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Highlights
Shotgun sequencing bypasses the need
for metabarcoding in viromics, although
it is prone to high background noises
and biases towards double-stranded
DNA viruses.

Protein-level assembly can be a better
tool to use on virome data as they predict
more protein sequences from complex
unknown metagenomes.

Using viral discovery methods can help
In this reviewwe provide an overview of current challenges and advances in bac-
teriophage research within the growing field of viromics. In particular, we dis-
cuss, from a human virome study perspective, the current and emerging
technologies available, their limitations in terms of de novo discoveries, and pos-
sible solutions to overcome present experimental and computational biases as-
sociated with low abundance of viral DNA or RNA. We summarize recent
breakthroughs in metagenomics assembling tools and single-cell analysis,
which have the potential to increase our understanding of phage biology, diver-
sity, and interactions with both the microbial community and the human body.
We expect that these recent and future advances in the field of viromics will
have a strong impact on how we develop phage-based therapeutic approaches.
to resolve the full diversity of viral fraction
of microbiome data.

Culture-independent methods such as
viral-tagging can be used to measure
the phage host range in the human
body.
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Introduction
The human body is an ecosystem, a home to a complex network of microbial organisms com-
prised of bacteria, archaea, eukarya, and viruses. Themajority (sometimes >90%) of viruses pres-
ent in the human gut are those that infect bacterial hosts; these viruses are known as phages
[1–3]. Phages can replicate through two major replication cycles: lysogenic or lytic. Other replica-
tion cycles, including pseudolysogeny and chronic infection, also exist. In the lytic cycle, phages
infect the host and kill it shortly afterwards. The lysogenic cycle involves phages that stay dormant
as part of the host genome; when inserted into the host genome the phage is known as a pro-
phage [1,2]. The dynamics of bacteria-phages interactions varies between ecosystems [4,5],
with phages of the human gut persisting for prolonged periods of time and seemingly promoting
a stable, healthy gut microbiome [6–8]. Due to the rise in multidrug-resistant bacterial infections,
there has been a renewed interest in phage-based therapies as an alternative antibacterial ap-
proach. However, despite the therapeutic use of phages being over a century old [9,10], and
their high abundance in the body, they are among the least described components of the
human microbiota, especially when compared with bacteria [11–13].

Of the estimated 1031 viruses on earth, the majority are phages, but only 2640 of their genomes
are closed or fully sequenced (https://www.ncbi.nlm.nih.gov/refseq/), an example of how little we
know about phage diversity (Box 1). The double-stranded DNA (dsDNA) tailed phages account
for the majority of those characterized by electron microscopy and culture-based methods
[14,15]. However, recent studies contradict the earlier ones and suggest that this dominance
may be biased by the applied methods, rather than being a true representation of the human
phageome, and it shows our limited understanding of phage diversity [14–17]. For example, a re-
cent study identified more than 15 000 ssRNA phage sequences from public datasets, including
over 1000 near-complete genomes, by optimizing a Hidden Markov Model (HMM)-based pipe-
line for the ssRNA phages' discovery. This suggests that ssRNA phages have been overlooked
within microbiome studies, and the current studies may have underestimated their contribution
to phage diversity [17].
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Box 1. Phage Taxonomy

The classification of phages has changed significantly since their discovery in 1917, and the responsibility lies currently with the International Committee on the Taxon-
omy of Viruses (ICTV) [97,98], which published their first report in 1971 [72,97]. Historically, phages were categorized by their morphology, host range, storage stability,
and genome structure (dsDNA, dsRNA, ssDNA, ssRNA), classification becoming more and more sophisticated as new techniques became available [75,97]. With the
rise of bioinformatics, this system has seen a major overhaul in recent years [75,97]. Tailed, double-stranded DNA phages are the most commonly isolated phages, with
most of them belonging to the order Caudovirales, which is currently grouped into five families: Myoviridae, Siphoviridae, Podoviridae, Ackermannviridae and
Herelleviridae [97,98].
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Phages not belonging to the order Caudovirales belong to seven different families that have currently no order assigned to them yet [97]. Non-tailed phages comprise
roughly 4% of all currently known phages and come in three distinct morphologies: polyhedral capsids, filamentous, and pleomorphic [75,97,98]. With the advance of
new techniques such as metagenomics, and renewed clinical interest in phages, it is only a matter of time until the current classification becomes as outdated as the first
one made in 1933 by Sir Frank Mcfarlane Burnet based on filtration size [75,98].
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The lack of knowledge of phage diversity, lifestyle, and dynamics in the human body stems in part
from a limited toolkit which, until recently, was restricted to classical microbiology methods, includ-
ing microscopy and culture-dependent approaches [18], as well as a tendency to extrapolate data
from one ecosystem to another [4,7]. Unlike classical microbiology, which isolates components of
an ecosystem to explain them individually, the multi-omics approach allows the study of the organ-
isms within a complex network of interactions [19]. However, even the advances of new high-
throughput multi-omics technologies come with their own challenges and limitations related to
sample and downstream processing, sequencing annotation, and in silico predictions [7,11,20].
In this review we describe current advances in the growing field of viromics. Our main focus is to
address the challenges that phageome research is facing in the omics era, the emerging technol-
ogies, and the technical improvements that are required to overcome these challenges.

Sample Processing and Downstream Analysis
Some clinical samples, such as skin swabs, are typically limited in volume and have a low abun-
dance of viruses as well as a high background from the host microbiome [21,22]. The entire
172 Trends in Microbiology, February 2021, Vol. 29, No. 2

Image of 


Trends in Microbiology
OPEN ACCESS
process, from sample collection to sequencing, will impact the detection of viral sequences and
needs to be carefully tailored to sample type, origin, and volume [23,24]. Existing sampling tech-
niques have their advantages but can be biased toward recovering the most abundant commu-
nity members. For example, the use of 0.2 μm filters, a common approach for removing large
particles, such as host and bacterial cells from a sample, has been shown to also deplete large
viruses [25] and reduce the amount of recovered viral DNA by half [26]. Similarly, CsCl gradient
ultracentrifugation purification, depending on how the method is performed, can be biased to-
ward isolating specific phage types and those with atypical buoyancy, but it results in very pure
samples [27,28]. Viral quantification methods, such as epifluorescence microscopy, can under-
estimate the actual number of virus-like particles (VLPs) in human samples (Feichtmeyer et al., un-
published observations). Automated extraction platforms are now frequently used for virus
detection in combination with qPCR or droplet digital PCR due to their higher sensitivity and
high-throughput work capacity [29,30], while commercial kits work better with higher viral
loads (>106 copies/ml) and longer DNA fragments (>200 bp) [31]. If an amplification step of
viral nucleic acids is required, the most commonly used methods are: (i) random amplified shot-
gun library (RASL) in which the template is restricted to dsDNA; (ii) linker-amplified shotgun library
(LASL), which requires a high template concentration [11,29]; and (iii) multiple displacement am-
plification (MDA), which tends to overamplify circular single-stranded DNA (ssDNA) and unevenly
amplifies linear genomes [32,33]. As illustrated by these examples, the most commonly used
virus isolation methods have their specific drawbacks and/or biases.

The majority of the unpurified viral metagenome sequences are assigned to bacteria and eukaryotic
DNA [12,34]. Thus, removal of background contamination using VLP purification methods is essen-
tial to get a clear image of phage abundance in the human body [34]. Recently developed flow-
cytometry-basedmethods allow for the separation of VLPs from the backgroundmicrobiota by label-
ling phages with a fluorescent dye [35]. VLPs are then selected based on their size and fluorescence
level, and are removed from the sample using fluorescence-activated cell sorting [35]. While this
method still leads to the loss of VLPs, and decreases sensitivity of viral detection [36], it significantly
reduces background contamination and can eliminate the need for whole-genome amplification be-
fore sequencing [35]. The classical VLP concentration and purification methods are described in
depth elsewhere [34,37,38]. However, given that background contamination is currently unavoidable
[31,34], viral sequences should be checked against, and purified from, contaminating host se-
quences before any further analysis. Because every available sample-processing method has its lim-
itations and biases, the study of less described phages is dependent on a bioinformatics approach,
which comes with its own set of advantages and challenges (Figure 1).

Current Tools and Viral Databases
As phages lack a universal marker, such as the 16S ribosomal RNA genes in bacteria, they can be
hard to identify in a mixed sample [1,7]. Shotgun sequencing of VLP-derived DNA or RNA is one
solution to the issues of metabarcoding that relies on species- or group-specific markers.
Metagenomics allows for culture-independent sequencing of a complex microbial sample with-
out needing group-specific primers and can distinguish between the different species contained
within the sample. Metagenomic data are, however, prone to high background noise that con-
founds current methods used for viral taxonomic characterization [39].

To address the poor, incorrect or insufficient, annotations present in public databases and limited
homology between viral sequences to reference databases, viromics studies rely on de novo as-
sembly to recover viral genomes from metagenomes [40]. However, this assembly can be chal-
lenging due to the specific characteristics of viral metagenomes: they are highly mosaic, include
many repeat regions within the genomes, and show high metagenomic complexity and strain-
Trends in Microbiology, February 2021, Vol. 29, No. 2 173



VLPs purifica�on

Genome extrac�on

Sequencing

Quality control
-Trimmoma�cs , etc. 
Decontamina�on
-Mapping to public database

Assembly

Viral con�gs predic�on

Func�onal annota�onTaxonomy profiling

Machine-learning-based methods
- VirSorter, VirFinder, VIBRANT, PPR-Meta, etc.
Data-based methods
- VirMiner, VirMap, etc.

ORFs predic�on
- Prodigal, Glimmer, etc.

- Similarity-based search
against database

- vContact2
- CAT, etc.

- Virus-specific databases:
VOGDB, HVPC, etc

- General databases: PFAM,
GO, KEGG, etc.

Spades, MIRA, Plass, etc.

Ultra Centrifugal Filters, 
Iron chloride, CsCl, etc.

Amplifica�on
-GenomePlex, Genomiphi

Illumina sequencing 
-Hiseq or Miseq

PacBio, Nanopore

TrendsTrends inin MicrobiologyMicrobiology

Figure 1. Experimental and Computational Approaches for the Characterization of the Free Phage Fraction o
the Human Microbiota. Lung and gut illustrations represent respiratory and gastrointestinal tracts that contain the highes
number of virus-like particles (VLPs) in the body. The arc indicates two sequencing platforms that do not need an assembly
step. Abbreviation: ORFs, open reading frames.
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level diversity [19,36,40]. Themicrodiversity (high level of strain evenness and nucleotide diversity)
of abundant phages can also complicate de novo assembly [36,40,41]. Protein-level assemblers,
such as Plass [42], can be better tools to use on viral metagenomic data as they predict novel pro-
teins from nucleotide sequences, increase sequence recovery, and improve protein function pre-
diction. They also help avoiding the mismatches from synonymous single-nucleotide
polymorphisms [42]. Yet, these assemblers cannot place the assembled protein sequences
into a genomic context, and they are unable to resolve homologous proteins from closely related
taxa with <95% sequence identity [42]. Long-read sequencers, such as Nanopore or PacBio,
could potentially be used to recover a complete phage genome within a single read without the
need for assembly. However, long-read sequencers require micrograms of DNA, that is orders
of magnitude more than the nanograms usually isolated from a virome sample without amplifica-
tion, and they still have a relatively high error rate and operating cost [36].

Once a complete or partial phage genome sequence has been assembled, functional annotation
is conducted to understand the biological meaning of the predicted genes. For protein-coding
genes, open reading frames (ORFs) are predicted using Prodigal [43] and Glimmer [44] or other
tools, and they are aligned to protein databases for functional annotation [45]. Virus-specific da-
tabases, such as VOGDB [46], HVPC [47], pVOGs [48], GLUVAB [49], IMG/VR [50], Virus-Host
DB [51], MVP [52], or general functional annotation databases such as PFAM [53], GO [54], Egg-
NOG [55,56], COGNIZER [57], or KEGG [58], are commonly used for functional annotation
(Table 1). As most sequences in general functional annotation databases are derived from the ge-
nomes of cellular organisms, this leads to a poor coverage for viral proteins. Meanwhile, virus-
specific databases require significant improvement by adding more viral sequences.

Unknown Viruses and Discovery
With the advances in sequencing technology, the total number of uncultivated virus sequences
that are identified each year is by far (e.g., five times between 2017 and 2019) more than se-
quences of virus isolates [59]. As a result, uncultivated viruses already represent the majority
(≥95%) of the viral diversity in public databases [59]. Minimum Information about an Uncultivated
Virus Genome (MIUViG) standards are being developed within the Genomic Standards Consor-
tium framework to improve the reporting of uncultivated virus genomes. MIUViG asks for informa-
tion about virus origin, genome quality, genome annotation, taxonomic classification,
biogeographic distribution, and in silico host prediction for novel uncultivated viruses [59].

Most viral sequences show no significant homology to known reference sequences [7,60]. An alter-
native to database-dependent methods is clustering viral sequences by composition. For example,
VirMap data processing can detect low coverage and highly divergent viruses and allows for recovery
and reconstruction of viral information when closely related database entries are non-existent [39].
Similarly, virMine is not restricted by insufficient viral diversity represented in public databases, and in-
stead scores contigs based on their comparison with both viral and nonviral sequences [61], while
PHAST and PHASTER are two web server tools that use public databases for identification and an-
notation of prophages within bacterial genomes [62]. However, some of the detected prophages
may be nonfunctional, secondary to deletions or mutations of essential genes [63].

Machine-learningmethods can also be used to detect viral sequences. For example VirFinder [64]
uses k-mer profiles to predict viral contigs, VIBRANT utilizes hybrid machine learning and a pro-
tein similarity approach that is independent of sequence features for viral sequence recovery [65],
and Virsorter detects viral signals using a combination of reference-dependent and reference-
independent approaches [66]. Likewise, MARVEL uses a random forest machine learning ap-
proach to predict dsDNA phage sequences in metagenomic bins [67]. The recently developed
Trends in Microbiology, February 2021, Vol. 29, No. 2 175



Table 1. Software for Predicting Phage Hosts

Tool name Description Refs

Tools for sample processing

Amicon Ultra
Centrifugal Filters

Using low-binding Ultracel regenerated cellulose membranes allows for
high-throughput VLP concentration and recovery

[28]

Purelink viral
RNA/DNA kit

Allows simultaneous extraction of high-quality DNA and RNA from biological
material

[24]

eMAG A fully automated nucleic acid extraction platform that enables simultaneous
extraction of viral genomic material from 48 specimens

[29]

GenomePlex, WGA A whole-genome amplification (WGA) kit for the rapid and highly representative
amplification of genomic DNA from minimal amounts of starting material

[12]

Iron chloride Useful for concentrating virus particles from large-volume samples [38]

MAF Uses a hydrolysed macroporous epoxy-based polymer system to concentrate and
purify waterborne viruses

[30]

MagNA PURE96 Another fully automated extraction system that allows simultaneous extraction of
96 specimens using magnetic bead technology

[29]

Tools for viral recovery

DeepVirFinder An alignment-free tool that identifies viral sequences in metagenomes using
machine learning

[68]

MARVEL A tool that uses machine learning for prediction of dsDNA phages in metagenomes [67]

PPR-Meta A 3-class classifier that allows identification of phages from metagenomic
assemblies with enhanced performance for short fragments

[69]

PHASTER A web-based tool for identifying and annotating prophage sequences within
bacterial genomes

[62]

VIBRANT An automated tool that uses a hybrid machine-learning and protein-similarity
approach to recover and annotate viruses of microbes

[65]

VirFinder A novel k-mer-based tool that identifies viral sequences from assembled
metagenomic data

[64]

VirMAP Uses a combination of nucleotide and protein signals to taxonomically classify viral
sequences independently of genome coverage or read overlap

[39]

virMine Can identify viral genomes from collective raw reads within metagenomes of
different environments

[61]

Virsorter Can recover novel viruses in metagenomic data using both reference-dependent
and reference-independent approaches

[66]

Functional annotation databases

COGNIZER A comprehensive stand-alone annotation framework that allows functional
annotation of sequences from metagenomic data

[57]

EggNOG A public source for orthologous groups (OGs) of proteins at different taxonomic
levels, with integrated functional annotations

[56]

GO A comprehensive knowledge-based resource of gene functions [54]

KEGG The gold standard database for understanding functions of the different biological
systems from large-scale molecular datasets

[58]

PFAM A database of manually curated protein families, containing 14 831 Pfam-A families [53]

Software for predicting phage hosts

HostPhinder Uses genomic similarity to a reference database of phages with known hosts to
predict hosts for uncharacterized phages

[88]

IMFH-VH Kernelized Logistic Matrix Factorization based on Similarity Network Fusion for
predicting virus–host association

[89]

PHISDetector Uses several interaction signals, including CRISPR and protein–protein interaction,
to predict novel phage–host pairings

[86]
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Table 1. (continued)

Tool name Description Refs

viruses_classifier An alignment-free approach for distinction between phages and eukaryotic viruses
in metagenome data

[90]

VirHostMatcher Uses similar oligonucleotide frequency patterns between phages and bacteria to
predict host range for phages on a genus level

[85]

WIsH Fast and accurate, making it suitable for predicting phages' host range from
metagenomic data

[87]

Virus-specific databases

HVPC A human viral protein database for diversity and functional annotation [47]

IMG/VR An integrated reference database of both cultured and uncultured DNA/RNA
viruses

[50]

MVP A microbe–phage interaction database with over 30 k viral clusters, gathered from
public databases and microbiome sequences

[52]

pVOGS Represents a complete set of orthologous gene families shared across multiple
complete genomes of bacterial or archaeal viruses

[48]

VGDB A public webserver that provides information about the virus orthologous groups [46]

Virus-Host DB Includes complete genomes of viruses and their hosts gathered from RefSeq,
GenBank, UniProt, and ViralZone

[51]
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DeepVirFinder improved the accuracy of viral identification for both long and short sequences
using deep learning methods [68], while PPR-Meta uses deep-learning, Bi-path Convolutional
Neural Network, to detect phage and plasmid sequences in metagenome assemblies simulta-
neously. PPR-Meta was specifically developed to improve the identification performance for
short fragments [69]. However, a major drawback to viral discovery tools is that they are as effi-
cient as the dataset they were trained on, which can lead to false positives in high confidence
scored viral contigs.

For taxonomic classification, assembled contiguous sequences (contigs) are compared with an-
notated virus databases, either using a best-hit approach, BLAST [70], or a voting system that
considers all ORFs, CAT and BAT [71]. The latter approach works best with contigs longer
than 1 kb as they contain multiple ORFs [71]. For uncultivated virus sequences with no hits in ref-
erence databases, a gene-sharing network, such as vConTACT2, in which viruses are clustered
together based on shared genes, can be used to automatically assign tentative taxonomy [72].
ViPTree is a web server that uses protein alignment for phylogenetic analysis and classification
of viruses [73]. Concatenated protein phylogeny can also be used for classification of tailed
dsDNA viruses [74]. One challenge to the taxonomic assignment of viruses is the dominance of
predicted ORFs in which combined taxonomic signals may enhance the classification of un-
known sequences [75].

Identifying Unculturable Phages’ Host Range
How to determine a phages’ host range, that is, the different bacteria it can infect, is a contentious
topic of discussion, starting with the definition of infection. The phage infection cycle consists of
six main stages. The first step is absorption of the phage into the bacterial cell. Second, the phage
ejects its DNA into the host cell. Third, defencemechanisms are evaded. Fourth, the bacterial ma-
chinery is hijacked, turning the host into a virocell [76]. Fifth, the phage replicates and builds a new
generation of phages. The sixth and final step is lysis of the bacterial cell [77]. Up to seven different
types of host range determination methods have been described in depth elsewhere [78,79].
Standard methods for host determination, such as efficiency of plating (EOP), are culture-
dependent and the results vary between different methods [80], which makes the host-range
Trends in Microbiology, February 2021, Vol. 29, No. 2 177
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determination for unculturable phages difficult (Figure 2). Alternatives to culture-dependent
methods are viral-tagging or in silico abundance profiles, determination of tRNAs or prophages,
or CRISPR recorded short phage segments [23].

There are a number of different culture-independent methods that can be used tomeasure phage
host range. Viral-tagging uses fluorescence-activated cell sorting to separate out fluorescently la-
belled phages that are attached to a bacterial cell for further downstream applications and se-
quencing [18]. While attachment does not equal absorption or replication, it links to the first
step of the phage infection cycle and has been demonstrated to successfully predict unique
host–phage pairings in both the marine [18,81,82] and human [23] environments. For example,
a recent study revealed a total of 363 unique bacteria–phages interactions within the faecal sam-
ples from 11 healthy volunteers [23].

Abundance profiles are another culture-independent approach to link phages to hosts by using
(lagged) correlations in phage and bacterial abundance patterns. While promising in theory, the
complex dynamics [7] underlying the interactions between phages and their hosts tend to defy
straightforward correlation analysis, yielding low accuracy of this approach [1,83]. Genetic signa-
tures can sometimes be used to link phages to their bacterial hosts; they are largely associated
with the fifth step of the phage infection cycle. The most commonly used genetic signatures
are: (i) horizontal gene transfer leading to genetic homology between phage and bacteria, though
this is dependent on a comprehensive database [83]; (ii) prophage integration into host genomes,
though this is limited to temperate phages [24]; (iii) the recording of a short segment of an infecting
phage using CRISPRs to prevent reinfection, which can be used to identify the phage in question
[83] – however, only ~10% of bacteria encode a CRISPR system in the first place which can be
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Figure 2. Overview of Different Methods Used for the Analysis of Phages’ Host Range. (A) Spot test is a culture-
dependent method which relies on the ability of the phage to lyse its potential host. This method fails to indicate the hos
range of unculturable phages. (B) In silico prediction and (C) viral-tagging: two culture-independent methods fo
determining the host range of unculturable phages. Abbreviation: SSC, side scatter.

178 Trends in Microbiology, February 2021, Vol. 29, No. 2
s

t
r

Image of Figure 2


Outstanding Questions
What role do RNA phages play in the
human microbiota? Does their nature
of interaction with the bacterial com-
munity differ from DNA phages?

Do we need to first further study
phages' biology to be able to improve
the currently available detection
methods in human samples to later
understand the role of phages in
human health and disease?

How can experimentalist and
computationalists work together
toward removing biases from virome
analysis?

What roles can machine learning and
big data analysis play in solving the
viral dark matter in the human body?
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identified using state-of-the-art algorithms [83,84]; and (iv) tracking of viral tRNA thought to orig-
inate with the host [68], though this is not specific at a species level and only 7% of known phages
have tRNA sequences [23]. Due to these limitations, most in silico tools, such as VirHostMatcher
[85], PHISDetector [86], and WIsH [87], combine multiple genetic signatures to predict phages'
host range (Table 1). For more virus–host prediction tools see [88–90].

Statistical Analysis of Multidimensional Data
Analyzing multidimensional (-omics) data to elucidate species–environment relationships is a
challenge currently faced by many disciplines [91]. Recent advances in computational and statis-
tical approaches, such as machine learning, have helped to address this issue (including new tool
kits that combine neural networks, random forests, and indicator species analysis to identify key
players in driver-response relationships) [92]. These approaches, however, are data hungry, re-
quiring a large number of observations. In cases where small sample size precludes the use of
machine-learning approaches, canonical methods likewise offer a promising path forward in an-
alyzing species–environment relationships [93,94]. For instance, Multiple Factor Analysis (MFA)
[95] was applied in a recent study [2] to examine the multivariate correlation between dominant
bacterial and phage species, and environmental metadata. To reduce dimensionality prior to run-
ning the MFA, dominant bacterial and phage species were first determined by conducting Princi-
pal Component Analyses (PCAs) on each community matrix and identifying the species that
contributed most to significant PC axes. This dimension reduction improved the interpretation
of the MFA, which in turn helped to relate changes in the gut microbiome to several environmental
factors (i.e., health status, diet, age, and sex). Ultimately, the appropriateness of an approach,
with respect to the data and question, is likely to vary among studies, and, echoing the conclu-
sions made [92], the integration of multiple, complementary statistical methods will likely offer
the most robust conclusions and help to untangle complex, multidimensional data.

Concluding Remarks
The human body is one of the densest and most diverse microbial habitats known. The viral frac-
tion alone accounts for ~1012 VLPs (it varies from high: ~109–1010/g faecal content and ~108/ml
of respiratory fluids, to low: ~106/cm2 skin and ~105/ml blood), plus prophages in bacterial ge-
nomes [7,21,22]. Phages play critical roles in maintaining gut homeostasis through interacting
with the bacterial community [96]. Understanding how phages regulate this complex microbial
network will pave the way for the development of novel phage-based therapeutics to re-
establish gut health in disease associated with dysbiosis such as inflammatory bowel disease.
The novel advances in sequencing technology and bioinformatics have enabled rapid expansion
in viral discovery. Yet, we have a way to go until the complete phage diversity (Box 1) in the envi-
ronment and the human body has been revealed, and the functions of these phages have been
elucidated. This is mainly due to isolation protocols and computational shortcomings, despite re-
cent advances to better study phages. A current challenge is to develop suitable isolation
methods and in silico analytics to better identify RNA phages. Future studies, in particular, should
be adjusted to ensure that RNA phages are adequately represented.

The factors that are responsible for the bias found in phage metagenomics call for the scientific
community to work together to improve the toolkits currently used in the field, in the laboratory,
and in silico. For example, the application of single-cell technologies can significantly advance
our understanding of phages in the human body by identifying their specific function and their in-
teractions with host bacteria, and by revealing their impact on our health. We expect that the
phage research field will benefit from near-future technological advancements as the world
gets closer to completing the picture of global phage abundance, diversity, and distribution, as
well as the interactions of phages with their bacterial hosts (see Outstanding Questions).
Trends in Microbiology, February 2021, Vol. 29, No. 2 179
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