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ABSTRACT
In this work, a novel approach for the reliable and efficient numerical
integration of the Kuramoto model on graphs is studied. For this pur-
pose, the notion of order parameters is revisited for the classical Kuramoto
model describing all-to-all interactions of a set of oscillators. First numerical
experiments confirm that the precomputation of certain sums significantly
reduces the computational cost for the evaluation of the right-hand side
and hence enables the simulation of high-dimensional systems. In order to
design numerical integration methods that are favourable in the context
of related dynamical systems on network graphs, the concept of localized
order parameters is proposed. In addition, the detection of communities
for a complex graph and the transformation of the underlying adjacency
matrix to block structure is an essential component for further improve-
ment. It is demonstrated that for a submatrix comprising relatively few
coefficients equal to zero, the precomputation of sums is advantageous,
whereas straightforward summation is appropriate in the complementary
case. Concluding theoretical considerations and numerical comparisons
show that the strategy of combining effective community detection algo-
rithms with the localization of order parameters potentially reduces the
computation time by several orders of magnitude.

ARTICLE HISTORY
Received 13 February 2021
Revised 10 May 2021
Accepted 30 June 2021

KEYWORDS
Differential equations;
dynamical systems; network
dynamics; Kuramoto model;
Kuramoto model on graphs;
numerical integration;
geometric integration

MATHEMATICS SUBJECT
CLASSIFICATIONS
37M05; 34A34; 65L05; 65P10

1. Introduction

In the present work, we propose a novel approach for the reliable and efficient numerical integra-
tion of nonlinear dynamical systems on network graphs and provide various numerical comparisons
confirming its potential. In essence, our objective is to combine effective algorithms for the detec-
tion of communities with the concept of localized order parameters based on the precomputation
of certain sums. For the sake of concreteness, we focus on Kuramoto-type models for a large set of
individual oscillators and graphs that are determined by adjacency matrices with coefficients equal
to one and zero, respectively. Generally, the interactions between the oscillators are described by
a system of nonlinear ordinary differential equations involving the sines of the associated phases.
The classical Kuramoto–Daido model [9,23] reflects the case of all-to-all coupling and thus cor-
responds to a complete graph. Realistic extended models incorporate complex networks [32]. Yet,
the efficient numerical integration of a Kuramoto-type model on a graph comprising a high num-
ber of nodes is a relevant issue, and even the evaluation of the vector field defining the right-hand
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side of the system poses a major challenge. This problem actually permeates the simulation of com-
plex dynamics on networks [28]. In order to exemplify our strategy and to illustrate its capability,
we initially consider the classical Kuramoto–Daidomodel and revisit the well-known notion of order
parameters [2,9,23,26,37,38]. An essential component of our procedure forKuramoto-typemodels on
graphs is the detection of communities [13,29], since this permits a transformation of the associated
adjacency matrix to block structure. We demonstrate that for a submatrix comprising relatively few
coefficients equal to zero the precomputation of sums is indeed advantageous and that straightforward
summation is suitable in the complementary case. We conclude with theoretical considerations and
numerical comparisons, which show that our approach ensures a significant reduction of the required
memory capacity as well as the computational cost for the evaluation of the right-hand side. As a
consequence, long-term simulations of systems involving a large number of oscillators by geometric
integrators [4,19,34,35] are within reach.

Scope of the model. The starting point of our investigations is the Kuramoto–Daido model [9,23].
We henceforth refer to it as (classical) Kuramoto model. This system of coupled nonlinear ordi-
nary differential equations is a fundamental mathematical model for the dynamical behaviour of a
set of weakly coupled, nearly identical oscillators and specifies the time evolution of the associated
phases.Despite its simple structure, theKuramotomodel exhibits fascinating phenomena such as syn-
chronization and phase locking [37]. Originally introduced to describe processes in chemistry and
biology [23,40], it was found to have various applications in other fields such as physics, neuroscience,
and engineering [1,10,14]. From a theoretical perspective, the Kuramotomodel has deep connections
to effects present in Hamiltonian systems, particularly to Landau damping [11,12] and bifurcations
from essential spectra [6]. A variety of Kuramoto-typemodels have a gradient flow structure entailing
further interesting mathematical cross-connections [16].

Kuramoto model. The main terms defining the right-hand side of the classical Kuramoto model
forM individual oscillators have the form

1
M

M∑
�=1

sin
(
ϑ�(t)− ϑm(t)

)
, t ∈ [0,T], m ∈ {1, 2, . . . ,M} . (1)

Here, ϑm denotes the time-dependent phase of the m-th oscillator, which takes values in the circle
S1 = R/(2πZ). Henceforth, we employ the convenient vector notation

ϑ = (ϑ1, . . . ,ϑM)T : [0,T] −→ S
M
1 .

With regard to the numerical simulation of a high number of oscillators, an essential requirement
is the efficient evaluation of these sums at certain time grid points. Thereby, one issue is the limited
memory capacity. As an example, we mention the currently widely used software Matlab, which
has a maximum array size preference of about 1010 (74.5GB) corresponding to a square matrix of
dimension 105. Consequently, it is desirable to avoid the creation of the matrix(

ϑ�(t)− ϑm(t)
)
�,m∈{1,2,...,M}, t ∈ [0,T],

since this would restrict the dimension of the system considerably. An important alternative for the
efficient evaluation of (1) relies on the macroscopic order parameters, which are given through

r
(
ϑ(t)

)
eiψ(ϑ(t)) = 1

M

M∑
m=1

eiϑm(t), t ∈ [0,T] .

More precisely, applying the addition theorem for the sine function to (1), we obtain the following
reformulation

SM
(
ϑ(t)

) = 1
M

M∑
m=1

sin
(
ϑm(t)

)
, CM

(
ϑ(t)

) = 1
M

M∑
m=1

cos
(
ϑm(t)

)
,
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1
M

M∑
�=1

sin
(
ϑ�(t)− ϑm(t)

) = SM
(
ϑ(t)

)
cos

(
ϑm(t)

) − CM
(
ϑ(t)

)
sin

(
ϑm(t)

)
,

t ∈ [0,T], m ∈ {1, 2, . . . ,M}. (2)

An evident though crucial observation is that precomputing the sums SM(ϑ(t)) and CM(ϑ(t)) per-
mits to evaluate SM(ϑ(t)) cos(ϑm(t))− CM(ϑ(t)) sin(ϑm(t)) for m ∈ {1, 2, . . . ,M} in an efficient
manner. Numerical comparisons described in Section 2 confirm that this approach reduces the
number of function evaluations and thus the computation time considerably.

Kuramoto model on graphs. As indicated above, it is of high relevance to study extensions of the
classical Kuramoto model in the context of dynamical networks [32]. We focus on situations, where
the sum over all phases is replaced by a sum over certain phases. That is, the right-hand side of the
system involves terms of the form

M∑
�=1

Am� sin
(
ϑ�(t)− ϑm(t)

)
, Am� ∈ {0, 1}, t ∈ [0,T], �,m ∈ {1, 2, . . . ,M} .

The associated matrix

A = (
Am�

)
�,m∈{1,...,M} ∈ R

M×M

has the natural interpretation as the adjacency matrix of a graph. In Section 3, we consider the com-
plementary cases of sparse and dense adjacency matrices. Numerical tests for randomly generated
matrices show that the precomputation of sums is advantageous whenever the number of coefficients
equal to one is larger than the number of coefficients equal to zero, whereas straightforward sum-
mation is appropriate otherwise. Subsequently, we examine algorithms detecting communities in a
graph, which yield as outputs partitions of the nodes, and extend our approach to block matrices. In
our considerations, we do not presume a symmetric adjacencymatrix, which would lead to a gradient
system.

Generalisations. We point out that our approach applies to the more general case, where the
coefficients of the adjacency matrix take values in a finite set, for instance

Am� ∈ {0, 1, . . . , J}, �,m ∈ {1, 2, . . . ,M} .

Provided that a suitable permutation permits the transformation to a block matrix such that a single
value is prevalent in each block and the total number of blocks is relatively small, wemay expect a sig-
nificant gain in efficiency by the precomputation of sums.Moreover, it is straightforward to generalize
our approach to systems that in addition involve multiple sums such as

M∑
j,k,�=1

Amjk� sin
(
ϑj(t)+ ϑk(t)− ϑ�(t)− ϑm(t)

)
, t ∈ [0,T], m ∈ {1, 2, . . . ,M} .

Due to the fact that higher-order Kuramoto models describe interactions beyond usual graph struc-
tures, they have recently raised remarkable interest, see [3,36] and references given therein. However,
as their incorporation requires laborious notation and would obstruct a comprehensible presentation
of the key idea, we do not include detailed calculations here.

Remarks. We note that suitable reformulations of the classical Kuramoto model and Kuramoto-
type models on graphs can also be based on complex exponentials. In view of expedient practical
implementations, however, it is preferable to use real-valued quantities. On account of cross-
references in captions, figures are included at the end of this manuscript.
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2. Kuramotomodel

In this section, we state the classical Kuramoto model and study different viewpoints on its reliable
and efficient numerical integration.

Original formulation. We consider a set ofM limit-cycle oscillators with time-dependent phases

ϑm : [0,T] −→ S1, m ∈ {1, 2, . . . ,M} . (3a)

In the absence of external driving or damping forces, respectively, the oscillators have the intrinsic
frequencies

ωm ∈ R, m ∈ {1, 2, . . . ,M} . (3b)

The pairwise interactions between the oscillators are described by the following system of nonlinear
ordinary differential equations⎧⎪⎪⎨⎪⎪⎩

ϑ ′
m(t) = ωm + K

M

M∑
�=1

sin
(
ϑ�(t)− ϑm(t)

)
,

ϑm(0)given, t ∈ (0,T), m ∈ {1, 2, . . . ,M},
(3c)

where K> 0 denotes the coupling constant.
Special choices. In our numerical tests, we consider intrinsic frequencies defined by a single real

number ω0 ∈ R and initial phases of the form

ωm = 1 + ω0
(2m − M − 1)

M − 1
, ϑm(0) = 2πm

M
, m ∈ {1, 2, . . . ,M} . (3d)

Reformulation. Regarding the efficient numerical integration of the classical Kuramoto model, it
is to the best advantage to employ a reformulation that relies on elementary addition theorems for
trigonometric functions

sin
(
ϑ�(t)− ϑm(t)

) = sin
(
ϑ�(t)

)
cos

(
ϑm(t)

) − cos
(
ϑ�(t)

)
sin

(
ϑm(t)

)
,

�,m ∈ {1, 2, . . . ,M} .
Introducing the abbreviations

SM
(
ϑ(t)

) = SM
(
ϑ1(t),ϑ2(t), . . . ,ϑM(t)

) = 1
M

M∑
m=1

sin
(
ϑm(t)

) ∈ R,

CM
(
ϑ(t)

) = CM
(
ϑ1(t),ϑ2(t), . . . ,ϑM(t)

) = 1
M

M∑
m=1

cos
(
ϑm(t)

) ∈ R,

(4a)

the governing equations (3a) read as{
ϑ ′
m(t) = ωm + K

(
SM

(
ϑ(t)

)
cos

(
ϑm(t)

) − CM
(
ϑ(t)

)
sin

(
ϑm(t)

))
,

ϑm(0)given, t ∈ (0,T), m ∈ {1, 2, . . . ,M} .
(4b)

Employing the standard vector notation

ω =

⎛⎜⎜⎜⎝
ω1
ω2
...
ωM

⎞⎟⎟⎟⎠ ∈ R
M , ϑ(t) =

⎛⎜⎜⎜⎝
ϑ1(t)
ϑ2(t)
...

ϑM(t)

⎞⎟⎟⎟⎠ ∈ S
M
1 , t ∈ [0,T], (4c)



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 5

and setting accordingly

sin
(
ϑ(t)

) =

⎛⎜⎜⎜⎜⎝
sin

(
ϑ1(t)

)
sin

(
ϑ2(t)

)
...

sin
(
ϑM(t)

)

⎞⎟⎟⎟⎟⎠ , cos
(
ϑ(t)

) =

⎛⎜⎜⎜⎝
cos

(
ϑ1(t)

)
cos

(
ϑ2(t)

)
...

cos
(
ϑM(t)

)
⎞⎟⎟⎟⎠ ,

F
(
ϑ(t)

) = ω + K
(
SM

(
ϑ(t)

)
cos

(
ϑ(t)

) − CM
(
ϑ(t)

)
sin

(
ϑ(t)

))
, t ∈ [0,T],

(4d)

the system takes the compact form{
ϑ ′(t) = F

(
ϑ(t)

)
, t ∈ (0,T),

ϑ(0) given .
(4e)

Potential. The classical Kuramoto model (3)–(4) has the intrinsic structure of a gradient system.
That is, the right-hand side is given by the gradient of a real-valued potential function

− ∇V(ϑ) =
(
ωm + K

M

M∑
�=1

sin(ϑ� − ϑm)

)
m∈{1,2,...,M}

= ω + K
(
SM(ϑ) cos(ϑ)− CM(ϑ) sin(ϑ)

)
, ϑ = (ϑ1, . . . ,ϑM)T ∈ S

M
1 ,

such that the governing equations rewrite as{
ϑ ′(t) = −∇V

(
ϑ(t)

)
, t ∈ (0,T),

ϑ(0) given .

This, in particular, implies that the values of the potential decrease when time evolves

d
dt

V
(
ϑ(t)

) =
(
∇V

(
ϑ(t)

))T
ϑ ′(t) = − ∥∥∇V

(
ϑ(t)

)∥∥2 ≤ 0,

V
(
ϑ(t)

) ≤ V
(
ϑ(0)

)
, t ∈ [0,T] .

For our purposes, in view of its efficient evaluation, it is advantageous to reformulate the canonical
potential as follows

V : R
M −→ R :

ϑ �−→ V(ϑ) = V(ϑ1, . . . ,ϑM)

= −
M∑

m=1
ωm ϑm + K

2M

M∑
�,m=1

(
1 − cos(ϑ� − ϑm)

)
= −ωTϑ + KM

2

(
1 − (

CM(ϑ)
)2 − (

SM(ϑ)
)2) .

(5a)

As mentioned below, the choice of the constant of integration is linked to the special case of
synchronization.

Order parameter. The modulus r : S
M
1 → R and the angle ψ : S

M
1 → R of the complex order

parameter are given by

r(ϑ) eiψ(ϑ) = 1
M

M∑
m=1

eiϑm = CM(ϑ)+ i SM(ϑ), ϑ ∈ S
M
1 . (5b)
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Multiplying by e− iϑ� for � ∈ {1, 2, . . . ,M} and considering the imaginary part of the resulting relation

r(ϑ) ei (ψ(ϑ)−ϑ�) = 1
M

M∑
m=1

ei (ϑm−ϑ�), r(ϑ) sin
(
ψ(ϑ)− ϑ�

) = 1
M

M∑
m=1

sin
(
ϑm − ϑ�

)
,

ϑ ∈ S
M
1 , � ∈ {1, 2, . . . ,M},

the Kuramoto model (3)–(4) rewrites as{
ϑ ′(t) = ω + K r

(
ϑ(t)

)
sin

(
ψ

(
ϑ(t)

) − ϑ(t)
)
,

ϑ(0) given, t ∈ (0,T) .
We point out that the order parameters contain the entire information about the interactions of the
oscillators. Although this reformulation looks like a mean-field equation for a single oscillator, it
completely represents the original system.

Indicator for synchronization. For configurations, where all cosine and sine values are close-by, the
modulus of the complex order parameter has values nearly one

cos(ϑm) ≈ cos(ϑ1), sin(ϑm) ≈ sin(ϑ1), m ∈ {2, 3, . . . ,M},
CM(ϑ) ≈ cos(ϑ1), SM(ϑ) ≈ sin(ϑ1),

r(ϑ) =
√(

CM(ϑ)
)2 + (

SM(ϑ)
)2 ≈ 1, ϑ ∈ S

M
1 .

Hence, this quantity indicates synchronization. Furthermore, in this situation, the above-stated choice
of the constant of integration in the potential implies

V(ϑ) ≈ −ωTϑ , ϑ ∈ S
M
1 .

Conserved quantity. A straightforward calculation shows that summation over all governing
equations yields the identity

1
M

M∑
m=1

ϑ ′
m(t) = 1

M

M∑
m=1

ωm, t ∈ [0,T],

see (3)–(4). Performing integration, this implies that the mean values of the intrinsic frequencies and
the initial phases determine the mean values of the phases at later times

1
M

M∑
m=1

ϑm(t) = 1
M

M∑
m=1

ϑm(0)+ t
1
M

M∑
m=1

ωm, t ∈ [0,T] .

In other words, the dynamics of the classical Kuramoto model is restricted to a time-dependent
submanifold defined by the constraint

1
M

M∑
m=1

(
ϑm(t)− ϑm(0)− t ωm

) = 0, t ∈ [0,T] . (5c)

We anticipate that this characteristic result extends to Kuramoto models on graphs under a certain
symmetry condition, see Section 3. However, in general, this conservation property does not hold
and then the quantity

1
M

M∑
m=1

(
ϑm(t)− ϑm(0)− t ωm

)
(5d)

reflects the deviation.
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Table 1. Classical Kuramoto model.

Original formulation M (M − 1)

Reformulation 4M

Computational cost for the evaluation of the right-
hand side based on the original formulation (3a)
and the reformulation (4a), respectively. Num-
ber of function evaluations (sine, cosine) in
dependence of the total number of oscillators.

In the limit M → ∞, the sums in (5c)–(5d) are replaced by integrals. In the case of randomly
chosen problemdata, e.g. they are interpreted as expected phases and intrinsic frequency, respectively.

Implementation and computational cost. For systems involving a high number of oscillatorsM >>

1, the above-stated approach leading to a reformulation of the classical Kuramoto model is beneficial
in several respects. It permits to reduce the required memory capacity as well as the computational
cost for the evaluation of the right-hand side significantly, see Table 1. Moreover, parallelization
techniques can be used.

Exemplification (Euler). In order to exemplify our procedure for the efficient numerical integra-
tion of the Kuramoto model, we consider the simplest first-order one-step method, the explicit Euler
method. For a time grid with associated stepsizes

0 = t0 < . . . < tn < . . . < tN = T, τn = tn+1 − tn, n ∈ {0, 1, . . . ,N − 1},
and a prescribed initial approximation ϑ(0) ≈ ϑ(0), the explicit Euler solution is given by the
recurrence

ϑ(n+1) = ϑ(n) + τn F
(
ϑ(n)

)
, n ∈ {0, 1, . . . ,N − 1},

see (4). In each time step, the evaluation of the defining function relies on the precomputation of the
sums

S(n)M = SM
(
ϑ(n)

)
, C(n)M = CM

(
ϑ(n)

)
, (6a)

and subsequently on the computation of

F
(
ϑ(n)

) = ω + K
(
S(n)M cos

(
ϑ(n)

) − C(n)M sin
(
ϑ(n)

))
. (6b)

Altogether, this requires 4M evaluations of sine and cosine functions compared to M(M − 1)
evaluations of the sine function needed for the original formulation (3). The generalization to higher-
order explicit or implicit time integration methods is straightforward. Long-term simulations are
ideally based on geometric integrators. Their benefits over standard methods are demonstrated
in [4,19,34,35], e.g.

Remark 2.1: In our study, the focus is on the numerical simulation of a high number of oscillators.
In this situation, the reduction from M2 to M2 − M evaluations of the sine function by taking into
account the evident identity for coinciding indices

� = m : sin(ϑ� − ϑm) = 0

is of minor relevance and thus will be neglected.

Numerical comparisons. Numerical comparisons of different approaches for the evaluation of the
right-hand side of the classical Kuramoto model (3)–(4) and the associated potential (5) are dis-
played in Figure 1.We focus on an implementation inMatlab and expect that analogous conclusions
hold for other software packages. We vary the total number of oscillators from 102 to 108, tak-
ing into account maximum array size preferences as mentioned in the introduction. A randomly
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Figure 1. Classical Kuramoto model. Computational cost for the evaluation of the right-hand side and the potential. Left: Number
of sine and cosine evaluations versus the total number of oscillators when using straightforward summation and the precomputa-
tion of sums, respectively. Middle: Numerical comparison of the computation time for different implementations in MATLAB. Right:
Corresponding results for the potential.

chosen numberω0 ∈ (0, 1) defines the intrinsic frequencies. The phasesϑ1,ϑ2, . . . ,ϑM are uniformly
distributed in [0, 2π]. We compare

(i) straightforward summation of sin(ϑ� − ϑm) for �,m ∈ {1, 2, . . . ,M} realized by a double loop
over all rows,

(ii) a simple script using sum(sin(ϑ − ϑm)) for m ∈ {1, 2, . . . ,M} and thus involving a loop over
all rows,

(iii) a script by Cleve Moler that generates the matrix sin(ϑ − ϑ ′) and then adds up each row, 1
(iv) the above-stated procedure using the precomputation of sums, see (4) and (6).

For a higher number of oscillators, it is probable that the evaluation of functions and the com-
putation of sums are the most time consuming components. The numerical results confirm that our
approach (iv) is favourable in this regime and permits the efficient simulation of a high number of
oscillators. Similar conclusions hold for the evaluation of the potential.

Numerical integration. The numerical integration of the classical Kuramoto model (3)–(4) based
on the precomputation of sums is illustrated in Figures 2–6. Movies showing the time evolution
are found at http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieKuramotoClassicalK1.
m4v http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieKuramotoClassicalK3.m4v
http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieKuramotoClassicalK5.m4v

We considerM = 102 as well asM = 104 oscillators and set T = 200. The interplay between the
coupling constantK ∈ {1, 3, 5} and the constantω0 = 2 defining the intrinsic frequencies determines
the strength of synchronization. The points and the arrow reflect the values of the phases and the
complex order parameter at the final time(

cos
(
ϑm(t)− ψ(t)

)
, sin

(
ϑm(t)− ψ(t)

))
, m ∈ {1, 2, . . . ,M}, r

(
ϑ(t)

)
, t = T,

see (5b). Moreover, the graphs of the associated quantities

V
(
ϑ(t)

)
,

1
M

M∑
m=1

(
ϑm(t)− ϑm(0)− t ωm

)
, t ∈ [0,T],

are shown, see (5a) and (5d). In addition, the computation timeCT,measured in seconds, is displayed.
For the considered time interval, a variable stepsize fourth-order explicit Runge–Kutta method leads
to a reliable result. In particular, it is seen that the values of the potential decrease when time evolves
and that the modulus of the complex order parameter is close to one for K = 5. When applying
instead a second-order geometric integrator, we observed an improved behaviour regarding the

1 The MATLAB script kuramoto.m by Cleve Moler is available at https://de.mathworks.com/matlabcentral/fileexchange/72534-
kuramoto-s-model-of-synchronizing-oscillators.

http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieKuramotoClassicalK1.m4v
http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieKuramotoClassicalK3.m4v
http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieKuramotoClassicalK5.m4v
https://de.mathworks.com/matlabcentral/fileexchange/72534-kuramoto-s-model-of-synchronizing-oscillators


INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 9

Figure 2. Numerical integration of the classical Kuramoto model involvingM = 102 oscillators. Coupling constant K = 1 (no syn-
chronization). Top: Visualisation of the phases at the final time.Middle: The time series confirms decreasing potential values. Bottom:
A conserved quantity is numerically preserved with high accuracy.

conserved quantity over long times, see Figure 6. For comprehensive information about the bene-
fits of geometric numerical integrators in comparison with standard integration methods, we refer
to [4,19,34,35].

3. Kuramotomodels on graphs

In this section, we investigate extensions of the classical Kuramoto model on graph topologies and
propose suitable modifications of our approach for their efficient numerical integration.

General formulation. Henceforth, we study the following system of ordinary differential equations⎧⎪⎪⎨⎪⎪⎩
ϑ ′
m(t) = ωm + K

Mm

M∑
�=1

Am� sin
(
ϑ�(t)− ϑm(t)

)
,

ϑm(0) given, t ∈ (0,T), m ∈ {1, 2, . . . ,M} .
(7a)

In contrast to the classical Kuramoto model (3), the all-to-all coupling is replaced by the interactions
of certain communities of oscillators, which are described by the associated adjacency matrix

A = (
Am�

)
�,m∈{1,...,M}, Am� ∈ {0, 1}, �,m ∈ {1, 2, . . . ,M} . (7b)

We distinguish two kinds of scalings affecting in particular the strength of synchronization. In case
themth row of A is zero, the corresponding equation reduces to

ϑ ′
m(t) = ωm, t ∈ (0,T),

and hence the scaling is dispensible.
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Figure 3. Numerical integration of the classical Kuramoto model involving M = 102 oscillators. Coupling constant K ∈ {3, 5}
(gradual synchronization).
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Figure 4. Numerical integration of the classical Kuramoto model involving M = 104 oscillators. Coupling constant K = 1 (no
synchronization).

(i) Uniform scaling. With regard to the literature, a common choice is

Mm = M, m ∈ {1, 2, . . . ,M} . (7c)

(ii) Non-uniform scaling. As exemplified below, an alternative is

Mm =
M∑
�=1

Am�, m ∈ {1, 2, . . . ,M} . (7d)

For our considerations, it is convenient to introduce the scaled adjacency matrix

A =
(

1
Mm

Am�

)
�,m∈{1,...,M}

. (7e)

Auxiliary identities. The decisive terms defining the right-hand side of the extended Kuramoto
model (7a) rewrite as follows

M∑
�=1

Am� sin
(
ϑ�(t)− ϑm(t)

)
=

M∑
�=1

Am� sin
(
ϑ�(t)

)
cos

(
ϑm(t)

)
−

M∑
�=1

Am� cos
(
ϑ�(t)

)
sin

(
ϑm(t)

)
, t ∈ [0,T], m ∈ {1, 2, . . . ,M} .
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Figure 5. Numerical integration of the classical Kuramoto model involving M = 104 oscillators. Coupling constant K ∈ {3, 5}
(gradual synchronization).
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Figure 6. Long-term integration of the classical Kuramotomodel based on a second-order explicit Runge–Kutta method (top) and
a second-order implicit Runge–Kutta method with improved numerical preservation of a conserved quantity (bottom). To avoid a
further diminishment of the relevant vertical axis, ticks along the horizontal axis are omitted.
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Denoting the componentwise product of two columns by

v .∗ w =

⎛⎜⎜⎜⎝
v1
v2
...
vM

⎞⎟⎟⎟⎠ .∗

⎛⎜⎜⎜⎝
w1
w2
...

wM

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
v1 w1
v2 w2
...

vM wM

⎞⎟⎟⎟⎠ , v,w ∈ R
M ,

and employing the compact vector notation

G
(
ϑ(t)

) = ω + K
((

A sin
(
ϑ(t)

))
.∗ cos

(
ϑ(t)

) −
(
A cos

(
ϑ(t)

))
.∗ sin

(
ϑ(t)

)
,

t ∈ [0,T],
(8a)

we obtain the following reformulation of the governing equations{
ϑ ′(t) = G

(
ϑ(t)

)
, t ∈ (0,T),

ϑ(0) given,
(8b)

see also (4). Similar considerations yield the identity

M∑
�,m=1

Am� cos
(
ϑ�(t)− ϑm(t)

)

=
M∑

�,m=1

Am� cos
(
ϑ�(t)

)
cos

(
ϑm(t)

) +
M∑

�,m=1

Am� sin
(
ϑ�(t)

)
sin

(
ϑm(t)

)
=

(
cos

(
ϑ(t)

))T(
A cos

(
ϑ(t)

)) +
(
sin

(
ϑ(t)

))T(
A sin

(
ϑ(t)

))
, t ∈ [0,T] .

Uniform scaling. In situations, where the adjacency matrix is symmetric and the scaling is uniform

A = AT , Mm = M, m ∈ {1, 2, . . . ,M}, A = 1
M

A, AT = A,

the existence of a potential function is ensured and the sum over all phases leads to a conserved
quantity, see also (5). With regard to the classical Kuramoto model and the above stated auxiliary
identity, we define the potential through

V : R
M −→ R :

ϑ �−→ V(ϑ) = V(ϑ1, . . . ,ϑM)

= −
M∑

m=1
ωm ϑm + K

2

M∑
�,m=1

Am�
(
1 − cos(ϑ� − ϑm)

)

= −ωTϑ + K
2

( M∑
�,m=1

Am� − (
cos(ϑ)

)T(A cos(ϑ)
)

− (
sin(ϑ)

)T(A sin(ϑ)
))

.

(9a)

Due to the fact that the relation

Am� sin
(
ϑ�(t)− ϑm(t)

) + A�m sin
(
ϑm(t)− ϑ�(t)

) = 0, t ∈ [0,T], �,m ∈ {1, 2, . . . ,M},
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holds, summation and integration with respect to time implies

1
M

M∑
m=1

(
ϑm(t)− ϑm(0)− t ωm

) = 0, t ∈ [0,T] . (9b)

Non-uniform scaling. In order to illustrate our motive for the non-uniform scaling, we consider
the special case, where the adjacency matrix comprises a square submatrix with coefficients equal to
one and is zero otherwise

A =
(
B(11) B(12)

B(21) B(22)

)
∈ R

M×M ,

B(11) = (
1
)
�,m∈{1,...,M0}, B(12) = B(21) = B(22) = 0 ∈ R

M0×M0 ,

M0 ∈ {2, . . . ,M − 1} .
This would correspond to a configuration with pairwise interaction of the first part of the oscillators
and a decoupling of the second part⎧⎪⎪⎨⎪⎪⎩

ϑ ′
m(t) = ωm + K

Mm

M0∑
�=1

sin
(
ϑ�(t)− ϑm(t)

)
, t ∈ (0,T), m ∈ {1, 2, . . . ,M0},

ϑ ′
m(t) = ωm, t ∈ (0,T), m ∈ {M0 + 1,M0 + 2, . . . ,M} .

Here, the non-uniform scaling seems to be more natural

Mm =
M∑
�=1

Am� = M0 �= M, m ∈ {1, 2, . . . ,M0} .

We point out that a potential function of the form (9) remains valid for non-symmetric scaled
adjacency matrices, whereas summation over all governing equations does not lead to a conserved
quantity, in general.

Extension of our approach. The extension of our approach for the classical Kuramoto model based
on the precomputation of sums to Kuramotomodels on graphs (7) requires a careful incorporation of
the structure of the associated adjacencymatrix. The following considerations prove to be particularly
expedient for situations, where the adjacency matrix has a block structure and can be divided into
relatively sparse and relatively dense submatrices, respectively. In view of an efficient evaluation of
the decisive terms in (7a), we consider a submatrix of the form(

Am�
)
m∈{M1,...,M2}, �∈{M3,...,M4},

defined by positive integersM1,M2,M3,M4 ∈ N such that 1 ≤ M1 < M2 ≤ M as well as 1 ≤ M3 <
M4 ≤ M. Our basic concept is to optimize the requiredmemory capacity and the number of functions
evaluations. More precisely, in order to avoid the storage of each submatrix and to accelerate the
computation of the sums

M4∑
�=M3

Am� sin
(
ϑ�(t)− ϑm(t)

)
, m ∈ {M1, . . . ,M2},

we distinguish two complementary cases. Whenever the number of coefficients equal to zero is rela-
tively high, we store all indices corresponding to non-zero coefficients and sum over these coefficients∑

�∈{M3,...,M4}
Am�=1

Am� sin
(
ϑ�(t)− ϑm(t)

)
, m ∈ {M1, . . . ,M2}. (10a)
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Whenever the number of non-zero coefficients is relatively high, we instead store all indices corre-
sponding to coefficients equal to zero and make use of the precomputation of sums. That is, where
applicable, we employ the reformulation

M4∑
�=M3

Am� sin
(
ϑ�(t)− ϑm(t)

)

=
M4∑
�=M3

Am� sin
(
ϑ�(t)

)
cos

(
ϑm(t)

) −
M4∑
�=M3

Am� cos
(
ϑ�(t)

)
sin

(
ϑm(t)

)

=
⎛⎝ M4∑
�=M3

sin
(
ϑ�(t)

) −
M4∑
�=M3

(
1 − Am�

)
sin

(
ϑ�(t)

)⎞⎠ cos
(
ϑm(t)

)

−
⎛⎝ M4∑
�=M3

cos
(
ϑ�(t)

) −
M4∑
�=M3

(
1 − Am�

)
cos

(
ϑ�(t)

)⎞⎠ sin
(
ϑm(t)

)
,

precompute the sums

SM3,M4

(
ϑ(t)

) =
M4∑
�=M3

sin
(
ϑ�(t)

)
, CM3,M4

(
ϑ(t)

) =
M4∑
�=M3

cos
(
ϑ�(t)

)
, (10b)

and then substract the terms that correspond to coefficients equal to zero

M4∑
�=M3

Am� sin
(
ϑ�(t)− ϑm(t)

)

=

⎛⎜⎜⎜⎝SM3,M4

(
ϑ(t)

) −
∑

�∈{M3,...,M4}
Am�=0

sin
(
ϑ�(t)

)
⎞⎟⎟⎟⎠ cos

(
ϑm(t)

)

−

⎛⎜⎜⎜⎝CM3,M4

(
ϑ(t)

) −
∑

�∈{M3,...,M4}
Am�=0

cos
(
ϑ�(t)

)
⎞⎟⎟⎟⎠ sin

(
ϑm(t)

)
, m ∈ {M1, . . . ,M2} . (10c)

Remark 3.1: In situations, where it is desirable to evaluate the right-hand side and the potential in
parallel, it is advantageous to modify the above stated approach in view of an efficient computation
of

M4∑
�=M3

Am� sin
(
ϑ�(t)

) =
M4∑
�=M3

sin
(
ϑ�(t)

) −
M4∑
�=M3

(
1 − Am�

)
sin

(
ϑ�(t)

)
M4∑
�=M3

Am� cos
(
ϑ�(t)

) =
M4∑
�=M3

cos
(
ϑ�(t)

) −
M4∑
�=M3

(
1 − Am�

)
cos

(
ϑ�(t)

)
,

m ∈ {M1, . . . ,M2},
either by straightforward summation or based on the precomputation of sums, see also (8)–(9).
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Numerical comparisons. In order to test the above described strategy (10) for the efficient compu-
tation of the sums

M∑
�=1

Am� sin(ϑ� − ϑm), ϑm = 2πm
M

, m ∈ {1, 2, . . . ,M},

we study two situations, which we consider to be of practical relevance in view of the numerical
integration of Kuramoto models on graphs (3), see also (7).

(i) Matrices without block structure. On the one hand, we define well-balanced adjacency matri-
ces and compare the number of function evaluations as well as the computation time of an
implementation in Matlab. For this purpose, we prescribe a threshold p ∈ [0, 1] and generate
row-by-row a sequence of uniformly distributed random numbers z ∈ [0, 1]. Whenever z> p,
the corresponding coefficient is set to one, otherwise, it is set to zero. For p = 0.99, e.g. the result-
ing adjacency matrix is sparse and straightforward summation is advantageous, see Figure 7.
For the complementary case p = 0.01, e.g. the adjacency matrix comprises few non-zero coef-
ficients and the precomputation of sums is favourable, see Figure 9. For the threshold p = 0.5
both approaches lead to essentially the same counts, see Figure 8.

(ii) Matrices with block structure. On the other hand, we generate adjacency matrices that are com-
posed of well-balanced submatrices. Each block is connected with a different threshold. We
use
(a) (a)a double loop over all rows and straightforward summation of sin(ϑ� − ϑm) provided

that Am� �= 0 for �,m ∈ {1, 2, . . . ,M},
(b) (b)a single loop to sum over all indices that correspond to non-zero coefficients, realized by

a script of the form sum(sin(ϑ(NonZero)− ϑm)) form ∈ {1, 2, . . . ,M},
(c) (c)the precomputation of sums and a single loop to subtract terms that correspond to coef-

ficients equal to zero, applying the script sum(sin(ϑ(Zero)− ϑm)) form ∈ {1, 2, . . . ,M},
(d) (d)the procedure in (b) and (c) adapted to each submatrix.

Figure 7. Extended Kuramotomodels involving randomly generated adjacencymatrices defined through the thresholds 0.99, 0.9.
Evaluation of the right-hand side bymeans of approaches adapted to sparsematrices (straightforward summation) anddensematri-
ces (precomputation of sums), respectively. Left: Illustration of the adjacency matrix for 100 oscillators. Middle: Number of sine and
cosine evaluations versus the total number of oscillators. Right: Comparison of the computation time.
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Figure 8. Corresponding results for the thresholds 0.7, 0.5, 0.3.

Figure 9. Corresponding results for the thresholds 0.1, 0.01.
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Figure 10. Extended Kuramoto models involving randomly generated adjacency matrices with block structure defined through a
threshold per block. Evaluation of the right-hand side bymeans of different approaches adapted to sparsematrices, densematrices,
and block matrices, respectively. Left: Illustration of the adjacency matrix for 100 oscillators. Middle: Number of sine and cosine
evaluations versus the total number of oscillators. Right: Comparison of the computation time.

Figure 11. Corresponding results.

The obtained results, displayed in Figures 10–12, confirm that the latter approach is beneficial for
a higher number of oscillators, where the evaluation of functions and the computation of sums are
expected to be the most time consuming components.

Community detection in graphs. Our numerical comparisons show that it is to the best advantage
to take the underlying structure of the considered Kuramoto model on a graph (7) into account.
A suitable reordering of the governing equations accordingly to the separation of the oscillators into
communities corresponds to the transformation of the associated adjacencymatrix to awell-balanced
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Figure 12. Corresponding results for amore realistic adjacencymatrix describing the interactionsof four communities of oscillators.

Figure 13. Adjacency matrices A and PA PT with suitably chosen permutation matrix P. Left: The structure of the underlying graph
is not evident. Right: A separation into communities of oscillators is recognizable. Matrices of this form are used for numerical tests
of community detection algorithms.

block matrix and is a fundamental means in view of their efficient numerical integration, see Fig-
ures 13 and 14. In the following, we study the performance of various algorithms for the detection of
communities in graphs. We restrict ourselves to algorithms from the Python packages networkx
and cdlib, which were suitable for our purposes, did not require additional parameters, and took a
reasonable computation time, see Table 2.We focus on the relevant case, where interactions primarily
take place within certain communities of oscillators. As illustrated in Figure 15, our starting point is
a matrix (of suitably chosen dimension) with fully occupied blocks along the diagonal

B = (Bm�)m,�∈{1,2,...,M} =

⎛⎜⎜⎝
B(11) 0

B(22)

B(33)

0 B(44)

⎞⎟⎟⎠ ∈ R
M×M ,

B(kk) = (1)i,j∈{1,2,...,(5−k)M/10} ∈ R
(5−k)M/10×(5−k)M/10, k ∈ {1, 2, 3, 4} .

Similarly to before, we prescribe a threshold p ∈ [0, 1] that determines the probability that a coeffi-
cient of thematrixB is changed from one to zero or from zero to one, respectively. That is, we generate
uniformly distributed random numbers zm� ∈ [0, 1] form, � ∈ {1, 2, . . . ,M} and define

A = (Am�)m,�∈{1,2,...,M} ∈ R
M×M , Am� =

{
1 − Bm�, zm� < p,
Bm�, zm� ≥ p,

m, � ∈ {1, 2, . . . ,M} .
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Figure 14. Adjacency matrices A and PA PT with suitably chosen permutation matrix P. Left: The structure of the underlying graph
is not evident. Right: A separation into communities of oscillators is recognizable. Symmetric adjacency matrices of this form are
considered in connection with the numerical integration of Kuramoto models on graphs. See also Figure 12.

Table 2. Algorithms from PYTHON packages
applied for community detection in graphs.

NETWORKX [17] GREEDY_MODULARITY [7]

CDLIB [33] LOUVAIN [5]
RBER_POTS [30,31]
RB_POTS [24,31]

SIGNIFICANCE_COMMUNITIES [39]
WALKTRAP [27]

The higher the threshold, the stronger the deviation of the adjacency matrix from the related block
matrix, see Figures 15 and 16. The community detection algorithmswere applied to the randomly per-
muted adjacency matrix and yield as outputs partitions of the nodes into communities. We associate
themwith permutations of the sequence (1, 2, . . . ,M) such that nodes in one community are arranged
one after the other. These permutations correspond to transformations of the original matrices that
can be cast into the form

Ã = PAPT

with a permutation matrix P ∈ R
M×M such that in particular the identity P−1 = PT is valid. For

each of these matrices, we identify a matrix with fully occupied blocks along the diagonal reflecting
the detected communities

B̃ =

⎛⎜⎝B̃(11) 0
B̃(22)

0
. . .

⎞⎟⎠ ∈ R
M×M .

We recall that the computation of pointwise products such as(
B sin(ϑ)

)
.∗ cos(ϑ),

(̃
B sin(ϑ)

)
.∗ cos(ϑ), ϑ ∈ R

M ,
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Figure 15. Left: Matrix comprising four blocks (p = 0, top) and related adjacency matrices for increasing thresholds p ∈ {0.1, 0.2}
(middle to bottom). Right: Average of the quantity (11) over eight runs, which is chosen as a measure for the performance of the
considered community detection algorithms, see also Table 2. Obtained results for M = 100 (top), M = 200 (middle), M = 400
(bottom).

based on the precomputation of sums requires in total 2M evaluations of cosine and sine functions
and that the number of non-zero coefficients of the matrices

C = A − B, C̃ = Ã − B̃,

match the additional computational costs. For this reason, we determine the quantity
M∑

�,m=1

∣∣C̃m�
∣∣ −

M∑
�,m=1

|Cm�| , (11)



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 23

Figure 16. Left: Adjacency matrices for increasing thresholds p ∈ {0.3, 0.4} (top to bottom). Right: Corresponding results for
M = 800 (top),M = 1600 (bottom).

Figure 17. Average computation time of the considered community detection algorithms over eight runs. Left: The displayed
numerical results, obtained for the threshold p = 0.2, reflect a quadratic scaling with respect to the total number of oscillators.
Right: For larger deviations of the adjacency matrices from the underlying block diagonal matrix, related to increasing values of the
threshold p, the computation time increases, in general.

in order to assess the performance of the algorithms, see [29] for detailed explanations. The numerical
results obtained forM ∈ {100, 200, 400, 800, 1600} and thresholds in the range [0, 0.4] are displayed
in Figures 15–17. In case p = 0, i.e. for a random permutation of the fully occupied block diago-
nal matrix, each of the tested algorithms detected the four communities. For larger deviations of
the adjacency matrices from the underlying block diagonal matrix, however, some algorithms failed.
Overall, the community detection algorithm rber_pots, available through the Python package
cdlib, provided the most reliable results for a higher number of oscillators.
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Favourable community detection algorithm. It is notable that there exist several variants of the
algorithm rber_pots [30,31] with the common objective to detect communities in a graph with
associated adjacency matrix A. The standard implementation in cdlib [33] minimizes the quantity

Q = −
M∑

�,m=1

(Am� − p) δ(σm, σ�),

where p ∈ (0, 1) represents themeandensity of edges in a graph, that is, the ratio between the numbers
of actually existing and potential edges.Whenever two nodesm, � ∈ {1, 2, . . . ,M} belong to the same
community, the quantity δ(σm, σ�) takes the value one, and it is zero otherwise. Provided that the
mean edge density within a community is higher than themean edge density of the complete network,
a node is included in a community. The favourable performance of rber_pots in the considered
example is explained by the fact that the four communities are well recognizable by the mean edge
densities, even for p = 0.4.

Numerical integration. Following up the numerical integration of the classical Kuramoto
model (3a)–(4a), we finally study extended Kuramoto models on graphs (7a). On the one hand, we
consider the situation, where a separation of the oscillators into four communities of the same size is
evident. The structure of the associated symmetric adjacencymatrix is illustrated in Figure 14 (right).
Here, our approach based on the precomputation of sums applies. The numerical results obtained for
the commonuniform scaling, a total number ofM = 84 = 4096 oscillators, coupling constantK = 3,
final time T = 200, and intrinsic frequencies as well as initial phases of the form

ω0 = 2, ωm = 1 + ω0
(2m − M − 1)

M − 1
, ϑm(0) = 2πm

M
, m ∈ {1, 2, . . . ,M},

are displayed in Figure 18 (right). On the other hand, we consider the equivalent system with-
out recognizable block structure, see Figure 14 (left), using straightforward summation for the
evaluation of the right-hand side. In order to achieve consistency with the previous case, we per-
mute internal frequencies and initial phases accordingly, perform the time integration, and reorder
the solution values subsequently. By comparison of the numerical results shown in Figure 18, it
is evident that the efficient evaluation of the decisive sums based on the block structure of the
adjacency matrix is beneficial and permits a significant reduction of the computation time from
approximately 890 seconds to about 54 seconds. For the sake of comparability with the classi-
cal Kuramoto, we display the values of the corresponding potentials, which decrease when time
evolves, and verify the conservation property, see also (9). The analogous results for the non-uniform

Figure 18. Numerical integration of a Kuramoto model on a graph with the common uniform scaling. The associated adjacency
matrix has a structure as illustrated in Figure 14 (left: matrix without recognizable block structure, right: permuted matrix with rec-
ognizable block structure). Left: Evaluation of the right-hand side by straightforward summation. Right: Employing the underlying
block structure and using the precomputation of sums permits a significant reduction of the computation time CT.
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Figure 19. Corresponding results for the non-uniform scaling. Synchronisation within four communities is observed. Due to the
lack of symmetry of the system, the conservation property does not hold.

scaling are given in Figure 19. As expected, due to the lack of symmetry, the constraint (9b) is not
fulfilled.

4. Conclusions and outlook

In summary, we have presented results which confirm that the combination of detecting communities
and using localisations of order parameters permits significant improvements regarding the reliable
and efficient numerical integration of dynamical systems on graphs. Our approach provides a natural
way to exploit the underlying graph structure and local mean-field variables.

Popularmodels, where the employed concepts apply at once, are given by consensus problems [25].
However, as these systems are linear with known analytical solution representations, we have con-
sidered their numerical simulation to be of less importance and have focused on Kuramoto models
as relevant instances. Generalisations to other nonlinear dynamical systems on graphs occurring in
applications will be the objective of future investigations.

As mentioned in the introduction, it is straightforward to extend our approach to oscillator net-
works with higher-order interactions included [3,36]. Suitable modifications have to be developed
for Cucker–Smale models describing flocking behaviour [8]. Other types of models, commonly
encountered in neuroscience applications, incorporate individual excitable oscillators beyond a phase
reduction [20,22]. A further example is the strategy of combining our approach with micro-macro
numerical integration schemes such as projective integration methods [21], where one makes use in
the time integration of amacroscopic evolution, e.g. for the order parameter or the probability density
of a typical oscillator, in combination with direct microscopic simulation to improve the numerical
simulation. In such a context, our improvements directly accelerate the microscopic integrator. Yet,
some natural-looking steps are bound to be far more involved. For example, for time-dependent
or adaptive network dynamics [15,18], the recomputation of community structures at every iter-
ation is computationally inefficient and requires novel perspectives. Besides, providing a rigorous
numerical analysis to assess the quality of community detection algorithms remains an open ques-
tion. Furthermore, it is of relevance to study dynamical systems on graphs that incorporate stochastic
perturbations.
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