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fan Shahriari, Edmundo Pozo Fortunić, and Dr. Elisabeth Jensen for the numerous
interactions. Moreover, many thanks to the entire MIRMI team and the former team
from LUH, Moritz Schappler, Dr.-Ing. Torsten Lilge, Andreas Kurz, Dr.-Ing. Christo-
pher Schindlbeck and Dr.-Ing. Jumana Ma’touq. I also thank those not mentioned for
sharing this unforgettable adventure with me. Furthermore, I would like to thank Tingli
Hu, Nico Mansfeld, and Dr. Amartya Ganguly for proofreading this manuscript in part
or whole.

Most importantly, I am deeply grateful to my close family and friends. They have been
highly supportive and always encouraged me in my work. My deepest gratitude goes
to my wife Anne-Sophie, who is such a wonderful wife and mother to our son Josua. I
thank them both for their love and continuous support. This work is dedicated to them.

v





Abstract

A long-standing ambition of robotics is to enable soft robots and prostheses to safely
and sensitively interact and manipulate the surrounding environment. The capabilities
of biological organisms in this respect are unmatched. They perceive themselves and
their environment through many sensors and interact with it through great dexterity
and fine control while moving their limbs in a highly coordinated manner. A vital as-
pect is the self-protective mechanisms found in every living being. For example, pain
helps humans avoid injuries by signaling the immediate threat and triggering relevant
motor responses, often through withdrawal reflexes. Such behavior prevents further
damage to an affected region by an automatic retraction from a noxious stimulus such
as heat or pain. State-of-the-art robotics research developed technical antitypes only on
a basic level, e.g., through engineered pre-programmed withdrawal patterns. However,
this thesis aims to explore and understand human reflex behavior on a kinematic and
muscular level. Based on the insights gained, the next generation of human-inspired self-
protective reflexes is developed for soft robots and prostheses, resulting in a framework
with superhuman performance. In addition to reflexes, this thesis develops new coor-
dinated control concepts for upper limb prostheses for reach and grasp tasks. A novel
control framework denoted Synergy Complement Control (SCC) is presented, allowing a
prosthesis to complement the residual limb movement autonomously in accordance with
human arm synergies. The hybrid system naturally renders intended movements for its
carrier and adapts online to new tasks.

Firstly, this thesis analyzes humans’ withdrawal reflexes and arm coordination. For
this, two experiments are designed and conducted. The first focuses on finger reflexes
and reveals a 5-phase reflex launch sequence that depends on the stimulus’s shape,
speed, and temperature and is further influenced by habituation. The second experiment
investigates arm withdrawal coordination in the presence of concurrent potential pain
sources: the arm must be withdrawn to avoid a slap on the hand while avoiding a painful
elbow obstacle. The results show that the subjects learned to control the hand retraction
movement to avoid potential pain. Subjects used individual motor strategies to modify
the joint movement coordination to avoid hitting the obstacle with the elbow at the cost
of increasing the risk of hand slap. Furthermore, they used a conservative strategy as if
assuming an obstacle in all the trials.

Secondly, this thesis introduces self-protective reflexes for soft robots and prostheses.
These are inspired by the above mentioned human withdrawal analysis and formalize
into an artificial Robot Nervous System (aRNS). This mathematical framework unifies
multi-modal physical stimuli sensation with robot pain-reflex reactions. Robot pain is
formally introduced to interpret tactile and temperature sensation and proprioception.
The severity of the impact adjusts the equilibrium position, stiffness, and feed-forward
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torque of an impedance controller. This framework is validated in simulation and ex-
periments with several soft robotic systems, for example, arms and fingers with multiple
degrees of freedom. Building on the aRNS, robot reflexes are designed based on differ-
ent sensory feedback arrangements and subsequently compared to the quantified human
performance. While the human remains superior in temperature-based reaction, the
touch reflex performance of the robotic finger is superhuman with an unconventional
configuration of proprioceptive forces and link segment acceleration. It also shows that
the traditional tactile sensing or proprioceptive arrangements are sub-optimal, although
they also have the potential to achieve superhuman performance.

Thirdly, this thesis introduces semi-autonomous and coordinated control methods for
upper limb prostheses. After introducing basic coordination strategies relying on kines-
thetic teaching or three dimensional computer vision, the SCC method is introduced.
This novel residual limb-driven method inherently deals with complex multi-DoF mo-
tions, changing tasks and target locations, and outputs residual limb coordinated com-
plementary prosthesis motions. The approach is experimentally validated for several
daily living tasks using a novel four degrees of freedom prosthetic device operated by a
human with preserved arm and an amputee operating a digital twin in virtual reality.
Results show that lost movement capabilities can effectively be recovered through SCC.

In sum, this thesis contributes to the next generation of reflex-enabled soft robots
and upper limb prostheses that harmonize with human coordinated motor control. This
thesis may open up entirely new application domains for interactive, sensitive, and semi-
autonomous robots in industry and service sectors, ranging from complex but intuitive
human-robot collaboration to elderly-care applications at home.
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Notation

The following list contains selected symbols that are frequently used in this dissertation.
They are also introduced in the text together with other symbols. The reader is advised
to refer to the specific definition in each context.

Symbol Space Unit Description
x R - Scalar
x Rn - n-dimensional vector
ẋ Rn - First derivative of vector x, ẋ(t) = dx(t)

dt , ẍ(t) = dẋ(t)
dt

‖x‖ R - Norm of vector x
X Rn×m - N ×M matrix
I Rn×n - Identity matrix
0 Rn×m - Zero matrix

Part I

d R>0 mm Diameter
ϑ R ◦C, K Temperature
v R m/s Stimulus speed
Fc R3 N Contact force

σc,max R Pa Maximum contact pressure
f R % Finger retraction frequentness or failure ratio
κ R W/(K m) Thermal conductivity
c R J/(kg K) Specific heat capacity
ρ R kg/m3 Material density
qH R rad Joint angle of Metacarpophalangeal joint
ξ R V Mean muscle effort

∆tc R s Contact duration
∆tr R s Reaction time
ϕ, θ R rad Elbow angles
x̃h,max R - Normalized hand retraction
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Part II

q Rn rad Joint angles of n-DoF robot
τ Rn Nm Motor torques
τf Rn Nm Friction torques
M Rn×n kg m2 Joint inertia matrix
C Rn×n kg m2/s Coriolis and centrifugal matrix
g Rn Nm Gravity torques
τext Rn Nm External torques
Jc R6×n m/rad, - Jacobian matrix
fext R3 N External force
mext R3 Nm External moments
Fext R6 N, Nm External contact wrench
uc R6 - Unit collision direction
qd Rn rad Desired joint angles
τd Rn Nm Desired joint torque
τg Rn Nm Gravity compensation torque
K Rn×n Nm/rad Joint stiffness matrix
KO Rn×n 1/s Observer gain matrix
D Rn×n Nm s/rad Joint damping matrix
a R3 m/s2 Cartesian acceleration
R SO(3) - Rotation matrix

∆ta R s Activation time
∆td R s Detection time
∆te R s Escape time

Part III

∆te R s Escape time
x R6 m,rad Pose vector
F R6 N, Nm Wrench
τ Rn Nm Torques
K Rn×n Stiffness or gain matrix
D Rn×n Nm s/rad Joint damping matrix
r R3 m Position vector

xiv



ω R3 rad s−1 Angular velocity
l R3 m Residual limb position
m Rm - Muscle activation of m muscles
p R6 m, rad Prosthesis pose
ψ R - Phase variable
g N - Gesture state
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1 Introduction

A grand challenge of robotics research is to achieve autonomous robots and semi-
autonomous upper-limb prostheses that safely interact with and manipulate the sur-
rounding environment. Human capabilities are still unmatched in this regard and thus
often serve as an archetype for technical antitypes. Over the past decade, significant
advances have been made in robotics research, taking the musculoskeletal properties of
biological systems as inspiration. Soft control schemes [1] and soft acutators [2] have
been developed, building the basis for the design of so-called soft robots [3]. They are ca-
pable of sensitive manipulation, and safe interaction with humans without needing safety
barriers between man and machine [4]. This ability is based on lightweight mechatronics,
tactile sensing, sophisticated interaction control algorithms such as impedance control,
and fast collision handling [4, 5]. Thanks to these technological advancements, numer-
ous soft robots are entering the market. Well-known commercial systems are the Franka
Emika Panda robot arm [6] and qbrobotics’ SoftHand [7, 8], see Fig. 1.1a and Fig. 1.1b.
As robots move away from structured industrial environments into unstructured human
environments, they face further challenges. Besides compliance, performance, and hu-
man safety, robots must also ensure their own physical integrity. However, a systemic
framework for purposeful and intelligent collision reflex reactions for self-protection is
still missing. So far, only hand-crafted heuristic algorithms exist that are not generalized
yet.

Upper-limb prostheses share the same goals as soft robots. A human design and
behavior are even explicitly desired for prostheses, as the artificial limbs are supposed
to replace the missing natural limbs as best as possible. Therefore, some soft robotics
methods have been transferred to upper limb prosthetics. A well-known example is
APL’s Modular Prosthetic Limb, as shown in Fig. 1.1c, which is impedance controlled
and reflects the joint impedance of human arms [10]. However, most commercially avail-
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Figure 1.1: Examples of soft robotic and prosthetic systems. (a) Human interacts with Franka
Emika Panda [6]. (b) Shaking hands with qbrobotics’ SoftHand [7]. (c) Amputee
uses APL’s Modular Prosthetic Limb to take a drink [9].
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1 Introduction

able upper-limb prosthetic devices are still rigid. The user needs significant practice to
operate these tools. Although considerable efforts have been made in research to im-
prove and enhance operability by myoelectric controls, sequential control is still today’s
commercial standard [11, 12]. Such control schemes often involve a finite state machine,
allowing the user to select and actuate a single joint at a time using direct Electromyo-
graphy (EMG)-based proportional control [13]. However, this approach is unintuitive
and complex to use [14].What is still missing is a robust control design that corresponds
to natural human motion coordination and increases the intuitiveness and transparency
of operation.

In both robotics and upper limb prosthetics disciplines, the human antitype, if un-
derstood well, may serve as a source of inspiration and technological guidance again.
On the one hand, humans’ sensitive, automatic, and intelligent reaction to desired and
unforeseen contacts is unsurpassed. The human leverages proprioceptive force sensing
in the tendons and tactile and nociceptive modalities. Based on this rich information,
he can then detect, classify, and show meaningful reflexive reactions to contacts. On
the other hand, the human moves his limbs in a highly coordinated manner performing
smooth movements. Along this line of thought, future soft robotic/prosthetic hand-arm
systems are sought to attain similar reflex and coordination capabilities. These devices
will gain human-like interaction and manipulation capabilities by leveraging a thorough
understanding of human reflexes and motor coordination.

1.1 Scientific objectives

This thesis takes an interdisciplinary approach between human, robotics, and prosthetics
research. In particular, this thesis focuses on i) the analysis of human reflexes and motor
coordination, ii) the development of protective robot/prosthesis reflexes, and iii) the
development of coordinated prosthesis control schemes, see Fig. 1.2. This thesis aims to
achieve the following concrete goals:

G1 Deepen the understanding of human upper limb withdrawal reflexes and coordi-
nation in response to noxious stimuli.

G2 Develop human-inspired self-protective reflexes for robots and prostheses.

G3 Develop new coordinated control methods for upper-limb prosthesis.

The following specific research questions are posed to achieve these goals:

Q1 How do stimulus’s physical characteristics modulate the reflex response on a kine-
matic and muscular level?

Q2 How do humans coordinate their arm movements to avoid concurrent pain sources?

Q3 How can human-inspired robot reflexes be designed to achieve self-protective be-
haviors?
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Figure 1.2: Scientific objectives of this thesis.

Q4 Are the insights from the human reflex studies transferable to robot reflexes and
which specific sensory setup enables the best robot reflex performance?

Q5 How can new semi-autonomous coordinated control schemes for upper limb pros-
theses be achieved?

Q6 How can upper-limb prosthesis control be reconciled with natural, coordinated
motor control in humans?

In the next chapter, the research works are summarized that relate to the goals
G1 to G3 and research questions Q1 to Q6. The following chapter then highlights major
open issues and summarizes the thesis’s contributions.

1.2 State of the art
This chapter provides a broad literature review of the primary research works related
to the scientific objectives (Fig. 1.2), goals G1 to G3 and research questions Q1 to
Q6. Related human research spans from human neuromechanics, motor control, and
learning to human withdrawal reflexes. Robotics work spans the domain of physical
Human-Robot Interaction (pHRI), focusing on soft robots and interaction control, robot
collision handling, and reflex control. In addition to the following literature overview,
specific research works are presented and discussed in the context of each chapter.
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1.2.1 Human neuromechanics, motor control and learning

While the microscopic sliding filament and cross-bridge theory [15, 16, 17, 18, 19] well
explains the dependence of isometric force on muscle length [20, 21, 22], the anisometric
behaviour of skeletal muscles and the elastic behaviour of passive elements are macro-
scopically approximated by Hill’s formulation [23, 24, 25]. The Hill-based muscle model
is widely used in modeling musculoskeletal systems [26, 27, 28, 29, 30, 31, 32, 33, 34]
where the skeleton is a standard multi-body system [35, 36, 37, 38, 39]. Muscle and joint
space are connected by a muscle-path model, which relates muscle lengths to joint angles
[40, 41, 27, 29, 42, 43] and whose Jacobian connects muscle forces and joint torques
[44, 40, 45, 46, 47, 39, 48, 49, 50, 51]. With electromyography (EMG) measurements
and motion capture data, an individual-specific musculoskeletal model is identified via
nonlinear least squares [30, 31, 32, 52]. In solving the inverse musculoskeletal dynam-
ics, the encountering force-sharing problem (more muscles than joints) is solved by a
general constrained optimization method [39, 53, 33, 34, 54]. Unlike the relatively sim-
ple kinematics of the arm [55, 16, 56, 57], hand kinematics exhibits higher complexity.
Different hand kinematics models were developed and identified using optical motion
capture techniques [58, 59, 60, 61, 62, 63, 64, 65, 66, 67].

The phenomenon of spring-like human arm behaviour in a slightly perturbing envi-
ronment [68] stems from muscle viscoelasticity. Therefore, human motor control can
be formulated as an impedance control with static and dynamic impedance [37], which
increase with muscle activation [69] or joint torque [35]. In addition, the modulation
of impedance can be learned gradually [70] in fast and slow processes [71] without vi-
sual feedback [72]. As a result, an optimal impedance [73] associated with movement
and instability directions [74, 75] will be able to overcome perturbation. Furthermore,
muscle activation [75, 76] and interaction force [77] can be learned as well. In gen-
eral, human motor control can be summarized as a nonlinear adaptive control [78] and
some hypotheses/theories such as Smith predictor [79, 80] hypothesis, computed torque
control hypothesis [81], internal model control [82, 83, 84] and optimal feedback con-
trol [85, 86, 76] are rather popular nowadays. Besides, the experimentally identified
task-specific muscle synergies from [87, 88, 89, 90] reflect an underlying task-dependent
muscular control strategy.

1.2.2 Human withdrawal reflexes

Noxious stimuli are perceived and processed by human’s nervous system Human Nervous
System (HNS). Consisting of millions of connected neurons, the HNS is the most powerful
measurement and communication system of the human body. The HNS can be divided
into the Central and Peripheral Nervous System (CNS, PNS). The CNS consists of
the spinal cord, brain stem, and forebrain and is mainly responsible for forwarding
and processing information coming from the PNS [91]. The PNS covers all the nerves
located outside the CNS, gathering tactile and proprioceptive information with the help
of a broad spectrum of receptors. If a stimulus is that strong that body injuries become
possible, a highly unpleasant, but vitally important, the sensation is caused — pain [91].
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The most responsible and contributing receptors to pain caused by physical contact are
called nociceptors. When a mechanical stimulus affects nociceptors, distributed all over
the skin, they become activated instantly. Depending on the stimulus strength, typically
in terms of duration, penetration depth, and stress, the nociceptors send ionic electrical
spikes decoded in a frequency modulated manner [91]. Once the stimulus surpasses
a certain threshold, a nociceptor starts firing following the all-or-nothing principle at
constant amplitude [91]. After the signal passes the first neural interconnection, it crosses
to the other side of the spinal cord, following the spinothalamic tract, then through
the medulla, pons, and midbrain to the thalamus. From there on, pain information is
projected to different areas of the cerebral cortex. Pain is evoked, which may cause
appropriate movements (pain-reflexes). Pain is also strongly an emotional experience,
not only influenced by the signals coming from the nociceptors. Thus, one distinguishes
between the emotional experience of pain and the nociceptive signals that may lead to
pain experiences. This thesis focus on the latter.

The human Nociceptive Withdrawal Reflex (NWR) is an involuntary movement that
results in the withdrawal of the perturbed limb from a stimulus [92, 93, 94, 95, 96].
The reflex response consists of a complex pattern of excited or inhibited extensors and
flexors [92, 97, 98, 99, 100, 101, 102, 103]. On EMG level, two peaks with different la-
tencies and functional adaptabilities can be identified in most muscles [93, 94, 104, 105].
In terms of intensity and direction, the NWR depends on the phase of movement and
task [106, 107, 108, 95]. When applying electrical stimuli, the NWR shows frequency-
modulated behaviour more elicited at 15 Hz than 30 Hz [109]. Investigations indicate a
modular organization of the nociceptive motor system, each module controlling either
a muscle or muscle group. Moreover, each of these modules has an inherent cutaneous
receptive field, which overlap [93, 94, 110, 111, 112, 113, 114]. Studies of upper-limb
NWRs at rest and movement show that the reflex-muscle pattern, reflex size and me-
chanical response adapt to movement type, phase (ac-/deceleration) and muscle activity
(shortening, lengthening) [108, 84, 96, 115].

1.2.3 Soft robots and interaction control

The development of robots suitable for close physical interaction with humans is leading
to a paradigm shift in mechanics: away from heavy, stiff and rigid designs towards
lightweight mechatronics with low inertia and high (active) compliance [119]. Well-
known actively compliant soft-robots are the Barrett arm [120], the DLR Lightweight
Robot family [121, 122] and FRANKA EMIKA Panda [6]. Inspired by the elasticity
contained in biological muscles, intrinsically compliant joints are recently designed with
the aim of imitating human motions during various tasks. By storing and releasing
energy in the joints, one hopes for improvement of tasks such as running or throwing [123,
124, 4, 125, 126]. In order to incorporate active reactions to external forces, the concept
of force control has been introduced and extended to hybrid position/force control [127].
The most widely used control approach for robots to physically interact with humans
or the environment is probably impedance control, introduced in [44] and extended
to flexible joint robots e.g. in [128]. This type of controller imposes a desired physical
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Table 1.1: Human upper-limb neuromechanics, motor control and protective reflexes.
Clinical

Evaluation
Reflex data Neuromechanics Motor control &

learning models

Green: studied part
Red: stimulation

State of the art

Protective reflexes
[116]

• Nociceptive reflex
• Biceps stretch re-

flex

Isolated investigations of

• Excited/inhibited muscle
patterns [101, 102]

• Characteristic peaks in
EMG response [93, 94]

• Reflex motions [108]
• Receptive fields [114]
• The modular nociceptive

motor system [111]
• Reflex dependent parame-

ters, e.g. movement type
or phase [115]

Existing models:

• Muscle model [23, 24]
• Hand kinematic models:

Digit I-IV [58], Digits I-V
& wrist [59], Digit I-IV &
wrist [64], Digit I & V [67]

• Arm kinematic models
[55, 56]

• EMG to muscle activation
model [117, 28]

• Muscle path models:
polynomial [40, 41],
trigonometric [27, 29], 3D
geometric [42, 43]

• Musculoskeletal dynamics
and identification [52, 31]

• Force-sharing problem
solver [39, 33]

Motor control findings:

• Viscoelastic behavior [68]
• Impedance control with

static and dynamic stiff-
ness [37]

• Impedance is related to
muscle activation [69],
joint torque [35]

• Interaction learning of
impedance [70, 73], force
[77], muscle activation
[75, 76]

• Learning: fast + slow pro-
cesses [71]

• Nonlinear adaptive con-
trol [78]

• Smith predictor [118, 80]
• Computed torque control

[81]
• Internal model control

[83, 84]
• Optimal feedback control

[85, 76]
• Identified muscle syner-

gies from [87, 88, 89, 90]

behaviour with respect to external forces acting on the robot. In [129], a passivity based,
unified force/impedance control has been presented, which was successfully applied to a
safe adaption to contacts in [130]. An approach to simultaneously adapt force, trajectory
and impedance based on studies in neuroscience has been presented in [131].

1.2.4 Robot collision handling
In general, one can consider up to seven elementary phases in the so called collision event
pipeline [5]. Multiple monitoring signals can be used to obtain information about the
event [5]:

1) Pre-collision phase: The primary goals are collision avoidance and anticipatory
robot motion to minimize impact effects.

2) Collision detection: The collision detection phase, whose binary output denotes
whether a collision occurred or not, is characterized by the transmission of contact
wrenches. The occurrence of a collision, happening anywhere along with the robot
structure, shall be detected as fast as possible [123, 132, 133].
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3) Collision isolation: Knowing which robot part is involved in the collision is a piece
of important information that can be exploited for robot reaction. One way to
obtain both collision detection and isolation is to use sensitive skins [134, 135].

4) Collision identification phase: Other relevant quantities about a collision are the
generalized collision force, either in terms of the acting Cartesian wrench at the
contact or of the resulting joint torque [136, 135, 137].

5) Collision classification phase: Based on the information from previous phases,
one can interpret the collision nature in a context-dependent way (accidental or
intentional, light or severe, permanent, transient, or repetitive).

6) Collision reaction phase: Indeed, the robot should react purposefully in response
to a collision event [4], using information from previous phases. Some examples of
successful collision reflex reaction strategies have been given in [138, 139, 140].

7) Post-collision phase: Once a safe condition has been reached after the collision,
the robot should autonomously decide whether to try to recover the original task
and how, or to abandon it [140].

1.2.5 Robot reflex control

Various approaches to reflexes in legged robot locomotion were developed with the focus
on stabilizing the gait of humanoids in [141, 142, 143]. A quadruped robotic platform
was used in [144] to study reflex networks in cats for locomotion. Reflexes in manipula-
tion tasks differ since they are less cyclic and rather asymmetric. In [145], the humanoid
“Cog” was taught reflexive behaviors by generating movements from biologically pre-
defined inspired postural primitives. Through the superposition of these primitives, it
was possible to imitate reflex-like withdrawal behavior. In [146], a similar approach was
used by overlaying different movement patterns triggered by a tactile (force) sensor and
was implemented on a 7 DoF robot arm. Different reflex types were realized based on
single neuron firing models. They focus on manipulation and specific rather abstract
high-level reflexes such as grasping or catching in case of slipping. The basic imple-
mentation of mechanically triggered reflexes is based on force sensing only. No deeper
“mechano-physiologica” contact dynamics were involved, nor does their human-like neu-
ron firing imply human topological design. It rather represents a switching strategy that
may trigger different events. In [147], withdrawal movements of the human arm were
recorded, and a force-distance relation was established to model this behavior. In order
to trigger reflexes, an elastic robot tissue was introduced, additionally mitigating the
impact force through inherent damping properties. In [148], authors proposed a new
concept for online trajectory generation to react to unforeseen events. Moreover, in [4],
based on the work in [149, 138], various collision reflex controls were proposed in the
framework of proprioceptive collision detection and reflex reaction. Further approaches
to reflex control based on optimal control can be found in [150] and [151].
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1.2.6 Upper limb prostheses and control
In the early 20th century the first powered prostheses [160, 161] and around 1950 the first
myoelectric prostheses emerged [162, 163, 164] with the goal of regaining the lost scope
of human arm movement and manipulation capabilities [165, 166, 3, 167, 168, 169, 170,
171]. Many mechatronic developments have transpired in the decades since. Nowadays,
several upper-limb prostheses are commercially available [153, 9, 156, 155, 154] as well
as under experimental and clinical research [171, 172, 173, 159]. Electrically powered
prostheses are strongly linked to light-weight robotic arm manipulators or humanoids [3,
174] where torque, position, current and temperature sensors are equipped [3, 173, 175,
173, 175]. The prosthetic devices are either position [153, 9, 156, 155, 154] or impedance
controlled [173, 159], where surface electromyography (sEMG) [176, 177, 178, 177, 179]
usually serves as user input to control a single DoF [180], finger forces [181], movement
trajectories or switch between control modes [153, 154]. Also other sensors have been
developed for the user interface, algorithms for decoding user intention, and control
strategies for handling the many DoFs of the hand-arm system. Sensor systems that
have so far been explored besides surface EMG (single- and multi-channel as well as
high density), are inertial measurement units (IMUs), electroencephalography (EEG),
and camera systems.

Several criteria for ideal upper-limb prosthesis control have been previously defined
[182, 183]. For example, control schemes should enable

• natural and intuitive use,

• smooth and continuous movement (transitions) with minimal error buildup,

• coordinated, human-like movement of multiple DoFs,

• diverse movement patterns with minimal increase in complexity, and

• regulated dynamic response during physical interaction.

Furthermore, the system should be characterized by

• robustness to day-to-day changes,

• minimal training/retraining requirements, and

• fast user responsiveness.

Although direct neural interfacing would be ideal, several factors make this approach
impractical for transhumeral prostheses in particular. Firstly, there are up to four DoFs
to control for just the elbow and wrist. Moreover, barring invasive methods such as
targeted muscle reinnervation for signal “amplification” of transected forearm and hand
nerves [184] or implanted Microelectrode Arrays [185, 186], only the biceps (BIC) and tri-
ceps (TRI) muscles are available for electromyography (EMG) based control. Also, non-
invasive myoelectric control has disadvantages, such as muscle fatigue, electrode displace-
ment, difficulties in decoding complex patterns, or dealing with coordinated joint move-
ments [14, 187]. Thus, there is an increased interest in limb-driven control concepts [187].
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Table 1.2: Samples of state of the art of upper limb prostheses and control
Passive or

body
powered

Electrically
powered

Soft
prosthetic

Soft exo-
prosthetic
I (robot-
based)

Soft exo-
prosthetic
II

Exemplary
references

[152] [153, 154, 155, 156] [157, 10, 158,
159]

Test-bed I
developed
in this
thesis

Test-bed
II/Target

Weight < 1.5 kg 1.5 – 5 kg 4.8 kg 5.7 kg for
prosthesis

<3 kg for
prosthesis

Payload 5.0 kg 3.5 – 5.0 kg 6.8 kg > 8.0 kg > 10.0 kg

Sensory
setup

n.a. Position sensors Position and
joint-torque
sensors

Position and
joint-torque
sensors

Position and
joint-torque
sensors

Low-level
control

– Position control Joint
impedance
control

Joint
impedance
control

Joint &
Cartesian
impedance
control

Collision
handling

n.a. n.a. n.a. Collision
handling
(stop, switch
control
mode, ...)

Collision
handling
with pro-
tective
reflexes

Motion con-
trol strate-
gies

– Sequential
Sequential
and one
heuristic
coordinated
skill

Sequential
and semi-
autonomous
coordinated
skills

Residual
limb-driven
synergy
complement
control

Perceptual
support

n.a. n.a. n.a. Object
recognition
/ tracking
via 3D vision
pipeline

Object
recognition
/ tracking
via 3D vision
pipeline

Gravity
support

n.a. n.a. n.a. Mechanical
stump
relief via
robot-based
exoskeletal
substitute

Lightweight
exoskeleton:
sacrifice
residual
limb loads
for body
reaction
forces

Human Ma-
chine Inter-
face

Mechanic EMG EMG Intention
from EMG
and proprio-
ception

Intention
from EMG,
eye-tracking
and residual
limb mea-
surements
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Here, the residual limb (RL) movement rather than muscle activation measurements are
used as a continuous control input for the device. Several RL-driven methods exist for
upper limb prostheses that are still considered to be basic and primarily focus on simula-
tion, virtual reality, or single DoF elbow coordination (e.g., [188, 189, 187]). At its core,
they share one fundamental idea: simultaneously learn the coordination between the
upper and lower arm for a wide spectrum of possible motion variants based on captured
human templates. For this, regression techniques are applied involving linear regression
such as Principal Components Analysis (PCA) [190, 187, 191] or non-linear regression
such as Artificial Neural Networks (ANN), Radial Basis Function Networks (RBFN), or
Locally Weighted Regression (LWR) [192, 193, 194, 187, 195, 191, 196, 197, 198, 189, 188].
However, the mapping between low dimensional upper arm movement and high dimen-
sional total limb movement is highly underdetermined. Consequently, these methods
output prosthesis motions that are inaccurate, not smooth (jerky), are of unnatural
shape, and often delayed [187]; in sum, still quite far from solving the original problem.

1.3 Major open issues

Three major unresolved issues arise from the state of the art described above:

1. Human reflexes and motor coordination: The systemic and experimentally
investigation of protective reflex responses to foreseen and unforeseen mechanical
stimuli is still open in human research. How stimulus properties affect the kine-
matic and muscular reflex response is not understood. Moreover, it is unclear how
humans deal with simultaneously occurring sources of pain and how they coordi-
nate their movements to avoid them.

2. Protective robot reflexes: Soft robots still respond quite primitively to physi-
cal contact, for example, by simply stopping or switching to gravity compensation
mode. A solution for a reflex framework, which provides more intelligent, mean-
ingful reactions, has not yet been found. Furthermore, it is unclear which sensory
enables the highest performance of robotic reflexes and whether human perfor-
mance can be matched or surpassed.

3. Coordinated prosthesis control: An intuitive, robust method for controlling
upper arm prostheses has not yet been found. Modern methods often use error-
prone EMG measurements to control prosthetic joints individually and sequen-
tially. On the other hand, limb-driven approaches use the motion of the residual
limb to generate prosthesis motion. However, existing methods are not robust or
precise enough to replay movements of human nature and often focus on single DoF
tasks. In sum, they are not yet a valid replacement of missing motor capabilities.
This calls for a new method that compensates for existing drawbacks.
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1.4 Contributions and publication list

This thesis aims to close the open gaps highlighted in Sec. 1.3 by taking an interdis-
ciplinary approach: Deepen the understanding of human protective reflexes and arm
coordination and use gained insights as a source of inspiration and technical guidance
for developing robotic and prosthetic counterparts. The main contributions of this thesis
are briefly summarized below and put into context with the research questions Q1 to Q6
posted in Sec. 1.1:

• Analysis of human finger reflexes elicited by touch and heat (Q1).

• Analysis of human arm withdrawal adaption to concurrent pain constraints (Q2).

• Development of a human-inspired reflex framework denoted artificial Robot Ner-
vous System for the self-protection of soft robots and prostheses (Q3).

• Development of superhuman protective robot reflexes based on tactile perception,
proprioceptive forces, and proprioceptive forces with measurements of link-segment
acceleration (Q4).

• Development of semi-autonomous coordinated prosthesis control schemes based on
the new concept of exo-prosthetics (Q5).

• Development of a novel limb-driven prosthesis control method denoted Synergy
Complement Control (Q6).

Contributions to Q1: Analysis of human finger reflexes elicited by touch and heat

An exploratory case study investigates human finger reflexes elicited by mechanical and
thermal stimuli with varying properties. Reflex responses are analyzed on joint and
muscle levels. The subject’s motor reactions unveiled a 5-phase reflex launch sequence
composed of three characteristic events: a muscle twitch reflex, a hold period, and finger
retraction. Results also show that the reflex response depends on stimulus’s shape,
speed, and temperature and also is affected by habituation.

Contributions to Q2: Analysis of human arm withdrawal adaption to concurrent
pain constraints

An exploratory study investigates a motor task in the presence of concurrent potential
pain sources. Subjects needed to withdraw their arm to avoid a slap on the hand while
avoiding an elbow obstacle with noxious electrical stimulation. The results show that
the subjects learned to control the hand retraction movement to avoid potential pain.
Subject-specific motor strategies were used to modify the joint movement coordination
to avoid hitting the obstacle with the elbow at the cost of increasing the risk of hand
slap. Furthermore, they used a conservative strategy as if assuming an obstacle in all
trials.
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Contributions to Q3: An artificial robot nervous system

A reflex framework–denoted artificial Robot Nervous System (aRNS)–is introduced to
generate self-protective withdrawal movements for soft robots and prostheses. Its basic
concept is inspired by state-of-the-art human reflex (neuro-)physiology and robot-human
collision studies. The aRNS enables a robot or prosthesis to sense, interpret and react to
potentially harmful collisions in analogy to a human’s NWR. The framework is experi-
mentally validated for simulated and physical contacts using the KUKA LWR4+ and the
BioTac sensor. Furthermore, the aRNS is applied to a pneumatically actuated prosthesis
finger testbed and a proposal for a aRNS-based humanoid reflex stack is made.

Contributions to Q4: Superhuman protective robot reflexes

Human-inspired robot finger reflexes are introduced and evaluated based on the aRNS
framework (see contribution to Q3) and the human finger reflex case study (see con-
tributions to Q1). Robot reflexes are implemented on a custom-developed robot finger
testbed. While the human remains superior in temperature reaction, touch reflex perfor-
mance is superhuman with an unconventional configuration of proprioceptive forces and
link segment acceleration. It also shows that the traditional tactile sensing or proprio-
ceptive arrangements are suboptimal, though having the potential to be superhuman.

Contributions to Q5: Semi-autonomous coordinated control schemes based on the
new concept of exo-prosthetics

The concept of semi-autonmous exo-prosthetics is introduced, unifying exoskeletons and
prostheses. The exoskeleton minimizes unnecessary interaction forces on the residual
limb and serves as a measurement device of the residual limb’s kinematic data. The soft-
robotics design of a prototype consisting of a transhumeral prosthesis and a robot-based
exoskeleton substitute is presented. A coupled human-prosthesis-exoskeleton dynamics
model and semi-autonomous coordinated control schemes are derived for this class of
hybrid systems. The user sets task goals via kinesthetic teaching combined with an app-
based programming framework or autonomously via 3D computer vision. Experiments
with a human with preserved arm show that the new schemes are intuitive and enable
fast task execution.

Contributions to Q6: The synergy complement control approach

A new residual limb-driven control framework denoted Synergy Complement Control
(SCC) is introduced based on human arm coordination in everyday tasks. This new
method adds contextual task and goal information, is expressed in terms of natural
human synergies, and allows seamless transitions between these. An experimental vali-
dation with a human with preserved arm and a pilot study with an amputee in virtual
reality confirms that lost coordinated motor capabilities are reliably recovered by SCC.
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State of the art

Thesis
contributions

Motor control findings
- Viscoelastic behavior 
- Impedance control with static and 

dynamic stiffness 
- Joint coordination via muscular 

and kinematic synergies

Protective reflexes
- Nociceptive withdrawal reflex 
- Biceps stretch reflexes 
- Excited/inhibited muscle patterns 
- Receptive fields
- Nociceptive modular motor system
- Reflex motions elicited by 

electrical stimulation depend on, 
e.g., movement type or phase

Control
- Force/torque control
- Joint impedance control
- Cartesian impedance control
- Unified force/impedance control

Reflexes
- Heuristic basic collision reflexes 

(e.g., stop)
- Legged robot locomotion
- Humanoid withdrawal actions
- Collision handling

Control
- EMG-based sequential control 
- Basic limb-driven coordinated 

control
- IMU-based control

Reflexes
- Hand slip reflexes

Part III - Coordinated 
prosthesis control
+ Synergy complement 

control method
+ Semi-autonomous 

coordinated controls 

Part I - Human reflex & motor 
coordination analysis
+ Analysis of finger reflexes elicited 

by touch and heat
+ Analysis of arm withdrawal 

movements under pain constraints

Part II - Protective robot 
reflexes
+ Human-inspired 

superhuman finger reflexes
+ Artificial Robot Nervous 

System

Human reflexes & motor control Protective robot reflexes Upper limb prosthesis control

Chapter 2 & 3

Chapter 5 & 6
Chapter 7 & 8

Figure 1.3: The thesis’ contributions to state of the art and structure.

Publication list

The contents of this dissertation have been published in international peer-reviewed
journals, conferences, and workshops, are under review or will be submitted shortly.
The publications of the first author represent the main contribution of this thesis. The
following list is arranged by publication type and in descending chronological order.
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René Descartes’ conception of how a painful thermal stimulus is transmitted to the
brain, L’Homme, 1664.
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Figure 1.4: Impressions from the work carried out in Part I.

Part I examines human upper limb reflexes and motor coordination in response to nox-
ious stimuli. Two exploratory studies are presented, relating to Q1 and Q2. Chapter 2
deals with study I (Q1), which is published in [199]. Chapter 3 deals with study II (Q2),
which is published in [200]. Both studies are briefly summarized below. Fig. 1.4 shows
some impressions from these works.

Chapter 2: Human finger reflexes (Q1) How do stimulus’ physical characteristics
such as shape, speed, or temperature modulate reflex responses of joints and muscles?
This work sheds light on this open question through an exploratory case study. Human
finger reflexes elicited by mechanical and temperature stimuli with varying properties at
kinematic and muscular levels were studied. Analyzing the subject’s motor reactions un-
veiled a 5-phase reflex launch sequence that changes with shape, speed, and temperature
of the stimulus, as well as habituation.

Chapter 3: Arm withdrawal adaption (Q2) How do humans coordinate their move-
ments to avoid concurrent pain sources? This exploratory study investigates the kine-
matic characteristics of withdrawal movements of the human upper limb that are trig-
gered by a threatening source at hand level. The experimental task included the presence
of an obstacle at different distances along the direction of withdrawal. Assigning the par-
ticipants to two different groups, one of which would execute the experiment with an
innocuous obstacle and the other one with a painful one, allowed for investigation of
the effect of pain as an extra layer of motivation to prevent collision. The results show
that the subjects learned to control the hand retraction movement in order to avoid the
potential pain. Subject-specific motor strategies were used to modify the joint movement
coordination to avoid hitting the obstacle with the elbow at the cost of increasing the
risk of hand slap.
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2 Finger reflexes elicited by touch and heat

Humans have a fascinating built-in embodied intelligence that is indispensable for sur-
vival. A central ability is the protection reflex such as the nociceptive withdrawal reflex
(NWR) [201], defined as an automatic retraction of an extremity from a noxious stimulus
such as heat or pain. Such noxious stimuli are detected by a wide spectrum of receptors
in the skin and viscera [202], which transmit this information to the spinal cord and
brain in the form of electrical impulses [203, 204, 205] (Fig. 2.1).

Although some works focused on the NWR elicited by electrocutaneous stimulation on
upper limb level [108, 206], no literature has systematically investigated such protection
reflex triggered by noxious mechanical stimuli (to the best of my knowledge). It is
unknown how stimulus’s physical characteristics such as shape, speed, or temperature
modulate reflex responses on joint and muscle levels in the neuromusculoskeletal system.
Moreover, despite the already astonishing performance in biological systems, there may
exist limits and potential weaknesses, which, if well understood, could be addressed and

Reflex response

Effect of 
stimulus shape 

Effect of stimulus 
speed

Effect of stimulus 
temperature

…

touch

How do the characteristics of the stimulus affect the reflex response? 

Golgi tendon organ

Muscle spindle

Efferent nerves

Afferent
nerves

Epidermis

Dermis

Skin surface
Receptors

Afferent nerve

…

Skin
Musculotendinous unit

Effect of 
habituation

…

or
heat

Stimuli:

Figure 2.1: Protective reflexes in humans. Noxious stimuli are perceived by many receptors in
the skin, processed by the spinal cord and brain, and trigger protective reflexes via
musculotendinous units.
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2 Finger reflexes elicited by touch and heat

overcome in a robotic implementation. Thus, this work aims to answer the following
research question (Fig. 2.1):

Can a distinct reflexive motor pattern on a kinematic and muscular level be found?
If yes, how do shape, speed and temperature of a mechanical stimuli modulate it,
and what role does habituation play? (Fig. 2.1)

To address this research question, a reflex case study is conducted in which human
finger withdrawal is elicited through a threatening mechanical source with varying prop-
erties. The human reflex response is investigated on a kinematic and muscular level.

2.1 Experimental procedures
2.1.1 Participant
A case study is conducted with a subject who is part of the research team1. The experi-
ments took place at the Munich Institute of Robotics and Machine Intelligence (MIRMI)
of Technical University of Munich (TUM). All experiments were conducted according
to the principles in the Declaration of Helsinki. The subject—male, 32 years old, and
right-handed as was assessed using the Edinburgh Handedness Inventory [207]—gave
written informed consent before participating in the study. No neuromuscular disorder
or recent injury at hand level was known. The subject performed reflex movements with
the index finger triggered by pointed metal frustums or a heated cylinder.

2.1.2 Design
Figure 2.2a shows a schematic of the experimental setup. The subject is seated comfort-
ably on a stool and remains upright during the experiment. The right hand is placed flat
on the table with the elbow at approximately 90 ◦ to the upper arm. Below the fingertip
of the index finger is a small hole in the table through which a stimulus, a conical frustum
or a heated cylinder, is applied. The stimulus and a force sensor are fixed to the stimula-
tor, i.e., the end effector of a robotic arm. To prevent the subject from visually or aurally
anticipating an impending collision, the subject watches television on a screen and listens
to it through headphones. In this case study, stimulus shape is considered as pointedness
of conical frustums with diameter d ∈ {0.2 mm, 0.5 mm, 1.0 mm, 1.6 mm}. Diameters
0.2 mm and 1.6 mm are used to investigate how the subject deals with a pointed ver-
sus blunt contact, while diameters 0.5 mm and 1.0 mm shed light on the blurred scale
in between. Note that the blunt frustum was shaped like a pyramidal frustum (width
1 mm, length 2 mm), and the diameter d =1.6 mm is representative of a conical frustum
of same contact area. The effect of temperature was analysed using a cylinder made
of aluminium with 5 mm diameter that was approximately heated to mean temperature
ϑ ∈ {35 ◦C, 45 ◦C, 55 ◦C}. The temperature 35 ◦C, corresponding to body tempera-
ture, was introduced to verify that the reflexes, possibly seen under the warm (45 ◦C)

1This experiment was done during an early stage of the COVID-19 pandemic. A participant from the
research team was selected to support the COVID-19 pandemic containment measures.
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Figure 2.2: Human reflex case study. (a) Schematic of experimental setup. (b) Marker and
EMG electrode placement.

and hot (55 ◦C) conditions, were triggered by heat and not purely mechanical. The effect
of stimulus speed was investigated by applying each of these seven conditions—a conical
frustum with four different diameters and a cylinder with three different temperatures—
at speed v ∈ {0.01 m/s, 0.025 m/s, 0.05 m/s, 0.1 m/s}, respectively. The speeds
0.1 m/s and 0.01 m/s are used to investigate how the subject behaves in a relatively fast
versus a slow condition, while 0.05 m/s and 0.025 m/s investigates the range in between.
Thus, a total of 28 conditions are examined.

2.1.3 Protocol

The experiment consisted of N = 56 trials divided into Block 1 and Block 2. Each
block had 28 trials corresponding to the 28 conditions, occurring in an unpredictable
order to minimize bias. The subject is asked to sit comfortably on a stool and keep
the back upright during the experiment. After the motion tracking markers and EMG
electrodes are accurately positioned (Fig. 2.2b), the subject is asked to place the hand
in the starting position and watch television. From there on, the stimulus could hit
the finger pad. An experimenter observes the experiment, controls the stimulator, and
changes the stimulus after each trial. The stimulator, i.e., the robotic arm, follows a pre-
programmed motion so that the stimulus hits the finger pad perpendicular at a constant
speed. If a collision triggered a finger reflex, the subject was instructed to return to
the starting position when he felt ready. Each block lasted approximately one hour,
and a 15-minute break was introduced between them. However, the markers and EMG
electrodes remained attached to the subject during the break.
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2 Finger reflexes elicited by touch and heat

2.1.4 Apparatus

A real-time Lock Sync box (Vicon Motion Systems Ltd, UK) was used to synchronize a
motion tracking system, an EMG device, a force sensor, and the stimulator.

Sixteen infrared Vicon Vero cameras (Vicon Motion Systems Ltd, UK) tracked the
movement trajectories of passive reflected markers in a predefined Cartesian coordinate
system at 200 Hz. Four essential markers (4 mm diameter) were placed on significant
anatomical landmarks of the right index finger: at the middle of the medial, proximal
and metacarpal phalanx, and at the distal end of the distal phalanx as shown in Fig. 2.2b.
In order to capture possible arm movements as part of reflex response, five additional
markers (15 mm diameter) were placed at significant anatomical landmarks: Caput ul-
nae, Caput radii, Epicondylus lateralis humeri, Acromion, and Fossa jugularis sternalis
as (partially) indicated in Fig. 2.2b.

A Refa system (TMSi B.V., the Netherlands) and bipolar surface microelectrodes
(1 mm diameter) were used to record muscle activities of the Flexor digitorum super-
ficialis (FDS) and Extensor digitorum (ED) at 2 kHz. These muscles are mainly re-
sponsible for flexion and extension of the index finger and are measurable by surface
EMG. Electrode placement (indicated in Fig. 2.2b) was performed in line with SENIAM
guideline [208], whereas the muscles were palpated according to [16].

The stimulator was realized by a seven DoF Panda robot arm (FRANKA EMIKA
GmbH, Germany) with a force sensor and the stimulus attached to its end effector. A
joint impedance controller [209] is applied with high stiffness (3 kNm/rad) to control the
fourth joint. It performed a circular motion at constant tangential speed; the radius
(r = 0.384 m, see Fig. 2.2a) was sufficiently large so that the movement of the stimulus
can be considered as a straight-line motion with constant speed v, perpendicular to the
fingertip. The robot was programmed to stop at ≈ 3 mm above the tabletop. After 1.5 s
it returned to the starting position.

In order to measure the contact force, a three-component force sensor Typ 9327C
(Kistler Instrumente GmbH, Germany) is deployed. This piezoelectric sensor was cali-
brated to measure forces up to 100 N with a resolution of 1.3 mN and a natural frequency
of ≈ 3.2 kHz.

Furthermore, an ETC-200+ thermostat (Conrad Electronic AG, Germany) consisting
of a heating element, a thermistor, and a bang-bang controller was used to heat the
cylindrical stimulus. In addition, the temperature at the cylinder surface was checked
using a laboratory alcohol thermometer.

2.1.5 Finger temperature estimation

When the finger pad touches an object, the thermal interaction is a transient process
dominated by heat conduction. Given a temperature difference between the skin and an
object in contact with the skin—in this work, the initial temperature ϑskin,0 at the skin
surface is lower than that of the cylinder ϑobj,0 > ϑskin,0—heat flows from the object to
the skin through a thermal contact resistance R ∈ R>0. The temperature ϑskin(t) at
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skin surface evolves over time t as [210]

ϑskin(t) = A

B

(
1− exp

{(
αskinB

2t
)}

erfc
(
B
√
αskint

))
+ ϑskin,0,

A = ϑobj,0 − ϑskin,0
κskinR

, B = 1
κskinR

(
1 +
√
κskinρskincskin√
κobjρobjcobj

)
, (2.1)

where κ is thermal conductivity, c is specific heat capacity, ρ is material density, α =
κ/(ρc), and erfc(·) is the complementary error function. Subscripts “skin” and “obj”
refer to the skin and the object. The thermal contact resistance between the finger pad
and an object is approximated by R = (0.37 + κobj)/(1870κobj) (m2K/W) [211].

2.1.6 Contact force measurement
Throughout this work, the contact force Fc(t) ∈ R3 refers to the force exerted by the
stimulus on the finger pad and is derived from force measurements (Fig. 2.2a). Fc(t) is
obtained by

Fc(t) = Fsensor(t)− Fref(t), (2.2)

where Fsensor(t) ∈ R3 denotes the sensor signal. To calibrate the measurements, the
reference force profile Fref(t) prior experimentation for each v ∈ {0.01 m/s, 0.025 m/s,
0.05 m/s, 0.1 m/s} is recorded. Eventually, Fc(t) is denoised by using a zero-lag 4-th
order Butterworth low-pass filter with cut-off frequency 50 Hz. Note that in “Results”
section, the magnitude of the vector Fc(t) = ‖Fc(t)‖ is used, since the direction is always
perpendicularly to the finger pad.

2.2 Measures
Finger retraction frequentness is defined as

f = Nr
Ntotal

× 100%, (2.3)

where Ntotal ∈ N+ denote the total number of trials, and Nr ∈ N represents the total
number of trials in which the subject retracted the finger.

The maximum contact pressure is obtained by

σc,max = max
t∈[tc, t′c]

‖Fc(t)‖
π(d/2)2 (2.4)

where tc, t′c (see Fig. 2.3) denote, respectively, the time of contact and loss of contact
between the finger pad and the stimulus, and d is stimulus diameter.

The maximum finger retraction is defined as

qH,max = max
t∈[tc, tend]

qH(t), (2.5)
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2 Finger reflexes elicited by touch and heat

where qH(t) is the angular position of the Metacarpophalangeal joint (Fig. 2.2a) and tend
denotes the time of the end of a trial.

Mean muscle effort with time period [t1, t2] 6= ∅ is defined as

ξ(t1, t2) = 1
t2 − t1

∫ t2

t1
|η(t)|dt, (2.6)

where η(t) ∈ R is the measured EMG signal of a muscle.
Lastly, the total contact duration is obtained by

∆tc = t′c − tc (2.7)

where tc, t′c (see Fig. 2.3) denote, respectively, the time of contact and loss of contact
between the finger pad and the stimulus.

2.3 Results

2.3.1 Reflex launch sequence

Figure 2.3 shows data from a representative trial after a collision with a pointed frustum
(d = 0.2 mm) at a rather slow speed (v = 0.025 m/s). The temporal progression can
be divided into five characteristic phases, which are elucidated in detail in Table 2.1.
Briefly, the subject responds to the pointed frustum with a muscle twitch (Phase II)—a
time-shifted excitation/inhibition of extensor and flexor, here defined as muscle twitch
reflex (MTR)—followed by a hold period (Phase III) in which extensor activity is slightly
increased compared to the baseline activity observed in the pre-collision phase (Phase I).
Subsequently, the subject retracts (Phase IV), causing the finger to lose contact with
the frustum, and eventually returns to the initial pose (Phase V). Similar behavior was
observed in the responses to temperature stimulus. The accompanying video shows an
animation of the trial shown in Figure 2.3.

2.3.2 Effect of stimulus shape

A more pointed frustum is more likely to cause finger withdrawal (upper plot in Fig. 2.4a).
While the pointed frustum (d = 0.2 mm) always leads to finger retraction, finger retrac-
tion frequentness f (2.3) decreases with a larger diameter (d = 0.5 mm), and almost van-
ishes (d = 1.0 mm and d = 1.6 mm) for maximum contact pressures σc,max < 100 MPa
(2.4) (middle plot in Fig. 2.4a). It is noteworthy that the DIN EN 12203 standard
[212] for the manufacture of footwear machines specifies a safety limit of 0.3 MPa for
the protection of fingers and hands (see the middle plot of Fig. 2.4a). In contrast to
f and contrary to intuitive interpretation, maximum finger retraction qH,max (2.5) does
not appear to correlate with pointedness (bottom plot in Fig. 2.4a).
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Figure 2.3: Reflex launch sequence. Data of a representative trial after a collision between
a pointed frustum at slow speed and human finger. The temporal progression is
divided into five characteristic phases, which are elucidated in Table 2.1.

2.3.3 Effect of stimulus speed

The faster the stimulus approaches, the higher finger retraction frequentness f is ob-
served (upper plot in Fig. 2.4b). Notably, two retractions were triggered by the fastest
stimulus (v = 0.1 m/s), even though the corresponding maximum pressure was be-
low the safety limit (middle plot of Fig. 2.4b). Maximum finger retraction qH,max, like
pointedness, does not seem to correlate with speed (bottom plot in Fig. 2.4b). The
mean muscle effort ξ(t1, t2) (2.6) is calculated using characteristic time intervals such as
ξ(tc − 100ms, tc) (cf. Phase I in Fig. 2.3), ξ(tMTR, t

′
MTR) (cf. Phase II in Fig. 2.3), and

ξ(t′MTR, tr) (cf. Phase III in Fig. 2.3). Time instant tc denotes the start of contact, and
tr denotes the start of finger retraction (as shown in Fig. 2.3). Time instants tMTR and
t′MTR (see also Fig. 2.3) mark the start and the end of MTR excitation for each muscle,
respectively, and were visually and independently identified by two reviewers (average
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2 Finger reflexes elicited by touch and heat

Table 2.1: Explanations of Phase I to V (see Fig. 2.3).
Phase I

(Pre-collision)
Phase II

(Muscle twitch)
Phase III

(Hold)
Phase IV
(Retract)

Phase V
(Recover)

Illustration

Stimulator at 𝑣 = 0.025 m/s 

Skeleton

Extensor (ED)

Flexor (FDS)

Fingertip
Joint angle
𝑞! = 0 deg

𝑣 = 0 m/s

𝑞! ≠ 0 deg

Stimulator with 𝑣" ≠ 0

Extensor muscleMTR

𝑣 = 0 m/s 

𝑞! ≠ 0 deg

Stimulator with 𝑣" ≠ 0

Extensor muscleLifting

𝑣 = 0 m/s 

𝑞! ≠ 0 deg

Extensor muscleRetraction

Stimulator with 𝑣" ≠ 0

𝑞! = 𝑞!,#$%

Stimulator with 𝑣& ≠ 0

Extensor muscle

Initial pose

Max. finger retraction

Time t ∈ [0, tc[ t ∈ [tc, ts] t ∈]ts, tr[ t ∈ [tr, t′c] t > t′c
Stimulator Stimulator ap-

proaches finger at
constant speed.

Stimulator con-
tacts skin at tc,
compresses tissue
and stops at ts.

Stimulator inter-
acts with skin
receptors.

Stimulator inter-
acts with skin
receptors until
loses contact at t′c.

Stimulator is pro-
grammed to return
to starting position
at t = ts + 1.5 s.

Finger
muscles

Extensor (ED) and
flexor (FDS) show
baseline activity.

Time-shifted exci-
tation and inhibi-
tion of ED and FDS
(muscle twitch re-
flex (MTR)).

Slightly increased
activity of ED
is supported by
inhibition of FDS.

Retraction excita-
tion in ED and
FDS start at tr.

As in Phase IV, un-
til subject returns
to initial pose.

Finger
skeleton

Skeleton is in
starting pose, i.e.,
qH(t = 0) = 0 deg.

Passively lifted by
stimulator, while
MTR leads to a
small, brief drop in
force.

Skeleton tends to
remain in a con-
stant position, but
is slightly lifted and
bent, resulting in
a continuous de-
crease in force.

Skeleton is mov-
ing corresponding
to muscle excita-
tion.

As in Phase IV, un-
til subject returns
to initial pose.

values were used). Analysis of mean muscle effort of extensor and flexor reveals that the
MTR grows as the stimulus speed increases (Fig. 2.4c). Extensor mean activity (left plot
in Fig. 2.4c) appears to be slightly higher for Hold compared with Baseline, while flexor
mean activitiy (right plot in Fig. 2.4c) appears to be slightly lower for Hold compared
with Baseline (cf. Phase III in Fig. 2.3).

2.3.4 Effect of stimulus temperature

To estimate finger pad’s surface temperature—resulting from the contact with the heated
cylinder—the thermal model in (2.1) is applied using the parameters shown in
Table 2.2. The upper plot in Fig. 2.5a reveals that the subject retracted his finger
starting at skin surface temperatures ϑskin(t = t′c) ' 48◦C (for the definition of t′c see
Fig. 2.3) with contact duration ∆tc ' 1s, cf. (2.7). Maximum finger retraction height
hmax, defined as the maximum distance between the table and the marker attached to

Table 2.2: Parameters used in the thermal model. Values for specific heat capacity c, thermal
conductivity κ, and material density ρ are taken from literature [211, 213, 214], while
the initial temperature ϑ0 was set for the stimulus, and measured for the subject.

ϑ0 [K] c [J/(kg K)] κ [W/(K m)] ρ [kg/m3]
Aluminium ϑobj,0 = ϑ 897 247 2710
Epidermis ϑskin,0 = 303.15 3598 0.255 1200
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Figure 2.4: Effect of stimulus shape and speed. (a) Finger retraction frequentness f (2.3),
maximum contact pressure σc,max (2.4), and maximum finger retraction qH,max
(2.5) at stimulus diameter d. (b) Same measures as shown in a but at stimulus
speed v. (c) Mean muscle effort ξ (2.6) of “Baseline”, “Muscle twitch” and “Hold”
(cf. Phases I to III in Fig. 2.3).

the medial phalanx (Fig. 2.2b), reveals that for one trial the reflex response included the
elevation of the wrist (see hmax ≈ 200 mm in the bottom plot in Fig. 2.5a). Notably,
this trial was the very first trial the subject was confronted with.
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Figure 2.5: Effect of stimulus temperature, and finger retraction and habituation. (a) Esti-
mated skin surface temperature ϑskin(t = t′c) (2.1) over contact duration ∆tc (2.7)
(upper plot). Colored areas are known from literature [215] and refer to no tis-
sue change 1O, 1st Degree burns 2O, and transition zone towards 2nd Degree burns
3O. Maximum finger retraction height hmax over ϑskin(t = t′c) (lower plot). (b)
Maximum finger retraction qH,max (2.5) could be explained by compression depth
of the tissue, which is approximated here by contact force Fc(t) at time instant
t = tr (upper plot). Effect of habituation on qH,max across trials of Block 1 and 2
in comparison (bottom plot).

2.3.5 Finger retraction

Stimulus shape and speed do not seem to be sufficient to explain the observed maximal
finger retraction qH,max (2.5) in response to the conical frustums (see bottom plots in
Fig. 2.4a and Fig. 2.4b). Rather, it appears that the contact force imminent to with-
drawal start, i.e., Fc(t = tr), determines qH,max (upper plot in Fig. 2.5b). Regression of
Fig. 2.5b (see solid line) indicates a linear relationship (slope= 11.17 deg/N, R2 = 0.512).
The interpretation of this is discussed in the “Discussion” section. Note that the small
number of observed retraction movements elicited by the heated cylinder (only five out
of a total of 24 trials (cf. Fig. 2.5a), in contrary to 15 out of a total of 32 trials with
the conical frustum (cf. Fig. 2.5b)) does not allow further analysis of maximum finger
retraction with respect to the temperature stimulus.
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2.3.6 Effect of habituation

Habituation effects are analyzed by comparing measures between Block 1 and Block 2
(the experiment was divided into two blocks of trials, each containing the same condi-
tions in an unpredictable order with a 15-minute break in between.). With respect to
the experiments with the conical frustum, finger retraction frequentness f (2.3) across
all trials for each block decreases from f = 56.25% (Block 1 ) to f = 37.5% (Block 2 ).
The bottom plot in Fig. 2.5b shows the regression of maximum finger retraction qH,max
(2.5) and contact force Fc(t = tr) (definition of tr see Fig. 2.3) for each block, re-
spectively, revealing a decrease in slope from 11.76 deg/N (R2 = 0.462, Block 1 ) to
slope= 8.08 deg/N (R2 = 0.702, Block 2 ). Considering only the trials in which the sub-
ject retracted the finger for each block, respectively, the contact duration increases from
∆tc = 344.8 ± 169.5 ms (Block 1 ) to ∆tc = 531.3 ± 156.2 ms (Block 2 ). This indicates
that the subject can sustain the stimulus for a longer period of time in Block 2, before
withdrawing the finger. Furthermore, with respect to the experiments with the heated
cylinder, one can observe a flexion of the wrist as part of the reflex response only in one
trial, which was the very first trial of Block 1 (cylinder temperature was ϑ = 58.53◦C).

2.4 Discussion
Humans protect their bodies by autonomous [108] as well as voluntary [200] withdrawal
actions. While the withdrawal reflex[201] was extensively studied using electrocutaneous
or non-noxious mechanical stimulation on the lower [216, 217] and upper limbs [218, 108],
little or no literature has investigated withdrawal actions that were triggered by noxious
mechanical stimulation. The presented exploratory case study investigated the mus-
cular and kinematic characteristics of the human index finger’s withdrawal movements
triggered by pointed frustums or heated objects.

Results show that the withdrawal response of the subject follows a 5-phase reflex
launch sequence composed of three characteristic events: the muscle twitch reflex (MTR),
a hold period, and finger retraction. After the stimulus contacts the skin surface, the
subject responds with the MTR, a temporally shifted excitation/inhibition of the exten-
sor and flexor muscle leading to a slight drop in contact force. The MTR appears to be
dominated by low-level control circuits in the spinal cord, as reaction times suggest[219]
and correlates with stimulus speed. Extensor activity slightly increases during the hold
period, while the flexor decreases activity. From a control theory perspective, this can
be interpreted as the central nervous system maximizes control authority, preparing the
finger to be withdrawn. Reaction times suggest that finger retraction is dominated by
intermediate spinal/supra-spinal circuits [220]. Note also that the muscle activity of the
MTR and finger retraction overlapped in two trials.

Stimulus shape and speed do not seem to be sufficient to account for the observed
maximum finger retraction in response to the conical frustums. The question then arises
as to what determines the amplitude. The subject’s data show a linear relationship
between the maximum retraction amplitude and the contact force at the very time
instant before finger retraction. Here, contact force might be a proportional indicator
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2 Finger reflexes elicited by touch and heat

of compression depth of the skin tissue caused by the frustum. Simply put, the higher
the contact force, the more the tissue is compressed. This compression depth appears
to result from the subject’s reaction to the contact, comprising the MTR and the hold
period. The more the MTR and the hold period counteracted tissue compression, the
less the tissue is compressed, thus, the lower the finger retraction amplitude, and vice
versa.

Conical frustums of various diameters are applied to investigate the effect of stimulus
shape on the reflex response. It seems that contact pressure dominates the frequentness
of finger retraction: the pointier, the more likely the finger is withdrawn. Also, the
stimulus speed appears to affect the frequentness: the faster, the more likely the finger
is withdrawn.

A blunt cylinder that was heated to various temperatures was also applied. Results
show that the subject retracted his finger starting at skin surface temperatures >48 ◦C
with contact duration >1 s. These values can be considered the subject’s individual,
critical temperature reflex conditions. The number of trials in which the subject retracted
the finger is too low to conclude finger retraction amplitude. More trials with higher
cylinder temperatures should be considered in future experiments.

Furthermore, effects of habituation were observed. In the case of the conical frustum,
finger retraction frequency and amplitude decrease over time. Desensitization of the
skin contact area can explain this. Regarding the temperature reflexes, an elevation
of the hand as part of the reflex response only in the first trial of human experiments
was observed. This might be explained by the subjects’ fear of the unknown, which
subsequently decreased. The results of this work have inspired the robot reflex design
presented in Chapter 6.
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3 Arm withdrawal adaption to concurrent
pain constraints

Pain helps humans to avoid injuries by signaling the immediate threat and triggering
relevant motor responses, e.g. the withdrawal reflex. While the withdrawal reflex is
defined as an automatic retraction of an extremity from a noxious stimulus such as heat
or pain, it is also common to initiate withdrawal actions prior to any physical stimulation,
for instance when we visually spot the threatening event. This is what would happen
when our hand is about to get slammed into the heavy cutlery drawer, as our cheerful
son suddenly pushes it with force. To prevent pain and injury, we would retract the
hand from inside the drawer as fast as possible. Additionally, we may have to consider
several constraints and pain sources simultaneously. Imagine that our son is exactly
located along the direction of withdrawal at that point in time. The motor control
dilemma arises on how to preserve physical integrity and at the same time modulate the
instinctive withdrawal of the hand in such a way that the kid is not hit by the retraction
of the arm. How do humans deal with such constraints during motor tasks?

Corresponding to this scenario (Fig. 3.1a):

1. Effect of obstacle distance: Do we — and, if yes, how do we — use the mechanical
redundancy of our upper limb when a constraint (i.e. an obstacle behind us) is
introduced that limits the room for withdrawal?

2. Effect of obstacle presence uncertainty: Does our motor strategy change when the
environmental conditions are subject to uncertainty? Specifically, if an obstacle
may or may not be present behind us, do we adopt a conservative strategy and
plan the movement according to the worst-case scenario or do we rather take risks?

3. Effect of obstacle nature: How does the introduction of pain — as a consequence
of the possible impact with the obstacle — affect the way we avoid the obstacle
when withdrawing our arm?

To address these questions, a paradigm is developed where sudden withdrawal of the
upper limb is elicited through a threatening mechanical source at the hand level. At the
same time, they could hit an obstacle on the back with the elbow. To escape pain at the
hand, subjects necessarily had to retract the arm while an obstacle impedes the path
of the elbow during hand retraction. Their withdrawal actions were compared across
different geometric and pain conditions.
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3 Arm withdrawal adaption to concurrent pain constraints

Figure 3.1: (a) Study focus. (b) Experimental setup and sequence. [200]

3.1 Experimental procedures

3.1.1 Participants

The experiments took place at the Institute of Automatic Control of Gottfried Wilhelm
Leibniz Universität Hannover (LUH). The study was approved by the ethics committee
of LUH, and all experiments were conducted according to the principles in the Decla-
ration of Helsinki. Each of the 23 subjects gave their written informed consent prior to
participating in the study. The subjects were all male and right-handed (as was assessed
using the Edinburgh Handedness Inventory [207]), and no subject had a known neuro-
muscular disorder or recent injury at arm level. All subjects had normal or corrected to
normal vision at the time point of experiment.

A group of 11 subjects (aged 27.36± 2.29 years) used their dominant arm to perform
a withdrawal task, escaping a slap on their hand while avoiding a collision between their
elbow and an innocuous obstacle. A second group of 12 subjects (aged 26.5± 4.5 years)
performed the same task under the same conditions while contact with the obstacle at
elbow level was painful.

3.1.2 Design

The experiment took place in a sound-isolated and electromagnetically shielded mea-
suring chamber. Fig. 3.1b shows sketches of the experimental setup and sequence. The
subject is seated comfortably on a chair and remains in an upright position during the
experiment. In order to reduce complexity, the hand is fixed on a one DoF slider mech-
anism, i.e. a moving plate on a rail that is orthogonal to the coronal plane. Above the
hand is a preloaded slingshot, a flexible sheet metal (Fig. 3.1b 1 ) retained by an elec-
tromagnet. An acoustic signal — aired 500 ms before the electromagnet is switched off
(Fig. 3.1b 2 ) — warns the subject, who is prompted to retract the hand and so avoid
the impact with the sheet metal (Fig. 3.1b 3 ).
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3.1 Experimental procedures

An innocuous or painful obstacle is placed behind the elbow. This thin and flexi-
ble metallic panel will not harm a subject accidentally hitting it with the elbow while
withdrawing the hand to avoid the slap. The goal for all subjects (Fig. 3.1b 4 ) is to
withdraw the hand in such a way that they can (i) escape the mechanical pain threat by
the slingshot mechanism by retracting their elbow and (ii) also avoid collision with the
obstacle. For subjects in the painful group, an electrical stimulation is released to their
elbow when they touch the panel.

3.1.3 Apparatus

A real-time measurement computer was used together with a National Instrument 9144
EtherCAT chassis to control and synchronize the slingshot mechanism, a motion track-
ing system, and an electrical stimulator device. A Vicon MXT10s (Vicon Motion Sys-
tems Ltd, UK) system with eight infrared cameras tracking positions of passive reflected
markers (15 mm diameter) at 500 Hz was used to capture human upper limb motions in
Cartesian space. Six essential markers were placed on significant anatomical landmarks:
Os metacarpale tertium (Caput metacarpi), Caput ulnae, Caput radii, Epicondylus later-
alis humeri, Acromion and Fossa jugularis sternalis as shown in (Fig. 3.2b). Note that
the marker on the Fossa jugularis sternalis remains unused in this work, but can be
employed in e.g. future analysis based on human musculoskeletal models [221].

For the painful group of participants, a computer controlled Single Constant Current
Stimulator of Dantec™Keypoint® G4 Workstation (Natus Medical Incorporated, USA)
was used to percutaneuosly stimulate the Nervus cutaneus brachii posterior, a sensory
branch of the Nervus radialis, through a 2-point-bipolar electrode placed three finger
widths above the Humerus coronoid fossa on the dorsal side of the upper limb. A single
burst consisting of ten rectangular pulses with 0.2 ms duration at 300 Hz is applied when
the elbow contacts the obstacle, as detected by the experimenter following a visually-
unequivocal vibration by the thin metallic panel.

3.1.4 Protocol

Fig. 3.2a shows the protocol sequence. Each subject is asked to sit comfortably on
a chair and keep the back in an upright position during the experiment. After motion
tracking markers (and also the electrical stimulator for the painful group of subjects) are
positioned accurately, the hand is fixed to the slider mechanism using straps tightened
at the wrist, ring finger and index finger (Fig. 3.2c 1 ). A calibration procedure is
then performed to determine (i) the starting position of the hand and (ii) the distance
between the obstacle and the elbow (see Kinematic calibration). Furthermore, (iii) a
pain calibration is conducted so that the level of pain from hand slap is normalized across
all subjects (see Pain calibration). A complementary calibration protocol is undertaken
by the painful group of participants in order to ensure a comparable perception level when
hitting the obstacle with the elbow as when the hand is slapped (see Pain calibration).
Before the experiment started, all subjects conducted two training blocks of 4 trials each
to get used to the system and to minimize in-study learning effects (Fig. 3.2a).
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3 Arm withdrawal adaption to concurrent pain constraints

Figure 3.2: (a) Experimental protocol sequence. (b) Marker placement. (c) Measurements for
data analysis of subject i. [200]

For the painful group of subjects, the experiment consisted of N = 24 trials divided
in B = 6 blocks. For the innocuous group it consisted of N = 16 trials divided in
B = 4 blocks (Fig. 3.2a). After having completed the experiments with the innocu-
ous group, the total number of trials for the painful group was increased as the in-
nocuous experiment duration was not altering the quality of data, i.e. did not cause
fatigue to subjects nor affected their attention. Each block had 4 trials with conditions
{away,midway, close, close50%}, where these denominations correspond to the respec-
tive distance between the elbow position at the start of the trial and the position of the
obstacle (Fig. 3.2c 1 ). The conditions close and midway could be used to investigate
how subjects deal with a challenging versus moderate difficulty level, relative to the away
condition without obstacle. In the close50% condition, participants were informed that
there would be an obstacle in 50 % of the cases. The trials in each block were randomized
to minimize any bias and in-study time effects (Fig. 3.2a). However, the same random
sequence of trials was used for all subjects.

The subjects wear blinkers during the experiment in order to avoid visual feedback of
the obstacle. They are informed of which specific condition would be presented before
each trial and could (haptically) explore the surroundings at their back and locate the
obstacle in order to plan the withdrawal movement. Subjects are then asked to reach the
starting position and tell the experimenter when they were ready. Any time during 30 s
after a vocal “Start” cue, an acoustic signal is emitted, 500 ms after which the slingshot
mechanism would attempt to slap the subject’s hand.
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3.1.5 Kinematic calibration

For each participant, the starting position of the hand xh,i(t = 0) = ∆xh0,i is selected so
that the dorsum can be hit by the sheet metal, adjacent to the wrist strap (Fig. 3.2c 1 ).
To ensure repeatability across trials, the position is marked by a screw on the slider rail.
In order to determine the individual obstacle distances away, midway and close, each
subject is asked to place the hand in the first position along the longitudinal axis of the
sheet metal, such that the sheet metal itself no longer reaches the hand (Fig. 3.2c 2 ),
keeping the elbow aligned to the same axis (i.e. ϕi ≈ 0°). In this static configuration,
the position of the elbow xe0,i is measured and xh,i := 0 m defined. The maximum
elbow displacement xe,max,i = xe0,i + ∆xe,max,i is then identified by asking the subject
to simulate the withdrawal movement, maximizing the elbow travel and maintaining
ϕi ≈ 0°.

3.1.6 Pain calibration

Pain underlies sensory-discriminatory, cognitive-evaluative and affective-motivational
processes [222], and is by definition subjective [223]. While it is not possible to measure
pain objectively [224], efforts have been made to develop reliable methods and tools [225]
to estimate it. In this context, a pain calibration procedure was included with the aim
to remove high-granular bias in our exploratory study.

In order to normalize the pain intensity caused by the slingshot across all subjects,
a verbal Visual Analogue Scale (VAS) of 100 mm length is used, graded by no pain (0-
4 mm), mild pain (5-44 mm), moderate pain (45-74 mm) and severe pain (75-100 mm)[226].
The subject is asked to place the distal interphalangeal joint of the middle finger un-
derneath the slingshot. Three paddings of varying thickness {2, 3, 4}mm are attached
to the sheet metal starting with 4 mm. Then, the slingshot is activated and the subject
rates the perceived pain on the VAS. The padding whose VAS value is closest to the
middle of the scale is then chosen.

To verify that hitting the obstacle does not harm the subjects, the obstacle is set at
xe0,i and each subject is asked to withdraw the elbow and hit the obstacle first slowly
and then at increasing speeds. The VAS is again used to confirm that the impacts are
harmless.

A complementary calibration is undertaken by the painful group of participants in
order to ensure comparable perception levels of pain between the electrical stimulation
at the elbow and the hand slap. A staircase method [227] is used to calibrate the pain
stimulation. First, the sensory threshold (ST) is determined by gradually increasing the
current in steps of 0.1 mA (starting from 0 mA) until the subject notices the stimulus.
Then, the pain threshold (PT) is determined by further increasing the current until the
subject perceives the stimulus as painful. To verify the PT, the current is then increased
to around 1 mA and gradually decreased afterwards till the subject marks the intensity
as innocuous.

In order to relate the pain experienced at the elbow (caused by the electrical stimulus)
to the one at the hand (caused by a mechanical stimulus), the intensity of the electrical
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stimulus is then subsequently increased times PT, until the participant reports that the
resulting pain perception matches with the one induced by the slingshot mechanism at
the hand.

3.2 Measures

The normalized hand retraction for each trial is defined as

x̃h,max := xh(t∗)
|∆xh0|

, (3.1)

where t∗ is the time instant when xh(t) reaches its maximum retraction during the
withdrawal movement (Fig. 3.2c 3 ). The maximum hand retraction xh(t∗) is normalized
to the individual distance |∆xh0|. Such distance corresponds to the span of retraction
necessary for subjects to exit the slingshot impact range with their hand (Fig. 3.2c 1 ).
This normalization yields an intuitive way to interpret the extent of the hand retraction
length. For example, x̃h,max > 1 means that the hand successfully escaped impact with
the slingshot mechanism. In the analysis the maximum velocity ẋh,max and acceleration
ẍh,max of hand retraction is also considered.

The reaction time is defined as

∆tr := t′ − tbeep, (3.2)

where tbeep is the time instant when the acoustic signal starts to ring and t′ is the time
instant when the Cartesian acceleration of the hand marker Os metacarpale tertium (Ca-
put metacarpi) reaches 0.1 m/s2. This threshold, determined empirically, was introduced
to filter out any hand movements taking place prior to the withdrawal action.

Furthermore, the failure ratio is defined as

f := Nfailed
Ntotal

100%, (3.3)

where Ntotal, Nfailed ∈ N+ denote, respectively, the total number of trials and the
total number of failed trials within a group {innocuous, painful}, across a condition
{away,midway, close, close50%}.

Other measures appearing in the results are the elbow angles ϕ(t∗), θ(t∗), and Carte-
sian shoulder positions (Fig. 3.2c 3 )

∆xs = xs(t′)− xs(t∗), (3.4)
∆zs = zs(t′)− zs(t∗). (3.5)
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3.3 Data analysis
The data of recorded measures were analyzed using a linear mixed-effects model [228]

rij =


1
a1,ij

a2,ij

a1,ija2,ij


> 

α0

α1

α2

α3

+
[
1 a1,ij

] [β0,j

β1,j

]
+ εij, (3.6)

where subscript j = 1, ..., N denotes the observation (i.e. one for each trial) for subject i.
As fixed effects an intercept, two explanatory variables a1,ij and a2,ij, and the interaction
a1,ija2,ij is introduced. Parameter β0,j denotes the random effect for the by-subject
intercepts and β1,j is the random effect for by-subject slopes for the effect of a1,ij.

In order to understand the effect of varying obstacle distance on the subject’s behavior,
the model in (3.6) is applied with explanatory variables a1,ij ∈ {away,midway, close}
and a2,ij ∈ {innocuous, painful} on maximum hand position x̃h,max (3.1), ẋh,max, ẍh,max,
ϕ(t∗), θ(t∗), ∆xs(3.4), ∆zs(3.5) and reaction time ∆tr (3.2). Pairwise comparisons
(paired t-tests) with Bonferroni corrections were performed to compare average mea-
sures within each group {innocuous, painful} across the different obstacle distance
{away,midway, close}.

In order to understand the effect of varying obstacle presence uncertainty on the
subject’s behavior, the model in (3.6) is applied with explanatory variables a1,ij ∈
{0%(away), 50%(close50%), 100%(close)} and a2,ij ∈ {innocuous, painful} on maximum
hand position x̃h,max (3.1), ẋh,max, ẍh,max, ϕ(t∗), θ(t∗), ∆xs(3.4), ∆zs(3.5) and reaction
time ∆tr (3.2). Pairwise comparisons (paired t-tests) with Bonferroni corrections were
performed to compare average measures within each group {innocuous, painful} across
the different obstacle presence probabilities {0%, 50%, 100%}.

Following the application of those linear mixed-effects models, in order to under-
stand the effect of varying obstacle nature, single t-tests were performed over distances
{away,midway, close} between groups {innocuous, painful} and over probabilities
{0%,50%,100%} between groups {innocuous, painful} for values of x̃h,max, ẋh,max and
ẍh,max. Bonferroni corrections were performed here as well.

For all linear mixed-effects models, no obvious deviation from homoscedasticity and
normality was observed from the inspection of residual plots and the p-values were
obtained by likelihood ratio tests of the full model with the effect in question against
the model without the effect in question [229]. A 5% significance level was used in all
tests.

3.4 Results
3.4.1 Preliminary inspection of data
Fig. 3.3 shows raw data from representative subjects of each group. Visual inspection of
trajectories reveals that the hand retracts less when the obstacle gets closer (Fig. 3.3a).
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Figure 3.3: Raw data of representative subjects from each group. (a/b) Trajectories of hand
marker (x-coordinate) for all trials of one representative subject from each group.
(c/d) Lateral elbow displacement ϕ(t) over x-coordinate values of the elbow marker
for all trials of one representative subject from each group. (e/f) Upward elbow
displacement θ(t) over x-coordinate values of the elbow marker for all trials of one
representative subject from each group. (g/h) Cartesian trajectories of shoulder
marker in xz-plane. The definition of ϕ(t), θ(t) and the right-handed coordinate
system are depicted in Fig. 3.2c. [200]

By retracting the hand, subjects bend their elbows sideways to the right of the longi-
tudinal axis of the hand, to the left of or along it (Fig. 3.3c). Reviewing all subjects
individually reveals that subjects who bend their elbow to the inside (ϕ(t) < 0) retract
the hand less, while other subjects opt for longer spans of hand retraction, but bend their
elbow to the outside (ϕ(t) > 0) and with more displacement. When the obstacle is intro-
duced, the lateral movement of the elbow seems to increase. As the elbow moves sideways
during hand retraction, it also shifts upwards (Fig. 3.3e). Such combined movement is
more accentuated for the subjects who bend their elbow to the outside (the ones with
greater hand retraction and lateral elbow displacement). During the withdrawal action,
the shoulder moves upwards and forward (Fig. 3.3g). Comparing the representative sub-
jects from the two groups, the hand seems to retract less when subjects are presented
with the painful obstacle, in contrast to the innocuous one (Fig. 3.3a vs. Fig. 3.3b).
With respect to the lateral elbow displacement ϕ(t), no systematic differences between
the painful and innocuous groups could be seen (Fig. 3.3c vs. Fig. 3.3d). Upward elbow
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displacement θ(t) versus hand retraction appears to be steeper for the painful group
(Fig. 3.3e vs. Fig. 3.3f). With respect to the shoulder movement, no remarkable differ-
ences could be seen between the painful and innocuous groups (Fig. 3.3g vs. Fig. 3.3h).

3.4.2 Effect of obstacle distance

Placing an obstacle closer leads to more hits with the obstacle (Tab. 3.1). This shows
that the task was challenging enough to represent limit cases. Although more task
errors were recorded when the obstacle distance was reduced, the percentage of failures
collected in Tab. 3.1 suggests that the task, although challenging, was achievable in most
of the occurrences.

condition obstacle type f [%]
obstacle only slingshot only both sum

away innocuous - 0 - 0
painful - 1.39 - 1.39

midway innocuous 9.09 4.55 0 13.64
painful 2.78 4.17 1.39 8.34

close innocuous 25.00 2.27 2.27 29.54
painful 8.33 15.28 0 23.61

close50%
innocuous 6.82† 4.55 0† 11.37†

painful 5.56† 15.28 0† 20.84†

†Note that, in the close50% condition, errors were only possible when the obstacle was
present.

Table 3.1: Failure ratios f (3.3). [200]

Results exhibit no significant differences for reaction times (Tab. 3.2) among the away,
midway and close conditions tested.

innocuous painful
away 214.2± 20.8 ms 214.8± 40.9 ms

midway 224.4± 30.9 ms 218.9± 39.2 ms
close 210.9± 25.8 ms 226.8± 53.6 ms

close50% 209.3± 22.2 ms 229.4± 51.8 ms

Table 3.2: Reaction time ∆tr (3.2). [200]

The hand retracts less when the obstacle gets closer, as showed by the significant
differences of x̃h,max (Fig. 3.4a). The linear mixed-effects analysis showed significant
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Figure 3.4: (a) Maximum hand retraction x̃h,max(3.1), ẋh,max and ẍh,max over varying obsta-
cle distances {away,midway, close}, for both innocuous (blue) and painful (red)
groups. The closer the wall, the less the hand retracts. This effect is more re-
markable for obstacle type painful (red). Only when the painful obstacle is pre-
sented (red), subjects slow down speed and decrease acceleration of hand retraction.
? = p < 0.05, ?? = p < 0.01; corrected. (b) Maximum hand retraction x̃h,max,
ẋh,max and ẍh,max over varying probabilities of obstacle presence {0%, 50%, 100%},
for both innocuous (blue) and painful (red) groups. Probabilities were made ex-
plicit to subjects prior to the start of each trial. In the trials when the obstacle was
present, it was positioned in the close configuration. No differences were found be-
tween the 50 % (i.e. condition close50%, when the obstacle was present in half of the
trials) and 100 % (i.e. close condition) probabilities. ? = p < 0.05, ?? = p < 0.01;
corrected. [200]

effects of the interaction between distances {away,midway, close} and obstacle types
{innocuous, painful}, on x̃h,max (χ2(1) = 5.70, p < 0.05), ẋh,max (χ2(1) = 7.04, p <
0.01), and ẍh,max (χ2(1) = 4.96, p < 0.05). Paired t-tests applied on the mean values
of x̃h,max, ẋh,max and ẍh,max revealed significant differences (Fig. 3.4a) of x̃h,max for the
obstacle type innocuous: x̃h,max decreases from condition away to midway (p <0.05), and
also from away to close (p <0.05). No significant differences were found on ẋh,max and
ẍh,max. Within group painful paired t-tests revealed significant differences (Fig. 3.4a):
x̃h,max decreases from condition away to midway (p <0.01), from away to close (p <0.01),
and from midway to close (p <0.05). Significant differences were found concerning
ẋh,max that decreases from condition away to midway (p <0.01), and from away to
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Figure 3.5: The figure shows values of sideways displacement ϕ(t∗) of the elbow (a) and values
of upward displacement θ(t∗) of the elbow (b) at the point of maximum hand
retraction x̃h,max (3.1). Each symbol represents the mean of such dyad for one
individual subject. ϕ(t∗) distributes evenly along the axis of hand retraction, and
subjects seem to stick to one specific strategy (left, right or straight) over the
different conditions, with only one exception (see . for innocuous). Ovals denote
confidence ellipses with confidence interval 90 %. Introducing a painful obstacle
(red) reduces the area of the confidence ellipses. Solid lines denote the fitted linear
models. Their slope increases as obstacles are introduced. [200]
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Figure 3.6: The figure shows mean values of shoulder displacement in the x-direction ∆xs (a)
and in the z-direction ∆zs (b) at the time t∗ over the elbow upward displacement
θ(t∗). Each symbol represents the mean of such dyad for one individual subject.
Ovals denote confidence ellipses with confidence interval 90 %. Introducing a painful
obstacle (red) reduces the area of the confidence ellipses. Solid lines denote the fitted
linear models. In both cases, slopes do not change over conditions. [200]

close (p <0.01). Furthermore, significant differences were found concerning ẍh,max that
decreases from condition away to midway (p <0.05), and from away to close (p <0.05).

The linear mixed-effects analysis showed no significant differences for ϕ(t∗) and θ(t∗).
However, values of mean x̃h,max for each subject, at all conditions, were visually in-
spected by plotting them with ϕ(t∗) and θ(t∗), respectively (Fig. 3.5). Different symbols
were used for individual subjects to enable tracking of any change in motor behavior,
as the conditions of the experiment vary. By retracting the hand, subjects bend their
elbow sideways (Fig. 3.5a), either to the right of, to the left of, or along the longitu-
dinal axis of the hand, in any case sticking to one of such strategies over the different
distance conditions they are presented with. The linear regression of Fig. 3.5a (solid
lines) exhibit slopes steeper as the obstacle distance decreases, indicating that a certain
value of hand retraction corresponds to a bigger lateral displacement of the elbow (see
Tab. 3.3 for the R2 and slope values of linear regression). This behavior is coherent
with task requirements, as subjects tend to keep away from collision by bending the
elbow more when the obstacle is closer. The same tendency is observed for θ(t∗). As the
elbow moves sideways during hand retraction, it also shifts upwards (Fig. 3.5b), with
such effect becoming more emphasized as the obstacle gets closer.

To further analyze the kinematic chain of the upper limb, the shoulder front and
upwards movements were displayed against the values representing the elbow upward
movements. Although the linear mixed-effects analysis showed no significant differences
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Fig. 3.5a Fig. 3.5b
innocuous painful innocuous painful

condition R2 slope R2 slope R2 slope R2 slope
away 0.00 -0.48 0.00 -0.81 0.53 30.2 0.30 19.2

midway 0.18 21.0 0.67 71.6 0.76 59.3 0.74 106.9
close 0.45 53.0 0.43 48.4 0.84 68.5 0.76 92.7

close50% 0.37 32.2 0.30 32.9 0.77 71.4 0.62 69.0

Fig. 3.6a Fig. 3.6b
innocuous painful innocuous painful

condition R2 slope R2 slope R2 slope R2 slope
away 0.37 -0.73 0.11 -0.42 0.68 0.54 0.40 0.24

midway 0.70 -0.88 0.58 -0.86 0.62 0.65 0.29 0.26
close 0.69 -0.93 0.72 -0.92 0.62 0.52 0.52 0.44

close50% 0.81 -0.85 0.61 -0.87 0.62 0.53 0.35 0.35

Table 3.3: Results of linear regression in Fig 3.5 and Fig 3.6. [200]

for ∆xs and ∆zs, one can see in Fig. 3.6a and Fig. 3.6b that the higher θ(t∗), the more
forward the shoulder moves. Similarly, the higher θ(t∗), the more upwards the shoulder
moves.

3.4.3 Effect of obstacle presence uncertainty

While no significant differences were found with the analysis of reaction times (Tab. 3.2),
the results of Tab. 3.1 reveal that the failure ratio in the close50% condition matches the
one recorded for the close condition. While subjects consistently escape impact from
the slingshot stimulation at their hand when the away condition is presented, more
errors occur when they know that there is an obstacle behind them (close condition),
with the ratio of failure registered for the close50% condition comparable to the one in
the close condition. The same reasoning cannot be applied fully to study the failure
ratios regarding the collisions with the obstacle, as no obstacle is present by definition
in the away condition (0 %), and the obstacle is present only in half of the trials in
the close50% condition. However, the number of errors recorded for such 50 % of trials
when the obstacle was in place suggests that, also in this regard, the participants of our
experiment responded to the close50% condition similarly to how they did when they
were certain about the presence of the obstacle behind them.

The conservative approach by humans to deal with uncertainty under our experimental
scenario is also confirmed by the extent and velocity of hand retraction (i.e. x̃h,max
and ẋh,max), as can be seen in Fig. 3.4b. The linear mixed-effects analysis revealed
significant effects of the interaction between probabilities {0%, 50%, 100%} and obstacle
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types {innocuous, painful}) on x̃h,max (χ2(1) = 3.89, p < 0.05) and ẋh,max (χ2(1) =
4.59, p < 0.05). Paired t-tests revealed significant differences on x̃h,max for the obstacle
type innocuous: x̃h,max decreases from condition 0 % to 100 % (p <0.05) and from 0 %
to 50 % (p <0.01). No significant differences were found on ẋh,max. For the painful
group, significant differences were found on x̃h,max, that decreases from condition 0 % to
50 % (p <0.01) and from condition 0 % to 100 % (p <0.01). Significant differences were
found concerning ẋh,max that decreases from condition 0 % to 50 % (p <0.05) and from
condition 0 % to 100 % (p <0.01). This means that no significant difference divides the
close50% and the close (100 %) condition, while significant difference was indeed found
between these two conditions and the away (0 %) condition.

The linear mixed-effects analysis revealed no significant differences on ϕ(t∗), θ(t∗),
∆xs and ∆zs. However, the distribution of data points in Fig. 3.5a and Fig. 3.5b reveal
that both sideways displacement of the elbow and its upward movement at the point of
maximum hand retraction x̃h,max, for condition close50%, are comparable with condition
close (100 %), whereas they are considerably different from the values of condition away
(0 %).

Additionally, while the shoulder front and upward movements in relation to the upward
movement of the elbow (Fig. 3.6a and Fig. 3.6b) did not reveal remarkable differences
across the experimental conditions, the slopes of the linear fitted models describing the
relationship between values of ϕ(t∗) (lateral elbow displacement) and θ(t∗) (upward
elbow displacement) with hand retraction length (Fig. 3.5a and Fig. 3.5b) show that
condition close50% is, also in such regard, comparable with condition close (100 %).

3.4.4 Effect of obstacle nature (innocuous vs. painful)

No significant differences in reaction time were found between the two groups (Tab. 3.2).
Examination of Tab. 3.2 reveals that, when the obstacle was placed in the position
corresponding to the midway condition, subjects collided their elbow more often when the
obstacle itself was innocuous (innocuous 9.09 % vs painful 2.78 %). The same difference
also holds true for the more challenging close condition (innocuous 25.00 % vs painful
8.33 %).

Analysis of the values of failure ratio for the errors at the hand level (caused by
the hand not retracting back enough to avoid impact with the slingshot mechanism)
shows that, while the number of failures is comparable in the position corresponding to
the midway condition (innocuous 4.55 % vs painful 4.17 %), such balance shifts when
the obstacle is placed in the close condition (innocuous 2.27 % vs painful 15.28 %). Note
that the pain experience elicited by the slingshot mechanism and obstacle were calibrated
prior to the start of the experiment to generate comparable perception of pain. Therefore,
although not consistently successful, subjects aimed to plan and execute their withdrawal
action in a way such as to escape both painful sources. Only in a very small number of
cases, subjects made errors at both hand and elbow levels (see last column of Tab. 3.1).

Another effect of placing a painful obstacle can be observed by the analysis of the
extent, velocity and acceleration of hand retraction (i.e. x̃h,max, ẋh,max and ẍh,max), as it
can be seen in Fig. 3.4a and Fig. 3.4b. While the direct comparison — between subjects
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who were presented with the painful versus the ones who encountered the innocuous ob-
stacle — revealed no significant differences, values of x̃h,max show that the hand retracts
significantly less when subjects are presented with the painful obstacle, in comparison to
the innocuous one. Furthermore, only the group of participants who performed the task
in the presence of the painful obstacle shows significant decrease of ẋh,max and ẍh,max as
the obstacle gets closer (see section Effect of obstacle distance).

The linear mixed-effects analysis showed no significant differences for ϕ(t∗), θ(t∗), ∆xs
and ∆zs. However, the distribution of data points in Fig. 3.5a and Fig. 3.5b reveal that
introducing a painful obstacle reduces the area of the confidence ellipses that are indica-
tive for the variance of both sideways displacement of the elbow ϕ(t∗) and its upward
movement θ(t∗) at the point of maximum hand retraction x̃h,max. Such effect is likely
to be caused by the lower values of hand retraction in participants who were presented
with the painful obstacle, as lower values of x̃h,max also require lower displacement of the
elbow to succeed in the task. When the painful versus the innocuous obstacle is present,
also the areas of the confidence ellipses encapsulating values of front and upward move-
ment of the shoulder at the point t∗ of elbow upward displacement is systematically
smaller (Fig. 3.6a and Fig. 3.6b). This effect is again likely due to the lower values of
hand retraction in subjects belonging to the painful group, as lower values of x̃h,max
require lower displacement of the elbow, and thereby less prominent movement of the
shoulder to accommodate the overall withdrawal action. Interestingly, smaller variance
was recorded in the away condition too, although this experimental condition did not
differ between the painful and innocuous group, as no obstacle was present for either
group. Such smaller variance could derive from learning effects, i.e. subjects from the
painful group may have retained — in the away trials — part of the motor behavior
developed in the trials when the painful obstacle was or could be present.

Ultimately, while analysis of the linear relationship between values of ϕ(t∗) (lateral
elbow displacement) with hand retraction length (Fig. 3.5a), as well as of shoulder front
and upward movements in relation to the upward movement of the elbow (Fig. 3.6a and
Fig. 3.6b) do not reveal systematic differences between the painful and innocuous groups,
it appears for θ(t∗) (upward elbow displacement) (Fig. 3.5b) that slopes are steeper in
the painful group.

3.5 Discussion

Pain signals immediate threats [230] and triggers relevant motor responses [231], includ-
ing the ones elicited by the withdrawal reflex [108]. While the withdrawal reflex [201] —
defined as an automatic retraction of an extremity from a noxious stimulus such as heat
or pain — was extensively studied, little or no literature has investigated withdrawal
actions that start even prior to any physical stimulation, for instance when we visually
spot or hear a threatening event. This exploratory study investigate the kinematic char-
acteristics of withdrawal movements of the human upper limb that are triggered by a
threatening source at hand level. The experimental task further included an obstacle
behind the subject’s arm, positioned at different distances along the direction of with-
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drawal. Results show that humans do not simply regulate the retraction of the hand
alone to avoid both the original threatening source and the collision with the obstacle,
but they make use of the degrees of freedom of their upper limb (which can be considered
as 12 DoF serial kinematics) [221, 55] — in a highly coordinated manner. Specifically, in
the presence of an obstacle placed behind us, not only do we stop our rapid withdrawal
action earlier than what we would do in the absence of the obstacle, but we also comple-
ment this action by bending the elbow sideways, keeping it away from collision. While
some participants bend their elbow to the inside and retract the hand less, others opt
for longer spans of hand retraction, but bend their elbow to the outside, where they can
count on a more abundant range of possible displacement. Therefore, different subjects
use distinct motor strategies [232, 233]. Subjects tend to stick to bending their elbow
either to the right of, to the left of, or along the longitudinal axis of the hand, across
trials and conditions. To accommodate such withdrawal action, we raise the elbow and
move the shoulder forward and upwards — with such coordinated movement more ac-
centuated for the subjects who bend their elbow to the outside (i.e. with greater hand
retraction and lateral elbow displacement). The closer the obstacle, the more discernible
this behavior appears. It is likely that the overall withdrawal movement originates from
a highly coordinated action between hand, elbow and shoulder [234], although the shoul-
der movement could also be due to the physical constraint placed at hand level (i.e. its
fixation to the slider). Another interesting interpretation is that the subjects may utilize
the mechanical coupling of the upper limb’s joints to accelerate the hand, specifically by
using the inertia of the shoulder, whereby the shoulder is “thrown” forward and upwards
in order to facilitate acceleration of the hand, to keep it away from the slingshot range.

Retraction movements have been studied from the traditional perspective of motor
control, with sensory information together with self-intention leading to a motor action
via a planning process [68]. The overall success demonstrated by our participants to
deal with a task that requires a prompt and explosive reaction shows how such complex
action needs to be planned in advance. While the planning phase is fundamental in
similar tasks, continuously shaping the withdrawal trajectory during the task is also
crucial, with results from a study that investigated object throwing [235] suggesting
that creating a timing window for determining tolerance for variability, and consequently
accuracy, requires shaping the arm trajectory not only before, but even after the critical
release moment.

To investigate whether and how the withdrawal strategy changes when humans are
subject to uncertainty, a condition where participants were informed that the obstacle
may or may not be present behind them was introduced. They were made explicitly
aware that the chance corresponded to a 50 % probability. Specifically, results were ex-
amined to ascertain whether humans adopt a conservative strategy and plan the move-
ment according to the worst-case scenario (i.e. close condition), or they rather take
risks and behave more similarly to the away condition, in the attempt to save the men-
tal workload required for planning a more constrained, demanding movement. Mental
workload was recently defined to include perceptual, motor and also cognitive compo-
nents [236], with anticipation of cognitive effort relying on the cortico-limbic network via
activation in the anterior cingulate cortex and the striatum [237]. In particular, results
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were expected to reveal a relatively more conservative strategy for participants who were
possibly presented with a painful obstacle behind them. Anticipation of pain, i.e. the
activation of mechanisms to prevent future harm by learning to recognize signals of im-
pending pain [238] prepares the organism for a potentially painful outcome, as pain can
be suppressed or enhanced by factors such as immediate threat and predicted reward
[239, 240]. While these physiological studies have explored the brain neural systems un-
derlying pain, and motivation, the experiment of this present work has investigated the
effect of pain anticipation on subjects’ decision-making from a behavioral standpoint.
In this, our findings reveal that humans always adopt a conservative strategy and plan
the movement according to the worst-case scenario, regardless of the painful or innocu-
ous nature of the obstacle. In contrast, a previous study [241] investigating the effect
of pain probability on human motor behavior during an exploration task showed that
the explicit probability that subjects may encounter an object does not influence their
approach speed when the object is innocuous, whereas the probability of encountering a
noxious object decreases their approach velocity. Crucially, it could be observed that the
speed of the reaching movement decreased gradually as the probability that the partici-
pants could encounter a noxious object increased, in a trade-off between safety and time
to complete the task. The difference between the results from these two studies could be
explained by the intrinsic task motivation in our present experiment, where the explicit
goal to avoid impact with the obstacle could have by far exceeded our subjects’ will to
modulate their motor behavior efficiently. Furthermore, although subjects could plan
the movement in advance, the impulsive and challenging nature of the motor task itself
could have allowed little cognitive resources for developing a trade-off like behavior.

Such a conservative approach was also likely to prevent participants from making
more errors under the condition of uncertainty, especially when the obstacle behind was
painful. While pain anticipation is generally associated with stress and correlates with
the degree of uncertainty [242] — and motor performance is known to depend on the
level of stress according to an inverse-U relationship [243] — the same error ratio was
recorded between the uncertain and the certain close condition.

The effect of introducing a painful obstacle was systematically studied by assigning
the participants of our experiment to two different groups, one of which executed the
experiment with an innocuous obstacle and the other one with a painful one, as in the
latter case collision triggered electrical stimulation. This painful event was meant to
introduce an additional layer of motivation. While subjects from both groups innocuous
and painful were asked to avoid impact with the obstacle behind them (i.e. they were
motivated by the definition of the task goal itself), the group painful was additionally
subject to the motivation of avoiding the electrical pain. It was found that, when the
impact with the obstacle is painful, success rate at elbow level increases. This is achieved
by controlling retraction more carefully, i.e. decreasing velocity and acceleration of hand
retraction. Furthermore, we modulate the elbow movement (i.e. we raise the elbow more
for the same extent of hand retraction) such that it is as far away as possible from the
obstacle. However, such strategy increases the chance to fail at hand level. The increased
failure ratio at the level of the hand for the close condition — only for the group subject
to the painful obstacle — is likely to be due to the attempt by participants to minimize
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hand retraction, thus avoiding collision with the painful obstacle. This strategy resulted
in over-minimization of hand retraction, thereby exposing them to the impact with the
slingshot mechanism.

These results indicate that, in contrast to what it could be concluded by observing
group innocuous alone, the twofold objective of avoiding both hand- and elbow-level
collisions could not be decoupled in the present task. Therefore, it is unlikely that a
subset of joints and movement range were primarily responsible for the completion of one
and the other goal, as is used to control complex robotic systems [244, 245]. Reducing
the number of elbow collisions at the cost of hand collisions could underlie hierarchical
processes [246], on the basis of which participants switched from one motor strategy to
another, given the perceived consequence of the immediate threats (i.e. pain at the hand
versus elbow). Although the neural correlates of pain and its effect on motor behaviour
under the scenarios presented to our subjects can only be reliably identified with pur-
posely designed versions of our experiment, literature suggests that neural control of
movement of higher vertebrates is organized into a distributed set of structures that are
both anatomically and functionally hierarchical [246]. Withdrawal from noxious threats
could be mainly driven by low-level controllers that function autonomously, whereas the
switch from one strategy to another could be regulated by higher-level control layers
[247, 248], and mediated by the activity of sub-cortical structures such as the basal gan-
glia, which have been proposed as motor program selectors among different modes of
coordinated behavior [249].

In summary, humans — when aware of the incoming threat — plan the retraction
movement and make use of the degrees of freedom of their upper limb in a highly
coordinated manner, adopting a conservative approach. Furthermore, introducing pain
at the elbow level as an extra layer of motivation does modify behavior. Specifically, the
tendency by subjects to reduce elbow collisions at the cost of hand collisions reveals our
inability to decouple the motor task, and underlies hierarchical processes. Such results
further reveal how humans prevent damage, pain and injury [231, 241], adding to our
fundamental understanding of motor control.
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First Law
A robot may not injure a human being or, through inaction, allow a
human being to come to harm.

Second Law
A robot must obey the orders given it by human beings except where
such orders would conflict with the First Law.

Third Law
A robot must protect its own existence as long as such protection
does not conflict with the First or Second Law.

—— Three Laws of Robotics, Isaac Asimov, Runaround, 1950 [250].





Part II

Protective robot reflexes
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Figure 3.7: Impressions from the work carried out in Part II.

Part II presents protective robot reflexes relating to research questions Q3 and Q4.
First, the foundations of soft robot control are summarized in Chapter 4 (which is part
of the publication in [251]). Chapter 5 introduces the artificial robot nervous system,
which is a human-inspired generalized reflex framework for soft robots. The content
of this chapter was published in [251, 252, 253]. Chapter 3 presents then superhuman
finger reflexes, which is part of the publication in [199]. All three chapters are briefly
summarized below, while Fig. 3.7 shows some impressions from these works.

Chapter 4: Foundations of soft robotics control This chapter provides an overview
of the fundamentals of soft robotics control in the context of this thesis. This includes
rigid-robot dynamics, joint-level impedance control and a momentum observer.

Chapter 5: Artificial robot nervous system (Q3) This work introduces the concept
of an artificial Robot Nervous System (aRNS) as a novel way of unifying multi-modal
physical stimuli sensation with robot pain-reflex movements. This work focus on the
formalization of robot pain, based on insights from human pain research, as an interpre-
tation of tactile sensation. Specifically, pain signals are used to adapt the equilibrium
position, stiffness, and feed-forward torque of a pain-based impedance controller. The
schemes are experimentally validated with the KUKA LWR4+ for simulated and phys-
ical collisions using the BioTac sensor.

Chapter 6: Superhuman robot reflexes (Q4) This work introduces novel human-
inspired robot reflex algorithms based on the aRNS framework and evaluates them with
a custom-developed robot finger testbed. While the human remained superior in tem-
perature reaction, touch reflex performance was superhuman with an unconventional
configuration of proprioceptive forces and link segment acceleration. It also shows that
the traditional tactile sensing or proprioceptive arrangements are suboptimal, though
having the potential to be superhuman.
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4 Foundations of soft robotics control
This chapter outlines the basics of soft robotics control concerning this thesis. Sec. 4.1
describes the robot dynamics, Sec. 4.2 a joint impedance controller, and Sec. 4.3 a mo-
mentum observer. Extended methods, such as the floating-base dynamics model, are
discussed in the following chapters.

4.1 Rigid body dynamics
The dynamics an n-DoF serial chain rigid robot in contact can be described in Lagrangian
form by

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ − τf + τext, (4.1)
where q, q̇, and q̈ denote joint angle, velocity and acceleration, respectively. Fur-
thermore, τ ∈ Rn denotes the actuator torques, τf ∈ Rn denote the friction torques,
M(q) ∈ Rn×n is the symmetric joint inertia matrix, C(q, q̇) ∈ Rn×n the Coriolis and
centrifugal matrix, g(q) ∈ Rn the gravity vector, and τext the external joint torques.
Let us consider a single-areal contact with associated contact Jacobian matrix Jc(q).
This maps the physically acting contact wrench Fext ∈ R6, which is caused by the local
compression and tensile stress distribution, into the respective external joint torques via

τext = J>c (q)Fext = J>c (q)
[
fext

mext

]
(4.2)

Throughout Part II, the unit collision direction uc of Fext and Jc is assumed to be
known. In general this information could be derived from various sources such as e.g.
proprioceptive information or suitable tactile sensors.

4.2 Joint impedance control
A joint-level impedance controller can be written as

τd = Kd(qd − q) +D(q)(q̇d − q̇) + τg(q), (4.3)

where Kd ∈ Rn×n, qd ∈ Rn, and q̇d ∈ Rn are the desired closed-loop stiffness and the
desired equilibrium position. The vector τg ∈ Rn denotes the gravity compensation
torque and D ∈ Rn×n the configuration dependent joint damping matrix

D(q) = A(q)DξKd1 +Kd1DξA(q),

where Dξ = diag
(

1√
2

)
∈ Rn×n is the desired joint damping ratio matrix. According to

[254], A(q) and Kd1 are defined by A(q)A(q) = M(q) and Kd1Kd1 = Kd.
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4 Foundations of soft robotics control

4.3 Momentum observer
The goal is to derive an estimate τ̂ext ∈ Rn of τext. To achieve this, the well-known
momentum observer in [136] can be deployed, which can be written as

τ̂ext = KO

(∫ t

0

(
τ − τ̂g − τ̂f − τ̂ext

)
dt∗ −M(q)q̇

)
, (4.4)

where KO = diag{kO,i} > 0 is the observer gain. The �̂ denotes the estimate of the
respective terms.
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5 Artificial robot nervous system

Physical human-robot interaction (pHRI) has become an increasingly major discipline in
robotics research. With regard to human safety, considerable research was carried out in
[255], [256] and the results reached real-world applications and international standards.
However, little effort was undertaken to ensure the robot’s own safety via appropriate
controls, and a systematic approach is still missing. For this, a robot needs to be able
to detect and classify unforeseen physical states and disturbances, rate the potential
damage they may cause to it, and initiate appropriate countermeasures, i.e., reflexes.
In turn, enhanced robot reflexes may improve human safety in case of human-robot
collisions. In order to tackle this demanding requirement, the human antitype serves as
inspiration, meaning that human pain-reflex movements are used for designing according
to robot pain sensation models and reaction controls.

5.1 Concept
In general, the schematic concept of a collision between any suitably controlled (via
the desired torque τd) robot and a collision object (mass mc, local radius rc) can be
described by its corresponding contact dynamics, see Fig. 5.1. In generalized coordinates,
the contact dynamics between a robot arm and a colliding object with state xc and its
derivative ẋc are determined by the robot joint configuration q, the joint velocity q̇, and
the external torque vector τext. This torque is caused by the contact wrench Fc or the
stress σc (single point contact) acting on the collision object and the robot, respectively.

robot contact collision
object

control
law

dynamics
c=

(Fc
σc

)

xc, ẋc
q, q̇

mc rc

τext

x, ẋ

τd

dynamics

Figure 5.1: Dynamics of a collision between a controlled robot and a collision object. © 2016
IEEE [251]

In order to rate potentially painful collisions and activate proper pain-reflexes, using
information about τext only may not be sufficient. Humans are known to utilize further
information, e.g., in terms of penetration depth δ or stress, into their controls, using the
multitude of information provided by the skin, and not only from their proprioceptive

61



5 Artificial robot nervous system

torque measurement via the Golgi tendon organs. In this work, the goal is to enhance
robots with similar capabilities by introducing the concept of an artificial Robot Nervous
System that the HNS inspires. It enables a robot to not only sense but also to interpret
and react to “painful” collisions, see Fig. 5.2. The aRNS can be subdivided into four
major components: the nervous robot-tissue, the spiking model, the interpretation layer
of generated spiking signals, and the motor control law. In the following, each component
is separately elucidated, while the proposed control laws are introduced in Sec. 5.5.

robot contact collision
object

control
law interpret. spiking

model
robot
tissue

aRNS

x, ẋ

c=

(Fc

σc

)
xc, ẋc

contact state
aRN

dynamics
q, q̇

τd

mc rc

contextual information

τext dynamics

ψ =
[
δ T δ̇ T cT

]T

nervous

Figure 5.2: Collision between a controlled robot and a collision object including the aRNS.
© 2016 IEEE [251]

5.2 Virtual Nervous Robot-Tissue
A hypothetical nervous robot-tissue model is assumed that is inspired by the human skin
structure. In analogy to the human skin, the nervous robot-tissue into is split in three
distinct layers filled with artificial Robot Neurons (aRNs) that replicate the principles of
human receptors, see Fig. 5.3. The parameters b1,2,3 denote the thickness of each layer
and are set to b1 = 0.002 m, b2 = 0.004 m, and b3 = 0.014 m, resulting in a total tissue
thickness bt = 0.02 m. The contact with an object is described by the contact radius
d, the penetration volume Vc, and the object radius rc. The material constants E1,2,3
and ν1,2,3 represent Young’s modulus and the Poisson’s ratios. In this work, they are
chosen to be E1 = E2 = E3 := 50 MPa and ν1 = ν2 = ν3 := 0.25. E1,2,3 and ν1,2,3
correspond to polystyrene (soft) material that may be a suitable choice for a mechanical
implementation. Based on [257], bt is chosen to be thick enough to prevent the material
from full compression during contact events. b1,2,3 are chosen in terms of a scaled ratio
that approximately corresponds to the standard thickness ratio of human skin layers [91].
The parameters ρ1,2,3 represent the homogenous density of the aRNs and were chosen
to be ρ1 < ρ2 < ρ3 with ρ1 = 107 m−3, ρ2 = 1.05 · 107 m−3, and ρ3 = 1.1 · 107 m−3.
These density values approximately correspond to the density of the human fingertip
mechanoreceptors [258].1

This contact structure has two main properties. First, the deeper a collision object
penetrates the nervous robot tissue, the more stimulated aRNs. Second, when a collision

1For more details on suitable contact models, please refer to [257].
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b1
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b3

ρ1, E1, ν1

ρ2, E2, ν2

ρ3, E3, ν3

artificial Robot Neuron

1st layer

2nd layer

3rd layer

δ

collision object

(aRN)

bt

rcVc
d

Figure 5.3: Mechanical model of the proposed nervous robot-tissue. © 2016 IEEE [251]

object reaches the next tissue layer, the rate of stimulated aRNs rises. Note that the
distribution of aRNs does not necessarily reflect the distribution of human skin receptors.

5.3 Spiking Models

5.3.1 Principle aRN spiking characteristics

The aRNs reflect the essential function of human receptors. If the stimulus of human
neurons exceeds a certain threshold, they start to send spike-like signals. One spike
is constant at amplitude, duration, and refractory time, which denotes the duration
the receptor cannot fire again regardless of present stimuli. A significant amount of
information is thus encoded by changing the frequency of the firing rate. To imitate
such behavior, aRN firing can be modeled as a finite-state machine (FSM) consisting of
the three states idle-, firing- and rest-state, see Fig. 5.4.

firing

rest

∆t = ts

∆t = tr

ri = 1

ri = 0

idle
ri = 0

act = 0

∆t = tr

act = 0

act = 1

act = 1

∧

∧

Figure 5.4: Modeling aRN firing as a finite-state machine. © 2016 IEEE [251]

Initially, the aRN is in idle-state, i.e., in case of no contact (act = 0) leading to ri = 0.
Subscript i ∈ N denotes the individual aRN. If stimulation occurs (act = 1) the aRN
switches to the firing-state, i.e., it starts firing by setting ri = 1 for a fixed time duration
ts. Thereafter, it switches to rest-state. The output is then set to ri = 0 for the refractory
time tr, regardless of possibly present stimuli. After this silent period, the aRN switches
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5 Artificial robot nervous system

either back to firing-state (act = 1) or remains silent by switching to idle-state (act = 0),
depending on the stimulus. In the following, the aRN types modeled in this work are
outlined.

5.3.2 aRN types

Here, aRN types that respond to penetration depth, penetration velocity and compressive
stress, including their spiking models, are elaborated as they correlate with pain sensa-
tion as described in [259, 260].2 Each aRN type is assumed to be equally distributed
over the robot-tissue with according density ρ1,2,3, respectively. In addition to the “in-
stantaneous” aRN types, aRNs are introduced encoding the repetitiveness of contacts,
since it is known that this influences pain level as well [261].

5.3.2.1 Penetration depth spike train

Under the assumption that the higher the penetration depth δ, the more aRNs are
activated, the total number of activated aRNs r(δ) is

r(δ) =


V1(δ)ρ1 δ ≤ b1
V2(δ − b1)ρ2 + r(b1) b1 < δ ≤ bt2
V3(δ − bt2)ρ3 + r(bt2) bt2 < δ,

(5.1)

with bt2 = b1 + b2. V1(δ), V2(δ − b1) and V3(δ − bt2) denote the instantaneous effective
volumes that envelop the stimulated aRNs. Due to tissue compression, those aRNs that
were placed at penetration volume Vc (see Fig. 5.3) push against neighboring ones and
may stimulate them as well. Therefore, some affected aRNs lie outside the penetration
volume Vc. To take this effect into account, the instantaneous effective volumes are ap-
proximated to be cylindrical as a reasonable simplification. Accordingly, each respective
volume of layer i is obtained by

Vi(δ) = ∆δiπd2 = ∆δiπ
(
2rc∆δi −∆δ2

i

)
, (5.2)

where ∆δi is the penetration depth in layer i and d the radius of the cylindric volume
(see Fig. 5.3).

5.3.2.2 Penetration velocity spike train

The velocity-dependent spike generation is defined in a straight forward manner as the
absolute value of the first time derivative of penetration depth based firing

rv := |ṙ(δ)| . (5.3)
2This work adds penetration velocity, which obviously strongly correlates with potential danger, as an

important metric for an aRNS. It is anticipated that such a modality will become technologically
available.
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5.3.2.3 Compressive stress spike train

The stress-dependent spiking is computed as

p(σ) =


V1(δ∗)ρ1 δ∗ ≤ b1
V2(δ∗ − b1)ρ2 + r(b1) b1 < δ∗ ≤ bt2
V2(δ∗ − bt2)ρ3 + r(bt2) bt2 < δ∗.

(5.4)

Due to the physically decaying impact characteristics of pressure the effective penetration
depth δ∗ is introduced as

δ∗ :=
{
ceδ δ ≤ bt

2
bt

bt
2 < δ ≤ bt,

(5.5)

since not only the aRNs within the penetration depth δ are activated, but also significant
portions below. If ce ≈ 2 is chosen, then, as a result δ∗ covers 99 % of the impact decay,
i.e., the tissue stress has reduced to < 1 % of the maximum surface stress. In analogy
to (5.2) the instantaneous stress volumes are

Vi(δ∗) = ∆δ∗i πd2, i = 1, 2, 3, (5.6)

where ∆δ∗i is the effective penetration depth of layer i.

5.3.2.4 Repetitiveness spike train

The repetitiveness ξ is defined as

ξ :=
∫
tc
ξ̇ dt, (5.7)

where tc is the time instant at which the collision occurs. The repetitveness rate ξ̇ is
defined as

ξ̇ :=


aF (δ)δ̇ δ̇ > 0
−
∫
tv
ξ̈r dt δ̇ ≤ 0 ∧ ξ > 0

0 δ̇ ≤ 0 ∧ ξ = 0,

(5.8)

where a > 0 and ξ̈r > 0 are the growth and decay factors. tv denotes the time when
penetration velocity gets negative. The contact force F (δ) is assumed to follow Hertzian
theory, see [257].

Figure 5.5 depicts the sensory response of the nociceptive aRNs given the true com-
pressive stress σ under the following collision parameters. The contact occurs between
a 2-shell 1-DoF robot with mr = 4.5 kg, rr = 0.1 m and a 1-shell collision object with
mc = 4.5 kg, rc = 0.1 m at impact speed vc = 0.4 m/s. The robot is assumed to be at
rest and the object approaches at vc. After a single contact event a repetitive decaying
impact follows. The response of the respective aRN-type to penetration depth r(δ),
velocity rv, impact stress p(σ) and repetition frequency ξ are displayed. One can see
that each aRN type correlates with the respective (physical) modality.
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5.3.2.5 Implementation remarks

For convenience, a time discretisation t = kTs is introduced, with sampling time Ts and
time step k ∈ N, in the implementation. During the refractory time tr (see Fig. 5.4)
aRNs do not fire. Thus, the number of stimulated aRNs r(δ, kTs) in (5.1) reduces to
an effective number reff . This is the sum of aRNs currently being in firing-state. By
setting tr = ts = Ts the stimulated aRNs can be either in firing or silent mode for every
k. Consider the stimulated aRNs at time step k fire. Then they pause in time step k+ 1
and fire again in k+ 2 (assuming the stimulus is still present, i.e., act = 1, see Fig. 5.4).
The icrement of stimulated aRNs in time step k is therefore

∆ri(δ, kTs) = r(δ, kTs)− r(δ, (k − 1)Ts), i = 1, 2, ..., l, (5.9)

where subscript i is the incremental counter during contact. All ∆ri(δ, kTs) form the
elements of the stacked vector

∆R = [∆r1 . . . ∆rl]> ∆R ∈ Rl, ∆ri > 0 (5.10)

of length l that increases as long as ∆ri > 0. It follows that for even and odd time steps
one can separately compute reff as

reff (kTs) =


∑bl/2c
j=0 ∆R2j+1 k = 2m+ 1∑bl/2c
j=1 ∆R2j k = 2m

, m = 0, 1, 2, ... . (5.11)

If ∆ri is negative (∆r−i := ∆ri ≤ 0) the number of stimulated aRNs decreases. This
means that the object’s collision velocity turns into the opposite direction and thus
moves away from the robot. Therefore, ∆r−i is deleted from ∆R in reverse order such
that the aRNs stimulated last are deactivated first. Algorithm 1 shows the pseudo code
of this firing reduction algorithm.

Algorithm 1 Pseudocode for modeling firing reduction.
c = ∆rl + ∆r−l+1
while c ≤ 0 do

∆rl = 0
l = l − 1
c = ∆rl + c

end while
∆rl = c

5.4 Interpretation
In this work, robot pain is defined as the interpretation of spike trains generated by the
aRNs involving contextual information. Inspired by the human pain system, robot pain is
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5 Artificial robot nervous system

divided into four verbal pain classes: no, light, moderate, and severe pain. They represent
a simplification of the Verbal Rating Scale (VRS) of pain measurement in humans, see
Tab. 5.1. The first pain class contains no contact and contacts that are not painful, here
referred to as “soft contacts”. Consider, e.g., the robot fulfills a certain task such as
holding a desired configuration qd. Obviously, in case of no contact the robot shall hold
its position. In case of soft contact, the robot experiences an external torque τext that
results in a deviation from its desired equilibrium position qd. Since the contact is not
harmful the robot shall treat the contact as a disturbance, compensate for it, and focus
on the desired task. In the second pain class, such contacts occur that may harm the
robot or prevent it from performing the task. The robot “feels” uncomfortable and shall
smoothly retract until the contact event is over and return thereafter. Strong collisions

Table 5.1: Robot pain classes and corresponding reaction strategies. © 2016 IEEE [251]
Robot pain class Collision severity Strategy qd-adapt. Kd-adapt. τff -adapt.

I no pain no/soft contact fulfill task/compensate (5.14), with q̇p(kI
q) (5.17), with Kd(IK∗d ,kI

K) (5.19), with τff (kI
τ ,W > diag(0))

II light pain light smoothly retract (5.14), with q̇p(kII
q ) (5.17), with Kd(IIK∗d ,kII

K) (5.19), with τff (kII
τ ,W = diag(0))

III moderate pain strong quickly retract (5.14), with q̇p(kIII
q ) (5.17), with Kd(IIIK∗d ,kIII

K ) (5.19), with τff (kIII
τ ,W = diag(0))

IV severe pain hard abort task n.a. n.a. n.a.

are covered in the third pain class. The robot “feels” moderate pain, shall quickly retract,
and more distant until the contact event is over. Then, it may move back towards qd.
The last pain class covers all contacts in which the robot may be damaged and thus
needs some sort of “help”. In order to prevent making the damage worse, the robot
switches to gravity compensation with additional damping for dissipation, improving
the safety of the robot and the environment by its strictly passive behavior. The desired
interpretation is realized by the control laws that are elucidated in the following.

5.5 Collision Control

5.5.1 Generalized Pain Spiking State

In order to involve the spiking signals into the overall control strategy, this work intro-
duces the generalized pain spiking state as

s = [p(σ) r(δ) rv(δ) ξ]> ≥ 0, (5.12)

which is defined as the stacked vector of all cumulated spike signals from Sec. 5.3.2. Note
that for a possibly real-world implementation of the aRNS using conventional sensors,
i.e., providing analog outputs, one can use this spiking state vector as an entry point
to incorporate those signals. For example, in this work, the BioTac analog outputs are
subsequently used to replace the cumulated spike signals, leading to a sensor-related
spiking vector sBT , see Sec. 5.6.2.
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5.5.2 Reflex Control Strategies

The proposed control strategy adapts the overall impedance and feed-forward character-
istics of a joint level impedance controller, as well as the reference trajectory based on
the Cartesian pain sensation and interpretation. This pain-based joint level impedance
controller is defined by

τd = Kd(s)(qd(s)− q) +D(q)q̇ + τff (s) + τG(q), (5.13)

whereKd ∈ Rn×n, qd ∈ Rn and τff ∈ Rn are the desired closed-loop stiffness, the desired
equilibrium position and the feedforward torque. They all depend on the generalized
pain spiking state s. The vector τG ∈ Rn denotes the gravity compensation torque and
D ∈ Rn×n the configuration dependent joint damping matrix

D(q) = A(q)DξKd1 +Kd1DξA(q),

where Dξ = diag
(

1√
2

)
∈ Rn×n is the desired joint damping ratio matrix. According to

[254], A(q) and Kd1 are defined by A(q)A(q) = M(q) and Kd1Kd1 = Kd.

5.5.2.1 qd-adaptation

Equilibrium position adaptation after the collision event, occurring at collision time tc,
shall cause faster evading from external contacts the larger s(t). After the contact, an
exponential recovery behavior towards the original equilibrium qd(tc) shall be achieved.
Specifically, the desired equilibrium position qd is adapted via

qd := qd(tc) +
∫
tc
q̇p(s) dt, (5.14)

where qd(tc) denotes the desired joint configuration at tc and q̇p is the pain reflex equi-
librium rate, which is integrated from collision time tc on. The generalized virtual pain
force fv is defined as

fv := (k>q s)uc, (5.15)

where kq > 0 is a gain vector. The pain reflex equilibrium rate is then obtained by

q̇p :=


J>c Fv := J>c [f>v 0]> s > 0

−sign{qd − qd(tc)}
∫
t′
q̈r dt s = 0 ∧ qd 6= qd(tc)

0 s = 0 ∧ qd = qd(tc),

(5.16)

where q̈r > 0 is the constant equilibrium recovery acceleration. t′ is the time at contact
loss.
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5.5.2.2 Kd-adaption

The stronger the stimulus, stiffness adaptation shall cause faster stiffness increase, while
after the collision recovery to the original constant reference stiffness K∗d > 0 shall be
moderately fast. For simplicity, the stiffness entries are chosen to be equal for all joints.
The desired diagonal closed-loop stiffness Kd > 0 is adapted by

Kd := K∗d + min
[
∆Kd,max,

∫
tc
K̇p(s) dt

]
, (5.17)

where K̇p is the pain stiffness rate. The stiffness increase (as reasoned in Sec. 5.5.3),
which is bounded from above by ∆Kd,max = Kd,max −K∗d , starts at tc. The according
stiffness adaptation rate K̇p(s) is defined as

K̇p(s) :=


diag(k>Ks) s > 0

−
∫
t′
K̈r dt s = 0 ∧Kd >K

∗
d

0 s = 0 ∧Kd = K∗d ,

(5.18)

where kK > 0 represents the stiffness rate gain vector and K̈r > 0 the constant stiffness
relaxation acceleration.

5.5.2.3 τff -adaptation

The feed forward torque τff is adapted according to the same principle as the equilibrium
position behavior. It consists of the pain reflex torque τp and the compensation torque
τcomp:

τff (s) := τp(s) + τcomp (5.19)
Let us start at the generalized pain force fp, which is defined as

fp := (k>τ s)uc, (5.20)

where kτ > 0 is the gain vector of the pain reflex torque. The pain reflex torque is then
obtained via

τp(s) :=


−J>c Fp := J>c [fp 0]> s > 0

−sign{τp}
∫∫

t′
τ̈r dt s = 0 ∧ τp 6= 0

0 s = 0,

(5.21)

where Fp denotes the pain wrench and τ̈r > 0 the constant pain torque recovery accel-
eration. The compensation torque is computed as

τcomp := W

∫
tc

(q − q(tc))dt, (5.22)

where W ∈ Rn×n represents a diagonal and positive definite gain matrix. Note that the
compensation torque does not depend on the spiking state vector s. It is only active in
the first pain class to compensate unintended (and painless) contacts.
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5.5.3 Pain Reflex Graph
Figure 5.6 illustrates the pain reflex graph. s1, s2 and s3 ∈ R4×1 (s1 < s2 < s3) are
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Figure 5.6: Pain reflex graph. © 2016 IEEE [251]

the vectors containing the thresholds for transitioning between pain states. Note that
the comparison with s takes place element-wise. Compressive stress spiking p(σ) is used
to evaluate when to switch to the next pain state. The variable pstate denotes the
previously active pain state. In the case of multiple contacts, the robot returns to the
nominal pain class only after fully recovering from the previous pain level. Controls do
not switch from higher to lower pain levels without completely recovering to the nominal
pain level first. Most noticeably, the equilibrium adaption qd is set to correlate with the
compressive stress that varies with the collision object shape. The stiffness adaption
Kd is connected to repetitiveness in order to be able to react to collision bursts faster.
The feedforward torque adaption τff changes with penetration depth and velocity aRN
spiking as a response to potentially painful collisions.

One can conclude, the higher the compressive stress, the more distant the equilibrium
point is set. The higher the number of contact repetitions, the stiffer the controls. The
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deeper and faster the collision object penetrates, the stronger the feedforward torque.
As the respectively growing intensities increase with the order of pain class according
to the gain vectors, the decaying rates decrease, i.e., the time of recovering grows with
the order of pain class. In pain class IV, controls are set to gravity compensation with
a constant diagonal damping matrix D > 0 only. Since fp in (5.20) depends on two
aRN types, the respective gain constants kτ ,2 and kτ ,3 are set such that they equally
contribute to the maximally possible pain force fp,max. Thus, the torque gain vector
becomes

kτ =



0

(2 rmax(δ))−1fp,max

(2 rv,max(δ))−1fp,max

0


, (5.23)

where rmax(δ) and rv,max(δ) denote the respective maximum spiking magnitude.

5.6 Results

In the following, the aRNS framework is applied to a 7-DoF light-weight robot and a
pneumatically actuated finger prosthesis testbed. Furthermore, based on the aRNS, a
humanoid reflex stack is proposed.

5.6.1 Parameter dependency of aRNS control laws

The parameter dependency of aRNS control laws is investigated during simulated single
and multiple collision event(s) between a 2-shell 1-DoF robot (mr = 4.5 kg, rr = 0.1 m)
and a 1-shell collision object (mc = 4.5 kg, rc = 0.1 m at vc = 0.5 m/s.3 The task of the
robot is to hold qd = 0 m at K∗d = 5000 N/m. Please note that for this one-dimensional
collision, q denotes the Cartesian position. The influence of the respective key parameters
is investigated regarding the equilibrium, stiffness, and feedforward torque adaption.

Figure 5.7 depicts the qd-adaptation during a single collision.
The top chart shows the collision’s stress spiking p(σ). In the middle plot, qd-

adaptation based on p(σ) and kq,1 from the gain vector kq is shown at fixed recovery
acceleration q̈r. Obviously, kq,1 can be used for varying the magnitude of the set point.
The lower chart shows the reverse case at fixed value of kq,1. This means that for a given
collision the distal response does not change, while the recovery acceleration q̈r varies,
allowing to influence the decay time before the robot proceeds with the task. In Fig. 5.8
the variation of stiffness rate adaptation is shown during repetitive contacts.

3The radii rr,c are equally chosen, since the used contact model is only valid for radii greater than the
contact radius d, see Fig. 5.3. Reasonable values are chosen for mr,c that correspond to typically
reflected mass values found during human-robot collisions [257].
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Figure 5.7: qd-adaptation for single contact for different kq and q̈r. © 2016 IEEE [251]

The top diagram depicts the repetitiveness spiking ξ. The middle and lower diagrams
show Kd-adaptation for different kK,4 at fixed recovery acceleration K̈r =const. (mid-
dle) and vice versa (bottom). The stiffness magnitude increases with the number of
contacts (indicated by ξ) at different rates depending on the particular choice of kK
until Kp,max = 5500 N/m is reached. When the contact event is over Kd recovers to
the nominal stiffness K∗d with K̈r. Figure 5.9 shows feedforward torque adaption for
rmax(δ) = 16, rv,max(δ) = 2200 s−1, and fp,max = 100 N.

The first and middle charts depict the penetration depth and velocity spiking r(δ) and
rv for three consecutive collisions. To separately emphasize the contribution of the two
spiking signals, only r(δ) is activated for the first collision. Only rv is considered during
the second collision, while the last collision shows the combined response. The decay
acceleration is set to τ̈r = 50 N/s2.

To sum up, the aRNS controller adaption can be separately set up for qs, Kd, and
τff , which should be done carefully, while considering the used robot, its task, and
foreseeable environments.

5.6.2 Pain reactions on a 7 DoF robot arm

The pain-reflex control is experimentally demonstrated using a KUKA LWR4+ equipped
with the BioTac® sensor as an implementation of the artificial robot neuron concept.
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The sensor is mounted at the end effector, and pressure is induced by a human finger,
leading to the respective pain class and reflex reaction, see Fig. 5.10. The BioTac can
sense multiple modalities such as pressure, vibration, temperature, or spatial contact
forces. In this work, e.g., the pressure signal σBT is utilized as the cumulated spiking
signal adapting qd.

A counter realizes the repetitiveness spiking ξ with constant gradient and exponential
decay characteristics that is activated for σBT > 0, directly influencing Kd. The par-
ticular relation can be derived from (5.8) by replacing aFδ with Tinc = 0.1 and δ̇ with
σBT . In addition, the spiking state vector s in (5.12) is extended by the modality of
temperature sensing, utilizing the analog derivative of temperature TAC of the BioTac.4
Due to the larger time constants of temperature measurement, a separate temperature
pain class is introduced that is activated as soon as a threshold of H = 1920 kbits is
exceeded. Its formal definition and reflex behavior is equivalent to the other contact
classes. However, only two reaction classes are defined for this particular case. The
robot retracts with a change of 5 deg in every joint and waits for 4 s until recovery,
provided that TAC does not drop any further. These values were empirically found to
successfully avoid contact with a plastic cup filled with hot boiled water (ϑc ≈ 100◦C).

The cup was only slightly touched during the experiment to avoid unwanted retraction
due to pressure sensing. The spiking state vector used in the experiment is sBT =

4For more information about the BioTac and signal interpretation see [262].
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[σBT , TAC , ξ]> and the controller parameters can be found in Tab. 5.2. The equilibrium
position-related parameters are empirically chosen such that for the given contact events,
the robot does not violate a predefined workspace. Furthermore, the stiffness parameters
comply with the specifications of the KUKA LWR4+. The robot task is to maintain
qd = [0, 30, 0,−50, 0, 10, 0]> [deg]. In Figure 5.11 one can see an increase in desired
equilibrium position and a slight increase in stiffness for light pain. For moderate pain
one observes a reinforced version of light pain. Note that since the appropriate reflex
behavior in this particular experimental setup was mainly observed in axis 2 and 4,
the other traces are omitted for clarity. The corresponding gains were selected to be

Table 5.2: Gain vectors and parameters for collision between BioTac and human finger (see
Fig. 5.10). © 2016 IEEE [251]

pain class qd-adapt. Kd-adapt.
k>q [N - -] q̈r

[
rad
s2

]
kTK

[
- - Nm

rad·s

]
K∗d

[
Nm
rad

]
K̈r

[
Nm

rad·s2

]
I 0> 0 0> diag{500} 0

II [0.05 0 0]> diag{10−5} [0 0 60]> diag{500} diag{0.02}
III [0.075 0 0]> diag{5 · 10−6} [0 0 80]> diag{500} diag{0.02}
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5 Artificial robot nervous system

LWR4+

BioTac

Figure 5.10: Experimental setup consisting of KUKA LWR4+ equipped with BioTac sensor
and controlled by the aRNS. © 2016 IEEE [251]

larger, and the recovery rates decreased. The collision that causes severe pain represents
a special case where the controller switches to pure gravity compensation mode with
some additional damping, see Fig. 5.6. The pain controls are deactivated, and without
human intervention, the robot cannot return to the task. Most noticeably, the setpoint
adaption and stiffness rise until contact is lost during repetitive contacts. Finally, the
robot retracts to avoid more prolonged contact with a hot object for the temperature
reflexes.

5.6.3 Pain responses on a pneumatically actuated finger prosthesis testbed

This section shows possible reflex behaviors for blunt/sharp contacts as well as based on
proprio- and exteroceptive information for a simplified prosthesis, realized by a pneumat-
ically actuated and impedance controlled finger joint [263]. The reflexes are generated
using aRNS. The Biotac sensor serves as input for the exteroceptive reflexes, whereas a
joint momentum observer is used for proprioceptive reflexes.
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Figure 5.11: Physical collision for the KUKA LWR4+ equipped with the aRNS/BioTac and a
human finger that applies varying pressure. © 2016 IEEE [251]

Figure 5.12 shows the experimental setup of the antagonistic and pneumatically actu-
ated finger joint. A Biotac sensor is mounted at the fingertip, which is used for pressure
sensing. The system uses a cascaded joint-level impedance controller with underlying
piston-level force control (see [263].

The aRNS based joint-level impedance controller applied to the finger joint is defined
as

τd = Kd(s)(qd(s)− q) +Dd(q, s)q̇ + τff (s) + τg(q), (5.24)
with τd being the desired torque and τg the gravity compensation term. q, qd and q̇ denote
the actual, desired joint position and velocity. Furthermore, the stiffness Kd, damping
Dd, feedforward torque τff and qd can be adapted depending on the generalized pain
spiking state vector s = [σ, ξ] with ξ being the repetitivness rate. The contact pressure
is determined by

σ = max[σBT , c0τ̂ext], (5.25)
where σBT is the internal pressure value of the Biotac sensor and c0 being a scaling
factor. The external torque τext is estimated by a generalized momentum observer [264]

τ̂ext = KO

(∫ T

0
(τm −MjlCM cos(q)g − τ̂ext) dt− Jcq̇

)
(5.26)

where KO is the observer gain. The joint torque τm is measured by the pressure sensors
of the cylinders. Mass, inertia and center of gravity of the joint link are Mj, Jc and lCM.
In this work, only qd is adapted by

qd := qd(tc) +
∫
tc
q̇p(s1)dt, (5.27)
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Biotac pressure sensor

Finger

Tendons

Pneumatic cylinders

Figure 5.12: Experimental setup. © 2017 IEEE [253]

q̇p :=


−c1ls1 s1 > 0
−sign{qd − qd(tc)}

∫
c2dt, s1 = 0 ∧ qd 6= qd(tc)

0 s1 = 0 ∧ qd = qd(tc),
(5.28)

and Kd by
Kd := K∗d + min[∆Kd,max,

∫
tc
K̇p(s2)dt] (5.29)

K̇p :=


c3s2, s2 > 0
−
∫
c4dt, s1 = 0 ∧Kd > K∗d

0, s1 = 0 ∧Kd = K∗d

(5.30)

where c1−4 define constants, l is the center of collision, tc the time instant of collision,
K∗d the nominal and Kd,max the maximum stiffness.

Two experiments were performed. The first experiment investigates the reflex behavior
for blunt and sharp contacts, see Fig. 5.13 and Fig. 5.14a.

The blunt contacts represent nominal interaction behavior, i.e., no reflex is triggered.
In the case of sharp contacts, the finger follows the desired trajectory of the aRNS reflex
generator. Stiffness increases with the level of signal strength or repetitiveness (see also
Fig. 5.14b) that occur usually for highly accelerative motions.

The second experiment compares the aRNS based on exteroceptive (Biotac) and pro-
prioceptive (momentum observer) information. Here either the Biotac sensor or the
finger structure is touched. The fusion of the two signals is given by (5.25). Fig. 5.14
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(a) (b)

Figure 5.13: Contact types of the experiment shown in Fig. 5.14. (a) Sharp contact. (b) Blunt
contact. © 2017 IEEE [253]

shows corresponding experimental results. The aRNS was configured to adapt to stiff-
ness for the exteroception case only. It was chosen freely and be easily transferred to
proprioception as well.
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Figure 5.14: (a) aRNS reflex response for blunt and sharp contacts. (b) aRNS reflex response
based on extero- (Biotac) and proprioceptive (momentum observer) information.
© 2017 IEEE [253]
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5 Artificial robot nervous system

5.6.4 A proposal: Reflex stack for humanoids

The aRNS can also be extended to humanoid robots. For this, a humanoid reflex stack
is proposed, see Fig. 5.15.

task

soft none

light retract

moderate step
severe fall

collision severity reflex strategy

arms

torso

legs

left right

front

back

Figure 5.15: Humanoid reflex stack. © 2016 IEEE [252]

Contacts are classified by suitable algorithms into the classes soft, light, moderate and
severe. Note that other schemes are possible as well. In correspondence to these classes
and based on collision location and orientation, context-dependent reflex strategies can
be designed (see “reflex strategy” in Fig. 5.15).

The reflex movements are visualized using a dynamic simulation model of the Atlas
robot. Two examples of possible collisions and according to reflex movements at the
leg and the arm are shown, see Fig. 5.16. In Fig. 5.16a, one moderate contact at the
right knee results in a step to the left away from the contact direction. In Fig. 5.16b,
one light contact at the right lower arm leads to a retraction of the upper body and
weight-shifting to the left leg, away from the collision.

ℱ! ℱ!

(a) (b)

Figure 5.16: (a) Moderate collision at the right knee and according reflex reaction. (b) Light
collision at the right arm and according reflex reaction. © 2016 IEEE [252]
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5.7 Discussion

5.7 Discussion
This work enables soft robots to not only measure or estimate contacts but also to
sense and interpret them based on novel bio-inspired controls. For this, the concept of
an aRNS was developed, which architecture and basic functionality mimic its human
antitype. The concept is designed to unify different sensing modalities and let the robot
respond in a human-inspired way to perceived stimuli. Specifically, this work introduces
a sensory pathway from mechanical collision quantities such as contact forces and stresses
to arificial Robot Neuron firing caused by quantities such as penetration depth, contact
timing, and aRN density in the involved tissue layers. This concept makes it possible
to design new and interesting collision reflex reaction behaviors. Depending on the
spiking rate, the robot executes protective behavior of varying intensity as an escape
strategy before trying to re-engage into the previous task again. The aRNS framework
was experimentally validated using a 7-DoF light-weight robot and a pneumatically
actuated finger prosthesis testbed. Furthermore, a humanoid reflex stack was proposed
based on the aRNS.
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6 Superhuman finger reflexes for touch and
heat

In robotics, Asimov’s First Law states that “A robot may not injure a human being
or, through inaction, allow a human being to come to harm.” [250]. Recently, the
first robots were equipped with an engineered proprioceptive reflex system for estab-
lishing safe human-robot contacts [4][5] and left the safety cages even in the real world.
With the recent rise of artificial intelligence and sophisticated interaction control, more
than ensuring human safety alone becomes necessary and within reach. Robots need to
purposefully and sensitively interact with the world, including humans. In this sense,
Asimov’s Third Law states that “A robot must protect its own existence...” [250], sug-
gesting to give robots similar abilities to humans. In Chapter 5, the first artificial Robot
Nervous System [251] generating protective reflex motions for robots was introduced,
motivated by the human NWR. It proves that robots are in principle able to protect
themselves from physical sources of danger, such as high force or temperature, through
adequate artificial pain-induced retraction movements.

However, it remains unclear how such a framework should be parameterized and which
sensory configuration may, in the end, achieve superhuman performance. Therefore, to
develop novel human-inspired reflex capabilities to a full scale, it is essential to thor-
oughly understand the reflex mechanism of humans on an algorithmic and systemic
level. Thus, this work aims to answer the following research questions (Fig. 6.1b):

Are the insights from Chapter 2 transferable to robot reflexes and which spe-
cific sensory setup, ranging from traditional tactile (Method A) and proprioceptive
(Method B) to proprioceptive forces and link segment acceleration (Method C) is
performing best? (Q4)

The selection of sensors in Methods A, A2, and B is based on human models, e.g.,
touch and heat receptors in the skin, and position and torque sensors by means of
muscle spindles and Golgi tendon organs, respectively. Motivated by the human sense
of acceleration in the vestibular system, in Method C this concept is transferred to the
limbs by adding accelerometers to the link segments.

To address this research question (Fig. 6.1b), in this chapter novel human-inspired
reflex controls are designed based on the aRNS and considering the results from Chap-
ter 2. They are experimentally validated on a robot finger system, having similar inertial
properties to the human one for reasons of quantitative comparability.
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Figure 6.1: Protective reflexes in humans and robots. (a) Noxious stimuli are perceived by
a multitude of receptors in the skin, which are processed by the spinal cord
and brain and trigger protective reflexes via musculotendinous units (covered in
Chapter 2). (b) In this chapter, protective robot reflexes are triggered based on
tactile perception (Method A), proprioceptive forces (Method B), or propriocep-
tive forces with measurements of link segment acceleration (Method C). Method
A2 refers to robot temperature reflexes based on thermistor measurements.

6.1 From human to robot
Inspired by the results of the human finger reflex case study (Chapter 2) and building on
the idea of an aRNS framework (Chapter 5), this chapter introduces a human-inspired
robot reflex control system compatible with different sensory arrangements. Inspired
by the subject’s 5-phase reflex launch sequence (Chapter 2), this work introduces a
biologically plausible robot reflex response composed of

i) a short and instant feed-forward joint torque (corresponding to the MTR observed
in phase II in Fig. 2.3),

ii) a retraction equilibrium position adaptation (corresponding to the retraction ob-
served in phase IV in Fig. 2.3), and

iii) a recovery equilibrium position adaptation (corresponding to the recovering ob-
served in phase V in Fig. 2.3).

To maximize robot reflex performance, the “Hold” phase (cf. phase III in Fig. 2.3) was
removed. A custom-built, one degree of freedom (DoF) robot finger serves as a testbed
(Fig. 6.2a and Fig. 6.2b). Three sensory arrangements for reflexes elicited by the conical
frustum are emplyoed. They are based on tactile sensation (Method A), proprioception
in combination with a momentum observer (Method B), and proprioception with link
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6.2 Robot finger testbed

segment acceleration measurements (Method C) (Fig. 6.2c). The same tactile sensor as
in Method A is used to trigger temperature reflexes, which is referred to as Method A2
throughout this chapter (Fig. 6.2c). For methods Method A, B and C, the estimate
τ̂ext(t) (6.2) of the external torque above a constant threshold is considered to be harmful
to the robot (Fig. 6.2c). In Method A2, the measured temperature φ above a constant
temperature is considered to be harmful to the robot. Robot experiments were designed
in analogy to the human case study using the same experimental setup (Fig. 2.2a), except
that the robot finger substituted the human. A detailed description of the robot finger
testbed, the reflex control approach and the methods can be found in the “Materials and
Methods” section.

6.2 Robot finger testbed
6.2.1 Design
Figure 6.2a shows a schematic of the robot finger and the communication between its
components. The finger is composed of an integrated robot joint, a finger phalanx, a
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Figure 6.2: Robot finger testbed. (a) Schematic of robot finger testbed and communication.
(b) Physical system. (c) Control diagram.

tactile sensor, and an accelerometer. The robot joint integrates a servo motor ILM50x08
(TQ-System GmbH, Germany), which is connected to a 50:1 strain wave gear (Har-
monic Drive SE, Germany), a self-developed articulated joint torque sensor based on
strain gauges, and corresponding printed circuit boards (PCBs). Motor position is mea-
sured by a rotary absolute encoder AksIM-2 (RLS d.o.o, Slovenia). At the heart of
the embedded electronics is a Microchip ARM-cortex-M0+ microcontroller (Microchip
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6 Superhuman finger reflexes for touch and heat

Technology Inc., USA) that runs a closed-loop joint torque control at 8 kHz. The finger
phalanx is 3D printed, made of polylactic acid (PLA) filament, and carries a biomimetic
tactile BioTac sensor (SynTouch Inc., USA). This sensor is capable of sensing forces, mi-
crovibrations and temperature. Furthermore, an accelerometer BMI055 (Robert Bosch
GmbH, Germany) is firmingly attached to the side of the phalanx. It is configured to
measure accelerations up to ±2× 9.81 m/s2 at a sample rate of 1 kHz. A high-level joint
impedance controller is implemented on a real-time personal computer (Leader) that
communicates with the robot joint (Follower 1) via EtherCAT at 1 kHz (Fig. 6.2a). The
accelerometer (Follower 2) is also connected via EtherCAT. The BioTac’s software driver
provides the data at 100 Hz running with the Robot Operating System (ROS), which
is integrated into the real-time loop using a TCP/IP-based ROS-realtime interface. An
image of the physical robot finger is shown in Fig. 6.2b.

6.2.2 Rigid-body dynamics
The equation of motion of the fixed-base single DoF robot finger is

τ = Mq̈R + τg(qR) + τf(q̇R)− τext, (6.1)

where qR, q̇R, q̈R ∈ R are joint position, velocity and acceleration, respectively. Fur-
thermore, M = const. ∈ R>0 accounts for inertia, and τ , τg(qR), τf(q̇R) ∈ R are motor,
gravity and friction joint torque, respectively. The external torque is τext = J>c (qR)Fext,
where Jc ∈ R6 is the contact Jacobian and Fext ∈ R6 denotes the contact wrench.

6.2.3 Reflex control
To execute protective reflexes, novel human-inspired reflexes are introduced that build on
the general artificial Robot Nervous System (aRNS) framework (Fig. 5). While aRNS’s
mathematical framework is utilized, the sensory input and parameters inspired by the
human reflex study results are chosen. Concretely, the feed-forward joint torque and
equilibrium position of a joint-level impedance controller based on artificial pain sensa-
tion is adapted. Artificial pain is defined by the pain state vector s ∈ Rn, which is
also the input to the controller. This vector contains—depending on the robot sensory
configuration—n ∈ N+ usually physical quantities suitable to detect dangerous contacts
for the robot. Here, the estimate τ̂ext(t) of the external torque and the temperature φ(t)
above constant thresholds s0 ∈ R2 are considered to be harmful to the robot, and thus
define the pain state vector to be

s(t) =
(
τ̂ext(t) φ(t)

)T
. (6.2)

The artificial pain-based joint level reflex controller is defined as

τc(t) =K
(
qR,d − qR(t)

)
−Dq̇R(t) + τff(s(t)),

qR,d =
∫ t

0
p(s(t∗))dt∗ + qR,0 (6.3)
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6.3 Collision monitoring methods

where K, D ∈ R>0 denotes the desired joint stiffness and damping, respectively, and
qR,0 is robot’s position prior withdrawal. Damping is set to D = 0.7

√
4KM . The desired

equilibrium position qR,d is obtained by integrating the pain-driven speed

p(s) =


kT

q s s > s0

−sign
(
qR(t)− qR,0

) ∫∫
t bqdt∗ s < s0 ∧ qR(t) 6= qR,0

0 s < s0 ∧ qR(t) = qR,0,

(6.4)

where kq ∈ R2 is a gain vector. In a nutshell, the robot retracts the finger as a function
of s if s > s0 and returns to its initial position qR,0 at constant acceleration bq if s < s0.
In analogy to (6.4), the pain-driven feed-forward torque is defined as

τff(s) =


kT

ffs s > s0

−sign
(
τff,0

) ∫∫
t∗ bffdt s < s0 ∧ q(t) 6= qR,0

0 s < s0 ∧ qR(t) = qR,0,

(6.5)

where kff > 0 ∈ R2 is a suitable gain vector, bff > 0 is a constant and τff,0 is the feed-
forward torque at first time instant of s > s0. Eventually, the desired motor torque is
chosen to be

τd = τc + τ̂g(qR) + τ̂f , (6.6)
where τ̂g(qR) denotes the modelled gravity torque. Furthermore, frictional effects are
compensated using the friction observer in [265], whose output τ̂f is derived from the
motor speed θ̇ and corresponds to the low-pass filtered friction torque. Figure 6.2C
shows the overall control diagram.

6.3 Collision monitoring methods
In this work, the external torque is estimated or algebraically calculated for joint level
control based on tactile sensation (Method A), proprioception (Method B), and propri-
oception with link segment acceleration measurements (Method C).

6.3.1 Tactile sensing
In Method A, BioTac’s measured fluid pressure σBT(t) is used, which highly correlates
with contact force to estimated the external torque by

τ̂ext(t) =
(
kσσBT(t) + F0

)
l1, (6.7)

where the moment arm l1 ∈ R>0 (Fig. 6.2a), and the constant parameters kσ, F0 ∈ R
are determined in prior robot experiments. The same multi-modal sensor is also used to
trigger temperature reflexes based on the signal

φ(t) = φBT(t) + φ0, (6.8)

where the constant parameter φ0 ∈ R is determined prior robot experiments. φBT(t) is
measured by the BioTac and correlates with temperature. Throughout this work, the
temperature-based method is referred to as Method A2 (Fig. 6.2c).
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6 Superhuman finger reflexes for touch and heat

6.3.2 Proprioception

Method B is based on the momentum observer in ((4.4). In the single DoF case, this
observer can be written as

τ̂ext(t) = KO

(∫ t

0

(
τ(t∗)− τ̂g(t∗)− τ̂f(t∗)− τ̂ext(t∗)

)
dt∗ −Mq̇R(t)

)
, (6.9)

where KO > 0 is the observer gain, and τ(t) is measured joint torque.

6.3.3 Proprioception and link segment acceleration sensation

In Method C , the external torque is calculated based on a link segment accelerometer
attached to the robot finger phalanx (Fig. 6.2a). Considering the fixed-base system,
the Cartesian acceleration wa ∈ R3—expressed in world frame {w}—at sensor location
wr(qR) ∈ R3 can be decomposed into

wa =


0
0
q̈R

× wr(qR) +


0
0
q̇R

×



0
0
q̇R

× wr(qR)

 (6.10)

wa is calculated from sensor readings sa ∈ R3 by

wa = sRT
w(qR)

(
sa− sabias − sRw(qR)wg

)
, (6.11)

where the rotation matrix sRw(qR) ∈ SO(3) from {w} to sensor frame {s}, as well
as sensor bias sabias = const. ∈ R3 are calibrated by sinusoidal reference trials and
optimization prior experiments. By combining (6.10) and (6.11), one is able to obtain
q̈R from sa. Consequently, one obtains the estimate τ̂ext algebraically from (6.1), given
that τ̂g(qR), τ̂f , τ are known from the model, friction observer and joint torque sensor,
respectively. Eventually, the estimate τ̂ext(t) is denoised by applying a second-order
Butterworth low-pass filter with cut-off frequency 25 Hz.

6.4 Experimental protocol
Robot experiments were designed in analogy to the human case study (see Chapter 2).
The same experimental setup was used (Fig. 2.2a), except that the human was substi-
tuted by the robot finger. Only the blunt conical frustum (d = 1.6 mm) is applied
(to protect sensor’s skin) at Collision point 1 (Method A) and at Collision point 2
(Method B/C) with highest speed v = 0.1 m/s (Fig. 6.2a). This work distinguishes
between these two collision points as the tactile sensor is assumed not to be present
in Method B/C, and moreover, the sensor would change the contact dynamics. With
respect to the temperature reflexes (Method A2), the same metal cylinder was used as
in the human case study, heated to ϑ ≈ 55◦C at speed v = 0.1 m/s. The experiments
were repeated three times in a row for Method A, A2, B, and C, respectively.
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6.5 Performance metrics

Table 6.1: Human and robotic finger parameters. While the mass of the robot finger was
measured, the human finger mass density is estimated to be 1.09 g/cm3 [266]. The
parameters relate to finger phalanxes modelled as cuboids.

Length×Width×Height Mass Moment of inertia
[cm×cm×cm] [g] [kg cm2]

Human finger 9.5×2.1×1.8 39.1 1.19
Robot finger 12.5×1.78×1.78 55 58.66

6.5 Performance metrics

The performance of robot and human reflexes is compared based on three characteristic
time intervals: detection time ∆td, activation time ∆ta, and escape time ∆te. For the
human, the detection time is defined as ∆td := (tMTR− tc)/2 (tMTR refers to the start of
the muscle twitch excitation of the extensor muscle, cf. Phase II in Fig. 2.3). Activation
time is defined as ∆ta := (tr − tc) − ∆td, and escape time is defined as ∆te := t′c − tr
(time instants tc, tr, and t′c are illustrated in Fig. 2.3). For the robot, the detection time
∆td is defined as the time when the signal—the estimate τ̂ext(t) of the external torque
or the measured temperature φ(t) (cf. 6.2)—reaches six times the standard deviation of
its noise calculated in the time window t ∈ [tc − 100ms, tc]. The robot activation time
∆ta is defined as the time interval between contact detection and the first time instant
of positive actuation torque τc(t) > 0 (cf. 6.3). The robot escape time ∆te is defined
as the time interval between activation and contact loss. In the following, the reflexes
triggered by the conical frustum is referred to as mechanical/touch reflex, and the reflex
triggered by the heated cylinder as temperature reflex.

6.6 Results

6.6.1 Robot vs human: touch reflexes

To ensure comparability between the subject and robot finger, the robotic finger was
designed to approximately match the geometric dimensions and mass of the human
finger (Tab. 6.1). To compensate for any modeling errors in favor of the human, the
moment of inertia is larger for the robot (Tab. 6.1).

For all three Methods A, B and C, the reflex controller defined in ( 6.3) to (6.6) is used.
The reflex controller of the robot is configured in such a way that a mechanical reflex
is elicited if the estimated external torque τ̂ext(t) (6.2) exceeds the threshold s0,1 =
0.4 Nm, which corresponds twice the external torque experienced by the subject (i.e.
2FclH ≈ 0.4 Nm, where lH is shown in Fig. 2.2a). The control parameters are set to
K = 15 Nm/rad (6.3), kq = [800 rad/sNm 0 rad/s◦C]> and bq = 0.05 rad/s2 (6.4), and
kff = [25 0 Nm/◦C]> and bff = 100 Nm/s2 (6.5). A comparison of the reflex trajectories
between robot and human in terms of lowest activation time ∆ta unveils that the robot
reflexes are superior to the human mechanical reflex regardless of Method A, B, or C used
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6 Superhuman finger reflexes for touch and heat

(upper plot in Fig. 6.3a). For those trials, the maximum angular speed is slightly lower

Figure 6.3: Robot versus human protective reflexes. (a) Robot joint angle qR and human
joint angle qH of mechanical reflex with lowest activation time ∆ta (upper plot).
Time 0 s marks the start of contact. The median (solid lines) and the envelope of
maximum/minimum values (colored areas) of human and robot trials, respectively,
over an extended time period (middle plot). Mean of detection time ∆td, activation
time ∆ta, and escape time ∆te (bottom plot), which are defined in the text (see
“Performance metrics” section). (b) Same as in a but for temperature reflexes.

for the robot reflexes (Method A: q̇R,max = 5.95 rad/s, Method B: q̇R,max = 6.06 rad/s,
Method C: q̇R,max = 7.83 rad/s) compared to the human (q̇H,max = 8.02 rad/s). Note
that higher robot speeds can be easily achieved by increasing aRNS parameter gains, like
the finger retraction amplitude. Displaying the median (solid lines) and the envelope of
the maximum/minimum (colored areas) across all trials for each Method A, B, C and the
human underline that robot reflexes show superior performance and are more predictable
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compared to human (middle plot in Fig. 6.3a). The robot does not only show lower
activation time, but also lower detection and escape time (bottom plot in Fig. 6.3a).
Comparing Methods A, B, and C with each other based on the performance metrics
reveals that Method A has lowest detection time, and Method C lowest activation and
escape time (Table 6.2). Comparing the best mechanical reflex performance of the robot
(mean values in Tab. 6.2 highlighted in bold) with those of the human unveils that the
robot detects contact ≈ 5 times faster, activates withdrawal ≈ 15 times faster, and
escapes contact ≈ 3.5 times faster.

6.6.2 Robot versus human: temperature reflexes

Here, the reflex controller in (6.3) to (6.6) is applied. The reflex controller is configured
in such a way that a robot temperature reflex is elicited if the sensed temperature φ(t)
(6.2) exceeds s0,2 = 48 ◦C, which corresponds to the same temperature that triggered
a reflex in the subject (upper plot in Fig. 2.5a). The control parameters are set to
K = 15 Nm/rad (6.3), kq = [0 rad/s Nm 10 rad/s◦C]> and bq = 0.05 rad/s2 (6.4), and
kff = [0 0 Nm/◦C]> and bff = 0 Nm/s2 (6.5). A comparison of the reflex movements
between robot and human in terms of lowest activation time ∆ta shows that the robot
reflexes are inferior to the human temperature reflex (upper plot in Fig. 6.3b). Displaying
the median (solid lines) and the envelope of the maximum/minimum (colored areas)
across all trials for the robot (Method A2) and the human confirms that the robot reflexes
are inferior to the human (middle plot in Fig. 6.3b). Although the robot shows lower
detection and activation time, it is faster in escaping the contact (cf. ∆te in the bottom
plot in Fig. 6.3b, and Table 6.2). Also for the fastest trials (upper plot in Fig. 6.3b) the
maximum angular speed is higher for robot reflexes (Method A2: q̇R,max = 7.88 rad/s,
compared to human q̇H,max = 6.03 rad/s). Comparing the best temperature reflex
performance of the robot (mean values in Tab. 6.2 highlighted in bold) with those of the
human unveils that the robot detects contact ≈ 17 times slower, activates withdrawal
≈ 4 times slower, and escapes contact ≈ 1.8 times faster.

Table 6.2: Performance metrics. Mean and standard deviation of detection time ∆td, activation
time ∆ta, and escape time ∆te (definitions see “Performance metrics” section) for
human and robot trials. Lowest values are highlighted in bold.

Stimulus Method ∆td [ms] ∆ta [ms] ∆te [ms]

Conical
frustum

Human 31.42± 9.23 257.27± 174.96 76.27± 23.62
Method A 5.88± 3.84 23.00± 5.00 32.63± 0.25
Method B 11.50± 1.08 26.13± 1.93 23.12± 0.25
Method C 7.75± 1.32 16.38± 0.75 21.62± 0.75

Heated
cylinder

Human 55.90± 15.32 1415.70± 322.83 59.50± 15.86
Method A2 984.17± 398.20 5840.83± 673.68 33.17± 5.48
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6 Superhuman finger reflexes for touch and heat

6.7 Discussion
Inspired by the results of the human finger reflex case study (Chapter 2) and building on
the idea of an aRNS framework (Chapter 5), this chapter introduced a human-inspired
robot reflex control system compatible with different sensory arrangements. To compare
human and robot reflex performance,the human-inspired reflex controls were experimen-
tally validated on a robot finger system, having similar inertial properties to the human
one for reasons of quantitative comparability. This system was designed to match the
geometric and mass dimensions of the human finger. At the same time, the robot mo-
ment of inertia was even selected higher to ensure a rather conservative comparison.
Three sensory arrangements were investigated; two classical ones tactile sensation and
proprioception, as well as the rather unconventional one proprioception with link segment
accelerometer. Thanks to well-engineered robot sensors, low signal transmission delays,
and a high controller update rate, all methods turned out to be superhuman concerning
detection, activation, and escape time for the collisions with the frustums. Results also
show that in the case of temperature reflexes, the human is still superior to the robot in
terms of detection and activation time but has lower dynamics in escaping the threat.
This means that the robot’s mechanics showed higher performance but still lag behind
humans in sensing. However, equipping the robot with non-human-inspired temperature
sensors, such as thermal imaging cameras, could even improve sensory performance in
the future.
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Mechanical drawing of perhaps the first electrically powered hand prosthesis,
Ersatzglieder und Arbeitshilfen (Substitute Limbs and Work Aids) 1919 [160, 161].





Part III

Coordinated prosthesis control
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Figure 6.4: Impressions from the work carried out in Part III.

Part III presents novel coordinated upper limb prosthesis control schemes are relating
to research questions Q5 and Q6. Chapter 7 presents a database of human arm coor-
dination in everyday tasks, the content of which is published in [234, 267]. Secondly,
semi-autonomous controls are presented based on a custom developed exo-prosthesis
prototype Chapter 8, which is published in [268]. Thirdly, a more advanced synergy
complement control approach is presented in Chapter 9. This work is part of the pub-
lication in [269]. All three chapters are briefly summarized below, while Fig. 6.4 shows
some impressions from these works.

Chapter 7: Database of coordinated human arm motion (used in Chapter 9) This
chapter outlines the experimental design of a user study with healthy subjects. The goal
is to generate a database of human upper limb trajectories for daily life tasks to serve
the coordinated controls developed in Chapter 9.

Chapter 8: From sequential to coordinated control (Q5) In this work, the concept
of a semi-autonomous upper-limb exo-prosthesis is presented. The exoskeleton provides
the residual limb’s kinematic data to design more intelligent coordinated control con-
cepts. Here, in contrast to established standard sequential strategies, all joints are moved
simultaneously according to a desired task. In combination with an app-based program-
ming framework, task goals are set either via kinesthetic teaching or autonomously via
3D visual perception.

Chapter 9: Synergy complement control (Q6) Limb-driven upper-limb prosthesis
control promises to allow direct control solely by residual limb movements instead of un-
natural and complex to use muscle activation. In this work, human arm coordination in
everyday tasks (from Chapter 7) served the design of a novel control framework denoted
synergy complement control. It allows a prosthesis to complement residual limb move-
ments autonomously. Thus, the hybrid system naturally renders intended movements
for its carrier and adapts online to new tasks.
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7 A multi-modal database of human reach
and grasp tasks

This chapter outlines the experimental design of a user study with healthy subjects for
daily life reach and grasp tasks. These tasks were selected within the European Union’s
Horizon 2020 “SOFTPRO” project (No. 688857) consortium as a joint effort. The
resulting database serve the design of coordinated controls developed in Chapter 9.

7.1 Experimental procedures
7.1.1 Participants
The experiments were approved by the ethics committee of Leibniz Universität Hannover,
Germany, and were conducted with respect to the Declaration of Helsinki. Six healthy
human subjects (age: 30± 5.81, right-handed, male) participated in the experiments.

7.1.2 Design and protocol
The goal was to perform 30 daily-life table-top manipulation tasks involving upper-limb
movements (Tab. 7.1 and Tab. 7.2). These tasks were selected within the European
Union’s Horizon 2020 “SOFTPRO” project (No. 688857) consortium as a joint effort.
Each task was repeated three times in a row. The experiments took place in an elec-
tromagnetically isolated chamber to avoid disturbing signal interferences. The human
subject was seated upright on a stool in front of a table, without any fixation or con-
straints on any body parts. On the table various objects were located, see Fig. 7.1.
Motion trajectories, surface EMG, and scalp EEG were recorded simultaneously and
synchronized.

7.1.3 Apparatus
Motion Tracking A Vicon MXT10s (Vicon Motion Systems Ltd, UK) system was
used to capture the motion of the upper limb at 500 Hz. Essential markers were placed
on significant skin landmarks, see Fig. 7.2, while several redundant markers were used
to facilitate data postprocessing (not shown in Fig. 7.2 for simplicity). The Cartesian
positions of all m essential markers are gathered in a stacked vector xm ∈ R3m.

Surface Electromyography EMG was measured via a Refa system (TMSi, Nether-
lands) in a bipolar manner at 2 kHz. Following the SENIAM guideline [208], the mi-
croelectrodes were placed on the muscles that were palpated according to [16]. The
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7 A multi-modal database of human reach and grasp tasks

Figure 7.1: Schematic experimental setup. Numbers 0 – 8 refer to characteristic locations of
involved objects / tools. The camera, electrode and marker placement does not
correspond to the true positions and are only shown for clarity. © 2018 IEEE [234]

innervation zones were avoided if possible, see [270]. In total, 29 shoulder, arm and
forearm muscles were recorded, see Tab. 7.3.

Scalp Electroencephalography An actiCHamp active EEG electrode net of 32 unipolar
channels (Brain Products GmbH, Germany), was used at 10 kHz to record brain activity.
As already mentioned, the EEG synergy analysis is out of the scope of this work and
left for future work.
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7.2 Remarks

Table 7.1: The intransitive and transitive daily-life tasks, which were selected within the SOFT-
PRO project consortium as a joint effort. 0 – 8 denote locations illustrated in
Fig. 7.1. © 2018 IEEE [234]

No. Task Description

0 Initial Place the forearm on the table at approximately 0O with an open palm facing downwards
and relax, flex the elbow to ≈ 90◦. This posture defines the start and end posture of task
1 – 30.

In
tr

an
sit

iv
e

1 OK ges-
ture

Lift the hand from the table, and gesture an OK at the face height.

2 Thumb
down

Extend the arm along the sagittal plane, and direct the extended thumb downwards.

3 Exultation Extend the arm up in the air with a closed fist.
4 HitchhikingExtend the arm laterally in the frontal plane and parallel to the floor, with a closed fist

and an extended thumb.
5 Block

sun light
Bring the hand to the forehead, which should be touched by the thumb and the index
finger, and the palm faces downwards.

6 Hello
wave

Greet someone by waving hand.

7 Military
salute

Bring the flat hand to the head and keep the upper arm parallel to the floor.

8 Stop ges-
ture

Extend the arm along the sagittal plane and parallel to the floor, with an open palm facing
forward.

9 Pointing Extend the arm forward and point at something straight ahead with the index finger.
10 Silence

gesture
Bring the index finger on the lips, with the other part of the hand being closed.

Tr
an

sit
iv

e

11 Suit case Reach and grasp a small suitcase (placed at 1O along the frontal plane, weight 2.7 kg) from
the handle, lift it and place it on the floor close to the stool, along the sagittal plane.

12 Glass Reach and grasp a glass (0.17 kg, at 2O), drink from it for ≈ 3 s and place it back to 2O.
13 Phone

receiver
Reach and grasp a phone receiver (0.15 kg, 2O, along the sagittal plane), carry it to the
right ear for ≈ 3 s and place it back to 2O.

14 Book Reach and grasp a book (0.98 kg) on a shelf (between 1O and 2O, height: 61.6 cm from the
table), put it on the table and open it (from the right side to the left side).

15 Small
cup

Reach and grasp a small cup (0.17 kg, at 2O, the handle directs rightwards) from the handle,
drink from it for ≈ 3 s and place it back to 2O.

16 Apple Reach and grasp an apple (at 2O), mimic biting and put it back to 2O.
17 Hat Reach and grasp a hat (at 4O) from its top and place it on the head.
18 Cup Reach and grasp a cup (0.24 kg, at 2O) from its top, lift it and put it to 5O.
19 Tray Receive a tray (0.10 kg) from one-thirty (clock position) and place it to 2O.
20 Key Reach and grasp a key in a lock (at 2O, the key faces the subject), extract it (without

turning) from the lock and place it to 5O.

7.2 Remarks
This generated database is part of the publication in [267]. The data can be downloaded
together with the generated databases of the other project partners. In this disserta-
tion, this database is used for the design of the syngery complement control method in
Chapter 9. An analysis of kinematic and muscular synergies based on this database can
be found in [234].
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7 A multi-modal database of human reach and grasp tasks

Table 7.2: The tool-mediated daily-life tasks, which were selected within the SOFTPRO project
consortium as a joint effort. 0 – 8 denote locations illustrated in Fig. 7.1. © 2018
IEEE [234]

No. Task Description

To
ol

-m
ed

ia
te

d

21 Pour wa-
ter

Reach and grasp a bottle (at 6O, 500 mL full of water),
mimic pouring water into a glass (at 2O) for ≈ 3 s and
put the bottle back to 2O.

22 Smart
phone

Reach and grasp a smart phone (at 2O), unlock the
screen, dial number, and put it back to 2O.

23 Brush
teeth

Reach and grasp a toothbrush (at 2O, along the sagit-
tal plane), mimic brushing teeth along horizontal axis,
and put the toothbrush into a cylindrical holder (at
7O).

24 Laptop Reach for a laptop (between 2O and 3O) and open it
without changing its position; the left hand can hold
the laptop.

25 Pen Reach and grasp a pen (at 6O, along the sagittal plane)
and draw a vertical line from the top to the bottom on
the table.

26 Pencil Reach and grasp a pencil (at 6O, along the frontal plane)
and put it into a squared pencil holder (at 8O).

27 Tea bag Reach for a tea bag in a cup (at 2O), remove it from
the cup and place it on the table.

28 Open a
door

Reach for a door handle (at 2O, height: 24.5 cm from
the table) and grasp it with the whole hand, turn it,
open the door (extend the arm), and release the han-
dle.

29 Ball Reach and grasp a ball (at 2O), place it into a basket
on the floor (close to the stool).

30 Unscrew Unscrew a bottle (at 3O) using the right hand, while
the left hand is holding the bottle, and place the cap
on a shelf (between 1O and 2O, height: 61.6 cm from the
table).
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7.2 Remarks

Acromion

Epicondylus
lateralis humeri

Caput radii

Caput ulnaeCapitulum of
Os metacarpale III

Fossa jugularis
sternalis

Processus
xiphoideusT8

C7

Figure 7.2: The anatomical landmarks (blue spheres) that define the placement of essential
markers for motion tracking. © 2018 IEEE [234]
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7 A multi-modal database of human reach and grasp tasks

Table 7.3: List of measured muscles (IZ: innervation zone). © 2018 IEEE [234]
Muscles Subregions Abbreviation IZ avoidance

M. trapezius
Pars descen-
dens

TRPc X

Pars transversa TRPt X

Pars ascendens TRPa X

M. deltoideus
Pars clavicu-
laris

DLTc X

Pars acromialis DLTa X

Pars spinalis DLTs X

M. latissimus dorsi LTDt X

M. pec-
toralis

Pars clavicu-
laris

PMJc X

major Pars ster-
nocostalis

PMJs X

Pars abdomi-
nalis

PMJr X

M. biceps Caput longum BICl X

brachii Caput breve BICs X

M. triceps Caput longum TRClg X

brachii Caput laterale TRClt X

M. pronator teres PRNT X

M. flexor carpi radialis et
FCR probably not avoided

(if present) M. palmaris longus
M. flexor carpi ulnaris FCU IZ unknown
M. flexor digitorum superficialis FDS IZ unknown
M. flexor pollicis longus FPL IZ unknown
M. extensor digitorum EDT IZ unknown
M. extensor digiti minimi EDM IZ unknown
M. extensor carpi ulnaris ECU IZ unknown
M. abductor pollicis longus et

APL&EPB IZ unknown
M. extensor pollicis brevis
M. brachioradialis BRD X

M. extensor carpi radialis ECR X

M. abductor digit minimi ADM cannot be avoided
M. flexor pollicis brevis FPB cannot be avoided
M. abductor pollicis brevis APB cannot be avoided
M. interosseus dorsalis I DI1 IZ unknown
Electrocardiography ECG –
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8 From sequential to semi-autonomous
control

Semi-autonomous upper limb prostheses that can sensitively interact with their envi-
ronment are one of the main goals of current prosthetics research. Available, mostly
rigid upper-limb prosthetic devices allow affected persons to regain functional parts
of lost abilities, enabling them to grasp and manipulate again. However, upper-limb
state-of-the-art prostheses have rather low autonomy and are quite insensitive to the
environment from a haptic perspective. A major issue in terms of wearability is the
mechanical stump-prosthesis interface. For almost all available upper limb prosthetic
devices skin abrasions occur due to high loads on the residual limb. Furthermore, the
widely used sequential motion control in available prostheses is rather unintuitive and
difficult to use in contrast to the natural coordinated movement strategies of humans,
in which the joints of the limbs are moved simultaneously.

In robotics research, force and joint-torque controlled soft robots [271], which are
capable of sensitive and safe interaction with their environment, have advanced the
field of manipulation and interaction to a new level. This technology is regarded as
a key enabler for a new generation of sensitive and safe machines and allows for new
applications, including safe human-robot co-working [4].

In this work, the novel concept of semi-autonomous exo-prosthetics first introduced in
[129] together with a full dynamics model of this new system class is formally introduced.
An exo-prosthesis is defined as a unified hybrid between exoskeleton and prosthesis, see
Fig. 8.1. To minimize stump reaction forces, gravity effects of the prosthesis shall be
compensated via the exoskeleton part. Furthermore, the exoskeleton measures or at
least estimates position, velocity and acceleration of the human residual limb, which is
used to design more intelligent coordinated control.

An early robot-based prototype is presented, which consists of a newly developed
soft-robotics enabled 2 DoF transhumeral prosthesis and an exoskeleton substitute, a
joint level torque controlled lightweight robot. This intermediate step with a robot
as exoskeleton replacement enables the early validation of a simplified form of system
dynamics as well as the development of semi-autonomous control methods. The core
contributions are (see Fig. 8.1):

• Formal introduction of upper-limb exo-prosthetics with human embodied exo-
prosthesis dynamics model.

• Early robot-based prototype emulating several aspects of the future target system.
The prosthesis is designed according to a mechatronic low-cost and lightweight
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Figure 8.1: Towards a semi-autonomous exo-prosthesis system. © 2019 IEEE [268]

approach, equipped with soft-robotics key technologies such as flexible impedance
control.

• Semi-autonomous kinesthetic coordinated prosthesis control strategy. The kines-
thetic teaching can additionally be replaced by a visual tracking approach.

• First experimental evaluation of current exo-prosthesis system with an unimpaired
subject.

8.1 Methods

8.1.1 Exo-prosthesis

8.1.1.1 Exo-prosthesis dynamics

In this section, the dynamics formulation of the coupled exo-prosthesis system is in-
troduced, see Fig. 8.2. First, the dynamical description of the subsystems prosthesis,
exoskeleton and human are separately derived. Then, the state space representation of
the coupled system is formulated. Based on this, the simpler model of the intermediate
robot-based version is derived, see Fig. 8.2.

Prosthesis A rigid-body upper-limb prosthesis can be described as a floating base ar-
ticulated system. The n = nj + 6 DoF system configuration is represented by q =(
x>b q>j

)>
, where qj ∈ Rnj contains nj joint angles, and xb ∈ R6 denotes the base pose,
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Intermediate prototype
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Figure 8.2: Subsystems of exo-prosthesis and intermediate prototype. © 2019 IEEE [268]

expressed in world coordinates. The equations of motion are(
Mbb(q) Mbj(q)
Mjb(q) Mjj(q)

)
︸ ︷︷ ︸

M(q)

(
ẍb

q̈j

)
︸ ︷︷ ︸
q̈

+
(
cb(q, q̇)
cj(q, q̇)

)
︸ ︷︷ ︸

c(q,q̇)

+
(
gb(q)
gj(q)

)
︸ ︷︷ ︸
g(q)

=
(
bF P

H
τj,m

)
−
(

0

τj,f

)
+
(
bF P

E
0

)
+
(
bF P

ext
τj,ext

)
, (8.1)

where subscript “P” points to prosthesis related quantities, and the base and joint entries
are denoted with “b” and “j”, respectively. M(q) ∈ Rn×n denotes the floating base
inertia matrix, c(q, q̇) ∈ Rn the Coriolis and centrifugal forces and g(q) ∈ Rn the
gravitational forces. The system is driven by the joint actuator torques τj,m ∈ Rnj and
by the human residual limb interaction wrench bF P

H ∈ R6, see Fig. 8.2. Furthermore,
τj,f ∈ Rnj denotes the joint friction vector, bF P

E the exoskeleton interaction wrench, and
bF P

ext ∈ R6, τj,ext ∈ Rnj external wrench and joint torques, respectively.

Exoskeleton The floating-base configuration of a redundant exoskeleton in task-space
is represented by the state y =

(
y>b y>e

)>
, where yb ∈ R6 denotes the base position and

orientation, and ye ∈ R6 denotes the Cartesian end-effector coordinates. The floating-
base task-space dynamics [272] may be written with as(

Λbb(y) Λbe(y)
Λeb(y) Λee(y)

)
︸ ︷︷ ︸

Λ(y)

(
ÿb

ÿe

)
︸ ︷︷ ︸
ÿ

+
(
µb(y, ẏ)
µe(y, ẏ)

)
︸ ︷︷ ︸

µ(y,ẏ)

+
(
ρb(y)
ρe(y)

)
︸ ︷︷ ︸

ρ(y)

=
(

0
eFE

c

)
+
(
bFE

H
0

)
+
(
bFE

P
eFE

P

)
−
(

0
eFE

f

)
, (8.2)
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where subscript “E” points to exoskeleton related quantities, and the base and end-
effector entries are denoted with “b” and “e”, respectively. The Cartesian mass ma-
trix, the centrifugal and Coriolis terms, and gravitational forces are denoted by Λ(y) ∈
R12×12, µ(y, ẏ) ∈ R12, ρ(y) ∈ R12, respectively. The interaction wrenches eFE

c , b/eFE
P ,

bFE
H ∈ R6 correspond to the exoskeleton control input, the interaction with the con-

nected prosthesis and human, respectively, see Fig. 8.2. Friction forces are lumped as
eFE

f ∈ R6. Exoskeleton related wrenches b/eFE and velocities ẏb/e are expressed in the
frames associated with b / e, respectively.

Human residual limb The floating-base configuration of a human residual limb in task-
space is represented by the state z =

(
z>b z>e

)>
, where zb ∈ R6 denotes the Cartesian

base position and orientation, and ze ∈ R6 denotes the residual limb end-effector coor-
dinates. Similar to (8.2) the task-space dynamics can be written as(

Γbb(z) Γbe(z)
Γeb(z) Γee(z)

)
︸ ︷︷ ︸

Γ(z)

(
z̈b

z̈e

)
︸ ︷︷ ︸
z̈

+
(
ψb(z, ż)
ψe(z, ż)

)
︸ ︷︷ ︸

ψ(z,ż)

+
(
ηb(z)
ηe(z)

)
︸ ︷︷ ︸
η(z)

=
(
bFH

t
eFH

m

)
+
(
bFH

E
0

)
+
(
bFH

P
eFH

P

)
, (8.3)

where subscript “H” points to human related quantities, and the base and residual
limb end-effector entries are denoted with “b” and “e”, respectively. The Cartesian
mass matrix, the centrifugal and Coriolis terms, and gravitational forces are denoted by
Γ(z) ∈ R12×12, ψ(z, ż) ∈ R12, η(z) ∈ R12, respectively. eFH

m denotes human upper-
limb muscle forces, and bFH

t ∈ R6 denotes the human body wrench associated to the
torso, see Fig. 8.2. bFH

E , b/eFH
P ∈ R6 correspond to the interaction with the exoskeleton

and the prosthesis, respectively. Human related wrenches FH and velocities żb/e are
expressed in the frames associated with b / e, respectively.

Coupled system The bases of the exoskeleton and human are rigidly connected. The
prosthesis base is rigidly mounted to the end-effector of the exoskeleton. The exoskeleton
base frame is assumed to correspond to the human base frame, thus yb = zb. The
exoskeleton end-effector frame coincides with the prosthesis base frame, thus ye = xb.

The coupling between the human residual limb and the prosthesis base is approximated
by introducing a visco-elastic coupling (see Fig. 8.2)

eFH
P = Kv (ze − xb) +Dv (ẋb − że) , (8.4)

bF P
H = −eFH

P , (8.5)

where Dv, Kv ∈ R6×6 are the coupling damping and stiffness matrix.
Merging (8.1) to (8.5) lead to the hybrid exo-prosthesis system dynamics. The state

space equation with state vector ζ =
(
z>b z>e x>b q>j ż>b ż>e ẋ>b q̇>j

)>
is given

by (8.6).
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(8.6)

I denotes the identity matrix and

M∗ =


Γbb + Λbb Γbe Λbe 0

Γeb Γee 0 0

Λeb 0 Mbb + Λee Mbj

 .

Robot-based system In this work, the exoskeleton is emulated by a robot, see Fig. 8.2.
For now, the subsystems human and robot are assumed to have a fixed base, meaning
the human thorax and the robot base are fixed in space and are not able to move. The
prosthesis is assumed to have a floating base, however, its base is rigidly connected to
the end-effector of the robot and is therefore not completely free to move in space. For
sake of brevity, the robot base frame corresponds to the world frame, and the robot
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8 From sequential to semi-autonomous control

end-effector frame is defined to be the prosthesis base frame. For this new system the
reduced state vector is

σ =
(
z>e x>b q>j ż>e ẋ>b q̇>j

)>
,

and the rest of the model changes accordingly, cf. (8.6).

8.1.1.2 Experimental validation testbed

The exoskeleton replacement by a robot allows an early validation of a simplified system
dynamics as well as the implementation and evaluation of the semi-autonomous control
methods. Fig. 8.3 depicts the system architecture of the current prototype.

Figure 8.3: Intermediate prototype: semi-autonomous robot-based exo-prosthesis (left), and
mechatronic architecture of prosthesis (right). © 2019 IEEE [268]

It consists of a soft-robotics enhanced 2 DoF transhumeral prosthesis that is mechan-
ically mounted to the end-effector of an LWR III [121], emulating the future exoskeleton
in first approximation. This step is justified for two reasons. First, from a functional
point of view, both variants compensate the weight of the prosthesis and the user is
relieved from it. (Note here that in the robot-based version, the prosthesis weight is
transferred via the robot into the floor. In the future target system, the weight is di-
verted to the human body, and then into the floor, via the exoskeleton, see Fig. 8.2.
This more complex dynamics require further analysis.) Second, both provide informa-
tion about the position, velocity and acceleration of the human residual limb that can
be of further use. Clearly, several challenges such as careful weight balancing still have
to be solved on the way to a fully integrated, wearable exo-prosthesis system.

Transhumeral prosthesis design The design of the new 2 DoF elbow prosthesis follows
three main principles: use of light-weight materials, a modular mechanical structure and,
in terms of control, the extension of soft-robotics methods to the class of exoprosthetic
systems. However, note that the current prosthesis version is not yet fully optimized
and significant potentials for further weight reduction are possible.
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Mechatronic architecture Fig. 8.3 shows the mechatronic architecture of the prosthe-
sis. It can be separated into an actuated elbow- and forearm-joint, and a fixed wrist-joint.
A 2 DoF wrist is currently under development [273]. Both actuators (motor 1 and 2,
each max. 30 Nm) are equipped with joint-torque sensors for soft-prosthetics control,
including collision handling. An aluminium plate serves as the base of the system and
interface to the environment. For now, it is designed to be mounted to a LWR III that
compensates the prosthesis gravity forces. The used hand is an improved version of
the Dextrus Hand [274]. Finally, a 5′′-touch display grants the user access to a novel
app-based software system.

Software and communication architecture Fig. 8.3 depicts the overall software and
communication architecture. The software for the prosthesis including the user app
system runs mainly on a BeagleBoard-X15 [275] (based on a TI Sitara AM 5728 SoC,
integrating a dual-core ARM Cortex-A15 processor operated at 1.5 GHz). The high-
level user app interface is implemented using the Robot Operating System (ROS). The
low-level joint controller runs at 1 kHz in realtime using EtherCAT.

EMG interface The Myo armband [276] placed on the upper arm serves as EMG user
input and mainly measures the muscle activation of musculus biceps brachii (BIC) and
musculus triceps brachii (TRI). Four upper arm muscle gestures are trained using an
SVM with radial basis kernel function, see Table 8.1.

Table 8.1: Trained gestures using the Myo armband. © 2019 IEEE [268]
gesture state gs muscle contraction

0 arm relaxed
1 BIC contracted
2 TRI contracted
3 BIC+TRI contracted

Prosthetic app interface The prosthesis is equipped with a touchscreen that grants
the user access to a variety of apps. In this work, three basic apps are introduced:
sequential control and two semi-autonomous power grasping apps that are fed either by
a) kinesthetically taught postures or b) 3D vision input.

Low-level control This work focus on the control of the emulation system only. As a
preliminary solution, the robot shall compensate for the gravity of the prosthesis while
the prosthesis is equipped with compliance control fed by trajectories, see Fig. 8.4.

Robot control One goal of the exoskeleton (or robot) is to compensate gravitational
effects of the prosthesis to release the human residual limb. Therefore, the robot control
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Figure 8.4: Block diagram of the intermediate exo-prosthesis system with semi-autonomous
coordinated control. © 2019 IEEE [268]

input in (8.2) is chosen to be

eFE
c = eF̂E

f + ĝb(q) + ρ̂e(y), (8.8)

where the accent ˆ denotes the model of the corresponding term. Assuming c� g and
µ� ρ, the terms ĉb and µ̂e in (8.1) and (8.2) are neglected for simplicity.

Prosthesis impedance control The compliant behavior of the prosthesis is rendered
by a joint level impedance controller with feed-forward control

τj,m = K(qj,d − qj) +D(q̇j,d − q̇j) + ĝj(q) + ĉj(qj, q̇j)
+ M̂jj(qj,d)q̈j,d + τ̂j,f(q̇j), (8.9)

where K ∈ Rnj×nj is the desired joint stiffness matrix. The damping matrix D ∈ Rnj×nj

is calculated according to the factorization damping design approach from [254]. The
gravitational, Coriolis, inertial and friction effects ĝj, ĉj, M̂jj and τ̂j,f are compensated
using identified model data to ensure good tracking of the desired trajectory qj,d, q̇j,d
and q̈j,d.

8.1.2 Prosthetic user apps

A prosthetic user app generates task-dependent velocity profiles based on different meth-
ods such as kinesthetic teaching, 3D object tracking or sequential control, driving the
compensated prosthesis. The desired joint velocity q̇j,d in (8.9) is selected from na tasks
via

q̇j,d = S
[
q̇>j,d,1 . . . q̇>j,d,na

]>
, (8.10)

where S ∈ Rnj×(nanj) is the app selection matrix. The desired velocity provided by the
ith app is denoted by q̇j,d,i.
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8.1.3 Sequential velocity control
This control mode was implemented for comparison. It integrates the desired velocities
driven by the EMG system by

q̇j,d,3 := s>q̇j,d,max vemg, (8.11)

where q̇j,d,max is the constant maximum link velocity vector. However, only one joint
j ∈ [1, ..., nj] is moved at the same time, which is selected by the nj-dimensional uni-
tary selection vector s. The user may switch between individual joints by executing a
predefined EMG gesture (contracting both BRI+TRI, see gs = 3 in Table 8.1). The
normalized EMG-driven velocity is defined as

vEMG = max(min((pBIC − pTRI)c0, 1),−1) ∈ [−1, 1], (8.12)

where pBIC/TRI denote the respective logarithmic probability of the BRI and/or TRI
being classified as contracted. These probabilities correlate with the EMG activation
level, assuming fully contracted muscles during gesture training phase. For example, if
the user starts to contract BRI (gs = 1) a positive analog signal vemg is generated. If
the user contracts TRI (gs = 2), vemg gets negative. c0 ≈ 1

5 is an empirically determined
scalar value used to normalize the logarithmic probabilities to 1. The sequential control
mode serves as reference to evaluate the coordinated control scheme introduced next.

8.1.4 Velocity control based on kinesthetic teaching
In the first approach the user kinesthetically teaches two target poses xe1 and xe2 for a
reaching task. The controller is designed to stabilize the target pose and reject human
movement disturbances that do not match the task to be executed. Noticeably, instead
of moving joints laboriously and counter-intuitively in a sequential fashion, the system
is now able to smoothly transit between changing goal configurations through activating
discrete EMG gestures. This means, the user can toggle between xe1 and xe2 by acti-
vating muscles according to gs = 3, see Table 8.1. The transition is realized by simple
position and orientation error integration. Starting from the differential kinematics

ẋe = Jg(qj)q̇j =
(
Jt

Jr

)
q̇j, (8.13)

where xe ∈ R6 is the pose of the prosthesis end-effector. The geometric Jacobian Jg
can be split into a translational and rotational part such that Jg = [JT

t JT
r ]T. The

differential inverse kinematics results into

q̇j = J−1
g (qj)ẋe = J−1

g (qj)
(
ṙe

ω

)
, (8.14)

where ṙe and ω denote the Cartesian translational and angular velocities. The proposed
coordinated prosthesis velocity control law is

q̇j := J#
g (qj)

(
∆re

m

)
, (8.15)
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where J#
g (qj) is the Moore-Penrose-Inverse of the Jacobian. The position error ∆re =

re,d − re (where re,d denotes the kinesthetically taught position) of the prosthesis end-
effector is interpreted as the incremental desired Cartesian velocity. m is the Cartesian
moment necessary to achieve a desired orientation [277]. Note that the pseudo-inverse
is generated from (

∆qj,t

∆qj,r

)
=
(
J#

t ∆re

J#
r m

)
. (8.16)

Finally, the desired velocity becomes

q̇j,d,1 := ∆qj,t + ∆qj,r. (8.17)

This motion law regulates the prosthesis end-effector to point to the originally taught-in
pose xe1 or xe2.

8.1.5 Velocity control based on 3D vision
In addition, the permanently kinesthetically programmed poses (see Sec. 8.1.4) can be
replaced by the visual tracking of objects. Prosthesis servo control could regulate the
optimal grasping pose based on image data.

In this work, the stereo camera Duo3D M [278] was utilized, see Fig. 8.5. The im-
plemented 3D vision pipeline segments point clouds in regions of interests. Then it
classifies these regions against a set of pre-trained objects. If an object is found, the

region
x
y

Prosthesis with 3D camera Camera view

Duo3D M

Figure 8.5: Prosthesis equipped with 3D camera (left) and exemplary result of a detected coffee
mug via the vision pipeline (right). © 2019 IEEE [268]

pipeline continuously provides the feature vector

f :=
(
crT
o θuT κ

)T
, (8.18)

where cro is the translational and the θu the rotational part of the object location in
camera coordinates, see Fig. 8.5. κ is the classification confidence. A more detailed
description of the developed 3D vision pipeline lies outside the scope of this work.

114



8.2 Results

Figure 8.6: Experimental task sequences: Start (left), grasp bottle (middle), lift up and take
bottle. © 2019 IEEE [268]

For visual tracking the position-based visual servoing approach (PBVS) from [279] was
used. The control law expressed in camera space is defined as vc = −ΩL#e, where vc
denotes the desired camera velocity, L# is the Moore-Penrose-Inverse of the interaction
matrix, Ω the control gain matrix and e the control error. The control law becomes

vc = −Ω

(
(cro,d − cro) + (θ − θd)[cro]xu

(θ − θd)u

)
, (8.19)

where [cro]x is the skew-symetric matrix representation of cro and θdu the desired orien-
tation. The control gain matrix is defined as Ω = diag(γT

t γ
T
r ), where γt = γtκ(1 1 1)T

and γr = γrκ(0 0 1)T. γt/r denote constant positive gain parameters. Segmented objects
with larger κ have a more reliable pose estimate, avoiding tracking of weakly classified
objects. Finally, desired joint velocities simply become

q̇j,d,2 = J#
c vc. (8.20)

8.2 Results
For first evaluation of the semi-autonomous controls based on the intermediate prototype,
a basic reaching grasping task was conducted with one male healthy subject (age 30).
All human experimentation was conducted in conformity with the Helsinki Declaration.

Experimental protocol The experimental task is composed of three steps, starting from
a predefined initial configuration: 1) grasp a bottle that is placed on a table in front
of the subject, 2) lift up the bottle and 3) take the bottle with the right hand, see
Fig. 8.6. The task is executed in three setups: A) without prosthesis (for reference),
with the proposed exo-prosthesis prototype in B) sequential and C) coordinated (based
on kinesthetic teaching) control mode. Eight trials were conducted for each setup. The
EMG interface was used with the exo-prosthesis prototype in both control modes. In
addition, the app-interface was used to kinesthetically teach the grasp bottle and take
bottle pose, see Fig. 8.6. During task execution, the subjects were seated. Prior to the
experiment, the subject had only very little experience (≈ 10 minutes) with the system.
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Figure 8.7: Experiments with an unimpaired subject, and 3D vision controller performance
during tracking of a coffee mug. © 2019 IEEE [268]

Research question and evaluation metrics Specifically, this work attempts to answer
the question whether the coordinated control strategy helps to reduce the level of user
guidance difficulty and increase the speed in contrast to classical sequential control. Five
metrics are used to evaluate the system and help answer the question:

• Task Completion Time (TCT)

• Number of Discrete User Actions (NDA)

• Comfort Level (CL)
Scale: very uncomfortable (1) to very comfortable (10)

• Intention Recognition Level (IRL):
Scale: inadequate (1) to very good (10)

• Difficulty Level (DL)
Scale: very easy (1) to very difficult (10)

After each trial, the subjects were asked to rate these metrics on a scale, see Fig. 8.7.
The orientation θ for a randomly moved coffee mug is shown in Fig. 8.7 (bottom-right).

The overall tracking performance is also shown in the video attachment.

8.3 Conclusion
This chapter presented the concept of semi-autonomous soft-robotics based exo-prosthetics
based on [129], which aims at leveraging the advantages from the different disciplines
and mark a step towards next-generation intuitive-to-use upper-limb prosthetic systems.
For this system class the full hybrid human-exoskeleton-prosthesis dynamics model was
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formulated. A robot-based prototype was built to enable early implementation and ex-
perimental validation of basic semi-autonomous controls. The fully integrated target
system can be designed and built. So far, the developed controls are either based on
kinesthetic teaching or visual tracking. First experiments underline that the proposed
coordinated control algorithms significantly improve the ease of use in solving basic
reaching and grasping tasks. In future work, a highly integrated lightweight system, in-
cluding a fully integrated exoskeleton with evaluated mechanical interfacing concept will
be developed. Also, more comprehensive user studies over this wider set of coordinated
control laws, including the proposed vision controller, will be conducted. Additionally,
the system will be equipped with reflexive sensitive behaviors.
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9 Synergy complement control

Humans replaced lost or non-developed body limbs for millennia with technical coun-
terparts, namely prostheses. The presumably first powered upper limb prosthesis dates
back to a patent from Germany in 1915 [160, 161]. Since then, many powered mechanical
systems have developed for a broad spectrum of amputations degrees with continuously
improved mechanics. With the emergence of myoelectric upper limb prostheses around
1950 [162, 163, 164], significant efforts have been made to improve and enhance the
operability of such systems by myoelectric controls with sequential control as today’s
commercial standard [13, 280, 281, 282, 283, 284, 285]. It often involves a finite state
machine, allowing the user to select and control single joints at a time using direct
Electromyography (EMG)-based proportional control. Unused joints are locked, and
a muscle co-contraction incites switching to the next one [286]. However, due to the
limitations of myoelectric control, such as muscle fatigue, electrode displacement, diffi-
culties in decoding complex patterns or dealing with coordinated joint movements [14],
an interest in limb-driven control concepts emerged [187]. Here, the residual limb (RL)
movement rather than muscle activation measurements is used as a continuous control
input for the device. Several RL-driven methods exist for upper limb prostheses that are
still considered to be basic and primarily focus on simulation, virtual reality, or single
DoF elbow coordination (e.g., [188, 189, 187]). At its core, they share one fundamental
idea: simultaneously learn the coordination between the upper and lower arm for a wide
spectrum of possible motion variants from captured human movement examples (tem-
plates). For this, regression techniques are applied involving linear regression such as
Principal Components Analysis (PCA) [190, 187, 191] or non-linear regression such as
Artificial Neural Networks (ANN), Radial Basis Function Networks (RBFN), or Locally
Weighted Regression (LWR) [192, 193, 194, 187, 195, 191, 196, 197, 198, 189, 188]. How-
ever, the mapping between low dimensional upper arm movement and high dimensional
total limb movement is highly underdetermined. In addition, different lower arm mo-
tions should be possible even if the residual limb’s movement pattern is similar. Existing
methods cannot address this. Therefore, these methods output prosthesis motions that
are inaccurate, not smooth (jerky), are of unnatural shape, and often uncomfortably
delayed [187]; in sum, still quite far from solving the original problem. This complex,
high-dimensional coordination problem cannot be accurately solved by treating it as a
data-driven black-box problem. A further critical limitation of current approaches is
the lack of environmental context, leading to the inability to systematically deal with
changing tasks or targets. More context information and autonomy are required for limb-
driven methods to be useful for amputees. Therefore, a significant gap remains calling
for alternative methods [187]. This work presents the new RL-driven method Synergy
Complement Control (SCC) that inherently deals with complex multi-DoF motions and
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Figure 9.1: Workflow of proposed method in seven steps. The RL position l(t) = λ(m(t))–
which results from the muscle activation m(t)–drives the prosthesis motion p(ψ)
via the phase variable ψ.

changing tasks and target locations, and outputs RL-coordinated complementary pros-
thesis trajectories of human-like shape and are smooth and delay-free. Fig. 9.1 shows
the workflow of the SCC method. Throughout this work, a transhumeral amputation is
assumed (cf. step 2 in Fig. 9.1).

9.1 General framing

The SCC method is designed by framing a reach-and-grasp problem within a new dual-
task structure (Fig. 9.2). This hypothesis looks at the problem from a robotics task-space
perspective. The problem is divided into three phases (reach, grasp, and post grasp) and
into two sub-tasks, one performed by the arm and the other by the hand. While several
works consider only the kinematic and grasp force level, this work extends this idea to
include arm compensating forces. The arm reaches for the object (ẋarm = ẋreach), while
the hand prepares to grasp (ẋhand = ẋpre). Neither hand grasp forces (Fhand = 0) nor
arm feed-forward compensation forces (Farm = 0) are commanded, which are required
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Figure 9.2: Dual-task structure of reach and grasp task.

to compensate the object. After the hand grasped the object, it either holds (ẋhand = 0,
Fhand = Fhold) or manipulates (ẋhand = ẋman, Fhand = Fman) it. The arm performs
the task (e.g., lifting) (ẋarm = ẋtask) and compensates the object (Farm = Fcomp). This
work, however, focuses on a simplified version of the whole problem, namely arm reaching
movements. Arm compensating forces are neglected, while grasping is simplified to the
states “open” and “close”.

9.2 Concept

The concept of SCC can be explained in seven steps as shown in Fig. 9.1. In the first
step, a full hand-arm motion xH(t) for task T is obtained from experiments with unim-
paired subjects performing activities of daily living. In this work, two intransitive tasks,
in which subjects lifted their right arm to perform a “stop” and “block light source”
gesture, are considered. Furthermore, three transitive tasks that involved hand-object
interactions such as grasping an apple, a book, and a bottle are included. In the second
step, the intact motion xH(t) is subdivided according to the amputation level into xA(t)
and xB(t). Throughout this work, a transhumeral amputation is assumed. Thus, one
obtains a motion corresponding to the RL xA(t) and the corresponding synergy com-
plement xB(t). In the third step, motions xA(t) and xB(t) are scaled to the individual
cyborg resulting in the individualized motions xA,i(t) and xB,i(t). In the fourth step, the
individualized reference motion xB,i(t) is decoded into a phase-based prosthesis motion
program p(ψ) with ψ being the phase variable. For the specific implementation, dynamic
movement primitives (DMPs) are used (9.8)(9.10). A DMP is a system of differential
equations that can be used to model trajectories. Furthermore, ψ(t) is anchored to the
RL reference motion uref = xA,i(t) by sample-based allocation resulting in ψ(uref). In
the fifth step, the measured RL position u := l(m(t)) ∈ R3 (which is determined by
muscle activation m(t)) is online matched to the task-specific reference trajectory uref
and a continuous phase variable ψ(u) ∈ [0, 1] (9.15) is online generated. A value of ψ = 1
means that u corresponds to the start position of uref , whereas if ψ = 0 means that u
reached the end position of uref . The task-specific prosthesis motion program p(ψ) is
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now online generated using the DMP, where ψ is the input. Thus, p(ψ) is fully driven by
l(m(t)). The SCC method also enables seamless transit between tasks. In step six, the
user’s intention is decoded based on eye-tracking and motion-tracking measurements.
It outputs the intended task to be solved and also the goal pose related to the corre-
sponding object. If the user switches a task or goal, the corresponding reference motion
uref and DMP are loaded. In summary (step seven), this framework leads to a cyborg
movement xC(t) that corresponds to a natural synergistically coordinated movement of
an entire arm.

9.3 Methods

9.3.1 Synergy dataset

Human template motions are taken from the dataset presented in Chapter 7 [267]. This
dataset contains multi-modal measurements such as Cartesian marker trajectories of
shoulder-arm movements from six right-handed, male, and unimpaired human subjects
(age 30 ± 5.81). They performed 30 table-top activities of daily living (in [234] this
dataset is analyzed for kinematic and muscular synergies). This work considers two
intransitive tasks (no objects involved) and three transitive tasks (hand-object interac-
tions) for validation purposes. In the intransitive tasks, the subjects lifted their right
arm from a relaxed pose on the table to perform the daily-life gestures “Block light
source” and “Stop gesture”. The transitive tasks involve hand-object interactions such
as “Grasp an apple”, “Grasp a bottle” and “Grasp a book from shelf”. These tasks were
considered suitable to demonstrate the proposed method for two reasons. First, they in-
volve complex multi-DoF arm movements (including the upper arm, forearm, and wrist
rotation). Second, the prosthetic hand can grasp the objects (i.e., apple, bottle, book).

9.3.2 Participants

The experiments took place at the Munich Institute of Robotics and Machine Intelligence
of Technical University Munich (TUM). All experiments were conducted according to
the principles in the Declaration of Helsinki. The unimpaired subject and the amputee
gave their written informed consent prior to participating in the study. The amputee
was female and had a right-arm transradial arm amputation (>1 years).

9.3.3 Experimental protocol

Three experiments were conducted with the unimpaired subject denoted as (i) “reach
and grasp”, (ii) “inter-task transitioning”, and (iii) “goal change within a task”. A
brief training session was conducted before the start of each experiment. The first
experiment included the two intransitive and the three transitive tasks (see “Synergy
dataset” section). The experiment always started from the same pre-defined start pose
and ended as soon as the hand touched the object (transitive tasks) or reached the final
goal pose (intransitive tasks). Each task was repeated four times. The second experiment
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included the three transitive tasks with the following task sequence. Starting from the
initial pose, the user was instructed to (1) grasp the object, (2) return to the start pose
with the object in hand, (3) place the object back at its original place, and then (4)
return to the start pose. Each task was repeated four times. The third experiment
included an additional “ball grasp” task from the human synergy database. Three balls
of the same size were located at the default goal and two other locations. The user was
instructed to (1) look at a ball, (2) reach and grasp the ball, (3)put the ball into a ball
bucket and (4) return to the start pose. This experiment was repeated three times.

The experiment with the amputee was designed in analogy with the unimpaired sub-
ject’s “inter-task transitioning” experiment. However, two of the three transitive tasks
were implemented in VR. The amputee was instructed to follow the same task sequence,
repeating the experiment four times.

9.3.4 Exo-Prosthesis

The presented approach is experimentally validated on an exo-prosthesis system [129,
268] (Fig. 9.3a). In this work, our latest developed system is used. Briefly, the system
is composed of a three DoF exoskeleton, a four DoF prosthesis, and a prosthetic hand
(Fig. 9.3a). The exoskeleton—used to compensate the weight of the prosthesis—is car-
ried by the user, while the RL is mechanically fixed to it (see highlighted red-colored
part in Fig. 9.3a). In this work, the exoskeleton is used for three reasons: (i) com-
pensating the prosthesis dynamics, (ii) enabling accurate RL position sensing, and (iii)
helping the carrier to focus on the actual task. The novel prosthesis (blue colored in
Fig. 9.3a) includes elbow and forearm rotation, and a two DoF tendon-driven wrist for
flexion/extension and radial/ulnar deviation. To the end-effector of the prosthesis, the
SoftHand Pro is attached. This robust prosthetic hand is designed for grasping and soft
manipulation based on hand synergies [287]. Furthermore, a Myo armband (Thalmic
Labs Inc., USA) [288] serves as electromyographic user input to control the hand.

The human-coupled exo-prosthesis system can be described as a serial-chain floating-
base system such as

M(θ)θ̈ + c(θ, θ̇) + g(θ) = τm − τf + τext + J>c (θ)Fc, (9.1)
Fc = h(xl − xc, ẋl − ẋc), (9.2)

where θ = (x>b q>exo q>p )> denotes the generalized coordinates, and indexes “b”, “exo”
and “p” mark the base, exoskeleton and prosthesis entries, respectively. The base co-
ordinates xb = (r>b ϕ>b )> are composed of the Cartesian base position rb ∈ R3 and
the Euler angle base rotation ϕb ∈ R3. The joint angles of the 3 DoF exoskeleton
and 4 DoF prosthesis are denoted by qexo ∈ R3 and qp ∈ R4, respectively. The ma-
trix M(θ) ∈ R13×13 accounts for inertia. Coriolis and gravity effects are explained,
respectively, by c(θ, θ̇) ∈ R13 and g(θ) = (g>b (θ) g>exo(θ) g>p (θ))>, where gb(θ) ∈ R6,
gexo(θ) ∈ R3 and gp(θ) ∈ R4. Frictional effects are denoted by τf = (0> τ>f,exo τ>f,p)>,
where τf,exo ∈ R3 and τf,p ∈ R4. Commanded motor torques are denoted by τm,exo ∈ R3

and τm,p ∈ R3, while the exoskeleton base is mechanically fixed to the human torso,
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here expressed by the interaction wrench Ftorso ∈ R6. Such forces are summarized in
the vector τm = (F>torso τ>m,exo τ>m,p)>. External forces, except for the RL coupling,
are denoted by τext ∈ R13. The human RL is mechanically connected to the system at
xc ∈ R6 (cf. Fig. 9.3a) and the corresponding Jacobian is Jc(θ) ∈ R6×13. The RL pose
is denoted by xl = (l> ϕ>l )>, where l ∈ R3 is the Cartesian limb position and ϕl ∈ R3

is the Euler angle limb rotation. In this work, a very stiff connection between the RL
and the exoskeleton is assumed, thus xl ≈ xc. Note that the full human embodied
exo-prosthesis dynamics is given in [268].

9.3.5 Soft controller used with SCC
The prosthesis control law is defined as

τm,p = J>(q)
(
Kt(rP,d − rP)
J−>ω (ϕ)Krϕ

)
+Dq̇p + ĝp + τ̂f,p, (9.3)

where rP,d, rP ∈ R3 denote the desired and current Cartesian position of the prosthetic
hand (cf. Fig. 9.3b), respectively. ϕ ∈ R3 is the orientation difference in Euler angle
representation, and Jω ∈ R3×3 is the Jacobian between Euler angle velocities and an-
gular velocities [289]. The diagonal matrices Kt,Kr ∈ R3×3 denote the translational
and rotational stiffness matrices, respectively, and D ∈ R4×4 is the damping amtrix.
Furthermore, ĝp, τ̂f,p denote the estimates of gravitational and frictional effects.

The exoskeleton is used to compensate for its own weight as well as the weight of the
prosthesis. The feed-forward control law, applied to the exoskeleton part, is defined as

τm,exo = ĝexo + τ̂f,exo, (9.4)

where ĝexo and τ̂f,exo denote the estimates of gexo(θ) and τf,exo, respectively.
In the experiments with SCC, the exoskeleton is controlled in gravity compensation

mode (9.4), and the prosthesis follows the control law defined in (9.3). The control
parameters of (9.3) are empirically determined based on a full simulation of the exo-
prosthesis system. They are chosen to be Kt = 125 N/m I3×3, Kr = 25 N/rad I3×3,
where I3×3 ∈ R3×3 denotes a identity matrix.

9.3.6 EMG-based sequential control
For the experiments based on sequential control, a joint-level impedance controller is
applied, which is defined as

τm,p = Kj(qp,d − qp) +Dj(q̇p,d − q̇p) + ĝp + τ̂f,p, (9.5)

where Kj ∈ R4×4 and Dj ∈ R4×4 denote the joint stiffness and damping matrix, respec-
tively. The desired joint position is calculated as

qp,d =
∫
Kvs(j, gs) dt+ qp0, (9.6)
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Table 9.1: Gestures recognized by the Myo armband.
Gesture state Gesture

gs0 double tap
gs1 wave in
gs2 wave out
gs3 rest

where t denotes time, Kv ∈ R4×4 is a diagonal gain matrix, and qp0 = const. ∈ R4 is
the initial joint position. The i-th element of s(j, gs) ∈ R4 is defined as

si =


0 rad/s, i 6= j

+1 rad/s, gs = gs1 ∧ j = i

−1 rad/s, gs = gs2 ∧ j = i

0 rad/s, gs = gs3 ∧ j = i

, i ∈ {1, 2, 3, 4}, (9.7)

where the gesture gs ∈ {gs0, gs1, gs2, gs3} is derived from the EMG-interface (see Tab. 9.1
for a full list of gestures). Joint number j, which determines the manipulation of the
i-th element of s(j, gs), is the output of a state-machine. The user sequentially switches
through the joints via the EMG-interface by executing gesture gs = gs0 and then controls
its velocity by gestures gs = gs1, gs = gs2 or gs = gs3. Note that one further joint is
added to actuate the SoftHand Pro.

9.3.7 Human template encoding
For the specific implementation, the Dynamic Movement Primitive (DMP) framework
of [290, 291] is used to generate a desired position rd(t) ∈ R3 and orientation a(t)
(expressed as quaternion throughout this chapter) to feed the controller in (9.3). A
DMP is essentially a nonlinear system that, for the positional part, can be written as
[290]

r̈d = Ap(rg − rd)−Bpṙd −Ap(rg − r0)ψ +Apfp(ψ), (9.8)

where r0, rg ∈ R3 is the starting and goal position, respectively. The positive definite
and diagonal matrices Ap,Bp ∈ R3×3 denote stiffness and damping, respectively. A
forcing term is defined as

fp(ψ) =
∑
i Ωi(ψ)wi∑
i Ωi(ψ) ψ, (9.9)

where Ωi(ψ) = exp(−hi(ψ − ci)2) is a Gaussian function with hi, ci being its width and
center, respectively. The parameter vector wi ∈ R3 is learned for a desired trajectory
based on linear regression (cf. [290]). In this work, the hand position trajectories rB,i
of task T (rB,i is the positional component of xB,i in Fig. 9.1) are learned that were
extracted from the synergy dataset (see “Synergy dataset” section).
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A quaternion-based DMP, as for the orientation part, can be written as [291, 290]

ω̇ = 2Ao∆
(
log(ag ∗ ā)

)
−Boω − 2Ao∆

(
log(ag ∗ ā0)

)
ψ +Aofo(ψ) (9.10)

ȧ = 1
2∇(ω) ∗ a (9.11)

where the output orientation is expressed as the unit quaternion a = a0 + na1 +ma2 +
ka3, and 1, n,m, k denote the quaternion basis. The starting and goal quaternion is
denoted by a0 and ag, respectively. The positive, definite, and diagonal stiffness and
damping matrices are denoted, respectively, by Ao,Bo ∈ R3×3. ω ∈ R3 denotes angular
velocity, and fo(ψ) (cf. (9.9)) is a nonlinear forcing term. The operators �̄, ∗, log(·) and
exp(·) denote the quaternion conjugation, product, logarithm, and exponential function,
respectively. Furthermore, the following operators are introduced

∆(b) := (b1, b2, b3)> (9.12)
∇
(
z
)

= 0 +mz1 + nz2 + kz3 (9.13)

where b = 0 +mb1 + nb2 + kb3 denotes a non-real quaternion and z = (z1, z2, z3)>. For
the integration of (9.11) the following formula is used [291]

a(t+ δt) = exp
(1

2δt∇(ω)
)
∗ a(t), (9.14)

where δt denotes the time step. Corresponding to the learned position, the hand orien-
tation trajectory aB,i of task T is learned (aB,i is the orientation component of xB,i in
Fig. 9.1).

9.3.8 Phase variable decoding
The motion phase is obtained via the following optimization problem

ψ(t) = arg min
x
‖uref(x)− u‖2, subject to 0 ≤ x ≤ 1, (9.15)

where u := l(m(t)) ∈ R3 denotes the current RL position (as a result of muscle activation
m(t)) and uref := rA,i is the reference limb trajectory of task T obtained from the synergy
dataset (rA,i is the position component of xA,i in Fig. 9.1).

9.3.9 Intention decoding
9.3.9.1 EMG interpretation

For implementation purpose, the Myo armband [288], placed on the lower left arm, serves
as EMG user input and measures lower arm muscle activation via eight electrodes. This
work uses four built-in gestures (Tab. 9.1) to control the SoftHand Pro, and also to
realize the sequential control mode (see “Sequential control” section). The SoftHand’s
pose ρ ∈ [0, 1] (if ρ = 0 hand is opened, if ρ = 1 hand is closed) is controlled in analogy
to (9.6) and (9.7). Briefly, as long as gs1 is active the hand closes, and opens if the user
activates gs2, while the hand remains in the current position if gs3 is recognized. During
gesture execution, the elbow angle is positioned at 0 degrees.
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9.3.9.2 Gaze-object detector

The Euclidean distance between the i-th object and the object-related eye-focus is cal-
culated by

di(t) = ‖reye,i(t)− ro,i(t)‖2, (9.16)
reye,i(t) = reyeball(t) + ‖ro,i − reyeball(t)‖2egaze(t) (9.17)

where ro,i(t) ∈ R3 is the measured position of the i-th object, reyeball(t) ∈ R3 denotes
the measured position of the eyeball, and egaze(t) ∈ R3 is the measured gaze direction
vector. Object i is selected if di(t) < 5 cm. In this work, the object is only allowed to
be switched if ψ(t) = 1 (i.e. the RL is in the start position).

The motion capture system is utilized to also adapt the goal position of an object
online. The calculated goal position is

rg := rM +RMMrg, (9.18)

where Mrg ∈ R3 is the measured position of the object expressed in the motion capture
frame {M}. The position vector rM ∈ R3 denotes the base position of frame {M}
expressed in exo-prosthesis base frame, while RM ∈ SO(3) denotes its rotation.

Apparatus

A Dikablis eye-tracker (Ergoneers Group, Germany) was used to track eye movements of
the subject. A motion capture system with sixteen infrared Vicon Vero cameras (Vicon
Motion Systems Ltd, UK) tracked the Cartesian positions of passive reflected markers
at 200 Hz to track the position of the objects and subjects.

9.4 Results

9.4.1 Residual limb-prosthesis coordination

Figure 9.4 shows an image sequence with corresponding time series of the RL-prosthesis
coordination for an exemplar reaching template movement, which was computationally
designed. The time series is divided into six periods. In period I, the user is in the pose
and does not move (Fig. 9.4-I). In period II, the RL moves forward (cf. measured RL
position lx), while the phase variable ψ starts to drop. In consequence, the prosthesis
adapts its position py and orientation αx to follow the synergy complementary motion.
In period III, the user stops moving the RL, which causes ψ and, thus, py and αx
to remain constant (Fig. 9.4-III). It shows that the RL solely drives the prosthesis
movement. In period IV, the user continues to move the RL leading to a further drop
of ψ. Correspondingly, the prosthesis is lifted and rotated to finally reach the goal pose
in period V (Fig. 9.4-V). In contrast, the final configuration with SCC turned off is
shown in the top right image in Fig. 9.4. In period VI, the movement is reverted. The
RL moves backward, leading ψ to increase again, which drives the prosthesis backward
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to the initial configuration. Notice in period VI that the user pulls the RL beyond the
initial position. In this case, the phase variable remains at ψ = 1, ensuring that the
prosthesis remains in its initial position.

9.4.2 Reach and grasps tasks

The SCC method is demonstrated based on two pure reaching tasks (intransitive tasks)
(Fig. 9.5) and three reach and grasp tasks, which involve hand-object interaction (tran-
sitive tasks) (Fig. 9.6). All movements were learned from human templates.

Figure 9.5 shows an image sequence of the template movement and a corresponding
representative “cyborg” movement for each reaching task, respectively. The start pose
is shown in the first image, the finale pose in the third and the second images shows an
intermediate state. The goal of “Block light source” (Fig. 9.5a) is to protect the eyes
from the center light originating from direction o, while keeping a distance of ≈ 0.1m
from the face with the hand/prosthesis. This task is reliably executed with 100 % success
rate (4 out of 4 trials) close to average human speed (Fig. 9.10a).

The goal of “Stop gesture” (Fig. 9.5b) is to signal an agent who approaches at velocity
v to stop by extending the arm and presenting the palm in his direction. This task is
reliably executed with 100 % success rate (4 out of 4 trials) close to average human speed
(Fig. 9.10a). It shows that with the proposed SCC method, lost reaching abilities are
reliably recovered.

Figure 9.6 shows an image sequence of the template movement and a corresponding
representative “cyborg” movement for each reach and grasp task, respectively. The goal
of all three tasks is to reach and grasp the object, i.e., the apple (Fig. 9.6a), the bottle
(Fig. 9.6b) or the book (Fig. 9.6c) at location xg from direction o under the constraint
not to collide with the table. All three objects are reliably grasped with each 100 %
success rate (4 out of 4 trials) with the speed shown in (Fig. 9.10a). It shows that based
on the proposed SCC method, more complex grasping tasks are reliably recovered. The
accompanying video attachment shows the full experiment of representative trials.

9.4.3 Inter-task transitioning

Figure 9.7 shows the experimental setup, the task sequence, and time series for the inter-
task transition experiment. The “cyborg” is seated in front of a table on which three
objects, a book (Task 1), an apple (Task 2) and a bottle (Task 3) are placed and to be
grasped (same template motions as in Fig. 9.6 are applied). Eye-tracking glasses are
used to track the gaze, while a motion tracking system keeps track of the objects. The
user was instructed to grasp the objects in a freely chosen order by following the “Task
sequence” (see the lower box in Figure 9.7). The user can activate a Task-Transition-
Request (TTR) by looking at the desired object for 1 second. A TTR is only accepted
in this work if the RL is in the start position (i.e., phase variable ψ = 1). A valid TTR
triggers a Context Transition in which both (i) the task-related RL reference motion and
(ii) the task-related DMP with goal pose pg are loaded.
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The procedure is divided into five periods. In period I, the cyborg is in the initial
pose and does not move. He then moves his gaze on the book, which causes a TTR
for grasping the book. The corresponding RL reference motion and the DMP with goal
pose pg1 is loaded. In period II he reaches for the book causing the phase variable ψ
to drop, and the prosthesis to adapt its position py and orientation αx accordingly. In
period III, the user closes the prosthetic hand via the myo armband, which is attached
to his lower left arm (for more details, refer to the “Materials and Methods” section). In
period IV he returns to the start pose while holding the book with his prosthetic hand.
In period V he places the book back at its original location and returns to the start
pose to complete the task sequence. Next, he focuses on the apple, and the procedure
repeats. All three objects are reliably grasped following this sequence with each 100 %
success rate (4 out of 4 trials) with speed shown in (Fig. 9.10b). The results show that
the proposed SCC method allows users to transit between different tasks seamlessly.

9.4.4 Goal changes within a task

Figure 9.8 shows the experimental setup, the task sequence, and time series for this
experiment. The experimental setup remains the same compared to the inter-task tran-
sitioning experiment. Another human template motion is used in this experiment: a
ball is grasped from the table. The red colored ball is placed at the default goal xg,def .
The blue and yellow colored balls are placed at different goals xg1 and xg2, respectively.
The positions are measured by a motion capture system, and subsequently transformed
to the exo-prosthesis base frame (cf. (9.18)). The procedure is divided into five periods.
In period I, the cyborg is in the initial pose and does not move. He then moves his
gaze on the red ball, which causes a TTR. The corresponding RL reference motion uref
and the DMP with goal pose xg,def is loaded. In period II the user reaches for the red
ball causing the phase variable ψ to drop and the prosthesis to reach the default goal
position. In period III, the user grasps the ball with the prosthetic hand. In period IV
he places the ball in the ball bucket and then returns to the start position (period V).
Next, he focuses on the blue ball (located in the middle). The goal gets updated to xg1,
and the procedure repeats. It shows that the proposed SCC method generalizes to new
goal poses.

9.4.5 Pilot study with amputee

A pilot study with an amputee operating a fully operational digital twin of the prosthesis
with SCC in Virtual Reality (VR) is conducted in analogy to the “inter-task transition-
ing” experiment with the unimpaired subject. The amputee’s head, thorax, and arm
motions are tracked via the motion tracking system, while the VR headset track the
gaze. The amputee was instructed to follow the task sequence depicted in Fig. 9.7 for
the “grasp an apple” and “grasp a book” (in this order). The experiment was repeated
four times. Figure 9.9a and Fig. 9.9b show image sequences of an exemplary trial for the
two tasks, while Figure 9.9c shows the corresponding time series. Analog to Fig. 9.7,
the time series is divided into five periods. In period I, the amputee is in the initial
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pose and does not move. She then moves her gaze on the apple, which causes a TTR;
the corresponding RL reference motion and the DMP with goal pose xg1 is loaded. She
then reaches for the apple (period II), causing the phase variable ψ to drop and the
prosthesis to adapt its position py accordingly. In period III, the apple is grasped. For
simplification, the hand closes automatically if the distance between hand and object
drops below a distance of 5 cm in the VR environment. In period IV she returns to the
start pose while holding the apple in hand. In period V she places the apple back at its
original location and returns to the start pose. Next, she focuses on the book, and the
procedure repeats.

The time duration for the reaching movement (from the start position to hand-on-
object) in Fig. 9.10a shows that the amputee performed similarly to the experiments
with the human with preserved arm. The time duration for the whole task (see task
sequence in Fig. 9.7) in Fig. 9.10b shows that the amputee performed similarly to the
human with preserved arm for the “grasp an apple” task. However, it also shows that
the amputee performed the “grasp a book” task faster.

9.4.6 SCC versus sequential control

In order to compare the proposed SCC method with classical control approaches, a
sequential control mode that follows the control law defined in (9.5) was implemented.
Briefly, based on a state-machine, the user can sequentially switch between single joints
and control their velocity via an EMG-interface attached to the left lower arm (Fig. 9.3a,
Tab. 9.1). The user is instructed to conduct the two reaching tasks (Fig. 9.5) and the
three reach and grasp tasks (Fig. 9.6) by following the task sequence (same task sequence
as depicted in Fig. 9.7):

i) starting from the initial configuration,

ii) grasp the object by controlling the prosthetic hand via the EMG interface,

iii) return to the initial configuration while holding the object,

iv) place the object back to its original location, and

v) return to the starting pose.

In the case of the reaching tasks, the user was instructed to return to the starting
pose after dwelling in the goal configuration about 1 second. Each task was repeated
four times with the sequential control mode and SCC. Figure 9.10 shows the box plots
of time duration for each task, respectively. In this plot, also human data from six
healthy subjects who repeated each task three times is added for comparison. This
initial comparison indicates that the proposed SCC method is much faster than the
classical sequential control mode.
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Box-plots of duration for entire task-sequence (which is depicted in Fig. 9.7).

9.5 Discussion

Existing limb-driven methods simultaneously learn a wide spectrum of possible motions
from stump to entire arm motions from human templates, relying on linear or non-linear
regression techniques [192, 193, 194, 187, 195, 191, 196, 197, 198, 189, 188]. However,
the mapping between low dimensional stump movement and high dimensional total limb
movement is highly underdetermined. Consequently, these methods output prosthesis
motions that are inaccurate, not smooth (jerky), are of unnatural shape, and often
delayed [187]. In this work, the synergy complement control framework was introduced
to overcome these drawbacks fundamentally.

Results on the exemplar reaching movement show that the RL purely drives the pros-
thesis movement. Unnatural EMG-based control that is accompanied by non-robust
EMG measurements [14] are omitted for the prosthesis arm movement generation. How-
ever, this does not mean that EMG measurements are or should be avoided entirely. For
example, grasping objects with the prosthetic hand is still solved via EMG measurement
in this work. Although focusing on trajectory tracking, the SCC framework shall be
extended to adapt the impedance setting of the prostheses and the grasping force in the
future. EMG measurements will play a central role here.

The unimpaired subject solved the reaching tasks using SCC with 100 % success rate
and close to human speed. It shows that this method reliably generates the complemen-
tary synergy movement. Visual inspection of the generated prosthesis trajectories reveals
that they are smooth and achieve the goals accurately. Compared to existing methods
that output inaccurate prosthesis positions because of the inherent underdetermina-
tion in the learning approach, with SCC, the accuracy problem is reduced to a simple
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tracking problem and is governed by controller performance. The unimpaired subject
solved all three reach and grasp tasks with 100 % success rate. It confirms that the SCC
method reliably generates smooth synergy-complementary movements for more complex
grasping tasks. However, the time duration of reaching (Fig. 9.10A) and especially for
whole task completion (Fig. 9.10B) is still higher compared to human performance. The
bulky exo-prosthesis system may have prevented the subject from performing the reach-
ing movement more quickly. The larger time duration for the whole task completion
may be also explained by the time-consuming grasping procedure (see accompanying
video attachment). Extended algorithms that result in faster task completion should
be implemented in the future. A further key advantage of SCC is that it can adapt
to deviating goals and transits between tasks, as shown in the experiments with the
unimpaired subject and the amputee. The comparison with the sequential control mode
indicates that reaching tasks and reach and grasp tasks can be solved much faster with
SCC. Furthermore, the pilot study with the amputee confirms that the SCC method
also works with potential users.

A limitation of all RL-driven prosthesis control methods is that the prosthesis cannot
be controlled if no RL motion is involved, for example, when the lower arm needs to
be positioned without moving the RL. Furthermore, the comparison with the sequential
control requires more subjects, trials, and perhaps other control methods to prove that
SCC is superior to them. It also applies to the pilot study with the amputee. Future
work will include a large-scale user study with amputees, including a thorough analysis of
body compensation strategies [191]. Also, more relevant tasks will be included. Here, the
intention recognition algorithms will be extended with vision-based scene understanding
and also with other sensing interfaces [292]. Moreover, the SCC method will be extended
to manipulate more modalities such as impedance.

In summary, this work presented a new robust RL-driven control method, SCC, that
copes with the disadvantages of existing methods. The key advantages, such as reliability
(i.e., high task success rates), the transition between tasks, and goal updates, were
experimentally validated using a novel four DoF prosthesis. Furthermore, a pilot study
with an amputee and a comparison with conventional sequential control indicate a great
benefit of this method for prosthesis wearers in the future.
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10.1 Summary
This thesis took an interdisciplinary approach between human (Part I), robotics (Part II)
and prosthetics research (Part III). The overall goal was to deepen the understanding
of human protective reflexes and arm coordination to design human-inspired protective
robot/prosthesis reflexes and derive coordinated control schemes for upper limb pros-
theses. In the following, the thesis’ works, goals G1 to G3, and research questions Q1
to Q6 (Sec. 1.1) are summarized.

Part I investigated human upper limb reflexes and motor coordination in response
to noxious stimuli. Two studies were presented in total. The first study (Chapter 2)
investigated how stimulus’ physical characteristics such as shape, speed, or tempera-
ture modulate the kinematic and dynamic reflex responses in the neuromusculoskeletal
system (Q1). It was the first attempt to shed light on this open question through
a case study. Human finger reflexes elicited by mechanical and temperature stimuli
with varying properties at kinematic and muscular levels were studied. Analyzing the
subject’s motor reactions unveiled a 5-phase reflex launch sequence that changes with
shape, speed, and temperature of the stimulus and habituation. Chapter 3 dealt with
the question of how humans coordinate their arm movements to avoid concurrent pain
sources (Q2). Subjects needed to withdraw the arm to avoid a slap on the hand while
simultaneously avoiding an elbow obstacle with noxious electrical stimulation. Results
show that humans do not simply regulate the retraction of the hand alone to avoid both
the original threatening source and the collision with the obstacle. However, they use
the degrees of freedom of their upper limb — in a highly coordinated manner. Here,
subject-specific motor strategies were used to modify the joint movement coordination
to avoid hitting the obstacle with the elbow at the cost of increasing the risk of hand
slap. The findings also revealed that humans adopt a conservative strategy and plan the
movement according to the worst-case scenario as if assuming an obstacle in all trials.
Understanding the motor strategies that humans develop to prevent damage, pain and
injury adds to the understanding of motor control and may provide insight into the
implementation of artificial pain mechanisms for robots in the future.

Part II presented protective robot reflexes. Chapter 5 introduced the concept of an
artificial Robot Nervous System as a novel way of unifying multi-modal physical stimuli
sensation with robot pain-reflex movements. This work focused on the formalization of
robot pain, based on insights from human pain research, as an interpretation of tactile
sensation (Q3). Specifically, pain signals were used to adapt a pain-based impedance
controller’s equilibrium position, stiffness, and feed-forward torque. The scheme was ex-
perimentally validated with the KUKA LWR4+ for simulated and real physical collisions
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using the BioTac sensor. Also, the framework was successfully applied to a pneumati-
cally actuated prosthesis finger testbed. Chapter 6 presented the first protective robot
finger reflexes that are superhuman. In particular, it remained unclear from previous
works which sensory configuration may achieve superhuman performance (Q4). To ad-
dress this, this work introduced novel human-inspired robot reflex algorithms based on
the aRNS framework and evaluated them with a custom-developed robot finger testbed.
While the human remained superior in temperature reaction, touch reflex performance
was superhuman with an unconventional configuration of proprioceptive forces and link
segment acceleration. It also shows that the traditional tactile sensing or proprioceptive
arrangements are suboptimal, though having the potential to be superhuman.

Part III introduced novel coordinated upper-limb prosthesis control schemes. Chap-
ter 8 introduced the first robot-based prototype of a semi-autonomous upper-limb exo-
prosthesis, unifying exoskeletons and prostheses. The exoskeleton provides the residual
limb’s kinematic data to enable the design of more intelligent coordinated control con-
cepts (Q5). In contrast to established standard sequential strategies, all joints are moved
simultaneously according to the desired task. Combined with an app-based configura-
tion framework, goals were set by the user via kinesthetic teaching or autonomously via
3D computer vision. Chapter 9 introduced a novel control framework denoted synergy
complement control (Q6). It allows a prosthesis to complement residual limb movements
autonomously, while human arm coordination in everyday tasks, presented in Chapter 7
supported the design. With SCC, the human-prosthesis system naturally renders in-
tended movements for its carrier and adapts online to new tasks.

In a nutshell, this thesis introduced self-protective reflexes for soft-controlled robots
and prostheses inspired by analyzing human withdrawal reflexes on a single finger and
coordinated arm level. Complementary to that and next to basic semi-autonomous
coordinated control schemes, human arm coordination of daily life tasks helped design
the novel residual limb-driven control framework SCC.

Table 10.1 evaluates research questions Q1 to Q6 and goals G1 to G3. It can be
concluded that the research questions have been answered, and this thesis has achieved
all goals G1 to G3. Certainly, the case study on human finger reflexes (Q1) needs further
verification by a subsequent study including more subjects to generalize the results and
generate mathematical models. Table 10.1 also shows future work related to the other
research questions.

10.2 Impact and future work

In conclusion, on a scientific level, the development of reflex and coordinated motor
controls for articulated structures have the potential to become an integral part of stan-
dard controller design for complex (semi-)autonomous systems in the future. Also, the
proposed reflex-paradigms will further advance towards whole body reflex frameworks,
opening up new directions for humanoid research. It will systematically treat physical
disturbances and responses even for these complex systems. Furthermore, neuroscience
research on motor coordination and protective reflexes provides new impulses. The pre-
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Table 10.1: Evaluation of the research questions and goals from Sec. 1.1 with future work.

Goals and research questions Chapter Answered? Future work

Q1 How do stimulus’s physical characteristics
modulate the reflex response on a kinematic
and muscular level?

2 (X) Large-scale user
study & design of
mathematical
reflex models

Q2 How do humans coordinate their arm
movements to avoid concurrent pain sources?

3 X Investigate
underlying motor
control principles

Q3 How can human-inspired robot reflexes be
designed to achieve self-protective behaviors?

5 X Extend
framework, e.g.
to avoid
self-collisions

Q4 Are the insights from the human reflex studies
transferable to robot reflexes and which specific
sensory setup enables the best robot reflex
performance?

2,6 X Consider
alternative
sensors such as
vision-based
sensors

Q5 How can new semi-autonomous coordinated
control schemes for upper limb prostheses be
achieved?

8 X Comprehensive
user studies

Q6 How can upper-limb prosthesis control be
reconciled with natural, coordinated motor
control in humans?

7,9 X Comprehensive
user studies

G1 Deepen the understanding of human upper
limb withdrawal reflexes and coordination in
response to noxious stimuli.

2,3 X

G2 Develop human-inspired self-protective reflexes
for robots and prostheses.

5,6 X

G3 Develop new coordinated control methods for
upper-limb prosthesis.

7,8,9 X

sented human experiments may serve others as a template for subsequent evolutions and
transfer to other systems of interest.

The next generation of soft-controlled robots and prostheses benefits mainly on a tech-
nological level. Enhanced self-protection and safer interaction capabilities will become
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universally available. Gained insights from human motor coordination and protective
reflexes analysis revealed still unconventional configuration of proprioceptive forces and
link segment acceleration suitable for low-level perception. The proposed combination
of user intention, human body residual motions, controls, and autonomous behaviors
with human-inspired reflexes can affect other assistive technologies such as mechatronic
exoskeletons and avatars. Furthermore, the results of measuring and understanding hu-
man upper-limb protective reflexes can be helpful for numerous medical applications,
diagnostic purposes, and fundamental human injury and pain research and treatment.
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twicklungsgeschichte, makroskopische und mikroskopische Anatomie, Topographie.
Steinkopff Verlag, 2007, ch. 12, pp. 450–580.

[58] M. Veber, T. Bajd, and M. Munih, “Assessing joint angles in human hand via
optical tracking device and calibrating instrumented glove,” Meccanica, vol. 42,
no. 5, pp. 451–463, 2007.

[59] P. Cerveri, E. D. Momi, N. Lopomo, G. Baud-Bovy, R. M. L. Barros, and G. Fer-
rigno, “Finger kinematic modeling and real-time hand motion estimation,” Annals
of Biomedical Engineering, vol. 35, no. 11, pp. 1989–2002, 2007.

[60] C. D. Metcalf, S. V. Notley, P. H. Chappell, J. H. Burridge, and V. T. Yule, “Val-
idation and application of a computational model for wrist and hand movements
using surface markers,” IEEE Transactions on Biomedical Engineering, vol. 55,
no. 3, pp. 1199–1210, 2008.

[61] R. Nataraj and Z.-M. Li, “Integration of marker and force data to compute three-
dimensional joint moments of the thumb and index finger jigits during pinch,”
Computer Methods in Biomechanics and Biomedical Engineering, vol. 18, no. 16,
pp. 592–606, 2015.

153



BIBLIOGRAPHY

[62] L. Vigouroux, M. Domalain, and E. Berton, “Effect of object width on muscle and
joint forces during thumb–index finger grasping,” Journal of Applied Biomechanics,
vol. 27, pp. 173–180, 2011.

[63] X. Zhang, S.-W. Lee, and P. Braido, “Determining finger segmental centers of
rotation in flexion–extension based on surface marker measurement,” Journal of
Biomechanics, vol. 36, p. 1097–1102, 2003.

[64] J. R. Cook, N. A. Baker, R. Cham, E. Hale, and M. S. Redfern, “Measurements
of wrist and finger postures: A comparison of goniometric and motion capture
techniques,” Journal of Applied Biomechanics, vol. 23, pp. 70–78, 2007.

[65] A. D. Speirs, C. F. Small, J. T. Bryant, D. R. Pichora, and B. Y. Zee, “Three-
dimensional metacarpophalangeal joint kinematics using two markers on the pha-
lanx,” Journal of Engineering in Medicine, vol. 2015, no. 4, pp. 415–419, 2001.

[66] F. Cordella, L. Zollo, A. Salerno, D. Accoto, E. Guglielmelli, and B. Siciliano,
“Human hand motion analysis and synthesis of optimal power grasps for a robotic
hand,” International Journal of Advanced Robotic Systems, vol. 11, p. 1, 2014.

[67] R. Nataraj and Z.-M. Li, “Robust identification of three-dimensional thumb and
index finger kinematics with a minimal set of markers,” Journal of Biomedical
Engineering, vol. 135, no. 9, pp. 091 002–091 002–9, 2013.

[68] E. Burdet, D. W. Franklin, and T. E. Milner, Human Robotics: Neuromechanics
and Motor Control. MIT Press Ltd, 2013.

[69] R. F. Kirsch, D. Boskov, W. Z. Rymer, R. E. Center, M. H. M. Center, and O. H.
Cleveland, “Muscle stiffness during transient and continuous movements of catmus-
cle: perturbation characteristics and physiological relevance,” IEEE Transactions
on Biomedical Engineering, vol. 41, no. 8, pp. 758–770, Aug 1994.

[70] R. Shadmehr and F. A. Mussa-Ivaldi, “Adaptive representation of dynamics during
learning of a motor task,” Journal of Neuroscience, vol. 14, no. 5, pp. 3208–3224,
1994.

[71] M. A. Smith, A. Ghazizadeh, and R. Shadmehr, “Interacting adaptive processes
with different timescales underlie short-term motor learning,” PLOS Biology,
vol. 4, no. 6, 2006.

[72] D. W. Franklin, U. So, E. Burdet, and M. Kawato, “Visual feedback is not neces-
sary for the learning of novel dynamics,” PLOS Biology, vol. 2, no. 12, p. e1336,
2007.

[73] E. Burdet, R. Osu, D. W. Franklin, T. E. Milner, and M. Kawato, “The cen-
tral nervous system stabilizes unstable dynamics by learning optimal impedance,”
Nature, vol. 414, pp. 446–449, 2001.

154



BIBLIOGRAPHY

[74] A. Kadiallah, G. Liaw, M. Kawato, and E. Burdet, “Impedance control is selec-
tively tuned to multiple directions of movement,” Journal of Neurophysiology, vol.
106, no. 5, pp. 2737–2748, 2011.

[75] D. W. Franklin, G. Liaw, T. E. Milner, R. Osu, E. Burdet, and M. Kawato, “End-
point stiffness of the arm is directionally tuned to instability in the environment,”
Journal of Neurophysiology, vol. 27, no. 29, pp. 7705–7716, 2007.

[76] D. W. Franklin and D. M. Wolpert, “Computational mechanisms of sensorimotor
control,” Neuron, vol. 72, no. 3, pp. 425–442, 2011.

[77] K. P. Tee, D. W. Franklin, M. Kawato, T. E. Milner, and E. Burdet, “Concurrent
adaptation of force and impedance in the redundant muscle system,” Biological
Cybernetics, vol. 102, pp. 31–44, 2010.

[78] E. Burdet and A. Codourey, “Evaluation of parametric and nonparametric non-
linear adaptive controllers,” Robotica, vol. 16, no. 1, pp. 59–73, 1998.

[79] R. C. Miall, D. J. Weir, D. M. Wolpert, and J. F. Stein, “Is the cerebellum a smith
predictor?” Journal of Motor Behavior, vol. 25, no. 3, pp. 203–216, 1993.

[80] R. C. Miall and D. M. Wolpert, “The cerebellum as a predictive model of the
motor system: a smith predictor hypothesis,” in Neural Control of Movement,
W. R. Ferrell and U. Proske, Eds. Plenum Press, 1995, pp. 215–222.

[81] P. van der Smagt and G. Hirzinger, “The cerebellum as computed torque model,”
in Fourth International Conference on Knowledge-Based Intelligent Engineering
Systems and Allied Technologies, Brighton, UK, Aug 2000.

[82] N. Bhushan and R. Shadmehr, “Computational nature of human adaptive con-
trol during learning of reaching movements in force field,” Biological Cybernetics,
vol. 81, pp. 39–60, 1999.

[83] M. Kawato, “Internal models for motor control and trajectory planning,” Current
Opinion in Neurobiology, vol. 9, no. 6, pp. 718–727, 1999.

[84] I. Kurtzer, J. A. Pruszynski, and S. H. Scott, “Long-latency reflexes of the human
arm reflect an internal model of limb dynamics,” Current Biology, vol. 18, no. 6,
pp. 449–453, 2008.

[85] S. H. Scott, “Optimal feedback control and the neural basis of volitional motor
control,” Nature, vol. 5, pp. 534–546, 2004.

[86] ——, “The computational and neural basis of voluntary motor control and plan-
ning,” Trends in Cognitive Sciences, vol. 16, no. 11, pp. 541–549, 2012.

[87] H. A. H. Jongen, J. J. Denier van der Gon, and C. C. A. M. Gielen, “Activation
of human arm muscles during flexion/extension and supination/pronation tasks:
a theory on muscle coordination,” Biological Cybernetics, vol. 61, pp. 1–9, 1989.

155



BIBLIOGRAPHY

[88] A. de Rugy, G. E. Loeb, and T. J. Carroll, “Are muscle synergies useful for neural
control?” Front. Comput. Neurosci., vol. 7, 2013.

[89] A. d’Avella and F. Lacquaniti, “Control of reaching movements by muscle synergy
combinations,” Front. Comput. Neurosci., vol. 7, 2013.

[90] A. d’Avella, A. Portone, L. Fernandez, and F. Lacquaniti, “Control of fast-reaching
movements by muscle synergy combinations,” Journal of Neuroscience, vol. 26,
no. 30, pp. 7791–7810, 2006.

[91] M. F. Bear, B. W. Connors, and M. A. Paradiso, “Das somatosensorische system,”
in Neurowissenschaften, 3rd ed., A. K. Engel, Ed. Springer Spektrum, 2007,
ch. 12, pp. 427–469.

[92] C. S. Sherrington, “Flexion-reflex of the limb, crossed extension- reflex and reflex
stepping and standing,” J Physiol, pp. 28–121, 1910.

[93] E. Kugelberg, “Demonstration of a and c fibre components in the babinski plantar
response and the pathological flexion reflex,” Brain, vol. 71, no. 3, pp. 304–19,
1948.

[94] E. Kugelberg, K. Eklund, and L. Grimby, “An electromyographic study of the
nociceptive reflexes of the lower limb. mechanism of the plantar responses,” Brain,
vol. 83, pp. 394–410, 1960.

[95] N. Eckert and Z. A. Riley, “The nociceptive withdrawal reflex does not adapt to
joint position change and short-term motor practice,” F1000Research, vol. 2, p.
158, 2013.

[96] C. L. Peterson, Z. A. Riley, E. T. Krepkovich, W. M. Murray, and J. Perreault,
“Withdrawal reflexes in the upper limb adapt to arm posture and stimulus loca-
tion,” Muscle & Nerve, vol. 49, no. 5, pp. 716–723, 2014.

[97] K. E. Hagbarth, “Excitatory and inhibitory skin areas for flexor and extensor
motoneurons,” Acta Physiol Scand Suppl, vol. 26, no. 94, pp. 1–58, 1952.

[98] ——, “Spinal withdrawal reflexes in the human lower limbs,” J. Neurol. Neurosurg.
Psychiat., vol. 23, p. 222, 1960.

[99] R. W. Clarke and J. Harris, “The organization of motor rresponse to noxious
stimuli,” Brain Research Reviews, vol. 46, pp. 163–172, 2004.

[100] M. K. Floeter, C. Gerloff, J. Kouri, and M. Hallett, “Cutaneous withdrawal reflexes
of the upper extremity,” Muscle and Nerve, vol. 21, no. 5, pp. 591–598, 1998.

[101] M. Kofler, P. Fuhr, A. A. Leis, F. X. Glocker, M. F. Kronenberge, J. Wissele,
and I. Stetkarovaf, “Modulation of upper extremity motor evoked potentials by
cutaneous afferents in humans,” Clinical Neurophysiology, vol. 112, pp. 1053–1063,
2001.

156



BIBLIOGRAPHY

[102] R. Don, F. Pierelli, A. Ranavolo, M. Serrao, M. Mangone, M. Paoloni, A. Cacchio,
G. Sandrini, and V. Santilli, “Modulation of spinal inhibitory reflex responses to
cutaneous nociceptive stimuli during upper limb movement,” European Journal of
Neuroscience, vol. 28, pp. 559–568, 2008.

[103] A. A. Leis, D. S. Stokic, P. Fuhr., M. Kofler, M. F. Kronenberg, J. Wissel, F. X.
Glocker, C. Seifert, and I. Stetkarova, “Nociceptive fingertip stimulation inhibits
synergistic motoneuron pools in the human upper limb,” Neurology, vol. 55, no. 9,
pp. 1305–1309, 2000.

[104] K. E. Hagbarth and B. L. Finer, The Plasticity of Human Withdrawal Reflexes to
Noxious Skin Stimuli in Lower Limbs. Elsevier Publishing Company, 1963, ch.
Progress in Brain Reasearch, Volume 1, Brain Mechanisms, pp. 65–81.

[105] M. Hugon, New Developments in Electromyography and Clinical Neurophysiology.
Karger, 1973, vol. 3, ch. Exteroceptive reflexes to stimulation of the sural nerve in
normal man, pp. 713–729.

[106] K. Kanda and H. Sato, “Reflex responses of human thigh muscles to non-noxious
sural stimulation during stepping,” Brain Research, vol. 288, no. 1-2, pp. 378–380,
1983, kan83.

[107] J. Duysens, A. Tax, M. Trippel, and V. Dietz, “Increased amplitude of cutaneous
reflexes during human running as compared to standing,” Brain Research, vol. 613,
pp. 230–238, 1993.

[108] M. Serrao, F. Pierelli, R. Don, A. Ranavolo, A. Cacchio, A. Curra, G. Sandrini,
M. Frascarelli, and V. Santilli, “Kinematic and electromyographic study of the
nociceptive withdrawal reflex in the upper limbs during rest and movement.” The
Journal of Neuroscience, vol. 26, pp. 3505–13, Mar 2006.

[109] E. G. Spaich, J. Emborg, T. Collet, L. Arendt-Nielsen, and O. K. Andersen, “With-
drawal reflex responses evoked by repetitive painful stimulation delivered on the
sole of the foot during late stance: site, phase, and frequency modulation,” Exper-
imental Brain Resesarch, vol. 194, pp. 359–368, 2009.

[110] J. Schouenborg, H.-R. Weng, and H. Holmberg, “Modular organization of spinal
reflexes: a new hypothesis,” News Physiological Sciences, vol. 9, pp. 261–265, 1994.

[111] O. K. Andersen, F. A. Sonnenborg, and L. Arendt-Nielsen, “Modular organization
of human leg withdrawal reflexes elicited by electrical stimulation of the foot sole,”
Muscle Nerve, vol. 22, pp. 1520–1530, 1999.

[112] F. A. Sonnenborg, O. K. Andersen, L. Arendt-Nielsen, and R.-D. Treede, “With-
drawal reflex organisation to electrical stimulation of the dorsal foot in humans,”
Experimental Brain Resesarch, vol. 136, pp. 303–312, 2001.

157



BIBLIOGRAPHY

[113] J. Schouenborg, “Modular organisation and spinal somatosensory imprinting,”
Brain Research Reviews, vol. 40, pp. 80–91, 2002.

[114] B. B. Edin and J. H. Abbs, “Finger movement responses of cutaneous mechanore-
ceptors in the dorsal skin of the human hand,” B. B. Edin and J. H. Abbs, vol. 65,
no. 3, pp. 657–669, 1991.

[115] Z. Riley, E. T. Krepkovich, E. C. Mayland, W. M. Murray, and E. J. Perreault,
“Flexion-withdrawal reflexes in the upper-limb adapt to the position of the limb.”
in Annual Conference of the American Society of Biomechanics, 2009.

[116] T. S. Dahl, E. A. Swere, and A. Palmer, “Touch-triggered withdrawal reflexes
for safer robots,” in New Frontiers in Human–Robot Interaction, K. Dautenhahn
and J. Saunders, Eds. John Benjamins Publishing Company, 2011, ch. Touch-
Triggered Withdrawal Reflexes for Safer Robots, pp. 281–304.

[117] J. M. Winters, “Hill-based muscle models: a systems engineering perspective,” in
Multiple muscle systems: biomechanics and movement organization, J. M. Winters
and S. L. Woo, Eds. Springer-Verlag, 1990, ch. 5, pp. 69–93.

[118] R. C. Miall, D. J. Weir, D. M. Wolpert, and J. F. Stein, “Is the cerebellum a smith
predictor?” Journal of Motor Behavior, vol. 25, no. 3, pp. 203–216, 1993.

[119] S. Haddadin and E. Croft, Physical Human–Robot Interaction. Cham: Springer
International Publishing, 2016, pp. 1835–1874. [Online]. Available: https:
//doi.org/10.1007/978-3-319-32552-1 69

[120] W. Townsend and J. Salisbury, “Mechanical design for whole-arm manipulation,”
in Robots and Biological Systems. Springer, 1993.
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Lage, “Task engagement and mental workload involved in variation and repetition
of a motor skill,” Scientific Reports, vol. 7, no. 1, p. 14764, 2017.

[237] E. Vassena, M. Silvetti, C. N. Boehler, E. Achten, W. Fias, and T. Verguts, “Over-
lapping neural systems represent cognitive effort and reward anticipation,” PLOS
ONE, vol. 9, no. 3, pp. 1–9, Mar. 2014.

[238] A. Ploghaus, I. Tracey, J. S. Gati, S. Clare, R. S. Menon, P. M. Matthews, and
J. N. Rawlins, “Dissociating pain from its anticipation in the human brain.” Science
(New York, N.Y.), vol. 284, pp. 1979–1981, Jun 1999.

[239] C. Villemure and M. C. Bushnell, “Mood influences supraspinal pain processing
separately from attention.” The Journal of neuroscience, vol. 29, pp. 705–15, Jan
2009.

[240] C. Sprenger, F. Eippert, J. Finsterbusch, U. Bingel, M. Rose, and C. Büchel,
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