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Abstract
In node-based shape optimization, there are a vast amount of design parameters, and the objectives, as well as the physical
constraints, are non-linear in state and design. Robust optimization algorithms are required. The methods of feasible
directions are widely used in practical optimization problems and know to be quite robust. A subclass of these methods is the
gradient projection method. It is an active-set method, it can be used with equality and non-equality constraints, and it has
gained significant popularity for its intuitive implementation. One significant issue around efficiency is that the algorithm
may suffer from zigzagging behavior while it follows non-linear design boundaries. In this work, we propose a modification
to Rosen’s gradient projection algorithm. It includes the efficient techniques to damp the zigzagging behavior of the original
algorithm while following the non-linear design boundaries, thus improving the performance of the method.

Keywords Gradient-based constrained optimization · Shape optimization · Vertex Morphing ·
Rosen’s gradient projection algorithm · Node-based shape parametrization

1 Introduction

The aim of this paper is to propose a modified algorithm
for constrained node-based shape optimization. It has good
potential to improve the objective function by finding a
new design through the modification of the shape of the
initial model. In our paper, we are interested in iterative
optimization methods, where a continuous evolution of the
design produced. Shape optimization is successfully used
in many fields of application: aerospace engineering (Kroll
et al. 2007; Kenway et al. 2014; Palacios et al. 2012),
automotive industry (Najian Asl et al. 2017; Hojjat et al.
2014), structural mechanics (Chen et al. 2019; Haftka and
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Grandhi 1986; Firl and Bletzinger 2012), fluid-structure
interaction (FSI) (Hojjat et al. 2010; Heners et al. 2017), etc.

General, constrained shape-optimization problems can
be formulated as follows:

minimize : f (x)

design variables : x

s.t.:gj (x) ≤ 0, where j = 1..ng

hk(x) = 0, where k = 1..nh (1)

where f (x) is the objective function, x is the vector
of design parameters, gj (x) are inequality constraints,
and hk(x) are equality constraints. An important step in
optimization is the choice of the design variables. In the
optimization of the shape (and topology), there are two
main types of shape parametrization: explicit and implicit.
Implicit parametrization can be presented, for instance, by
the free-form deformation (FFD) approach (Sieger et al.
2012) or a level-set method (Wang and Luo 2020; Luo et al.
2008). Alternatively, in the explicit parametrization, such
as Vertex Morphing (Bletzinger 2017; Hojjat et al. 2014)
or CAD-based parametrization (Xu et al. 2014; Agarwal
et al. 2018; Hardee et al. 1999), the representation of the
geometry is directly used as a design parameter field. In
this work, we are using Vertex Morphing parametrization.
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The main advantage of the Vertex Morphing is no additional
optimization model is needed. The analysis model is
used directly, where the coordinates of the surface nodes
are the design parameters. Isogeometric parametrization
(Ummidivarapu and Voruganti 2017; Ummidivarapu et al.
2020) is a good alternative to the Vertex Morphing. Both
methods have similarities, and the difference is typically
in the number of design variables. Vertex Morphing uses
surface nodes of the FE model as a design parameters;
therefore, there is a large number of variables. That
allows us to find new unknown solutions by changing
the parametrization settings. On the other hand, with
Vertex Morphing, it is challenging to apply boundaries and
geometrical constraints to the design parameters (Najian Asl
et al. 2017). The interested reader can find more details
about Vertex Morphing and form-finding in Bletzinger
(2017), Baumgärtner et al. (2016), Hojjat et al. (2014).

Solving industrial problems is state of the art. The main
focuses groups researching shape optimization problems
are developing industrial applications, deriving sensitivity
analysis w.r.t shape design variables, and finding new
designs of the models. In most cases, they use well-
established optimization algorithms, such as steepest
descent, gradient projection, augmented Lagrangian, or
trust-region algorithms. Nonetheless, classical algorithms
may suffer from poor efficiency due to the specific
properties of the problems. For instance, the active-set
methods may suffer from the zigzagging phenomenon
(Fletcher 2013; Sun and Yuan 2006) because constraints
repeatedly enter and leave the active set. Therefore, it
results in slow convergence of the method (Gallagher and
Zienkiewicz 1977). Typical properties of the node-based
shape optimization problem are:

– A large number of design variables. In the Vertex
Morphing practice, the “usual” number is around
10e5 − 10e6. That makes solving the optimization
problem not straightforward;

– The objectives, as well as the physical constraints, are
non-linear in state and design;

– The sensitivity analysis for different objective or con-
straint functions cannot always be solved analytically;
thus, they are solved with a tolerance;

– The sensitivities of the different responses have to be
scaled due to the different physical units. Scaling may
mean that information regarding the size of the raw
sensitivities is lost;

– Calculation of the f (x), ∇f (x), g(x), ∇g(x) is com-
putationally expensive. Doing physical analysis may
take up ≈ 50–80% of the one optimization iterations
computational time;

– Algorithms such as gradient projection that require
extra calculations of the response functions to calculate

the correction step precisely (we discuss this in
the details in the Sections 2.1 and 2.2). This can
be numerically expensive or may require additional
assumptions and simplifications.

– Line search techniques can be numerically expensive
or non-accurate for highly non-linear functions. In
practice, a constant step size may be preferred.

In this work, we propose a relaxed gradient projection
method. The method is a modification of the classical
Rosen’s gradient projection algorithm (Rosen 1960, 1961).
In this context, “relaxed” means that constraints can be
in the transient stage between active and non-active.
The relaxation and correction factors mildly control
the relaxation and violation of the constraints. In the
proposed method, we introduce the buffer (critical) zone
to calculate the relaxation factor and the correction term
violated constraints. As a result, the algorithm has efficient
techniques to damp zigzagging behavior when it follows the
design boundaries and has stable performance.

The paper is structured as follows: First, the Rosen’s
gradient projection algorithm is reviewed as the reference
method. Then the proposed algorithm and its simplified
version are described. The next section describes the
numerical experiments and shows a detailed analysis of
the performance of the proposed and reference methods.
Finally, conclusions are drawn from the work.

2 Rosen’s gradient projection algorithm

This section describes the Rosen’s gradient projection
algorithm (GP), its advantages, and disadvantages in the
context of shape optimization problems. The method is used
as the reference algorithm in our studies.

2.1 Gradient projectionmethod

The gradient projection algorithm calculates feasible search
direction by projecting the steepest descent direction into
the tangent subspace to the active constraints. Detailed
description can be found in the article by Rosen (1960) and
Du et al. (1990). We will describe the way to calculate the
projected search direction for optimization problems with
linear constraints by following Haftka and Kamat (1990).
The problem can be formulated as follows:

minimize : f (x) =
∑

i

ωifi(x), where i = 1..nf

s.t. : gj (x) = ajx − bj <= 0, j = 1, ..., ng

hk(x) = akx − bk = 0, k = 1, ..., nh (2)

If we select only the r active constraints, we can define an n

by r matrix N , such that the columns of this matrix are the
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gradients of active constraints. The basic assumption of the
gradient projection method is that x lies on the tangential
subspace to the boundary of the active constraints. If our
solutions x(i) and x(i+1) at the iteration i and i + 1 satisfy
the constraints, then the constraints can be rewritten as:

NT s = 0 (3)

where s is a search direction. If we want to project the
steepest descent direction −∇f on the tangent subspace of
the active set of constraints, we can redefine problem (2) as
follows:

minimize : sT ∇f

s.t. : NT s = 0,

and sT s = 1 (4)

where the second condition bounds the solution. The
Lagrangian function is:

L(s, λ, μ) = sT ∇f − sT Nλ − 2μ(sT s − 1) (5)

The condition for L to be stationary is

∂L

∂s
= ∇f − Nλ − 2μs = 0 (6)

We can find the Lagrangian multiplier λ by multiplying (6)
with NT and using condition from (3):

λ = (NT N)−1NT ∇f (7)

and the feasible search direction s:

s = 1

2μ
[I − N(NT N)−1NT ]∇f (8)

In Najian Asl et al. (2017) and Haftka and Kamat (1990), the
authors observe that the factor 1

2μ does not play an important
role in the determination of search direction because it
scales the vector and does not change its direction. The final
search direction to minimize the objective function can be
changed with sign factor “-”.

To find the Lagrangian multiplier λ in (7), the linear
system of equation of size r × r needs to be solved.
Depending on the number of active constraints r and design
variables n, the constraint matrix N can be sparse and
large. The condition number of such a system can be large;
therefore, special attention should be paid to the choice of
an efficient and robust linear solver. The reader may refer
to Najian Asl et al. (2017) for more details on solving (7).
After finding the feasible search direction, new shape xi+1

can be found. A line-search can be used to find the step
size α(i) that sufficiently reduces the objective function or a
constant step size can be used. Design update can be found
as follows:

x(i+1) = x(i) + α(i)s (9)

2.2 Reduced gradient projection algorithm

Rosen’s work (1961) provides an extension to the gradient
projection algorithm to handle non-linear constraints. The
main idea is to calculate the correction (restoring) move
that can bring violated constraints back into the feasible
domain. To calculate the restoring move, we linearize the
constraint:

gj ≈ gj (x
(i)) + ∇gT

j (x̄(i) − x(i)) (10)

Using the linearized equation of the constraints, we can find
the correction move:

x(i+1) − x̃(i+1) = −N(NT N)−1ga

ga,j = gj (̃x
(i+1)) (11)

where x̃(i+1) is a new design after minimizing in the
tangential direction, (8), x(i+1) is the corrected design,
and ga is a vector which contains the violations of the
active constraints. Equation (11) is based on the linear
approximation and therefore should be repeated several
times, until ga is sufficiently small. In addition, the matrix
N should be re-evaluated for each point, which means
all physical solvers should be deployed again in order to
undertaken a sensitivity analysis for active constraints. In
the industrial case, the deployment of physical solvers can
be very time consuming. Hence, it can be computationally
expensive to calculate a correction move several times,
or even just once. To reduce computation cost, one can
use the violation of the constraint gj at the beginning of
the iteration, ga,j = gj (x

(i)). With this assumption, the
correction move might not bring the xi+1 back on the
design boundary. Therefore, in one or more optimization
iterations, the active constraint would become non-active
(gj (x

(i+1)) < 0). In this case, the algorithm would perform
a steepest descent step, like other feasible direction methods
(Vanderplaats 2007), and violate the constraint again in the
next iteration. That leads to zigzagging behavior of the
algorithm, and the reduction of its performance (Fletcher
2013; Sun and Yuan 2006).

2.3 Numerical example

Figure 1 gives the typical diagram with the zigzagging
behavior of the gradient projection algorithm with a
constant step size. After some initial iterations, the non-
linear design boundary is reached and overshot. On the next
iteration, the algorithm calculates the projected direction
and applies the correction move to bring the solution back
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Fig. 1 Zigzagging behavior of
GP method

to the feasible side. This leads to the zigzagging of the
objective and constraint values.

3 Relaxed gradient projection algorithm

To overcome issues with gradient projection methods in
our optimization problems, we introduce the proposed
method, a relaxed gradient projection algorithm (RGP).
It incorporates techniques for damping the zigzagging
behavior of the algorithm, while following non-linear active
constraints. This section describes the RGP method and its
simplified version (SRGP).

3.1 Buffer (critical) zone

The gradient projection algorithm has an issue with
switching on and off the constraint while following the
design boundary. To avoid switching, we introduce the
buffer (critical) zone. The buffer (critical) zone is the region
where the constraint is considered as active. Inside this
zone, we calculate the buffer coefficient ω(i)

j , which defines
how “strongly” the constraint should be considered. If the
constraint value has not reached the limit value, the ω

(i)
j

coefficient makes the constraint “weaker.” On the other
hand, if the constraint value is on the limit or has violated the
limit, the ω

(i)
j coefficient makes the constraint fully active. It

smoothly varies from zero to two, where “zero” means that
constraint is non-active, and “one” means that the constraint
value has reached its limit value. If the buffer coefficient
is more than one, the constraint is violated, and the
correction part should be applied. We use linear distribution
through the buffer zone for the buffer coefficient. Non-
linear distribution is non-applicable because the algorithm
varies the buffer coefficient in a non-linear way, and it

reduces the stability of the method. Based on the size of
buffer and its central position, one can calculate the buffer
coefficient ω(i)

j for inequality constraints (gj (xi ) ≤ 0):

LBV
(i)
j = CBV

(i)
j − BS

(i)
j

ω
(i)
j = gj (x

(i)) − LBV
(i)
j

BS
(i)
j

(12)

or for equality constraints (hj (xi ) = 0):

ω
(i)
j = 1 + abs[gj (x

(i)) − LV j ]
BS

(i)
j

(13)

where LBV
(i)
j is a value “lower buffer value,” BS

(i)
j is a

value “buffer size,”CBV
(i)
j is a value “central buffer value,”

gj (x
(i)) is a constraint value, and LVj is a limit value. All

values are calculated for the jth constraint at the ith iteration.
With (12) and (13), CBVj and BSj should first be

defined. Initially, CBV
(i)
j can be set to be the same as the

corresponding constraint limit value. Finding suitable BS
(i)
j

requires the use of historical information. In the first step,
BSj can be initialized as some small value, for instance
1e−12 or 1% of the constraint limit value. Starting from the
second iteration, we can calculate the maximum change in
the constraint value Δg

(i)
j during the optimization process.

By the multiplying maximum change by the buffer size
factor BSF, we can estimate the BS

(i)
j :

BS
(i)
j = BSF · max

k
(Δgj (x

(k)))

Δg
(i)
j = abs(gj (x

(i)) − gj (x
(i−1))) (14)

In general, the buffer factor should be more than one
(BSF > 1.0) and can be changed during the optimization

1636



Relaxed gradient projection algorithm for constrained node-based shape optimization

Fig. 2 Buffer zone around
constraint limit

process via the buffer adaptation functions. Initially, in our
examples, the buffer factor BSF is set to 2 because then the
algorithm has at least one optimization iteration inside the
buffer zone before the constraint value reaches its limit. To
sum up, the buffer zone controls the active set of constraints
through the constraint’s value. In Fig. 2, there is a graph to
demonstrate the typical buffer zone around the constraint
value.

3.2 Search direction

The RGP algorithm inherits from Rosen’s gradient projec-
tion algorithm the projection part of the feasible direction,
and can rotate it to the direction of the active constraints
gradients. The buffer coefficient ω

(i)
j is divided into two

components. The first part is relaxation, whereby the con-
straint is “relaxed” when it is in the feasible domain. The
ω

r,(i)
j relaxation coefficient is calculated as follows:

ω
r,(i)
j =

{
ω

(i)
j , if ω

(i)
j ≤ 1.0

1, if ω
(i)
j > 1.0

(15)

If the constraint is equality, the relaxation coefficient is
always equal to one, ω

r,(i)
j = 1.0. The second component,

the ω
c,(i)
j correction coefficient is:

ω
c,(i)
j =

⎧
⎪⎨

⎪⎩

BSFinit (ω
(i)
j − 1), if 1.0 < ω

(i)
j < ωmax

0, if ω
(i)
j ≤ 1.0

BSFinitω
max, if ω

(i)
j ≥ ωmax

(16)

where the factor BSFinit is the initial buffer size factor,
and ωmax is the maximum correction coefficient. If the
problem starts from an infeasible domain, the correction
coefficient can be very high and may cause numerical
issues. The ωmax = 2 limits the correction coefficient to
the values inside the buffer zone and can work in the most

cases. Nonetheless, if the problem starts well inside the
infeasible domain, the ωmax can be increased to a relatively
large value, for instance 10 or 100. If we combine the
relaxation and correction components, we can define the
search direction:

p(i) = −[I − Nωr,(i)(NT N)−1NT ]∇f (i)

ŝ
(i) = p(i) − Nωc,(i)

s(i) = ŝ
(i)

||ŝ(i)||max

(17)

where ωr,(i) is an r by r diagonal matrix; ω
r,(i)
j is placed

in the main diagonal; ωc,(i) is a vector with size r , which
consist of ω

c,(i)
j buffer coefficients; and p(i) is the relaxed

projected direction. All vectors, ∇f (x(i)) and ∇gj (x
(i))

are scaled using max norm (∇f ← ∇f
||∇f ||max

, ∇gj ←
∇gj

||∇gj ||max
). The first equation in (17) calculates the relaxed

projected direction p(i), which is similar to the (8). The
ωr,(i) relaxation coefficient can be understood as a factor to
control how strongly the steepest direction should be turned
into the projected direction. The second equation in (17), the
correction equation, is different to the correction move from
(11). In contrast to the correction move (11), the correction
part rotates the projected direction to point towards the
feasible domain, instead of calculating the design update.
If the violation of the constraint is higher, the rotation is
more significant. If there are several violated constraints and
the ω

c,(i)
j correction coefficients are large, the final search

direction can have high norm. To avoid it, the third equation
normalizes (bounds) the search direction.

Figure 3 shows the possible search directions, calculated
using the RGPmethod. As it is shown, if the constraint value
is not inside the buffer zone (ω(i)

j = 0), the search direction
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Fig. 3 Possible search direction inside buffer zone, calculated using
RGP method

is the same as the steepest descent. If the ω
(i)
j = 1, the

search direction is the projection of the steepest direction
onto the tangential subspace of the active constraint (8). If
the ω

(i)
j > 1, the search direction is rotated towards the

feasible domain. The dark gray sector shows the search
directions, which can improve the objective functions.

3.3 Buffer adaptation functions

The performance of the proposed algorithm strongly
depends on the buffer size, because the buffer size is used
to calculate the feasible search direction. There is a chance
that the initial size and central position of the buffer zone
may become non-optimal during the optimization process.
Therefore, the algorithm requires functions in order to
correct the buffer size in two cases: the zigzagging behavior
around the constraint limits for the case where constraint
violation increases.

In the first case, if the zigzagging for the constraint is
detected, the buffer size factor is increased by the following
rule:

BSF
(i+1)
j = BSF

(i)
j + abs(ω

(i)
j − ω

(i−1)
j ) · factor (18)

where factor is a positive number that scales the update
of the buffer size factor. In all numerical examples, factor
is set to one. With an increase in the buffer size factor
BSF

(i+1)
j , the buffer size BS

(i+1)
j is increased respectively.

If we calculate the constraint value gj (x
(i+1)) and its

respective correction coefficient ω
c,(i)
j using previous and

new buffer sizes BS
(i)
j , BS

(i+1)
j , it can be seen that the

correction coefficient ω
c,(i)
j is smaller with the new buffer

size factor than with the previous one. In contrast, the
relaxation coefficient ω

r,(i)
j is greater with the new buffer

size. Therefore, the value of the constraint will be changed
less from iteration to iteration. Alternatively, the buffer size
factor can be modified by various rules. For instance, buffer
size factor can be doubled, if zigzagging is detected.

The zigzagging behavior can be detected in different
ways. One of them is comparing n number of constraint
values with the constraint limit value. If the constraint
values are sequentially greater and lower than the limit
value, the zigzagging around limit is detected. Alternatively,
the sign of the result of the multiplication of the difference
in constraint values Δg

(i)
j at n previous iterations can be

checked. If we consider 4 previous iterations, the zigzagging
criteria is:
⎧
⎪⎨

⎪⎩

Δg
(i)
j · Δg

(i−1)
j < 0

Δg
(i−1)
j · Δg

(i−2)
j < 0

Δg
(i)
j = gj (x

(i)) − gj (x
(i−1))

(19)

Besides the zigzagging behavior, the constraint value can
move away from a limit value in the infeasible direction.
The condition to detect this in the case of inequality
constraints gj ≤ 0 is:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gj (x
(i)) > 0

gj (x
(i−1)) > 0

Δg
(i)
j ≥ 0

Δg
(i)
j = gj (x

(i)) − gj (x
(i−1))

(20)

To bring the design back into feasible domain, the algorithm
moves the buffer center in the direction of the feasible
domain. That makes the buffer zone non-symmetric around
the limit value and increases thew

(i)
j buffer coefficient. This

function can be understood as moving the real boundaries
deeper inside the feasible domain. The new buffer center
CBV can thus be found as:

CBV i+1
j = CBV i+1

j − (gj (x
(i−1)) − LV j ) (21)

With similar schema (20, 21), the buffer center CBV can
be restored back to the limit value, in case the constraint
correction factor is too strong. In case of the equality
constraint, the condition (20) can be extended as follows:
⎧
⎪⎨

⎪⎩

hj (x
(i)) > 0

hj (x
(i−1)) > 0

Δh
(i)
j ≥ 0

or

⎧
⎪⎨

⎪⎩

hj (x
(i)) < 0

hj (x
(i−1)) < 0

Δh
(i)
j ≤ 0

(22)

Numerical example Figure 4 shows a typical diagram of the
smooth application of the active constraint with a constant
step size. In the first 3 iterations, the buffer zone was
adjusted to refer to the history of the constraint values.
In contrast to Rosen’s gradient projection, there is no
zigzagging behavior along the constraint limit and no jumps
in the objective function values.

3.4 Simplified relaxed gradient projection algorithm

In addition to the relaxed gradient projection method
from the previous section, there is a simplified version
of the proposed algorithm (SRGP). The SRGP method
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Fig. 4 Smooth adding constraint
into the active set using RGP
method

does not solve the linear system of equations (7). Instead,
it subtracts weighted constraint gradients from negative
objective gradient. The weights are calculated in the same
way as the buffer coefficient ω

(i)
j , (12). In case of a single

constraint, the feasible direction is:

s = −(1 − ω(i))∇f − ω(i)∇g (23)

where the ω
(i)
j is the buffer coefficient. In contrast to RGP

method, it differs in the range [0; 1] and can be calculated
as:

ω(i) = g(xi ) − LBV

2 · BS
(24)

In the case of multiple constraints, the search direction can
be found as follows:

s = −(1 − ω(i))∇f − Nω(i),

ω(i) = max
j

(ω
(i)
j ), or

ω(i) =
n∑

j

(ω
(i)
j )/n (25)

where ω(i) is a vector with size r , which consist of the buffer
coefficients ω

(i)
j . The weight ω(i) of the objective gradients

can be defined in several ways. It can be the maximum or
the average of the ω

(i)
j buffer coefficients.

The simplified relaxed gradient projection method uses
the same buffer zone (3.1) and buffer-adaptation functions
(Section 3.3) as the RGP method to damp the zigzagging.
Unlike the RGP method, SRGP does not calculate the
projection direction. Therefore, it cannot follow the linear
constraints. In general, the simplified method oscillates
constraint and objective values more, and requires more
iterations to damp the zigzagging behavior. The advantages
of the simplified method are the lack of the need to solve
the Lagrangian multipliers (7); that it can work with a large

number of constraints; and that it is easy to implement
in the optimization framework. All vectors, ∇f (x(i)) and
∇gj (x

(i)), are scaled using max norm. Figure 5 shows the
possible directions calculated via the SRGP method (light
gray sector). In contrast to the RGP method, the light gray
sector is larger and the direction, which is calculated when
the constraint value is on the limit (ω(i)

j = 0.5), points
towards the feasible domain. Above all, the simplified
relaxed gradient projection method can be effectively used
in different optimization problems.

Numerical example In Fig. 6, one can see the typical
diagram of the smoothing applied on the active constraint
with constant step size. In the first 3 iteration, the method
adjusts the buffer zone by referring to the history of the
constraint values, like in the RGP case. There is a small
violation of the constraint while following it. Therefore,
the buffer zone slightly changes through iterations. The
performance is similar to the RGP case in this simple
example.

Fig. 5 Possible search direction inside buffer zone, calculated by
SRGP method

1639



I. Antonau et al.

Fig. 6 Smooth adding constraint
into the active set with
simplified RGP method

3.5 Optimization algorithm

The Algorithm 1 “Relaxed Gradient Projection” is written as
the simplified pseudo-code to highlight important steps and to
show their order. An interested reader can see more details
in the provided python script (see additional materials).

4 Numerical examples

To demonstrate the performance of the proposed method,
several optimization problems are solved. The main focus
in the practical problems is to compare the gradient projec-
tion method with its modified “relaxed” version. Results of
the simplified relaxed gradient method are shown, but they
are not in the main focus of discussions. All methods are
implemented in the optimization framework “ShapeMod-
ule” (BMW Group). Altair OptistructTM software is used

to solve the structural primal and adjoint analysis of the
numerical models.

4.1 Analytical optimization problems

Solution of the test examples for nonlinear programming
codes from Hock and Schittkowski (1981) is solved.
Description, the reference solutions, and RGP solutions
are shown in Tables 1, 2, and 3. All problems are solved
with the constant step size. No scaling for the sensitivities
is used. The results show that the RGP method is not
efficient in solving analytical problems. The main reason
for that is a constant step size. After several iterations,
the parameter update is extremely low. Using line search
techniques can improve the performance of the method.
In practical cases, rather than accurately converging to
the minima, it is needed to find sufficient improvement.
For instance, in the Problem # 43, after 50 iterations,
all constraints are satisfied and the objective value is
f (x) = −42.75.

4.2 Structural optimization problem

Our first solved optimization problem is the typical mass
reduction of the model, while the compliance of the
model should satisfy the given limit value. The experiment
shows the difference in the performance of the gradient
projection and relaxed gradient projection when constraints
are activated during the optimization process.

Case description In Fig. 10, the geometry of the model
can be seen from 2 different sides. It is the fixture for
soft-top attachment in the BMW i8 Roadster. The blue
color indicates the parts of the model that are damped,
which means the optimization algorithm cannot move them.
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Table 1 Example 1

Problem #2

Classification PBR-T1-2

Number of variables n = 2

Number of constraints m = 1

Objective function

f (x) = 100(x2 − x2
1 )

2 + (1 − x1)
2

Constrained function

1.5 ≤ x2

Start

x0 = (−2, 1)

f (x0) = 909

Reference solution

x∗ = (2a cos( 13 arccos(1/b)), 1.5)

a = (598/1200)0.5

b = 400a3

f (x∗) = 0.0504261879

RGP solution

x∗ = (1.22437007, 1.49999902)

f (x∗) = 0.05042600898328847

g(x∗) = 9.765624997548628e − 07

niter = 261

RGP settings

step size 5e − 4

Table 2 Example 2

Problem #22

Classification QQR-T1-6

Number of variables n = 2

Number of constraints m = 2

Objective function

f (x) = (x1 − 2)2 + (x2 − 1)2

Constrained function

−x1 − x2 + 2 ≥ 0

−x2
1 + x2 ≥ 0

Start

x0 = (2, 2)

f (x0) = 1

Reference solution

x∗ = (1.0, 1.0)

f (x∗) = 1.0

RGP solution

x∗ = (0.99999962, 1.00000126)

f (x∗) = 1.0000007616095747

g1(x
∗) = −8.769388442075865e − 07

g2(x
∗) = 2.0193504708387877e − 06

niter = 102

RGP settings

step size 5e − 2

The red parts are design variables. There is a transition
zone between blue and red parts, where the model can
be modified to maintain continuity between damped and
design parts. The optimization problem can be formulated
as follows:

minimize : mass(x)

s.t. : compliance1(x) ≤ compliance1(x
(0)) ∗ 1.1

compliance2(x) ≤ compliance2(x
(0)) ∗ 1.1 (26)

where mass(x) is the mass response function, x is a vector
of the design parameters, x(0) is the initial state, and
compliance1(x) and compliance2(x) are the compliance
responses according to the different load cases. The load
case 1 is applied in y-direction and load case 2 in z-direction.
Both loads are applied on the upper blue zone while the
bottom blue part of the FE model is fixed (Fig. 10a). In
the case of node-based parametrization, the surface nodes
are used as design variables. The size of the x is 145,326.
Our stopping criteria is a maximum number of iterations
(50). Further optimization steps are not useful, as the mesh
quality is not acceptable. The maximum shape update
magnitude is constant and equals 0.15 mm.

Optimization method settings Table 4 shows the settings
we have used for the methods. The correction coefficient
scales the restoring move (11) of the violated constraint. As
the shape update is limited, the coefficient helps to balance
the impact of the violated constraint with respect to other
responses to the final shape update. The parameters are
tuned in a way that violated constraints can be corrected
in one step. With smaller coefficients, the violations are
initially smaller, but after some iterations, method diverges
because it can not handle constraints anymore.

Results Figure 7 gives the graphs with the compared objec-
tive and constraint values through optimization iterations.
The gradient projection algorithm detects the violated con-
straint compliance2(x) at iteration 6, adds it to the active set
of the constraints, and applies the correction move to bring
the solution back into the feasible domain. At iteration, 7,
the solution is feasible, and the constraint is removed from
the active set of constraints. Hence, the algorithm does not
consider it. Therefore, the constraint value is again violated
in the next iteration. After this point, marked zigzagging
behavior can be seen for objective and constraint values.
In contrast, a relaxed gradient projected algorithm has no
zigzagging behavior after iteration 6 or 7. If we compare
constraint values precisely, in Fig. 7b, c, one can see that up
until iteration 4, both algorithms calculate the same shape
update because both methods perform the steepest descent
step. At iteration 5, the RGP method detects the constraint
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Table 3 Example 3

Problem #43

Classification QQR-T1-11

Number of variables n = 4

Number of constraints m = 3

Objective function

f (x) = x2
1 + x2

2 + 2x2
3 + x2

4

−5x1 − 5x2 − 21x3 + 7x4
Constrained function

8 − x2
1 − x2

2 − x2
3 − x2

4−
x1 + x2 − x3 + x4 ≥ 0

10 − x2
1 − 2x2

2 − x2
3 − 2x2

4

+x1 + x4 ≥ 0

5 − 2x2
1 − x2

2 − x2
3

−2x1 + x2 + x4 ≥ 0

Start

x0 = (0, 0, 0, 0)

f (x0) = 0

Reference solution

x∗ = (0.0, 1.0, 2.0, −1.0)

f (x∗) = −44

RGP solution

x∗ = (1.31159684e − 07, 1.0,

2.0, −9.99999586e − 01)

f (x∗) = −43.999999009762654

g1(x
∗) = 9.520910907445668e − 07

g2(x
∗) = 1.0000019930022122

g3(x
∗) = 1.9072899259953147e − 08

niter = 2766

RGP settings

step size 5e − 2

compliance2(x) as active and adds it to the active set of con-
straints with the relaxation coefficient. At iteration 9, RGP
adds constraint compliance1(x) in the same way. Therefore,
the RGP method smoothly and in advance adds constraints
to the active set. Still, both constraints were violated during
the optimization process, but the amount of the violation is

Table 4 Optimitation method settings

Gradient projection

Step size 0.15

Compliance constraint corr. coeff. 1.0

Compliance constraint corr. coeff. 1.0

RGP and SRGP

Step size 0.15

Buffer scale factor eq. (18) 1

Initial BSF 2.0

lower than in GP. For instance, after 20 iterations, the con-
straint compliance2(x) starts to zigzag around the limit, but
the RGP method is able to damp the oscillations by using
the adaptation function (21) (see Fig. 8). While constraint
compliance2(x) is oscillating, the objective function is still
improving with nearly the same speed as in the previous
iterations. With regard to the results, the objective func-
tion is improved faster using the RGP method compared to
GP (Fig. 9). During 5 − 50 optimization iterations, while
both optimization algorithms are traveling along the design
boundaries, the GP method is able to improve our objec-
tive function by 9.5% and RGP by 14.4%. Hence, the RGP
method improves the objective function 1.7 times faster
than GP in this case. SRGP method sees nearly the same
improvement of the objective function as RGP, but the oscil-
lations of the constraint value around the limits are greater.
In Fig. 10b, the comparison between initial and optimum
design (RGP method) can be seen.

In Fig. 11, there is a comparison in the shape updates
between GP and RGP methods. At iteration 1, both methods
perform the steepest descent step; therefore, the shape
updates are similar in both cases. The difference occurs at
iteration 5. The GP method does not detect the constraint
compliance2(x) and continues performing steepest descent
step. RGP already detects the constraint and calculates
“constrained” shape update. At iterations 6–8, the GP
method strongly modifies the shape updates: at iteration 6,
there is a shape update with a correction move, at iteration
7, there is the steepest descent update, and at iteration 8,
there is again a shape update with a correction move. The
behavior continues during the whole optimization process.
In contrast, the RGP method smoothly modifies the shape
updates during iterations 5–8 and beyond. The RGP method
tries to find the feasible search direction that will not
significantly oscillate the constraints. Therefore, there are
fewer oscillations compare to GP.

Figure 12 shows the difference in the final shapes. There
is no big difference between SRGP and RGP generated
shapes. The shape, generated by the GP method, has
less modification of the design due to problems with zig
zagging. All methods has similar pattern of the update,
therefore all of them converging to similar local optima. The
reason for that is that all methods are trying to follow similar
optimization path along the active sets of the constraints.
If there are no active constraints, all method use steepest
descent direction. If the initial design or the parametrization
will be changed, new final design can be found.

Conclusion The RGP method demonstrates good perfor-
mance in this case, compared to the GP method. It was able
to smoothly activate the constraints as they approached the
limit values. If the zigzagging of the constraint is detected,
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Fig. 7 GP vs RGP vs SRGP
method comparison. a Objective
values. b Constraint
compliance1(x) . c Constraint
compliance2(x)
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Fig. 8 RGP method, constraint
compliance2(x) with buffer
zone

the method is able to damp them, while the objective func-
tion keeps nearly the same ratio of improvement. The SRGP
method exhibits similar performance to the RGP method,
although the constraint violations are greater in number.

4.3 Structural optimization problemwith
geometrical constraint

In the second numerical example, the structural optimiza-
tion problemwith a geometrical constraint should be solved.
In practical cases, it is common to apply geometrical con-
straints because the designed part exists within a given space
so as not to collide with neighboring parts; therefore, the
shape boundaries should be fixed. Details of the packaging
constraint can be found in Najian Asl et al. (2017).

Case description The objective function is to reduce the
mass of the initial model with respect to two constraints:
the model should be inside a packaging box (geometrical
constraint) and the maximum displacement of any point
should be below the given limit. The problem can be defined
as follows:

minimize: mass(x)

s.t. di ≤ dcrit

xi ∈ V c (27)

where x is a vector of the design parameters, mass(x) is
a mass response, di is the displacement at the point i, and
V c is the packaging constraint. The initial configuration
can be seen in Fig. 13a, where the red zones are the
design nodes and the blue zones are damped and cannot
be moved. Figure 13b and c show which parts initially
violate the geometrical constraint and should be corrected

during the optimization process. The stopping criteria are
the maximum number of optimization iterations (100) or
the lack of sufficient improvement in the objective function
(less than 0.1% in the last 10 iterations). The maximum
shape update magnitude is constant and equals to 0.5 mm.

Optimization method settings Table 5 shows the settings
we have used for the methods. The correction coefficients
were tuned in a way that packaging constraint is less
dominant during the optimization process.

Results In Fig. 9, there is a comparison of the objective and
constraint values. Initial design is infeasible with respect to
packaging constraint; therefore, all methods perform their
first iterations to correct the packaging constraint. On graph
Fig. 9a, it can be seen that the RGP method improves the
objective function much faster than the other two methods.
In the case of SRGP, the method performs the “steepest
descent steps” in the direction of the violated geometrical
constraint (s = 0·∇f −1·N ). The GPmethod has calculated
a correction move; hence, most of the shape update is
performed to correct the constraint rather than improve the
objective function. In the RGP method, the correction term
is limited by the correction coefficient ωmax = 2 (see
Section 3.2); therefore, the correction is not as high as for
the other, and the objective function is improved faster.
When the packaging constraint value is corrected, the speed
of objective improvement increases.

Figure 14d provides a comparison of the initial and final
design of the model. The initial design is in transparent
blue, and the optimized design is in white. Visible are the
zones where the mass was reduced and the zone where
the shape was modified to satisfy the packaging constraint.
All methods converged towards a similar optimized design,
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Fig. 9 GP vs RGP vs SRGP
methods compared. a Objective
values. b Constraint
compliance1(x). c Constraint
compliance2(x)
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Fig. 10 Optimization model.
a Geometry of the optimization
model, red design part, blue
damped part. b Initial design
(transparent blue), optimized
design (white) via RGP method
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Fig. 11 Comparison of the shape update (scaled), calculated by GP and RGP methods. a Iteration 1, RGP. b Iteration 1, GP. c Iteration 5, RGP. d
Iteration 5, GP. e Iteration 6, RGP. f Iteration 6, GP. g Iteration 7, RGP. h Iteration 7, GP. i Iteration 8, RGP. j Iteration 8, GP
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Fig. 12 Comparison of the optimized designs. Data filed shows absolute update in (mm). From left to right: GP, RGP, SRGP

(see Fig. 14a–c). The optimization process was stopped
by the convergence criteria because there was no more
sufficient improvement in the objective function, and the
constraints are satisfied within the given tolerance.

An important difference in performance between the
RGP method and others is that in this case the RGP method
is much more stable and is able to maintain its geometrical
constraint very accurately. There is a violation in the
maximum displacement constraint at the 28th iteration, but
the method is able to correct the constraint. In case of the
SRGP method, there are more oscillations of the constraint

values, but the violations are lower. The method was not as
efficient as RGP due to the initially slow improvement of the
objective. When the geometrical constraint was corrected,
the method performed well, and in a stable manner. The GP
method displayed similar issues with zigzagging as in the
previous examples. Nonetheless, the GP method finds the
solution with the same number of iterations as the SRGP
method. It is important to note that the computational time
for one iteration for each method is similar because there is
the same number of calls for analysis and they take up the
most time.

Fig. 13 Optimization model,
packaging constraint(light
purple). a Design model, red
design part, blue damped part. b
Geometrical constraint violation
of the initial design, upper side
(red). c Geometrical constraint
violation of the initial design,
lower side
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Table 5 Optimitation method settings

Gradient projection
Step size 0.5
Maximum displacement constraint corr. coeff. 1.0
Packaging constraint corr. coeff. 0.05

RGP and SRGP
Step size 0.5
Buffer scale factor (18) 1
Initial BSF 2.0

4.4 Computational time

Table 6 shows the comparison of the computational
time needed to solve the optimization problem from the

Table 6 Computation time

Method GP RGP SRGP

Aver. time, 1 Iter, s 247 250 248

Full time, s 14326 10750 14136

Section 4.3. Intel Xeon(R) CPU E5-1650 v4 with 6 cores
was used in cooperation with 64 GiB RAM. 137 s is needed
to solve primal and adjoint solutions and less than 0.7 s to
find shape update with constant step size. Rest of the time is
needed to compute parametrization, mesh update, and save
the output files.

Fig. 14 Comparison of the
optimized designs. Data filed
shows absolute update in (mm).
a Gradient Projection method
method b Relaxed Gradient
Projection method c Simplied
Relaxed Gradient Projection
method d Initial design
(transparent blue), optimized
design (white) via RGP method
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5 Conclusions

In this paper, the relaxed gradient projection method is
introduced. The proposed modifications to Rosen’s gradient
projections show good speed up in the rate of the objective
improvement, and in avoiding marked zigzagging behavior.
The proposed method can activate the constraint in advance
before the limit value is reached, and it has techniques
to reduce the zigzagging behavior while following the
constraint boundaries. It does not require accurate parameter
set up; therefore, it is easier and stable in daily practice.
Further research can be done to find efficient line-search
techniques that can be efficiently used in the practical
applications, and computing more accurately the correction
part of the search direction. In conclusion, we see the
relaxed gradient projection algorithm as being one of the
group of feasible direction methods. We do not claim
that the proposed method is the best option for shape
optimization problems in general. The proposed algorithm
should be considered as a good alternative to other
successful optimization methods, such as inner-point (Chen
et al. 2019) or trust-region algorithms (Yuan 1999).

Supplementary Information The online version contains supplemen-
tary material available at 10.1007/s00158-020-02821-y.
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