the DT has to be coupled to the asset
and the two must be synchronized continuously. Since
the agents include up-to-date environment models, they
could also be leveraged to feedupdates back into theirDTs.
Here, especially the thought of peer-supervision among
agents is promising, i. e., agents notify the coordinator
of unexpected behavior of their peers. The coordinator
can then use this information to provide updated environ-
ment models to the agents affected. Hereby, it is essential
to avoid and possibly resolve inconsistencies between the
asset and the DT, which still imposes a challenge, espe-
cially because timeliness is of importance. If that is en-
sured, the DT, e. g., in the form of the reactive AAS, may
also serve as an abstraction layer between the agent and
the asset, thus further facilitating the set-up of the MAS.

Funding: We kindly thank the German Federal Ministry of
Education and Research (BMBF) for funding the project
DAVID (01IS18075F).

References
1. H. ElMaraghy, A. AlGeddawy and A. Azab, “Change in

Manufacturing – Research and Industrial Challenges,” in
Enabling Manufacturing Competitiveness and Economic
Sustainability, pp. 2–9, 2011.

2. B. Vogel-Heuser, M. Seitz, L. A. Cruz Salazar, F. Gehlhoff, A.
Dogan and A. Fay, “Multi-agent systems to enable Industry
4.0,” at – Automatisierungstechnik, vol. 68, no. 6, pp. 445–458,
6 2020.

3. B. Vogel-Heuser, J. Lee and P. Leitão, “Agents
enabling cyber-physical production systems,” at –
Automatisierungstechnik, vol. 63, no. 10, pp. 777–789, 2015.

4. M. Wooldridge, “Intelligent agents: The key concepts,” in ECCAI
Advanced Course on Artificial Intelligence. Springer, 2001,
pp. 3–43.

5. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik,
“VDI/VDE 2653-1: Multi-agent systems in industrial automation
– Fundamentals,” 2018. [Online]. Available: https://www.vdi.
de/richtlinien/details/vdivde-2653-blatt-1-agentensysteme-in-
der-automatisierungstechnik-grundlagen.

6. L. A. Cruz Salazar, D. Ryashentseva, A. Lüder and B.
Vogel-Heuser, “Cyber-physical production systems architecture
based on multi-agent’s design pattern – comparison
of selected approaches mapping four agent patterns,”
International Journal of Advanced Manufacturing Technology,
vol. 105, no. 9, pp. 4005–4034, 2019.

7. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik,
“VDI/VDE 2653-4: Multi-agent systems in industrial automation
– Selected patterns for field level control and energy systems,”
2021. [Online]. Available: https://www.vdi.de/richtlinien/
details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-
automation-selected-patterns-for-field-level-control-and-
energy-systems.

8. P. Verstraete, B. Saint Germain, K. Hadeli, P. Valckenaers and H.
Van Brussel, “On applying the PROSA reference architecture
in multi-agent manufacturing control applications,” in
Proceedings of the Multi-agent Systems and Software
Architecture Special Track at Net. ObjectDays, pp. 31–47, 2006.

9. I. Kovalenko, “Intelligent product agents for multi-agent control
of manufacturing systems,” Ph.D. dissertation, University of
Michigan, 2020. [Online]. Available: https://deepblue.lib.
umich.edu/handle/2027.42/162893.

10. J. Peschke, A. Lüder and H. Kühnle, “The PABADIS’PROMISE
architecture,” IEEE Procedings, vol. 1, pp. 491–496, 2005.

11. A.M. Farid and L. Ribeiro, “An Axiomatic Design of a Multiagent
Reconfigurable Mechatronic System Architecture,” IEEE
Transactions on Industrial Informatics, vol. 11, no. 5,
pp. 1142–1155, 2015.

12. P. Leitão and F. Restivo, “ADACOR: A holonic architecture for
agile and adaptive manufacturing control,” Computers in
Industry, vol. 57, no. 2, pp. 121–130, 2006.

13. S. Rehberger, L. Spreiter and B. Vogel-Heuser, “An agent-based
approach for dependable planning of production sequences in
automated production systems,” at – Automatisierungstechnik,
vol. 65, no. 11, pp. 766–778, 2017.

14. F. Bellifemine, A. Poggi and G. Rimassa, “JADE –
A FIPA-compliant agent framework,” in Proceedings of PAAM,
pp. 97–108, 1999.

15. L. S. Melo, R. F. Sampaio, R. P. S. Leão, G. C. Barroso and J. R.
Bezerra, “Python-based multi-agent platform for application on
power grids,” International Transactions on Electrical Energy
Systems, vol. 29, no. 6, pp. 1–14, 2019.

16. T. Wagner, “Agentenunterstütztes Engineering von
Automatisierungsanlagen,” in VDI Berichte, no. 1883,
pp. 559–567, 2005.

17. R. N. Bolton, J. R. McColl-Kennedy, L. Cheung, A. Gallan,
C. Orsingher, L. Witell and M. Zaki, “Customer experience
challenges: bringing together digital, physical and social
realms,” Journal of Service Management, 2018.

https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-1-agentensysteme-in-der-automatisierungstechnik-grundlagen
https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-1-agentensysteme-in-der-automatisierungstechnik-grundlagen
https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-1-agentensysteme-in-der-automatisierungstechnik-grundlagen
https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://www.vdi.de/richtlinien/details/vdivde-2653-blatt-4-multi-agent-systems-in-industrial-automation-selected-patterns-for-field-level-control-and-energy-systems
https://deepblue.lib.umich.edu/handle/2027.42/162893
https://deepblue.lib.umich.edu/handle/2027.42/162893


1038 | B. Vogel-Heuser et al., Digital Twins for agent-based production systems

18. F. Tao, H. Zhang, A. Liu and A. Y. Nee, “Digital Twin in Industry:
State-of-the-Art,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 4, pp. 2405–2415, 2019.

19. E. Bayrhammer, F. Ocker, E. Trunzer, M. Eisenträger, C.
Bornstein, A. Strahilov, H. Avgoustinos, S. Himstedt, S.
Adler and B. Vogel-Heuser, “Verteilte Digitale Zwillinge – der
Stand der Technik, Anwendungsfälle und Zielstellung,” in
VDI-Kongress AUTOMATION, 2020.

20. Y. Lu, C. Liu, I. Kevin, K. Wang, H. Huang and X. Xu, “Digital
twin-driven smart manufacturing: Connotation, reference
model, applications and research issues,” Robotics and
Computer-Integrated Manufacturing, vol. 61, 2020.

21. J. Moyne, Y. Qamsane, E. C. Balta, I. Kovalenko, J. Faris, K.
Barton and D.M. Tilbury, “A Requirements Driven Digital Twin
Framework: Specification and Opportunities,” IEEE Access,
vol. 8, 2020.

22. Plattform Industrie 4.0, “Details of the Asset Administration
Shell – Part 1 (Version 3.0RC01),” 2020. [Online].
Available: https://www.plattform-i40.de/PI40/Redaktion/
DE/Downloads/Publikation/Details_of_the_Asset_
Administration_Shell_Part1_V3.html.

23. B. Boss, S. Malakuti, S.-W. Lin and T. Usländer, “Digital Twin
and Asset Administration Shell Concepts and Application in
the Industrial Internet and Industrie 4.0,” 2020. [Online].
Available: https://www.plattform-i40.de/PI40/Redaktion/
DE/Downloads/Publikation/Digital-Twin-and-Asset-
Administration-Shell-Concepts.html.

24. Plattform Industrie 4.0, “Verwaltungsschale in der Praxis –
Wie definiere ich Teilmodelle, beispielhafte Teilmodelle und
Interaktion zwischen Verwaltungsschalen,” 2020. [Online].
Available: https://www.plattform-i40.de/PI40/Redaktion/
DE/Downloads/Publikation/2020-verwaltungsschale-in-der-
praxis.html.

25. A. Belyaev and C. Diedrich, “Aktive Verwaltungsschale
von I4.0-Komponenten – Erscheinungsformen von
Verwaltungsschalen,” in Leitkongress der Mess-und
Automatisierungstechnik, 2019.

26. K.M. Alam and A. El Saddik, “C2PS: A digital twin architecture
reference model for the cloud-based cyber-physical systems,”
IEEE Access, vol. 5, pp. 2050–2062, 2017.

27. W. Zhang, G. Wang, Y. Yan, H. Chu, J. Wang and Z. Cao,
“Intelligent test of spacecraft based on digital twin and
multi-agent systems,” Computer Integrated Manufacturing
Systems, vol. 27, no. 1, pp. 16–33, 2021.

28. V. Laryukhin, P. Skobelev, O. Lakhin, S. Grachev, V. Yalovenko
and O. Yalovenko, “The multi-agent approach for developing
a cyber-physical system for managing precise farms with
digital twins of plants,” Cybernetics and Physics, vol. 8, no. 4,
pp. 257–261, 2019.

29. A. Niati, C. Selma, D. Tamzalit, H. Bruneliere, N. Mebarki and O.
Cardin, “Towards a digital twin for cyber-physical production
systems: a multi-paradigm modeling approach in the postal
industry,” in International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings,
2020.

30. X. Zheng, F. Psarommatis, P. Petrali, C. Turrin, J. Lu and D.
Kiritsis, “A quality-oriented digital twin modelling method for
manufacturing processes based on a multi-agent architecture,”
Procedia Manufacturing, vol. 51, pp. 309–315, 2020.

31. F. Ocker, C. Urban, B. Vogel-Heuser and C. Diedrich,

“Leveraging the Asset Administration Shell for Agent-Based
Production Systems,” in IFAC Symposium on Information
Control Problems in Manufacturing. Elsevier, 2021.

32. F. Ocker, I. Kovalenko, K. Barton, D. Tilbury and B.
Vogel-Heuser, “A Framework for Automatic Initialization
of Multi-Agent Production Systems Using Semantic Web
Technologies,” IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 4330–4337, 2019.

33. F. Ocker, B. Vogel-Heuser and J. Fischer, “Towards Providing
Feasibility Feedback in Intralogistics Using a Knowledge
Graph,” in International Conference on Industrial Informatics,
2021.

34. S. Bougouffa, K. Meszmer, S. Cha, E. Trunzer and B.
Vogel-Heuser, “Industry 4.0 interface for dynamic
reconfiguration of an open lab size automated production
system to allow remote community experiments,” in
International Conference on Industrial Engineering and
Engineering Management, 2018.

35. A. Giret and V. Botti, “Holons and agents,” Journal of Intelligent
Manufacturing, vol. 15, no. 5, pp. 645–659, 2004.

36. Foundation for Intelligent Physical Agents, “FIPA Agent
Communication Language,” 1997. [Online]. Available: http:
//www.fipa.org/specs/fipa00018/OC00018.pdf.

37. B. Vogel-Heuser, S. Bougouffa and M. Sollfrank, “Researching
Evolution in Industrial Plant Automation: Scenarios and
Documentation of the extended Pick and Place Unit,”
Institute of Automation and Information Systems, Technical
University of Munich, Tech. Rep., 2018. [Online]. Available:
https://mediatum.ub.tum.de/node?id=1468863.

38. L. Ribeiro and M. Hochwallner, “On the design complexity of
cyberphysical production systems,” Complexity, 2018.

Bionotes
Birgit Vogel-Heuser
Institute of Automation and Information
Systems, Department of Mechanical
Engineering, TUM School of Engineering
and Design, Core Member of MDSI and
Member of MIRMI, Technical University of
Munich, Munich, Germany
Prof. Dr.-Ing. Birgit Vogel-Heuser is also
Core Member of MDSI and Member of
MIRMI
vogel-heuser@tum.de

Birgit Vogel-Heuser, Prof. Dr.-Ing., is a full professor and director of
the Institute of Automation and Information Systems at the Techni-
cal University of Munich. Her main research interests are systems
engineering, software engineering, and modeling of distributed and
reliable embedded systems. She is core member of TUM’s MDSI,
member of TUM’s MIRMI, member of the German Academy of Sci-
ence and Engineering, chair of the VDI/VDE working group on in-
dustrial agents, vice chair of the IFAC TC 3.1 computers in control,
and was coordinator of the Collaborative Research Centre (CRC) 768:
Managing cycles in innovation processes – integrated development
of product-service systems based on technical products.

https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Digital-Twin-and-Asset-Administration-Shell-Concepts.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Digital-Twin-and-Asset-Administration-Shell-Concepts.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Digital-Twin-and-Asset-Administration-Shell-Concepts.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2020-verwaltungsschale-in-der-praxis.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2020-verwaltungsschale-in-der-praxis.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2020-verwaltungsschale-in-der-praxis.html
http://www.fipa.org/specs/fipa00018/OC00018.pdf
http://www.fipa.org/specs/fipa00018/OC00018.pdf
https://mediatum.ub.tum.de/node?id=1468863


B. Vogel-Heuser et al., Digital Twins for agent-based production systems | 1039

Felix Ocker
Institute of Automation and Information
Systems, Department of Mechanical
Engineering, TUM School of Engineering
and Design, Technical University of Munich,
Munich, Germany
felix.ocker@tum.de

Felix Ocker, M. Sc., is a graduate research assistant and Ph. D. stu-
dent with the Institute of Automation and Information Systems at
the Technical University of Munich. His research focuses on knowl-
edge formalization and inconsistency management in interdisci-
plinary engineering.

Tobias Scheuer
Institute of Automation and Information
Systems, Department of Mechanical
Engineering, TUM School of Engineering
and Design, Technical University of Munich,
Munich, Germany
tobias.scheuer@tum.de

Tobias Scheuer, B. Sc., is an undergraduate research assistant and
master student in Mechatronics and Robotics at the Technical Uni-
versity of Munich. His research interests lie in automation, multi-
agent systems, and digital twins.


	An approach for leveraging Digital Twins in agent-based production systems
	1 Motivation
	2 Related literature
	2.1 Multi-Agent Systems
	2.2 Digital Twins
	2.3 Leveraging Digital Twins in Multi-Agent Systems

	3 Approach for leveraging Digital Twins to create a Multi-Agent System
	3.1 Assumptions
	3.2 Agent types, tasks, and relevant information
	3.3 Recursive architecture
	3.4 Environment models for agents
	3.5 Instantiating individual agents from Digital Twins
	3.6 Decision-making process

	4 Implementation and discussion
	4.1 Demonstrator
	4.2 Implementation details
	4.3 Evaluation
	4.4 Discussion

	5 Summary and outlook
	References


