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Abstract. Model architectures have been dramatically increasing in
size, improving performance at the cost of resource requirements. In
this paper we propose 3DQ, a ternary quantization method, applied
for the first time to 3D Fully Convolutional Neural Networks, enabling
16x model compression while maintaining performance on par with full
precision models. We extensively evaluate 3DQ on two datasets for the
challenging task of whole brain segmentation. Additionally, we showcase
the ability of our method to generalize on two common 3D architectures,
namely 3D U-Net and V-Net. Outperforming a variety of baselines, the
proposed method is capable of compressing large 3D models to a few
MBytes, alleviating the storage needs in space-critical applications.
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1 Introduction

Fully Convolutional Neural Networks (F-CNNs) have been incorporated suc-
cessfully into numerous Computer Assisted Diagnosis (CAD) systems perform-
ing various medical image analysis tasks with increasing difficulty and require-
ments [1]. Hence, their size has grown drastically reaching commonly hundreds
of layers and several million parameters.

An additional factor towards the size explosion of F-CNNs in CADs is that
medical data is in most cases volumetric by nature and has been continuously
increasing in resolution. This growth of F-CNNs has shortcomings regarding
resource requirements, such as computation, energy consumption and storage.
Towards this end, we propose, for the first time in 3D F-CNNs, a quantization-
based technique that offers model compression up to 16 times without any loss
in performance.
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To this day, various segmentation methods process volumetric data per slice
using 2D F-CNNs [2]. Such methods yield satisfying results but are not able
to fully exploit the contextual information from adjacent slices. Existing 3D
F-CNNs, like V-Net [3], 3D U-Net [4] and VoxResNet [5] have achieved state-
of-the-art performance in a plethora of segmentation tasks utilizing 3D kernels.
However, their millions of parameters require a large amount of storage space.

Deep learning-based CADs deploying 3D F-CNNs are being integrated into
the medical workflow [6]. Hospitals, which were already burdened with storing a
myriad of large medical records, now have to allocate additional storage for the
trained models in CADs. On top of that, the emerging field of patient-specific
care [7], while improving personalized diagnosis and monitoring, will increase
the need for storage in medical facilities even further.

Model compression has been an active area of research in the past few years
aiming at deploying state-of-the-art F-CNNs in low-power and resource-limited
devices, like smartphones and embedded electronics. An additional potential use-
case is represented by the decentralized training approach of Federated Learn-
ing [8]. Despite maintaining the privacy of client data, iteratively sending over
the internet millions of parameters to train a global model becomes unstable
with unreliable connections, and compressed models would improve the process.

Multiple techniques, like parameter pruning, low-rank factorization, knowl-
edge distillation and weight quantization [9], have been proposed to compress
the size of CNNs without compromising their performance. Specifically, weight
quantization to binary [10] and ternary values [11–13] has been among the most
popular methods for this task. This can be attributed to its additional advantage
of allowing for impressive speed-up during training and inference by approximat-
ing convolutions with XNOR and bitcounting operations [10]. Even though it is
generally accepted that XNOR-Net revolutionized this field [10], there is a sig-
nificant trade-off between accuracy and speed, not ideal for medical applications.
TernaryNet [11] was the first attempt in medical imaging to create compact and
efficient F-CNNs utilizing ternary weights, where a 2D U-Net was employed for
the task of per-slice pancreas CT segmentation. However, extending quantization
to 3D F-CNNs has yet to be explored.

In this paper, our contribution is two-fold: 1) We propose, for the first time
in 3D F-CNNs, a quantization mechanism with a novel bit-scaling scheme which
we name 3DQ. 3DQ integrates two trainable scaling factors and a normalization
parameter that increases the learning capacity of a model while maintaining
compression. 2) We extensively evaluate 3DQ on the challenging task of 3D
whole brain segmentation, showcasing that state-of-the-art performance can be
combined with impressive compression rates.

2 Method

2.1 Weight Quantization

The main goal of our quantization method is approximating the full precision
weights W by their ternary counterparts {-1, 0, 1}, W̃ , as formalized in Eq. 1.
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Fig. 1: Overview of 3DQ. The full precision weights are quantized into ternary
values, scaled by γ± and then further diversified by the factor α.

The first step is computing the threshold ∆, based on which W will be as-
signed into three quantization bins. Various approaches leverage a single ∆ for
the entire network [11]. However, 3DQ computes one ∆ per layer l, to maintain
the variability in weight range values within each layer and avoid weight spar-
sity [12]. Specifically, each ∆l is computed as ∆l = t ·max (|Wl|): the maximum
absolute value of the weights in each layer is multiplied by a constant factor t
which moderates the weight sparsity and is consistent among all layers. We set
t to 0.05, as suggested by [12] as it proved to be the optimal trade-off between
sparsity and accuracy.

After thresholding, the acquired ternary weights W̃ are multiplied by a set
of scaling factors, since training an entire F-CNN with {-1, 0, 1} weight values
would lead to substantial suboptimal performance. 3DQ utilizes two scaling fac-
tors, γ+l and γ−l [12], which are variables learned for each layer l during training,
in contrast to previous methods such as [11, 10].

Wl ≈ W̃l =


+γ+l · α if Wl > ∆l

0 if |Wl| < ∆l

−γ−l · α otherwise.

(1)

Furthermore, unlike [12], we incorporated an additional scaling factor α into
3DQ [14]. α is calculated from W as the average of the weights with an ab-
solute value larger than ∆l, as α = 1

n∆l

∑
|W̃l||Wl|, where n∆l =

∑
|W̃l|. α

enhances the approximation of the full precision weights, since it spreads the
quantized values within the same bin, increasing the expressivity and diversity
of the weights in between the various channels of each layer. The quantization
process is schematically summarized in Fig. 1.

2.2 Compact Weight Storing

As explained above, both W and W̃ are required during training in order to
achieve the optimization of the model weights and the learned scaling factors
γ+ and γ−. However, during inference, the full precision weights are no longer
necessary and therefore there is no need to store them.

Since after the scaling of W̃ , the values still use 32 bits, it is important
to store the model ensuring the 16x compression rate offered by the ternary
weights. Towards this end, we separate each kernel into three components, as
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Fig. 2: Overview of 3DQ compression method to store the model parameters. The
scaling factors are separated from the ternary values, which are further split into
binary vectors, then packed from 8 bits to a byte.

can be seen in Fig. 2: 1) The trained scaling factors γ+ and γ−, which are as
many as the layers of the chosen F-CNN architecture. 2) The α values, which
are computed from the full precision weights and sum up to as many as the
channels at each layer. 3) The ternary weights, which constitute the majority of
the model parameters, summing up to millions of values in cases of 3D models.

The scaling factors are stored as full precision variables, requiring 32 bits of
disk space per value. Meanwhile, each ternary weight kernel is split into two bi-
nary masks, one for the positive weights and one for the negatives. The unmarked
locations in both masks stand for the zero weights. Afterwards, the masks go
through bit packing and 8 weight bits are stored in 1 byte. The same process
is followed backwards to restore the saved models: first unpack the weight val-
ues, then multiply them with the saved scaling factors. This method achieves
impressive compression rates, particularly crucial for large 3D models, where
oftentimes 45M parameters need to be stored for each network [3].

3 Experimental Setup

Datasets We evaluated 3DQ on two challenging and publicly available medical
imaging 3D segmentation datasets, namely the Multi-Atlas Labelling Challenge
(MALC) [15] and the Hippocampus (HC) Segmentation dataset from the Med-
ical Decathlon challenge [16]. MALC is part of the OASIS dataset and contains
30 whole brain MRI T1 scans with manual annotations. The input volumes are
sized 256× 256× 256, which were sampled in cubic patches of size 64. Maintain-
ing the original challenge split, we used 15 scans for training and 15 for testing.
We considered 28 classes for the segmentation, following [2], and we repeated all
the experiments 5 times.

HC includes 263 training samples sized on average 36 × 50 × 35, which we
padded to cubes sized 64. Due to the public unavailability of the test set, we per-
formed 5-fold cross-validation for all our experiments, dividing the given dataset
to 80/20 patient-level splits. In this dataset, the volumes are segmented into
3 classes, 2 parts of the hippocampus (hippocampus proper and hippocampal
formation) and the background [16].
Model Training To highlight the generalizability of our method, for the first
time, we quantized common 3D F-CNN architectures, namely 3D U-Net [4] on
MALC and HC, and V-Net [3] on MALC. The aforementioned models are highly
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Fig. 3: Qualitative results of 3DQ compared with baseline methods. White arrows
on the zoomed views show the superior segmentation performance of 3DQ.

suitable candidates for quantization and compression, since they have 16M and
45M trainable parameters respectively and require up to 175MB of storage space.

For both datasets, we trained the models with a composite equally-balanced
loss function comprised of Dice loss and weighted cross entropy. The weights were
computed with median frequency balancing [17] to circumvent class imbalance.
We used an Adam optimizer, initialized with learning rate 0.0001 for 3D U-Net
and 0.00005 for V-Net. We trained all models on an NVIDIA Titan Xp Pascal
GPU and implemented 3DQ on PyTorch. Although all 3D U-Net models were
trained from scratch, we found beneficial starting the quantized experiments on
V-Net from a pretrained version.

Evaluation Metrics The main idea of our approach is compressing quantized
models, without sacrificing performance with respect to their full precision coun-
terparts. Therefore, the evaluation, which we will discuss in Section 4, is based on
two different criteria: the Dice coefficient achieved by the models across volumes
and the storage space required to save them.

Ablative testing In order to showcase the effectiveness of the main components
of 3DQ, namely the ternary weights and the addition of the scaling factor α, we
performed ablative testing. Comparing 3DQ with BTQ, an adjusted binarized
version of Trained Ternary Quantization (TTQ) [12], is an essential experiment
to highlight the benefits of ternary weights. Furthermore, we compared 3DQ
against TTQ to demonstrate the contribution of α as a scaling factor.

Baseline comparison Furthermore, 3DQ was evaluated against its full pre-
cision counterpart in order to investigate whether quantized models are able
to match the performance of full precision networks. 3DQ was also compared
with TernaryNet [11], which was recently proposed for the compression of 2D
U-Net [18] for pancreas CT segmentation. Additionally, as an alternative com-
pression method, we deployed knowledge distillation with a temperature T = 40
to train scaled-down variants [19] of 3D U-Net and V-Net, that take up exactly
the same storage space as the original-size models compressed with 3DQ.
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Fig. 4: Box-plot of Dice scores achieved by 3D U-Net comparing 3DQ with the
full precision model and TernaryNet on the classes of the right hemisphere of
the brain for the 15 testing volumes of MALC [15].

4 Results and Discussion

Ablative Testing Table 1 highlights that models quantized with ternary weights
outperform their binary counterparts by 3-11% for MALC and 7% for HC, thanks
to the higher learning capacity, motivating the choice of ternary weights in 3DQ.
Moreover, Table 1 showcases the positive impact of the scaling factor α we intro-
duced, allowing 3DQ to perform up to 1-2% better than TTQ on both datasets,
with a lower standard deviation. α mitigates the quantization constraints, en-
abling the ternary weights to assume a larger variety of values, better resembling
their full precision counterparts.

BTQ TTQ 3DQ

H
C

3DU 0.847 ± 0.009 0.912 ± 0.008 0.915 ± 0.006

M
A
L
C V 0.770 ± 0.013 0.790 ± 0.010 0.802 ± 0.004

3DU 0.735 ± 0.005 0.828 ± 0.007 0.844 ± 0.006

Table 1: Comparison of Dice scores of 3DQ
with TTQ and its binarized version BTQ on
HC and MALC, with 3D U-Net and V-Net.

Comparative Methods As can
be seen in Table 2, 3D U-Net
quantized with 3DQ performs as
good as the full precision model
in the case of HC, while it outper-
forms it by over 2% for MALC.
This can be attributed to the
quantization acting as a regular-
ization technique by limiting the
dynamic range of the weight values. 3DQ also outperformed TernaryNet across
all experiments for MALC and HC, with a margin ranging from 7 to over 10%,
thanks to the learned scaling factors γ± and the absence of the hyperbolic ternary
tangent which bounds the activation values and limits the learning capacity of
the model.

Figure 3 shows sample segmentations for a slice of a MALC volume from
3D U-Net. A zoomed view of the segmentations, indicates important subcortical
structures with a white arrow. Both full precision and TernaryNet predictions
suffer from over-inclusion of small structures and spurious misclassified regions.
The box plot in Figure 4 confirms the higher quality of the segmentations pro-
duced by 3DQ, reporting the Dice scores on the right hemisphere structures. 3DQ
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Full Distilled TernaryNet 3DQ

H
C

3DU 0.914 ± 0.005 0.908 ± 0.019 0.845 ± 0.013 0.915 ± 0.006

M
A
L
C V 0.815 ± 0.008 0.715 ± 0.001 0.696 ± 0.016 0.802 ± 0.004

3DU 0.822 ± 0.005 0.730 ± 0.008 0.774 ± 0.012 0.844 ± 0.006

Table 2: Comparison of Dice scores of 3DQ with baseline methods. Tests per-
formed on HC and MALC, with 3D U-Net and V-Net.

outperformed both full precision and TernaryNet, with fewer outliers, demon-
strating more uniform results throughout the test samples.

Comparison with Knowledge Distillation Another experiment reported
in Table 2 is the comparison of 3DQ with knowledge distillation. In order to
match the 3DQ model sizes while keeping the full precision weights, the distilled
networks have 16x fewer parameters than the full models. Even though the
smaller networks achieve almost equal performance to the full model for HC,
the margin is increased for MALC, where the student networks achieved a 9-
10% worse Dice score than the full models for both 3D U-Net and V-Net. This
drop in performance can be attributed to the fact that distilled models are 16x
smaller than the original ones and additionally have to rely on the predictions
of a teacher network, limiting their learning capacity. 3DQ also outperforms the
distilled models across the board by a substantial 8-11% on MALC, constituting
a successful model compression choice.

Quantization on Different Architectures Table 2 highlights the effects of
quantization in the two different 3D model architectures, specifically 3D U-Net
and V-Net. Although 3D U-Net is 3x smaller than V-Net, it achieved higher
Dice scores in our experiments on MALC, especially when quantized. While the
full models performed similarly with a difference of 1%, the quantized 3D U-Net
achieved a 4% higher Dice than the quantized V-Net. We attribute this difference
in performance to the fact that MALC consists of 15 training volumes, which are
considered limited data for V-Net, a large model with 45M trainable parameters,
in contrast with 3D U-Net that has 16M.

Full Distilled Ternary Binary

3D U-Net 63MB 3.9MB 3.9MB 2.0MB

V-Net 175MB 11MB 11MB 5.5MB

Table 3: Model size in MBytes for full pre-
cision and compressed models.

Compression The models stor-
age requirements are shown in Ta-
ble 3. By using ternary weights,
TernaryNet, TTQ and 3DQ re-
duce the storage size by a factor
of 16, compared to a full precision
model. The different scaling fac-
tors impact the storage by only a few KBytes. Binary weights additionally re-
duce the storage required by 2x in comparison to ternary ones, at the cost of
lower Dice scores, due to limited learning capacity.
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5 Conclusion

In this paper we proposed 3DQ, a ternary quantization method, which was ap-
plied for the first time to 3D F-CNNs on the challenging task of volumetric whole
brain segmentation. The models quantized with 3DQ achieved equal or better
Dice scores than the baselines, including the full precision models, across two
datasets. Thanks to 16x model compression, 3DQ constitutes a valid approach
for storage-critical applications, as patient-specific networks or weights transfer
during Federated Learning.
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