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Abstract 

 
Early detection of esophageal cancer is critical to increase the success rate of treatment, with late 

detection leading to over 500,000 annual deaths worldwide. Moreover, late disease detection 

incurs healthcare costs ranging between $80,000-250,000 per patient, making esophageal cancer 

among the most expensive cancers to treat. White light endoscopy (WLE) is currently the 

prominent technique used in the detection of esophageal cancer but has limited ability to detect 

disease in early phases, when the disease is primarily located beneath the tissue surface. Therefore, 

current screening regimes rely on quadratic biopsies to increase the likelihood of detecting traces 

of dysplasia. This process of routine screening is however costly, invasive, and prone to sampling 

errors as dysplasia can be confined to very small areas and appear macroscopically identical to 

non-dysplastic mucosa. 

 
To meet the increasing demand for endoscopic surveillance, less invasive 3D imaging of the 

gastrointestinal (GI) tract by optical coherence tomography (OCT) endoscopy, able to reveal 

layered esophageal structure, has been explored. However, OCT has yet to be widely accepted 

into clinical practice as the detection and grading of early disease remains challenging because 

OCT relies solely on backscattering of tissue where biological origins of differences in the 

measured scattering signals are difficult to decipher and imaging is limited to superficial features. 

Complimentarily, optoacoustic (OA) endoscopy provides 3D high resolution label-free functional 

imaging in-vivo and offers rich contrast at depths greater than OCT. Hence, OA is well suited for 

endoscopic applications revealing metabolic information of the esophageal lining. The 

combination of molecular imaging with OA and structural imaging with OCT modalities may 

provide routes for improved endoscopic diagnosis and detection of early signs of dysplasia. Here, 

replacement of 2D user-dependent observations following the WLE protocol with objective, 

quantitative, 3D measurements of the entire esophagus wall is expected to deliver morphological 

and pathophysiological cancer and pre-cancer features not available to WLE. 

 
The work presented herein focused on developing a hybrid OCT-OA endoscope for imaging the 

human gastrointestinal tract. Clinical translational challenges to overcome included high hybrid 

imaging frame rates to avoid motion artifacts, large fields of view to expedite the screening 

procedure, careful design of sensors with a miniaturized form factor to be inserted through hollow 

bodily cavities and appropriate probe geometry to ensure mechanical stability during imaging. 

Several hybrid endoscopic design concepts such as forward /side viewing, proximal/distal rotation 
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and common mode/ split path illumination are discussed. The best concepts were forwarded to the 

development phase where each design elements including the rotational motor, ultrasound 

detector, capsule interface, optical probe, and back-end system performance was characterized. 

The optical system consisted of a customized double clad fiber coupler to combine the imaging 

modalities and beam shaping at the probe tip was achieved with a custom-made grin lens designed 

in Zemax. To select the best material for the capsule interface a transmission efficiency test of 

both acoustics and illumination were performed on a select number of materials with the best 

performing material selected as the capsule interface. The hollow shaft motors used during the 

study were standard models available online. 

 
In regard to the endoscopic acoustic detector. Several single element benchtop ultra-broadband 

transducers with different materials, dimensions, and acoustic sensitivity profiles including axicon 

and spherical were developed and characterized in 3D against a broadband omnidirectional point 

source. The greatest performing transducers were lithium niobate based with the axicon transducer 

offering an elongated sensitivity beam. However, during OA imaging the spherical transducer 

delivered better image quality when compared to the axicon. Therefore, a rigorous 3D acoustic 

simulation study was conducted to demonstrate that the axicon transducer behaves differently to 

acoustic point and line sources. For this reason, the axicon would be better suited for microscopy 

applications where depth of focus could be extended. Hence an OA microscope was built to 

demonstrate the improved depth of focus performance with a broadband axicon detector. In 

response the next generation spherical detector was equipped with integrated slip rings to allow 

endoscopic distal rotation. 

 
Aside from the technical development of the endoscope design, two image reconstruction methods 

employed for linear scanning configurations were explored in cylindrical coordinates for OA 

endoscopy applications. The algorithms were studied and optimized to assess the feasibility of real 

time B scan image reconstruction for OA endoscopy over several mm’s of depth. 

 
Lastly the translational potential of hybrid OA-OCT endoscopic imaging was demonstrated in a 

controlled ex-vivo experiment by measuring excised esophageal samples from a pig and in-vivo 

human mucosal tissue. Synchronous helical pull back acquisitions at video rate was performed 

with the endoscope. The co-registered OCT-OA images revealed 3D structural and 

pathophysiological information of the esophageal lining that could be used to improve detection 

of esophageal cancer. Overall, the experimental findings reported herein show the hybrid OCT- 
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OA endoscope offers promising translational characteristics for imaging the human GI tract in the 

near future. 
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Chapter 1 Introduction 

Early detection of cancer is critical to increasing the success rate of cancer treatment. In particular, 

esophageal cancer has a very low recovery rate the later the detection. Symptomatic presentations 

occur late in the course of the disease, attributing to ~ 509,000 annual deaths worldwide [1]. Aside 

from the high fatality rate, treatment of late diseases incurs costs in the range between $80,000- 

250,000 per patient lifetime making esophageal cancer among the most expensive diseases to treat 

in oncology [2]. In the western world 50% of esophageal cancers are known as adenocarcinoma 

(EAC). This condition has an identifiable precancerous stage (Barrett’s esophagus) that can be 

monitored by endoscopic surveillance [3]. Figure 1 reveals progression of cancer growth from 

normal lining to invasive carcinoma, an intermediate transition called dysplasia prior to the growth 

of carcinoma offers a stage at which the disease can be treated using endoscopic interventions such 

as radio frequency ablation. Unfortunately, due to aging and more overweight population the 

incidence rates of Barret’s esophagus and esophageal cancer are increasing. 

 
 

Figure 1: Progression of cancer growth from normal lining to invasive carcinoma [4] 

 

 

Today white light endoscopy (WLE) is a prominent technique used in the detection of esophageal 

cancer; however, the imaging modality provides poor contrast of biological tissue. Therefore, 

current screening regimes rely on identifying Barrett’s segments and performing quadratic biopsies 

within a region to increase the likelihood of detecting for traces of dysplasia. The extracted 

samples are then carefully prepared, and contrast agents introduced before performing 
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pathological analysis. This process of routine screening is under dispute because it is costly, 

invasive and prone to sampling errors as dysplasia can be confined to very small areas and appear 

macroscopically identical to non-dysplastic mucosa. Sampling for quadratic biopsies may result 

in false negatives in whom dysplasia is present but undetected during the procedure. Furthermore, 

patients who have Barrett’s esophagus and are at low risk of progression to EAC, undergo 

unnecessary biopsies leading to extensive waiting lists [2]. 

 

To overcome such problems and meet the increasing demand for endoscopic surveillance, research 

has led to the rapid emerging area of early disease detection within the field of biophotonics. Two 

prominent imaging modalities include optical coherence tomography (OCT) and optoacoustic 

imaging (OA). 

 
Optical coherence tomography (OCT) is a high-resolution and noncontact imaging technique that 

measures back-scattered radiation generated from an infrared light source directed at the tissue 

under examination. OCT is capable of having 3D tomograms of the internal microstructures of 

various biological samples, based on scattering and reflecting. The OCT signal is obtained from 

the interference between the beam back-reflected from the reference arm and the light 

backscattered from the internal layers of the sample, which depends on intrinsic refractive index 

gradients. However, OCT imaging is unable to present the optical absorption property of the sample 

and limited to a penetration imaging depth of ~1mm [4]. 

 
OA relies on irradiating the tissue surface with low energy pulses of laser light with optical 

wavelengths from the ultraviolet to near–infrared spectrum. Local absorption of electromagnetic 

energy is accompanied by rapid heating, which subsequently leads to thermal expansion and the 

generation of wideband ultrasonic emission. An image of the absorption distribution can be 

recovered by detecting the ultrasonic waves as they propagate to the surface [5]. Additionally, OA 

has the ability to penetrate deeper than OCT imaging [131]. 

 
To overcome current problems associated with esophageal imaging a hybrid endoscope 

performing simultaneous OCT–OA endoscopy could improve patient outcomes. Although 

previous attempts of hybrid OCT-OA endoscopes have focused on miniaturization for small 

animal organs which exhibit poor contact with the human esophagus and reduced SNR. 

Additionally, all designs suffer from low frame rates leading to motion artifacts and thereby limit 

clinical translation. Hence, the goal of this work is the technical development of a hybrid optical 

and optoacoustic endoscope for esophageal tracking of the human GI track, combining the 
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structural information obtained from OCT with the pathophysiological data acquired from OA. 

The instrument would have the potential to perform in vivo early staging of precancerous 

conditions to improve the probability of detecting for dysplasia by replacing two dimensional 

qualitative and user dependent observations with objective, quantitative, three-dimensional 

measurements of the entire esophagus wall, delivering morphological and pathophysiological 

cancer and pre-cancer features not available to white light endoscopy. 

 
 

1.1. Present day Endoscopy 

 
1.1.1 White light endoscopy 

 
There are three main types of commercial white light endoscopes for examining the esophagus 

including fiber bundle, optics on tip and capsule endoscopes. Compared to the first two, capsule 

endoscopy is a less invasive examination method that does not require sedation during the 

examination process and reduces the patient’s discomfort [135]. Furthermore, the capsule (Fig 2) 

has the advantage of being able to swallow, so this practice could be administered by a nurse, 

simplifying the surveillance examination. However, capsule endoscopy faces several limitations; 

for example, it cannot obtain biopsies or perform therapy and once swallowed it cannot be 

controlled remotely, and images may be limited by position and transit as it moves through the 

gastrointestinal tract [6]. 

 
 

Figure 2: The PillCam Capsule Endoscope [7] 

 
 

The main limitation of all these white light endoscopes is that they employ purely white light 

intensity-based imaging, thereby providing poor contrast images of the esophageal tissue surface. 

Current screening regimes rely on endoscopes identifying Barrett’s segments and performing 

quadratic biopsies every 2 cm’s within the region to increase the likelihood of detecting for traces 

of high-grade dysplasia. The extracted samples are then carefully prepared and contrast agents 
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introduced before performing image analysis [8]. Unfortunately, this strategy has a high false 

negative rate as the endoscopist is simply guessing where to extract a biopsy of interest for further 

examination in spite of the fact that dysplasia can be confined to very small regions and appear 

macroscopically identical to non-dysplastic mucosa under the presence of white light. 

 

1.1.2 Optical endoscopy 

 
The use of optical techniques for early detection of esophageal cancer in-vivo is a rapidly emerging 

area within the field of biophotonics and is currently being explored as an alternative to WLE. 

Early studies of optical coherence tomography [19-24] , fluorescence endoscopy [14-18], confocal 

laser endomicroscopy [9-13] have demonstrated promising results of early stage dysplasia 

detection. 

 

Confocal laser endomicroscopy (CLE) is a promising imaging tool that allows microscopic 

subsurface imaging of the gastrointestinal tract in-vivo. The imaging modality permits direct 

histologic imaging in vivo where changes in vessels, connective tissue and in the cellular 

architecture can be evaluated during routine endoscopy examinations [9,11-13]. CLE human 

clinical trial studies were able to distinguish cancerous from normal epithelium via in-vivo 

histology with high accuracy. The diseased tissue was diagnosed immediately during routine 

endoscopy facilitating early treatment of esophageal cancer [11,12]. Although the acquisition of 

confocal images without movement artifacts in a known problem limiting the number of good 

images during surveillance and the intrinsic limitation of photon scattering in tissue limits 

penetration depths up to <250µm [12]. Therefore, only the mucosal layer can be visualized by 

CLE. Finally, CLE interrogates superficial lumen volumes with small field of views (<0.1mm3) 

preventing application for surveillance endoscopy [9, 13]. 

 

Fluorescence endoscopy (FE) holds potential to improve diagnosis and guide therapy during 

endoscopic examination. FE enables real-time visualization of complex biochemical processes 

involved in both normal and disease states in-vivo with labels that can be applied during the 

endoscopic examination [14-18]. In particular, a fluorescent label has been shown to bind 

specifically to high grade dysplasia and adenocarcinoma and thereby emit light when excited at a 

specified wavelength to distinguish pathology in-vivo [18]. A recent in-vivo human pilot study 

based on a custom-built fluorescence endoscope paired to a high-definition white light endoscope 

demonstrated 33% improved dysplasia and early EAC lesion detection in Barrett’s esophagus 

patients with fluorescence endoscopy compared to WLE [15]. However, translation from bench to 
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bedside remains challenging because of production of the imaging agent, safety and toxicity 

requirements and relatively high initial costs [16]. A further restriction is the higher level of 

clinical regulatory requirements to satisfy when compared against label-free imaging methods. 

 

OCT endoscopy has exhibited promising images of the human esophagus wall revealing layered 

mucosal features [19]. A recent comparative study demonstrated dysplasia detection of 33.7% 

with OCT endoscopy compared to 5.7% with random biopsies using the standard WLE procedure 

[20]. Despite these merits, OCT endoscopy has yet to be widely accepted into clinical practice as 

the grading and detection of dysplasia remains challenging since the biological origins of 

differences in the scattered signals of healthy and neoplastic tissue are difficult to interpret [21,22]. 

Moreover, OCT imaging is limited to superficial structures, impairing clinical applications [23,24]. 

OCT endoscopy is discussed further in section 2.2.4 

 

 
1.1.3 Ultrasound endoscopy 

 

Endoscopic ultrasound (EUS) is an invasive procedure to assess esophageal cancer staging, by 

producing cross-sectional images of the gastrointestinal tract over large field of views [25-28]. 

The modality allows determination of tumor invasion depth and local lymph node metastasis. An 

EUS image is formed following the pulse-echo principle where reflections of the interrogation 

sound wave occur between the structures of the esophageal lining. The strength of the reflection 

results in single amplitude and the time it takes to return to the probe provides the information to 

generate an image. Although there is little difference between the anatomical features and therefore 

the strength of reflections within the lining are weak. Hence, EUS exhibits poor imaging contrast 

thereby limiting application for the detecting of early phase neoplasia in-vivo or visualization of 

tumor metastasis [30,31]. Furthermore, clinical trials have suggested that pre- treatment EUS for 

high grade dysplasia or intramucosal esophageal adenocarcinoma is unnecessary and might in fact 

be misleading as a result of low detection accuracy [32-34]. Therefore, EUS today requires 

methods to enhance image contrast to improve accuracy to realize the full potential of the imaging 

modality [32-34]. 

 
 

1.2. Objectives addressed in this thesis 
 

Optoacoustic imaging is a hybrid approach, which uses light pulses absorbed by interrogating 

biological tissue to induce the emission of sound waves, which are detected by an ultrasound 
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receiver [5]. Optoacoustics offers greater imaging depths when compared to purely optical 

imaging methods which rely on ballistic photons and higher contrast when compared against 

ultrasound endoscopy. Due to these features, the modality could be a powerful tool for the 

evaluation and staging of malignant tissue within the human body. Presently optoacoustic 

mesoscopy operating at ultra-wideband (UWB) ultrasound frequencies offers unique imaging 

characteristics by detecting optical absorption through several millimeters of depth with 

resolutions in the range of tens of micrometers [35,36]. This performance has been implemented 

as raster scanning optoacoustic mesoscopy (RSOM) to yield detailed visualization of different 

skin features, including dermal vasculature [37,38] or melanoma related angiogenesis [39], and 

the label-free quantification of inflammation associated with psoriasis, eczema or vasculitis [36]. 

 
Mesoscopic performance could also be useful in human gastrointestinal (GI) endoscopic 

applications to yield similar sub-surface visualization of optical contrast associated with 

vascularization and angiogenesis, possibly leading to better staging of cancer with optoacoustic 

endoscopy. Although over the last two decades the developments in optoacoustic endoscopy suffer 

from low imaging frame rates due to low pulse repetition rates and slow scanning units [40-49]. 

Consequently, motion artifacts during in-vivo scanning results in inaccurate spatial mapping and 

misinterpretation of data. Additionally, most present endoscope designs are based on small-animal 

studies with the intention to further miniaturize the probe to use via the working channel of white 

light endoscopes. These are unsuitable for human esophageal imaging due to an insufficient SNR 

and lateral resolution stemming from longer working distances [40-47]. 

 
The work reported within this thesis works towards the development of a video rate optoacoustic 

capsule endoscope suitable for human GI tract imaging. To improve the diagnostic potential of 

the endoscope, OCT is integrated into the design to provide 3D image fusion of molecular features 

from the absorption of OA light and anatomic structures from the scattering of OCT light. Hybrid 

imaging or image fusion has proven extremely useful for treatment and diagnosis in the fields of 

cardiology, oncology, and neurology, enabling localization of tumors and lesions, planning for 

radiotherapy, surgery and is fostering a new clinical environment where scientists across several 

specialties are collaborating for more accurate interpretation and improved patient outcome 

[50,51]. 
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The main objectives of this this thesis include: 

 
 

1. Development of an ultra-broadband optoacoustic endoscopic detector 

 
 

The image performance in optoacoustic endoscopy depends markedly on the design of the 

transducer employed. Ideally high-resolution performance is required over several mms of depth. 

Initially a series of benchtop endoscopic detectors were manufactured and characterized following 

the development of a 4D optoacoustic transducer characterization rig. In particular, two detection 

geometries, spherical and axicon with central apertures for collinear illumination were explored 

for endoscopy with the axicon demonstrating an elongated sensitivity profile useful for endoscopy. 

The best performing transducers were integrated into a RSOM setup to assess OA image 

performance. Surprisingly, the spherical outperformed the axicon detector during imaging 

experimentation. As a result, a rigorous 3D kwave simulation was conducted to study the total 

impulse response of spherical and axicon detectors as a function of point and line sources. Based 

on experimental and simulation observations the axicon exhibited characteristics more useful for 

microscopy than endoscopy and therefore an optoacoustic axicon microscope was built to exploit 

the elongated sensitivity profile of the detector. The spherical detector design was elected to be 

further advanced into an endoscopic form factor. 

 
2. Development of a video rate hybrid OCT-OA capsule endoscope 

 
Several endoscopy design element concepts including forward/side viewing, proximal/distal 

scanning, balloon/capsule interface and common mode/split path illumination are illustrated with 

advantages and disadvantages discussed. The superior design elements are adopted into the first 

16 mm optoacoustic endoscope prototype. Sensor characterization is performed to benchmark the 

endoscopic optoacoustic detector against the benchtop detector and imaging performed with 

several phantoms to evaluate video rate acquisition up to 50Hz Bscan rate and volumetric imaging. 

Following additional experiments, a secondary more user-friendly hybrid OCT- OA prototype 

with a 12.5mm diameter encompassing a smaller detector was developed. The secondary 

prototype was also characterized at 30Hz video rate with phantoms and followed by imaging of 

an ex-vivo pig esophageal sample and human mucosa tissue. 
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3. Study of imaging reconstruction algorithms for optoacoustic endoscopy 

 
 

The reconstruction methods previously applied for RSOM in cartesian coordinates are extended 

to cylindrical coordinates for optoacoustic endoscopy. A Kwave simulation is performed to 

generate the optoacoustic endoscopy data in rotational mode over 3600 and two algorithms in 

particular including delay and sum and phase shift migration are implemented to reconstruct B 

scans in cylindrical coordinates. A feasibility study of real time B scan reconstruction at 50Hz 

frame rate is performed to determine the best algorithm to apply in practice. 

 

1.3. Outline of this dissertation 

 
This work is outlined per chapter is as follows: 

 
Chapter 2 presents the theoretical background of optical coherence tomography and optoacoustic 

imaging. The fundamentals of each modality are introduced describing the signal generation 

mechanism, image formation, resolution, and penetration depth characteristics. An in depth 

literature review of previous single modality OCT and OA endoscopy is provided. The chapter 

concludes with a discussion on the few implementations of OCT-OA hybrid endoscopes thus far. 

 
Chapter 3 focuses on the development of optoacoustic endoscopic transducers. Two detection 

geometries, spherical and axicon are investigated with central aperture for collinear illumination. 

Several sensors with different materials and dimensions were manufactured. A robust 

characterization rig was designed to test all detectors in a controlled manner in 4D against a 

broadband omnidirectional point source. The best performing transducers were lithium niobate 

based with the axicon exhibiting an elongated sensitivity beam useful for endoscopy. However, in 

practice during OA imaging of a suture the axicon suffered from low lateral resolution when 

compared to the spherical detector. A meticulous 3D kwave study was performed to understand 

the behavior of the axicon transducer, the sensor was found to behave differently to acoustic line 

and point sources whereas the spherical transducer depicts a similar response. Observations 

indicated the axicon would be better catered towards microscopic applications and therefore an 

axicon optoacoustic microscope was built to validate the hypothesis. Alternatively, the spherical 

detector was selected to be further enhanced for endoscopic applications as the sensors lateral 

resolution remained independent of the acoustic sources shape under investigation. 

 
Chapter 4 explores a number of endoscope design concepts, based on scanning technique, 
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illumination configuration, tissue to capsule interface and OCT-OA signal acquisition. The 

advantages and disadvantages of each concept are discussed, and the best concepts selected to be 

incorporated into the hybrid capsule design. 

 
Chapter 5 presents the optical architecture of the hybrid endoscope, the back-end console optical 

architecture combining OCT and OA illumination into a single double clad fiber is detailed. In 

addition, an in-depth analysis on ZEMAX is performed to design the distal end capsule optics 

setup including an optical probe attached to the double clad fiber. The probe performs OCT-OA 

beam conditioning prior to interrogating esophageal tissue and is housed inside the endoscope 

which in turn is used to drive the B scan frame rate and the maximum permissible energy limits 

in-vivo. This lays the foundation to advance the design by augmenting scanning and sensing 

elements around the optical probe to produce the hybrid endoscope. 

 
Chapter 6 describes the hybrid endoscopes developed including the 16mm semi capsule prototype 

and the 12.5mm partial capsule prototype. The 16mm semi capsule endoscope, an optoacoustic 

only endoscope was characterized, and imaging performance determined by imaging phantoms 

arranged in an Archimedean spiral with a pitch of 3mm in B scan and C scan mode at 50Hz frame. 

The limitations of the semi capsule prototype were addressed in the second-generation capsule 

called the 12.5mm partial capsule prototype which enabled hybrid OCT-OA imaging. 

Characterization was repeated and phantom, ex-vivo pig esophagus as well as in-vivo human 

mucosal tissue were imaged at 30 Hz B scan frame rate. 

 
Chapter 7 adapts previous reconstruct methods including delay and sum and phase shift migration 

from cartesian coordinates to cylindrical coordinates for optoacoustic endoscopy. Both algorithms’ 

capabilities are explored in simulations and experiments. Cylindrical Bscan image reconstruction 

at 50Hz is investigated to determine whether the algorithms could be applied with our endoscope 

for real time surveillance. 

 
Finally, in chapter 8, the main findings of this thesis are summarized and the future advancements 

of the hybrid endoscope for in-vivo application are provided. 
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Chapter 2 Background 

 
This chapter introduces the fundamentals of Optoacoustic imaging and Optical coherence 

tomography. The signal generation process is described and limitations on resolution and 

penetration depth are provided. In addition, previous implements of Optoacoustic, OCT and 

hybrid OCT-OA endoscopes for gastrointestinal applications are provided. 

 
Subchapter 2.1 describes the OA signal generation process. Theoretical limits of lateral and 

axial resolution are explained and OA penetration depth is discussed. Previous 

implementations of OA endoscopes for imaging the esophagus are given. 

 
Subchapter 2.2 explains the OCT signal generation process. Spatial resolution constraints 

are revealed and OCT’s limited penetrated depth is highlighted. Previous implementations 

of OCT endoscopes for esophageal imaging are detailed. 

 
Subchapter 2.3 lists previous implementations of hybrid OCT-OA endoscopes designed to 

date with design limitations listed preventing clinical adoption for human GI imaging. 

 
2.1. Optoacoustic Imaging (OA) 

 
2.1.1 OA signal generation 

 
The optoacoustic effect is the generation of ultrasound signals via the absorption of modulated 

electromagnetic illumination typically in the nanosecond range. A standard dark field 

configuration is depicted in Figure 2.1. Localized heating within an absorber via modulated 

excitation gives rise to thermal expansion. This procedure is followed by relaxation where the 

thermal energy is converted to a broadband low amplitude acoustic signal usually measured by an 

ultrasound transducer. An image of the absorption distribution can be recovered by detecting the 

acoustic waves as they propagate to the surface using an array of ultrasonic transducers or 

mechanically scanning with a single element transducer. Although the effect dates to 1880, where 

Alexander Graham bell observed sound generation by the absorption of modulated sunlight [52], 

the first instances of OA imaging in the biomedical sector were considered in the mid 1990 due to 

light source advancements [53-56]. Ever since, research in the field has led to significant 

developments of dedicated light source technology, broadband ultrasonics, and image 

reconstruction. In response, the modality has shown to offer label free in-vivo functional and 
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molecular imaging with increased penetration when compared to purely optical techniques. OA 

imaging is considered now one of the largest research areas within the field of biophotonics. 

Figure 2.1. Dark field optoacoustic configuration. Pulsed illumination sources interrogate a spherical 

absorber within a water tank to generate broadband spherical waves detected by an ultrasound 

transducer. To generate a volumetric image, the light source and detector is scanned around the 

absorber. There are two essential parameters for the generation of an optoacoustic wave called thermal 

and stress relaxation times [57]. The thermal relaxation time (𝑡𝑡ℎ) is given by: 

 
𝑑2 

𝑡 = 
𝑐

 
𝑡ℎ 𝑎𝑡ℎ

 (2.1) 

 

 

Where 𝑑𝑐 is the desired spatial resolution, 𝛼𝑡ℎ is the thermal diffusivity (approximately 1.4 × 

10−3𝑐𝑚2𝑠−1 in soft tissue). The stress relaxation time is given by: 

 

𝑑𝑐 
𝑡𝑠 = 

𝑣
 
𝑠 

(2.2) 

Where 𝑣𝑠 is the velocity of sound in the medium (average propagation speed in soft tissue is reported 

as 1540m/s). Hence, for a desired resolution of 𝑑𝑐 = 20µ𝑚 in soft tissue the thermal and stress 

relaxation times should be less than 𝑡𝑡ℎ = 2.85𝑚𝑠 and 𝑡𝑠 = 13𝑛𝑠 . For optoacoustic generation the 

laser pulse duration should satisfy both criteria. In practice, lasers below 10 nanosecond duration 

are promoted. 

 
During pulsed excitation, the increase in volume expansion can be mathematically expressed as: 

 
𝑑𝑉 

= −𝑘𝑝 + 𝛽𝑇 
𝑉 

(2.3) 
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Where 𝑘 is the isothermal compressibility (𝑃𝑎−1), 𝑝 is the change in pressure (𝑃𝑎), 𝛽 is the thermal 

coefficient of volume expansion(𝐾−1) and T expresses the change in temperature (𝐾) given by: 

𝑛𝑡ℎ𝐴𝑒 
𝑇 = 

𝜌𝐶𝑣 
(2.4) 

 

 

Here, 𝑛𝑡ℎ is expressed as the percentage of light absorbed. 𝐴𝑒 is the specific optical energy 

deposition (J/m3) , 𝜌 is the mass density (kg/m3) and 𝐶𝑣 is the specific heat capacity at constant 

volume [J/(kgK)]. Assuming the time parameters criterion are satisfied the increase in volume 

expansion is negligible (
𝑑𝑉 

= 0) and therefore the initial pressure rise 𝑝 from equation 2.3 can 
 

𝑉 0 

be expressed as: 
 

𝛽𝑇 
𝑝0 = 

𝑘
 (2.5) 

 

Substituting equation 2.4 into 2.5 and defining the Gruneisen parameter Ґ we obtain: 
 
 

𝛽 
𝑝0 = 

𝑘𝜌𝐶 
𝑛𝑡ℎ𝐴𝑒 = Ґ𝑛𝑡ℎ𝐴𝑒 

𝑣 

(2.6) 

 
Assuming linear optical absorption, 𝐴𝑒 is proportional to optical fluence F (J/cm2) . Therefore, 

equation 2.6 can be expressed as: 

 
 

𝑝0 = Ґ𝑛𝑡ℎµ𝑎𝐹 (2.7) 
 

 

Where µ𝑎 is the optical absorption coefficient ( cm-1). The initial pressure 𝑝0 being proportional 

to the optical absorption and fluence gives rise to a acoustic wave propagation at the speed of 

sound in the medium governed by the wave equation [57]: 

 

 

 

 
 

1 𝑑2 𝛽 𝑑𝐻 
(∇2 − ( ) ) 𝑝(𝑟, 𝑡) = − 

𝑣2    𝑑𝑡2 𝐶 𝑑𝑡 
𝑠 𝑝 

(2.8) 

 

 

 

Where 𝐶𝑝 is the specific heat capacity at constant pressure [J/(kgK)], H is the thermal energy 
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deposited per unit volume per unit time. Solving equation 2.8 with the Green function under delta- 

pulse excitation with zero ultrasound attenuation, the optoacoustic wave can be expressed as: 

 
 

1 𝑑 𝑝0(𝑟′) |𝑟 − 𝑟′| 
𝑝𝛿𝑇(𝑟, 𝑡) =  [∫ 𝑑𝑟′  𝛿 (𝑡 −  )] 

4𝜋𝑣2 𝑑𝑡  |𝑟 − 𝑟′|  𝑣 𝑠 𝑠 

(2.9) 

 

 

Where 𝑝0(𝑟′) is the initial pressure at location 𝑟′. For pulsed illumination with finite duration, 

the optoacoustic wave generated is determined by convolution: 

 
 

∞ 

𝑝(𝑟, 𝑡) = ∫ 𝑑𝑡′𝑝𝛿𝑇(𝑟, 𝑡 − 𝑡′)𝑆(𝑡′) 
−∞ 

(2.10) 

 

where S(t) is the temporal profile of the pulse. 

 

 

2.1.2 OA Spatial Resolution 
 

Optoacoustic spatial resolution is a function of the broadband ultrasound frequencies generated 

given excitation with a nanosecond pulsed laser to meet time confinements. Depending on the size 

of an optical absorber, generated frequencies can range from several hundreds of kilohertz to 

hundreds of megahertz with smaller absorbers owing to higher frequencies. Although, as 

propagation of sound experiences frequency-dependent acoustic attenuation by soft tissues, 

optoacoustic spatial resolution scales with depth. Other resolution limiting factors include detector 

bandwidth, aperture geometry and element size. 

 
If the impulse response of an optoacoustic detector has a gaussian profile, the axial resolution can 

be estimated by [126]: 

𝑣𝑠 
𝑅𝑎 ≈ 0.88 

𝐵
 (2.11) 

 

 
where B is the -6 dB frequency bandwidth of the sensor. 

 
 

On the other hand, under diffuse illumination the lateral resolution for a focused detector is 

acoustically limited and can be approximated by [126]: 
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𝑓 
𝑅𝑙𝑎  ≈ 0.71𝜆0 𝐷 

2 

 

(2.12) 

 

where 𝜆0 is the acoustic wavelength, 𝑓 is the focal length and D is the sensor diameter 

 
 

For superficial applications, an optically focused interrogation beam offers improved lateral 

resolution defined by the focus beam diameter, though penetration depth is sacrificed as a focused 

beam significantly suffers from optical scattering. In this instance, lateral spatial resolution is 

purely limited by optical diffraction which is a function of wavelength and lens numerical aperture 

(NA): 

 
 

𝜆 
𝑅𝑙𝑜 ≈ 0.5 

𝑁𝐴
 (2.13) 

 

where 𝜆 is the laser wavelength, 𝑁𝐴 is the numerical aperture of focusing lens. Axial resolution 

remains acoustically limited by equation 2.11. 

 

2.1.3 OA penetration depth 

 
For purely optical imaging, the depth is typically limited to superficial applications due to 

optical absorption and substantial light scattering in tissue. As depicted in Figure 2.2 the optical 

absorption is a function of wavelength, hence appropriate selection of wavelength allows for 

increased penetration depth. Acoustic attenuation on the other hand is orders of magnitude 

lower in tissue. This characteristic allows excited optical absorbers at greater depths to be 

resolved acoustically. Hence Optoacoustics realizes images with increased penetration depth 

and high spatial resolution in comparison to pure optical imaging methods. The hybrid 

modality’s penetration depth is limited by the combination of optical and acoustic attenuation. 
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𝑠 

 
 

 

 

Figure 2.2. Absorption coefficient spectra of endogenous tissue chromophores. Red line: 

oxyhemoglobin, blue line: deoxyhemoglobin, black line: water (80% by volume), brown line: lipid (a) 

(20% by volume in tissue), lipid (b), pink line, black dashed: melanin, Collagen (green line) and elastin 

(yellow line) spectra [57]. 

 

The optoacoustic optical attenuation can be expressed by the effective attenuation coefficient 

derived from diffusion theory: 

 

µ ( ′ ) 
1/2 

𝑒𝑓𝑓 = (3µ𝑎 µ𝑎 + µ𝑠  ) (2.14) 

 

 
where µ𝑎 is the absorption coefficient and µ′ is the reduced scattering coefficient. Within 

homogenous scattering media beyond a depth of 1mm, electromagnetic waves become 

diffuse and irradiance decays exponentially as a function of depth. The 1/µ𝑒𝑓𝑓 depth at which 

the irradiance has reduced by 1/e is termed the penetration depth. For instance, at a laser 

wavelength of 700 nm interrogating tissue comprised with concentrations of HbO2 and HHb, 

water and lipids provides an estimated value of µ𝑒𝑓𝑓~1.3𝑐𝑚−1. The 1/µ𝑒𝑓𝑓 penetration 

depth in this instance is therefore approximately 0.8 cm [5]. This finding suggests beyond 

the first millimeter; light is attenuated by a factor of 4 for each additional centimeter depth. 
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The optoacoustic acoustic attenuation in soft tissue can be approximated by [58]: 
 

 

 

𝛼 = 100.075 𝑐𝑚−1𝑀𝐻𝑧−1 (2.15) 
 

 

 

Assuming a central transducer frequency of 10MHz over a depth of 1 cm we obtain an optical 

attenuation coefficient of µ𝑒𝑓𝑓~1.3 and acoustic attenuation of 𝛼 =5.6. The total attenuation of 

sound and light is therefore at least one order of magnitude per centimeter limiting penetration 

depths in the several centimeter range. Regardless carefully designed optoacoustic imaging 

systems with sensitive detectors, optimized light delivery and image reconstruction have 

demonstrated penetration depths up to several centimeters [53-58]. For optoacoustic endoscopy, 

to realize the hemoglobin vascular network within the lumen we employ a 532nm light source 

with 1 ns pulse duration to acquire high resolution contrast rich images with penetration depth 

limited to a few millimeters. 

 
 

2.1.4 Existing OA endoscopes for esophageal imaging 

 
Existing OA esophageal endoscopes have been realized in small-animal studies with the intention 

to miniaturize the probe and use the probe via the working channel of white light endoscopes. A 

distal scanning probe was reported with a frame rate of 4Hz [45]. Albeit distal endoscope 

micromotors commonly impose a reduction in the field of view due to driving cables crossing over 

the imaging plane and micro-motors used cannot sustain the transducer load in side-looking mode, 

constraining to rotate a 45-degree mirror to reflect both sound and light lowering sensitivity and 

SNR. A catheter scanning probe showed full field of view capability yet at a slow frame rate of 

5Hz [46]. More recently, a proximal scanning probe demonstrated full field of view with at frame 

rate of 50Hz [47]. However, the design suffers from poor lateral resolution, low signal to noise 

ratio and exceeds the exposure of pulse energy on tissue(~30𝜇𝐽). Being proximally scan, it suffers 

from scanning uniformity imposed by the need of a torque coil and optical fiber stress due to 

bending of the torque coil causing variations in the index of refraction resulting in variations on 

the optoacoustic illumination intensity at the tissue end. Moreover, fiber-optic coupling rotary 

joints are needed which reduce coupling efficiency and increases system complexity. These 

designs are suitable only for small GI imaging and not useful for imaging the larger human 

esophageal lumen with sufficient SNR and lateral resolution due to longer working distances. To 

image the full circumference of the human lumen optoacoustic capsules probe have been explored. 
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A prototype capsule shaped acoustic resolution optoacoustic probe was used to characterize the 

intestinal structures of Crohn’s disease of rabbits in-vivo. However, the imaging speed was limited 

due to the pulse repetition rate of 10 Hz and optoacoustic signals were averaged 30 times to 

improve signal to noise ratio [48]. Hailong He et al recently proposed a novel 3600 rotatory 

optoacoustic endoscopes to image the human lumen. Though the probe was limited by laser 

repetition rate and rotational scanning unit to a frame rate of 2.5 Hz [49] suffering from motion 

artifacts during in-vivo scanning resulting in inaccurate spatial mapping and misinterpretation of 

data. Accordingly, there is presently no optoacoustic endoscope suitable for human GI imaging. 

 
2.2. Optical Coherence Tomography (OCT) 

 

2.2.1 OCT signal generation 

 
The first experiments of optical coherence tomography (OCT) date back to 1989 in the laboratory 

of James G. Fujimoto, PhD with data reported in Science journal in 1991 [59]. Shortly afterwards 

the first clinical prototype for ophthalmic applications was installed in 1993 at the new England 

eye center, Tufts university school of medicine in Boston, Massachusetts USA [60]. Since then, 

OCT has significantly grown owing to ophthalmic applications, esophageal cancer detection, 

intravascular imaging and skin cancer diagnosis [19-24,61-63]. 

 
Similar to optoacoustics, OCT guides a laser beam to the tissue under examination, albeit light is 

reflected off the tissue structure rather than absorbed. The back reflected waves are processed to 

measure the depth at which reflection occurred. Measurements are performed on electromagnetic 

waves rather than acoustic waves; where the reflected waves cannot be directly measured. For this 

reason, interferometric detection is employed, where a percentage of the laser beam is optically 

directed to the sample under test and the remaining percentage is guided to a reference arm. The 

light from both paths combine at the interferometric output where waves can interfere 

constructively or destructively. The interference pattern is measured with a high-speed 

photodetector converting the light intensity into an electrical signal. To describe the signal 

generation process graphically, OCT interferometric setups are depicted in Fig 2.3. The first 

implementation was the time domain configuration as depicted in Fig 2.3a, here an adjustable 

reference arm was modulated for each depth scan. The back reflected signals from both arms 

combine and only interfere when both optical paths match. The resultant interference fringe 

patterns are measured by a photodetector. To determine the magnitude of reflected light from 

sample the Hilbert amplitude of the interference signal is taken. An OCT A-scan line providing 
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the depth profile of sample reflectivity is measured at a single point by scanning the reference arm 

in depth with intensity signals recorded on the photodiode. B-scan cross sectional images are 

generated by laterally scanning the sample beam. 

 

Figure 2.3. OCT configurations including (a) Time domain with adjustable Reference arm (b) Fourier 

domain: spectrometer based for wavelength separation (c) Fourier domain: Swept source based which 

sweeps a narrowband line over the broadband source in time. All three implementations measure an 

interference pattern with a photoelectric detector. BS: beam splitter, PD: photodiode, I-D: 1D line scan 

detector 

 

To increase imaging speed, Fourier domain OCT configurations were developed to generate A- 

scan lines without the need for mechanically scanning of the reference mirror (Fig 2.3b and Fig 

2.3c). The spectrometer-based setup replaces the photodiode with a diffractive element to spatially 

separate different wavelength contributions into a line image which is measured by a line scan 

camera. Each read out of the camera produces a spectral interferogram with a superposition of 

fringe patterns that contains information to reconstruct a OCT-A scan line. Alternatively, the swept 

source setup replaces the broadband light source with an optical source which rapidly sweeps a 

narrow band over a broadband of wavelengths. Over one sweep, each wavelength emitted from 

the light source and resultant interferogram is detected sequentially by a high-speed photodiode. 

For each sample point the interferograms contains information over depth simultaneously similar 

to the spectrometer configuration. To generate OCT A-scan lines that 



28 

28 

 

 

 
 

represent structural features, a fast Fourier transformation is performed on measured 

interferograms and corresponding complex values squared to determine intensity values. 

 
When comparing the Fourier methods, the spectrometer domain (SD) methods imaging speed is 

limited by the line scan rate of the camera whereas for the sweep source (SS) method the sweep 

rate and analog to digital conversion limits acquisition [64-66]. SD-OCT is useful for applications 

requiring high axial resolution from broadband light sources with shorter operating wavelengths. 

Alternatively, SS-OCT’s ability to shift wavelength swiftly offers higher imaging speed and 

deeper sample imaging when compared to SD-OCT. Due to the rapid technological advancements 

towards SS-OCT, fast OCT imaging at wavelengths of 1300 and 1060nm have paved the way for 

volumetric and real time imaging. In our case we employ a 1060nm SS-OCT laser to take 

advantage of high imaging speed by tuning wavelength through internal laser optical components 

over the photoelectron response of line scan cameras used in SD-OCT. In addition, in OCT 

endoscopy where the fiber is continuously moving, image artifacts arise as a result of changes in 

polarization. These changes can be compensated by low cost swept source-dual balanced detectors 

provided by OCT laser manufacturers . 

 

2.2.2 OCT spatial resolution 

 
In OCT, the lateral resolution is defined by the optical interrogation spot size, hence similar to 

optoacoustic imaging with a focused beam, the OCT lateral resolution can also be calculated using 

equation 2.13. The axial resolution is determined by the coherence properties of the light source 

and detector sampling rate. In air the axial resolution of an OCT system is given by the round-trip 

coherence length of the source 𝛿𝑎: 

 
2 ln(2) 𝜆2 

𝛿   = 0  

𝑎 𝜋 ∆𝜆𝐹𝑊𝐻𝑀 

 
(2.16) 

 

 
Where 𝜆0    is the central wavelength and ∆𝜆𝐹𝑊𝐻𝑀 is the spectral bandwidth . From equation 2.16 

it is evident that central wavelength is proportional to axial resolution. Figure 2.4 depicts OCT 

axial resolutions at a spectral bandwidth and central wavelength. Axial resolution degrades at 

higher wavelengths and smaller spectral bandwidths. Figure 2.4 also shows a dotted red curve line 

overlaid on the plot representing the absorption of water over central wavelength. In our case we 

employ a 1060nm OCT light source to minimize optical absorption of the water used for 
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acoustic coupling of waves generated via the optoacoustic effect. 

 
 

The OCT A-line depth is defined by the maximum fringe frequency which can be measured 

because the maximum frequency of the interferogram determines the maximum decodable depth. 

Hence the A-line depth can be given by the number of samples N per A-line on the full recorded 

spectral width ∆𝜆: 

 
 

1 𝜆2 
𝑧 = 0 𝑁 

4 ∆𝜆 

 

(2.17) 

 

 

 
 

 

Figure 2.4 Spectral Bandwidth as a function of central wavelength plotted for axial resolutions in the range 

of 2-10µm. The relationship between bandwidth and central wavelength suggests that bandwidth needs to 

be increased for longer central wavelengths to maintain the same resolution. The absorption curve of water 

shows not all wavelengths are equally suitable to maximize imaging depth potential. Retrieved from [67] 

 
 

2.2.3 OCT penetration depth 

 
OCT penetration depth is determined by the systems optical depth of focus, optical absorption 

and scattering within the sample under test. Assuming a gaussian focusing beam, the depth of 

focus can be approximated by: 

 
 

𝑛𝜆0 
𝑑 = 

2𝜋𝑁𝐴2 

 

(2.18) 



30 

30 

 

 

 
 

where NA is the numerical aperture of the focusing lens and n is the refractive index of the 

medium. Beyond the optical focal depth, the back reflected signal strength is significantly weak. 

By virtue Back-reflected signals undergoing multiple back scatter within tissue decay 

exponentially in depth degrading signal to noise ratio. Beyond one mean free path which 

corresponds to 1-2mm in biological tissue where the back–scatter signal is significantly weak 

and multiple scattering become dominant limiting the overall penetration depth of OCT. 

 
2.2.4 Existing OCT endoscopes for esophageal imaging 

 
OCT endoscopy has shown great potential to increase diagnostic accuracy of dysplasia detection 

due to its high resolution, volumetric and subsurface imaging capabilities. In-vivo studies in the 

2000s demonstrated that endoscopic OCT could be used to detect metaplasia in Barretts esophagus 

patients as well as describe structural features in OCT images and develop criteria to differentiate 

healthy tissue and high-grade dysplasia from low grade dysplasia. These studies provided the 

feasibility for clinical application accelerating OCT technology development. To date, advances in 

swept source laser technology, data acquisition and increased scanning probe speeds have enabled 

several megahertz of high-speed OCT endoscopy. 

 
A balloon-based imaging providing real time volumetric scans developed by NinePoint Medical, 

was employed in several multicenter and longitudinal clinical studies [20]. From recovered OCT 

scans a diagnostic algorithm to detect dysplasia with an accuracy 87% was established [20]. Hatta 

et al [68] performed several clinical studies with the system to develop esophageal squamous cell 

carcinoma staging criteria from OCT cross-sectional imaging with an accuracy of 90.1%. A 

tethered capsule providing high resolution circumferential OCT scans was introduced to enable 

Barrett’s esophagus screening. The device has been used in clinical studies exceeding 100 patients 

with early results demonstrating feasibility, high patient acceptability, and strong potential for 

clinical impact [19]. 

 
Following the plethora of endoscopic OCT developments for gastrointestinal applications over the 

past decade [19,20,23,24,68]. The modality is currently undergoing a period of investigation to 

evaluate the approach ensued by developing a standardized workflow within the clinical 

environment [133]. Despite all the advantages endoscopic OCT offers, the modality on its own 

does not completely capture all available diagnostic features in the GI tract [132,133,134]. 

Furthermore, relying on backscattering OCT signals alone renders precise quasi-histologic 

assessment a difficult task [134]. By introducing optotoacoustics to increase imaging depth and 
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thereby combining pathophysiological and structural information together could potentially 

improve metaplasia sensitivity within the esophagus. This approach could increase translational 

likelihood with algorithms performed on the overlaid multimodal cross-sectional images to 

highlight regions of interest. 

 

2.3. Preceding implementations of OCT-OA endoscopes 

 
A hybrid endoscope combining the structural OCT and functional OA capabilities could improve 

the accuracy of early staging of esophageal cancer and accelerate clinical adoption. However, 

imaging the human esophageal tract with an OCT-OA endoscope requires (a) synchronous high 

speed imaging frame rates with sufficient SNR to avoid motion artifacts, (b) co-registered large 

field of views to expedite the screening procedure, (c) careful design of a broadband endoscopic 

transducer for optoacoustics and an optical interrogation/collection probe for OCT, (d) suitable 

materials, mechanics, coupling medium and wavelengths for optical (OCT) and acoustic (OA) 

index matching, and (e) proper probe form factor to ease swallowing and maintaining optimal 

contact between the endoscope and esophageal circumference. 

 
Previous implementations of OCT-OA multimodal endoscopes include a 1.25mm all optical dual 

OCT- OA probe for intravascular imaging [69]. However, the probe suffered from a 4 Hz Bscan 

rate as a result of the proximal scanning mechanism and pulse repetition rate of the optoacoustic 

laser (2.8 kHz). Furthermore, the optoacoustic light interrogating samples had a fluence ranging 

from 40 – 100 mJ/cm2 which exceeds the maximum permissible exposure (MPE) of 20 mJ/cm2 on 

the skin. Additionally, optoacoustic signals had to averaged 25-50 times to compensate for the poor 

SNR. 

 
Dai et al [70] demonstrated a 1 mm-diameter multimodal endoscope combining OCT, 

optoacoustic and ultrasound designed for intravascular coronary imaging. The capabilities of the 

trimodal endoscope was showcased using a mouse ear, human hand and human arteries with 

atherosclerotic plaques, although a fluence value of 10 mJ/cm2 was only provided for the mouse 

experiment. The system speed was limited by a low repetition rate optoacoustic laser (20 Hz) and 

a slow approach of time-domain OCT. As a result, the probe was prone to significant motion 

artifacts. In addition, the SNR of acoustic measurements was reduced due to an optical redirection 

of ultrasound/photoacoustic signals to an unfocused detector. 
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A 5 mm hybrid OCT-OA-US prototype endoscope was characterized and used to image human 

ovarian tissues [71]. Each modality was sequentially acquired, extending the overall scanning 

duration. Other limitations include a slow OA imaging speed attributed to a 15 Hz pulsed laser, 

data acquisition performed by using two DAQ cards on two PC’s, sub-mm OA-US lateral 

resolution, and employing 1 mJ/pulse which significantly exceeds the MPE limit of skin as listed 

above. 

The approaches above [69-71] focus on miniaturization of multimodal OCT-OA endoscopes for 

imaging small animal internal organs or intravascular applications in humans. These solutions 

exhibit poor contact matching with human esophageal lumen dimensions and would therefore 

need to be inserted inside the working channel of a WLE for imaging. However, the added 

propagation distance to reach the lumen surface with a miniature sensor leads to a loss of SNR, 

thereby violating the maximum permissible energy level. Furthermore, all designs suffer from low 

multimodal frame rates limiting clinical translation as a result of extended imaging sessions. 

Hence, presently there are no hybrid OCT-OA probes designed for human esophageal imaging. 

 

2.4. Summary and discussion 

In the first half of this chapter, the principles of optoacoustic imaging and previously reported 

optoacoustic endoscopes for esophageal imaging were discussed. This included the details of 

the fundamental criterion to be satisfied for the optoacoustic signal generation. Spatial resolution 

expressions derived highlighted the importance of developing optoacoustic detectors with 

appropriate geometry and bandwidth. An analytical analysis of penetration depth was performed 

to highlight the challenges of increasing imaging depth. Furthermore, the translational 

limitations of existing esophageal optoacoustic endoscopes were discussed. 

 
In the second half of this chapter, akin to the first half discussed the theoretical background of 

optical coherence tomography and present-day OCT endoscopes employed for esophageal 

imaging. The interferometric OCT detection of back reflected light signal following tissue 

interrogation were explained in both time and Fourier domains. Expressions for the lateral and 

axial OCT resolutions were defined to highlight the importance of selecting the optimal 

excitation wavelength for a desired application. Limited OCT penetration depth attributed to 

optical scattering deep in biological tissue. Finally, an in-depth review was performed on present 

day OCT endoscopy employed for imaging the gastrointestinal tract. 

 
Lastly previous implementations of OCT-OA endoscopes were surveyed. The limitations of 
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each design were listed to highlight that none of them would be suitable for imaging the human 

esophageal tract. 

 

 

Chapter 3 Optoacoustic endoscopy sensor development 
 

The architecture of the transducer used in optoacoustic endoscopy has a significant impact on 

image quality. To visualize the human esophagus, high resolution is required over an extended 

depth of focus. Broadband single element benchtop detectors namely spherical and axicon were 

developed and characterized with central aperture for collinear illumination. The imaging depth 

potential of each detector was assessed by imaging tilted phantoms and biological samples. 

 
Subchapter 3.1 Introduces an optoacoustic sensor characterization rig to determine the 

optoacoustic total impulse response of each detector under test. Several benchtop axicon and 

spherical transducers with different materials and dimensions were built and characterized to 

measure depth of focus, lateral/axial resolution, transducer bandwidth, focal length, and spatial 

sensitivity profiles. The best performing transducers were lithium niobate based with the axicon 

sensor exhibiting a pencil beam elongated sensitivity beam useful for endoscopy although 

following further investigation described in 3.2 and 3.3 the axicon produced blurry images when 

imaging phantoms mimicking blood vessels and therefore the spherical transducer design was 

opted for further development into a more capsule friendly casing. 

 
Subchapter 3.2 Presents a raster scanning optoacoustic mesoscopy setup employing the spherical 

and axicon detectors to image a tilted suture phantom. The spherical transducer generated an OA 

image resolving the tilted suture at focus and blurred out of focus and whereas the axicon sensor 

surprisingly generated a blurred OA image over the entire tilt. 

 
Subchapter 3.3 performs a meticulous 3D acoustic simulation of the spherical and axicon 

transducers in Kwave to determine the reasoning behind the axicon’s degraded lateral resolution 

when performing OA imaging as opposed to OA characterization. Simulation result suggest the 

axicon detectors spatial response is functions of the acoustic source shape i.e., line or point source, 

whereas the spherical spatial response is independent of acoustic source shape. This observation 

indicated the axicon would be better accommodated towards microscopic applications and the 

spherical design to be further optimized into an endoscopic form factor. 
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Subchapter 3.4 unveils an elongated focus optoacoustic microscope with matched Bessel beam 

illumination and the ultrabroadband axicon transducer. In a controlled experiment axicon-mode 

optoacoustic microscopy employing Bessel beam illumination extended depth of focus 17x 

compared to configurations using Gaussian illumination with spherically focused transducers. The 

advantages of Bessel beam-axicon detection optoacoustic microscopy was showcased by imaging 

a tilted mouse ear with a 5-µm-diameter Bessel beam, reaching imaging depths greater than 4.2 

mm. 

 
3.1. Optoacoustic transducer characterization 

Currently, single element ultrasound transducers are characterized by measuring the electrical 

impulse response to an omnidirectional acoustic source placed at the focal point [72-75]. This is 

done by either recording pulse echo signals from a planar reflector, albeit with a limited acoustic 

source bandwidth [76], or by using a calibrated needle hydrophone to generate an acoustic source 

of higher bandwidth while the detector is operating in receiver mode [73,77]. However, 

hydrophone bandwidths are typically limited to 25 MHz and the needle thickness limits the 

smallest measurable lateral resolution of the sensor. A standardized approach to characterize 

optoacoustic detectors with parameters such as bandwidth, focal distance, depth of focus, 

diverging angle, and lateral and axial resolutions is still missing. Such a characterization method 

would benefit both the scientific and industrial communities by enabling corrections for otherwise 

unknown detector aberrations, leading to optimal optoacoustic image quality. 

 
Light absorbing materials have been exploited to characterize optoacoustic detectors by generating 

broadband point sources of acoustic waves using nanosecond pulsed lasers. These materials 

include sutures [74], microspheres [78], or mixtures of carbon black and PDMS [75]. However, a 

suture absorbing light pulses does not generate an omnidirectional point source, hindering the 

measurement of optoacoustic sensitivity maps. Characterization with microspheres is difficult due 

to a tedious sample preparation and alignment procedure. Furthermore, the sphere itself may 

exhibit deformations and therefore generate distorted acoustic sources. Producing a thin layer of 

PDMS mixed with carbon black is challenging, Buma, T., et al. reported a layer thickness of 25 

µm, which limits the generation of higher frequency signals. A broadband optoacoustic concave 

transmitter with a 100 nm-layer of chromium has been proposed as a source to generate focused 

ultrasound waves for transducer characterization; however, manufacturing the transmitter requires 

precise sputtering control over a plano-concave spherical glass to ensure uniform film thickness 

[79]. 
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We propose a simple and fast method to characterize transducers with bandwidths exceeding 100 

MHz by interrogating a 100nm gold film using a nanosecond-pulsed, focused laser beam, thereby 

generating an ultra-broadband omnidirectional optoacoustic point source with a flat spectral 

response [72]. The systems lateral resolution would then be limited by the spot size of the focused 

beam. The optoacoustic signal strength generated is dependent on the laser energy density and 

absorption coefficient of the thin film; the signals are inherently broadband and therefore suitable 

to investigate the optoacoustic bandwidth limits of the transducer being tested. This approach 

allows us to obtain four-dimensional data (3 spatial in XYZ and 1 temporal axes) by scanning 

around the point source in the three spatial directions and acquiring the temporal response at each 

position. The total impulse response sensitivity maps from single element transducers are therefore 

obtained from different planes and bandwidth, focal distance, depth of focus, diverging angle, 

lateral and axial resolutions are calculated. 

 

 
3.1.1 Optoacoustic transducer characterization rig 

Figure 3.1 displays the proposed optoacoustic transducer characterization rig. A 532nm light 

source with a 1 ns pulse width and operates at 2 kHz repetition rate (Wedge HB532, Bright 

Solutions, Italy). A polarizing beam splitter and a beam dump were used to regulate the energy 

per pulse. For triggering, a 90:10 beam splitter was used to divert 10% of the light into a 

photodetector. The remaining 90% of light was spatially filtered to improve beam efficiency and 

focused with a 4X objective lens to a spot size of around 12 µm (4X Olympus RMS4X). To align 

the 100 nm gold film-plate to the focal plane of the objective and generate an omnidirectional 

optoacoustic point source, a manual XYZ translation stage (PT3/M, Thorlabs) is used. The pulse 

energy used to probe the gold film was about 50 nJ. 
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Figure 3.1: Ultra-broadband single element ultrasound transducer characterization rig used to measure the 

total impulse response. PBS: polarizing beam splitter, BS: beam splitter, BD: beam dump, PD: photodiode. 

Each transducer was attached to an XYZ motorized stage (MTS50-Z8 in 3-Axis XYZ 

Configuration, Thorlabs) for fine linear scanning over the optoacoustic point source using 

deionized water as the acoustic coupling medium. The active element of each detector was 

mounted facing the acoustic source and synchronized with the motorized stages. To produce the 

sensor's characterization maps, the raster scanner was programmed to sweep along the XY and XZ 

planes, using 200 signal averages per step to reduce the effect of laser pulse-to-pulse variance and 

background signal. Prior to data acquisition, the temporal optoacoustic signals were externally pre-

amplified with a 30 dB amplifier (Sonaxis SA, France) and attached to a T-bias (ZFBT- 4R2GW+, 

Mini-Circuits). An ATS9373 DAQ card (AlazarTech, Canada) was selected to collect the 

optoacoustic data, which was synchronized to the board's external trigger port via the photodetector 

signal. LabVIEW was used to monitor signal processing, and MATLAB was used to analyze the 

data. The transducers discussed in this chapter were all characterized with this characterization 

system. 

 
3.2. Optoacoustic transducer architecture for endoscopy 

 
Optoacoustic mesoscopy employs ultra-wideband (UWB) ultrasound frequencies to detect optical 

absorption across several millimeters of depth with resolutions in the range of tens of micrometers 

[35,36]. This capability has been introduced as raster scanning optoacoustic mesoscopy (RSOM), 
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which allows for accurate visualization of various skin features such as dermal vasculature [80,81] 

or melanoma-related angiogenesis [82], as well as label-free quantification of inflammation in 

psoriasis, eczema, and vasculitis [36]. To generate highly accurate images of tissue, RSOM utilizes 

tomographic concepts by appointing detectors with broad acceptance angles and integrating 

signals acquired over different projections by mathematical inversion. 

 
In gastrointestinal (GI) endoscopic applications, mesoscopic performance may also be helpful to 

achieve similar surface visualization, associated with vascularization and angiogenesis, potentially 

leading to improved cancer staging. For example, the average human esophagus wall is 5.26 mm 

thick for males and 4.34 mm thick for females [83], and it is highly vascularized, with vessels 

varying in size from tens to hundreds of micrometers inside the mucosa [84]. Because of the 

variability in vascular size and depth, the optoacoustic frequency content generated is inherently 

broadband, hence ultrasound detectors with central frequencies up to 50 MHz and bandwidths 

ranging from a few to 100 MHz are needed to provide appropriate esophageal layer resolution 

[85] matching the characteristics of RSOM transducers. Although, Optoacoustic endoscopy, 

differs from RSOM in two major respects. First, imaging hollow organs usually necessitates 

rotating rather than raster scanning detector designs, which require transducer designs with 

different requirements than those used in RSOM. Second, unlike tomographic imaging, which can 

achieve high imaging efficiency synthetically, rotational endoscopy does not collect strongly 

overlapping projections due to the outward looking detector's geometry. As a consequence, image 

quality is highly determined by the detector's requirements. Additionally, endoscopes are often 

restricted by the need for miniaturized form factors in order to achieve sizes suitable for entry into 

cavities and hollow structures. 

 

3.2.1 Desired sensor specifications 

 
The desired optoacoustic endoscopic detector specifications were therefore driven by the 

transducer (model no HFM23) employed in the RSOM system, where resolutions, central 

frequency and -6dB bandwidth were reported at 20µm, 50MHz and 100MHz respectively. For 

optoacoustic skin imaging the transducer overlooks the sample with reduced propagation distance 

to maximize SNR. Hence, for optoacoustic endoscopy a side viewing sensor to face the esophageal 

wall is desired. To drive detector miniaturization and align the optical excitation beam with the 

transducers sensitivity beam a central aperture is required. In addition, for ease of swallowability 

the diameter of the transducer should be comparable to the size of commercially available white 

light capsules which are reported to be less than a maximum diameter of 13mm [121,122]. 
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Similar to the HFM23 transducer, existing optoacoustic endoscopes have employed focused 

transducers (previously explored in 2.1.4) to achieve lateral resolutions in the range of tens of 

microns in the mesoscopic regime but their depth of focus is limited to hundreds of microns by 

the nature of their spherical geometry and bandwidth characteristics. Resolving depth information 

with spherical transducers therefore requires computationally intensive reconstruction algorithms, 

such as back projection [86] and model-based [87] methods, which can limit the ability to achieve 

high quality real-time volumetric imaging. In contrast, axicon transducers include conical lenses, 

which focus ultrasound waves along the axial direction. This configuration yields a pencil beam 

sensitivity profile with high lateral resolution over an extended depth of focus. 

 
For optoacoustic applications, we hypothesized that axicon detectors' elongated sensitivity profiles 

may allow reconstruction-free image processing over greater depths than spherical detectors. 

Although elongated sensitivity profiles for optical [88] and ultrasound imaging [89, 90] have been 

investigated, there was only one study on single-element axicon transducers for optoacoustics in 

2009 [91], which used lower central frequencies and bandwidths than those suitable for 

optoacoustic imaging. Therefore, we developed and compare the performance of single element 

axicon and spherical geometries both with central aperture as required for coaxial OA illumination. 

The desired transducer specifications for optoacoustic endoscopy are summarized in Table 3. 

 
 

Desired Specification Value 

Lateral/Axial Resolution 20µm 

-6dB Bandwidth/Central Frequency 100MHz/50MHz 

Directivity Sphereical & Axicon 

Architecture Side viewing with central aperture 

Size Diameter <13mm 

Table 3: Optoacoustic endoscopic transducers desired 

specifications. 

 

 

3.3. Piezoelectric Transducer Crystals 

 
Certain crystal materials by virtue of the piezoelectric effect when deformed by application of an 

external stress generate a corresponding electrical signal. During transducer development two 

piezoelectric transducer crystals were considered due to their excellent acoustic to electrical 

conversion efficiency, including Lead Zirconate Titanate(PZT) and Lithium Niobate (LiNO3). 

PZT based ultrasonic actuators are well known for their excellent piezoelectric properties and can 

be shaped in almost any shape or size. However, considering the toxicity of lead, there is a general 
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awareness for the development of environmental lead-free materials. On the contrary, LiNO3 

exhibits a high Curie temperature and excellent piezoelectric coupling coefficient making it 

attractive for lead-free ultrasound measurement. Transducer directivity was achieved by directly 

shaping the PZT active element while a glass shaped lens was mounted onto a planar LiNO3 

detector. The main benefit of directly shaping the active element to achieve acoustic focusing 

opposed to shaping a glass lens is the ability to avoid potential secondary acoustic reflections 

occurring within the glass lens and thereby deteriorating image quality along the axial axis. The 

first series of prototypes manufactured were to be characterized and experimented in benchtop 

configurations.    

 
3.3.1 First generation benchtop Transducers 

 

The first-generation single element transducers built were PZT-based, the cross-sectional view of 

the spherical equivalent design is depicted in Fig 3.2a. Both side looking transducers featured a 

central aperture of 1mm for coaxial illumination and acoustic signals were coupled via a micro 

dot connector. The CMF156 axicon transducer (Fig 3.2b) had a aperture diameter of 9.5mm with 

cone angle of 130º and the CMF155 spherical transducer (Fig 3.2c) had a aperture diameter of 

8mm with a radius of curvature of 8mm. Note the presence of cracks on the active elements 

manifested during the manufacturing process. From the temporal and spectral response of the 

spherical detector (Fig 3.2e) we determine a focal length of 8.4mm and -6dB bandwidth of 24MHz 

and central frequency of 28MHz. From the temporal and spectral response of the axicon detector 

(Figure 3.2f) we determine the maximum sensitivity position to be at 8.85mm and -6dB bandwidth 

of 35MHz and central frequency of 22.5MHz. The spherical transducer appeared to be twice as 

sensitive as the axicon detector 
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Figure 3.2: (a) Cross sectional representation of the first generation of benchtop PZT based transducers 

where the central aperture for laser beam illumination is 1mm in diameter (b & c) photos of the axicon 

(CMF156) and spherical transducers (CMF155) built respectively. (e) Temporal and frequency response 

of the spherical transducer (f) Temporal and frequency response of the axicon transducer. 

The spatial sensitivity maps in the XY plane for each sensor are depicted in Figure 3.3(a-b). From 

these maps we determine the corresponding lateral and axial resolutions for each transducer Fig 

3.3(c-d). The cracks present of the surface elements result in distortions of the sensitivity profiles 

as reflected in the sensitivity profile maps. In particular, the spherical transducers XY spatial 

profile (Fig 3.3a) shows strong secondary lobes surrounding the focus. The axicon transducers XY 

spatial profile (Figure 3.3b) also depicts a secondary lobe albeit significantly weaker compared to 

the spherical. The lateral resolutions and axial resolutions measured for the spherical detector were 

57 µm and 67µm respectively. The lateral resolutions and axial resolution measured for the axicon 

detector 65µm and 56µm respectively. 
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Figure 3.3 (a-b) Optoacoustic transducer sensitivity maps at XY focal planes of (a) CMF155 spherical 

transducer (b) CMF156 axicon transducer (c-d) Axial and lateral Hilbert resolutions of each transducer 

respectively. 

 

The spatial sensitivity map in the XZ plane for each sensor are depicted in Figure 3.4(a-b). The 

spherical transducers XZ spatial response Fig 3.4(a) shows a strongly distorted spatial map with 

two foci and the axicon transducers XZ map shows an elongated sensitivity profile less distorted 

in comparison. From figure 3.4(c) we estimate a depth of focus 1.7mm for the axicon transducer. 

For the spherical transducer a depth of focus of 3.1mm is measured as a result significant 

sensitivity aberrations manifested as a result of the surface cracks present on the active elements. 
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Figure 3.4 (a-b) Normalized Optoacoustic transducer sensitivity maps at XZ planes of (a) CMF155 

spherical transducer (b) CMF156 axicon transducer (c) Normalized line scans following the dotted white 

line trajectory in Fig 3.4 (a-b) along the z distance 

 

Analyzing the characteristics of the first generation of the PZT benchtop transducers we find they 

are not suitable for optoacoustic endoscopy. The frequency characteristics which around 22.5- 

28MHz central frequency and -6dB bandwidth of 24-35MHz are below the required central 

frequency of 50MHz and -6dB 100MHz bandwidth. The resolutions need to be improved from 50- 

70µm to 20 µm to provide high resolution imaging. The manufacturing process needs to be 

improved to prevent surface cracks from manifesting on the active elements which degrade the 

spatial sensitivity response of the transducers. Finally, the detectors require miniturzation to 
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approach the <13mm diameter requirement for ease of swallowability. For all these reasons a 

second generation of PZT benchtop spherical and axicon detectors were built with the aim of 

delivering performance closer to the desired specifications listed in Table 3. 

 

3.3.2 Second generation benchtop Transducers 

 
The cross-sectional view of the second-generation side looking benchtop PZT detector is depicted 

in Fig 3.5a. The overall size of the sensor was reduced by replacing the micro dot connector with 

a micro coax cable. A pre-amplifier was integrated inside the sensor to improve signal to noise 

ratio (SNR). To permit coaxial illumination, the transducer casing had to modified to integrate 

internal optics including a 90° mirror and the central aperture increased from 1mm to 2mm to 

ensure the beam is not obstructed as it propagates inside the casing. Fig 3.5b shows a photograph 

of the second generation CMF163 spherical transducer and CMF171 axicon transducer. The active 

element designs including, focal length, cone angle; diameter remained the same as the first 

generation of PZT sensors. Unfortunately cracks are still present on the active elements of the new 

transducers. From the temporal and spectral response of the CMF163 spherical detector (Fig 3.5c) 

we determine a focal length of 8.5mm with central frequency 39 MHz and -6dB bandwidth of 

55MHz respectively. From the temporal and spectral response of the CMF171 axicon detector (Fig 

3.5d) we determine the maximum sensitivity position to be at 10mm and central frequency of 

32MHz and -6dB bandwidth of 52MHz. The spherical transducer appeared once more to be 

approximately twice as sensitive as the axicon detector. 
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Figure 3.5: (a) Cross sectional representation of the second generation of benchtop PZT based transducers 

where the central aperture for laser beam illumination is 2mm in diameter (b) photo of the axicon (CMF171) 

and spherical transducers (CMF163) built respectively. (e) Temporal and frequency response of the 

spherical transducer (f) Temporal and frequency response of the axicon transducer. 

The spatial sensitivity maps in the XY plane for each transducer are depicted in Fig 3.6(a-b). From 

these maps we determine the corresponding lateral and axial resolutions for each transducer as 

shown in Fig 3.6(c-d). Several secondary lobes surrounding the main foci in both transducers XY 

planes are observed as a result of the cracks present on the active elements. These lobes degrade 

resolution and reduce SNR. When attempting to determine the lateral resolutions in X and Y for 

the spherical transducer illustrated in Fig 3.6c we measured x=38µm and y=124µm. The 

corresponding axial resolution for the spherical detector was 34 µm. Similarly, from Fig 3.6d for 

the axicon transducer we measured lateral x= 43 µm, lateral y =74 µm and axial = 37 µm. The 

asymmetry in lateral resolution and the strong background signal observed in the lateral line scans 

are attributed to the surface aberrations. 
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Figure 3.6 (a-b) Optoacoustic transducer sensitivity maps at XY focal planes of (a) CMF163 spherical 

transducer (b) CMF171 axicon transducer (c-d) Axial and lateral Hilbert resolutions of each transducer 

respectively. 

 
The spatial sensitivity map in the XZ plane for each transducer is depicted in Figure 3.6(a-b). The 

CMF163 spherical transducers XZ spatial response Fig 3.6(a) shows a smeared oval shaped profile 

measured over 200µmx1000µm. The CMF171 axicon transducer displays a significantly distorted 

elongated sensitivity profile with multiple foci and was measured over 300µm x 6000µm. From 

the normalized line scans along z (Fig3.6c) we determine a depth of focus of 870 µm for the 

spherical transducer and 1.56mm for the axicon transducer. 
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Figure 3.7 (a-b) Normalized Optoacoustic transducer sensitivity maps at XZ planes of second generation 

PZT benchtop transducers (a) CMF163 spherical transducer (b) CMF171 axicon transducer (c) Normalized 

line scans following the dotted white line trajectory in Fig 3.7(a-b) along the z distance 

 

Analyzing the performance of the second-generation benchtop PZT transducers we found an 

improved performance in frequency response with central frequency and bandwidths reaching 

~35MHz and 50MHz respectively. However, these specifications are still below the required 

50MH central and 100MHz -6dB bandwidth. We observed a degraded lateral resolution when 

compared against the first-generation transducers as a result of significant distortion observed in the 

XY spatial planes. The origin of these distortions measured in the sensitivity profile are a result of 

the cracks generated during the shaping of the active element into a spherical or axicon shape. 

Clearly from the characterization of the CMF163 and CMF171 transducers, we conclude they are 

not suitable for optoacoustic endoscopy and requirement further enhancement prior to 
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proceeding to imaging. We realized the main problems lies with shaping of the active element to 

achieve spherical or axicon acoustic directivity. To avoid this procedure, we sought to shape a 

glass lens to achieve directivity and then mount the lens onto the active element to form the 

transducer. This technique has been previously employed in the manufacturing of broadband 

spherically focused transducers for RSOM delivering bandwidths up to 100MHz and resolution in 

the 20µm range. In addition, during course of testing the CMF163 and CMF171 transducers we 

found internal preamp circuit to be very unstable significantly reducing the lifetime of the sensors 

and therefore for the time being removed the preamp circuit for the next generation of sensors 

until a more stable solution was developed. Finally, the very thin micro coax cable was very prone 

to electromagnetic noise and required significant shielding. Although, when thick aluminum 

shielding was applied, the fragile connection between the casing and thin wire broke on several 

occasions prolonging the characterization procedure. Hence, the next generation of transducers 

were to focus on miniaturized connectors in place of thin cables. 

 

 

 
3.3.3 Third generation Benchtop transducers 

 
The third generations of transducers developed were LiNO3 based with a glass lens shaped to a 

spherical and axicon profile. The active element designs including, focal length, diameter; central 

aperture remained the same as the second generation transducers. The only change made was a 

reduction of cone angle from 130° to 114.4° to facilitate simpler manufacturing of the glass lens 

for the axicon transducer by utilizing standard glass polishing instruments. The attributes of these 

benchtop transducers were measured against the glass lens LiNO3 based transducer deployed for 

raster scanning mesoscopy (HFM23). The schematics of each transducer and their response at 

focus are depicted in Figure 3.8 (a-c) and corresponding temporal/ frequency curves of each 

transducer are presented in Fig 3.8 (d-f). The three fabricated sensors exhibit an ultra-broad 

bandwidth detection performance with central frequency and −6 dB bandwidth (BW) of 72.5 MHz 

(BW 105 MHz), 60 MHz (BW 97 MHz) and 55 MHz (BW 94 MHz) for the HFM23, HFM36 

and HFM37, respectively. However, among the sensors at focus, the spherical transducer with no 

central aperture (HFM23) has the highest signal amplitude, demonstrating 4 times higher relative 

acoustic sensitivity (peak-to-peak signal amplitude) than the spherical transducer with central 

aperture (HFM36). Because of the relative sensor size, propagation losses to focus, and medium 

absorption at central frequency, this is similar to the 4.06 higher sensitivity anticipated. 

Furthermore, when the influence of transducer shape was compared with central apertures, the 
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spherical (HFM36) detector showed 2.85 times greater sensitivity at focus than the axicon detector 

(HFM37). The measured focal distances and divergence angles for these transducers were 3.05 

mm (52o), 7.98 mm (51o) and 8.60 mm (50o) for the HFM23, HFM36 and HFM37, respectively. 

Due to the excellent performance of these transducers, we performed a more in depth analysis 

when measuring resolution and depth of focus. 

 
 

Figure 3.8 (a-c) illustrates the LiNO3 based detectors (a) A spherical transducer with acoustic lens of 3 

mm-curvature radius previously utilized for RSOM (HFM23, Sonaxis SA, France). (b) and (c) depict 

central aperture transducers, spherically (HFM36, Sonaxis SA, France) and conically (HFM37, Sonaxis 

SA, France) focused, respectively. The spherical transducer had a curvature of 8mm, and the conical 

transducer had a 114.40 apex angle with diameter of 9.6 mm; both with a 2mm-central hole. TE: Transducer 

element, EC: Electrical Connector, L: Acoustic Lens, CA: Central Aperture Window. Figures (d-f) are the 

Optoacoustic transducer temporal and frequency responses of (c) HFM23, (d) HFM36 and (e) HFM37 

sensors 

 
Fig. 3.9 shows the sensitivity maps obtained at the focal plane of each transducer. The sensitivity 

symmetry of the HFM23 detector is circular, with a weaker secondary spot overlapping the 

primary one (marked in Fig 3.9a). The corresponding sensitivity maps for the HFM36 and HFM37 

detectors are shown in Figs 3.9(b-c), with minor symmetry distortions. Acoustic lens deformations 

during processing may be to blame for these astigmatic aberrations. Figures 3.9d-f display the 

lateral and axial spatial resolutions for each transducer. Full-bandwidth resolutions of 

approximately 28 μm and 18 μm for the lateral and axial, respectively, are obtained by all three 
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detectors. Their similar sensitivity bandwidth is responsible for their similar resolutions. By virtue 

of the ultra-broad band sensitivity featured in these detectors, we looked into the effect of acoustic 

bandwidth on each detector's precise lateral resolution, as shown in Fig 3.9g. Starting at 15 MHz, 

an exponential relationship between resolution and frequency band was discovered. Despite the 

fact that frequencies above 85 MHz have a lower contribution to lateral resolution performance 

for the characteristic signal sensitivities of these transducers, the resolution limit was only 

achieved at maximum bandwidth. As shown in Fig 3.9h, this was also true for the axial resolution. 

 

 

Figure 3.9 (a-c) Normalized Optoacoustic transducer sensitivity maps at XY focal planes of (a) HFM23 

spherical transducer (no hole) (b) HFM36 spherical transducer with central aperture (c) HFM37 axicon 

transducer with central aperture. (d-e) Axial and lateral Hilbert resolutions of each transducer respectively. 

(g-h) Lateral and axial resolutions as a function of transducer frequency band for all three detectors 

respectively. 
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The sensitivity maps for each transducer are shown in Fig. 3.10 in the (lateral) X and (axial) Z 

directions. The XZ sensitivity maps for the spherical detectors (HFM23 Fig 3.10a, HFM36 Fig 

3.10b) support the focusing behavior predicted from these geometries, with low frequency lobes 

visible in the near field due to the shorter propagation distance. In comparison, as shown in Fig 

3.10c, the XZ sensitivity map for the axicon detector (HFM37) is defined by a thin pencil beam 

over an extended depth. In Fig 3.10d, the depth of focus for all three transducers is compared, 

yielding 220 μm and 250 μm for the spherical cases (HFM23 and HFM36, respectively) and 1050 

μm for the axicon case (HFM37), which is 4.2 times that of the spherical equivalent with central 

aperture (HFM36). The axicon transducer maintains 40 μm lateral resolution over a 950 μm depth 

of focus and remains below 60 μm over a 1050 μm depth of focus, as shown in Fig 3.10e. While 

the axicon detector has a greater depth of focus than its spherical counterparts, it has a lower 

sensitivity when compared to the equivalent spherical detector with central aperture at focus 

(HFM36). Owing to the similar divergence angle measured for the spherical transducers, the 

HMF23 measured a depth of focus approximately 30 μm smaller than the HFM36 detector. 

 

Figure 3.10: (a-c) Normalized Optoacoustic transducer sensitivity maps at XZ focal planes of (a) HFM23 

spherical transducer (no hole) (b) HFM36 spherical transducer with central aperture (c) HFM37 axicon 
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transducer with aperture. (d) Normalized depth of focus line scans of transducers. Note: Z=0 corresponds 

to the focal point of the HFM23 and HFM36 sensors (e) Lateral resolution as a function of the transducer 

depth of focus. 

 

 

Using our dedicated characterization system (Fig 3.1), we were able to demonstrate axicon 

ultrasound detection with broad 94 MHz-bandwidth (at a − 6 dB cut off) and extended pencil beam 

optoacoustic spatial sensitivity with a depth of focus of 1050 µm and maintained 40 µm-lateral 

resolution over 950 µm. To our knowledge, we are the first group reporting the sensitivity 

performance of a high frequency broadband axicon ultrasound transducer. Our results show that 

a broadband ultrasound sensor with a axicon sensitivity field can be used to overcome the loss of 

resolution in optoacoustic imaging that spherical detectors experience at greater depths. However, 

the balance between sensitivity and depth of focus is a limiting factor. Although the depth of focus 

(compared with spherical detectors) has increased by 4.2 times with our axicon transducer, the 

overall sensitivity has been reduced by 2.85. Increased preamplification may compensate for some 

sensitivity loss. Furthermore, during the manufacturing procedure, it is possible that sphericity 

was introduced into the axicon lens, because the effective 4 mm theoretical depth of focus for our 

transducer design was not achieved. 

 
We compared our built spherical transducer (HFM36) to an existing RSOM spherical detector 

(HFM23) with no central hole to determine the effective change in the sensitivity field induced by 

the presence or absence of a hole in a transducer (Figs. 3.9a, b and 3.8a, b). Our sensitivity maps 

show that a central hole in a spherical detector of up to one third of the sensor diameter has only a 

minor impact on the shape of the transducer's sensitivity map (Fig. 3.9,3.10), while decreasing 

overall ultrasound sensitivity proportional to the hole's area. The sensitivity fields of both spherical 

transducers were found to be identical. As a result, we expect reconstruction algorithms for 

spherical transducers without apertures, such as virtual point detectors or delay multiply and sum 

beamforming algorithms, could also be applied for the spherical transducer with central aperture in 

this study. 

 
The characterization experiments of the third-generation detectors confirm they meet the required 

specifications listed in Table 3 for optoacoustic endoscopy. The only caveat is that they require 

further miniaturization to be housed inside a rotationally scanning probe and fulfill the <13mm 

diameter requirement. To determine whether the spherical or axicon transducer should be further 

developed into a friendlier endoscopic casing, a raster scanning unit was built to assess the 

optoacoustic spatial resolution and imaging depth of each transducer. 
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3.4. Raster scanning optoacoustic mesoscopy 

To examine the imaging depth potential of the third-generation transducers a raster scanning 

optoacoustic mesoscopy system was constructed to image an inclined 100µm polyamide 6 suture 

with a tilt angle of 15.5º installed on a 3D printed mount. The setup as depicted in figure 3.11a 

consisted of a 1 ns-pulse width, 532nm light source operating at 200 Hz repetition rate (Wedge 

HB532, Bright Solutions, Italy). The energy per pulse was regulated by means of a polarizing 

beam splitter and a beam dump. A 90:10 beam splitter was employed to divert 10% of the light 

towards a photodetector for triggering. The remaining 90% of light was fiber coupled to a multi- 

mode fiber with a low divergence GRIN lens mounted at the distal probe tip. The transducer under 

test was mounted to an XYZ motorized stage (MTS50-Z8 in 3-Axis XYZ Configuration, 

Thorlabs) to perform raster scanning over the tilted optoacoustic line source with deionized water 

employed as acoustic coupling medium. This imaging configuration is illustrated with the spherical 

transducer in Figure 3.11b. Each detector was installed with the active element facing the acoustic 

source and aligned with the motorized stages. Co-axial optoacoustic pulse illumination was provided 

by inserting the GRIN probe in the transducer’s central aperture channel. 

 
A continuous raster XY scan was performed by triggering light source with the motorized stages 

over a field of view of 3mm x 10mm with a pixel size of 10µm. The temporal optoacoustic signals 

were pre-amplified externally with an 30dB amplifier (Sonaxis SA, France) and connected to a T- 

bias (ZFBT-4R2GW+,Mini-Circuits) prior to data acquisition. Both optoacoustic and 

photodetector signals were acquired by an integrated ATS9373 DAQ card (AlazarTech, Canada) 

controlled by LabVIEW and data processed in MATLAB. 
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Figure 3.11 Raster Scanning Optoacoustic mesoscopy of a 100µm titled suture with the third-generation 

optoacoustic endoscopy transducers (a) Depicts the raster scanning optoacoustic mesoscopic imaging unit 

to scan a tilted 100µm suture, PBS: Polarizing beam splitter, PD: photodiode, BD: beam dump, MMF: 

multimode fiber. (b) Illustrates mesoscope imaging configuration with the spherical detector to image the 

titled suture. (c) Normalized maximum intensity projections of the optoacoustic response with the (i) 

spherical HFM36 detector and (ii) axicon HFM37 detector. (d) Optoacoustic depth maps thresholded upto 

each sensors depth of focus and bounded by the lateral resolution with the (i) spherical HFM36 and (ii) 

axicon HFM37 detector. 

The normalized maximum intensity projections acquired with the spherical and axicon detectors 

are shown in Fig 3.11c. The spherical transducer correctly resolved the 100 µm suture at focus 

and reduced in lateral resolution moving away from focus as shown in Fig 3.11c(i). The axicon 

transducer Fig 3.11c(ii) measured a full width half maximum value of 400 µm at the maximum 

sensitivity and remained the much the same over the entire field of view. To determine imaging 

depth of focus of each configuration the normalized maps in Fig 3.11c were threshold to >0.5 and 

endcoded in depth to unveil the depth of focus maps as illustrated in Fig 3.11d. The spherical 

transducer (Fig 3.11d(i)) measured a depth of focus of 910µm whereas the axicon transducer (Fig 
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3.11d(ii)) measured a depth of focus of 1430 µm. Surprisingly, whereas the spherical detector 

correctly resolved the suture at focus, the axicon detector produced a blurred image. Although the 

depth of focus did indeed increase with the axicon detector by approximately ~500µm, we found 

lateral resolution is 14x lower measuring at 400µm compared to the 28µm determined during 

transducer characterization. To explain the discrepancy in axicon transducer resolution, an in-depth 

analysis with multiple 3D acoustic simulations were conducted mimicking the characterization 

and imaging conditions. 

3.5. 3D optoacoustic transducer simulations 

 

The axicon transducer exhibited lower lateral resolution during imaging than characterization. To 

demystify this behavior, we employed the MATLAB toolbox: Kwave [92] to simulate the 

characterization and imaging conditions in 3D with a broadband spherical and axicon transducer 

of similar dimensions to HFM36 and HFM37. Figure 3.12 illustrates the 3D Kwave simulation 

configurations to obtain the XY and XZ sensitivity field response to a point and line source for the 

spherical and axicon transducers. Due to limited GPU memory, we simulated 3D half scale 

detectors with central frequencies of approximately 32MHz. We did not take into account the glass 

shaped lens and performed simulations with the active elements directly shaped to spherical or 

axicon to achieve directivity. Note: Although the HFM36 and HFM37 transducers do have a 2 mm 

central aperture, a stainless-steel channel with wall thickness of 0.5mm surrounds the aperture; 

hence the effective overall aperture considering the transducer active region to be simulated is 

3mm. For this reason, the half scale transducers in Fig 3.12(b-e) show a 1.5mm central aperture. Our 

kgrid propagation medium parameters included medium sound speed =1500m/s, medium density 

=1000kg/m3. Acoustic medium attenuation in water was taken into account with the following 

parameters a0=2.17e-3, y=2, BonA=4.96. Simulation sample rate was set to 400MHz and the 

maximum supported frequency was upto 75MHz. Further information about maximum supported 

frequency and acoustic attenuation parameters can be found in [92]. Two acoustic sources were 

simulated in 3D space including a 10µm point source and a 10µm line source with a strength of 1 

Pa. To generate the XY and XZ sensitivity maps the simulated acoustic sources were raster 

scanned in the transverse and sagittal planes respectively. These conditions were employed all for 

simulations and are listed in Table (a) in Fig 3.12. 

 
Fig 3.12(b-c) depicts the simulation configurations mimicking the characterization experiment in 

section 3.3. Fig 3.12(b) illustrates a diagram of the half scale HFM36 transducer positioned at 
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focus to image in a 10 µm broadband point source emitting frequencies upto 75MHz. Similarly, 

Fig 3.12(c) shows the half scale axicon transducer also positioned to image the same point source. 

To mimic the raster scanning imaging of a titled suture, we generated a 10 µm line source; 

although the tilt was removed as we would generate the sensitivity response in the XZ plane. Fig 

3.12(d) shows the half scale HFM6 spherical transducer positioned at focus to image a 10 µm 

suture and Fig 3.12 (e) similarly shows the half scale HFM37 axicon transducer positioned to 

image the same 10 µm suture. 

 
 

 
Figure 3.12: 3D K-wave simulation configurations (a) The simulation parameters utilized during the 3D 

acoustic simulations (b-c) Simulation configuration mimicking characterization experimentation in section 

3.3 with (b) ½ scale HFM36 spherical transducer and (c) ½ scale HFM37 axicon transducer imaging a point 

source. (d-e) Simulation configuration mimicking suture experimentation in section 3.4 with (d) ½ scale 

HFM36 spherical transducer and (e) ½ scale HFM37 axicon transducer imaging a point source. 

 

The normalized generated XY and XZ sensitivity maps for a 10µm point and line source for the 

half scale spherical and axicon transducers are illustrated in Fig 3.13. Where Fig 3.13a is a pictorial 

representation of the acoustic source shape generated from the target point source and the impulse 

response of this source for each transducer are depicted in the XY sensitivity plane (Fig3.13b-c) 

and the XZ sensitivity plane (Fig 3.13d-e). 
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Figure 3.13: 3D Simulations of Spherical and Axicon transducers on kWave with respect to a point and 

line source. Figure (a) illustrates a diagram of the acoustic point source generated in kwave. Figures (b,c) 

are the XY and (d,e) are the XZ sensitivity map measured by scanning around a 10 µm point source for the 

HFM36 and HFM37 half scale sensors respectively. Figure (f) illustrates a diagram of the acoustic line 

source generated in kwave. Figures (g-h) are the XY and (i, j) are the XZ sensitivity map measured by 

scanning around a 10µm line source for the HFM36 and HFM37 half scale sensors respectively. 

As shown in Fig 3.13c the spherical detector depicts a ball shape sensitivity volume with a 

restricted a depth of focus of 260µm. The axicon transducer (Fig 3.13d) features a thin pencil beam 

with an extended depth of focus of 2.65mm. The sensitivity asymmetry observed within the pencil 

beam is a result of the central transducer aperture. Comparing the shape of the sensitivity maps in 

Figs 3.13b-e to the experimental measurements acquired with the characterization unit in section 

3.3 figures 3.9 and 3.10, they are in good agreement albeit a reduced lateral resolution of 

~45µm as a result of the simulated central frequency of 32MHz. 
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The experimental characterization of the HFM37 transducer in Fig 3.10c measured a depth of 

focus of 950µm whereas the half scale simulated HFM37 transducer in Fig 3.13d exhibited a depth 

of focus 2.65mm. The reason for this discrepancy is as a result of sphericity introduced when 

manufacturing the lens and ultra-broadband nature of the experimental point source exceeded 

frequencies over 100MHz where acoustic attenuation is higher through the propagation medium, 

in contrast the simulation was restricted upto 75MHz. 

 

Fig 3.13f is a pictorial representation of a line source generated when optoacoustically exciting a 

10µm line source. Figures 3.13 (g) & (h) demonstrate the XY sensitivity maps of half scale HFM36 

spherical and half scale HFM37 axicon transducers response to the 10µm line source respectively. 

In this instance the spherical still measures a FWHM of 45 µm, however the axicon FWHM cannot 

be measured as the acoustic signal does not drop below 50% of maximum signal. Figures 3.13 (i) 

& (j) depict the XZ sensitivity maps of half scale spherical and axicon transducers respectively in 

response to the 10µm line source. From the XZ spherical sensitivity map, the spherical sensitivity 

volume is still observed with low frequency signals detected out of focus, though the low 

amplitude signal strength measured out of focus does not degrade the detectors lateral resolution. 

The axicons XZ map sensitivity shows a pencil beam with deteriorated lateral resolution as the 

sensor measures high amplitude low frequency signals when the source is off- axis with respect to 

the sensor. This result relates to the reduced lateral resolution in the tilted suture experiment with 

the HFM37 transducer in Fig 3.11. The sensitivity asymmetry along the line profile is once again 

attributed to the central aperture of the axicon transducer. 

To further analyze these observations, we perform normalized line scans on the focal planes of 

each detector with respect to the point and line source as shown in Figure 3.14. From Figure 3.14 

(a) we observe the detectors response decreases rapidly as we move away from the point source. 

100µm away from the point source, the spherical detectors signal strength drops to 7% whereas 

the axicon drops to 18%. Figure 3.14 (b) illustrates that 100 µm away from the line source the 

spherical signal drops to 18%. The discontinuity observed at positions ±40µm in the spherical scan 

profile is due to the presence of the central aperture. The axicon detectors drops to approximately 

53% of the signal 30 µm away from the source and effectively levels off at this value. 

Here, we have shown for the first time, a concise evaluation and comparison, both experimentally 

and in simulation, the influence of broadband axicon and spherical geometries with central 

apertures when imaging linear point and line OA sources. The simulations are in excellent 

agreement with the experiment results of these detection geometries. Surprisingly, whereas the 
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spherical detector correctly resolved a line source at focus, the axicon detector produced a blurred 

image. By virtue of the different acoustic waves produced by the point and line sources, i.e. 

spherical and cylindrical, respectively, the spherical detector could sustain lateral resolution at 

focus for both cases; however lateral resolution strongly deteriorates when using axicon detection 

to image line sources. This is due to strong low frequency ultrasound sensitivities outside the 

axicon focal region, therefore detecting acoustic signal off-axis perpendicular to the direction of 

the scan. Hence the axicon transducers spatial resolution is a function of both illumination and the 

type of generated optoacoustic wave geometry name spherical or cylindrical. Consequently, this 

characteristic is not very useful for imaging the vasculature inside the esophageal lining for 

optoacoustic endoscopy and thereby producing blurred images. 

Figure 3.14: Normalized lines scans across the XY sensitivity maps of half scale HFM36 spherical and 

HFM37 axicon transducers of the 10µm point source (a) and 10µm line source (b) 

 
Alternatively, optoacoustic axicon transducers could be deployed in optoacoustic microscopy 

where the off-axis acoustic signals are restricted by the narrow illumination size such as a Bessel 

beam to generate optoacoustic point sources. This configuration would allow us to exploit the 

pencil beam sensitivity profile of an axicon detectors response to a point source as shown in Figs 

3.10c and 3.13e enabling fast volumetric optoacoustic microscopy imaging. Our results advocate 

the use of spherical detection for optoacoustic endoscopy and further explore the benefits of 

utilizing axicon detection in optoacoustic microscopy. 
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3.6. Raster scanning optoacoustic microscopy 

From the experiments and simulations in sections 3.3-3.5 we found the axicon transducer is not 

suitable for optoacoustic endoscopy but could be employed for optoacoustic microscopy to 

overcome the tradeoff between high lateral resolution and restricted depth of focus in microscopes 

applying Gaussian beam illumination, which is diffraction limited and thus has a confined focal 

range (Rayleigh range). Spherically focused transducers are often employed for detection in OA 

microscopy because their spatial acoustic sensitivity profile complements the optical sensitivity 

profile of Gaussian illumination, which maximizes the overall optoacoustic sensitivity [93]. 

Although the combination of Gaussian beam illumination and spherically focused transducers 

provides excellent sensitivity, this configuration only provides high resolution imaging at the 

Gaussian beam focal plane [94-96]. To generate 3D images, the sample must be scanned in the 

axial direction over the same focal plane due to the narrow focus. As a result, existing OA 

microscopy configurations are inadequate for volumetric imaging applications that are time 

sensitive or require sample motion, such as full-body zebra fish imaging, measuring thick optically 

transparent samples, or cell imaging and counting. 

Unlike Gaussian beams, which have point foci, so-called ideal Bessel beams have line-shaped foci 

because they are not diffraction restricted. In practice, Bessel beams are approximated by passing 

collimated Gaussian illumination through a conical (axicon) lens, which creates a line shape 

optical sensitivity profile that allows imaging over greater depths without sacrificing lateral 

resolution [97,98]. As a result, in many optical imaging modalities, such as light sheet microscopy, 

optical coherence tomography, and second harmonic generation [99-104], Bessel beam 

illumination has been investigated as a means of increasing imaging depth. 

In optoacoustic microscopy, attempts to increase imaging depth using Bessel beam illumination 

have also been documented. For example, red blood cells were imaged with 7 µm lateral resolution 

over a depth of 1 mm using an OA microscope with Bessel beam illumination [105]. In two 

imaging studies of mouse ears, using Bessel beams instead of Gaussian beams resulted in a 7-fold 

increase in imaging depth. These systems' lateral resolutions/depths-of-focus were stated to be 1.6 

µm/483µm [106] and 300 nm/229 µm [107], respectively. However, these microscopes used 

unfocused or spherical transducers with acoustic profiles that were mismatched to the line foci of 

the optical Bessel beam, reducing optoacoustic sensitivity in the axial direction. This issue was 

solved by imaging zebra fish with a lateral resolution of 2.4 µm and a depth-of-focus of 635 µm 

using optical axicon interferometric ultrasound detection combined with Bessel beam illumination 
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[108]. Granted optical interferometric detection necessitates a thermally stabilized continuous 

wave light source and a high-speed balanced photodetector with a large bandwidth, increasing the 

system's cost. Furthermore, since the beam paths are vulnerable to temperature variations and 

micro-vibrations, optical ultrasound identification requires precise beam path orientation and 

environmental monitoring. Furthermore, trigger synchronization between the photodetector and 

optoacoustic laser is needed, which adds to the difficulty of data acquisition. Finally, the 

photodetector's interferometric signals require calibration and restoration to reconstruct the initial 

optoacoustic signal. 

The axicon transducer's thin cylindrical axial sensitivity field could complement the optical profile 

of a Bessel beam, allowing for a simple low-cost approach to sense acoustic waves with increased 

sensitivity along the axial path, optimizing usable imaging depths in OA microscopy and 

facilitating rapid volumetric imaging. We set out to see if the depth-of-focus in OA microscopy 

could indeed be maximized by matching the ultrasound detector sensitivity to Bessel beam 

illumination with an ultra-broadband axicon transducer, while also assessing the results of 

mismatches in illumination and detection geometry. As a result, we created a custom OA 

microscope that allows for the flexible interchanging of illumination and detector units while 

maintaining the same imaging field-of-view. 

The inverted optoacoustic microscope with interchangeable illumination optics and broadband 

transducer is illustrated in Figure 3.15a. A light source with a wavelength of 532 nm and a pulse 

width of 1 ns power the microscope (Wedge HB532, Bright Solutions, Italy). A polarizing beam 

splitter and a beam dump were used to control the interrogation energy per pulse. For trigger, a 

90:10 beam splitter was used to divert 10% of the light into a photodetector. Prior to optoacoustic 

excitation, the remaining 90% of light was spatially filtered to clean and expand the beam. A 0.25 

NA 10X plan achromat provided Gaussian illumination with a spot size of approximately 5 µm. 

(RMS10X, Olympus, Japan). Alternatively, by replacing the objective lens with an axicon lens 

(AX255 UVFS, Thorlabs, USA), axicon illumination with an FWHM of approximately 5 µm was 

obtained. 
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Figure. 3.15: Optoacoustic transducers and optoacoustic microscopy experimental setups for imaging a 

carbon fiber and ex-vivo mouse ear. Cross sectional and enface views of (a) HFM36 spherical and (b) 

HFM37 axicon transducers with central apertures. TE: Transducer element, EC: Electrical Connector, L: 

Acoustic Lens, CA: Central Aperture Window. (c) Depicts the optoacoustic microscope setup and tilted 

carbon fiber imaging configuration. PBS: Polarizing beam splitter, BS: beam splitter, BD: Beam dump, 

PD: Photodiode, M: Mirror. (d) An excised mouse ear sample sealed with a hot blade. (e) Illustration of 

the ex-vivo experimental setup wherein the mouse ear is placed on a tilted transparent optical window 

within a 3D printed tank. 

Each acoustic transducer was installed to face the illumination source and aligned to the optical 

beam using a manual XYZ conversion stage for OA microscopy imaging (Fig. 3.15a). All four 

possible excitation and detection combinations (Gaussian-spherical, Gaussian-axicon, Bessel- 

spherical, and Bessel-axicon) were assessed by imaging a 7 µm diameter carbon fiber immersed 

in deionized water and fixed with a tilt angle of 23.2º over a height of 3mm inside a 3D printed 

water tank with a planar optical window for transmission mode OA microscopy. The carbon fiber 

was precisely adjusted along the illumination-detection axis using a motorized XYZ scanner with 

a linear stage for the X scanning direction (M-511, Physik Instrumente, Germany) and two 

lightweight precision linear stages for the Y and Z scanning directions (MTS50-Z8, Thorlabs, 

USA). A raster scan was conducted with each illumination and detector combination after the 

optical beam, transducer, and carbon fiber were matched (Fig. 3.17a (i-iv); scan speed: 2 mm/s, 

scan resolution: 500 nm x 800 nm, field-of-view: 6 mm x 0.128 mm). For the Gaussian and Bessel 

beams, pulse illumination energies of 10 nJ and 2 µJ were used, respectively. Prior to data 
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acquisition, the temporal optoacoustic signals were pre-amplified externally with a 30 dB amplifier 

(Sonaxis SA, France) and wired to a T-bias (ZFBT-4R2GW+, Mini-Circuits, USA). A DAQ card 

(ATS9373, AlazarTech, Canada) synchronized to the external trigger port via the photodetector 

signal was used to acquire optoacoustic signals. LabVIEW (National Instruments, USA) was used 

to manage data collection, and MATLAB was used to process the data and produce 2D maximum 

intensity projections (MathWorks, USA). Amira-Avizo was used to create 3D volumetric 

projections (Thermo Fisher Scientific, USA). 

Using a beam profiler (SP620U, Ophir, USA) with a secondary 10X plan achromat lens 

(RMS10X, Olympus, Japan) and an 80 mm-optical spacer, the Gaussian and Bessel illumination 

profiles were measured along the optical axis moving away from the illumination lens surface. 

The Gaussian and Bessel beam profiles at maximal irradiance around the optical axis are shown 

in Fig. 3.16(a & b). To determine the illumination spatial confinement for each setup, the FWHM 

and relative peak irradiances were determined along the optical axis. The Gaussian beam 

confinement measured at 50 µm optical plane intervals over a ±300 µm axial distance around the 

focal point as seen in Fig. (3.16c). The Bessel beam confinement estimated at 1 mm optical plane 

intervals over an axial span of 12 mm traveling away from the axicon lens surface is depicted in 

Fig. (3.16d). The approximate origin for the Bessel beam experiment was set to approximately 6 

mm from the surface of the axicon lens. 

Importantly, owing to their non-diffracting nature, Bessel beam optical profiles always exhibit 

secondary concentric rings circling an inner lobe, as seen in Fig 3.16b, which produces 

unnecessary secondary optoacoustic signals interfering with the signal produced from the central 

lobe, lowering lateral image resolution. The image projection acquired for the Bessel-axicon and 

spherical configurations was subjected to MATLAB's built-in blind-deconvolution algorithm 

(deconvblind) to remove image artifacts and background signal emanating from the secondary 

lobes of the Bessel beam. The Bessel beam profile (see Fig. 3.16b) was used as reference for initial 

estimate of the point spread function to improve deconvolution. This technique has previously 

been shown to suppress side lobe artifacts in optoacoustic microscopy [106,107]. 
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Figure. 3.16: Illumination beam profiles for optoacoustic microscopy. (a) Gaussian and (b) Bessel beam 

profiles measured at the lateral plane passing through the point of maximum irradiance. Relative peak 

irradiances and diameters of (c) a Gaussian beam measured at 50 µm optical planes through the optical 

focus. (d) A Bessel beam central lobe at 1 mm optical planes along the optical axis moving away from the 

axicon lens. Note: The arbitrary origin for the Bessel beam case is set to be 6 mm away from the surface of 

the axicon lens. 

We used optical beam profile measurements to quantify the transverse strength distributions of the 

beams at various points along their propagation path. The FWHM illumination beam diameters of 

approximately 5 µm for both the Gaussian beam and the central lobe of the Bessel beam are seen 

in Fig. 3.16(a) and (b). The Gaussian beam exhibits light confinement inside the 5 µm-spot, as 

predicted, while the Bessel beam exhibits a transversal pattern of lower amplitude concentric 

circles around the 5 µm central lobe. Bessel beams have these concentric rings as a natural 

property, with each ring (including the central lobe) having the same amount of energy. As a result, 

the concentric rings emit unnecessary secondary optoacoustic signals that interact with the signal 

produced by the central lobe, reducing imaging lateral resolution. In optoacoustic microscopy, the 

Gruneisen relaxation effect [105] and blind deconvolution [106-107] have been used to suppress 

Bessel beam side lobes related artifacts. The blind deconvolution algorithm is also used here since 

it is a computationally efficient and cost-effective approach (see Fig 3.19). For both light patterns, 

the beam profile and relative peak irradiance were determined along the optical axis. The FWHM 

and relative peak irradiance of the Gaussian beam at 50 µm optical plane spacing intervals obtained 

around the optical axis over a ±300 µm axial range from the focal point as seen in Fig. 3.16(c). The 

maximum irradiance calculated at focus is used to normalize the peak 
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irradiance. We verified a minimum beam diameter of approximately 5 µm at focus for the 

Gaussian illumination and measured a depth-of-focus of 108 µm. The FWHM and relative peak 

irradiance of the Bessel beam central lobe at 1 mm optical plane spacing intervals obtained over 

an axial range of 12 mm traveling away from the axicon lens is seen in Fig. 3.16(d). During the 

Bessel beam evaluation, the approximate origin was set to approximately 6 mm from the axicon 

lens's surface. The diameter of the Bessel beam decreases with distance, averaging 5 µm over an 

8 mm span. The central lobe of the Bessel beam's relative irradiance increases with distance, 

approaching a peak at a relative location of 8 mm where the Bessel beam is fully formed. 

With our inverted OA microscope, we explored the effect of matching illumination and detection 

profiles on imaging performance using four distinct configurations of Gaussian and Bessel 

illumination and spherical and axicon transducer detectors (Fig. 3.17a). Intensity normalized MIP 

images of a tilted 7 µm-carbon fiber for all four illumination-detection setups are seen in Fig. 

3.17b. Paired with Gaussian illumination (Fig 3.17b(i-ii)), both spherical and axicon detection 

resolved the carbon fiber with an FWHM of 7 µm at the illumination focal point, thus detecting 

the fiber over a total axial distance (depth-of-focus) of approximately z = 225 µm. The carbon 

fiber was resolved at the point of peak optoacoustic strength with an FWHM of 7 μm using Bessel 

illumination and spherical detection (Fig 3.17b(iii)), while the tilted fiber was detected over the 

whole field-of-view of 6 mm x 0.128 mm. However, between y = 0 mm and y = 1 mm, and y = 4 

mm and y = 6 mm, the normalized optoacoustic intensity for the Bessel-spherical combination 

decreased dramatically, and the fiber was scarcely distinguishable. At y = 0.65 mm and y = 4.4 

mm, the normalized amplitude for the Bessel-spherical pair was roughly 13% of the normalized 

maximum value, while the equivalent imaging distance in that range was z = 1.98 mm. The 

spherical nature of the detector concentrates sensitivity at the focal point, resulting in a dramatic 

decrease in intensity away from the center of the image. Finally, the implementation of Bessel 

beam illumination and the axicon transducer (Fig. 3.17b(iv)) shows the tilted carbon fiber with 

increased signal-to-noise ratio over the entire depth of 3 mm (SNR). The optoacoustic intensity 

drops to 30% of the normalized maximum intensity at y = 0 mm and to 23% of the normalized 

maximum intensity at y = 6 mm when Bessel illumination and axicon detection are combined 

where the FWHM was 7 μm over almost the whole field-of-view. 
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Fig. 3.17: Optoacoustic microscopy of a tilted 7 µm-carbon fiber using different acoustic and illumination 

configurations. (a) Illustrations of the four optoacoustic microscopy configurations: (i) Gaussian beam – 

spherical transducer, (ii) Gaussian beam – axicon transducer, (iii) Bessel beam –spherical transducer, (iv) 

Bessel beam – axicon transducer. (b) Depictions of the normalized maximum intensity optoacoustic 

images. (c) Corresponding false-color depth maps displayed within the depth-of-focus and lateral 

resolution for each imaging configuration. 

 

We generated false-color depth maps from the MIP images in Fig(3.17b) to visualize the depth- 

of-focus and lateral resolutions for the four imaging setups (Fig 3.17c). The depth-of-focus was 

calculated by extracting the axial range where the normalized MIP is greater than 50%, and the 

lateral resolution was calculated as the FWHM through the carbon fiber for each imaging depth 

within the depth-of-focus. The Gaussian illumination resulted in a depth-of-focus of 75 μm, 
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regardless of whether the transducer was spherical (Fig. 3.17c(i)) or axicon (Fig. 3.17c(ii)). The 

depth-of-focus is increased by 9-fold to 662 μm when Bessel illumination is used in conjunction 

with the spherical transducer (Fig. 3.17c(iii)). As predicted, the depth-of-focus is maximized to 

1275 μm when Bessel illumination is combined with axicon detection (Fig. 3.17c(iv)). As 

compared to Bessel illumination with spherical detection, the paired Bessel illumination and 

axicon detection results in a doubling of the depth-of-focus and a 17-fold improvement in the 

depth-of-focus as compared to Gaussian illumination coupled with any of the transducers. 

We imaged a freshly excised mouse ear (Fig 3.15d) positioned on a tilted cover slit mounted within 

a customized 3D printed water tank at a height of 7 mm and an inclination angle of 41.2o to test 

the image quality of our proposed OA microscope setup in biological samples with irregular 

surfaces. The tilted mouse ear was imaged using all four optical illumination and acoustic detection 

configurations (scan speed: 2 mm/s, scan resolution: 1 µm x 10 µm, field-of-view: 8 mm x 5 mm). 

For Gaussian and Bessel beam illuminations, the pulsed energies were set to about 80 nJ and 8 µJ, 

respectively. The 3D and 2D top- and side-view maximal intensity projections obtained by imaging 

the titled mouse ear with a combination of Gaussian illumination and spherical detection are shown 

in Fig. (3.18a-c). The vasculature can be seen at over depth of about 700 µm. The Gaussian 

illumination with the axicon detector case Fig. (3.18d-f) yields comparable results, with vessels 

visible over a depth of 700 µm. Bessel illumination and spherical detection, on the other hand, 

enable visualization of vasculature to a depth of 2.8 mm (Fig. 3.18). (g-i). Finally, Bessel 

illumination combined with axicon identification exposes the entire vasculature of the mouse ear 

over a depth of 4.2 mm (Fig. 3.18). (j-l). The ability to see tiny vessels in the upper region of the 

scan, which would otherwise be hidden with any of the other setups, is allowed by the preservation 

of high resolution over the entire depth of the ear. 
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Figure. 3.18: Optoacoustic microscopy of a tilted mouse ear imaged with all four combinations of Gaussian 

or Bessel illumination and spherical or axicon transducers for detection. The sample was scanned using the 

same experimental configurations depicted in Fig. 3.17a(i-iv). 3D projections, 2D (top), and lateral (MIPs) 

of the mouse ear scanned with the following illumination/transducer combinations: (a-c) Gaussian- 

Spherical, (d-f) Gaussian-Axicon, (g-i) Bessel-Spherical, and (j-l) Bessel-Axicon. 
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To improve resolution and minimize background noise, the blind deconvolution algorithm in 

MATLAB was used to reduce image artifacts caused by the secondary side lobes of the Bessel 

illumination beam (Fig. 3.19). Figure 3.19a displays the raw MIP of the mouse ear collected using 

a combination of Bessel illumination and axicon detection. Deconvolving the initial image (Fig. 

3.19a) with the Bessel beam profile in Fig 3.16b yielded the deconvolved projection seen in Fig. 

3.19b. The position of the line profile calculation for the raw and deconvolved data, shown in Fig. 

3.19c, is shown by the dotted white lines in both Figs. 3.19a and 3.19b. After deconvolution, the 

line profiles display a 10% decrease in background signal, resulting in a 2.1 dB rise in SNR and 

an improvement in vessel width definition from 132 µm to 75 µm. 

 

 
 

Figure. 3.19: Deconvolution of an optoacoustic microscopy MIP image of the vasculature of a mouse ear 

from the combination of Bessel illumination and axicon detection. (a) The raw and (b) deconvolved MIP 

images. (c) A comparison of FWHM measurements between the raw and deconvolved images, showing an 

improvement in image resolution and reduction in background noise. 

Since Gaussian illumination restricts imaging depth within the Gaussian beam's Rayleigh 

spectrum, which can reach up to a few tens of microns to maintain high lateral resolution at the 

focal plane, current OA microscopy setups are sub-optimal for volumetric imaging or time- 

sensitive applications. We have introduced a new OA microscope configuration that enables 

detection over ultra-long depths of focus while maintaining high lateral resolution over many 

millimeters. We prove that combining Bessel illumination with optoacoustic axicon detection 

allows for one-order-of-magnitude increase in imaging depth-of-focus when compared to 

Gaussian illumination-based optoacoustic microscopy, and doubles the imaging depth-of-focus 

when compared to an unmatched combination of Bessel illumination and focused detection with a 

spherical transducer. 
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An optoacoustic microscope's depth-of-focus can be improved by integrating Bessel illumination 

with matched axicon detection without losing lateral resolution. Previous attempts to use Bessel 

illumination to improve depths-of-focus in optoacoustic microscopy [105-108] have been 

hindered using unfocused or spherical transducers for detections, which restrict SNR and 

sensitivity along the axial direction. On the other hand, Optoacoustic signal detection by optical 

interferometry with Bessel beam illumination is subject to strict beam path synchronization and 

atmosphere regulation since the difference between optical paths is vulnerable to vibrations and 

ambient temperature. Additionally, light sources and high-speed photodetectors are also needed, 

increasing device complexity and expense [109]. Here, we have shown a simple low-cost approach 

for increasing imaging depth of focus by combining the optical sensitivity profile Bessel beams 

with the thin cylindrical-acoustic response of our axicon transducers which offers a 17-fold higher 

depth of focus compared to Gaussian illumination combination with either spherical or axicon 

detection (Fig. 3.17c). The Bessel beam-axicon transducer setup allowed images of the entire 

vasculature network over a depth of 4.2 mm while imaging an excised tilted mouse ear (Fig 3.18j- 

l). Combining Bessel beam with a spherical transducer in contrast, restricted the field-of-view to 

66% of the ear vasculature (Fig. 3.18g-i), while Gaussian illumination with either detector limited 

the overall imaging depth to 700 µm and the field-of-view to 17% of the ear vasculature (Fig. 

3.18a-f). 

Although Bessel beam illumination allows for greater focal depth without compromising the inner 

lobe spot size, secondary lobes circling the inner lobe produce unnecessary optoacoustic signals, 

reducing the optoacoustic image's overall lateral resolution. By deconvolving the OA image with 

the point spread feature of the Bessel illumination, the lateral resolution in a Bessel beam-axicon 

transducer aligned OA microscope setup can be increased. We discovered that the Bessel beam's 

side lobes (Fig. 3.16b) emit secondary optoacoustic signals that interact with the signal produced 

by the inner lobe, reducing lateral resolution and contrast. Recent attempts to suppress Bessel 

beam side lobe artifacts include the nonlinear Gruneisen relaxation effect, blind deconvolution, or 

interferometric detection [105-108]. Though, the nonlinear Gruneisen method raises application 

cost and interferometric detection increases experimental difficulty. In response, we took a similar 

approach to Jiang, B., et al. [106] and used blind deconvolution to perform post-processing 

suppression of side lobes, which is computationally efficient and cost-effective. We deconvolved 

the obtained optoacoustic images using the Bessel beam's optical beam spatial profile (Fig. 3.16b) 

to boost resolution of a blood vessel (Fig. 3.19) by a factor of 1.7 and reduce background signal 

by 2.1 dB. 
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There are several benefits of using axicon acoustic detection for microscopy. For example, also 

when used in conjunction with Gaussian illumination, axicon detection allows an elongated 

acoustic sensitivity field in which the illumination can be positioned using a spatial light modulator 

(SLM) at various points along the axial direction. As a result, high-resolution volumetric imaging 

is feasible without adjusting the sample or imaging device mechanically. Combining Bessel 

illumination with axicon ultrasound detection provides three major benefits. To begin with, the 

setup is resistant to axial misalignment of the light profile, detector, and sample. The relative axial 

alignment can be coarse due to the extended overlapping span of the matched illumination and 

detection sensitivity resulting in small influence on image lateral resolution. Second, the improved 

depth-of-focus allows for high-resolution imaging of irregular objects, where Gaussian 

illumination and spherically focused detectors can only partially image superficial features. 

Therefore, OA imaging of full-body zebra fish [96,109], OA endomicroscopy [110,111], and OA 

flow cytometry [112,113] are all examples of volumetric imaging using Bessel illumination 

matched with axicon transducers in life sciences. Finally, since axial adjustment is not necessary, 

quick dynamic processes occurring in uneven surfaces or volumes can be imaged using OA 

microscopy [114,115]. 

The depth of imaging in optoacoustic microscopy can be expanded more by increasing the size of 

the axicon detector or eliminating the central transducer aperture, while the lateral resolution can 

be enhanced by reducing the size of the Bessel illumination central lobe by using an axicon lens 

with a greater physical angle. However, reducing the central lobe diameter of a Bessel beam limits 

the optical depth-of-focus of the beam [97,98]. Future research will concentrate on using the 

axicon detector's central aperture by developing an axicon probe that can be housed inside the 

transducer and thus allow reflection mode Bessel beam- axicon mode OA microscopy for in-vivo 

experiments. In addition, further studies will be performed to create a thin optical pencil beam 

with no secondary side lobes, eliminating the need for post-processing deconvolution. 

Furthermore, a built-in transducer pre-amplifier will be introduced to increase the axicon 

transducer's sensitivity and thereby improve image SNR. 
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Ultimately, we obtain unparalleled imaging depths of focus for optoacoustic microscopy while 

maintaining high lateral resolution by carefully matching Bessel illumination to a broadband 

axicon optoacoustic transducer. While lateral resolution remains a function of illumination spot 

size, we show that when using Gaussian beams, the depth-of-focus is limited by the illumination, 

but is otherwise limited by the ultrasound detection sensitivity field when using Bessel beams. As 

a result, our proposed design greatly decreases the trade-off between imaging depth and resolution, 

allowing us to achieve lateral resolutions of 7 µm with imaging depths greater than 4.2mm. The 

high lateral resolution and extended depth-of-focus provide fascinating possibilities for potential 

biological and clinical applications, such as deep microscopic molecular imaging of complete 

samples and tissues with uneven surfaces. 

 

 

3.7. Summary and discussion 

 
 

In this chapter, several benchtop PZT and LiNO3 optoacoustic endoscopy transducers were built 

with spherical and axicon directivity. The performance all transducers were assessed by 

designing an optoacoustic transducer characterization rig to determine each sensors lateral/axial 

resolution, depth of focus, relative sensitivity, focal point, and divergence angles by scanning 

around a broadband omnidirectional point source. Planar LiNO3 active element transducers with 

glass lenses shaped to achieve directivity delivered superior performance compared to the PZT 

based transducers where the active elements were directly shaped to achieve directivity. The 

axicon transducer exhibiting a thin elongated sensitivity beam useful for endoscopy to retain high 

lateral resolution over an extended imaging depth when compared against the spherical detector 

of similar size. 

 
 

To evaluate the increase in imaging depth with high lateral resolution a raster scanning 

optoacoustic mesoscope was developed to image a tilted 100µm suture with a tilted angle of 15.5° 

with each LiNO3 transducer. The spherical transducer was able to correctly resolve the 100µm 

suture at focus with lateral resolution reducing as the acoustic source moves away from the focus. 

The axicon transducer surprisingly generated a blurred image of the suture with a full width half 

maximum value of 400µm. 

To explain the discrepancy in lateral resolution of the axicon transducer between the 

characterization and imaging results. A meticulous 3D kwave study was performed to simulate 
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the spherical and axicon transducers built and mimic the characterization and imaging 

experiments. A point source and line source were generated and scanned in 3D with both 

transducers to mimic the broadband omnidirectional source in the characterization rig and the 

100µm suture in the imaging experiment. The simulated spherical transducer was able to correctly 

resolve the point and line at focus whereas the axicon was able to correctly resolve the point and 

unable to resolve the line source. This is due to strong low frequency ultrasound sensitivities 

outside the axicon focal region, therefore detecting acoustic signal off-axis perpendicular to the 

direction of the scan. Therefore, the axicons lateral resolution is a function of both the illumination 

employed and the type of generated optoacoustic wave geometry namely spherical (point) or 

cylindrical (line). Consequently the axicon is not suitable for imaging the vasculature in the 

esophagus. As an alternative, axicon transducers could be employed with a narrow Bessel beam 

in optoacoustic microscopy to exploit the axicon beams pencil beam sensitivity profile achieved 

when scanning the point source. 

Hence, an optoacoustic microscope was built to evaluate the imaging capabilities of the axicon 

transducer. By matching Bessel beam illumination with the axicon transducers thin pencil beam 

we demonstrated a 17x increase in imaging depth of focus when compared to the standard gaussian 

illumination and spherical detection configuration. The proposed Bessel-axicon configuration 

reduced the compromise between high lateral resolutions and imaging depth of focus. 

Accordingly, the matched sensitivity line profile of the Bessel-axicon paves the way towards a 

number of new applications in the field of optoacoustic microscopy. 

 
Overall, we found the axicon transducer developed is not well suited for endoscopic applications 

because the sensors spatial resolution is a function of the acoustic source under investigation. 

When imaging sutures mimicking bloods vessels, the axicon transducer produced blurry images 

whereas the spherical transducer was able to correctly resolve them at focus. Hence, the spherical 

transducer was selected to be further enhanced into a friendlier enclosure for optoacoustic 

endoscopy and alternatively the axicon elongated foci was exploited in optoacoustic microscopy 
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Chapter 4 Hybrid OCT-OA endoscope design concepts 

 
In this chapter design concepts for the hybrid OA-OCT capsule endoscope are proposed. 

Advantages and disadvantages of each design element including forward vs side viewing probes, 

proximal vs distal scanning, balloon vs capsule interface and common mode vs split mode imaging 

are articulated. The design concepts favoring video rate hybrid acquisition with a small endoscopic 

form factor are elected to the integrated into the final design. 

 
 

4.1. Forward vs side viewing probes 

Forward viewing probes are either raster or spiral scanned depending on the actuator (Fig 4.1b); 

this technique provides high magnification with a small field of view. In side view 

configuration, the probe is deployed in radial scanning mode (Fig 4.1a), where the sensor rotates 

over 360º to capture a 2D B-scan image in cylindrical coordinates. Helical scans are achieved 

with a pullback/push forward mechanism to capture a 3D volumetric C-scan. For imaging the 

esophageal lumen, where relatively large image coverage is required, the side viewing 

configuration is favored for our design. 

Fig. 4.1. Endoscopic operating principle for scanning: (a) side-viewing configuration rotates the light 

with longitudinal pullback to generate a series of radial images for three-dimensional reconstructions. 

(b) forward-viewing configuration scans the light in two-dimensions to achieve volumetric imaging. 

Retrieved from [116] 
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4.2. Proximal vs distal scanning 

 
Proximal and distal scanning probe configurations are depicted in Figure 4.2. Proximal rotation 

is transmitted via a long torque cable to the distal imaging optics which limits speed and scanning 

uniformity. During operation, fiber stress induced distortion due to bending of the torque coil 

results in index variations within a rotating fiber resulting in image artifacts. A further 

disadvantage is the need for a fiber-optic rotary joint coupling OCT and OA wavelengths 

simultaneously, which reduces overall coupling efficiency and increases system complexity. 

Placing distal motors at the end tip of the probe imposes a reduction in the field of view due to 

driving cables crossing over the imaging plane. For these reasons, the distal-base scanning concept 

is favored to provide stable high speed rotational scanning with 3600 field of view. Although a 

hollow shaft motor is required to guide the grin probe through the shaft from the proximal to the 

distal end. In addition, the hollow shaft motor will need to support the load of the transducer during 

rotation. 

 

 
Figure. 4.2. Side viewing endoscopic probe proximal and distal scanning concepts: (a) proximal scanning 

concept without motor inside capsule. (b) Distal base scanning endoscope with motor situated at the 

proximal end of the probe. (c) Distal tip scanning enoscope with motor fixed at the tip of the probe. 

 

 

4.3. Balloon vs capsule endoscope interface 

The interface between endoscope and biological tissue is crucial, for optoacoustics where good 

contact is essential to maximize acoustic coupling transmission. Figure 4.3 illustrates two 

possible probe to tissue interface concepts. A water inflatable balloon sleeve allows the probe to 

make precise contact with the irregular esophageal lumen shape whereas a rigid capsule cover is 

designed to slightly stretch the esophageal wall. 

 
The flexibility of the balloon provides the endoscopist more control to ensure contact with 

respect to the esophagus wall. Nevertheless, the balloon may also collide with rotating parts 
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within the capsule, particularly when the balloon is forced to be contracted by the esophagus. A 

mechanism will be required to prevent this such as applying a constant pressure to ensure 

minimal distension, but this could become too rigid for the tissue. This raises concerns as 

inflating the balloon within the esophagus can cause discomfort in patients. In addition to 

pressure monitoring an additional mechanism will be required to control the water level within 

the balloon. These components increase device complexity and steer towards increased probe 

size. 

 
Rigid OCT capsules on the contrary as described in 2.2.4 have been deployed in several in-vivo 

clinical trials delivering distortion free high-resolution cross-sectional images of the esophagus. 

The Rigid capsule concept offers a more user-friendly assembly procedure and has been proven 

to provide high-quality optical images. During early stage testing a rigid capsule also provides 

a more straightforward interchangeable interface without technical assistance, thereby hastening 

overall development through iterative experimentation. Hence, a rigid capsule cover is favored 

over the balloon, though should experimentation reveal the profound need for a balloon sleeve the 

design could be adapted accordingly. 

 

 

Figure 4.3: probe to tissue interface designs. (a) an inflatable balloon interface design concept (b) a 

rigid capsule cover concept. 
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4.4. Common path vs split path imaging 

 
For the hybrid endoscopic imaging modality, we had two options to realize simultaneous dual- 

mode imaging. As shown in Figure 4.4, the first option would be a common-path design, where 

OCT and OA share identical optical components. The other option would be a split-path design, 

which means OCT and OA will use different optical components, with an additional motor 

specifically designed for OCT inside the probe. The benefit of the split-design is the freedom to 

realize very high-speed OCT imaging with dense sampling of the esophagus, while OA can run at 

an A-scan rate of several KHz or tens of KHz. However, the added motor also encompasses that 

the split-design cannot realize full 360-degree side imaging, as the motor wire will inevitably block 

a part of the light to the esophagus. Therefore, the common-path design, which is simpler in 

structure, is taken as the design scheme for the endoscopic probe 

 

 
 

Fig. 4.4: (a) Common path hybrid OCT-OA optical setup imaging the same target simultaneously (b) 

Split path hybrid OCT-OA imaging optical setup, a dichroic mirror splits the excitation beams into 

separate paths. 
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4.5. Summary 

Several endoscopy design concepts were introduced in this chapter with pros and cons discussed. 

The best concepts were elected to lay the foundation of the hybrid endoscopes composition 

consisting of a side viewing capsule based common path endoscope with rotation performed at the 

distal base of the probe. 
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Chapter 5 Optical architecture for OCT-OA endoscopy 

OCT requires focusing of the light on the esophagus whereas OA requires diffused illumination 

to allow photons to penetrate deeper into tissue and thereby increase the OA imaging penetration 

depth. At the same time, the maximum optical energy employed restricting SNR is a function of 

the interrogation spot size, imaging frame rate and repetition rate of the laser source. In this chapter 

a custom made double clad fiber coupler (DCFC) combining OCT-OA into a single fiber is 

introduced. The backend optical architectures incorporating the DCFC for OA and OCT are 

discussed in single mode operation followed by hybrid mode. The optics on tip are designed in 

ZEMAX and the maximum permissible energy’s based on the OA interrogation spot size are 

determined following the ANSI laser safety standards. 

 
5.1. Double clad fiber coupling 

 
To combine OCT and OA beams a custom double clad fiber coupler (DC1060LJFA) was 

developed by Castor Optics. This approach offers a 4 µm fiber core with single-mode operation 

for NIR (near-infrared) wavelengths used in OCT while the 105 µm inner fiber clad can be used 

to transmit the visible pulsed wavelengths for optoacoustics. The specifications of this fiber are 

depicted in Figure 5.1. OCT Light in the single mode core of the double-clad fiber (Port A) is 

guided through the coupler with virtually no loss (≤0.5 dB). Optoacoustic pulses are injected into 

the multimode fiber of the DCF (Port J) with ≥75% transfer. The DCF at Port S guides both 

wavelengths to the hybrid endoscope. Port R could be used for Optoacoustic pulse to pulse 

energy correction although this was not performed during the course of this work. 
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Figure 5.1: Specifications of custom made double clad fiber coupler (DC1060LJFA) 

 
 

The transmission efficiency from Port J to S is valid between 400nm to 1600nm except for the 

water absorption region centered at 1383nm. Over 1600nm the performance slowly drops. This 

characteristic is advantageous for multispectral optoacoustic imaging, where several light sources 

of different wavelengths could be coupled into the the same fiber. Another favourable optoacoustic 

feature is the 105 µm multimodal core diameter, this suggest that during fiber coupling the spot 

size at focus can be on the order of several tens of microns. A larger spot size reduces the likelihood 

of burning the fiber, especially at high pulse repetition rates. 

 
Single mode wavelength operating range within the fiber core is 960-1260nm. OCT light sources 

within this wavelength region are readily available at 1060nm, this is because there is a local 

minimum with respect to the absorption of water as depicted in figure 2.4. Furthermore, water will 

be present in the optical beam path employed as the main acoustic coupling medium for 

optoacoustics. To reduce optical attenuation of water within the beam path for OCT, a 1060nm 

light source is promoted for our endoscope. 
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5.2. OA Optical back-end console setup 

The optoacoustic optical back-end console setup is illustrated in figure 5.2 consists of a ns-pulse 

width, 532nm Q-Switched DPSS laser with an operating repetition rate in the range of 1-100kHz 

(ONDA, Bright Solutions, Italy). The energy per pulse was regulated by means of a polarizing 

beam splitter and a beam dump. A 90:10 beam splitter was employed to divert 10% of the light 

towards a photodetector for triggering. The remaining 90% of light was coupled into port S of the 

double clad fiber coupler to guide the optical beam to the endoscope. Fiber coupling is performed 

by focusing the 2.2mm collimated laser beam output from the laser with a 60mm Thorlabs 

achromatic doublet lens (AC254-060-A-ML) to a spot size of 18.5µm, a factor of 5.6 smaller than 

the inner DCFC fiber cladding. The optoacoustic signals measured during rotational scanning were 

pre-amplified externally with an 30dB amplifier (Sonaxis SA, France) and connected to a T- bias 

(ZFBT-4R2GW+, Mini-Circuits) prior to data acquisition. Both optoacoustic and photodetector 

signals were acquired by a dual channel integrated ATS9373 DAQ card (AlazarTech, Canada) 

controlled by LabView and data analyzed in MATLAB. 

 

Figure 5.2: Optoacoustic optical back-end setup. PBS: polarizing beam splitter, BS: beam splitter, BD: 

beam dump, PD: photodiode, DFCF: double clad fiber coupler 

 

 

5.3. OCT Optical back-end console setup 

 
A swept source laser from insight photonic solutions inc with a central wavelength of 1060nm at 

a tunable A-line rate in the range from 85 kHz to 650 kHz was selected for OCT imaging. The 

insight laser is based on the vernier tuning effect to sweep the wavelength and uses akinetic 

technology to obtain precise electronic control of the spectral laser output over time. The OCT 
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setup is depicted in figure 5.3 where the sample arm consists of a 90:10 fiber spliced to Port A of 

the DCFC with almost no loss. The reference arm consists of a free space collimator and DCFC 

for dispersion and length matching. Back scattered light from the sample arm and reference arm 

are combined via 50:50 couplers prior to interferometric detection using a high-performance 

balanced photodetector by Insight solutions. 

 
The detector consists of two balanced photodiodes and an ultra-low-noise, high-speed 

transimpedance amplifier. Matching the two photodiodes results in an excellent common mode 

rejection ratio (CMRR), leading to better noise reduction. The detector outputs include a balanced 

RF-output from the transimpedance amplifier, and the Monitor+ and Monitor- ports allow the 

response of each photodiode to be observed individually to verify performance of each leg 

independently. The RF output is connected to a single channel of an integrated ATS9373 DAQ 

card (AlazarTech, Canada) acquired by LabView and post processed in MATLAB to generate 

OCT A-lines. 

 
During wavelength sweeping, for each sweep, the laser generates a short electrical pulse termed 

the sweep trigger which is connected to the external trigger port of the ATS9373 card. The swept 

source laser also sends out sample clock signals where each pulse represents a change of the swept 

wavelength. To ensure sample acquisition from the photodetector is performed at the correct time 

point, synchronized with the change of wavelength, the sample clock signal from the OCT laser 

is provided to the DAQs external clock input. However, for the Insight laser, during a wavelength 

sweep, not every sample clock corresponds to a valid wavelength. Therefore, the laser sends a data 

validity flag to the computer. Thus, during a sweep, only sampled data corresponding to valid 

wavelengths are kept for OCT data processing. 

Figure 5.3: OCT optical back-end setup. PBS: polarizing beam splitter, BS: beam splitter, BD: beam dump, 

PD: photodiode, DFCF: double clad fiber coupler, DBD: Dual balanced detector 
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5.4. Multimodal back-end console optical setup 

 
The multimodal configuration is presented in figure 5.4 comprises of the same optical elements 

utilized in standalone operation. In regard to data acquisition, the main difference here is that 

hybrid triggering is based on the master-slave laser configuration. As the repetition rate of the 

OCT SS laser is higher than the of the OA laser, in this approach, the OCT laser triggers the OA 

laser by means of an electronic pulse divider (Model: PRL-220A, Pulse research lab, USA). Two 

signals are derived from the OCT laser, namely the clock and the A-line sweep signal. The OCT 

clock is configured as the sampling clock rate input for the DAQ card, whereas the frequency of 

the sweep line signal is divided by a multiple number with an external divider to drive the OA 

laser and trigger the DAQ card for hybrid acquisition. DAQ channel A is dedicated to read the 

photodiode signal from the OCT sensor whereas channel B reads the OA transducer signal. The 

advantage of this configuration is that standalone or hybrid operation is permitted without 

adjustment of the optical setup. Therefore, future incremental improvements of each modalities 

optical setup will not interfere with the others. The OA trigger photodiode used during single mode 

operation is this instance is left unconnected. 

Figure 5.4: Multimodal back-end setup. PBS: polarizing beam splitter, BS: beam splitter, BD: beam dump, 

DFCF: double clad fiber coupler, BPD: Balanced photodiode. 
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5.5. Multimodal distal capsule optical setup 
 

 

To achieve high resolution superficial OCT imaging a focused beam interrogating tissue is 

required whereas diffuse illumination with OA is necessary to permit deeper tissue imaging. A 

single lens solution conditioning each beam delivered via the double clad fiber was favored to 

simplify the manufacturing and testing of the hybrid endoscope. The lens would be optimized to 

focus the 1060nm OCT wavelength on the tissue sample and in consequence the lens chromatic 

aberration at the optoacoustic wavelength of 532nm would result in diffuse illumination on the 

sample. In addition to the lens, the multimodal front end optical setup consisted of a mirror to re- 

directing light towards the esophagus wall, a sealing window to prevent the acoustic coupling 

medium from leaking inside the transducer and the optical capsule cover. 

 

5.5.1 Optics on tip arrangement 

The optics on tip configuration is presented in figure 5.5. The input OCT-OA optical beams from 

the double clad fiber are conditioned to focus the OCT light just below the esophageal tissue surface 

and in return the optoacoustic beams wavelength would experience chromatic aberration shifting 

the optical focus between the capsule cover and sealing window. As a result, diffuse optoacoustic 

illumination would interrogate the esophageal tissue. A 45° mirror redirects the illumination 

coming from the lens towards the esophageal wall and travels through a planar sealing window 

installed to prevent the acoustic coupling medium from leaking inside. Both illumination beams 

travel through the acoustic coupling medium and capsule cover before interrogating the 

esophageal tissue surface. 

Figure 5.5: Optics on tip endoscope configuration 
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To minimize optical attenuation of OCT light through the acoustic coupling medium heavy water 

which has lower absorption than water at 1060nm is selected to be employed. Aiming to design 

the beam conditioning lens, all the optical properties of the elements within the beam path between 

lens and esophageal tissue had to be first determined. 

 
 

5.5.2 Capsule cover and sealing window material 

 
Several different transparent and biocompatible materials were explored to determine the best 

material to utilize for the capsule cover and sealing window. Important characteristics included 

maximum OA and OCT light transmission as well as minimal acoustic attenuation. Table 5.1 

highlights the various materials acoustic and optical properties tested at the wavelengths and 

acoustic frequencies of interest. PMMA SG7 Altuglas offered the highest optical transmission 

efficiency and lowest ultrasound attenuation at 50 and 100MHz frequencies. Therefore, PMMA 

SG7 was elected to manufacture the capsule cover and sealing window. 

Table 5.1 Optical and ultrasound transmission efficiencies measured with several optical materials. Fields 

highlighted in red show low performance whereas fields highlighted in green show the best material 

satisfying the optical and acoustic requirements. 

 

 

5.5.3 Optics on tip optomechanical simulation and conceptualization 

 
Owing to the complexity of the optical system in figure 5.5 fashioning the OCT and OA beams 

simultaneous with a single lens is challenging. We decided to design the optical system on Optic 

Studio developed by Zemax. Optic Studio provides a set of 3D optical space analysis, 

optimization, and simulation tools to design optical probes. Furthermore, the software offers 

seamless integration to CAD software’s and is readily utilized by several lens manufactures; hence 

design files could simply be set to manufacture the probe. To design the beam conditioning lens, 

the setup in figure 5.5 was generated with arbitrary thicknesses and diameters in Optic studio. The 
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OCT beam coming from the single mode core of the double clad fiber was modelled following 

gaussian beam optics and the OA beam arriving from the multi-mode inner core of the double clad 

fiber was modelled using ray optics. The materials refractive indices and absorption coefficients 

were taken into account to correctly simulate the optical beam propagation. The main requirement 

of the lens was to focus the OCT beam just below the tissue surface. Two main parameters 

including the distance between the redirecting mirror to esophageal tissue and spot size of the 

interrogation OCT beam at focus had to be defined in Optics studio’s merit function editor before 

optimization of the optical system could commence. Here, we set an OCT target spot size of 20µm 

spot size to match the lateral resolution of the optoacoustic transducer as defined in table 3 and we 

define the distance between directing mirror to esophagus to be 8mm. This fixed distance 

parameter defines the capsule diameter to be 16mm. Although this diameter is larger than the 

desired <13mm diameter listed in table 3, sourcing of components with a slightly larger capsule 

was more straightforward thereby accelerating developing. Hence, the first endoscopic prototype 

built would concentrate towards troubleshooting technical problems experienced with a slightly 

larger capsule to hasten the development of the probe with future developments focused towards 

miniaturization. 

 
Following optical system optimization on Optic studio with capsule diameter and OCT spot size 

defined two unique solutions are presented in figure 5.6. The first solution employs a grin lens to 

focus the incoming OCT-OA beams as illustrated in figure 5.6a and the second solution performs 

focusing with a micro lens. The green beams represent the 532nm pulse OA illumination 

 

Figure 5.6 Optics on tip simulation solution with a (a) grin lens and (b) micro lens. The tables list the 

thicknesses, materials, and radius of curvatures of the elements within each setup. The simulated green 

beam is the optical beam evolution of the multimodal OA 532nm light exiting the inner cladding of the DCF 

starting at position plane 0. 
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The simulated OCT spot size was measured 500µm inside esophageal tissue and OA spot size is 

measured at the boundary between PMMA capsule cover and esophageal tissue (at surface 9). 

These simulations laid the foundation to generate opto-mechanical schematics for the sealing 

window, mirror and capsule cover within the beam path. The optical elements were designed with 

semi-diameters to satisfy both solutions in figure 5.6 and thereby allow for interchanging the 

micro/grin lens optical design probes. 

 
Figure 5.7 illustrates a drawing of the sealing window which is required to prevent water leaking 

into the central transducer aperture used to guide OA and OCT light. The optical sealing window 

was manufactured with PMMA altuglas SG7’s, due to its excellent optical transmission efficiency 

as presented in table 6. To suppress specular reflections affecting OCT, the window at the air- 

glass interface was to be coated with an anti-reflective coating at 1060nm and 532nm. The window 

would therefore be optically transparent for the OCT-OA illumination wavelengths. 

 
 

 
Figure 5.7: Drawing of the optical sealing window to be installed inside the transducer central aperture 

 

 
Decoupling the rotation from the fiber-optic delivery system is achieved with a 45° integrated 

mirror inside the endoscopic transducer. The mirror deflects the OCT and OA through the central 

aperture of the transducer, effectively performing the rotation coupling at the distal end of the 

probe, inside the capsule. Figure 5.8 shows the designed 45° mirror which is silver coated with 

reflectivity ≥ 95% for optimal reflection at the OCT and OA wavelengths. 
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Figure 5.8: silver coated 45° mirror designed to be integrated inside the endoscopic transducer 

 
Providing a protective barrier between esophageal tissue and the transducer during imaging, figure 

5.9 presents the PMMA capsule cover with thickness 250µm following the simulations in figure 

5.6. A Fiducial marker with a thickness of 70µm was embedded on the internal capsule surface 

to compensate for rotational motor instability during imaging. 

Figure 5.9: PMMA capsule cover with 70µm fiducial line marker to compensate for rotational motor 

instability 

To visualize the optical system integrated with all components inside a spherical transducer, figure 

5.10 represents a conceptual render of the optical system employing the grin lens solution. 
 

Figure 5.10: Conceptual render of front- e n d optical system integrated inside a spherical transducer to 

perform OCT-OA imaging 
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With the interrogation beam spot sizes defined in figure 5.6 we can now define the maximum 

permission energy when imaging the human esophagus as a function pulse repetition rate and 

Bscan frame rate. 

 
 

5.5.4 Optoacoustic endoscopy maximum permissible exposures 

 
In GI tract endoscopy OCT relies on the detection of scattered radiation between the layers of 

esophageal lining whereas optoacoustics signals are generated via the absorption of optical energy 

of the microvasculature. Thermal damage of the esophageal lining occurs should the 

microvasculature absorb a considerable amount optical energy. To define this limit, we referred 

to the maximum permissible exposures which are a set of maximum laser energy values to which 

the eye or skin may be exposed without effects or injury occurring in normal circumstances. The 

levels have been established in standard ANSI Z136.1 for wavelengths and exposure durations in 

the eye or skin. Due to a lack of scientific data on laser safety level on esophageal tissue, we base 

our safety requirements on laser radiation of human skin, although we understand that the MPE of 

esophageal tissue might be lower than that of the skin. 

 
 

For repetitively pulsed lasers the MPE is always the smallest MPE value determined by the 

application of the ANSI Rules 1 and 2 [ ANSI Std. Z136.1-2000 (8.2.3.2)] applied over the area 

of the limiting aperture of 3.5 mm for skin imaging . 

 

 
 

𝑀𝑃𝐸 = min[𝑀𝑃𝐸𝑟𝑢𝑙𝑒1, 𝑀𝑃𝐸𝑟𝑢𝑙𝑒2] 
(5.1) 

 

Each of the MPE rules are defined as follows: 

 
MPE Rule 1 (Single Pulse): No single pulse in a train of pulses shall exceed the MPE for a single 

pulse of the same pulse duration. For laser pulse duration of 1ns to 100 ns the single pulse radiant 

exposure over the wavelength of 400-700nm is 20 mJ/cm2. Our laser has pulse duration of 1 ns 

with an operating wavelength of 532nm. 

 
 

𝑚𝐽 
𝑀𝑃𝐸𝑟𝑢𝑙𝑒1 = 20 

𝑐𝑚2 
 

(5.2) 
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MPE Rule 2 (Average Power): The average MPE per pulse distributed over a number of laser 

pulses (N) over the exposure time(t) is given by: 

 
 

𝑀𝑃𝐸𝑇 
𝑀𝑃𝐸𝑟𝑢𝑙𝑒2 = 

𝑁 
 

(5.3) 

 

Where N is the number of pulses during the exposure period given by the product of the pulse 

repetition rate(PRR) and exposure time (t) and the 𝑀𝑃𝐸𝑇 radiant exposure for an exposure time 

between 100 ns to 10 s over the wavelength range of 400-700nm from the ANSI safety table is 

given by: 

 

 

𝑀𝑃𝐸𝑇 = 1.1 ∗ 104𝑡0.25𝐽/𝑚2 = 1.1 ∗ 𝑡0.25𝐽/𝑐𝑚2 
(5.4) 

 

 

Therefore, the average MPE per pulse distribution as a function of PRR and exposure time t is 

given as follows: 

 

 
1.1 ∗ 𝑡0.25 

𝑀𝑃𝐸𝑟𝑢𝑙𝑒2 = 𝐽/𝑐𝑚2 
𝐼𝑛𝑡(𝑃𝑅𝑅 ∗ 𝑡) 

 
(5.5) 

 

 

 

Note: the number of pulses in an exposure is always considered as an integer for laser hazard 

evaluations. The exposure time interrogating the same sample location is a function of the laser 

spot size at the capsule window interface, in our case we apply the limited aperture for skin 

imaging with a diameter of 3.5 mm. 

 
Applying the MPE rules on the optical systems depicted in figure 5.6 at arbitrary rotational speeds 

30Hz and 50Hz at pulse repetition rates 50 kHz and 100 kHz we obtain table 5.2. Applying the 

limited aperture for skin with a diameter of 3.5 mm the MPE limits for both optical systems will 

be the same because there interrogation spot sizes are less than 3.5mm. The most restricted MPE 

is 1.04mJ/cm2 at the highest repetition rate (100kHz) , lowest speed ( 30Hz ). Alternatively, the 

least restricted MPE is 3.05 mJ/cm2 at the lowest repetition rate (50 kHz), highest speed (50 Hz) . 

For esophageal imaging a high frame rate is desirably to rapidly scan the full gastrointestinal tract 

and high repetition is necessary to provide high resolution imaging. However, at the same time 

with a fixed interrogation spot size the MPE becomes more restricted. Ultimately the SNR of the 
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endoscope determines the maximum operating frame rate and repetition rate to obtain 

optoacoustic images with acceptable contrast and sufficient penetration depth without exploiting 

the MPE. 

Table 5.2. Optoacoustic endoscopy MPE limits for grin and microlens optics on tip systems at frame rates 

30, 50 Hz and pulse repetition rates of 50, 100 kHz at wavelength 532nm and pulse width 1ns. 

 

 

5.5.5 Optical probe manufacturing 

 
Opto-mechanical probe assembly drawings presented in figure 5.11 were sent to several optical 

manufactures to query for production costs. Grintech was selected to manufacture the grin lens 

design without any changes required to the original design introduced in figure 5.6. The micro 

lens solution was unfortunately too difficult to realize following feedback from several 

manufacturers. Therefore, the microlens design was abandoned and all efforts focused on the 

adoption of the grin lens solution for the endoscope. 
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Figure 5.11: Optomechanics of the optics on tip lens solution for OCT and OA endoscopy (a) The grin lens 

probe schematic (b) The micro lens probe schematic. 

 

 

5.6. Summary and discussion 

 
The hybrid optical system for hybrid OCT-OA endoscopy was presented in this chapter. A 

custom made double clad fiber coupler was designed to simplify the hybrid system by guiding 

OCT and OA light through a single fiber. This robust system allows for single modality or 

multimodality imaging without adjusting the optics and incremental improvements in one 

modality will not interfere the back end optical setup of the other modality. For example, the 

532nm optoacoustic back end optical setup could be extended to include multiple lasers to 

perform multispectral optoacoustic endoscopy without interfering the OCT back-end setup. 

Both modalities were synchronized by following the master-slave configuration where the OCT 
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laser was the master and the OA laser the slave. 

 
 

To design the front-end optical setup, several materials transmission properties at the optical 

and acoustic wavelengths of interest were analyzed, PMMA SG7 offered the lowest optical and 

acoustic attenuation and was therefore selected when manufacturing optical elements used in 

the front-end configuration. Two concepts of the front-end optical setup were simulated on 

Optic studio, one including a grin lens and the other a micro lens. Each system was designed by 

optimizing the lens shape and size to focus the OCT beam just below the esophagus wall 

surface. Subsequently the OA beam was focused inside the endoscope because of chromatic 

aberration experienced by the lens. Hence the OA beam spot interrogating tissue is diffused to 

permit photons to travel deeper into tissue and increase the optoacoustic imaging depth. 

Although when attempting to reach out to manufactures to produce the designs, we discovered 

the micro lens solutions was too difficult to realize and therefore all efforts were focused on the 

grin lens solution. 

 
From the Optic studio simulations, we determine the MPE values for each system for 

optoacoustic endoscopy derived from ANSI Std. Z136.1-2000 (8.2.3.2)]. The impact of 

interrogation spot size, scanning speed and repetition rate on the MPE limit was discussed. The 

methodology presented here provides a workflow to accelerate development towards the final 

device. Opto-mechanical system behavior was simulated to meet project requirements and 

define the MPE limit. The same process could be extended to microscopic, linear scanning or 

tomographic applications. The MPE limit could then be used as justification to purchase the 

correct laser operating at a specific repetition rate or alternatively a scanner running at a 

predetermined speed. Notably as the MPE limit reduces optical interrogation pulse energy and 

the optoacoustic systems overall sensitivity must proportionally increase to retain contrast and 

penetration depth over several mm’s. 
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Chapter 6 Hybrid OCT-OA endoscopy prototypes 
 

Imaging the human esophageal tract with an OCT-OA endoscope requires (a) synchronous high 

speed imaging frame rates with sufficient SNR to avoid motion artifacts, (b) co-registered large 

field of views to expedite the screening procedure, (c) careful design of a broadband endoscopic 

transducer for OA and an optical interrogation/collection probe for OCT, (d) suitable materials, 

mechanics, coupling medium and wavelengths for optical (OCT) and acoustic (OA) index 

matching, and (e) proper probe form factor to ease swallowing and maintaining optimal contact 

between the endoscope and esophageal circumference. In this chapter two prototypes named the 

16mm semicapsule and 12.5mm partial capsule are presented. Both prototypes achieved 360º 

video rate imaging speeds upto 50Hz (semicapsule) and 30Hz (partial capsule) by integrating 

low friction miniature slip rings into the transducer casing, allowing the positioning of a hollow 

shaft motor at the proximal end of the endoscope tip and preventing obstruction from driving 

cables over the field of view. 

 
The 16mm semicapsule built operated only in optoacoustic imaging mode because of an internal 

OCT back reflection reducing SNR which occurred within the grin lens designed. We 

characterized the optoacoustic semi capsule’s lateral resolution at 50Hz Bscan rate by imaging a 

phantom consisting of twelve 100 µm sutures arranged in an Archimedean spiral with a pitch of 

3 mm, and demonstrated a volumetric pullback spiral scan of 1790mm3 at 0.24Hz. To simulate 

scattering of light in esophageal tissue, the acoustic coupling medium of water was replaced with 

various concentrations of an intralipid solution to determine an estimated penetration depth of 

~0.84mm in the human esophagus and validated our findings ex-vivo pig esophagus. Our results 

demonstrate proof-of-principle translational potential of optoacoustic endoscopy for delivering 3D 

functional information at video rate of the human esophagus. 

 
Subsequently a partial capsule was built with a reduced diameter of 12.5mm to ease swallowing 

and the grin lens modified to suppress the internal OCT back reflection. With these changes made, 

we presented for the first time a 12.5 mm, 3600, 30 Hz-frame rate, synchronous hybrid OCT – OA 

capsule endoscope designed for imaging the human esophageal tract. We demonstrate the ability 

to acquire high resolution 3D synchronous OCT-OA helical scans at video rate in phantoms and ex- 

vivo pig esophageal tissue and human mucosal tissue. 
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6.1. Endoscopic transducers with slip rings 
 

In view of the quality of lithium niobate technology as discussed in chapter 3, we decided to use 

the glass lens technology with spherical directivity for the endoscopic transducers. The initial 

endoscopic probe (HFM38) designed for a 16 mm semicapsule prototype is illustrated in figure 

6.1. The transducer houses a 45º mirror to redirect the excitation beam towards the esophageal 

wall and a PMMA window to prevent water leaking inside the sensor. A spherical glass lens with a 

focal length of 6 mm is mounted on the LiNO3 substrate. A preamplifier could also be integrated 

inside the casing to improve SNR, although at present acoustic measurements made were 

externally as the preamp circuit required further miniaturization to be integrated inside. To enable 

high speed rotation two precision copper slip ring joints installed on the transducers shaft couple, 

the electrical broadband signal measured by the transducer. 

 

Figure 6.1: (a) Schematic and photo of the 16mm semicapsule endoscopic transducer (HFM38) 

 
 

The slip ring coupling configuration is depicted in figure 6.2. When the rings are spinning, the 

pins maintain electrical connection. To minimize friction induced electrical noise during rotation, 

the rings are covered with a 5µm- thick gold layer. Two pins are in contact with each ring, making 

four V contact points per pole, thereby reducing the risk of losing the electrical contact during 

rotation. To further support electrical contact between the rings and pins, a brass casing around 

the joint ensures the pins are unable to stretch outwards. The brass enclosure is also grounded to 

the coaxial cable transmitting optoacosutics signals to reduce electromagnetic interference. 
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Figure 6.2: Transducer slip ring coupling configuration 

 

 
 

6.2. 16mm Semi capsule prototype 
 

Following the manufacturing of the grin lens design in 5.11a, we tested OCT and OA beam 

characteristics in air as shown figure 6.3. To verify the accurate realization of the lens with correct 

optical focusing ability, the back focal length was measured by moving the Grin lens mounted on 

a translation stage to the point where maximal back reflected light from the mirror is achieved. 

The back focal length was measured as 8.07 mm in air. This is again in agreement with the designed 

value of 8.10 mm in air in Zemax. Alternatively, the spot sizes at the OCT beam focus were 

measured with a 5µm resolution CCD. The OCT beam was found to be 19.6µm and the OA beam 

being 500µm as expected following the simulation from figure 5.6. During these experiment a 

strong OCT back-reflection was found from the GRIN lens itself. A comparison of OCT A-scans 

using a normal free space lens and the design GRIN lens is shown in Figure 6.3a. The back- 

reflection from the GRIN lens was found to be high for imaging, as it saturates the dynamic range 

of the data acquisition device. The cause of this strong back-reflection was found to originate 

between the flat surfaces inside the GRIN lens. To suppress this phenomenon and improve OCT 

SNR another grin lens had to be designed without planar interfaces between optical elements 

inside the lens. For this reason, we decided to use the current lens with the semicapsule in 

optoacoustic mode only and extend future designs to include OCT with a modified grin lens. 
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Figure 6.3: OCT-OA optical beam characterization of the custom made grin lens (a) OCT signal measured 

from the grin lens and a free space lens from a mirror at focus. The backreflected signal depicted reduces 

OCT SNR. (b) and (c) are the OCT and OA beam profiles measured at the OCT focal length with a CCD 

camera to measure beam size. 

6.2.1 Semicapsule experimental methods 

Figure 6.4 shows the semicapsule prototype benchtop experimental configuration, which consists 

of a 1 ns-pulse width 532nm Q-Switched DPSS laser with a working repetition rate of 1-100kHz 

(ONDA, Bright Solutions, Italy). A polarizing beam splitter and a beam dump were used to adjust 

the energy per pulse. For triggering, a 90:10 beam splitter was used to redirect 10% of the light 

into a photodetector. The remaining 90% of light was coupled into a fiber and directed to the 

optoacoustic semi capsule endoscope. 

 
The proposed 16mm semi capsule consists of an ultrafine hollow shaft miniature motor to enable 

optoacoustic coaxial illumination with a custom-designed GRIN lens attached to the distal tip of 

an optical fiber (GRINTECH, Germany). This optical probe is carefully inserted inside a 

customized side-looking spherical focused transducers with a central aperture for illumination 
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(SONAXIS, France). The transducer features a 45o optical mirror and a sealing window mounted 

at the central aperture of the detector to allow co-axial illumination. Implementing customized low 

friction miniature gold slip rings (STATICE, France) to permit electrical coupling of high 

frequency ultrasound signals, thus preventing obstruction from driving cables across the field of 

view, allows for full 360o unobstructed field of view. The capsule is encapsulated in heavy water 

and covered by a cylindrical PMMA capsule cover with a thin fiducial marker for synchronization 

and interpolation of high frame rate B scans (see figure 5.9). 

 
 

Figure 6.4: semicapsule endoscopic transducer characterization (a) Cross-sectional and en-face view of the 

endoscopic transducer with a central aperture. TE: Transducer element, EC: Electrical Connector, L: 

Acoustic Lens, CA: Central Aperture Window, SR: Slip rings. (b) Benchtop optoacoustic endoscopy 

experimental setup. PBS: polarizing beam splitter, BS: beam splitter, BD: beam dump, PD: photodiode. 

(c) Optoacoustic transducer temporal and frequency response. (d) Axial and lateral Hilbert transducer 

resolutions (e) Hilbert depth of focus response. 

An ESCON module 24/2, 4-Q servo driver was used to drive the rotational motor using ESCON 

studio on a PC. Prior to data acquisition at a sampling rate of 500 MHz, the optoacoustic signals 

measured during rotational scanning were pre-amplified externally with a 30dB amplifier (Sonaxis 

SA, France) and attached to a T-bias (ZFBT-4R2GW+, Mini-Circuits). To allow for controlled 

repositioning and 3D Helical pull-back scans, the semi capsule prototype was mounted to an XYZ 

linear motorized stage (MTS50-Z8 in 3-axis XYZ Configuration Thorlabs). A ATS9373 DAQ 

card (AlazarTech, Canada) was used to collect the optoacoustic data, which was 
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synchronized to the board's external trigger port via the photodetector signal. LabVIEW was used 

to manage signal processing, and MATLAB was used to analyze the results. 

 
The temporal/frequency response at focus, axial/lateral resolutions, and depth of focus 

independent of rotation were calculated by linear raster scanning the semi capsule against a 20 µm 

suture in the XZ plane by moving the transducer away from the acoustic source produced by the 

suture (x steps = 5 µm, z steps = 10 µm). 

 

A phantom consisting of twelve 100 µm sutures arranged in an Archimedean spiral with a pitch 

of 3 mm as depicted in Figure 6.5 (a) was imaged to show 50 Hz Bscan frame rate with 100 kHz 

pulse repetition rate (31.4 µm focal plane lateral sampling interval). To assess the effect of laser 

pulse repetition rate and Bscan frame rate on lateral resolution at the focal plane, the phantom was 

designed to ensure one of the sutures would reside in the focal plane of the transducer. 

 

Over the course of 4.16 seconds, a 3D helical pull back optoacoustic scan of a stainless-steel mesh 

arranged in an Archimedean spiral with a pitch of 3 mm (Figure 6.6a) was conducted at 50 Hz 

Bscan rate and 100 kHz repeat rate with a pullback speed of 2.4 mm/s, accumulating a volume of 

1700 x 2000 x 208 (𝜌, 𝜑, 𝑧) voxels (or 5mm x 360º x 10mm or 1790mm3). To mimic the scattering 

of light interrogating biological tissue, this experiment was repeated by replenishing the acoustic 

binding medium with regulated titration concentrations of intralipid (IL) solution. A 20% IL 

solution was diluted to six separate test IL concentrations: 0.015, 0.031, 0.062, 0.125, 0.25, and 

0.5 percent. Under the same conditions an ex-vivo pig esophageal sample mounted inside a 50 

ml- Falcon tube was imaged to demonstrate translational potential. A heated blade was utilized 

during extraction of the esophageal to preserve the esophageal vascular network. The pulse laser 

energy used during all imaging experimentation was kept constant at ~ 12 µJ corresponding to a 

fluence value of 6.1 𝑚𝐽 
𝑐𝑚2 

which exceeds the MPE limit by a factor of 4 assuming the limiting 

aperture criterion of 3.5mm. 

 
6.2.2 Semicapsule experimental results 

Figures 6.4a and 6.4b demonstrate the configuration and setup of the proposed endoscopic 

transducer. As seen in Figure 6.4c, the transducer demonstrated broadband detection response with 

a central frequency of 28 MHz and a -6dB bandwidth of 50 MHz during characterization. A focal 

length of 6 mm was determined by the temporal response. The axial and lateral resolutions 
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were measured to be 35 µm and 200 µm, respectively, as seen in Figure 6.4d. The Hilbert plot in 

Figure 6.4e was used to quantify a 700 µm depth of focus. 

To assess the lateral resolution performance of the endoscope as a function of laser pulse repetition 

rate and scanning speed, we first imaged a phantom consisting of twelve 100 µm sutures arranged 

in an Archimedean spiral with a 3 mm pitch (Figure 6.5a). The Bscan acquired at 50 Hz frame rate 

and pulse repetition rate of 100 kHz is shown in Figure 6.5(b). The B scan illustrates the 

transducers near field, focus, and far field response, with sensor sensitivity peak intensity at the 

focal plane, which is positioned 2mm away from the capsule surface. 

 
We acquired continuous scans at the maximum frame rate (50 Hz) with different laser pulse 

repetition rates (20 kHz to 100 kHz), accompanied by scans at the maximum repetition rate (100 

kHz) with different frame rates (10 Hz to 50 Hz) to determine the effect of the arc sampling interval 

and scanning speed on the lateral resolution at focus. We obtained a series of 10 continuous 

revolutions for each case and measured the lateral resolution for each rotation scan. For each 

condition, the median and interquartile ranges (IQR) of the measurements were used as indicators 

of resolution and variability. 

 
The arc sampling intervals and number of A lines collected per revolution at a constant B scan 

frame rate of 50 Hz for pulse repetition frequencies ranging from 20 kHz to 100 kHz as shown in 

Table (c) in Figure 6.5. The median lateral resolution ranges between 229 and 234 µm with 

repetition frequencies ranging from 40 to 100 kHz. However, at 20 kHz, the median lateral 

resolution decreases to 289 µm. The reduced lateral arc sampling interval of 157 µm at the focal 

plane is responsible for the decreased median lateral resolution of 289 µm at 20 kHz laser pulse 

rate. This case provided values ranging from 209 µm to 485 µm, as predicted due to a violation of 

a Nyquist sampling requirement requiring sampling of twice the resolvable lateral resolution. This 

will equate to a 100 µm arc sampling interval for our endoscopic transducer. Furthermore, as the 

repetition rate increases from 20 to 100 kHz, the variability between revolutions decreases due to 

improved angular sample resolution per B frame; as a result, the IQR decreases from 187 µm to 

16 µm. 

 
The arc sampling intervals and number of A lines collected per revolution at a constant laser pulse 

repetition rate of 100 kHz for B frame scanning frequencies ranging from 10 Hz to 50 Hz is shown 

in Table (d) in Figure 6.5. The corresponding lateral resolution distribution measurements are 

plotted in Figure 6.5 (f). In this case, the median lateral resolution improved from 234 µm (50 Hz) 
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to 207 µm (10 Hz), nearly matching the transducer's lateral resolution of 200 µm as shown in 

Figure 6.4. While decreasing frame rates often results in an improvement in arc sampling interval, 

no substantial improvement in the IQR, which fluctuated between 12-16 µm, was observed in this 

case over the 10-50 Hz test B frame rates. 

 

Figure 6.5: 50 Hz Bscan frame rate (a) Twelve sutures with 100µm thickness arranged in an Archimedean 

spiral phantom with a pitch of 3mm. (b) 360º B scan image of phantom acquired at 50Hz frame rate and 

100kHz pulse repetition rate. (c) Table listing the number of A lines per revolution and arc sampling interval 

at the 
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transducer focal plane as a function of pulse repetition rate at a fixed frame rate of 50Hz. (d) Table listing 

the number of A lines per revolution and arc sampling interval at the transducer focal plane as a function 

of frame rate at a fixed pulse repetition rate of 100kHz (e) Lateral resolution measured at transducer focus 

at 50Hz frame rate as a function of laser pulse repetition rate under the same experimental configurations 

listed in table (c) . (f) Lateral resolution measured at transducer focus at 100kHz laser pulse repetition rate 

as a function of B scan frame rate under the same experimental configurations listed in table (d). 

Overall, by decreasing the B scan frame rate and using a higher laser pulse repetition rate, arc 

sampling spacings are shortened, but the number of A scans per revolution increases, affecting 

file size and memory usage. Nonetheless, using a 30 Hz scan rate and a 100 kHz repetition rate, 

we obtained arc sampling intervals of less than 18.8 µm, suggesting no noticeable change in the 

median value of the lateral resolution corresponding to one tenth of the transducer lateral 

resolution. 

 

We then continued to explore the endoscope's volumetric imaging capabilities. We conducted a 

Cscan of a stainless steel mesh arranged in an Archimedean spiral set at a pitch of 3 mm (Figure 

6.6a) that acted as a phantom sample, with a minimum diameter of 16 mm and a maximum 

diameter of 22 mm, which falls within the range of a human esophagus diameter [117]. The 3D 

projection of the helical scan at 50 Hz and 100 kHz repetition rate pulled back over 10 mm at 2.4 

mm/s is presented in Figure 6.6(b). With an arc sampling resolution of 31.4 µm at focus (r = 6 

mm), an axial sampling resolution of 3 µm (Fs = 500 MHz), and a helical pitch of 48 µm, the 

complete scan took 4.16 seconds. The 2D maximum top and axial intensity projections produced 

from the helical scan are shown in Figure 6.6(c) and (d), respectively, with the fiducial marker and 

focal plane highlighted. The overall intensity projections demonstrate that, as predicted for a focus 

transducer, the intensity values are greatest at focus; however, the mesh continues to be 

distinguishable over the whole field of view and across the total depth of 3 mm. 
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Figure 6.6: Helical volumetric Cscan over 10 mm longitudinal pullback distance at 50 Hz Bscan rate and 

100 kHz repetition rate (a) Aluminum phantom mesh mounted in an Archimedean spiral with a pitch of 3 

mm. (b) 3D polar projection of Helical optoacoustic scan generated on Amira (c) 2D maximum intensity 

projection of Helical scan depicted in Cartesian coordinates. (d) 2D Axial maximum intensity projection 

of Helical scan depicted in Cartesian coordinates. 

We embedded the mesh in an intralipid (IL) solution at various concentrations to test the 

endoscope's imaging penetration depth under light scattering conditions similar to those found in 

the human esophagus. To prevent signal saturation and to limit the study to intensities within the 

dynamic spectrum of the mesh in the scattering media, the maximal intensity projections from top 

and side views of the volumetric scans were obtained with the signal from the fiducial marker 

masked out. 

 
The highest signal intensity was 15.9 mV at 0.015 % IL (Figures 6.7a and 6.7b), and the entire 

mesh was visible over the entire 3 mm depth of the mesh. The overall signal intensity was 

decreased to 14 mV at 0.031 % IL (Figures 6.7c and 6.7d), but the entire mesh remained visible 

over the entire depth. The overall signal intensity fell to 11.9 mV at 0.062 % IL (Figures 6.7e and 

6.7f), with the mesh still perceptible over the whole 3 mm depth but the grid pattern in the far field 

losing definition. The highest signal intensity was 8.1 mV at 0.125% IL (Figures 6.7g and 6.7h), 

and the mesh in the far field was no longer visible, reducing the imaging depth to 2.53 mm. The 

combined signal intensity and depth were further decreased to 7.5 mV at 0.250 % IL (Figure 6.7i 

and 6.7j), and the mesh was only visible in the near field, reducing the imaging depth to 1.88 

mm. Finally, at 0.50 % IL (Figures 6.7k and 6.7l), the overall signal intensity fell to 4.05 mV, the 

mesh grid pattern disappeared, and the imaging depth was decreased to 1.22 mm. 

 
The amount of light available for OA generation from tissue is affected by light scattering and 

diffusion. We measured the reduced scattering coefficient, µ′ , at 532 nm for the IL solutions in 

our experiments based on previously recorded values for IL concentration [118] to approximate 

the predicted imaging depth in the human esophagus. The µ′ values for each IL concentration are 

shown in Table (m) in Figure 6.7. (0.015 % to 0.5 %). 
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Figure 6.7: 360º Helical volumetric scanning over 10 mm longitudinal pullback distance with intralipid 

solution. Figures (a,b) depict the 2D top and side maximum intensity projections with 0.015% intralipid 

solution. The corresponding figure pairs (c,d), (e,f) , (g,h) , (i,j) , (k,l) represent the 2D projections with 

0.031% , 0.062%, 0.125%, 0.25%, 0.5% intralipid concentration. (m) Table listing the corresponding 

reduced scattering coefficient 𝜇′ at each IL concentration at 532nm (n) illustrates the maximum intensity 

profile as a function of depth for all scattering coefficients (o) Highlights the relationship between depth 

and reduced scattering coefficient. 

 
The maximal strength values for the volumetric mesh images as a function of depth are shown in 

Figure 6.7(n). We used these results to calculate the point at which the amplitude fell below the 

noise level and used it as an indicator of the imaging depth that could be achieved using our OA 

endoscopic setup for each scattering state. For the low scattering cases of 𝜇′ = 0.024 and 𝜇′ = 0.049, 
𝑠 𝑠 

we found that the strength depth profiles agree with the response of our focused detector (see 

Figure 6.4e). In these instances, the highest amplitude is seen at 6 mm, which corresponds to the 

transducer's focal point. The peak amplitude shifts towards the transducers near field response for 

𝜇′ at and above 0.098, as anticipated due to decreased light penetration and increased scattering. 

This shift implies that the transducer's focal distance should be adjusted close to the sample's 

surface, matching the transducer's highest sensitivity to the attainable light penetration required 

for OA signal generation, thereby improving the SNR and thus penetration depth under high 

scattering media conditions. 
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The relationship between 𝜇′ and penetration depth is seen in Figure 6.7(o). An exponential 

equation of the form 3.35exp(-1.37𝜇′ ) is used to curve fit to the experimental data. 𝜇′ =1.01 ± 
𝑠 𝑠 

0.14𝑚𝑚−1 at 526 nm has previously been recorded in a healthy human esophagus [119]. At a 100 

kHz pulse repetition rate and 50 Hz Bscan frame rate, we expect an imaging penetration depth in 

the human esophagus of ~0.84 mm exceeding the MPE by a factor of 4, assuming an insignificant 

change in 𝜇′ from 526 nm to 532 nm and following our derived expression for the penetration 

depth and 𝜇′ . 

 
Next an ex-vivo female pig esophagus (Figure 6.8a) installed inside a 50 mL falcon tube was 

imaged to confirm our phantom model and illustrate translation potential of our endoscope. The 

3D volume of the obtained pullback scan at 50 Hz B scan rate and 100 kHz over a 12 mm pullback 

distance at 2.4 mm/s is shown in Figure 6.8(b). With an arc sampling resolution of 31.4 µm at 

focus, an axial sampling resolution of 3 µm, and a helical pitch of 48 µm, the whole scan was 

captured in 5 seconds. Figure 6.8 (c) and (d) show B scans from the helical pull back scan obtained 

from two arbitrary positions, illustrating the capability to gather data over a 360° field of view. 

The 2D enface and axial maximum intensity projections obtained from the helical scan are shown 

in Figures 6.8(e) and (f), respectively, with the fiducial marker and capsule surface emphasized. 

Even though the vascular network had collapsed, and the blood had drained in the ex-vivo setting, 

remnants of blood in vessels were still visible throughout a 360° field of view and up to a 

penetration depth of 1.2 mm. 
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Figure 6.8: 360º helical volumetric scanning of an ex-vivo female pig esophagus over a 12 mm longitudinal 

pullback distance. (a) Ex-vivo pig esophagus sample mounted on a 50 mL-Falcon tube for support (b) 3D 

volumetric render of helical scan (c,d) B scans taken at unique positions within the helical scan. Maximum 

intensity projection for (e) enface and (f) side views. 

 

 

6.2.3 Discussion of semicapsule capability 

 
Optoacoustic endoscopes have inadequate fields of view, poor B scan frame rates, improper probe 

construction, and insufficient SNR for human esophageal imaging, despite their great potential for 

GI tract diagnostics. By combining a side-looking broadband-based transducer electrically 

coupled with slip rings and a central aperture for coaxial illumination, we have produced the first 

50 Hz, complete 360° field of view optoacoustic capsule endoscope. We revealed imaging of 1700 

x 2000 x 208 (𝜌, 𝜑, 𝑧) voxels at a volume rate of 0.24 Hz. At 100 kHz laser repetition frequencies, 

we demonstrated imaging depths of 3 mm in low scattering media and an average imaging depth 

of ~0.84 mm for esophagus-mimicking phantoms and penetration depth of 1.2 mm in ex-vivo pig 

esophagus. 

 
An optoacoustic capsule endoscope in radial imaging configuration of the GI track was previously 

introduced by our group [49]. This method permitted for the first time continuous 360-degree 

imaging, but the B frame rate was limited to 2.5 Hz, preventing quick volumetric scanning. By 

inserting the rotation coupling directly onto the transducer housing inside the capsule with 
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customized miniature slip rings, we were able to achieve a 20-fold higher B scan frame rate. To 

our knowledge, this is the first-time video-rate optoacoustic capsule endoscopy has been allowed 

at 50Hz, which could lead to real-time GI optoacoustic endoscopy surveillance and minimize 

motion artifacts. The effects of pulse repetition rate (20-100 kHz) and B scan frame rate (10-50 

Hz) on lateral resolution were investigated. The increasing pulses available on each rotation period 

causes a reduction in angular sampling resolution as the laser pulse repetition rate is increased or 

B scan frame is decreased (number of A lines per revolution). We discovered that sampling at 

1/10th of the transducer lateral resolution at focus produced the best lateral resolution. Transducer 

characterization revealed a lateral resolution of 200 µm, necessitating arc sampling of 20 µm at 

focus. The arc sampling interval was 33 µm (𝜑 = 0.18°) at 100 kHz pulse repetition rate and 50 

Hz B frame rate, resulting in a deterioration of the overall lateral resolution to 234 µm with an 

interquartile deviation size of 16 µm. Reducing the B scan frame rate to 30 Hz at the same 

repetition rate results in an arc sampling period of 18 µm (𝜑 = 0.1°), increasing the lateral 

resolution to 208 µm, closer to the transducer's optimum attainable value. Reducing B scan frame 

further decreased arc interval to 6.2 µm (𝜑 =0.035°) at 10 Hz; however, this does not result in a 

resolution increase. 

 
We demonstrate the ability to achieve rapid volumetric imaging at 0.24 Hz over a total volume of 

5 𝑚𝑚 × 360° × 10 𝑚𝑚 (𝜌, 𝜑, 𝑧) or 1790 mm3,   with a high sample resolution of 3 𝜇𝑚 × 0.18° 

× 48 𝜇𝑚 (𝜌, 𝜑, 𝑧). This high-resolution volumetric imaging speed enables the ability to scan the 

entire human esophagus in under 2 minutes, up to a length of 250 mm [120]. The ability to collect 

vast volumes quickly allows for study of many high-risk areas within the human GI tract, including 

large Barrett's esophagus segments. The OA imaging penetration depth in non- scattering media 

was greater than 3 mm. However, we demonstrate that the penetration depth depends exponentially 

on the dispersion of the medium. In low dispersion cases (𝜇′ ≤0.049), the maximal transducing 

sensitivity is maintained at focus; however, light diffusion dominates the transducing sensitivity 

profile in higher dispersion media and shifts the maximum sensitivity into the near field of the 

transducer. Following the exponential relation of an increasing 𝜇′ , we approximate a depth of 0.84 

mm (assuming 𝜇′ ~1.01 @ 532 nm) in the human esophagus with our endoscope. A helical pullback 

scan of an ex-vivo pig esophagus at the same volumetric rate of 

0.24 Hz was used to validate our phantom model. Despite the fact that the sample's vascular 

network had collapsed, our endoscope was able to detect traces of vessels up to a depth of 1.2 mm. 

The imaging penetration anticipated with our phantom revealed deeper features in the pig 

esophagus (Figure 6.8). The discrepancy can be explained by lower acoustic frequency 
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components in the thick vessel in the ex-vivo sample, which experience lower propagation losses. 

The mesh in the phantom, for example, has a diameter of 0.25 mm, but the blood vessels in the 

pig esophagus measured in Figure 6.8(f) had a diameter of 0.7 mm. 

 
This depth is similar to previous OA endsocopy studies which demonstrate image depths ~1 mm 

at less than five Hz of small animal esophagus or colon tissue [45, 46, 48]. These low frame rates 

combined with the low laser pulse repetition rates do not exceed the MPE rule 1 (20mJ/cm2) (see 

section 5.5.4). Under these circumstances an imaging depth of 2 mm in pig esophagus ex-vivo was 

shown by He et al [49]. Increasing pulse repetition rates sets a tighter MPE limit, where the 20 

mJ/cm2 limit is no longer applicable as such the maximum for MPE is 1.53mJ/cm2 in our case at 

100kHz repetition and 50Hz Bscan rate (see section 5.5.4.). Previously, a catheter-based 

optoacoustic endoscope system [47] used a 300 kHz pulse repetition rate with 30 µJ-pulse energies 

and a 1mm grin lens to create a collimated beam. Despite the fact that the beam spot size on the 

rat rectum was not disclosed, the authors stated an energy density of 15 mJ/cm2. Following the 

limited aperture criterion of 3.5mm of the ANSI standard, the MPE limit is exceeded by 174- fold. 

These results show that optoacoustic endoscopy's translational capacity is fueled by its ability to 

survey the human esophagus quickly without exceeding the MPE while providing high resolution 

over many mm’s of depth. 

 
The ex-vivo potential of the optoacoustic capsule design described here is a major step forward 

toward video-rate in-vivo optoacoustic endoscopy of the human GI tract. However, future efforts 

are expected to resolve capsule size, sensitivity, resolution, and motor stability compensation to 

translate the concept for in-vivo imaging. Although our current capsule configuration has a 

diameter of 16 mm, which is close to standard WLE, further miniaturization is needed to make it 

easier to swallow and to meet the size of commercially available white light capsules, which are 

usually less than 32 mm long and 13 mm wide [121,122]. For example, by decreasing the 

transducer size and integrating a miniature motor into the capsule, the total length and diameter 

can be minimized. A transducer preamplification stage may be inserted into the capsule to further 

improve sensitivity and image depth [49]. Shifting the focus of the transducer to the surface of the 

capsule would also increase the SNR when imaging in high scattering media such as the human 

esophagus. In addition, a transducer with a high central frequency and short focal length, as 

currently used in Raster scanning Optoacoustic Mesoscopy (RSOM) , could be developed [36,123] 

to increase the resolution of the opto-acoustic signal. In order to offset motor dysfunction during 

imaging, post-processing methods will be investigated. 
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In conclusion, a 16 mm optoacoustic capsule endoscope prototype with a side viewing central 

aperture endoscopic transducer with integrated optics and slips rings allowed full field of view 

optoacoustic imaging at 50 Hz frame rate with angular sample resolution of 0.18º at 100kHz pulse 

repetition rate. The practical ability was tested in 2D and 3D phantoms, where lateral resolution 

precision and imaging depth were illustrated. Overall, these findings show that our innovative 

video-rate optoacoustic capsule endoscope architecture can reduce motion artifacts during 

imaging, potentially paving the way for future molecular imaging of the human GI tract. 

 

 

 

 

6.3. 12.5mm Partial capsule prototype 
 

Building on the semicapsule prototype a second-generation prototype with a diameter of 12.5mm 

named the partial capsule was built. Improvements made included shifting the focus of the 

transducer at the capsule surface for improved sensitivity, Higher transducer central frequency and 

therefore improved lateral and axial resolutions. The size of the transducer was also miniaturized 

to ensure the diameter of the capsule would match the size of commercially available white light 

capsules [121,122]. Although miniaturization of the transducer led to mechanical fault limiting 

rotation speed upto 30Hz, increasing speed beyond this limit would cause water employed as the 

coupling medium getting sucked inside the probe, reaching the slip rings, and thereby reducing 

OA SNR. Finally, a new grin lens as depicted in figure 6.9 was designed to ensure this prototype 

could operate in hybrid OCT-OA mode. Figure 6.9a shows the semicapsule design where the two 

planar surface between the grin lens and back-end results in a residual back reflection signal 

reducing SNR. Alternatively Figure 6.9b presents the partial capsule grin lens design where an 8º 

polished glass spacer is inserted between the back end and grin lens optical elements to remove 

the planar surfaces and thereby suppress the back reflected signal which occurs in Figure 6.9a. 

Measuring the beam spot sizes at the capsule surface following the same methodology in 6.3 we 

obtain 20µm for the OCT beam and 500 µm for the OA beam. 
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Figure 6.9: Grin lens designs for Hybrid OCT-OA endoscopy (a) semicapsule grin lens design (b) partial 

capsule grin lens design. 

 
6.3.1 Partial capsule experimental methods 

 
The partial capsule prototype and benchtop experimental setup are presented in Figure 6.10. Here 

a 1060nm SS OCT laser (Insight solutions, USA) operates as master at 85kHz A-scan rate and a 

nanosecond pulsed 532nm Q-switched OA laser (Bright solutions, Italy) operates at 42.5kHz A- 

scan rate in slave mode by getting triggered synchronously via a trigger divider. The 1060nm light 

emitted from the OCT laser is connected to a 90/10 coupler which delivers 90% of the light to the 

input OCT port of a custom made double clad fiber coupler and 10% of the light to a free space 

reference arm for dispersion and length compensation. Three manual fiber polarization controllers 

are placed within the optical setup to maximize OCT SNR. Alternatively, the pulsed beams emitted 

from the OA laser are regulated by means of the polarizing beam splitter and beam dump before 

fiber coupled into input OA port of the custom made double clad fiber coupler. The input ports of 

the double clad fiber coupler combine both beams into a single double clad fiber at the output with 

the core carrying the OCT beam and the inner cladding carrying the OA beam. The custom-made 

grin lens is mounted on the tip of this fiber and installed inside the partial capsule probe. 
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Figure 6.10: Hybrid Endoscope setup and OCT/OA modality characterization (a) Benchtop hybrid 

endoscopy experimental setup. PBS: polarizing beam splitter, BS: beam splitter, BD: beam dump, FPC: 

fiber polarizer controller, FC: fiber collimator, DCFC: double clad fiber coupler, TD: Trigger divider, BPD: 

Balanced photodetector. (b) Cross sectional and enface view of the endoscopic transducer with central 

aperture. TE: Transducer element, M: mirror, EC: Electrical Connector, L: Acoustic Lens, CA: Central 

Aperture Window, SR: Slip rings. (c) Cross sectional view of the hybrid endoscope. (d-f) Optoacoustic 

characterization including (d) Temporal signal and Bandwidth., (e) axial and lateral resolutions and (f) 

depth of focus. (g-i) OCT characterization including (g) lateral and (h) axial resolutions and (i) depth of 

focus. 
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The 12.5mm diameter capsule performs rotational scanning by employing a hollow shaft motor 

(Maxon Group, Switzerland) to house the custom-made grin lens inside a rotating side looking 

1.2mm central aperture spherically focused LiNO3 transducer (SONAXIS, France) as shown Fig 

6.10b with integrated optics and slip rings to couple high frequency ultrasound and facilitate 

coaxial OCT-OA illumination by reflection from a 90o optical reflector as illustrated in Fig 6.10c. 

Here the OCT beam is focused just beyond the capsule surface and the interrogation OA beam is 

diffuse to ensure acoustic resolution optoacoustic endoscopy. The capsule was encapsulated in 

heavy water with a thin cylindrical PMMA capsule lid featuring a fine fiducial marker used for 

synchronization and interpolation of high frame rate B scans. Full 360o unobstructed field of view 

is achieved during hybrid rotational scanning, where back scattered OCT light is collected via the 

same interrogation grin lens and interfered with the reference arm via 50:50 couplers prior to 

interferometric detection using a high performance balanced photodetector (Insight solutions, 

USA). At the same time optoacoustics waves are measured by the transducer and pre-amplified 

externally with a 30dB amplifier and connected to a T-bias (ZFBT-4R2GW+, Mini-Circuits) prior 

to data acquisition. To perform helical scans, the capsule prototype was mounted to a XYZ linear 

motorized stage configuration (MTS50-Z8, in 3-axis XYZ Configuration Thorlabs) to allow for 

controlled linear repositioning. 

 
To achieve rotational scanning the same hollow shaft motor and controller (Maxon Group, 

Switzerland) employed for the semicapsule was utilized for the partial capsule. Side illumination 

is facilitated also in the same manner as the semicapsule by integrating a 90o optical reflector and a 

sealing window installed at the central aperture of the partial capsule detector. Slip rings are used 

to enable full 360o unobstructed field of view (STATICE, France). During rotational scanning, 

back scattered OCT light is collected from the same interrogation grin lens and interfered with 

reference arm via a 50:50 couplers prior to interferometric detection using a high performance 

balanced photodetector (Insight solutions, USA). Meanwhile optoacoustic waves measured during 

rotational scanning were pre-amplified externally with an 30dB amplifier (Sonaxis SA, France) 

and connected to a T-bias (ZFBT-4R2GW+, Mini-Circuits) prior to data acquisition. 

 
Data acquisition was performed synchronously on a dual channel ATS9373 DAQ card 

(AlazarTech, Canada) with channel A connected to the balanced photodetector used to recover the 

OCT A-scan and channel B connected to the T-bias of the ultrasound detector to measure the 
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OA Ascan. DAQ triggering and external clock signals are driven by the OCT laser to ensure the 

swept source signals are in sync. Signal processing was controlled in LabVIEW and data analyzed 

in MATLAB. 

 
The endoscopic transducer was characterized by linear raster scanning the capsule against a 7 µm 

carbon fiber in the XZ plane by shifting the transducer away from the acoustic source generated 

via the fiber (x steps = 5 µm, z steps = 10 µm) to determine the temporal/frequency response at 

focus, the axial/lateral resolutions and depth of focus. 

 
The measured OCT axial resolution using a reflective mirror was 9.75 μm in air as illustrated in 

Figure 6.10h, or 7.2 μm in tissue (assuming a refractive index of 1.35 in tissue). Upon the return 

path from the tissue, the light interfered with the reference beam through a 50/50 fiber optic 

coupler (TW1064R5F2A). The resultant interference signal was detected using a balanced 

photodetector (BPD-1, Insight solutions, USA). The size of the optical focus created by the grin 

lens for OCT was measured by mounting the grin lens on a 2D translation stage (M511, Physik 

Instrumente GmbH & Co. KG) and implementing a raster scanning to image a USAF 1951 

resolution target (3’’ x 3’’ positive, Edmund Optics) with a step size of 1 μm. An edge-spread 

function (ESF) was obtained from the corresponding data at the sharp edge of the lines on the 

resolution target. The negative derivative of the ESF was calculated and fitted using a Gaussian 

model to get the line spread function (LSF) shown in Figure 6.10g. The full width at half- 

maximum (FWHM) of the LSF showed a lateral resolution of 9.8 μm in air for OCT. With an 

output power of 6 mW from the grin lens, the OCT signal-to-noise ratio (SNR) was measured 

using a neutral density filter and a reflective mirror. As shown in Figure 6.10i, an SNR of 104 dB 

was achieved at the focus. The SNR at different depth of focus of the grin lens was measured by 

shifting the position reflective mirror. At a distance of 400 μm away from the focus, the SNR 

drops to approximately 92 dB. 

 
The capsules OCT and OA average lateral resolution and relative intensity as a function of depth 

over 10 frames at 30Hz were characterized by a phantom consisting of 16 sutures of 100µm 

thickness arranged in an Archimedean spiral with a pitch of 3mm. 8 sutures were black to absorb 

the 532nm light and generate optoacoustic signals along with 8 sutures being white to reflect the 

1060nm light and generate OCT signals. The sutures were arranged in alternating color 

configuration following the Archimedean spiral as illustrated in Fig 6.11a. 
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A pullback helical scan at 2.4mm/s was performed to demonstrate the ability to acquire 

synchronous OCT-OA volumetric data at 30Hz frame rate by imaging a stainless-steel mesh 

arranged in an Archimedean spiral with a pitch of 3mm at 85kHz OCT/42.5kHz OA A-scan rate. 

In this configuration over a pullback distance of 11.5mm corresponding to a period of 4.8 seconds 

a OA volume comprising of 1600 x 1420 x 143 (𝜌, 𝜑, 𝑧) voxels and OCT volume comprising of 

1600 x 2840 x 143 (𝜌, 𝜑, 𝑧) voxels are simultaneous acquired. To assess in-vivo imaging potential, 

under the same conditions albeit a pullback distance of 15mm, an ex-vivo pig esophagus embedded 

with 100µm suture to mimic blood vessels and in-vivo human mucosa tissue was imaged over a 

pullback distance of 30mm at record time acquisition time of 12.5 seconds. The OA pulse energy 

used during all experiments was maintained at ~12µJ. 

 
6.3.2 Partial experimental results 

 
The hybrid experiment setup, optoacoustic endoscopic and capsule design are given in Fig 6.10a- 

c and described in 6.3.1. Optoacoustic detector characterization revealed a broadband detection 

performance with a central frequency of 63.5 MHz and a -6dB bandwidth of 127 MHz as depicted 

in Fig 6.10d. The temporal response exhibited a transducer focal length of 3 mm. The axial and 

lateral optoacoustic resolutions were measured as 16 µm and 30µm, respectively, as shown in Fig 

6.10e. A 160 µm optoacoustic depth of focus was measured from the Hilbert plot in Fig 6.10f. 

Alternatively the OCT beam characterization revealed an axial and lateral resolution of ~9.8µm 

and a -6dB depth of focus of 600µm. 

 
To illustrate the importance of hybrid imaging and characterize the endoscopes lateral resolution 

as a function of depth at 30 Hz synchronous frame rate, we imaged a phantom consisting of sixteen 

100 µm sutures arranged in an Archimedean spiral with a pitch of 3mm. As shown in Fig 6.11a 

the sutures were organized in alternating color configuration with 8 black and 8 white sutures. Fig 

6.11b depicts the optoacoustic B scan acquired at 30Hz with a pulse repetition rate of 42.5kHz 

where only 8 sutures are visible corresponding to the black sutures which absorb the 532nm to 

generate optoacoustic signals. Furthermore, the optoacoustic B scan highlights the transducers far 

field response as intensity and lateral resolution degrades with respect to increasing axial distance 

from the capsule surface. Similarly, Fig 6.11c illustrates the OCT Bscan acquired at 30Hz with a 

repetition rate of 85kHz where the remaining 8 white sutures signals are measured because they 

scatter the interrogation 1060nm beam to generate OCT signals. The OCT Bscan also indicates a 

reduction of intensity moving away from the capsule surface. Fig 6.11d depicts a hybrid 

synchronous OCT-OA Bscan at 30Hz where all 16 sutures are visible only in this instance. Thus 
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combining complementary OA molecular absorption and scattering of radiation to measure 

structural features with OCT can reveal additional features not visible to either single modality. 

To assess the reduction in intensity and lateral resolution of our OCT-OA endoscope as a function 

of imaging depth, the average intensity and lateral full width half maximum values of the sutures 

were measured for each modality over 10 frames. A plot of normalized OA-OCT intensity and 

lateral FWHM as a function of imaging depth are given in Fig 6.11e and 6.11f respectively. From 

Fig 6.11e the normalized optoacoustic intensity exponentially reduces moving away from capsule 

surface to reach a steady state value of 0.2 at a depth of 1.6mm. Similarly, the normalized OCT 

intensity exponentially reduces moving away from capsule surface and reaches a steady state value 

of ~0.04 at a depth of 1.6mm. The lateral FWHM of both OCT and OA reduces as a function of 

increasing imaging depth as illustrated in Fig 6.11f. The OCT Lateral FWHM degrades from 122µm 

to 197µm and OA lateral FWHM degrades from 125µm to 360µm. Note: for OCT the expected 

penetration depth is no more than 1 mm for in-vivo esophagus and deterioration of lateral FWHM 

over this range is only 5µm. Instead, for OA because resolution is defined by the acoustics and a 

higher penetration depth exceeding 1mm is expected, tomographic reconstruction in cylindrical 

coordinates could improve spatial resolution over extended depths. 
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Figure 6.11: Hybrid synchronous 30 Hz OCT- OA Bscans of a hybrid suture phantom (a) 16 sutures with 

alternating colors of black and white of 100µm thickness are arranged in an Archimedean spiral phantom 

with a pitch of 3mm. 3600 B scan images of the phantom acquired at 30 Hz (b) Optoacoustics (b) OCT and 

(d) Hybrid mode. (d) Normalized intensity of both modalities as a function of depth (f) lateral FWHM 

measured across all sutures for both modalities as a function of depth.. 

Next we imaged a stainless-steel mesh arranged in an Archimedean spiral with a pitch of 4mm 

(Fig 6.12a) to demonstrate synchronous OCT-OA volumetric endoscopic imaging at 30Hz frame 

rate. The minimum diameter of the mesh was 12.5mm and the maximum diameter was 16.5mm 

falling within the range of human esophagus diameter. Figures (6.12b, c,d) illustrate 3D 

projections of the OA , OCT and hybrid helical scans at 30Hz frame rate and 85kHz OCT/ 42.5kHz 

OA repetition rate pulled back over 11.5mm at 2.4mm/s. Both OCT and OA volumes were 

acquired in 4.8 seconds with an OA arc sampling interval of 27µm at capsule surface and OA axial 

sampling resolution of 3.75 µm (Fs = 400 MHz). The OCT arc sampling interval at the capsule 

surface was 13.5µm and the OCT axial sampling interval was 2.5µm. The helical pitch for both 

scans determined by the pullback motor was 80𝜇𝑚. Figure 6.12(e & f) show the 2D enface 

maximum intensity projections of the OCT and OA scans respectively and Figure 6.12 (g & h) 

represent the corresponding 2D maximum axial intensity OCT and OA projections. The fiducial 

marker signal is present in the OA scans because the marker itself is composed of carbon fiber 

thereby absorbing the OA illumination and generating an OA signal whereas the capsule 
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PMMA cover is measured in the OCT scan due to a sharp change in refractive index between 

PMMA material and the acoustic coupling medium. The 2D projections indicate the intensity 

values of both modalities are highest near the capsule surface where both the OCT beam and OA 

transducer’s focal planes lie. Furthermore, OCT and OA mesh signals are visible up to an axial 

depth of 3mm with both modalities. 

Figure 6.12: Hybrid synchronous helical volumetric scan over 11.5 mm longitudinal pull back distance at 

30 Hz OCT/OA Bscan rate of a stainless-steel mesh phantom (a) Stainless steel phantom arranged in an 

Archimedean spiral with a pitch of 3mm in a 3D printed mount. (b) 3D projection of Optoacoustic data 

acquired. (c) 3D projection of OCT data acquired (d) 3D projection of Hybrid data acquired. (e-f) 2D 

Optoacoustic maximum intensity projections of the top and side respectively. (g-h) 2D OCT maximum 

intensity projections of the top and side respectively. (i-j) 2D Hybrid maximum intensity projections of the 

top and side respectively. 

Subsequently we assessed the translational potential of our endoscope by imaging an ex-vivo pig 

esophagus (Fig 6.13a-b) mounted inside a 50 mL falcon tube. During extraction of the sample 

unfortunately the vascular network quickly collapses, and blood is drained. Therefore, to mimic 

the hemoglobin vascular network present within the submucosa of the esophageal lining 100µm 

black sutures were embedded into the esophageal wall. A pullback helical scan over 15mm with 

the same scanning configuration as the steel mesh experiment was performed with the esophageal 

sample to acquire hybrid volumetric OCT-OA data. Figure 6.13c illustrates the hybrid OCT-OA 

volumetric data acquired in cylindrical coordinates and Figures 6.13 (d,e & f) show polar hybrid 

Bscans extracted from the volume in Figure 6.13c. OCT signals provide the structure of the 

esophageal wall revealing the epithelium and submucosa whereas OA signals measure the vessel 
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mimicking sutures which add complementary information. From the polar plots the OA signals 

visualized are deeper in comparison to the OCT signals, this feature could enable determining 

tumor invasion depth. Figures 6.13g-i represent the enface maximum intensity projections of the 

OCT, OA and hybrid scans respectively. The OCT enface projection reveals structural information 

of the esophageal lumen whereas the OA enface captures the positions of the blood mimicking 

vessels and the hybrid enface demonstrates how the images from each modality adds 

complementary information when overlaid over each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.13: Hybrid synchronous helical volumetric scan over 15 mm longitudinal pull back distance at 30 

Hz Bscan rate of an ex-vivo pig esophageal sample with black 100µm sutures embedded into the walls (a) 

& (b) photos of an ex-vivo pig esophagus model configured for imaging. (c) 3D volumetric render of hybrid 

OCT-OA data where grey scale map represents OCT data and hot colormap represents OA data (d- f) Hybrid 

polar B scans at selected positions extracted from the 3D volumetric data. (g-h) 2D maximum enface 

intensity projections of the OCT (g) , OA (h) and hybrid (i) . 

 

To showcase in-vivo imaging prospective of our endoscope human mucosa tissue from the inferior 

lip was imaged over a pullback distance of 30mm over an imaging period of 12.5 seconds with 

the same scanning configurations of the steel mesh and pig esophagus experiments (Fig 6.12 & 

6.13). The imaged region of interest is given in Fig 6.14a and the corresponding hybrid volume 

imaged presented in Fig 6.14b in cylindrical coordinates. Hybrid Bscan polar OCT-OA plots 

extracted from Fig 6.14b are illustrated in Fig 6.14c. The polar plots indicate that the OA signals 

originate from the submucosa layer of tissue where blood vessels are located and the OCT signals 
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reveals structural information of the epithelium and submucosa layers. Fig 6.14d-f depict the 

enface maximum intensity projection (MIP) images of the OCT, OA and hybrid datasets. The 

OCT MIP illustrates the structural features of the tissue whereas the OA MIP reveals the 

vasculature network present in the submucosal layer. The additional information gained by 

overlaying the data from both modalities as illustrated in Fig 6.14 may improve accuracy of early 

detection of esophageal cancer. 

 

 

Figure 6.14: Hybrid synchronous OCT/OA helical volumetric scan over 30 mm longitudinal pull back 

distance at 30 Hz Bscan rate of in-vivo human mucosal tissue (a) Imaged region of interest human mucosal 

tissue. (b) 3D volumetric render of hybrid OCT-OA data (c) OCT/OA B scans acquired at arbitrary 

locations during the pullback scan. (d-f) Maximum intensity projection images of OCT, OA and hybrid 

respectively. 

 

 

6.3.3 Discussion of partial capsule capability 

 
Previous implementation of OCT-OA endoscopes has small fields of view, poor hybrid B scan 

frame rates, improper probe construction, and insufficient SNR for human esophageal imaging 

(section 2.3), despite their great potential for GI tract diagnostics. In this work a 12.5mm, 30Hz 

B scan rate 360° hybrid OCT-OA capsule endoscope was presented, setting the foundation for 

further imaging of the human esophageal tract. Video rate hybrid OCT-OA synchronous A scan 

rate was performed with a dual channel DAQ card, and a custom made double clad fiber coupler 

was able to efficiently couple and deliver OCT-OA light at 85kHz OCT/42.5kHz OA A-scan rate 

into a single double clad fiber with OCT escorted in the core and OA in the inner cladding. 

 
The importance of combining OCT-OA imaging modalities was highlighted by imaging a hybrid 

suture phantom consisting of black and white sutures arranged in a Archimedean spiral, where all 
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sutures present were revealed only in the hybrid Bscans. Thus, the additional information gained 

when combining modalities could be useful when assessing dysplastic tissue or tumor 

morphology. In addition, imaging the hybrid phantom illustrated the intensity of both modalities 

is maximized just outside the capsule surface and falls exponentially with increasing depth. This 

is because both the OCT beam and OA transducer beam are focused just outside the capsule 

surface. Thus, moving away from the capsule surface not only does intensity (Fig 6.11e) reduce 

but so does lateral FWHM as depicted in Fig 6.11f. The reduction of lateral FWHM of OCT is not 

so important because penetration depth is limited to 1 mm and over this depth range the 

deterioration of lateral FWHM is minimal, although for OA the penetration depth could exceed 

1mm thus image reconstruction in cylindrical coordinates which requires higher sampling density 

to improve overlap between adjacent A-scans will be required to improve the tomographic 

reconstruction and thereby lateral FWHM over extended depth. 

 
A side from synchronously acquiring OCT-OA data, imaging at 30 Hz minimizes motion artifacts 

to allow real time surveillance of the human GI track and enable high resolution volumetric 

imaging as illustrated in the hybrid volumes ( Fig 6.12 ) of the mesh acquired in 4.8 seconds over 

a pullback distance of 11.5mm where volumes acquired were 4 𝑚𝑚 × 360° × 

11.5 𝑚𝑚 (𝜌, 𝜑, 𝑧) for each modality. The sampling resolution for OA was 3.75 µ𝑚 × 0.24° 

× 80 µ𝑚 (𝜌, 𝜑, 𝑧) and the sampling resolution for OCT was 2.5 µ𝑚 × 0.12° × 80 µ𝑚 (𝜌, 

𝜑, 𝑧). Capturing large volumes of data presents the ability to survey large areas of the human GI 

which may be prone to progression such as Barrett’s segments. The imaging potential of the hybrid 

endoscope was assessed by imaging ex-vivo pig esophagus embedded with black sutures 

mimicking blood vessels and in-vivo human mucosal tissue. The structural information tissue wall 

was captured by OCT capturing the epithelium and submucosa layers whereas the functional 

information of blood vasculature network was measured by optoacoustics. The hybrid overlay 

maximum intensity projections (Fig 6.13i & Fig 6.14f) demonstrate the additional information 

gained when imaging tissue thereby potentially improving diagnostic potential of esophageal 

cancer for better patient outcome. 

 
The hybrid OCT-OA capsule presented here is a major step forward toward video-rate in-vivo 

endoscopy of the human GI tract. Future attempts will focus on improving sensitivity, imaging 

speed, and integrating a smaller hollow shaft motor inside the capsule in-vivo imaging. To improve 

sensitivity and imaging depth a transducer preamplification stage will be installed inside the 

transducer [49]. To improve imaging speed from 30Hz to 50Hz to match the semicapsule speed 
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, the mechanical sealing will be improved to prevent water leaking into the slip rings joints at 

rotational speeds exceeding 30Hz. A custom made miniature hollow shaft motor will also be 

developed and installed in the proximal end of the capsule to ensure the final design meets the size 

of commercially available white capsules which are usually less than 32mm long [121, 122]. 

Motor instability during imaging will be minimized via post-processing methods under 

investigation. 

 
In summary, a 12.5 mm hybrid OCT-OA capsule endoscope prototype with a side viewing central 

aperture endoscopic transducer with integrated optics and slips rings allowed full field of view 

optoacoustic imaging at 30 Hz frame rate at 85kHz OCT/42.5kHz OA a-scan rate. The potential 

of our capsule was realized by capturing high resolution scans at unpresented rates in phantoms, 

ex-vivo pig esophagus and in-vivo human mucosal tissue by performing pull back helical scans to 

simultaneously acquire OCT-OA volumes. The studies presented herein showcase the 

translational potential of hybrid OCT-OA capsule endoscopy for delivering high resolution video 

rate 3D structural and functional information respectively of the human esophagus 

 
6.4. Summary and discussion 

 

Two capsule prototypes were presented in this chapter, a 16mm optoacoustic semicapsule and a 

12.5mm hybrid OCT-OA partial capsule. The semicapsule demonstrated for the first time the 

ability to acquire optoacoustic data with a capsule endoscope at 50Hz. The prototypes lateral 

resolution was determined as a function of pulse repetition rate and B scan frame rate by an 

Archimedean spiral arranged with a pitch of 3 mm. Volumetric acquisition at 0.24Hz capturing 

1790mm3 voxels was demonstrated by imaging a stainless-steel mesh and penetration depth 

estimated at ~0.84mm in-vivo human esophagus by conducting a series of controlled experiments 

with intralipid concentrations employed as the coupling medium. 

 
Building on the knowledge gained from the semicapsule prototype, a second generation prototype 

name the partial capsule prototype with a diameter of 12.5mm was built. The partial capsule 

demonstrated for the first time the ability to acquire hybrid OCT-OA endoscopy data 

synchronously at 30Hz frame rate. In addition, the partial capsule offered superior optoacoustic 

resolution and sensitivity compared to the semicapsule. Hybrid phantoms were constructed to 

illustrate the potential of hybrid imaging at 30 Hz. Imaging an ex-vivo pig esophagus and in-vivo 

human mucosal tissue, OCT was able to resolve esophageal wall layers and OA was able to 
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resolve the vasculature present within the wall. These studies demonstrate the translational 

potential of our purposed video rate hybrid endoscope to one-day image the human gastrointestinal 

tract 
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Chapter 7 OA endoscopy image reconstruction 

 
The spherically focused detector employed in our endoscope only has high lateral/axial resolution 

at the focal length of the detector. When imaging the esophagus, the vasculature present within 

the lumen can only be resolved within the focal range of the transducer with features outside the 

focal zone appearing smeared. To improve resolution outside the focal zone, synthetic aperture 

image reconstruction algorithms can be applied to recover resolution beyond the focal zone. This 

approach referred to as the synthetic aperture focusing technique (SAFT) is based on performing 

several measurements in different positions and combing them to synthesize a large effective 

aperture as depicted Fig 7.1. Several overlapping measurements away from focus observed by the 

transducer are combined to yield a large synthetic aperture with a narrow beam and high lateral 

resolution. As the number of overlapping measurements increases, the reconstructed image more 

accurately approximates the object. 

Figure. 7.1. illustration of the synthetic aperture focusing techniques where multiple overlapping 

measurements in space are combined to produce a large synthetic aperture, yielding high lateral resolution. 

 
In this chapter we discuss a time domain (delay and sum) and frequency domain (phase shift 

migration) SAFT algorithm in cartesian coordinates and cylindrical coordinates. Each algorithm 

was initially implemented in MATLAB and applied to reconstruct 2D simulation and experimental 

datasets acquired in cartesian coordinates. These approaches were then extended to cylindrical 

coordinates for optoacoustic endoscopy image reconstruction and also applied to simulated and 

experimental datasets acquired in cylindrical geometry. Finally, the feasibility of employing these 

algorithms for real time optoacoustic endoscopy Bscan reconstruction was assessed. 
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7.1. Optoacoustic image reconstruction in cartesian coordinates 

 
Scanning in cartesian coordinates, an optoacoustic probe acquires an A scan or optoacoustic signal 

at an equidistant spatial position dx with sampling interval dz defined by the DAQ system in depth 

along a linear line as shown in Figure 7.2. This configuration suitable for imaging skin tissue was 

previously demonstrated in RSOM [36]. To construct a B-scan image, the A-scan signals are 

arranged in a 2D array with each column representing an A-scan required at a unique spatial 

position dx along the scan direction. Extending to volumetric acquisition also referred to as a C- 

scan, the transducer probe is required to be mechanically raster scanned with equidistant spatial 

position intervals dx and dy. The depth interval dz in depth remains fixed by the sampling interval 

of the DAQ card. This scanning configuration was previously demonstrated in section 

3.4. The acquired dataset being either B scan or C scan together with the corresponding scanning 

parameters are the main input variables required for SAFT to reconstruct the original source. 

 

 
Figure. 7.2. Optoacoustic imaging configuration for reconstruction in cartesian coordinates. (a) An 

optoacoustic probe scans linearly along a point absorber where an A-scan is measured at each position with 

an equidistant spatial interval of dx and sampling interval of dz. (b) The raw optoacoustic B-scan image 

acquired of the point absorber is produced from the A scan signals measured at the different spatial position. 

 

7.1.1 Delay and sum algorithm 

 
SAFT can be synthesized in time domain by properly delaying and summing the A-scan signals 

recorded at each detector position. In our instance, because we employ a spherically focused 

transducer, the sensors focal point is considered as a virtual detector as illustrated in Figure 7.3. 
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Figure. 7.3. Virtual detector concept for a spherically focused transducer (a) diagram of a virtual detector 

for SAFT. (b) Geometry to determine the time delay for SAFT, z is synthesized point, 𝑧𝑓 is the position in 

depth of the virtual detector, r is axial distance and 𝑟′ is the distance from the virtual point to the synthesized 

point z. Retrieved from [125] 

 
During scanning, the sensitivity fields of the virtual detector’s overlap at adjacent positions to 

form new optoacoustic A scans by combining delayed A scan signals that are adjusted to the 

virtual detector position at each scan following [125]: 

𝑁 

𝑆𝐷𝐴𝑆(𝑥, 𝑧) = ∑ 𝑠(𝑖∙𝑑𝑥)(𝑡(𝑥,𝑧) − ∆𝑡(𝑖∙𝑑𝑥)) 
𝑖=𝑖 

 
(7.1) 

 

Where 𝑆𝐷𝐴𝑆(𝑥, 𝑧) is the synthesized SAFT plane generated by the delayed and summed procedure 

where, N is the number of A scans to be synthesized , 𝑠𝑖∙𝑑𝑥(𝑡(𝑥,𝑧)) is the received signal of the 

𝑖′𝑡ℎ scan taken at an equidistant interval 𝑑𝑥 at time 𝑡, ∆𝑡𝑖 is the time delay applied to the received 

signal of the 𝑖′𝑡ℎ scan at an equidistant interval 𝑑𝑥 to take into account the of the transducers focus 

by virtue of the virtual point detector . The time delay for a focused transducer is computed as: 

 
𝑟′ 

∆𝑡(𝑖∙𝑑𝑥) = 𝑠𝑖𝑔𝑛(𝑧 − 𝑧𝑓) ( 
𝑐 

) 
 

(7.2) 
 

Where z is the depth of the synthesized point, 𝑧𝑓 is the depth of the virtual point , c is the speed 

of sound and 𝑟′ is the distance from the virtual detector to the synthesized point. 

 
The delay and sum algorithm on its own is prone to strong low frequency side lobes of recovered 

features resulting in poor lateral resolution. To improve quality, a coherence factor (CF) is 
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introduced as a weighting coefficient to suppress side lobes given by [125]: 

|∑𝑁 𝑠 (𝑡)|
2

 

𝐶𝐹 = 𝑖=1 𝑖  

𝑁 ∑𝑁 |𝑠𝑖(𝑡)|2 
𝑖=1 

 
(7.3) 

 

Where 0 ≤ 𝐶𝐹 ≤ 1. CF=1 means output of 𝑆𝐷𝐴𝑆(𝑡) should be maintained because signals are 

strongly coherent, CF=0 means output of 𝑆𝐷𝐴𝑆(𝑡) should be decreased because signals are strongly 

incoherent. Hence the CF weighted delay and sum algorithm is given by: 

 

 

𝑆𝐷𝐴𝑆−𝐶𝐹(𝑥, 𝑧) = 𝑆𝐷𝐴𝑆(𝑥, 𝑧) ∗ 𝐶𝐹 (7.4) 
 

The B scan algorithm flow chart for the coherence weighted delay and sum algorithm in cartesian 

coordinates is presented in figure 7.4. 

Figure. 7.4. Bscan coherence weighted delay and sum algorithm flow chart for cartesian coordinates. The 

input 𝑠(𝑥, 𝑧) is the raw Bscan acquired and the output 𝑆𝐷𝐴𝑆−𝐶𝐹(𝑥, 𝑧) is the SAFT reconstructed Bscan. 

 

7.1.2 Phase shift migration 

 
For an acoustically homogenous medium, if the measurement surface is planar, solutions to the 

wave equation in 2D geometry are in the form [127]: 

 
 

𝑠(𝑡, 𝑥, 𝑧) 𝖺 𝑒𝑖(𝑘𝑥+𝑘𝑧𝑧−𝜔𝑡)
 (7.5) 

 

Where x, z, are the coordinates and 𝑘𝑥, 𝑘𝑧 are the corresponding wavenumbers. The relationship 

between the wavenumbers and spatial frequency 𝜔 is given by: 



Solving the homogenous wave equation for t>=0 yields: 
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∞ 

𝑠(𝑡, 𝑥, 𝑧) = ∬    𝐴(𝜔, 𝑘𝑥) 𝑒𝑖𝑘𝑧𝑧𝑒𝑖𝑘𝑥𝑥𝑒−𝑖𝜔𝑡𝑑𝑘𝑥𝑑𝜔 
−∞ 

 
(7.7) 

 

Where 𝐴(𝜔, 𝑘𝑥) is introduced as a complex amplitude . Note the term 𝐴(𝜔, 𝑘𝑥)𝑒𝑖𝑘𝑧𝑧 corresponds 

to the Fourier transform of 𝑠(𝑡, 𝑥, 𝑧). Hence, it can be shown that the forward Fourier transform 

𝑆(𝜔, 𝑘𝑥, 𝑧) is given by [124]: 
 

1 ∞ 
−𝑖𝑘𝑥𝑥  𝑖𝑘𝑥𝑥   𝑖𝜔𝑡 

𝑆(𝜔, 𝑘𝑥, 𝑧) = 
4𝜋2 ∬    𝑠(𝑡, 𝑥, 𝑧) 𝑒 𝑒 𝑒 𝑑𝑥𝑑𝑡 

−∞ 

 
(7.8) 

 

And equation 8.7 is the inverse Fourier transform: 
 

∞ 

𝑠(𝑡, 𝑥, 𝑧) = ∬ 𝑆(𝜔, 𝑘𝑥, 𝑧) 𝑒𝑖𝑘𝑥𝑥𝑒−𝑖𝜔𝑡𝑑𝑘𝑥𝑑𝜔 
−∞ 

 
(7.9) 

 

Assuming an arbitrary origin Z where the wave field the recorded is 𝑆(𝜔, 𝑘𝑥, 𝑍) , we can solve for 

𝐴(𝜔, 𝑘𝑥) in Eqn 7.7 and obtain the expression: 

𝑆(𝜔, 𝑘𝑥, 𝑧) = 𝑆(𝜔, 𝑘𝑥, 𝑍)𝑒𝑖𝑘𝑧(𝑧−𝑍)
 (7.10) 

Hence in the Fourier domain the wave field can be extrapolated from Z to z via multiplication with 

the phase term 𝑒𝑖𝑘𝑧(𝑧−𝑍) . By inserting eqn 7.10 into eqn 7.7 an expression for the extrapolated 

wave field in obtained: 

∞ 

𝑠(𝑡, 𝑥, 𝑧) = ∬ 𝑆(𝜔, 𝑘𝑥, 𝑍) 𝑒𝑖𝑘𝑧(𝑧−𝑍)𝑒𝑖𝑘𝑥𝑥𝑒−𝑖𝜔𝑡𝑑𝑘𝑥𝑑𝜔 
−∞ 

 
(7.11) 

To obtain a focused image of the measured acoustic signal, t is set equal to 0 from the extrapolated 

wave field, therefore eqn 7.11 simply reduces to a simple integration over 𝜔: 

 
 

∞ 

𝑠(𝑥, 𝑧) = ∬ 𝑆(𝜔, 𝑘𝑥, 𝑍) 𝑒𝑖𝑘𝑧(𝑧−𝑍)𝑒𝑖𝑘𝑥𝑥𝑒−𝑖𝜔𝑡𝑑𝑘𝑥𝑑𝜔 
−∞ 

 
(7.12) 

 

Eqn 7.12 produces a 1D focused line at a defined depth z. To reconstruct a SAFT Bscan eqn 7.12 

needs to be iteratively applied for each depth z of the original raw B scan acquired and vertically 

concatenated. 

 
 

𝑠𝑃𝑆𝑀(𝑥, 𝑧) = 𝑠1(𝑥, 𝑧) ⁀𝑠2(𝑥, 𝑧)⁀𝑠𝑛(𝑥, 𝑧) (7.13) 

𝜔  2 
2 2 

(  )  = 𝑘𝑧 + 𝑘𝑥 
𝑐 

(7.6) 

 



Where n is the total number z depths. 
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This approach is called phase shift migration (PSM) and since this algorithm operates in the Fourier 

domain, it can process B scans significantly faster compared to the delay and sum algorithm which 

performs interpolation in the time domain. At the same time exponential computation for every 

depth z can be time consuming, to overcome this problem the exponential could be precomputed 

and applied recursively per loop for each depth inside a for loop to produce a focused B scan. The 

Bscan algorithm flow chart for the phase shift migration algorithm is presented in figure 7.5. 

Finally, for a focused transducer to apply the virtual detector concept from Fig 7.3 in frequency 

domain, the time delay to focus is compensated for by multiplication with the phase term (
𝑖𝜔𝑓

)
. Here c is the speed of sound and f is the transducers focal length. 

𝑒  𝑐 

 
 
 

 

 

Figure. 7.5. Bscan phase shift migration algorithm flow chart. The input 𝑠(𝑡, 𝑥, 𝑍) is the raw Bscan 

acquired and the output 𝑠𝑃𝑆𝑀(𝑥, 𝑧) is the reconstructed phase shift migration Bscan.. 
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7.1.3 Cartesian Bscan image reconstruction with simulated data 

 
The delay and sum and phase shift migration algorithms proposed in 7.1.1 and 7.1.2 were 

implemented in MATLAB. The Kwave acoustic toolbox was utilized to simulate a B scan 

consisting of a focused detector of similar dimensions as the HFM23 previously presented in Fig 

3.8a imaging five-point sources with 5µm diameter and 500 µm spacing intervals beyond the focus 

in the axial direction. Simulation parameters included a sampling rate of 300MHz, speed of sound 

of 1500m/s and scan step interval of 5 µm in the x-direction. The simulated Kwave configuration 

and generated raw Bscan are illustrated in Figure 7.6. 

 

 
Figure. 7.6. Kwave simulation of HFM23 transducer linearly scanning over 5µm point sources placed at 

and beyond the transducer focus with 500 µm spacing intervals. (a) The simulated scanning configuration 

(b) The raw B scan acquired following the simulation scan where Depth=0 mm corresponds to the focal 

length of the transducer. 

 
Applying the delay and sum with coherence weighting (DAS-CF) and phase shift migration (PSM) 

algorithms on the raw Bscan in Fig 7.6b we obtained the reconstructed SAFT Bscans depicted in 

Fig 7.7a and Fig 7.7b respectively. The computational time required to reconstruct the Bscan in Fig 

7.6b was 7.2 seconds with the DAS-CF and 0.12 seconds with PSM algorithm. As PSM performs 

interpolation in the frequency domain rather than the time domain the algorithm is significantly 

faster than the DAS-CF algorithm. From the DAS-CF reconstructed Bscan SNR increases as the 

acoustic sources moves away from the virtual point or focus of the transducer. This is because 

there is more overlap of acoustic signals away from the focus and when delayed signals are 

combined the acoustic sources are more correctly estimated. As a result of the lack of 
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overlap at focus between adjacent A scans, the point source at focus is not visible in this case. 

From the reconstructed DAS-CF Bscan one could suggest to improve reconstruction quality it 

would be best to place the acoustic source away from the focus, although in reality the acoustic 

source should be placed place ~500µm away from focus. This is because transducer sensitivity 

significantly degrades away from focus and our simulation model does not take into account 

acoustic attenuation within the coupling medium which flattens and broadens the original high 

frequency optotoacoustic signal as it propagates though an absorbing media with high frequencies 

more readily absorbed than lower frequencies following the power law. Alternatively, with PSM 

reconstruction SNR decreases moving away from focus which corresponds to the signal strength 

of the raw signals measured. Fig 7.7c provide measurements of the FWHM of the point sources in 

the axial and lateral resolutions. The axial resolutions measured with both algorithms range 

between 40-45µm over 2mm depth. Lateral resolution is observed to degrade as the acoustic 

source moves away from the focus with both algorithms, though the DAS-CF algorithm seems to 

resolve the point source more accurately compared to the PSM algorithm. 

 

 

Figure. 7.7. Bscan Delay and sum (DAS) and Phase shift migration (PSM) image reconstructions (a) DAS 

Bscan reconstruction with coherence factor (CF) (b) PSM Bscan reconstruction (c) Lateral and axial 

FWHM values of the reconstructed point sources. 
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7.1.4 Cartesian Bscan image reconstruction with experimental data 

 
Both algorithms were next assessed with experimental Bscan data acquired in cartesian 

coordinates. The experimental configuration is depicted in 7.8a, here a line scan is performed to 

image five 50µm sutures arranged in a diagonal using the HFM36 transducer with the custom 

made grin lens depicted in Figure 5.11a. Scanning was performed using the system in section 3.4 

with a lateral sampling interval of 10µm. Figure 7.8b presents the raw Hilbert Bscan acquired, the 

grin lens interrogation beam limits the viewing window of acoustic signals measured by the 

transducer as it travels over the point absorber along the scanning direction. If the interrogation 

spot size were increased the measured Bscan would be similar to the simulated Bscan in Figure 

7.6b where the wings of the hyperbolic function would appear. The Reconstructed PSM Bscan 

shown in Fig 7.8c illustrates SNR is reduced moving away from focus. In contrast the 

reconstructed DAS-CF B scan in Fig 7.8d shows SNR reaches a maximum at point source 3, 

moving towards focus reduces the overlap between adjacent A-scans thereby reducing SNR and 

moving towards point 5 from point 3 reduces SNR because the transducer itself becomes less 

sensitive moving away from focus. 

 
The FWHM axial and lateral measurements of reconstructed acoustic sources in Fig 7.8e show 

that axial resolution remains approximately the same over the 1.5mm depth between point sources 

and lateral resolution reduces moving away from the focus of the transducer. The exception being 

the 91µm axial resolution measured at point 1 source with the DAS-CF, this is because this point 

source is very close to the focus where the DAS-CF algorithm performs poorly as previously 

discussed in 7.1.3. 

 
To enhance recovered lateral resolution of the reconstructed Bscans, more A scans could be 

acquired by reducing the lateral sampling interval from dx=10µm. Additionally, the illumination 

spot size could also be increased to measure more off-axis A scans such that more of the hyperbolic 

shape appears in the measured raw Bscan and the focal length of the transducer also reduced to 

increase the numerical aperture. All three methods increase the number of A scans present in the 

measured B scan to improve the interpolation process of each algorithm and more accurately 

estimate the original source. 
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Figure. 7.8. Experimental Bscan measurement and reconstruction in cartesian coordinates (a) The 

experiment configuration of measuring five 50µm sutures arranged in a diagonal in the axial direction with 

the HFM36 transducer and scanning performed with the raster scanning setup in 3.4. The lateral sampling 

distance between adjacent A-scans is dx=10µm (b) The raw Hilbert B scan measured where depth=0 mm 

corresponds to the focal length of the transducer. (c & d) correspond to the PSM and DAS-CF reconstructed 

Bscans generated. (e) Lateral and Axial FWHM values of the reconstructed acoustic sources. 
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7.2. Optoacoustic image reconstruction in cylindrical coordinates 

 
Imaging the cylindrical esophagus surface with our proposed design in chapter 6 requires the 

transducer rotate and measure the optoacoustic echo generated from the lumen wall travelling 

inwards as presented in Figure 7.9. A scans acquired in this configuration have a constant axial 

sampling interval dr in depth and a constant angular sampling resolution d𝜃. Although the lateral 

displacement in dr between adjacent A scans is reduced with increasing depth. A B-scan is 

produced following a 360º revolution where each column in the 2D array of A scans measured 

represents a unique equidistant angular sampling interval multiple of d𝜃 over the rotational scan 

direction. The reconstruction algorithms presented for cartesian coordinates in section 7.1 are 

modified in this section for cylindrical coordinates and the feasibility of applying these algorithms 

at 50Hz video rate for our hybrid endoscope is assessed. 

 

Figure. 7.9. Optoacoustic imaging configuration for reconstruction in cylindrical coordinates. (a) An 

optoacoustic probe scans rotationally around esophageal tissue with point absorbers embedded. The dr 

depth sampling interval between adjacent A-scan is constant whereas the lateral displacement between a 

fixed angular sampling interval d𝜃 degrades with increasing depth. (b) The raw cylindrical optoacoustic B 

scan image acquired of the point absorbers is produced from the A scan signals measured at the different 

angular positions over 360 degrees. 

 

7.2.1 Cylindrical delay and sum 

 
Akin to synthesizing SAFT in the time domain with cartesian coordinates, A scan signals acquired 

in cylindrical coordinates are appropriately delayed and summed at each angular position. 
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Figure 7.10 3D cylindrical scanning configuration. R is the distance from the rotational axis to the 

transducer’s active element facing the cylindrical surface and f is the focal length of the transducer. The 

cylindrical coordinates (𝑅, 𝜃′, 𝑧′) represent coordinates of the transducer position and coordinates (𝑟, 𝜃, 𝑧) 

represents absorber position with respect to the rotational axis. 𝑟′ is the distance between the absorber and 

transducer with respect to each other. 

 
Hence, the cylindrical delay and sum algorithm is given by: 

 

𝑁 

𝑆𝐶𝐷𝐴𝑆(𝑟, 𝜃) = ∑ 𝑠(𝑖∙𝑑𝜃)(𝑡(𝑟,𝜃) − ∆𝑡(𝑖∙𝑑𝜃)) 
𝑖=𝑖 

 
(7.14) 

 

Where 𝑆𝐶𝐷𝐴𝑆(𝑟, 𝜃) is the synthesized SAFT cylindrical plane generated by the delayed and 

summed procedure where, N is the number of A scans to be synthesized , 𝑠𝑖∙𝑑𝜃(𝑡(𝑟,𝜃)) is the received 

signal of the 𝑖′𝑡ℎ scan taken at an equidistant angular interval 𝑑𝜃 at time 𝑡, ∆𝑡(𝑖∙𝑑𝜃) is the time delay 

applied to the received signal of the 𝑖′𝑡ℎ scan at an equidistant interval 𝑑𝜃 to take into account the 

of the transducers focus by virtue of the virtual point detector . In cylindrical coordinates following 

the illustration of Fig 7.10 the time delay for a focused transducer is given by: 

𝑟′ 

∆𝑡(𝑖∙𝑑𝜃) = 𝑠𝑖𝑔𝑛(𝑟 − (𝑅 + 𝑓)) ( 
𝑐 

) 
 

(7.15) 

 

Where R is the distance of the transducer from the rotational axis, f is the focal length of the 

transducer, c is the speed of sound , 𝑟′ is the distance from the virtual detector or transducer focus 

to the synthesized point and r is the depth of the synthesized point. 
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𝑛 

The B-scan algorithm flow chart for the coherence weighted delay and sum algorithm in 

cylindrical coordinates is presented in Fig 7.11. When comparing this flow chart to the delay and 

sum algorithm in cartesian coordinates in Fig 7.4 the only difference is the first step of the 

algorithm where the time delay matrices generated are in polar coordinates to match the 

coordinates of the input B-scan 𝑠(𝑟, 𝜃) prior to synthesizing new A scans during interpolation. 

Following this step, the interpolated frames are summed, and the coherence factor applied to 

suppress side lobes and improve lateral resolution resulting in the reconstructed SAFT B-scan 

𝑆𝐶𝐷𝐴𝑆−𝐶𝐹(𝑟, 𝜃). 
 

Figure. 7.11. B scan coherence weighted delay and sum algorithm flow chart for cylindrical coordinates. 

The input 𝑠 (𝑟, 𝜃) is the raw B scan acquired in cylindrical coordinates and the output 𝑆𝐶𝐷𝐴𝑆−𝐶𝐹(𝑟, 𝜃) is 

the reconstructed B scan. 

 

7.2.2 Cylindrical phase shift migration 

 
Solutions to the wave equation in cylindrical coordinates are of the form [128]: 

 

 
𝑠(𝑡, 𝜃, 𝑧, 𝑟) 𝖺 𝐻1,2(𝑘𝑟𝑟)𝑒±𝑖𝑛𝜃𝑒±𝑘𝑧𝑧𝑒±𝑖𝜔𝑡 

𝑛 
 

(7.16) 

 

Where 𝐻1,2(𝑘𝑟𝑟) represents a Hankel function of the first or second order n , 𝑘𝑟 and 𝑘𝑧 are the wave 

numbers for the r and z coordinates and 𝜔 is the angular frequency. The relationship between 

wavenumbers and angular frequency is given by the dispersion relation: 
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𝜔 2 
𝑘𝑟 = √(   )  − 𝑘2 

𝑐 𝑧 

 
(7.17) 

 

In our imaging configuration presented in Fig 7.10 the transducer is placed at a distance space 

𝑟 = 𝑅 from the center of rotation measuring optoacoustic waves generated in the space 𝑟 > 𝑅. 

Hence only waves travelling inwards are measured which correspond to the second order Hankel 

function whereas the first order Hankel function represents outwards travelling waves. Under these 

conditions the general solution to the wave equation in cylindrical coordinates is given by [128]: 

 
 

∞ ∞ 

𝑠(𝑡, 𝜃, 𝑧, 𝑟) =    ∑   𝑒𝑖𝑛𝜃 ∬    𝐴𝑛(𝜔, 𝑘𝑧) 𝐻2(𝑘𝑟𝑟)𝑒𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡𝑑𝑘𝑧𝑑𝜔 
𝑛 

𝑛=−∞ −∞ 

 
 

(7.18) 
 

 

Where 𝐴𝑛(𝜔, 𝑘𝑧) is introduced as a complex amplitude. 

 
 

The optoacoustic signals measured at the plane 𝑟 = 𝑅 denoted by 𝑠(𝑡, 𝜃, 𝑧, 𝑅) in the Fourier 

domain is given by : 

1   3 2𝜋 ∞ 

𝑆𝑛(𝜔, 𝑘𝑧, 𝑅) = ( )  ∫ 𝑑𝜃 ∬    𝑠(𝑡, 𝜃, 𝑧, 𝑅) 𝑒−𝑖𝑛𝜃𝑒−𝑖𝑘𝑧𝑧𝑒𝑖𝜔𝑡𝑑𝑧𝑑𝑡 
2𝜋 0 −∞ 

 
(7.19) 

 
And the corresponding inverse Fourier transform is: 

 

∞ ∞ 

𝑠(𝑡, 𝜃, 𝑧, 𝑅) =  ∑  𝑒𝑖𝑛𝜃 ∬   𝑆𝑛(𝜔, 𝑘𝑧, 𝑅) 𝑒𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡𝑑𝑘𝑧𝑑𝜔 
𝑛=−∞ −∞ 

 
(7.20) 

 
From equations 7.18 and 7.20 we obtain an expression for 𝐴𝑛(𝑘𝑧, 𝜔): 

 

𝑆 (𝜔, 𝑘 , 𝑅) = 𝐴 (𝜔, 𝑘 )𝐻2(𝑘 𝑅) → 𝐴 (𝜔, 𝑘 ) = 
𝑃𝑛(𝑅, 𝑘𝑧, 𝜔)

 
𝑛 𝑧 𝑛 𝑧 𝑛 𝑟 𝑛 𝑧 𝐻2(𝑘𝑟𝑅) 

𝑛 

 
(7.21) 

 
Using this relation, we can eliminate 𝐴𝑛  from equation 7.18 to obtain: 

 
𝑛=∞ 

1 ∞ ∞ 𝐻2(𝑘 𝑟) 
𝑠(𝑡, 𝜃, 𝑧, 𝑟) =  ∑  𝑒𝑖𝑛𝜃 ∫ ∫ 𝑆 (𝜔, 𝑘 , 𝑅) 𝑛 𝑟 

𝑒𝑖𝑘𝑧𝑧𝑒−𝑖𝜔𝑡𝑑𝑘 𝑑𝜔 
(2𝜋)2 𝑛 𝑧 

𝐻2(𝑘 𝑅) 𝑍 
𝑛=−∞ −∞    −∞ 𝑛 𝑟 

 

(7.22) 

 

Eqn 7.22 states that we can perform wave field extrapolation from 𝑅 to 𝑟 in the Fourier domain by 

multiplication with the transfer function G: 
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𝐻2 (𝑟√ 𝜔  2 
− 𝑘2) 

𝐻2(𝑘 𝑟) 𝑛 
( 𝑐 ) 𝑧

 
𝐺(𝜔, 𝑛, 𝑘 , 𝑟, 𝑅, 𝑐) = 

𝑛 𝑟 
= 𝑧 𝐻2(𝑘 𝑅) 2 

𝑛 𝑟 𝐻2 (𝑅√ 𝜔)  − 𝑘2) 
𝑛 ( 𝑐 𝑧 

 

(7.23) 

 

Calculating the Hankel functions in Eqn 7.23 are computationally expensive hindering wavefield 

extrapolation. Alternatively, Huan et al developed an approximate solution for the transducer 

function G by using the Rayleigh-Sommerfeld diffraction formula [129]: 

 

√𝑟    (𝑖(𝑟−𝑅)√𝜔2
−

𝑛2
−𝑘2) 

𝐺(𝜔, 𝑛, 𝑘 , 𝑟, 𝑅, 𝑐)~ 𝑒 𝑐2     𝑅𝑟 𝑧
 

𝑧 𝑅 
 

(7.24) 

 
Following the scanning configuration depicted in 7.10 , where the transducer position is (𝑅, 𝜃′, 𝑧′) 

, absorber position is (𝑟, 𝜃, 𝑧) and the distance between the absorber and transducer 𝑟′ is given by: 
 

 

𝑟′ = √𝑅2 + 𝑟2 − 2𝑅𝑟𝑐𝑜𝑠(𝜃 − 𝜃′) + (𝑧 − 𝑧′)2 (7.25) 

 

Eqn 7.24 is valid when the term cos (𝜃 − 𝜃′) which corresponds to the angular displacement 

between the transducer and absorber in Eqn 7.25 can be approximated as 1 − (𝜃 − 𝜃′)2/2. This is 

valid when the transducer has a narrow beam width. An in-depth analysis of the accuracy of Eqn 

7.24 is performed in Haun et al [129]. 

 
 

A focused image plane at position r can be acquired by extrapolating the wave field from R to r 

by multiplication with the transfer function G and evaluating it at t=0 reduces Eqn 7.22 to a simple 

integral over 𝜔 in the Fourier domain. Inverse Fourier transformation following integration to 

spatial coordinates results in the focused image plane 𝑠𝑝(𝑡 = 0, 𝜃, 𝑧, 𝑟). 

𝑛=∞ 
1 ∞ ∞ 

𝑠 (𝑡 = 0, 𝜃, 𝑧, 𝑟) =   ∑ 𝑒𝑖𝑛𝜑 ∫    ∫    𝑆 (𝑅, 𝑘 , 𝜔)𝐺(𝜔, 𝑛, 𝑘 , 𝑟, 𝑅, 𝑐) 𝑒𝑖𝑘𝑧𝑧𝑑𝑘   𝑑𝜔 
𝑝 (2𝜋)2 𝑛 𝑧 𝑧 𝑧 𝑍 

𝑛=−∞ −∞  −∞ 

(7.26) 

 
Equation 7.26 can then be used to iteratively build a 3D focused over range of r values with each 

focused plane in r being vertically concatenated. This procedure referred to as cylindrical phase 

shift migration 

𝑠𝐶𝑃𝑆𝑀(𝜃, 𝑧, 𝑟) = 𝑠𝑝1 (𝜃, 𝑧, 𝑟) ⁀𝑠𝑝2 (𝜃, 𝑧, 𝑟)⁀𝑠𝑝𝑚(𝜃, 𝑧, 𝑟)  

(7.27) 

 
Where m is the total number of r steps in depth. 

 

The 2D or Bscan algorithm flow chart for the cylindrical phase shift migration algorithm is 

presented in figure 7.12. 
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Figure. 7.12. Bscan cylindrical phase shift migration algorithm flow chart. The input 𝑠(𝑡, 𝜃, 𝑅) is the raw 

Bscan acquired at range R from the center of rotation and the output 𝑠𝐶𝑃𝑆𝑀(𝜃, 𝑟) is the reconstructed 

cylindrical phase shift migration Bscan wavefield interpolated from R to r . 

 

 

 

7.2.3 Cylindrical Bscan image reconstruction with simulated data 

 
The cylindrical delay and sum and cylindrical phase shift migration algorithms proposed in 7.2.1 

and 7.2.2 were implemented in MATLAB and the Kwave toolbox used to generate a simulated B- 

scan of a transducer rotating over a 180-degree angle around the central axis and measuring the 

echo of point sources travelling inwards. Because Kwave does not support cylindrical coordinates 

to accurately map rotation of a transducer following an arc trajectory, a high resolution 

10mmx10mm cartesian grid simulated with 2µm spacing was generated. expanding the grid size 

or improving grid resolution further drastically increases computational scanning duration. Hence, 

considering size of the transducer to be simulated and the distance between the transducer and 

center of rotation R, we decided not to simulate HFM23 transducer previously generated in 

7.1.3. In this instance a planar transducer with diameter 0.2mm was generated and the distance 

between transducer to center of rotation was set to R=2mm. The simulation sampling rate was 
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200MHz, speed of sound set to c=1500m/s and angular step scan interval between 0º to 180º was 

1º. Four point absorbers of size 50 µm were placed at random angular positions between r=1mm 

to r=6mm as illustrated in Fig 7.13. 

 
 

Figure. 7.13. 2D 180º Kwave simulation of an 0.2mm planar transducer cylindrically scanning over four 

50µm point sources placed at random angular positions between r=1mm to r=6 mm. (a) The simulated 

configuration scanning over a 180º arc with an angular step of 1º (b) The raw Hilbert B scan acquired 

following the simulation scan trajectory in (a). 

 

Applying the cylindrical delay and sum with coherence weighting (CDAS-CF) and cylindrical 

phase shift migration algorithms (CPSM) on the raw B scan in Fig 7.13b we obtained the 

reconstructed Bscans depicted in Fig 7.14a and Fig 7.14b respectively. The computational time 

required to reconstruct the B scan was 3.2 seconds with the CPSM algorithm and 2.7 seconds with 

the CDAS algorithm. Conversely in cartesian coordinates in 7.1.3 the phase shift migration 

algorithm was faster than the delay and sum. This is because the wavefield extrapolation transfer 

function in cartesian coordinates is a simpler arithmetic to perform per step in depth compared to 

the derived G transfer function in cylindrical coordinates given by Eqn 7.24. In both instances the 

SNR decreases moving away from the transducer. Interestingly in cartesian coordinates the DAS 

algorithm illustrated SNR improved moving away from the transducer because there was more 

overlap of acoustics signals between adjacent A scans synthesized. The inverse is observed in 

cylindrical coordinates, and this is because the acoustic sources arranged are at least 1mm away 

from the transducer where there is sufficient overlap between adjacent A scans to recover the 

original source with point sources beyond r=1mm experiencing additional acoustic attenuation 

and thereby resulting in a lower SNR. 

 
Figure 7.14c presents the FWHM lateral and axial resolution measurements of the reconstructed 

point source. Moving away from the transducer the recovered lateral resolution reduces with both 

algorithms as the arc interval between adjacent A-scans increases and signal strength reduces, 

although the CDAS-CF algorithm recovers the sources with higher accuracy than the CPSM 
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algorithm. This could be attributed as a result of the additional coherence weighting factor applied 

to the CDAS algorithm to suppress side lobes. Excluding the exception where the axial resolution 

of 126𝜇m is observed at r=1mm with the CDAS-CF algorithm, the axial resolutions remain much 

the same over the depth range r=1mm to r=6mm. 

 
Figure. 7.14. Cylindrical Delay and sum with coherence weighting (CDAS-CF) and Cylindrical Phase shift 

migration (CPSM) Bscan image reconstructions (a) CDAS-CF B scan reconstruction with coherence factor 

(CF) (b) CPSM B scan reconstruction (c) Lateral and Axial FWHM values of the reconstructed point 

sources in cylindrical coordinates where point 1 is closest to the transducer and point 4 is furthest from the 

transducer 

 

7.2.4 Cylindrical Bscan image reconstruction with experimental data 

 
Subsequently, the cylindrical reconstruction algorithms were applied to experimental data 

acquired in cylindrical coordinates. Here the HFM36 transducer with the custom-made grin lens 

from figure 7.11a was carefully mounted to a 360° rotational Thorlabs step scanner model: 

K10CR1. The experimental configuration is illustrated in figure 7.15a where a rotational scan is 

performed over +30° to -30° with step size of 0.05° to image five 50µm sutures arranged in a 

diagonal in the axial direction. The raw Hilbert Bscan measured is presented in Fig 7.15b in 

cylindrical coordinates where 𝑟 = 0 corresponds to the focal plane of the HFM36 transducer. The 

visible segment of the hyperbolic shape is limited by the interrogation spot size determine by the 

grin lens. If the interrogation spot size were increased more of the hyperbolic shape would be 

observable as demonstrated in Fig 7.13b and overall reconstruction improved. The reconstructed 

CDAS-CF Hilbert Bscan represented by Figure 7.15c displays SNR of the reconstructed image 
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increases as the acoustic source generated moves away from the focal plane of the transducer, 

reaching a maximum SNR at point source 3 located approximately 1mm away from focus and 

then decreases as the acoustic attenuation beyond this limit overwhelms the algorithm as a 

consequence of reduced transducer sensitivity. In contrast the CPSM reconstructed B scan in 

Figure 7.15d indicates the SNR decreases in a linear fashion away from the focal plane. 

 
The FWHM axial and lateral measurements of reconstructed point sources in Fig 7.15e show that 

axial resolution reduces by approximately 10 µm and lateral resolution reduces from 42µm to 

approximately 100µm over the 1.5mm depth beyond the transducers focal plane. To reduce the 

low frequency signals surrounding the reconstructed point sources in Figs 7.15c and 7.15d the step 

angle could be reduced from 0.05º which corresponds to an arc length of 12µm at the focal plane 

and 13 µm along the plane of point source 5 to improve the algorithms A-scan interpolation 

operation. The illumination source spot size could also be increased and focal distance of the 

transducer reduced to measure a larger segment of the hyperbolic function in the raw B-scan and 

improve reconstruction. Finally, the 2D algorithms presented could be extended to 3D for helical 

pullback scanning and thereby more accurately estimate the acoustic sources as a result of 

additional A scans between adjacent Bscans utilized during each algorithms interpolation process. 
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Figure. 7.15. Experimental B-scan measurement and reconstruction in cylindrical coordinates (a) The 

experiment configuration of measuring five 50µm sutures arranged in a diagonal in the axial direction with 

the HFM36 transducer. The value of R here is 5.5mm and the angular sampling distance between adjacent 

A-scans is 𝑑𝜃=0.05º (b) The raw Hilbert B scan acquired over 60º where r=0 mm corresponds to the focal 

plane of the transducer. The imaging depth of the cylindrical Bscan presented is 2mm (c) The reconstructed 

CDAS-CF Hilbert Bscan measured over 60º(d) The reconstructed CPSM Hilbert Bscan measured over 60º 

(e) Lateral and Axial FWHM values of the reconstructed acoustic sources. 

 

 

7.2.5 Feasibility of Cylindrical Bscan image reconstruction at 50Hz 

 
Our endoscope presented in chapter 6 has the ability to operate upto 50Hz Bscan rate and therefore 

a corresponding image construction method is required to operate at this rate. When comparing 

the computational speeds of the present algorithms, CPSM algorithm in 8.2.3 was 1.2 times slower 

than the CDAS algorithm because the wavefield had to be recursively extrapolated per r 
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step with the transfer function G given by Eqn 7.24. However, this procedure could be significantly 

accelerated by precomputing a lookup table for the transfer function G for all r in advance. Then 

during reconstruction, wavefield extrapolation could be by a simple multiplication, removing the 

need to iterate. In addition to further accelerate reconstruction, the CPSM code was vectorized and 

programmed to perform the FFT and matrice operations using the PC’s built in GPU. Finally, 

algorithm variables were declared in single precision rather than double precision to further 

increase computational speed. Double precision useful when storing values exceeding 3.4 × 1038 

or lower than −3.4 × 1038 , in our case the maximum voltage limit of our DAQ card is 400mV 

and the noise level is 1mV . Hence reducing precision from double to single will not influence 

optoacoustic image quality. Modifying the CPSM algorithm with all these changes we obtain the 

accelerated CPSM algorithm. 

 
To assess the feasibility of applying the accelerated CPSM algorithm with our endoscope at 50Hz, 

the simulated B-scan over 180º from Figure 7.13 was mirrored to complete a full revolution and 

cropped to 2mm in depth as illustrated in Fig 7.16. Applying our modified CPSM algorithm on 

the simulated dataset the B-scan was reconstructed in 11ms. Considering each revolution of our 

endoscope is 20ms, applying our modified CPSM algorithm to this data set allows for 9ms to 

update the frame on the display before the next revolution begins. Here the axial sampling interval 

is 7.5µm and considering our hybrid endoscope from chapter 6 the lateral sampling interval at the 

focal plane which is located at the capsule surface would be 18µm. Hence the accelerated CPSM 

algorithm is suitable for optoacoustic endoscopy image reconstruction at 50Hz under these 

conditions 

Figure. 7.16. 360° accelerated cylindrical phase shift migration Bscan reconstruction (a) Raw simulated 

360° Bscan with four 50µm point absorbers (b) Reconstructed 360° cylindrical phase shift migration Bscan 

in approximately 11ms. 
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7.3. Summary and disucussion 

 

Two algorithms including the delay sum and phase shift migration in cartesian coordinates were 

introduced. Both algorithms capability to recover lateral resolution over depth were assessed in 

kwave simulations and experimental measurements with the HFM36 spherical transducer. As 

phase shift migration performed interpolation in the frequency domain, it was able to compute 

reconstructed Bscans faster when compared to interpolating A-scans in time domain using delay 

and sum image reconstruction. Interestingly using the delay and sum the SNR of the reconstructed 

Bscans improves when moving away from the focus of the transducer or the virtual point due to 

additional overlap of acoustic signals, whereas SNR decreases when moving away from the focus 

when employing phase shift migration which corresponds to a lower signal strength of the raw 

signal. 

 
The algorithms were then extended to cylindrical coordinates for optoacoustic endoscopy image 

reconstruction. Both modified algorithms were applied to simulated and experimental data 

acquired in cylindrical geometry. The SNR of the reconstructed Bscans over depth observed 

followed a similar pattern when comparing to the observations made to the reconstructed Bscans 

in cartesian coordinates. Finally, the feasibility of employing these algorithms for real time 

optoacoustic endoscopy Bscans reconstruction was assessed. Cylindrical phase shift migration was 

able to reconstruct Frame’s at 11ms thereby suggesting that such an algorithm could be used one 

day in-vivo human esophagus at Bscans frame rates upto 50Hz 

 

 
 

Chapter 8 Conclusion and outlook 

 
8.1. Conclusion 

 
As the incidence rates of esophageal cancer continue to rise, endoscopy units are burdened with 

the need to perform routine surveillance as a result of poor detection of dysplasia with WLE. In 

pursuit of superior methods to reveal 3D information of the gastrointestinal tract, OCT and OA 

have been explored. OCT has offered improved detection accuracy of human dysplasia as opposed 

to WLE. Albeit the modality on its own has yet to be widely accepted into clinical practice as 

deciphering early signs of dysplasia purely by means of differences in refractive indices remains 

challenging. In contrast, OA endoscopy is highlighted primarily in small animal experiments with 

a single study in large animals (i.e., pigs) where the esophagus anatomy better resembles the 
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human gastrointestinal tract. Although early results are promising by revealing the vasculature 

network within the esophageal wall, the potential of OA endoscopy in-vivo human esophagus has 

yet to be realized. Imaging the human esophagus with the combination of optoacoustic imaging to 

reveal pathophysiological information in addition to the already proven structural imaging with 

OCT could further enhance the detection of early signs of dysplasia and provide routes for 

improved diagnosis. Present hybrid OCT-OA endoscope implementations are designed for 

imaging small animal organs or intravascular applications, which are not suitable imaging the 

human esophagus. 

 
To design a hybrid OCT-OA endoscope for imaging the human GI tract we began development 

by producing several side-looking optoacoustic detectors with a central aperture for collinear 

OCT-OA illumination for scanning the lumen wall. To retain high lateral resolution with extended 

depth of focus the axicon geometry was investigated as an alternative to the common spherical 

transducer harnessed in OA endoscopy. An optoacoustic transducer characterization rig was built 

with a broadband omnidirectional point source to determine the 4D total impulse response of each 

transducer built. The lithium niobate transducers with focusing achieved via a glass shaped lens 

offered clean spatial responses with highest sensitivity. Additionally, the axicon transducer offered 

a depth focus 4.2 larger than a spherical transducer similar in size. However during OA imaging 

the axicon transducer produced a blurred image when scanning a tilted 100µm suture whereas the 

spherical transducer correctly resolves the suture at focus. 

 
To explain the discrepancy in axicon performance between the characterization and imaging 

measurements, we simulated the axicon and spherical transducer in 3D of the same dimension at 

½ half scale using Kwave. 3D Kwave simulations were conducted with the generated transducers 

to scan around a point and line source mimicking the experimental characterization and imaging 

conditions. The spherical transducer produced spatial maps which were independent of the 

acoustic sources shapes whereas the axicon produced spatial maps where were dependent upon 

the acoustic source shapes. High lateral resolution was only obtained over an extended depth of 

focus when imaging a point source. Alternatively, in the case of imaging a line source, the axicon 

was prone to high amplitude low frequency off-axis signals degrading the lateral resolution. This 

behavior suggested the axicon would be better suited for OA microscopy applications where the 

transducer always responds to an optically excited point source and in particular an optical Bessel 

beam could be applied to exploit the axicon’s elongated acoustic sensitivity profile. Hence an 

inverted OA microscope was established to evaluate imaging potential with a Gaussian/Bessel 

illumination and spherical/axicon detection. By matching Bessel illumination with axicon 
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detection we demonstrated a 17x increase in depth of focus over the common Gaussian-spherical 

OA microscope configuration. When imaging a tilted mouse ear, the Bessel-axicon combination 

afforded imaging depths exceeding 4.2mm. Accordingly the matched sensitivity line profiles 

enable a number of new applications within the field of OA microscopy. Overall, our studies 

demonstrate the axicon is not well suited for OA endoscopy but rather for OA microscopy. 

Therefore, the spherical transducer was selected to be adapted in size for endoscopy. 

 
Aside from the transducer, design concepts such as forward viewing/side viewing, proximal/distal 

rotation and common mode/ split path illumination were discussed with the best concepts 

forwarded to the development phase of the front-end system. Several optical materials were 

analyzed for the capsule window to maximize optical and acoustic transmission efficiency. At the 

same time for the backend setup a custom made double clad fiber coupler was selected to combine 

OCT-OA illumination into a single double clad fiber with beam conditioning performed inside the 

endoscope via a custom-made lens designed on optic studio. The lens was designed to ensure OCT 

would focus inside esophageal tissue and OA beam would interrogate the esophagus with a low 

divergence beam as a result of chromatic aberration experienced. Defining the OA interrogation 

spot size, central wavelength, and pulse width we were able to estimate the maximum permissible 

exposures derived from the ANSI standards as a function of pulse repetition and rotational 

scanning speed. We found to perform high resolution imaging with increasing B scan rate, the 

MPE limit decreases. Therefore, the optoacoustic endoscopes sensitivity must in response increase 

to retain contrast and the penetration depth needed to image the esophagus wall which can range 

upto several mm’s in thickness. 

 
 

Two benchtop capsule prototypes were built to demonstrate hybrid OCT-OA endoscopy for 

esophageal imaging. The first design named semicapsule was 16mm in diameter and presented 

video rate endoscopy with only optoacoustics since OCT experienced a strong back reflection 

occurring within the custom-made grin lens which significantly degraded SNR. Hence the first- 

generation capsule demonstrated for the first-time optoacoustic capsule endsocopy at 50Hz Bscan 

rate and acquisition at 100kHz A-scan rate. High speed and resolution imaging practicability was 

assessed by imaging a stainless-steel mesh phantom arranged in Archimedean spiral with 3mm 

pitch to illustrate OA response as a function of depth. Our prototype was able to resolve the mesh 

over the entire field of view and capture 1790mm3 voxels at a volume rate of 0.24Hz. Introducing 

intralipid solution to mimic light scattering conditions when interrogating the esophageal tissue, 

we estimated a penetration depth ~0.84mm in-vivo human esophagus. Subsequently a second- 

generation capsule prototype called the partial capsule was assembled with a smaller diameter of 



146 

 

 

12.5mm to match the diameter of white light capsules presently used in capsule endoscopy. A new 

custom-made grin lens was designed to ensure both modalities could operate in harmony. The 

partial capsule was able to demonstrate for the first time the ability to synchronously acquire and 

display OCT-OA hybrid Bscans at 30Hz frame rate and 85kHz OCT/42.5kHz OA A-scan rate. 

During transducer characterization, the partial capsule transducer provided improved optoacoustic 

resolution and sensitivity when compared to the semicapsule transducer. The potential of hybrid 

imaging was demonstrated by imaging a number of black and white sutures arranged in a 

Archimedean spiral, where all sutures present were revealed only in the hybrid Bscans. Helically 

scanning a mesh, ex-vivo pig esophagus and human mucosal tissue in hybrid mode revealed high 

resolution esophageal wall layers measured by OCT and vasculature measured by OA. This study 

showed the possibility of the additional structural and functional information gained when 

scanning the esophagus with OCT and OA together. 

 

A side from technical innovation, the delay sum and phase shift migration reconstruction 

algorithms previously applied for optoacoustic tomography were investigated for optoacoustic 

endoscopy. The algorithms were implemented initially in Cartesian coordinates to reconstruct 

simulated Kwave Bscans of point sources and experimental B scans of sutures. Building on this 

foundation both algorithms were adapted for reconstruction in cylindrical coordinates and 

assessed with simulated and experimental Bscan data measured in cylindrical coordinates. The 

viability of employing these algorithms at 50Hz frame rate with partial capsule were evaluated. 

Cylindrical phase shift migration was able to reconstruct B frames faster than 50Hz with high 

resolution and displaying information over 2 mm’s depth making the algorithm suitable for real 

time optoacoustic endoscopy image reconstruction. 

 
In conclusion, the work herein presents the development and characterization of a hybrid OCT- 

OA capsule endoscope suitable for imaging the human esophagus. Results from tissue mimicking 

phantoms and ex-vivo pig esophagus demonstrate great potential of combining OCT and OA to 

complement anatomical structures with metabolic features respectively. Overall, the hybrid 

capsule endoscope designed offers promising translational characteristics for label-free human GI 

surveillance delivering 3D structural and functional information not available to WLE. 

 

 

 

 
8.2. Outlook 

 
The ability to acquire hybrid OCT-OA endoscopy data in this work has only been demonstrated 
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in phantoms, ex-vivo samples and in-vivo human mucosal tissue of the inferior lip. For in-vivo 

imaging of the esophagus a miniature hollowshaft motor is required be to mounted at the proximal 

end of the partial capsule prototype as depicted in figure 8.1. Motor requirements include a small 

diameter to ensure capsule size retains the 12.5mm diameter of the partial capsule design and the 

ability to support the load of the transducer upto 50Hz frame rate. Figure 8.1 indicates how rotation 

would occur by highlighting the rotatory components in blue and the stationary components in 

grey. 

 
 

Figure. 8.1. Rotational scanning within the final hybrid capsule concept, Blue components represent 

moving parts whereas grey components are the stationary parts. 

 

To scan the esophagus, the endoscopist could manually pullback the capsule as hybrid acquisition 

is performed following a helical scan as illustrated in Fig 8.2. Alternatively, to perform a more 

controlled scan to ensure the pullback pitch remains constant, a secondary linear translational 

motor placed near the mouth entry could pull the shaft of the capsule at constant velocity. Here a 

thin flexible shaft which houses the optical fiber and electronic cables for the transducer and motor 

is required to ensure smooth translation inside the esophagus. A white light micro-camera could 

also be added to monitor position and provide complimentary information. Should the capsule 

loose contact between the circumference of the wall and capsule surface during pullback then the 

probe should be adapted to the capsule with the inflatable balloon interface discussed in section 

4.3. 
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Figure. 8.2: In-vivo hybrid OCT-OA capsule endoscopy volumetric imaging. Pullback could be either 

manual or controlled via a translational stepper motor. The Display shows volumetric renders of structure 

features acquired by OCT and the pathophysiological features from OA. The 12.5mmx40mm capsule 

dimension is a hypothetical value. 

 
Imaging performance could be further improved by tuning the endoscopic transducer inside the 

partial capsule. In particular, a preamplifier could be mounted inside the casing to improve SNR 

rather than performing pre amplification externally. Secondly the central aperture of the transducer 

could be reduced to improve sensitivity by further developing the grin lens to minimize the OCT 

and OA spot sizes in this region. Thirdly, sensitivity can also be increased by extending the 

diameter of the active element. Finally, the focal length of the transducer could be reduced to 

minimize the propagation distance of optoacoustic waves generated within the esophageal wall 

and further enhance sensitivity. In return, OCT SNR would also improve by reducing the heavy 

water absorption in the confined optical path. Making these changes reduces the fluence required 

to obtain high contrast images and thereby permits higher rotational speeds. 

 
Extending optoacoustic endoscopy to multispectral optoacoustic endoscopy by including multiple 

high repetition rate lasers of different wavelengths into the back-end console and detecting 

optoacoustic waves emitted by different photoabsorbing molecules within the esophagus could 

enable visualizing functional information including tissue oxygenation, hemoglobin concentration 

or hypoxia. To achieve this a fiber or free space combiner could be implemented to couple the 

light from each source to the OA input port of the DCF. Then during scanning the appropriate 

light source triggered by a trigger driver which is synchronized to the OCT laser. Because of the 

MPE constraint at high rotational speeds (>50Hz) the pulse energy requirement is limited to 
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<10µJ, hence low-cost laser diodes which have been shown to operate in several hundreds of kHz 

could potentially be exploited for this application [131]. 

 
In regard to optoacoustic endoscopy image reconstruction, we presented two algorithms which 

could be employed with the hybrid capsule. Although they were only demonstrated in simulations 

and phantoms. In the future as more experimental data is available from in-vivo experimentation, 

the algorithms will be further adapted to improve contrast and resolution in cylindrical 

coordinates. Furthermore, the point spread function of the transducer used should be determined 

experimentally following the characterization methodology presented in Chapter 4 and integrated 

into the image reconstruction process to improve resolution and SNR. Subsequently reconstructed 

optoacoustic images together with OCT images could then be fed into a neural network to 

distinguish esophageal wall characteristics with regions of interest highlighted which may contain 

the presence of dysplasia for the further inspection. 

 
Experimental findings of hybrid OCT-OA capsule endoscopy at video presented in this work 

illustrate the ability to require 3D structural and functional information not available to WLE. The 

additional information gained could hasten the screening duration and provide routes for improved 

patient outcome. However, to validate the benefit of the added information, several in-vivo human 

clinical trials are required to fully investigate the translational potential of our proposed design. 

From these clinical studies several interesting questions could be answered such as the 

improvement in detection accuracy of early neoplasia with hybrid imaging as opposed to single 

modality systems, what the additional benefits of multispectral optoacoustic endoscopy for human 

esophageal imaging include, the feasibility to stage esophageal cancer and determine the extent of 

tumor invasion. 
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