
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcon20

International Journal of Control

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcon20

Space splitting convexification: a local solution
method for nonconvex optimal control problems

Tadeas Sedlacek, Dirk Odenthal & Dirk Wollherr

To cite this article: Tadeas Sedlacek, Dirk Odenthal & Dirk Wollherr (2021): Space splitting
convexification: a local solution method for nonconvex optimal control problems, International
Journal of Control, DOI: 10.1080/00207179.2021.2004449

To link to this article: https://doi.org/10.1080/00207179.2021.2004449

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 25 Nov 2021.

Submit your article to this journal

Article views: 232

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tcon20
https://www.tandfonline.com/loi/tcon20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2021.2004449
https://doi.org/10.1080/00207179.2021.2004449
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2021.2004449
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2021.2004449
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2021.2004449&domain=pdf&date_stamp=2021-11-25
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2021.2004449&domain=pdf&date_stamp=2021-11-25

INTERNATIONAL JOURNAL OF CONTROL
https://doi.org/10.1080/00207179.2021.2004449

Space splitting convexification: a local solution method for nonconvex optimal
control problems

Tadeas Sedlacek a,b, Dirk Odenthal b and Dirk Wollherr a

aChair of Automatic Control Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany;
bBMWM GmbH, Garching near Munich, Germany

ABSTRACT
Manyoptimal control tasks for engineeringproblems require the solution of nonconvex optimisationprob-
lems, which are rather hard to solve. This article presents a novel iterative optimisation procedure for the
fast solution of such problems using successive convexification. The approach considers two types of non-
convexities. Firstly, equality constraints with possibly multiple univariate nonlinearities, which can arise
for nonlinear system dynamics. Secondly, nonconvex sets comprised of convex subsets, which may occur
for semi-active actuators. By introducing additional decision variables and constraints, the decision vari-
able space is decomposed into affine segments yielding a convex subproblem which is solved efficiently
in an iterative manner. Under certain conditions, the algorithm converges to a local optimum of a scalable,
piecewise linear approximation of the original problem. Furthermore, the algorithm tolerates infeasible
initial guesses. Using a single-mass oscillator application, the procedure is compared with a nonlinear
programming algorithm, and the sensitivity regarding initial guesses is analysed.

ARTICLE HISTORY
Received 9 May 2021
Accepted 5 November 2021

KEYWORDS
Optimal control; successive
convexification; collocation;
local solution method; exact
penalty function

1. Introduction

Many optimal control tasks for engineering problems require
the solution of nonconvex optimisation problems (OPs), which
are harder to solve than convex ones. The nonconvexity can have
various causes. Restrictions in the operating range of actuators
can result in nonconvex sets. Nonconvexity can also be caused
by nonlinear system dynamics resulting in nonlinear and thus
nonconvex equality constraints. Since a fast and robust compu-
tation of the optimum is always desirable and even essential for
real-time control applications, convexification represents a fun-
damental field in optimal control. Convex OPs can be solved
efficiently and robustly with elaborate solvers capable of com-
puting the global optimum with high accuracy and generally
short computation times. Various convexificationmethods have
been proposed, which generally solve nonconvex problems by
iteratively solving convex substitute problems.

1.1 Literature survey on convexification techniques

Lossless convexification (LC) transforms a special class of
nonconvex sets into convex ones by lifting the optimisation
space into a higher dimension using additional decision vari-
ables (Acikmese & Blackmore, 2011; Acikmese & Ploen, 2007).
The approach is applicable to a special class of nonconvex sets:
sets generated by removing a convex subset from a convex set.
This has been used in aeronautic optimal control applications
to successfully convexify annulus-shaped sets. An overview
regarding the individual findings on LC is given in Raković
and Levine (2018, p.338).

CONTACT Tadeas Sedlacek tadeas.sedlacek@tum.de

Another often employed technique for convex approxima-
tion is linearisation since linear objectives and constraints are
convex (Boyd & Vandenberghe, 2004). However, linearisation
can introduce conservativeness and infeasibility since the result-
ing accuracy strongly depends on the nonlinearity as well as the
linearisation point. Various linearisation techniques have been
used to approximate nonlinear systems when applying optimal
control methods. In the simplest case, the system is linearised at
each time instant around the current operating point, exemplar-
ily implemented in Falcone et al. (2007). However, the model
approximation is only sufficiently valid in a close neighbour-
hood around the linearisation point. With increasing distance
to this point, the linearised OP can strongly differ from the
original one. Thus, this approach can result in poor controller
performance or even lead to infeasibility or instability.

In order to mitigate linearisation errors, the system can
be linearised around predicted trajectories resulting in effi-
ciently solvable quadratic programming (QP) problems (Diehl
et al., 2005; Seki et al., 2004). One method using iterative lin-
earisation around trajectories in a model predictive control
(MPC) setup is the so-called real-time iteration approach (Diehl
et al., 2005). The procedure assumes that at every time instant,
the shifted solution from the preceding time instant represents
a good initial guess close to the actual solution. Thus, a full
Newton-step is taken, omitting underlying line-search routines
to reduce computation time.

Another iterative scheme linearising around changing tra-
jectories has been presented in Mao et al. (2016). Starting
from an initial trajectory, the nonlinear system equations are

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is anOpenAccess article distributedunder the termsof the Creative CommonsAttribution License (http://creativecommons.org/licenses/by/4.0/), whichpermits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2021.2004449&domain=pdf&date_stamp=2021-11-23
http://orcid.org/0000-0002-6191-6173
http://orcid.org/0000-0002-6651-8369
http://orcid.org/0000-0003-2810-6790
mailto:tadeas.sedlacek@tum.de
http://creativecommons.org/licenses/by/4.0/

2 T. SEDLACEK ET AL.

successively linearised around the solution computed in the pre-
ceding iteration. Adding virtual control inputs eliminates the
artificial infeasibility introduced by the linearisation. Further-
more, including trust regions ensures that the solution does
not deviate too much from the preceding succession and thus
the linearisation represents a valid approximation. This avoids
unboundedness of the linearisedOP. Based on the ratio between
actual objective change and linearised objective change, the
algorithm adjusts the trust regions and terminates if the objec-
tives coincide.

A linearise-and-project (LnP) approach has been used
in Mao et al. (2017) to resolve the nonconvexity due to nonlin-
ear system equations and nonconvex constraints. The approach
presumes convex functions for the right-hand side of the system
differential equations. The satisfaction of the system dynamics
is ensured by relaxing the corresponding equality constraints
into inequality constraints and using exact penalty functions.
In an iterative optimisation routine, the computed solution is
projected onto the constraints in each iteration to gain adequate
linearisation points.

Instead of linearising the system equations around trajec-
tories, a linear input-to-state behaviour can be enforced via
feedback-linearisation (Khalil, 2002, p. 505). An optimal con-
trol method can then be used to optimally control the linearised
system in an outer control loop (Del Re et al., 1993). However,
it is possible that the nonlinear mapping of the feedback lin-
earisation transforms originally convex objective and constraint
functions into nonconvex ones (Simon et al., 2013). Then,
the exact satisfaction of these constraints requires a nonlin-
ear programming (NLP) strategy or an iterative scheme which
both eliminate the computational benefits of the feedback-
linearisation (Kurtz & Henson, 1997). One possible solution
to this problem is approximating these constraints by estimat-
ing future inputs based on the preceding time instant within
an MPC scheme (Kurtz & Henson, 1997; Schnelle & Eber-
hard, 2015). The authors in Simon et al. (2013) have proposed
an alternative MPC approach that replaces such nonlinear con-
straints via dynamically generated local inner polytopic approx-
imations rendering the OP convex.

Fuzzy MPC with models of Takagi-Sugeno (TS) type has
been successfully used for nonlinear MPC. The TS modelling
procedure enables an accurate approximation of nonlinear sys-
tems by using data combined with model knowledge (Tanaka
& Wang, 2004). The modelling approach decomposes non-
linear models into several local approximations which are
blended together via fuzzy rules. However, this requires the
system matrices to be stored, thus occupying more memory.
Although TS fuzzy models have been successfully used in non-
linear MPC, computation time can be strongly reduced by lin-
earising the TS models around predicted trajectories (Mollov
et al., 2004, 1998). The resulting convex QP problem can be
solved efficiently while guaranteeing convergence via a line
search mechanism.

Differential dynamic programming initially linearises the
system equations around a nominal trajectory. Starting from
the terminal state, a backward pass identifies the optimal con-
troller gains of a linear quadratic regulator at each time step
using the linearised system. Subsequently, a forward pass com-
putes new nominal trajectories via numerical integration using

the controller gains previously computed in the backward pass.
This procedure is repeated until convergence. Iterative linear
quadratic regulators are a variant of differential dynamic pro-
gramming (Mayne, 1973). The main difference is that only
first-order derivatives are used for the approximation of the
system dynamics via Taylor expansion instead of second-order
ones which decreases computation time (Tassa et al., 2012).
Constrained versions of this optimisation technique have been
presented in Tassa et al. (2014), Xie et al. (2017) and Chen
et al. (2017).

Lifting-based MPC methods represent another class of lin-
earisation approaches used for solving optimal control prob-
lems (OCPs) with nonlinear systems. By lifting the nonlinear
dynamics to a space of higher dimension, the evolution of the
system can be represented in a bilinear or linear fashion via
Carleman linearisation or the Koopman operator framework,
respectively. Representing the nonlinear system equations via
bilinear terms enables the analytical computation of sensitiv-
ity functions (Armaou & Ataei, 2014) and of solutions (Fang
& Armaou, 2015) which speeds up computation time. The
Koopman MPC approach employs a linear predictor of higher
order, which is identified via data sets, to approximate the
nonlinear system (Korda & Mezić, 2018). The resulting larger
OCP is condensed by eliminating the state decision variables
and then solved for the input decision variables using lin-
ear MPC. Hence, this method enables a fast solution of non-
linear OCPs. However, identifying the linear Koopman system
involves some effort requiring an adequate selection of basis
functions, non-recurrent data sets and the solution of convex
OPs (Cibulka et al., 2019). Furthermore, the Koopman MPC
approach does not always outperform the standard MPC
method using local linearisations (Cibulka et al., 2020).
Depending on the dimension of the lifted states, both
approaches can require the storage of a great number of offline
computed matrices.

Various local methods for solving nonconvex quadratically
constrained quadratic programming (QCQP) problems have
been summarised in d’Aspremont and Boyd (2003) and Park
and Boyd (2017). A two-phase coordinate descent method first
reduces the maximum constraint violation trying to find a fea-
sible point. The second phase is restricted to feasible points
only and searches in each iteration for a feasible point with
a better objective function value. The convex-concave pro-
cedure (CCP) is a method for finding a local optimum for
difference-of-convex programming problems, thus suitable for
QCQP. The nonconvex part of the constraints is linearised
rendering the constraints convex. In order to deal with infea-
sible initial guesses, penalty CCP relaxes the linearised con-
straints via slack variables and introduces a gradually increas-
ing penalty objective for constraint violations. The alternat-
ing directions method of multipliers (ADMM) is a variant
of the augmented Lagrangian method. It forms an equivalent
OP by using auxiliary decision variables which must satisfy
a consensus constraint. The objective function is augmented
using switching indicator functions which penalise individual
constraint violations. The augmented objective function terms
are separated into two groups of decision variables. Instead
of solving the proximal augmented Lagrangian function for
both groups of decision variables simultaneously, the solution is

INTERNATIONAL JOURNAL OF CONTROL 3

computed using an alternating approach. First, the first group
of decision variables is fixed and the problem is solved for
the second group. Then, the solution of the second group is
fixed and the problem is solved for the first one. The results
are used for the dual variable update and the procedure is
repeated. This alternating approach requires the solution of
simplified QCQP problems enhancing computation time com-
pared to simultaneously solving for both groups of decision
variables.

Convexification measures for sequential quadratic program-
ming (SQP) approaches on a more algorithmic level have been
presented in Verschueren (2018). Many QP solvers do not
support an indefinite Hessian of the Lagrangian since then a
descent direction is not guaranteed. The author has presented
a structure-preserving convexification procedure for indefinite
Hessians. The convexified Hessian can be fed to any structure-
exploiting QP solver (Verschueren, 2018, p. 39). Furthermore,
sequential convex quadratic programming is proposed which
uses second-order derivatives of convex objective functions
and convex constraint functions to construct positive definite
Hessians enabling the sequential solution of convex QP prob-
lems (Verschueren, 2018, p. 70).

Using the notion of space decomposition for convexifica-
tion, global optimisation (GO) techniques have similarities
with the convexification approach presented in this article. In
order to compute the global optimum of continuous, noncon-
vexOPs, spatial branch-and-bound (BnB) techniques iteratively
divide the search space into increasingly smaller subdomains
(Liberti, 2008; Liberti &Maculan, 2006; Ryoo& Sahinidis, 1995;
Tawarmalani & Sahinidis, 2002). A convex relaxation of non-
convex functions is applied on each subdomain. The efficiently
solvable relaxed problem provides a lower bound of the objec-
tive function for the corresponding subdomain. The compari-
son with an upper bound, which can be computed using local
optimisation techniques, determines if a further space subdi-
vision is necessary. Thus, this technique searches over a tree
whose nodes correspond to individual relaxed problems which
consider different subdomains. Comparing the solutions on the
individual subdomains provides the global solution. Tree nodes
are excluded on the fly based on the evaluation of the lower and
upper bounds of the individual nodes eliminating the need to
explore the entire domain.

1.2 Contribution

In this article, a novel successive convexification method called
space splitting convexification (SSC) is proposed aiming at
reducing the computation time required to solve noncon-
vex OPs. The key contribution of the approach is the space
decomposition procedure which provides a piecewise linear
approximation of the original, nonconvex problem by intro-
ducing auxiliary decision variables and absolute value con-
straints (AVCs). These AVCs possess a beneficial structure for
linearisation and point projection onto constraints. The AVCs
are transferred to the objective function using the concept of
exact penalty functions and then iteratively linearised around
changing points. The linearisation of the AVCs results in a
binary decision: wrong or right sign of the AVC-linearisation.
In each iteration, the computed solution is projected onto the

AVCs and the sign is corrected if necessary enabling the lineari-
sation errors to vanish in subsequent iterations. This concludes
the iterative solution of a convex QP problem or even linear
programming (LP) problem if the original objective is linear.
The violation of the linearised AVCs serves as feedback if the
correct sign was chosen which is used as an indicator for con-
vergence. The approach is capable of considering two types
of nonconvexities. Firstly, a class of nonconvex sets that can
be split into convex subsets which are called zonally convex
sets (ZCSs) in this article. Such sets arise for instance when
semi-active actuators are used. Secondly, equality constraints
with possibly multiple but univariate nonlinearities. As already
mentioned, a common source for these nonlinear equality con-
straints are nonlinear system equations when applying optimal
control methods. Requiring only simple mathematical opera-
tions, theAVC-projection is of linear computational complexity.
Furthermore, the binary nature of the AVC-linearisation gen-
erally results in few superordinate iterations. Thus, the SSC
algorithm greatly reduces computation time enabling an effi-
cient solution in polynomial-time. Furthermore, robust initiali-
sation properties are given since the initial guess is not required
to be feasible. The algorithm converges under certain conditions
to local optima of the piecewise linear substitute problem,which
represents a scalable approximation of the original problem.
However, being a local solution method, the computed local
solution generally depends on the provided initial guess. For
good initialisations, the algorithm computes solutionswhich are
close to the global optimum.

1.3 Article structure

The article is organised as follows. The novel successive con-
vexification method is presented in Section 2. Starting with
the general formulation of optimal control problems, the origi-
nal static OP for the numerical solution of the optimal control
task is presented in Section 2.1. Afterwards, Section 2.2 derives
the successive convexification algorithm and provides a proof
of convergence. The specific application of the SSC algorithm
to two-dimensional ZCSs and nonlinear equality constraints is
illustrated in Section 2.3. Remarks on the computation time of
the algorithm are given in Section 2.4. The comparison of the
SSC approach with existing methods in Section 2.5 concludes
the theoretical part of the article. Using a single mass oscillator
(SMO) application as an example, the SSC algorithm is com-
pared with the NLP solver IPOPT (Wächter & Biegler, 2006)
in Section 3. The required NLP problem and QP problem are
defined in Section 3.1 and the corresponding results are dis-
cussed in Section 3.2. Furthermore, the sensitivity regarding
initial guesses is analysed in Section 3.3 and rotated space split-
ting is briefly addressed in Section 3.4. The article closes with
concluding remarks in Section 4. In order to promote swift
comprehension, a table of notation is included at the end of the
article.

2. Space splitting convexification

Optimal control deals with computing the optimal input and
state trajectories for a given system model. The motion of a
nonlinear, continuous, time-invariant system is given by the

4 T. SEDLACEK ET AL.

differential equation system

ẋ(t) = f (x(t),u(t)) (1)

with states x ∈ X ⊆ R
nx and inputs u ∈ U ⊆ R

nu . An optimal
control trajectory u(t) for a system described by (1) and time
interval t ∈ [t0, tf] can be computed by solving a dynamic OP
of following form:

min
u(t)

J̃ = ϑ
(
x(tf), tf

) +
∫ tf

t0
φ (x(t),u(t), t) dt (2a)

s.t. ẋ(t) − f(x(t),u(t)) = 0 ∀ t ∈ [
t0, tf

]
, (2b)

c̃ (x(t),u(t), t) = 0 ∀ t ∈ [
t0, tf

]
, (2c)

h̃ (x(t),u(t), t) ≤ 0 ∀ t ∈ [
t0, tf

]
. (2d)

The performance index J̃ in (2a) to be minimised is comprised
of the terminal cost functionϑ and the intermediate cost termφ.
Equality constraint (2b) ensures that the system equations (1)
are satisfied. General equality constraints c̃ ∈ R

nc and inequal-
ity constraints h̃ ∈ R

nh are included via (2c) and (2d), respec-
tively. Solving the dynamic OP (2) analytically is generally only
possible for simple problems. Thus, dynamic OPs are mostly
solved numerically via direct or indirect methods (Sedlacek
et al., 2020c). While direct methods solve the original OP, indi-
rect methods deduce a boundary-value problem which is ana-
lytically derived from the optimality conditions. Adiscretisation
of trajectories via collocation or shooting can be used to obtain
a static OP. Collocation methods employ decision variables for
the inputs and states at discrete time points and deduce the
trajectory via polynomial interpolation between these points.
Single shooting methods only employ decision variables for
the inputs and compute the corresponding state trajectories via
numerical integration. Multiple shooting methods divide the
time interval into subintervals on which the numerical inte-
gration is performed. The states at the interval margins repre-
sent additional decision variables and continuity constraints are
introduced to ensure that the boundary points of the individ-
ual integration segments coincide. A direct collocation method
is employed in this article due to the simpler initialisation
of direct methods and the increased sparsity of collocation
methods.

2.1 Problem formulation

Using separated Hermite-Simpson collocation with a discreti-
sation into nseg segments yields npts = 2nseg + 1 collocation
points and thus the vector of decision variables

w =
[
wT
0 wT

1
2

. . . wT
nseg

]T ∈ R
nw , wk :=

[
xk
uk

]
. (3)

The SSC procedure is applicable to NLP problems of the form

min
w

J(w) = 1
2w

TP0w + qT0w + r0 (4a)

s.t. ccoll,i(wi,wi+ 1
2
,wi+1) = 0 ∀ i ∈ I , (4b)

ck = Acwk + kc = 0 ∀ k ∈ K, (4c)

hk(wk) ≤ 0 ∀ k ∈ K, (4d)

hzcs,k(wk) ≤ 0 ∀ k ∈ K (4e)

with indices i ∈ I := {i = 0, 1, 2, . . . , nseg − 1} and k ∈ K :=
{0, 12 , 1, . . . , nseg} representing the corresponding collocation
segment and collocation point, respectively. Objective (4a) is
assumed to be quadratic and convex in the decision vari-
ables with r0 ∈ R, q0 ∈ R

nw and 0 ≤ P0 ∈ R
nw×nw . The positive

semi-definiteness of P0 concludes the convexity of the objec-
tive. Collocation constraints (4b) ensure that the system equa-
tions (1) are satisfied. For Hermite-Simpson collocation, these
equality constraints are given by

ccoll,i :=
[

xi+1 − xi − 1
6�i(fi + 4fi+ 1

2
+ fi+1)

xi+ 1
2

− 1
2 (xi + xi+1) − 1

8�i(fi − fi+1)

]
= 0 (5)

with fj := f(xj,uj) and segment width �i := ti+1 − ti
(Betts, 2010; Kelly, 2017). The SSC approach considers nonlin-
ear right-hand sides of the form

f(x,u) = (Ax + Bu + k) + fpwl(x,u) (6)

with A ∈ R
nx×nx , B ∈ R

nx×nu and k, fpwl ∈ R
nx . Therein fpwl

represents a composition of univariate nonlinearities that can
be depicted or approximated by piecewise linear curves. For
simplicity, it is assumed that the remaining equality con-
straints (4c) are affine in the decision variables. The inequality
constraints (4d) are required to be convex in the decision vari-
ables. However, aiming at constructing a QP problem, it is
assumed below that the inequality constraints are even affine.
This stricter assumption can be posed without loss of general-
ity, since convex inequality constraints can be approximated via
a polyhedron using multiple affine functions (Boyd & Vanden-
berghe, 2004, p. 32). The inequalities (4e) depict ZCSs, which
are nonconvex sets that can be split into convex subsets.

2.2 Successive convexification procedure

Considering the standard form of convexOPs (Boyd&Vanden-
berghe, 2004, p. 136), all equality constraints must be affine in
the decision variables to enable the convexity of the problem.
Hence, a nonlinear right-hand side of the system equations (1)
results in nonlinear equality constraints (5), yielding a noncon-
vex OP. Furthermore, the nonconvex inequality constraints (4e)
also prohibit a convex problem. The SSC algorithm iteratively
solves a convex substitute problem which is derived from the
original problem (4) as schematically illustrated in Figure 1.
The core idea of this concept is considering the transformed
problem (15) which represents a piecewise linear approxima-
tion of the original problem (4). This transformation is achieved
by introducing space splitting constraints. These constraints are
nonconvex but render the original constraints convex. Further-
more, they possess an advantageous structure which is exploited
by the algorithm. In order to deal with the remaining noncon-
vexity, the nonconvex space splitting constraints are transferred
to the objective following the theory of exact penalty functions.
The resulting problem (19) possesses a convex feasible set but
a nonconvex objective. Thus, the nonconvex part of the objec-
tive is iteratively linearised aroundpoints that are adjusted based
on the previous iterate using an intermediate projection rou-
tine. This yields the convex problem (22), which is sequentially

INTERNATIONAL JOURNAL OF CONTROL 5

Figure 1. Transformation of OP; Dotted and solid arrows represent approximated
and exact transformations, respectively.

solved within the SSC algorithm. A smoothable absolute value
function is introduced

absε(x) :=
√
x2 + εs ≈ |x| = abs(x) with 0 ≤ εs � 1 (7)

which recovers the true absolute value for εs = 0. The inter-
mediate OPs (15)ε and (19)ε depicted in Figure 1 apply εs >

0 to provide continuous differentiability for the validity of
the optimality conditions legitimising the application of exact
penalty functions. Afterwards, this smoothing is removed since
it represents an approximation which is not required in prob-
lem (22) for continuous differentiability. The subsequent sec-
tions describe the problem transformation process in more
detail.

2.2.1 Space splitting constraints
Before presenting the individual OPs, the basic principle for
the space splitting of a decision variable is illustrated in this
section providing graphical support. If collocation is used, the
inputs as well as states represent decision variables. Thus, the
input space and the state space can be split. The splitting pro-
cedure is presented using w ∈ W := [w,w] as a representative
decision variable which is split at the transition point w = wtr.
As illustrated in Figure 2(a), the auxiliary decision variables

wlow ∈ Wlow := [w,wtr] and wup ∈ Wup := [wtr,w] are intro-
duced aiming at satisfying the following relations:

wlow =
{
w ∀ w ≤ wtr,
wtr else

, wup =
{
w ∀ w ≥ wtr,
wtr else

. (8)

Lemma 2.1: The splitting relations (8) can be implemented via
the splitting constraints

gaff = wup + wlow − (w + wtr) = 0 (9a)

gabs = wup − wlow︸ ︷︷ ︸
=:w�

−|w − wtr︸ ︷︷ ︸
=:w̃

| = 0. (9b)

Proof: Solving (9a) for one of the auxiliary decision variables
yields

wlow = w + wtr − wup. (10a)

Inserting (10a) into (9b) results in

wup = 1
2

(|w − wtr| + w + wtr)

⇒
⎧⎨⎩wup = w (10a)⇒ wlow = wtr ∀ w ≥ wtr

wup = wtr
(10a)⇒ wlow = w ∀ w ≤ wtr

. (10b)

Thus, constraints (9) ensure the desired splitting according
to (8). �

The AVC (9b) is relaxed into a convex inequality constraint
which can be depicted using two linear inequality constraints

gabs = w� − |w̃| ≥ 0 ⇔ habs =
[
w� − w̃
w� + w̃

]
≥ 0. (11a)

Furthermore, the linearisation of the AVC based on the result of
the preceding iteration w�

prev is added as an additional objective
term in form of an exact penalty function

labs = w� − σww̃ = 0, σw := sign(w̃�) = sign(w�
prev − wtr)

(11b)
Jg := τ labs (11c)

Figure 2. Space splitting. (a) Splitting of decision variable w into wlow and wup. (b) Absolute value constraint (9b) and its relaxed linearisation according to (13a). (c)
Projection after optimisation with initially wrong sign; I: initial guess; O: optimum; P: projection of optimum.

6 T. SEDLACEK ET AL.

with penalty parameter τ . Considering (11b), the linearisation
breaks down to choosing the sign σw of the absolute value
based on the previous solution w�

prev.Furthermore, the projec-
tion of the previous solution onto the constraints in (9) follows
from (8) and provides the initial solution, marked as ˘(·), for the
subsequent iteration:

w̆ = w�
prev, w̆low = min(w�

prev,wtr), w̆up = max(w�
prev,wtr).

(12)

The projection step is depicted in Figure 2(c) for an initial guess
with a different sign than the computed solution: sign(w̆prev) �=
sign(w�

prev). For a graphical interpretation, the additional cost
term (11c) can be replaced by an additional relaxed equality
constraint with the slack variable sw ≥ 0 being minimised via
a penalty objective:

w� − σww̃ = sw (13a)

Js := τ sw. (13b)

Since adding slack variables increases the number of decision
variables, this is not desirable from an implementation stand-
point; however, it fosters comprehension. The relaxation of
constraint (13a) via the slack variable sw is necessary to avoid
infeasibility, which is illustrated in Figure 2(b): Since gabs =
w� − |w̃| ≥ 0 holds, an unrelaxed constraint (13a) with sw ≡ 0
would only allow values satisfying w̃ ≤ 0 for σw = −1 and only
values w̃ ≥ 0 for σw = 1. However, the sign is based on the
previous iteration and can thus be wrong. Then, a relaxation
represented by the slack variable is necessary to allow values w̃ of
the opposite region and avoid infeasibility. The sign is corrected
for the subsequent iteration step to enable eradicating the addi-
tional objective (13b) and thus the slack variable. This concludes
that the initial solution does not have to represent a feasible
solution, which results in robust initialisation behaviour. The
relaxation via the slack variable sw in (13a) corresponds to the
violation of constraint labs via (11c). The fact that the constraint
violation will be large in case of a wrong sign is used as feed-
back for the algorithm. The algorithmwill iterate until a feasible
point satisfying labs ≈ 0 ≈ sw is reached. Then, the additional
objective (11c) vanishes.

2.2.2 Piecewise linear approximation of optimisation
problem
The first step towards a convex OP is the derivation of a piece-
wise linear approximation of the original problem (4). This is
achieved by using the concept of space splitting presented in the
previous section. Since multiple decision variables can be split,
the formulation of the OP is posed using the augmented vector
of decision variables

z =
[
zT0 zT1

2
. . . zTnseg

]T
, zk :=

⎡⎣ xk
uk

waux,k

⎤⎦ ∈ R
nz (14)

with the auxiliary decision variables waux,k ∈ R
ns . Therein

some of the original states and inputs are excluded when
they are depicted using affine transformations as illustrated in
Section 2.3.1. The corresponding substitute problem is given for

all i ∈ I and k ∈ K by

min
z

J(w) (15a)

s.t. ĉcoll,i(z) = ccoll,i(w = �(z), fpwl = �pwl) = 0, (15b)

ĉk(z) = ck(w = �(z)) = 0, (15c)

ĥk(z) = hk(w = �(z)) ≤ 0, (15d)

ĥzcs,k(z) ≤ 0, (15e)

gaff,k(z) := E	,kwaux,k − (Ez,k zk + wtr) = 0, (15f)

gabs,k(z) := E�,kwaux,k

− α
(
Ez,kzk − wtr︸ ︷︷ ︸

=:z̃k

) = 0. (15g)

Therein α(·) : R
ns → R

ns represents a function which applies
the smoothable absolute value function (7) to each vector com-
ponent individually: No smoothing occurs for εs = 0. Further-
more, the right-hand side of the system equations (6) is depicted
or approximated by the affine expression

f�(x,u,waux) = (A�x(x,u,waux) + B�u(x,u,waux) + k)+
+ �pwl(x,u,waux)

(16)

with �u : R
nz → R

nu and �x,�pwl : R
nz → R

nx representing
functions which are affine in the decision variables. Thus, (16)
enables affine collocation constraints (15b). The transformation
function �(z) in problem (15) represents the accumulation of
the affine transformations �x and �u with n� = (nx + nu)npts
yielding

w = �(z) =

⎡⎢⎣ �0
...

�nseg

⎤⎥⎦ := Âz + b̂, �k :=
[
�x|k
�u|k

]
(17)

with Â ∈ R
n�×n� and b̂ ∈ R

n� inserting the affine map-
ping (17) into the affine constraints (4c) and (4d) results in the
affine constraints (15c) and (15d), respectively (Boyd & Van-
denberghe, 2004, p. 79). Furthermore, the auxiliary variables
are used to represent the ZCSs (4e) using convex functions ĥzcs
in (15e). In order to get a QP problem, these constraints are
assumed to be affine or approximated by affine inequality con-
straints. The application of space splitting for the convexifica-
tion of the original constraints will be shown in more detail in
Section 2.3. The splitting constraints (15f) and (15g) represent
the constraints (9a) and (9b), respectively. These constraints are
necessary to ensure that problem (15) correctly represents the
original problem (4). They implement a bisection of selected
decision variables at predefined transition values which are
stored in the vector wtr. The matrices E	,k, E�,k and Ez,k are
selection matrices extracting the desired decision variables. It is
assumed that ns

2 decision variables are split at each collocation
point.

Depending on the individual approximations of the nonlin-
ear constraints, the piecewise linear representation is subject to
some error. The approximation error of this substitute prob-
lem is defined beforehand by the implemented number of space

INTERNATIONAL JOURNAL OF CONTROL 7

Figure 3. Approximation of nonlinearity fnl with three-/five-segmented piece-
wise linear polynom ppwl,3/ppwl,5; Approximation error can be reduced with an
increasing number of splitting segments.

subdivisions. If the original problem is piecewise linear, this
substitute problem can be an exact representation.

Remark 2.1: Let fnl(w) represent a nonlinearity within a con-
straint depending on the decision variable representative w,
as depicted in Figure 3. Then, the total absolute error of the
piecewise linear approximation ppwl(w) is given by the sum of
absolute errors at each collocation point of the decision variable:

epwl =
∑
k∈K

|fnl(wk) − ppwl(wk)|. (18)

An adequate number and position of knot points for the seg-
mentation into piecewise linear parts achieve sufficiently small
approximation errors. However, a higher number of splitting
segments increases the size of the OP influencing the compu-
tation time.

2.2.3 Nonconvex optimisation problemwith convex feasible
set
The absolute values in equality constraint (15g) still prohibit
convexity. Deploying the theory of exact penalty functions (Di
Pillo & Grippo, 1989; Han & Mangasarian, 1979), the absolute
value equality constraints are moved to the objective without
compromising optimality:

Theorem 2.1: Let z be a stationary point of the OP

min
z

J(w) + τ
∑
k∈K

ns∑
j=1

gabs,k,j︸ ︷︷ ︸
=‖gabs,k‖1

(19a)

s.t.
[
ĉTcoll,i ĉTk gTaff,k

]
= 0T ∀ i ∈ I , k ∈ K (19b)[

ĥ
T
k ĥ

T
zcs,k

]
≤ 0T ∀ k ∈ K (19c)

gabs,k ≥ 0 ∀ k ∈ K (19d)

with λ representing the Lagrangian multipliers of the correspond-
ing equality constraints. Since a L1−norm is an exact penalty
function, z is a critical point of problem (15) for εs > 0 and
sufficiently large but finite penalty weights τ ≥ ‖λ‖∞.

Proof: The prerequisite for the optima recovery is that the opti-
mality conditions are admissible for problem (15) (Nocedal
& Wright, 2006, p. 507). For this purpose, the linear indepen-
dence constraint qualification (LICQ) (Nocedal &Wright, 2006,
p. 320) is analysed subsequently. Since the transformation�(z)
in (17) is affine, the gradients of the transformed basic con-
straints (15c) and (15d) remain linearly independent if the orig-
inal constraints c(w) : R

nw → R
nc and h(w) : R

nw → R
nh are

linearly independent. This can be verified for i ∈ {1, . . . , n_c}
and j ∈ {1, . . . , n_h} via

∇zĉi(z) =
(

∂ci(�(z))
∂�

∂�

∂z

)T
= Â

T∇wci(w = �(z)) (20a)

∇zĥj(z) =
(

∂hj(�(z))
∂�

∂�

∂z

)T
= Â

T∇whj(w = �(z)). (20b)

The gradients of the splitting constraints (15f) and (15g) are by
definition linearly independent from each other and from the
remaining constraints. Furthermore, it can be assumed without
loss of generality that the gradients of the collocation con-
straints (15b), of the basic constraints (15c)–(15d) and of the
ZCS-constraints (15e) are linearly independent. Thus, if the
LICQ holds for the original problem (4), then it is also sat-
isfied by the problem (15). By choosing a sufficiently small
but positive smoothing parameter 0 < εs � 1, the prerequisite
of continuous differentiable objective and constraint functions
is given while approximation errors are kept small. Thus, the
optimal solution will satisfy the Karush–Kuhn–Tucker condi-
tions (Nocedal & Wright, 2006, p. 321). �

Constraints (19d) are added to enable omitting the norm in
the objective as illustrated in (19a). Since gabs,k is a vector of con-
cave functions, the AVCs (19d) represent a convex set. Thus, the
feasible set of OP (19) is convex.

2.2.4 Convex optimisation problem for iterative solution
From Theorem 2.1 follows that solving (19) provides the solu-
tion for problem (15) assuming εs > 0. Unfortunately, the aug-
mented objective (19a) is nonconvex, which will be addressed
via linearisation. Subsequently, the smoothing is removed by
setting εs = 0 since it will not be required for continuous dif-
ferentiability. Omitting the smoothing represents an approxi-
mation to the smoothed version of (19); however, it is benefi-
cial from a practical standpoint since the splitting constraints
are exact for εs = 0. Furthermore, it enables representing the
AVCs (19d) by two affine inequalities which yields exclusively
affine constraints required for an LP and QP problem. For a
convex OP, the absolute value of the AVCs in the augmented
objective is linearised around the points z̃�

k ∈ R
ns yielding the

linearised constraints

labs,k(z, z̃�
k) := E�,kwaux,k − �kz̃k = 0 ∀ k ∈ K, (21a)

which represent (11b), with the linearisation points being stored
in matrix

� :=
[
�0 � 1

2
. . . �nseg

]
with

�k := diag
(
sign(z̃�

k,1), . . . , sign(z̃�k,ns)
)
.

(21b)

8 T. SEDLACEK ET AL.

Comparing (15g) and (21a) shows that the linearisation breaks
down to a binary decision: choosing the correct sign of the
absolute value term z̃k. The linearisation (21a) is affine in the
decision variables. Since the sum of convex functions preserves
convexity (Boyd & Vandenberghe, 2004, p. 79), the composite
objective function is then convex in the decision variables.With
all constraints being affine, using linearisation (21a) results in
the convex QP problem

min
z

Jtot(z, z�) := J(w) + τ
∑
k∈K

ns∑
j=1

labs,k,j (22a)

s.t. ĉcoll,i = 0 ∀i ∈ I , (22b)

cTtot,k(z) :=
[
ĉTk gTaff,k

]
= 0T ∀ k ∈ K, (22c)

hTtot,k(z) :=
[
ĥ
T
k ĥ

T
zcs,k

]
≤ 0T ∀ k ∈ K, (22d)

habs,k(z) :=
[
E�,k waux,k − z̃k
E�,k waux,k + z̃k

]
≥ 0 ∀ k ∈ K. (22e)

For linear objectives J(w), the SSC approach results in a LP
problem. The convex problem (22) is iteratively solved, whereas
the linearisation points in � are updated based on the solu-
tion z�T =

[
z�

T
0 ... z�

T
nseg

]
of the preceding iteration yielding

z̃�
k = Ez,kz�

k − wtr ∀ k ∈ K. (23)

However, the question arises if replacing the constraint gabs in
the objective with its linearisation labs falsifies the solution. This
motivates the following lemma:

Lemma 2.2: The satisfaction of habs,k(z) ≥ 0 and labs,k(z, z̃�k) =
0 concludes gabs,k(z) = 0, independently of the linearisation
point z̃�k.

Proof: This can be verified using Figure 2(b) as graphical sup-
port. For this purpose, the following equations are given in
general notation and are compared with the equations from the
illustrative example in Section 2.2.1 using the vector of decision
variables zex = [w wup wlow]T. The nonsmoothed absolute value
constraint gabs,k,j spans the following set of points:

Gk,j(z) := {z | eT
�,kwaux,k − |z̃k,j| = 0}

=̂{zex |w� − |w̃| = 0}
(24a)

with eT
�,k representing the jth rowofmatrixE�,k. The admissible

points for the AVC-linearisation labs,k,j are given by

Lk,j(z, z̃�k,j) := {z | eT
�,kwaux,k − sign(z̃�k,j)z̃k,j = 0}

=̂{zex |w� − σww̃ = 0}
(24b)

representing the infinite extension of the positive and negative
branch of the AVC for z̃�k,j, σw ≥ 0 and z̃�

k,j, σw ≤ 0, respec-
tively. Then, the intersection with the admissible points of the
inequality constraint habs,k,j

Hk,j(z) :=
{
z
∣∣∣∣ [eT�,kwaux,k − z̃k,j

eT
�,kwaux,k + z̃k,j

]
≥ 0

}
=̂
{
zex

∣∣∣∣ [w� − w̃
w� + w̃

]
≥ 0

} (24c)

provides the sets

Nk,j(z) := {z | z ∈ Hk,j, z ∈ Lk,j(z, z̃�k,j)
∣∣
z̃�k,j≤0} (24d)

Pk,j(z) := {z | z ∈ Hk,j, z ∈ Lk,j(z, z̃�k,j)|z̃�k,j≥0}, (24e)

which represent the negative and positive branch of the AVC
and are thus a subset:Nk,j, Pk,j ⊂ Gk,j. �

This important lemma ensures that convergence of prob-
lem (22) to a solution which satisfies the linearised con-
straints labs,k(z, z̃�

k) = 0 also fulfils the original nonlinear con-
straints gabs,k(z) = 0 in (15g).

2.2.5 Space splitting convexification algorithm
Subsequently, the SSC algorithm 1 is presented in detail
and the proof of its convergence is provided. The algorithm
inputs are described in line 1. An initial solution for the
inputs U�

0 ∈ R
nu×npts and states X�

0 ∈ R
nx×npts must be pro-

vided. The algorithm iteratively solves the convex problem (22)
using the solution of the previous iterate to correct the signs of
the linearisation if necessary. The algorithm terminates when
all signs are chosen correctly or the maximum number of itera-
tions qmax is reached. Thus, if the algorithm converges before
reaching the maximum number of iterations q < qmax, the
largest constraint violation is smaller than a small value labs ≤ εg
with 0 ≤ εg � 1. As already mentioned, the violation of the
linearised AVCs indicates that a wrong sign was chosen. The
reason why the constraint violations are a suitable feedback for
correct sign selection can be visualised using Figure 2(b). The
signs and thus the linearised constraints labs,k,j in the objec-
tive (22a) are fixed before optimisation. Then, running into
the region of w̃=̂z̃k,j with the opposite sign requires increasing
w�=̂eT

�,kwaux,k due to the constraints habs=̂habs,k ≥ 0, which
in turn increases the linearised constraints in the objective.
Based on the solution of the preceding iteration, the updating
routine in line 7 adjusts the convex QP problem (22) to sat-
isfy (15f)–(15g) using the projection procedure (12): The update
routine computes the projected initial solution Z̆ and the correct

Algorithm 1 Space Splitting Convexification: a procedure for
iterative optimisation.
1: INPUTS:

(1) U�
0,X

�
0: initial solution for input and state decision variables

(2) qmax: maximum number of iterations
(3) εg : error tolerance for linearised absolute value constraints (AVC)
(4) τ , τ : weight bounds for penalty objectives

2: OUTPUT: U�,X�: system solution within tolerance εg
3: MAIN FUNCTION:
4: q = 1, labs = ∞
5: while q ≤ qmax and labs > εg do
6: τ = τ−τ

qmax
· q + τ // weight for additional objectives

7: [�, Z̆] = updateQP(U�
q−1,X

�
q−1) // linearisation and initialisation

8: [U�
q,X

�
q] = solveQP(τ ,�, Z̆)

9: labs =
∥∥∥labs,0 labs, 12 . . . labs,nseg

∥∥∥
max

// maximum value of all relaxations

10: q = q + 1
11: end while
12: U� = U�

q
, X� = X�

q // output final solution

INTERNATIONAL JOURNAL OF CONTROL 9

signs � for the linearisation of the AVCs. Afterwards, the opti-
miser is invoked in line 8 to solve the convex QP problem or
LP problem if the main objective is linear. The theory of exact
penalty functions states that the penalty parameter τ must be
larger than the largest optimal dual variable of the correspond-
ing constraints. Since estimating the limit value for the penalty
parameter is a rather complicated task, Algorithm 1 pursues the
straightforward approach in line 6 of gradually increasing the
penalty parameter up to a high value. A reasonably high but
finite upper bound on the penalty parameter τ avoids numer-
ical problems. Although this is not the best updating approach,
it can work well in practice (Nocedal &Wright, 2006, p. 511) as
it is the case for the examples considered in this article.

Finally, the following theoremverifies that the algorithmpro-
duces a sequence of solutions which eventually converges to a
local solution satisfying the AVCs:

Theorem2.2: Let the feasible set of problem (22) be denotedwith

f :=
{
z | ĉcoll,i = 0, ctot,k(z) = 0,

htot,k(z) ≤ 0, habs,k(z) ≥ 0, i ∈ I , k ∈ K}
,

(25)

which is a convex set. Starting from a point z(0), Algorithm 1
generates a sequence {z(q)} according to

z(q+1) = min
z

{
Jtot

(
z, z(q)

)
| z ∈
f

}
q = 0, 1, . . . (26)

with Jtot being a convex function. This sequence eventually con-
verges to a limit point z� which satisfies gabs,k = 0 ∀ k ∈ K.

Proof: Algorithm 1 iteratively solves problem (22) and gradu-
ally increases the penalty parameter up to a finite value τ ≤ τ .
Let the condition τ ≥ ‖λ‖∞ mentioned inTheorem2.1 hold for
q ≥ Qλ ∈ N. Then, the theory of exact penalty functions states
that labs,k = 0 ∀ k ∈ K is satisfied for all q ≥ Qλ. As described
in Lemma 2.2, this concludes that only solutions on one branch
of the AVCs are admissible. Thus, no sign changes of z̃k,j=̂w̃
are possible for q ≥ Qλ. This concludes that the linearisation
points of labs,k ∀ k ∈ K and thus OP (22) remain unchanged
for q ≥ Qλ. The convexity of the problem entails that only one
optimum exists yielding

z(q+1) − z(q) = 0 ⇒
∥∥∥z(q+1) − z(q)

∥∥∥ = 0 ∀ q ≥ Qλ. (27)

This concludes that for every ετ > 0, there is aQ ∈ N such that

‖�z‖ :=
∥∥∥z(n) − z(m)

∥∥∥ < ετ for every n,m ≥ Q (28)

since (28) holds at the latest from the value Q = Qλ with
‖�z‖ = 0 < ετ . This proves that (26) is a Cauchy sequence and
thus converges (Zorich, 2016, p. 85). Hence, the solutions of the
individual iterations can oscillate; however, this oscillation van-
ishes with an increasing number of iterations finally converging
to a single point z�. Due to Lemma 2.2, labs,k = 0 ∀ k ∈ K
concludes that this point satisfies gabs,k = 0 ∀ k ∈ K. �

Theorem 2.2 concludes that the iterative solution of OP (22)
within the SSC algorithm basically solves the OP (15) with

εs = 0: From convergence to labs,k = 0 ∀ k ∈ K follows that the
computed solution satisfies gabs,k = 0 = habs,k ∀ k ∈ K and the
augmented objective term vanishes. The remaining constraints
of problems (15) and (22) are identical. Thus, the SSC algorithm
computes a solution that is arbitrarily close, but not necessarily
identical, to the solution of the piecewise linearly approximated
problem (15). The potential discrepancy in solutions is rooted
in the necessity to smoothen the problem (15) with εs > 0 for
the admissibility of the optimality conditions in Theorem 2.1.
Since the linearisation removes the discontinuity, the smoothing
is disregardedwithin the SSC algorithm. From a practical stand-
point, the discrepancy is negligible since the smoothing param-
eter can be assumed arbitrarily small εs → 0making the impact
of the smoothing numerically irrelevant. This procedure for the
approximation of discontinuities in optimal control problems
is common practice, see e.g. (Perantoni & Limebeer, 2014). In
summary, the SSC approach chooses one branch of the dis-
continuity, resulting in the continuously differentiable prob-
lem (22) with εs = 0, and switches in the following iterations
to the other branch if the wrong side of the discontinuity was
selected.

2.3 Constraint convexification via space splitting

The previous sections derived the basic structure of the convex
OP (22a), which is solved in an iterative manner. However, the
question of how the original constraints can be convexified via
space splitting to gain the convex constraints (15b)–(15e) is still
open. The basic procedure of bisecting the space of a variable
into two subdomains has been illustrated in Section 2.2.1. This
can be employed to consider ZCSs and equality constraints with
univariate nonlinearities in a convex manner, which is demon-
strated in Sections 2.3.1 and 2.3.2, respectively. Subsequently,
the index for the collocation discretisation k ∈ K is omitted for
readability.

2.3.1 Convexification of zonally convex sets
One prominent physical example of ZCSs are constraints ensur-
ing semi-activity. Semi-active actuators like limited slip differ-
entials and semi-active dampers are used in many engineering
applications due to their good compromise between low energy
consumption and high performance (Savaresi et al., 2010; Sed-
lacek et al., 2020a, 2020c). A typical ZCS for a semi-active
damper is depicted in Figure 4(a) with damper force Fd = u
and damper velocity v. The nonconvexity of the set is apparent
considering that it is easy to draw a line that contains non-
admissible points and connects an admissible point in the first
quadrant with an admissible point in the third quadrant. Note
that simply linearising the inequality constraints depicting this
nonconvex set results in a half-plane, which represents a poor
approximation of the set. The main idea for the novel convexifi-
cation approach is appropriately decomposing nonconvex sets,
described in the original decision variables, into convex subsets
using auxiliary decision variables. The applicability of the SSC
method to the ZCS types depicted in Figure 4 is proven in the
subsequent paragraphs.

The approach is initially illustrated using the ZCS depicted in
Figure 4(a). Let the convex subset in the first and third quadrant

10 T. SEDLACEK ET AL.

Figure 4. Space splitting convexification of zonally convex sets. (a) ZCS with a single transition point. (b) Shifted, rotated ZCS with a single transition point. (c) ZCS with
shared line at transition.

be given by

Sp :=
{
(u, v) | u ∈ U , v ∈ V , ĥzcs,p(u, v) ≤ 0

}
and (29a)

Sn :=
{
(u, v) | u ∈ U , v ∈ V , ĥzcs,n(u, v) ≤ 0

}
, (29b)

respectively. Therein v and u are original decision variables.
Moreover, ĥzcs,p ≤ 0 and ĥzcs,n ≤ 0 are convex sets. The union
of convex sets does not necessarily result in a convex set. As illus-
trated in Figure 4(a), the union S = Sp ∪ Sn is assumed to be
nonconvex in this article. Thus, S is a nonconvex set comprised
of convex subsets: a ZCS. The velocity v is split at v = vtr = 0
by a vertical line following Lemma 2.1. The two auxiliary vari-
ables vn ∈ Vn := [v, vtr] = [v, 0] and vp ∈ Vp := [vtr, v] = [0, v]
are introduced aiming at implementing

vn =
{
v ∀ v ≤ 0,
0 else

and vp =
{
v ∀v ≥ 0,
0 else

. (30)

Introducing analogous constraints to (9a) and (11a) aswell as
additional objective terms in form of (11c) ensures the relations
in (30). Furthermore, the auxiliary variables un ∈ Un := [u, utr]
and up ∈ Up := [utr, u] are introduced for the individual sub-
sets. Therein utr represents the ordinate value of the common
point, which lies on the origin in the current example depicted
in Figure 4(a) resulting in utr = 0. However, the common point
of the subsets is not required to lie on the abscissa or ordi-
nate. The vector of auxiliary decision variables is given by
waux = [vp vn up un]. While the original state variable v remains
a decision variable in the problem, the input variable is replaced
according to the transformation

�u := un + up − utr = [
1 1

] [up
un

]
− utr, (31)

which is affine in the decision variables. The convex subsets in
terms of the auxiliary decision variables are given by

Ŝp :=
{(
up, vp

) | up ∈ Up, vp ∈ Vp, ĥzcs,p(up, vp) ≤ 0
}

(32a)

Ŝn :=
{
(un, vn) | un ∈ Un, vn ∈ Vn, ĥzcs,n(un, vn) ≤ 0

}
.
(32b)

Hence, the convex subsets Ŝp and Ŝn are now defined for sep-
arate decision variables and will be linked via the affine map-
ping (31). This enables the formulation of convex constraints

as depicted in problem (15). The proof that this procedure
produces the same set as S will be given in Theorem 2.3.

For convexity, ĥzcs,p and ĥzcs,n in (32a) and (32b) must be
convex functions. As exemplarily illustrated in Figure 4(a), the
convex subsets are assumed in this article to be representable by
nzcs = nzcs,n + nzcs,p affine inequality constraints

ĥzcs,p(u, v) := Azcs,p

[
u
v

]
+ bzcs,p ≤ 0 (33a)

ĥzcs,n(u, v) := Azcs,n

[
u
v

]
+ bzcs,n ≤ 0 (33b)

with Azcs,p ∈ R
nzcs,p×2, bzcs,p ∈ R

nzcs,p , Azcs,n ∈ R
nzcs,n×2 and

bzcs,n ∈ R
nzcs,n . These constraints represent (15e) in the con-

vex OP. Although nonlinear, convex functions for ĥzcs,p and
ĥzcs,n would not prevent convexity, introducing such constraints
would prohibit an LP or QP problem, which can be solved espe-
cially efficiently. Asymmetric subsets like the one illustrated in
Figure 4(a) can be easily implemented by using varying coeffi-
cients in (33a) and (33b) or by using different domains for Un
and Up.

Theorem 2.3: The subsets (32a) and (32b) in combination with
the affine mapping (31) depict the set S which is given by the
union of the convex subsets (29a) and (29b).

Proof: For proving that the splitting approach provides sets that
depict the original one, the individual cases for the bisected
variable space are considered subsequently.
Case 1: vtr < v

The decision variable v is split at v = vtr. Thus, vn = vtr holds
according to Lemma 2.1. This concludes un = utr since the
subsets converge to the common point (utr, vtr) when leaving
the subset towards the other subset. Lemma 2.1 also concludes
vp = v. Then, the affinemapping (31) is given by�u = up ∈ Ŝp.
For v > vtr, S = Sp holds. Since vp = v, u ∈ Sp and �u ∈ Ŝp
provide the same feasible set. The chain of conclusions for the
remaining cases follows the same reasoning but is given below
in equations for conciseness.
Case 2: v < vtr

vp = vtr ⇒ up = utr
vn = v

}
⇒ �u = un ∈ Ŝn=̂u ∈ S = Sn.

(34a)

INTERNATIONAL JOURNAL OF CONTROL 11

Case 3: v = vtr

vp = vtr ⇒ up = utr
vn = vtr ⇒ un = utr

}
⇒ �u = utr =̂ u = utr. (34b)

Thus, inserting the affine mapping (31) into the constraints
while replacing the original set S with the sets (32a) and (32b)
yields the same feasible set. �

The presented proof requires a space splitting of the vari-
able v which is represented by splitting the convex subsets via a
vertical line. Thus, the SSC approach is capable of convexifying
two-dimensional ZCSs, which can be divided into two convex
subsets connected in a single point using any vertical line. Fol-
lowing theorem is added to show that this also holds for any
splitting line which is straight but possibly rotated:

Theorem 2.4: Space splitting applied to a rotated, two-
dimensional ZCS also results in convex constraints.

Proof: This can be verified by applying the previously described
procedure to a rotated coordinate frame, exemplarily depicted
in Figure 4(b). The auxiliary decision variables need to split the
rotated two-dimensional space spanned by the variables v and
u. Assuming the coordinate system is rotated by the angleϕwith
counter-clockwise rotations depicting positive rotations, follow-
ing relations hold between the original coordinates v−u and the
rotated coordinates v − u:[

v

u

]
=
[
cos(ϕ) sin(ϕ)

− sin(ϕ) cos(ϕ)

]
︸ ︷︷ ︸

=:R(ϕ)

[
v − vtr
u − utr

]
and

[
v
u

]
=
[
cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

]
︸ ︷︷ ︸

=:R(−ϕ)

[
v

u

]
+
[
vtr
utr

]
.

(35)

The vector of auxiliary decision variables is chosen as waux =
[vp vn up un]. For a concise notation, the equations below use the
abbreviations cϕ := cos(ϕ) and sϕ := sin(ϕ). Constraints (33)
are analogously formulated on the rotated, auxiliary decision
variables: ĥzcs,p(up, vp) and ĥzcs,n(un, vn). However, an adjust-
ment using (35) is necessary for the constraints (9a), (11a)
and (11b) as well as the input mapping (31):

gaff = (vp + vn) − ṽ = 0 with

ṽ = cϕ(v − vtr) + sϕ
(
sϕ(vp + vn) + cϕ(up + un)

) (36a)

gabs = (vp − vn) − |ṽ| ≥ 0 (36b)

labs = (vp − vn) − sign(ṽ)ṽ ≥ 0 (36c)

�u = u = [
sϕ sϕ

] [vp
vn

]
+ [

cϕ cϕ
] [up

un

]
+ utr. (36d)

Since the angle ϕ is constant, the trigonometric functions rep-
resent constant values. Thus, a rotated space splitting proce-
dure also yields affine constraints and mappings enabling the
formulation of a convex OP. �

The previous theorems required the subsets to be con-
nected in a single point. Following theorem states that the SSC

approach can be used to approximate ZCSs which share a line
of points:

Theorem 2.5: When a two-dimensional ZCSs is comprised of
two convex subsets sharing a line of points, the SSC approach can
only approximate the original set however with sufficiently small
approximation error.

Proof: Without loss of generality, this can be analysed consider-
ing Figure 4(c) as example. For the depicted case, the transition
line lies on the ordinate vtr = 0. Analysing the individual cases
shows that using the original subsets within the SSC approach
would yield a larger set than the original set:

Case 1: vtr < v

vp = v ⇒ up ∈ Ŝp
vn = vtr ⇒ un ∈ [0, u0]

}
⇒ �u = (un + up) ∈ Ŝ�,p ⊃ Ŝp

�̂= u ∈ S = Sp. (37a)

Case 2: v < vtr

vp = vtr ⇒ up ∈ [0, u0]
vn = v ⇒ un ∈ Ŝn

}
⇒ �u = (un + up) ∈ Ŝ�,n ⊃ Ŝn

�̂= u ∈ S = Sn. (37b)

Case 3: v = vtr

vp = vtr ⇒ up ∈ [0, u0]
vn = vtr ⇒ un ∈ [0, u0]

}
⇒ �u = un + up ∈ [0, 2 u0]

�̂= u ∈ [0, u0]. (37c)

Thus, using the original subsets can render non-admissible
points of the original problem admissible. When the input vari-
able is replaced by the auxiliary inputs according to (31), both
sets must be adjusted at the transition line v = vtr. The sim-
plest set adjustment is enforcing un = 0 = up at the transition
axis, as illustrated in Figure 4 by the dotted lines. Then, the
subsets are connected in a single point enabling the application
of Theorem 2.4. However, other set manipulations are possible
and can be numerically better. Generally, such set approxima-
tions introduce conservativeness for the sake of feasible tra-
jectories. However, the introduced error is negligible when the
removed area is sufficiently small which can be implemented by
choosing steep linear constraints at the transition between the
subsets. �

Remark 2.2: In this article, only two-dimensional ZCSs which
can be split into two convex subsets have been considered.
However, the SSC approach can be applied to certain two-
dimensional ZCSs with more than two subsets. For instance,
consider three convex subsets positioned horizontally to each
other, whereas each subset is connected to the next subset in
a single point on the abscissa. This can be verified using the
procedures described previously in this section.

This section illustrated the convexification procedure for
ZCSs in regards to inputs. This results in the depicted affine
input transformation�u. Implementing the approach for a ZCS
with state decision variables yields an affine transformation�x.

12 T. SEDLACEK ET AL.

This procedure can be applied tomultiple inputs and states. The
corresponding vector functions for the affine transformations
are given by

�u =

⎡⎢⎣�u,1
...

�u,nu

⎤⎥⎦ and �x =

⎡⎢⎣�x,1
...

�x,nx

⎤⎥⎦ (38)

with �u,i and �x,j representing the transformation for the indi-
vidual input and state, respectively. If no transformation is nec-
essary, a direct mapping is implemented according to �u,i = ui
and �x,i = xi. The vectors of transformations (38) are used to
generate� in (17) which is used for the convex depiction of the
original constraints in (15b)–(15d).

2.3.2 Convexification of nonlinear equality constraints
Some nonlinearities in physical systems are characterised by a
univariate function. Examples are nonlinear springs, saturation,
dead-zones or the tire force shape curve of vehicles. Since non-
linear system equations yield nonlinear thus nonconvex equality
constraints, this section presents how such nonlinear univari-
ate terms can be convexified. The nonlinear univariate curve is
depicted using piecewise affine parts. Hence, if the nonlinearity
is not a piecewise linear function, SSC introduces approxima-
tion errors. The subsequent paragraphs illustrate the application
of the SSC algorithm for convexifying piecewise linear nonlin-
earities.

Theorem 2.6: The splitting constraints in (9) can be used to
convexify equality constraints by transforming a univariate non-
linearity with two piecewise linear segments into an expression
which is affine in multiple decision variables.

Proof: Proof is provided using the piecewise linear curve
depicted in Figure 5(a) as example, which represents a typi-
cal function for piecewise linear springs. Assuming the posi-
tion x is a state of the system, it represents a decision vari-
able which will be split at the transition point x = xtr < 0.
Thus, the auxiliary position variables xlow ∈ Xlow := [x, xtr] and
xup ∈ Xup := [xtr, x] are introduced. By including analogous
constraints to (9a) and (11a) as well as additional objective
terms in form of (11c), following relations are ensured using
Lemma 2.1:

xlow =
{
x ∀ x ≤ xtr,
xtr else

, xup =
{
x ∀ x ≥ xtr,
xtr else

. (39)

Hence, the piecewise linear function can be represented by the
expression

�pwl,2 = cupxup + clow(xlow − xtr)

= [
cup clow

] [xup
xlow

]
︸ ︷︷ ︸
=:waux

+ (−clowxtr) (40)

which is affine in the decision variables waux. The relations
in (39) yield following two segments for the piecewise linear
function (40):

I : xtr ≤ x ⇒
{
xup = x
xlow = xtr

⇒ �pwl,2 = cupx.

(41a)

II : x < xtr ⇒
{
xup = xtr
xlow = x

⇒ �pwl,2 = cupxtr+clow(x − xtr). (41b)

Thus, (41a) and (41b) depict the upper and lower segment of the
nonlinearity, respectively. �

Since (40) is an affine function in the decision variables, it can
be inserted into the differential equations without preventing
convexity. The subsequent theorem proves that this approach
can be extended to univariate nonlinearities withmore than two
piecewise linear segments:

Theorem 2.7: A repeated application of the space bisection
approach using the splitting constraints in (9) can be used to
convexify equality constraints by transforming a univariate non-
linearity with more than two piecewise linear segments into an
expression which is affine in multiple decision variables.

Proof: The general procedure for this extension is illustrated
using the piecewise linear curve depicted in Figure 5(b).
The position x is split at the transition points x = xtr <

0 and x = xtr > 0. Thus, the auxiliary position variables
xlow ∈ Xlow := [x, xtr], xlow ∈ Xlow := [xtr, x], xmid ∈ Xmid
:= [xtr, xtr] and xup ∈ Xup := [xtr, x] are employed. The space
is repeatedly bisected following Lemma 2.1 to gain

xlow =
{
x ∀ x ≤ xtr,
xtr else

, xlow =
{
x ∀ x ≥ xtr,
xtr else

(42a)

Figure 5. Space splitting convexification of piecewise linear equalities. (a) Nonlinearity with two linear segments. (b) Nonlinearity with three linear segments. (c) Splitting
of state variable x for three segments.

INTERNATIONAL JOURNAL OF CONTROL 13

xmid =
{
xlow ∀ xlow ≤ xtr,
xtr else

, xup =
{
xlow ∀ xlow ≥ xtr,
xtr else

(42b)

which is depicted in Figure 5. Thus, the position space is
bisected into a region below and a region above x = xtr whereas
the upper region is again bisected into a region below and
above x = xtr. The piecewise linear function can then be rep-
resented by the expression

�pwl,3 = [
cup cmid clow

]⎡⎣ xup
xmid
xlow

⎤⎦
︸ ︷︷ ︸

=:waux

−(cupxtr + clowxtr) (43)

which is affine in the decision variables waux. The relations
in (42) yield following three segments for the piecewise linear
function (43):

I : xtr < x ⇒

⎧⎪⎨⎪⎩
xup = x
xmid = xtr
xlow = xtr

⇒ �pwl,3 = cmidxtr + cup(x − xtr). (44a)

II : xtr ≤ x ≤ xtr ⇒

⎧⎪⎨⎪⎩
xup = xtr
xmid = x
xlow = xtr

⇒ �pwl,3 = cmidx. (44b)

III : x < xtr ⇒

⎧⎪⎨⎪⎩
xup = xtr
xmid = xtr
xlow = x

⇒ �pwl,3 = cmidxtr + clow(x − xtr). (44c)

Hence, (44a), (44b) and (44c) depict the upper, mid and lower
segment of the nonlinearity, respectively. �

This repeated bisection procedure enables the generation of
a characteristic curve with an arbitrary number of segments.
However, an increasing number of segments also increases
the number of auxiliary decision variables and additional con-
straints making the OP larger.

The approach presented in this section yields a scalar func-
tion �pwl which is affine in the decision variables. The pro-
cedure can be applied to multiple univariate, nonlinear terms
yielding further scalar mapping functions. The affine vector-
valued function in (16) is given by

�pwl =

⎡⎢⎣ �pwl,1,1 + �pwl,1,2 + . . .
...

�pwl,nx ,1 + �pwl,nx ,2 + . . .

⎤⎥⎦ (45)

with �pwl,i,j representing the individual affine mapping func-
tions. For states that are not affected by the space splitting
approach,�pwl,i,j = 0 holds. The transformation (45) is used to
generate the convex collocation constraints (15b).

2.4 Remarks on runtime

The application of optimisation methods within a real-time
capable controller generally requires upper bounds on the nec-
essary computation time. The SSC approach runs through a
loop which is comprised of a projection step and an optimisa-
tion step resulting in the following theorem regarding compu-
tational complexity:

Theorem 2.8: The computational complexity of the SSC
algorithm is polynomial.

Proof: SSC solves a sequence of LP problems or convex QP
problems, which are known to be solvable in polynomial
time (Karmarkar, 1984; Kozlov et al., 1980). The projection
step (12) of the SSC algorithm uses minimum and maximum
functions which possess linear time complexity. This concludes
a polynomial time complexity of the SSC algorithm:

TSSC(n, q) = q · (O(nα) + cO(n)
)

with α > 1. (46)

Therein n can be interpreted as the number of operations
required by the algorithm. The parameters in (46) depend
on the utilised solver as well as the number of decision vari-
ables which is problem specific. Limiting the maximum num-
ber of superordinate iterations to q ≤ qmax enables termi-
nating the algorithm prematurely at suboptimal solutions, if
necessary. �

Theorem 2.8 provides valuable insight for the application in
a real-time capable controller. Firstly, a worst-case bound on
computation time can be experimentally identified for the spe-
cific OP and solver. Secondly, the computation time scales well
with increasing problem size. Since the number of superordi-
nate SSC iterations is rather low in practice, this results in a fast
solution of optimal control problems. Finally, the influences on
computation time are summarised below:

(1) System and discretisation.The number of decision variables
increases with rising number of inputs, states and collo-
cation segments for both the original and the convexified
OP. This increases computation time for NLPmethods and
the SSC algorithm. Due to the polynomial complexity, this
increase in time will be generally less for SSC than for NLP.

(2) Nonlinearity. The more complicated the nonlinearity, the
more splitting segments are required to reduce approxi-
mation errors. However, the space splitting increases the
problem size compared to the original problem, which
influences the variable n in (46). This can put a practi-
cal bound on the number of space divisions via the SSC
approach. Nevertheless, many physically motivated non-
linearities can be approximated sufficiently well using a
moderate number of affine segments.

(3) Initial guess. Being a local method, the solution com-
puted by the SSC approach depends on the provided initial
solution. Furthermore, this initial guess can influence the
order of sign-corrections regarding theAVC-linearisations,
which can impact the number of superordinate iterations
and, therefore, the convergence rate. ForMPC frameworks,

14 T. SEDLACEK ET AL.

the optimal solution of the preceding time step often repre-
sents a good initial guess (Gros et al., 2020) promising low
computation times.

(4) Penalty parameter update. Too small or too large penalty
parameters can slow down convergence (Nocedal &
Wright, 2006, p. 511). The straightforward approach
of gradually increasing the penalty parameter is used
in this article. However, more sophisticated routines
have been proposed in Mayne and Maratos (1979) and
Maratos (1978).

2.5 Comparisonwith existingmethods

In order to highlight the novelty of the proposed algorithm,
this section compares the SSC approach with the most related
existing methods.

From an algorithmic standpoint, linearising only the non-
convex part of constraints combined with a relaxation and an
increasing objective term penalising constraint violations cor-
responds to penalty CCP (Lipp & Boyd, 2016). CCP has the
advantage over SQP and other linearisation techniques that it
retains more problem information in each iterate: The infor-
mation of the convex parts is kept and only the concave por-
tions are linearised. Furthermore, CCP does not require to use
line-search procedures or limit the progress in each iteration
via trust-region methods. Inspired by Mangasarian (2015), the
SSC approach avoids additional slack variables by considering
the linearised constraints directly in the penalty objective. This
avoids further increasing the size of the OP as in penalty CCP.
Moreover, SSC employs an intermediate projection to enhance
convergence. While CCP linearises the concave part of all non-
convexities, SSC transforms the problem beforehand requiring
only the linearisation of AVCs. This enables providing a feed-
back about the correctness of the selected linearisation points,
which are subsequently adjusted. Thus, the linearisation error
can vanish completely after the correct signs have been chosen.
The binary nature of the linearisation facilitates a rapid conver-
gence in a small number of superordinate iterations. Although
the SSC method only computes solutions to the piecewise lin-
ear approximation of the original problem, the approximation
can be designed to sufficient accuracy enabling small and known
approximation errors. Especially the straightforward linearisa-
tion of ZCS-constraints yields very poor approximations, which
can contain a large set of infeasible points. Thus, the vanishing
AVC-linearisation errors result in an advantage of SSC regard-
ing accuracy, also over further linearisation techniques like the
ones presented in Mao et al. (2016, 2017). Generally, a scalable
trade-off between accuracy and size of theOP, thus computation
time, can be chosen.Opposed to Lipp andBoyd (2016), this arti-
cle provides a convergence proof, even if only converging to the
solution of the approximated problem.

While LCpossesses the advantage of avoiding approximation
errors, it is only applicable to OPs with annulus-like, noncon-
vex sets resulting from excluding a convex subset from a convex
set (Raković & Levine, 2018, p. 340). Opposed to that, SSC pro-
vides a method for the convexification of ZCS which cannot be
considered via LC.

Similar to the LnP approach presented in Mao et al. (2017),
the SSC method is an iterative linearisation algorithm using

intermediate projection steps. The updating routine for SSC is
of linear computational complexity with few and simple math-
ematical operations. The projection step of the LnP approach
generally requires the solution of a convex programming prob-
lem, which is of polynomial complexity at best. Thus, the
projection step used by the SSC approach is computation-
ally less costly, which is beneficial for splitting methods (Fer-
reau et al., 2017). Additionally, the binary nature of the AVC-
linearisation provides the advantage that generally only few
superordinate iterations are required, resulting in short com-
putation times. Moreover, SSC is more robust regarding the
initialisation since the LnP approach requires an additional lift-
ing procedure to cope with arbitrary initialisations, which costs
computation time (Mao et al., 2017). Furthermore, the LnP
method requires the right-hand side of the system equations to
be convex and the inequality constraints to be concave. How-
ever, nonconvex collision avoidance constraints can be easily
considered via the LnP approach, whereas the SSC procedure
requires further measures.

The ADMM is a splitting procedure utilising the aug-
mented Lagrangian method instead of the exact penalty func-
tion method, which is employed by the SSC algorithm. Due to
the alternating approach, the ADMM requires the solution of
two QCQP problems in each iteration. The SSC approach only
requires the solution of a single convex QP problem in each
iteration, which is beneficial for computation time.

The spatial BnB method also uses space decomposition for
the convexification of the optimisation problem. However, the
SSC approach solves a piecewise linear approximation of the
original problem, which is iteratively adjusted, on the full space
domain of the decision variables. Opposed to that, the BnB
method solves multiple OPs which represent convexly relaxed
versions of the original problem on separate subdomains of the
decision variables. BnB techniques determine upper bounds by
evaluating the objective function at a feasible point. Since the
problem is generally nonconvex, finding a feasible point can be
difficult. This is often tackled by solving the nonconvex sub-
problem locally, which is computationally expensive (Liberti
& Maculan, 2006, p. 253). Thus, the convergence rate of the
SSC approach is most likely to be superior if sufficiently good
initial guesses are provided. However, this depends on the non-
linearities of the OP, which influence the number of decision
variables for SSC but also for BnB approaches which decompose
factorable functions (Tawarmalani & Sahinidis, 2002, p. 125).
Moreover, SSC only guarantees to find local optima of an
approximation of theOP and is only applicable to certain classes
of OPs. GO techniques cover a wide range of applicability and
provide the global optimum.

3. Applications

In this section, the proposed SSC algorithm is evaluated using
a hanging SMO example with piecewise linear spring and semi-
active damping as illustrated in Figure 6. Semi-active dampers
can only generate a force in the opposite moving direction and
cannot impose a force at steady-state complying with the passiv-
ity constraint (Savaresi et al., 2010, p. 16). Hence, the admissible
set for semi-active dampers always contains a subset in the first
quadrant and a subset in the third quadrantwhich are connected

INTERNATIONAL JOURNAL OF CONTROL 15

in a single point, namely, the origin. A performance-oriented
OP is formulated and solved using NLP and SSC, respectively.
The results of both algorithms are compared regarding accuracy
and computation time. Both problems are posed using themod-
elling language JuMP (Dunning et al., 2017) for mathematical
OPs. For a fair comparison, the necessary derivatives are com-
puted beforehand via automatic differentiation. Furthermore,
the tolerances for constraint feasibility and objective improve-
ment are set to 10−6 for both solvers. The utilised parameters
are listed with description in Table 1.

The NLP problem is solved using the optimiser IPOPT
(Wächter & Biegler, 2006), which employs an interior-point
method: Using the concept of barrier functions, a sequence
of relaxed problems is solved for decreasing values of barrier
parameters. The barrier parameter relaxes the inequality con-
straints and hence represents the distance from the current
iterate to the border of the admissible set. Thus, interior-point
methods use a central path within the admissible set as opposed
to SQP-methods which wander along the border. The result-
ing nonlinear equation system is solved via a damped Newton
method. Furthermore, a filter line-search method, heuristics
and further correction measures are employed to enhance con-
vergence and robustness.

The novel SSC method transforms the OP into convex
QP subproblems which are solved iteratively. In order to
capitalise on this problem structure, the elaborate optimiser
Gurobi (Gurobi Optimization, 2020) is selected.

Table 1. Parameters for SMO application.

Symbol Value Unit Description

g 9.81 m/s2 gravitational
acceleration

m 5.00 kg mass
cup 10.00 N/m overload spring

stiffness for rebound
cmid 3.00 N/m main spring stiffness
clow 5.00 N/m overload spring

stiffness for
compression

xtr 5.00 m transition point for
rebound overload

xtr −5.00 m transition point
for compression
overload

xss,2 16.35 m steady-state position
for 2-segment spring

xss,3 8.405 m steady-state position
for 3-segment spring

x 100.00 m upper position bound
x −100.00 m lower position bound
d 20.00 Ns/m upper bound on

damper coefficient
d 0.50 Ns/m lower bound on

damper coefficient
v 100.00 m/s upper speed bound
v −100.00 m/s lower speed bound
Fd 400.00 N upper bound on

damper force
Fd −400.00 N lower bound on

damper force
εg 10−6 – violation tolerance for

SSC penalty term
τ/τ 1.00/104 – initial/final value for

penalty parameter

3.1 Optimisation problems

The equations of motion for the state vector x = [x v]T
result in

ẋ = f =
[

v
1
m
(
mg − Fd − Fc

)] (47)

with x, v, Fd and Fc denoting the deflection position, deflection
speed, damper force and spring force, respectively. The expres-
sion of these forces differs for the NLP method and the SSC
approach. Starting from a specified initial state xiv = [xiv viv]T
with damper force Fd,iv = dviv, the goal is to minimise the
deviation from the steady-state position xss while consider-
ing the limitations of the system. Applying Simpson quadra-
ture (Betts, 2010; Kelly, 2017), the main objective penalises the
steady-state position deviation ess,j := xj − xss according to

Jss :=
nseg−1∑
i=0

�i

6

(
e2ss,i + 4e2ss,i+ 1

2
+ e2ss,i+1

)
. (48)

Considering the values listed inTable 1, the steady-state position
can be computed using a root-finding approach like Newton’s
method: At steady-state position, the gravitational force must
equal the spring force. For the considered nonlinear springs
with two piecewise linear segments the value xss = xss,2 is cho-
sen and xss = xss,3 if the spring with three segments is used. An
uniform discretisation of the time grid t ∈ [t0, tf] = [0, 10] is
employed yielding a constant segment width �i = � = tf −t0

nseg .
Both, the NLP approach and the SSC method, are initialised
with zero vectors U�

0 = 0 and X�
0 = 0. From

fss,i(x) := �i

6
(xi − xss)2 ⇒ f ′ss,i(x) = 2

�i

6
(xi − xss)

⇒ f ′′ss,i(x) = 2
�i

6
> 0 (49)

follows that the Hessian of (48) is a diagonal matrix with
only positive and zero diagonal entries and therefore posi-
tive semi-definite. Hence, the main objective (48) is a convex
function.

3.1.1 Nonlinear nonconvex optimisation problem
For the solution of the OP via NLP, the decision variables are
chosen as

u = [
u0 u0.5 . . . unseg

] ∈ R
1×npts with uk = dk (50a)

X = [
x0 x0.5 . . . xnseg

] ∈ R
2×npts with xk :=

[
xk
vk

]
(50b)

whereas the input represents the variable damping coefficient dk
of the semi-active actuator. With i ∈ I and k ∈ K, the original
OP is given by

min
u,X

Jss (51a)

s.t. ccoll,i
(5)= 0 with fk =

[
vk

1
m

(
mg − FNLPd,k − FNLPc,2,k

)] ,

FNLPd,k = ukvk and

FNLPc,2,k = minε

(
cmidxk, clowxk − xtr(clow − cmid)

)
,

(51b)

16 T. SEDLACEK ET AL.

Figure 6. Model characteristics for hanging SMO with semi-active damper and nonlinear spring. (a) Hanging SMO model. (b) ZCS for semi-active damper force. (c)
Piecewise linear spring force characteristic.

uk ∈ D :=
[
d, d

]
, xk ∈ X := [

x, x
]
and

vk ∈ V := [
v, v

]
,

(51c)

Fd ≤ ukvk ≤ Fd, (51d)

u0 = d, x0 = xiv. (51e)

The nonconvex NLP problem (51) is comprised of following
parts: objective function (51a), collocation constraints (51b),
bounds for the decision variables (51c), damper force bounds
(51d) and initial value condition (51e). The piecewise lin-
ear spring force is approximated in (51b) via the smoothed
minimum-function

minε(x, y) := 1
2

(
(x + y) −

√
(x − y)2 + ε

)
(52)

using ε = 10−16 to guarantee that the problem is twice con-
tinuously differentiable (Sedlacek et al., 2020b). Problem (51)
is nonconvex due to the right-hand side of the differential
equation system in the collocation constraints (51b) and due to
the damper force bounds (51d).

3.1.2 Convex QP-problem for iterative solution
Following the SSC approach, auxiliary optimisation variables
are introduced, which results in the subsequent decision vari-
ables:

U = [
u0 u0.5 . . . unseg

] ∈ R
2×npts with uk :=

[
upos,k
uneg,k

]
=
[
Fd,pos,k
Fd,neg,k

]
(53a)

X = [
x0 x0.5 . . . xnseg

] ∈ R
2×npts with xk :=

[
xk
vk

]
(53b)

Xaux = [
xaux,0 xaux,0.5 . . . xaux,nseg

] ∈ R
2×npts with xaux,k :=

[
xmid,k
xlow,k

]
(53c)

Vaux = [
vaux,0 vaux,0.5 . . . vaux,nseg

] ∈ R
2×npts with vaux,k :=

[
vpos,k
vneg,k

]
.

(53d)

Opposed to the inputs (50a) of the NLP problem (51a), the
inputs in (53a) represent the positive and negative part of the
damper force.

As illustrated in Algorithm 1, a projection routine is exe-
cuted in each iteration. Based on the preceding solutionmarked
by values (·)�, this routine computes the projected initial solu-
tion ˘(·) for k ∈ K via

ŭk =
[
ŭpos,k
ŭneg,k

]
=
[
max(u�

neg,k + u�
pos,k, 0)

min(u�
neg,k + u�

pos,k, 0)

]
, x̆k = x�

k (54a)

[
x̆mid,k
x̆low,k

]
︸ ︷︷ ︸

=x̆aux,k

=
[
max(x�

k, xtr)
min(x�

k, xtr)

]
,
[
v̆pos,k
v̆neg,k

]
︸ ︷︷ ︸
=v̆aux,k

=
[
max(v�

k, 0)
min(v�

k, 0)

]

(54b)

and the correct signs according to

σx,k = sign(x�
k − xtr), σv,k = sign(v�

k). (54c)

For a concise notation in the OP, the decision variables are
lumped together in P := {U,X,Xaux,Vaux}. With i ∈ I and
k ∈ K, the convex QP problem, which is iteratively solved for
updated values of τ , σx,k, σv,k and corresponding initial guesses,
is given by

min
P

Jss + τ
∑
k∈K

labs,x,k + labs,v,k with (55a)

s.t. labs,x,k := (xmid,k − xlow,k) − σx,k(xk − xtr)
labs,v,k := (vpos,k − vneg,k) − σv,kvk,

(55b)

ccoll,i
(5)= 0 with fk =

[
vk

1
m

(
mg − FSSCd,k − FSSCc,2,k

)] ,

FSSCd,k = uneg,k + upos,k and

FSSCc,2,k = cmidxmid,k + clow(xlow,k − xtr),

(55c)

xk ∈ X := [
x, x

]
, vk ∈ V := [

v, v
]
,

uneg,k ∈ Uneg :=
[
Fd, 0

]
, upos,k ∈ Upos :=

[
0, Fd

]
,

vneg,k ∈ Vneg :=
[
v, 0

]
, vpos,k ∈ Vpos := [0, v] ,

xlow,k ∈ Xlow := [
x, xtr

]
, xmid,k ∈ Xmid := [

xtr, x
]
,

(55d)

ĥzcs,p,k =
[−d 1
d −1

] [
vpos,k
upos,k

]
≤ 0,

ĥzcs,n,k =
[−d 1
d −1

] [
vneg,k
uneg,k

]
≤ 0,

(55e)

INTERNATIONAL JOURNAL OF CONTROL 17

gaff,x,k = xmid,k + xlow,k − (xk + xtr) = 0,

gaff,v,k = vpos,k + vneg,k − vk = 0,
(55f)

habs,x,k =
[
labs,x,k|σx,k=+1
labs,x,k|σx,k=−1

]
≥ 0,

habs,v,k =
[
labs,v,k|σv,k=+1
labs,v,k

∣∣
σv,k=−1

]
≥ 0,

(55g)

u0 =
[
max(dviv, 0)
min(dviv, 0)

]
, x0 = xiv. (55h)

The QP problem (55) is comprised of following parts: aug-
mented objective function (55a), collocation constraints (55c),
bounds for the decision variables (55d), ZCS-constraints (55e),
the additional space splitting constraints (55f)–(55g) and ini-
tial value condition (55h). Due to the splitting approach, the
right-hand side of the differential equation system in (55c) is an
affine function in the decision variables. Thus, all constraints are
affine in the decision variables and therefore convex. The addi-
tional objectives with (55b) are affine in the decision variables
representing convex functions. Hence, (55) represents a convex
QP problem. Using (55b), the termination criterium in line 9 of
Algorithm 1 is computed via

labs =
∥∥∥∥[labs,x,0labs,v,0

]
, . . . ,

[
labs,x,nseg
labs,v,nseg

]∥∥∥∥
max

. (56)

As illustrated in line 6 of Algorithm 1, the penalty weight τ is
linearly increased with a maximum iteration number qmax = 6
using the lower and upper bound τ and τ , respectively. Both
OPs are now fully defined. The results generated by solving
NLP problem (51) and by applying the SSC algorithm with QP
problem (55) are compared in the following section.

3.2 Results

In order to inspect the performance of the proposed SSC
algorithm, 100 OPs are analysed in this section using a desk-
top computer with Intel CoreTM i7-9850H CPU to determine
the solutions. The OPs vary in size and the initial value condi-
tion. The number of collocation segments is gradually increased
with nseg ∈ {10, 50, 100, 250, 500}. For each problem size, the
OPs (51) and (55) are solved using the 10 random, admissible
initial values xiv listed in Table 2. This procedure is also exe-
cuted for a simplified QP problem (55) with a fully linear spring
of stiffness cmid. This simplifies the right-hand side of the differ-
ential equation system in (55c) and eliminates the need for the
auxiliary variables Xaux in (53c), the corresponding additional
objectives in (55b) as well as the corresponding constraints
in (55f) and (55g). The optimisation results are displayed in
Table 3.

Firstly, the OPs with initial value xiv = xiv,1 and nseg = 250
segments are studied in more detail. Figure 7(a) depicts the

piecewise linear characteristic curve of the spring force and
Figure 7(b) the admissible set for the damper force. The result-
ing trajectories of the states and damper force are illustrated in
Figure 7(c). The mean absolute deviance between the damper
force trajectory of the NLP solution and the SSC solution is
defined as

eFd :=
1

npts

∑
k∈K

∣∣∣FNLPd,k − FSSCd,k

∣∣∣ (57)

for the npts collocation points. With eFd = 1.85N, the control
trajectories differ only marginally considering the damper force
domain Fd ∈ [−400N, 400N]. The mean absolute deviance
between the position and the steady-state position

ess := 1
npts

∑
k∈K

|xk − xss,k| (58)

is eSSCss = 7.12m and eNLPss = 7.18m for the SSC solution and
NLP solution, respectively. However, the value for the main cost
function (48) is JSSCss = 2550.73m2 s and JNLPss = 2549.86m2 s
for the SSC solution and NLP solution, respectively. Thus, the
SSC objective value is higher but the mean deviance in the
steady-state position error is lower. The reason for this is that
the cost function is quadratic in the errors which penalises large
errors unevenly more than small errors. As illustrated in the top
subplot of Figure 7, the position of the NLP solution reaches the
steady-state position faster however with an overshoot which
slowly reduces. Thus, the larger errors at the beginning are
reduced more quickly resulting in a lower cost function value.
However, the mean position error, which is a better metric for
the actual goal of minimising the deviance from the steady-
state position, is worse than for the SSC solution. Although
an objective penalising the absolute value of the errors would
be more adequate, it is not used since it would prevent con-
tinuous differentiability of the objective function. Nevertheless,
both algorithms reach the steady-state position xss in about 3 s
resulting in similar state trajectories. The trajectories of the aux-
iliary variables verify correct switching at x = xtr = −5m and
v = vtr = 0ms for the position and velocity, respectively. Fur-
thermore, Figure 7(a,b) shows that the spring forces lie on the
characteristic line and the computed damper forces lie within
the admissible set proving the compliance of the prescribed
constraints. The bang-bang-like control strategy confirms cor-
rectness since it is expected due to the main objective (48),
which demands to reduce the errors as fast as possible. With
q = 4 superordinate iterations, the SSCmethod required a total
optimisation time of tSSC	 = 0.329 swhich is 47.71%of the com-
putation time of tNLP	 = 0.690 s required by the NLP solver. The
cumulative optimisation time topt,	 , which represents the time
spent in the QP solver in line 8 of the SSC algorithm for all
passed loops, is tSSCopt,	 = 0.262 s representing 37.97%of theNLP

Table 2. Initial values of robustness analysis.

xiv,1 xiv,2 xiv,3 xiv,4 xiv,5 xiv,6 xiv,7 xiv,8 xiv,9 xiv,10

x −24.5 −15.1 −51.4 27.9 59.4 12.3 56.1 15.4 −73.7 −56.9
v −30.0 −44.9 −15.4 39.3 18.7 64.3 −15.5 −32.7 16.8 73.1

18 T. SEDLACEK ET AL.

Table 3. Optimisation results of robustness analysis.

Spring Method Results

nseg[−] LIN NL NLP SSC Jss [m2 s] ess [m] eFd [N] q[−] topt,	 [s] t	 [s]

10 � � 815.26 7.64 – 1.00 0.074 0.074
10 � � 818.92 7.50 3.51 2.00 0.005 (6.45%) 0.021 (27.77%)
10 � � 597.24 7.11 – 1.00 0.075 0.075
10 � � 601.84 6.96 2.72 2.40 0.008 (10.90%) 0.025 (33.67%)
50 � � 2135.09 6.67 – 1.00 0.125 0.125
50 � � 2139.30 6.55 2.04 2.00 0.016 (12.87%) 0.036 (28.51%)
50 � � 1842.48 6.16 – 1.00 0.127 0.127
50 � � 1849.97 6.03 2.28 2.60 0.036 (28.46%) 0.059 (46.34%)
100 � � 2333.84 6.52 – 1.00 0.229 0.229
100 � � 2338.26 6.41 1.94 2.00 0.026 (11.18%) 0.050 (21.77%)
100 � � 2043.91 6.02 – 1.00 0.252 0.252
100 � � 2051.33 5.89 2.20 2.70 0.064 (25.44%) 0.095 (37.53%)
250 � � 2454.05 6.43 – 1.00 0.587 0.587
250 � � 2458.40 6.32 1.94 2.00 0.068 (11.64%) 0.105 (18.20%)
250 � � 2167.57 5.93 – 1.00 0.695 0.695
250 � � 2174.81 5.80 2.22 2.70 0.183 (26.30%) 0.235 (33.83%)
500 � � 2494.96 6.40 – 1.00 1.080 1.080
500 � � 2499.36 6.29 1.97 2.10 0.173 (16.03%) 0.235 (21.72%)
500 � � 2209.03 5.91 – 1.00 1.373 1.373
500 � � 2216.23 5.77 2.22 2.80 0.460 (33.50%) 0.555 (40.39%)

nseg: # of collocation segments; LIN/NL: linear/nonlinear spring; NLP: IPOPT solving NLP problem (51); SSC: SSC Algorithm 1 with QP problem (55); Jss/ess/eFd : main objec-
tive and error metrics (59)(average for 10 initial value conditions); q: average # of superordinate iterations; topt,	 : cumulative time spent in NLP/QP solver; t	 : total
computation time.

Figure 7. Solution of OPs with initial value xiv,1 and nseg = 250 collocation segments. (a) Piecewise linear spring force. (b) ZCS for damper force. (c) State and damper
force trajectories.

time. Since the SSC algorithm converged in q < qmax = 6 itera-
tions, the largest relaxation value of the AVCs is smaller than εg
ensuring conformity with the original problem.

Subsequently, the remaining results of Table 3 are analysed
to identify tendencies. As stated in Section 2.2.1, the additional

objective terms (55b) represent a relaxation of the constraints
comparable with slack variables. Besides serving as feedback
for determining convergence, this relaxation provides robust-
ness regarding the initialisation. This is reflected in the results
by a successful convergence of the SSC algorithm in 100% of

INTERNATIONAL JOURNAL OF CONTROL 19

the test cases, even though a rather poor initial guess was used.
The accuracy of the computed solutions is evaluated using the
mean values of the main cost function (48) and of the averaged
errors (57) and (58) defined as

Jss :=
10∑
i=1

Jss,i, eFd :=
10∑
i=1

eFd ,i and ess :=
10∑
i=1

ess,i. (59)

These values represent the respective mean value over all 10
OPs, due to 10 different initial values, for one specified num-
ber of collocation segments nseg. With eFd ≤ 3.51N being small
compared to the domain of Fd, the control trajectories of the
SSC approach are close to the trajectories computed by the NLP
solver. The small deviation of the mean values in (59) between
the SSC solution and the NLP solution indicates that both algo-
rithms converged to a similar solution. Considering the mean
value Jss of the main objective function, the NLP solver yields
lower objective values than the SSC algorithm. As previously
discussed, the mean deviance ess from the steady-state position
is smaller when using the SSC algorithm.

The SSC approach greatly reduces the overall computation
time tSSC	 and requires up to only 18.20% of the computation
time needed by the NLP solver. The time advantage of the
SSC algorithm over the NLP optimiser will be even bigger for
asymmetric zonally convex damper sets. Such asymmetric sets
require additional discontinuities in the NLP problem but can
be easily implementedwithin the SSC procedure by using differ-
ing parameters for the individual convex subsets. As mentioned
in Section 2.4, various aspects influence the runtime of the SSC
algorithm which is reflected in the results: With rising number
of collocation segments, the mean solution time increases and
the computation time of SSC increases less than the NLP solu-
tion time. Anothermentioned effect on runtime is the quality of
the initial guess. The provided guess with zero vectors is of vary-
ing quality for the individual initial value conditions. A better
initial guess in terms of the correct signs of the state trajecto-
ries reduces the number of superordinate iterations and thus the
overall computation time. Hence, the sensitivity in regards to
the initial guess is elaborated in the following section.

The pure optimisation time tSSCopt,	 reduces up to 6.45% of the
corresponding NLP time and is generally significantly shorter
than its overall computation time tSSC	 . Since the projection step
of the SSC algorithm employs only simple computations using
minimumandmaximum functionswith linear time complexity,
the time spent outside of theQP solver, which solves convexQP-
problems in polynomial time, seems quite long. Unfortunately,
substantial time losses occur at building the updated optimi-
sation model via JuMP and the Gurobi-wrapper. For future
implementations, it is advisable to implement the SSC algorithm
via C-code to circumvent this problem andminimise the overall
computation time.

3.3 Influence of initial guess on results

In this section, the OPs (51) and (55) are modified to con-
sider the nonlinear spring characteristic with three piecewise
linear segments depicted in Figure 5. The NLP problem (51) is
adjusted by replacing the spring force FNLPc,2,k in the differential

equation system considered in constraint (51b) by

FNLPc,3,k = maxε [minε (cmidxk, clowxk

−xtr(clow − cmid)
)
, cupxk + xtr(cmid − cup)

]
(60)

using the smooth maximum function

maxε(x, y) := 1
2

(
(x + y) +

√
(x − y)2 + ε

)
. (61)

The adaptation of the QP problem (55) requires slightly more
changes. The auxiliary decision variables for the position (53c)
are augmented resulting in

xaux,k :=
[
xlow,k xlow,k xup,k xmid,k

]T . (62)

Thus, the position space is bisected into a region below and a
region above x = xtr, whereas the upper region is again bisected
into a region below and above x = xtr. Compared to (54), the
update procedure remains unchanged for the decision variables
of the inputs, states and auxiliary velocities:[

ŭpos,k
ŭneg,k

]
=
[
max(u�

neg,k + u�
pos,k, 0)

min(u�
neg,k + u�

pos,k, 0)

]
,

x̂k = x�
k,

[
v̆pos,k
v̆neg,k

]
=
[
max(v�

k, 0)
min(v�

k, 0)

]
.

(63a)

However, since the position space is partitioned into three seg-
ments, the updating routine changes for the auxiliary position
states according to[

x̆low,k
x̆low,k

]
=
[
max(x�

k, xtr)
min(x�

k, xtr)

]
,[

x̆up,k
x̆mid,k

]
=
[
max(x̆low,k, xtr)
min(x̆low,k, xtr)

]
.

(63b)

Furthermore, the correct signs are now given by

σxmu,k = sign(x̆low,k − xtr), σxlm,k = sign(x�
k − xtr),

σv,k = sign(v�
k).

(63c)

With i ∈ I and k ∈ K, the convex QP problem is formulated as

min
P

Jss + τ
∑
k∈K

labs,xmu,k + labs,xlm,k + labs,v,k with

(64a)

s.t.
labs,xmu,k := (xup,k − xmid,k) − σxmu,k(xlow,k − xtr)
labs,xlm,k := (xlow,k − xlow,k) − σxlm,k(xk − xtr)
labs,v,k := (vpos,k − vneg,k) − σv,kvk,

(64b)

ccoll,i
(5)= 0 with fk =

[
vk

1
m

(
mg − FSSCd,k − FSSCc,3,k

)] ,

FSSCd,k = uneg,k + upos,k and

FSSCc,3,k = cup(xup,k − xtr) + cmidxmid,k + clow(xlow,k − xtr),
(64c)

20 T. SEDLACEK ET AL.

xk ∈ X := [
x, x

]
, vk ∈ V := [

v, v
]
,

uneg,k ∈ Uneg :=
[
Fd, 0

]
, upos,k ∈ Upos :=

[
0, Fd

]
,

vneg,k ∈ Vneg :=
[
v, 0

]
, vpos,k ∈ Vpos := [0, v] ,

xlow,k ∈ Xlow := [
x, xtr

]
, xlow,k ∈ Xlow := [

xtr, x
]
,

xmid,k ∈ Xmid := [
xtr, xtr

]
, xup,k ∈ Xup := [xtr, x]

(64d)

ĥzcs,p,k =
[−d 1
d −1

] [
vpos,k
upos,k

]
≤ 0,

ĥzcs,n,k =
[−d 1
d −1

] [
vneg,k
uneg,k

]
≤ 0,

(64e)

gaff,xmu,k = xmid,k + xup,k − (xlow,k + xtr) = 0

gaff,xlm,k = xlow,k + xlow,k − (xk + xtr) = 0

gaff,v,k = vpos,k + vneg,k − vk = 0,

(64f)

[
labs,xmu,k|σxmu,k=+1
labs,xmu,k|σxmu,k=−1

]
︸ ︷︷ ︸

=habs,xmu,k

≥ 0,
[
labs,xlm,k|σxlm,k=+1
labs,xlm,k|σxlm,k=−1

]
︸ ︷︷ ︸

=habs,xlm,k

≥ 0,

[
labs,v,k|σv,k=+1
labs,v,k|σv,k=−1

]
︸ ︷︷ ︸

=habs,v,k

≥ 0,

(64g)

u0 =
[
max(dviv, 0)
min(dviv, 0)

]
, x0 = xiv. (64h)

The termination criterium is computed via

labs =
∥∥∥∥∥∥
⎡⎣labs,xmu,0
labs,xlm,0
labs,v,0

⎤⎦ , . . . ,

⎡⎣labs,xmu,nseg
labs,xlm,nseg
labs,v,nseg

⎤⎦∥∥∥∥∥∥
max

. (65)

In order to analyse the effect of the initialisation on the
computed solution, several initial guesses are fed to the SSC
algorithm aiming at solving the OP with initial value xiv,1 con-
sidering nseg = 250 collocation segments. The maximum num-
ber of iterations is increased to qmax = 25 to check if poor
approximations eventually converge. Using the solution of the
NLP optimiser uNLPopt and XNLP

opt as reference, the initial guesses

are generated using

u�
neg,k = kinit min

(
uNLPopt,k, 0

)
, u�

pos,k = kinit max
(
uNLPopt,k, 0

)
,

x�
k = kinit xNLPopt,k

(66)

with kinit ∈ {0.0, 0.5, 0.75, 0.95, 1.0, 1.05, 10.0} which are fed to
the SSC update routine. The computations are compared to the
results of the NLP problem which is initialised with the same
guesses. The results of the individual optimisations are listed
in Table 4. As Figure 8(a,b) indicates for kinit = 0, all solutions
satisfy the prescribed constraints: The spring forces lie on the
piecewise linear branches and the damper forces are within the
admissible area. Considering the objective value Jss and mean
error ess in Table 4, the NLP solver converges to the same solu-
tion independently which initial guess is supplied. Thus, it is
assumed that the computed NLP solution represents the global
optimum or is at least very close to it. However, initialisation
can have a massive impact on the computation time. Generally,
the guesses close to the solution result in shorter computation
times. It is striking that both algorithms have the most diffi-
culty converging for kinit = 0.5 which is not the guess with the
biggest difference to the optimal solution. The SSC algorithm
converges significantly faster than the NLP solver for all initial
guesses. The number of superordinate iterations required by the
SSC algorithm is small for good initial guesses. As for kinit =
0.5, a high number of superordinate iterations can still yield a
faster convergence compared to theNLP solver. As alreadymen-
tioned, the SSC algorithm represents a local method and does
not necessarily provide the global optimum, which is reflected
in the results. Considering the objective value Jss and mean
error ess, only the SSC solutions for kinit ≥ 0.5 are roughly in
the vicinity of the global solution. The mean deviance between
the input trajectories eFd is then rather small. Even though the
SSC solutions may not represent the global optimum, the solu-
tions satisfy the prescribed constraints since q < qmax. Thus,
they represent a local solution of the piecewise linear problem,
which corresponds to the original problem for the example at
hand. The results for kinit = {0.95, 1.0, 1.05} confirm that the

Table 4. Analysis of sensitivity regarding initial guess.

method results

kinit[−] NLP SSC Jss[m2 s] ess [m] eFd [N] q[−] topt,	 [s] t	 [s]

0.0 � 1603.95 5.47 – 1 4.589 4.589
0.0 � 2118.49 9.91 46.63 7 0.493 (10.74%) 0.798 (17.38%)
0.5 � 1603.95 5.47 – 1 6.347 6.347
0.5 � 1635.20 5.93 14.43 19 1.450 (22.85%) 2.136 (33.65%)
0.75 � 1603.95 5.47 – 1 0.557 0.557
0.75 � 1612.62 5.67 15.77 2 0.179 (32.14%) 0.324 (58.26%)
0.95 � 1603.95 5.47 – 1 0.473 0.473
0.95 � 1603.95 5.47 0.01 1 0.075 (15.86%) 0.199 (42.02%)
1.0 � 1603.95 5.47 – 1 0.417 0.417
1.0 � 1603.95 5.47 0.01 1 0.072 (17.28%) 0.191 (45.79%)
1.05 � 1603.95 5.47 – 1 0.427 0.427
1.05 � 1603.96 5.47 0.20 1 0.084 (19.67%) 0.202 (47.37%)
10.0 � 1603.95 5.47 – 1 0.981 0.981
10.0 � 1610.74 5.72 6.71 2 0.149 (15.19%) 0.306 (31.22%)

kinit: perturbation parameter for initialisation error; NLP: IPOPT solving NLP problem; SSC: SSC Algorithm 1 with QP problem (64a); Jss: main objective (48); ess/eFd : error
metrics (58) and (57); q: # of superordinate iterations; topt,	 : cumulative time spent in NLP/QP solver; t	 : total computation time.

INTERNATIONAL JOURNAL OF CONTROL 21

Figure 8. Optimisation results for SMO application with three-segmented nonlin-
ear spring for kinit = 0. (a) Piecewise linear spring force with three segments. (b)
ZCS for damper force.

SSC algorithm converges to the global optimum if the initial
guess is in a close vicinity of it.

As mentioned in Section 2.4, increasing the number of space
divisions to depict the three-segmented spring raises computa-
tion time. This can be confirmed by comparing solution times of
the SSC algorithm for kinit = 0.0: For the two-segmented spring
tSSCopt,	 = 0.262s, tSSC	 = 0.329s and q = 4 holdswhereas tSSCopt,	 =
0.493s, tSSC	 = 0.798s and q = 7 holds for the spring with three
segments. Thus, more iterations are required and the average
computation time per iteration is increased by 7.52% and 38.6%
for tSSCopt,	 and tSSC	 , respectively. This highlights the importance
of an implementation in C-Code to reduce the time required
for the updating routine and therefore the overall computation
time.

3.4 Rotated space splitting

As elaborated in Section 2.3.1, some sets require to be split using
a rotated straight line. Without going into detail, the approach
is applied to the example of a hanging SMO with fully lin-
ear spring presented in Section 3.1. The OP is parametrised
with initial value xiv,1 and nseg = 250 collocation segments. The
damper set is rotated by ϕ = 7◦ resulting in the set depicted in
Figure 9(a). This is implemented by applying the changes (36) to
the convex QP problem with fully linear spring. As depicted in
Figure 9(a), the SSC algorithm computes damper forces which
all lie within the admissible area. Although this example repre-
sents an artificial use-case, the corresponding position trajecto-
ries in Figure 9(b) prove that the rotated set yields a reduction
of the objective. Starting with xiv,1 < xss in a compression phase

with viv,1 < 0, the mass is first decelerated and then accelerated
using Fd < 0 at v> 0, hence active forces. These active forces
enable a faster attainment of the steady-state position. Due to
the similarity to the previous examples, no further discussion is
given.

4. Conclusions

This article has presented a novel local solution method for effi-
ciently solving nonconvex optimal control problems. Splitting
the space of inputs and states enables the formulation ofQP sub-
problems which are solved iteratively. The method is capable
of considering two types of nonconvexities: ZCSs and equal-
ity constraints with possibly multiple univariate nonlineari-
ties. The approach decomposes the nonconvexities into affine
parts which are linked appropriately to approximate the original
problem with scalable approximation error. It has been shown
that the SSC algorithm converges to a local optimum of this
approximated problem. The quality of the solution depends on
the initial guess. For good initial guesses, the method converges
to solutions close to the global one. A comparison of this suc-
cessive convexification technique with other existing methods
has been given, highlighting the advantages SSC provides.

Subsequently, possible directions for future research are dis-
closed. Even though it would not change the algorithm, using
nondifferentiable constraint qualifications (Ye, 2004) could
potentially avoid the AVC-smoothing required for continu-
ous differentiability regarding the convergence proof. Due to
the low computation time and robust convergence, the SSC
method seems to be a promising approach for real-time optimal
control applications. In this context, using MPC could pro-
vide sufficiently good initial guesses (Diehl et al., 2005; Gros
et al., 2020) resulting in good SSC solutions. In order to enhance
applicability, the SSC approach could be combined with other
iterative linearisation schemes like (Carvalho et al., 2013; Lin-
iger et al., 2015; Mao et al., 2017; Simon et al., 2013) which
could enable considering collision avoidance constraints. Fur-
thermore, extending the SSC approach to bivariate nonlineari-
ties in equality constraints would enlarge the possible scope of
applications. Moreover, applying a more sophisticated updating
procedure for the penalty parameter would improve computa-
tion times (Maratos, 1978; Mayne & Maratos, 1979; Nocedal
& Wright, 2006). For applications with real-time capability
requirement, it is recommended to implement the algorithm
via tailored C-code to avoid the overhead introduced by the

Figure 9. SSC optimisation results for SMO application with fully linear spring and rotated damper set. (a) Rotated ZCS for damper force. (b) Position trajectory; xSSC:
original damper force set; xSSC,ϕ : rotated damper force set.

22 T. SEDLACEK ET AL.

high-level routines of JuMP and the Gurobi-wrapper. Then, the
required time for the updating step can be greatly reduced to
linear time complexity resulting in shorter overall computation
times.

Notation

ˆ(·) Transformed constraints depending on z
˘(·) Projected initial solution of (·)

(·)� Previous optimal solution of (·)
(·)tr Transition point for space bisection
(·), (·) Lower and upper bound of (·)
(·)n/neg Negative region of bisected space
(·)p/pos Positive region of bisected space
α(·) Smoothable absolute value function
Â, b̂ Matrix and vector of affine transformation

function
A,B, k Matrices and vector for system behaviour descrip-

tion
Azcs, bzcs Matrix and vector describing affine ZCSs
c(·) Spring stiffness of corresponding segment (·) for

SMO
c Left-hand sides of equality constraints
c̃ Left-hand sides of continuous-time equality con-

straints
ccoll Left-hand sides of collocation equality constraints
ctot Left-hand sides of aggregated equality constraints
d Damper coefficient for SMO
�i Width of ith collocation segment
eFd Mean absolute deviance in damper force trajecto-

ries between NLP and SSC solution
ess Steady-state position deviation of SMO
ess Mean absolute deviance between position trajec-

tory and steady-state position
εg Error tolerance for linearised AVCs
εs Smoothing parameter for absolute value function
E	/�/z Matrices for selecting specific decision variables
f Right-hand side of differential equation system of

model
f� Affine approximation of right-hand side of model

equations
fpwl Composition of univariate nonlinearities approx-

imable by piecewise linear curves
Fc Spring force of SMO
Fd Damper force of SMO
φ Intermediate objective term
�x/u/pwl Mapping functions affine in the decision variables
g Gravitational acceleration for SMO
gabs Left-hand sides of AVCs for space splitting
gaff Left-hand sides of affine constraints for space split-

ting
h Left-hand sides of inequality constraints
h̃ Left-hand sides of continuous-time inequality con-

straints
habs Left-hand sides of relaxed (inequality) AVCs for

space splitting
htot Left-hand sides of aggregated inequality con-

straints

hzcs Left-hand sides of ZCS inequality constraints
I Set of collocation segment indices
J Objective function
J̃ Continuous-time objective functional
Jss Objective function for steady-state position devia-

tion of SMO
kinit Perturbation parameter for initialisation error
K Set of collocation point indices
labs Left-hand sides of linearised AVCs for space split-

ting
m Mass of SMO
nc Number of equality constraints
nh Number of inequality constraints
npts Number of collocation points
ns Number of auxiliary decision variables
nseg Number of collocation segments
nu Number of input decision variables
nw Number of original decision variables
nx Number of state decision variables
O(·) Landau-notation for computational complexity
P0, q0, r0 parameters of quadratic objective
q Number of superordinate iterations in SSC

algorithm
qmax Maximum number of superordinate iterations
R
n Set of n-dimensional, real vectors

sw Slack variable for AVC
S(·) Set described by inequality constraints
σ(·) Sign of corresponding AVC
� Matrix containing all linearisation points of AVCs
t Time
topt,	 Cumulative time spent in solver
t	 Total computation time
τ Penalty parameter for additional objective terms
ϑ Terminal objective term
u Input vector of system
U Bounding-box set for system inputs
U�
0 Initial solution for input decision variables

v Deflection velocity of SMO
w Vector of original decision variables
waux Vector of auxiliary decision variables
wlow/up Lower/upper region of bisected space of w
x Deflection position of SMO
xss Steady-state position of SMO
xlow/low Lower/upper region of position space bisection for

SMO
xmid/up Lower/upper region of bisected position space xlow

for SMO
x State vector of system
X Bounding-box set for system states
X�
0 Initial solution for state decision variables

xiv Initial value of system state for SMO
z Vector of accumulated decision variables
z̃ Argument vector for absolute value function
z̃� Linearisation point for AVCs

Disclosure statement

No potential conflict of interest was reported by the author(s).

INTERNATIONAL JOURNAL OF CONTROL 23

ORCID
Tadeas Sedlacek http://orcid.org/0000-0002-6191-6173
Dirk Odenthal http://orcid.org/0000-0002-6651-8369
Dirk Wollherr http://orcid.org/0000-0003-2810-6790

References
Acikmese, B., & Blackmore, L. (2011). Lossless convexification of a class of

optimal control problems with non-convex control constraints. Auto-
matica, 47(2), 341–347. https://doi.org/10.1016/j.automatica.2010.10.
037

Acikmese, B., & Ploen, S. R. (2007). Convex programming approach to
powered descent guidance for Mars landing. Journal of Guidance, Con-
trol, and Dynamics, 30(5), 1353–1366. https://doi.org/10.2514/1.27553

Armaou, A., & Ataei, A. (2014). Piece-wise constant predictive feedback
control of nonlinear systems. Journal of Process Control, 24(4), 326–335.
https://doi.org/10.1016/j.jprocont.2014.02.002

Betts, J. T. (2010). Practical methods for optimal control and estimation using
nonlinear programming (2nd ed.). Society for Industrial and Applied
Mathematics.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization (7th ed.). Cam-
bridge University Press.

Carvalho, A., Gao, Y., Gray, A., Tseng, H. E., & Borrelli, F. (2013). Predictive
control of an autonomous ground vehicle using an iterative linearization
approach. 16th International IEEE Conference on Intelligent Trans-
portation Systems (ITSC 2013) (p. 2335–2340). doi:10.1109/ITSC.2013.
6728576

Chen, J., Zhan, W., & Tomizuka, M. (2017). Constrained iterative LQR for
on-road autonomous driving motion planning. 2017 IEEE 20th Inter-
national Conference on Intelligent Transportation Systems (ITSC) (p.
1–7). doi:10.1109/ITSC.2017.8317745

Cibulka, V., Hanis, T., & Hromcik, M. (2019). Data-driven identifica-
tion of vehicle dynamics using Koopman operator. https://arxiv.org/abs/
1903.06103

Cibulka, V., Haniš, T., Korda, M., & Hromčík, M. (2020). Model predictive
control of a vehicle usingKoopmanoperator. IFAC-PapersOnLine, 53(2),
4228–4233. https://doi.org/10.1016/j.ifacol.2020.12.2469(21st IFAC
World Congress)

d’Aspremont, A., & Boyd, S. (2003). Relaxations and randomized methods
for nonconvex QCQPs. Retrieved November 24, Retrieved 2020, from
https://web.stanford.edu/class/ee392o/relaxations.pdf.

Del Re, L., Chapuis, J., & Nevistic, V. (1993). Predictive control with embed-
ded feedback linearization for bilinear plants with input constraints. Pro-
ceedings of 32nd IEEE Conference on Decision and Control (Vol. 4, p.
2984–2989). doi:10.1109/CDC.1993.325747

Diehl, M., Bock, H. G., & Schlöder, J. P. (2005). A real-time itera-
tion scheme for nonlinear optimization in optimal feedback con-
trol. SIAM Journal on Control and Optimization, 43(5), 1714–1736.
https://doi.org/10.1137/S0363012902400713

Di Pillo, G., & Grippo, L. (1989). Exact penalty functions in con-
strained optimization. SIAM Journal on Control and Optimization,
27(6), 1333–1360. https://doi.org/10.1137/0327068

Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A modeling lan-
guage for mathematical optimization. SIAM Review, 59(2), 295–320.
https://doi.org/10.1137/15M1020575

Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., & Hrovat, D. (2007).
Predictive active steering control for autonomous vehicle systems.
IEEE Transactions on Control Systems Technology, 15(3), 566–580.
https://doi.org/10.1109/TCST.2007.894653

Fang, Y., & Armaou, A. (2015). Nonlinear model predictive control using
a bilinear Carleman linearization-based formulation for chemical pro-
cesses. 2015 American Control Conference (ACC) (p. 5629–5634).
doi:10.1109/ACC.2015.7172221

Ferreau, H., Almér, S., Verschueren, R., Diehl, M., Frick, D., Domahidi, A.,
Jerez, J.L., Stathopoulos, G., & Jones, C. (2017). Embedded optimization
methods for industrial automatic control. IFAC-PapersOnLine, 50(1),
13194–13209. https://doi.org/10.1016/j.ifacol.2017.08.1946

Gros, S., Zanon, M., Quirynen, R., Bemporad, A., & Diehl, M.
(2020). From linear to nonlinear MPC: Bridging the gap via the

real-time iteration. International Journal of Control, 93(1), 62–80.
https://doi.org/10.1080/00207179.2016.1222553

Gurobi Optimization (2020).Gurobi optimizer reference manual. Retrieved
November 24, 2020, fromhttps://www.gurobi.com/wp-content/plugins/
hd_documentations/documentation/9.1/refman.pdf.

Han, S. P., & Mangasarian, O. L. (1979). Exact penalty functions in
nonlinear programming. Mathematical programming, 17(1), 251–269.
https://doi.org/10.1007/BF01588250

Karmarkar, N. (1984). A new polynomial-time algorithm for linear pro-
gramming. Combinatorica, 4, 373–395. https://doi.org/10.1007/BF0257
9150

Kelly, M. (2017). An introduction to trajectory optimization: How
to do your own direct collocation. SIAM Review, 59(4), 849–904.
https://doi.org/10.1137/16M1062569

Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Prentice Hall.
Korda, M., & Mezić, I. (2018). Linear predictors for nonlinear dynamical

systems: Koopman operator meets model predictive control. Automat-
ica, 93(1), 149–160. https://doi.org/10.1016/j.automatica.2018.03.046

Kozlov, M., Tarasov, S., & Khachiyan, L. (1980). The polynomial solv-
ability of convex quadratic programming. USSR Computational Math-
ematics and Mathematical Physics, 20(5), 223–228. https://doi.org/10.
1016/0041-5553(80)90098-1

Kurtz, M. J., & Henson, M. A. (1997). Input-output linearizing control of
constrained nonlinear processes. Journal of Process Control, 7(1), 3–17.
https://doi.org/10.1016/S0959-1524(96)00006-6

Liberti, L. (2008). Introduction to global optimization. Retrieved January 23,
2021, from https://www.lix.polytechnique.fr/liberti/teaching/globalopt-
lima.pdf.

Liberti, L., & Maculan, N. (2006). Global optimization – from theory to
implementation. Springer Science and Business Media.

Liniger, A., Domahidi, A., & Morari, M. (2015). Optimization-based
autonomous racing of 1:43 scale RC cars. Optimal Control Applications
and Methods, 36, 628–647. https://doi.org/10.1002/oca.2123

Lipp, T., & Boyd, S. (2016). Variations and extension of the con-
vex–concave procedure. Optimization and Engineering, 17, 263–287.
https://doi.org/10.1007/s11081-015-9294-x

Mangasarian, O. L. (2015). A hybrid algorithm for solving the absolute
value equation. Optimization Letters, 9, 1469–1474. https://doi.org/10.
1007/s11590-015-0893-4

Mao, Y., Dueri, D., Szmuk, M., & Açíkmeşe, B. (2017). Successive Con-
vexification of Non-Convex Optimal Control Problems with State
Constraints. IFAC-PapersOnLine, 50(1), 4063–4069. https://doi.org/10.
1016/j.ifacol.2017.08.789(20th IFACWorld Congress)

Mao, Y., Szmuk, M., & Açíkmeşe, B. (2016). Successive convexification of
non-convex optimal control problems and its convergence properties. 2016
IEEE 55th Conference on Decision and Control (CDC) (p. 3636–3641).
https://doi.org/10.1109/CDC.2016.7798816

Maratos, N. (1978). Exact penalty function algorithms for finite dimensional
and control optimization problems [Unpublished doctoral dissertation].
Imperial College London (University of London).

Mayne, D. Q. (1973). Differential dynamic programming – A unified
approach to the optimization of dynamic systems. In C. Leondes (Ed.),
Control and dynamic systems (Vol. 10, p. 179–254). Academic Press.

Mayne, D. Q., & Maratos, N. (1979). A first order, exact penalty function
algorithm for equality constrained optimization problems. Mathemati-
cal Programming, 16(1), 303–324. https://doi.org/10.1007/BF01582118

Mollov, S., Babuska, R., Abonyi, J., & Verbruggen, H. B. (2004). Effec-
tive optimization for fuzzy model predictive control. IEEE Transactions
on Fuzzy Systems, 12(5), 661–675. https://doi.org/10.1109/TFUZZ.2004.
834812

Mollov, S., Babuška, R., Roubos, J., &Verbruggen,H. (1998).MIMOpredic-
tive control by multiple-step linearization of Takagi-Sugeno fuzzy mod-
els. IFACProceedings Volumes, 31(29), 197–202. https://doi.org/10.1016/
S1474-6670(17)38944-9(7th IFAC Symposium on Artificial Intelligence
in Real Time Control 1998., Grand Canyon National Park, USA, 5–8
October)

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science
and Business Media.

Park, J., & Boyd, S. (2017). General heuristics for nonconvex quadratically
constrained quadratic programming. https://arxiv.org/abs/1703.07870

http://orcid.org/0000-0002-6191-6173
http://orcid.org/0000-0002-6651-8369
http://orcid.org/0000-0003-2810-6790
https://doi.org/10.1016/j.automatica.2010.10.037
https://doi.org/10.2514/1.27553
https://doi.org/10.1016/j.jprocont.2014.02.002
https://doi.org/doi:10.1109/ITSC.2013.6728576
https://doi.org/doi:10.1109/ITSC.2017.8317745
https://doi.org/https://arxiv.org/abs/1903.06103
https://doi.org/10.1016/j.ifacol.2020.12.2469
https://web.stanford.edu/class/ee392o/relaxations.pdf
https://doi.org/doi:10.1109/CDC.1993.325747
https://doi.org/10.1137/S0363012902400713
https://doi.org/10.1137/0327068
https://doi.org/10.1137/15M1020575
https://doi.org/10.1109/TCST.2007.894653
https://doi.org/doi:10.1109/ACC.2015.7172221
https://doi.org/10.1016/j.ifacol.2017.08.1946
https://doi.org/10.1080/00207179.2016.1222553
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.1/refman.pdf
https://doi.org/10.1007/BF01588250
https://doi.org/10.1007/BF02579150
https://doi.org/10.1137/16M1062569
https://doi.org/10.1016/j.automatica.2018.03.046
https://doi.org/10.1016/0041-5553(80)90098-1
https://doi.org/10.1016/S0959-1524(96)00006-6
https://www.lix.polytechnique.fr/liberti/teaching/globalopt-lima.pdf
https://doi.org/10.1002/oca.2123
https://doi.org/10.1007/s11081-015-9294-x
https://doi.org/10.1007/s11590-015-0893-4
https://doi.org/10.1016/j.ifacol.2017.08.789
https://doi.org/10.1109/CDC.2016.7798816
https://doi.org/10.1007/BF01582118
https://doi.org/10.1109/TFUZZ.2004.834812
https://doi.org/10.1016/S1474-6670(17)38944-9
https://doi.org/https://arxiv.org/abs/1703.07870

24 T. SEDLACEK ET AL.

Perantoni, G., & Limebeer, D. J. (2014). Optimal control for a Formula One
car with variable parameters. Vehicle System Dynamics, 52(5), 653–678.
https://doi.org/10.1080/00423114.2014.889315

Raković, S. V., & Levine,W. S. (2018).Handbook of model predictive control.
Springer.

Ryoo, H., & Sahinidis, N. (1995). Global optimization of nonconvex NLPs
andMINLPs with applications in process design. Computers and Chem-
ical Engineering, 19(5), 551–566. https://doi.org/10.1016/0098-1354(94)
00097-2

Savaresi, S. M., Poussot-Vassal, C., Spelta, C., Sename, O., & Dugard,
L. (2010). Semi-active suspension control design for vehicles (1st ed.).
Elsevier.

Schnelle, F., & Eberhard, P. (2015). Constraint mapping in a feedback
linearization/MPC scheme for trajectory tracking of underactuated
multibody systems. IFAC-PapersOnLine, 48(23), 446–451. https://doi.
org/10.1016/j.ifacol.2015.11.319(5th IFAC Conference on Nonlinear
Model Predictive Control NMPC 2015)

Sedlacek, T., Odenthal, D., & Wollherr, D. (2020a). Convexification of
semi-activity constraints applied to minimum-time optimal control for
vehicles with semi-active limited-slip differential. In 17th International
Conference on Informatics in Control, Automation and Robotics – volume
1: Icinco (p. 15–25). SciTePress.

Sedlacek, T., Odenthal, D., & Wollherr, D. (2020b). Minimum-time
optimal control for battery electric vehicles with four wheel-
independent drives considering electrical overloading. Vehicle System
Dynamics, 1–25. https://doi.org/10.1080/00423114.2020.1823004

Sedlacek, T., Odenthal, D., & Wollherr, D. (2020c). Minimum-time opti-
mal control for vehicles with active rear-axle steering, transfer case
and variable parameters. Vehicle System Dynamics, 59(8), 1227–1255.
https://doi.org/10.1080/00423114.2020.1742925

Seki, H., Ooyama, S., &Ogawa,M. (2004). Nonlinearmodel predictive con-
trol using successive linearization. Transactions of the Society of Instru-
ment and Control Engineers, E-3(1), 66–72. https://www.sice.jp/e-trans/
papers/E3-9.pdf

Simon, D., Löfberg, J., & Glad, T. (2013).Nonlinear model predictive control
using feedback linearization and local inner convex constraint approx-
imations. 2013 European Control Conference (ECC) (p. 2056–2061).
https://doi.org/10.23919/ECC.2013.6669575

Tanaka, K., &Wang, H. O. (2004). Fuzzy control systems design and analysis
– a linear matrix inequality approach. John Wiley and Sons.

Tassa, Y., Erez, T., & Todorov, E. (2012). Synthesis and stabilization
of complex behaviors through online trajectory optimization. 2012
IEEE/RSJ International Conference on Intelligent Robots and
Systems (p. 4906–4913). https://doi.org/10.1109/IROS.2012.638
6025

Tassa, Y., Mansard, N., & Todorov, E. (2014). Control-limited differential
dynamic programming. 2014 IEEE International Conference onRobotics
and Automation (ICRA) (p. 1168–1175). https://doi.org/10.1109/ICRA.
2014.6907001

Tawarmalani, M., & Sahinidis, N. V. (2002). Convexification and global
optimization in continuous and mixed-integer nonlinear programming
- theory, algorithms, software, and applications. Springer Science and
Business Media.

Verschueren, R. (2018).Convex approximationmethods for nonlinearmodel
predictive control [Unpublished doctoral dissertation]. University of
Freiburg.

Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming. Mathematical Programming, 106(1), 25–57. https://doi.org/10.
1007/s10107-004-0559-y

Xie, Z., Liu, C. K., & Hauser, K. (2017). Differential dynamic program-
ming with nonlinear constraints. 2017 IEEE International Conference on
Robotics andAutomation (ICRA) (p. 695–702). https://doi.org/10.1109/
ICRA.2017.7989086

Ye, J. J. (2004). Nondifferentiable multiplier rules for optimization and
Bilevel optimization problems. SIAM Journal on Optimization, 15(1),
252–274. https://doi.org/10.1137/S1052623403424193

Zorich, V. A. (2016).Mathematical analysis I. Springer.

https://doi.org/10.1080/00423114.2014.889315
https://doi.org/10.1016/0098-1354(94)00097-2
https://doi.org/10.1016/j.ifacol.2015.11.319
https://doi.org/10.1080/00423114.2020.1823004
https://doi.org/10.1080/00423114.2020.1742925
https://doi.org/https://www.sice.jp/e-trans/papers/E3-9.pdf
https://doi.org/10.23919/ECC.2013.6669575
https://doi.org/10.1109/IROS.2012.6386025
https://doi.org/10.1109/ICRA.2014.6907001
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1109/ICRA.2017.7989086
https://doi.org/10.1137/S1052623403424193

	1. Introduction
	1.1. Literature survey on convexification techniques
	1.2. Contribution
	1.3. Article structure

	2. Space splitting convexification
	2.1. Problem formulation
	2.2. Successive convexification procedure
	2.2.1. Space splitting constraints
	2.2.2. Piecewise linear approximation of optimisation problem
	2.2.3. Nonconvex optimisation problem with convex feasible set
	2.2.4. Convex optimisation problem for iterative solution
	2.2.5. Space splitting convexification algorithm

	2.3. Constraint convexification via space splitting
	2.3.1. Convexification of zonally convex sets
	2.3.2. Convexification of nonlinear equality constraints

	2.4. Remarks on runtime
	2.5. Comparison with existing methods

	3. Applications
	3.1. Optimisation problems
	3.1.1. Nonlinear nonconvex optimisation problem
	3.1.2. Convex QP-problem for iterative solution

	3.2. Results
	3.3. Influence of initial guess on results
	3.4. Rotated space splitting

	4. Conclusions
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [609.704 794.013]
>> setpagedevice

