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1. Abstract 

Pancreatic ductal adenocarcinoma (PDAC) remains a devastating cancer entity with very poor 

survival rates. Combinational chemotherapy regimens such as FOLFIRINOX (FFX) or 

Gemcitabine plus nab-Paclitaxel (Gem/nP) prolong life only for a few months as patients often 

rapidly acquire resistance towards treatment. This resistance is largely driven by intratumoral 

heterogeneity due to clonal diversity and tumor cell plasticity. However, a detailed molecular 

characterization of resistance mechanisms and the identification of treatment-induced 

vulnerabilities and dynamic changes in phenotype and heterogeneity upon FFX and Gem/nP 

are mainly lacking, as scaleable and time-efficient single cell technologies barely exist. 

Therefore, we established digital holographic microscopy (DHM) as a label-free high-

throughput tool for investigating cellular heterogeneity in PDAC on a single cell level in real-

time. We set up a robust experimental and machine learning analysis pipeline including feature 

extraction and pixel-based classification to perform single cell phenotyping based on DHM 

phase images of PDAC cells in suspension. This platform enabled us to monitor treatment-

induced changes in cellular morphology on a single cell level allowing to asses particularly 

intratumoral heterogeneity. In addition, the molecular characterization of chemotherapy-

induced adaptations in PDAC cells by genomic, transcriptomic and proteomic analysis gave 

insight into subtype-specific resistance mechanisms. Furthermore, we implemented a 

longitudinal precision oncology platform with a multi-dimensional characterization of matching 

patient-derived organoids before and after neoadjuvant FFX. Although cells isolated pre and 

post FFX did not significantly differ in PDAC subtype and their genomic landscape, unbiased 

drug screening identified FFX-induced vulnerabilities such as sensitivity towards MEK 

inhibition.  

In sum, integrating functional layers such as DHM analysis and unbiased drug screening into 

precision oncology allows us to retrieve more detailed information about adaptive processes 

in tumor evolution and treatment-imposed pressure in PDAC than genomic and transcriptomic 

analysis alone. This information can be used in future to overcome this defined mode of 

resistance, guide treatment decisions and longitudinally monitor treatment response.  
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2. Zusammenfassung 

Das duktale Adenokarzinom der Bauchspeicheldrüse (PDAC) ist nach wie vor eine 

verheerende Krebsart mit sehr schlechten Überlebensraten. Kombinierte 

Chemotherapieschemata wie FOLFIRINOX (FFX) oder Gemcitabin plus nab-Paclitaxel 

(Gem/nP) verlängern das Leben nur für wenige Monate, da die Patienten oft schnell eine 

Resistenz gegen die Behandlung entwickeln. Diese Resistenz wird weitgehend durch 

intratumorale Heterogenität aufgrund klonaler Diversität und Plastizität der Tumorzellen 

verursacht. Eine detaillierte molekulare Charakterisierung der Resistenzmechanismen und die 

Identifizierung behandlungsbedingter Schwachstellen und dynamischer Veränderungen des 

Phänotyps und der Heterogenität bei FFX und Gem/nP fehlen jedoch weitgehend, da 

skalierbare und kosteneffiziente Einzelzelltechnologien kaum existieren.  

Daher haben wir die digitale holographische Mikroskopie (DHM) als markierungsfreies 

Hochdurchsatzinstrument zur Untersuchung der zellulären Heterogenität in PDAC auf 

Einzelzellebene in Echtzeit etabliert. Wir haben eine robuste experimentelle und maschinelle 

Lernanalyse-Pipeline mit Merkmalsextraktion und pixelbasierter Klassifizierung eingerichtet, 

um die Phänotypisierung einzelner Zellen auf der Grundlage von DHM-Phasenbildern von 

PDAC-Zellen in Suspension durchzuführen. Diese Plattform ermöglichte es uns, 

behandlungsbedingte Veränderungen der Zellmorphologie auf Einzelzellebene zu 

überwachen und insbesondere die intratumorale Heterogenität zu beurteilen. Darüber hinaus 

ermöglichte die molekulare Charakterisierung der Chemotherapie-induzierten Anpassungen 

in PDAC-Zellen durch genomische, transkriptomische und proteomische Analysen Einblicke 

in subtypspezifische Resistenzmechanismen. Zusätzlich haben wir eine longitudinale 

Präzisions-Onkologie-Plattform mit einer multidimensionalen Charakterisierung von 

Organoiden, die von einem Patienten vor und nach neoadjuvanter FFX stammen, 

implementiert. Obwohl sich die vor und nach der FFX-Behandlung isolierten Zellen hinsichtlich 

des PDAC-Subtyps und ihrer genomischen Landschaft nicht signifikant unterschieden, 

identifizierte das automatisierte Wirkstoffscreening FFX-induzierte Schwachstellen wie die 

Empfindlichkeit gegenüber MEK-Inhibition.  

Zusammenfassend lässt sich sagen, dass die Integration funktioneller Schichten wie der DHM-

Analyse und des automatisierten Wirkstoffscreenings in die Präzisionsonkologie es uns 

ermöglicht, detailliertere Informationen über adaptive Prozesse in der Tumorevolution und 

behandlungsbedingten Druck bei PDAC zu erhalten als Genom- und Transkriptomanalysen 

allein. Diese Informationen können in Zukunft genutzt werden, um diese definierte Art der 

Resistenz zu überwinden, Behandlungsentscheidungen zu treffen und das Ansprechen auf die 

Behandlung zu überwachen.  
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3. Introduction 

3.1 Pancreatic ductal adenocarcinoma (PDAC) 

Pancreatic ductal adenocarcinoma (PDAC) makes up 90% of all cases of pancreatic cancer 

and is the most common malignancy of the pancreas. Despite a low incidence in comparison 

to other types of cancer, PDAC has a very poor patient outcome. The five-year survival rate of 

PDAC patients in the US in 2020 was 9%. When diagnosed at a distant stage with metastatic 

spread, only 3% of the patients survived five years after diagnosis (Siegel et al., 2020). By 

2040, pancreatic cancer is projected to ascend from the fourth to the second rank of cancer-

related deaths, while mortality rates of the leading causes of cancer deaths such as colorectal 

cancer are projected to decrease (Rahib et al., 2021). Scientifically established risk factors for 

pancreatic cancer encompass both genetic as well as modifiable components. The presence 

of even one hereditary hazard increases the risk for PDAC by around 80% and it is estimated 

that 10% of all PDAC cases are driven by hereditary disorders. Furthermore, extensive abuse 

of tobacco and alcohol as well as following an unhealthy diet, obesity and diabetes are the 

most important modifiable risk factors (Becker et al., 2014). Once developed, PDAC is curable 

only by a complete surgical removal of the tumor. However, a majority of the patients are 

diagnosed at a metastatic stage due to the lack of visible and distinctive symptoms as well as 

reliable biomarkers. Thus, less than 20% of PDAC patients are eligible for surgical resection 

and those who received surgical resection frequently relapse often due to microscopic residual 

disease and chemotherapy-imposed pressure (Adamska et al., 2017; Hishinuma et al., 2006; 

Rahib et al., 2014; Rhim et al., 2012; Sakamoto et al., 2020).  

 

3.1.1 PDAC progression model 

In the pancreas, the progression to invasive carcinoma is accompanied by precursor lesions 

showing architectural as well as cytological abnormalities (Hruban et al., 2001). Three common 

precursors have been described: pancreatic intraepithelial neoplasia (PanIN), intraductal 

papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasm (MCN). However, the 

best-characterized PDAC progression model is based on PanINs, which can be further 

classified into four groups. Early lesions, which are characterized by elongation of ductal cells 

with abundant mucin production are grouped into PanIN-1A when showing flat epithelial 

lesions, or PanIN1B, when already shaped papillary. In high-grade lesions, the presence of 

nuclear abnormalities such as loss of polarity, enlarged nuclei or nuclear crowding is classified 

as PanIN-2, while in PanIN-3 lesions additionally luminal necrosis, abnormal mitoses and 

dystrophy of goblet cells occur. In contrast, IPMNs involve the main pancreatic duct or major 

branches of the pancreas while in MCNs an ovarian-like stroma exists and the connection to 
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the duct system is absent. However, the larger size of both the IPMNs and MCNs enables their 

visualization and allows the discrimination from the microscopic PanINs, which are far too small 

to be imaged by current devices (Hruban et al., 2007). 

All the above-mentioned morphological changes in PanINs are associated with distinct genetic 

alterations leading to the development of intraductal and invasive carcinoma. Recent genome 

as well as exome sequencing studies revealed activating mutations of v-Ki-ras2 Kirsten rat 

sarcoma viral oncogene homolog (KRAS) in more than 90% of low- and high-grade PanINs 

identifying the oncogene as a major genetic hallmark in PDAC leading to cancer initiation. 

Although most PanINs harbor mutations in KRAS, only a small percentage of all cells 

comprising a lesion is mutated. This percentage dramatically increases with the PanIN grade 

(Biankin et al., 2012; Kanda et al., 2012). Furthermore, inactivating mutations of the tumor 

suppressor gene cyclin-dependent kinase inhibitor 2A (CDKN2A), which encodes for the INK 

family member p16 and p14arf, occur already in early PanIN lesions. Additional mutations, 

which inactivate the tumor suppressor genes TP53 and SMAD4, are shown to further drive 

PanIN progression (Kanda et al., 2012). Besides these well-validated mutations, germline 

alterations in DNA damage repair genes such as BRCA1, BRCA2, PALB2 and ATM as well as 

mutations in the chromatin modifiers EPC1 and ARID2 give rise to genomic instability in a 

subset of pancreatic cancers (Bailey et al., 2016; Biankin et al., 2012; Jones et al., 2009; 

Roberts et al., 2016). 

Recently, Mueller et al. identified evolutionary trajectories of murine PDAC involving different 

genetic hallmarks as well as variation in oncogene activation, that influencing the metastatic 

potential, cellular phenotype and tumor histology (Mueller et al., 2018). A major route of this 

trajectory has been described as beginning with a heterozygous Kras mutation and followed 

by a homozygous loss of Cdkn2a or Tp53. This in turn leads to an increase of mutant Kras 

dosage resulting in enhanced metastatic spread as well as more aggressive tumor phenotypes 

with mesenchymal cellularity and undifferentiated tumor histology.  

Likewise, Chan-Seng-Yue et al. evaluated the genomic instability of 317 primary as well as 

metastatic PDAC samples of patients with a special focus on the KRAS gene, as well. They 

found the major KRAS imbalance (KRASMa), favoring mutant KRAS allele, to be stage-

dependent, since it was almost exclusively present in metastasis. Furthermore, KRASMa was 

more frequently found in aggressive PDAC subtypes, similar to the results of Mueller and 

colleagues. Aggressive subtypes of the primary tumor exhibited mainly minor KRAS 

imbalances (KRASMi). They additionally were able to correlate the KRAS status to existing 

clinical data and found a higher chemoresistance as well as worse patient outcome in the 

KRASMa compared to KRASMi or balanced KRAS (KRASBa) subgroups (Chan-Seng-Yue et al., 

2020).  
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3.1.2 Current treatment options in PDAC 

Gemcitabine was used as standard chemotherapeutic agent for many years (Burris et al., 

1997). It is a prodrug taken up by nucleoside transporters and the phospho-activation inside 

the cell leads to various inhibitory effects on DNA synthesis (Baldwin et al., 1999; Plunkett et 

al., 1995). It mainly acts as a cystidine and is incorporated into the DNA chain leading to the 

termination of DNA polymerase activity. It furthermore blocks the ribonucleotide reductase and 

prevents the de novo synthesis of deoxyribonucleotides (Huang et al., 1991; Huang and 

Plunkett, 1995). However, Gemcitabine has been recently replaced in clinical routine by the 

combination treatments FOLFIRINOX (FFX) and Gemcitabine plus nab-Paclitaxel (Gem/nP).  

FFX is a combination of the cytostatic agents Leucovorin, 5-Fluorouracil (5-FU), Irinotecan and 

Oxaliplatin. 5-FU is a pyrimidine antagonist and acts in a fashion  similar to that of Gemcitabine 

by incorporating into the DNA and causing cell death (Longley et al., 2003). While Irinotecan 

is a topoisomerase inhibitor inducing replication arrest and lethal double-strand breaks, 

Oxaliplatin inhibits DNA synthesis and transcription due to cross-linking the DNA by binding to 

guanine and cytosine (Liu et al., 2000; Mathijssen et al., 2002; Raymond et al., 1998). 

Leucovorin is a folinic acid used to reduce the toxic side effects of chemotherapies. It 

additionally stabilizes the active form of 5-FU to thymidylate synthase and enhances its activity. 

The combination of these drugs has shown a significant survival advantage in patients with 

metastatic cancer compared to the standard treatment gemcitabine alone. However, the 

median prolongation of life for only approximately 4.3 months is still frustrating (Conroy et al., 

2011). Additionally, they could show a significantly increased disease-free survival upon 

adjuvant modified FFX (21.6 months) compared to gemcitabine (12.8 months) in patients with 

resected cancer (Conroy et al., 2018). 

In another recent trial, a treatment regimen of nab-Paclitaxel in combination with Gemcitabine 

was tested for efficacy in increasing overall survival (Von Hoff et al., 2013). Paclitaxel is the 

active substance in nab-Paclitaxel and acts as an anti-microtubule agent interfering with the 

microtubule rearrangement by binding to α-tubulin. This in turn blocks the spindle apparatus 

during cell division resulting in cell arrest and ultimately cell death (Abal et al., 2003). The 

nanoparticle albumin bound (nab) form of Paclitaxel in nab-Paclitaxel improves the 

pharmacokinetic of the drug and leads to an increased mechanism of action in the tumor 

instead of healthy tissue (Chuang et al., 2002; Desai et al., 2006). Although combining 

Gemcitabine with nab-Paclitaxel has led to an overall survival (OS) of 8.5 months compared 

to the 6.7 months in the Gemcitabine only group, the survival advantage of only 1.8 months 

clearly demonstrates the need for further research and improvement (Von Hoff et al., 2013).  
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In clinical daily routine, the treatment decision is mainly based on the age and performance 

status of the patient. Due to the unfavorable side effects of FFX and Gem/nP, their 

administration is restricted to patients under 75 years of age with good performance only, while 

in patients with poor health, Gemcitabine is the preferred option (Gourgou-Bourgade et al., 

2013). Recently, several studies have compared the efficacy and patient outcome of both 

combination treatments in order to find the most effective one. For instance, Papneja et al. 

reported comparable efficacies of FFX and Gem/nP in 119 retrospectively analyzed patients. 

While progression-free survival was 6 months in the FFX group compared to 4 months in the 

Gem/nP group, OS of 9 months was identical in both groups (Papneja et al., 2019). 

Furthermore, Chan et al. examined clinical data from 1130 patients with unresectable locally 

advanced as well as metastatic PDAC treated from April 2015 to March 2017. Results showed 

a survival advantage upon FFX treatment with a median OS of 9.6 months, an increase from 

the 6.1 months in the Gem/nP group (Chan et al., 2020). Likewise, 363 metastatic PDAC 

patients treated at the Yale Smilow Cancer Hospital from 2011 to 2019 were retrospectively 

studied regarding comparative effectiveness of FFX and Gem/nP. While treatment with 

FFX prolonged life for 11.3 months, the median survival was 7.2 months in the Gem/nP 

group (Patel, 2020). Although these studies indicate a survival advantage upon FFX treatment 

compared to Gem/nP in advanced and metastatic PDAC, research on the characterization of 

these treatment regimens on a molecular level is still lacking. 

Recently, molecular profiling is more frequently used to identify individual actionable 

targets for personalized medicine, as well. In the Know Your Tumor registry trial they have 

retrospectively analyzed the treatment response of targeted therapies versus unmatched 

treatment and found a tremendous effect of matched over unmatched therapies for patient 

survival. They have identified genetic alterations in the tumor such as the breast cancer 

gene 1 and 2 (BRCA1/2) and BRAF and treated patients with the matched therapies 

Olaparib and Trametinib plus Dabrafenib, respectively. However, only 26% of PDAC 

patients display actionable targets, which is why molecular profiling alone might not be 

sufficient to find effective treatment options (Pishvaian et al., 2020).   

The efficacy of targeted therapies and personalized medicine is tested also in vitro using 

the organoid technology by generating patient-derived organoids (PDOs). For instance, 

Tiriac et al. generated numerous PDO lines and tested for different chemotherapeutic 

drugs and 21 targeted agents (Tiriac et al., 2018). They found high sensitivity towards 

different targeted therapies in chemoresistant PDOs such as the broad-spectrum kinase 

inhibitor or Afatinib in ERBB2-amplified PDOs. They furthermore generated drug-

sensitivity signatures by correlating drug response with PDO transcriptomes and 
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compared for example Gemcitabine sensitivity signature with clinical data of patients 

treated with Gemcitabine. Indeed, enrichment of this signature was significantly correlated 

with better progression free survival (Tiriac et al., 2018). In a similar study, they correlated 

the PDO mutational status with drug response of 76 drugs as well, in order to find effective 

combinations with Gemcitabine. The strongest association was detected with the EGFR 

inhibitor Lapatinib in combination with Gemcitabine and found drug sensitivity to depend 

on the mutational status of PIK3K1 and MAP3K1 (Driehuis et al., 2019). In our group, in 

the past years we have also generated a living PDO biobank and we recently established 

a workflow to identify druggable genetic alterations rapidly after PDO isolation using cell-

free DNA in PDO supernatants (Dantes et al., 2020). In order to functionalize the obtained 

molecular information, PDOs were then subjected to a pharmacotyping using several 

common chemotherapeutic agents, which revealed a high inter-PDO line heterogeneity 

similar to what was shown before (Dantes et al., 2020; Driehuis et al., 2019; Tiriac et al., 

2018).  

Characterizing the molecular makeup of the tumor, such as tumor subtype and differentiation, 

and particularly evaluating its functional relevance might help better stratify patients for a 

specific treatment option and can be used as decision guidance in clinical routine.   

 

3.1.3 PDAC subtyping 

In the past decade, evolving next-generation approaches such as genomics and 

transcriptomics have enabled an in-depth characterization of PDAC on a molecular level.  

In 2011, Collisson et al. performed gene expression microarrays from resected PDAC 

specimens and conducted non-negative matrix fractorization (NMF) with consensus clustering 

identifying three different subtypes (Collisson et al., 2011). After developing a subtype-specific 

gene signature based on 62 genes, they were able to cluster the analyzed PDAC samples into 

a classical, quasi-mesenchymal and exocrine-like subtype. While the classical subtype is 

marked by an enhanced expression of epithelial and adhesion-associated genes, the quasi-

mesenchymal subtype had a higher expression of genes associated with the mesenchyme. In 

contrast, the exocrine-like subtype showed an increased expression of tumor cell-derived 

digestive enzyme genes. Furthermore, they found the tumor subtype itself to be an 

independent predictor of survival. Individuals with a classical subtype showed a better 

prognosis compared to individuals with a quasi-mesenchymal subtype. Additionally, subtypes 

significantly correlated with tumor grade and differentiation. When performing in vitro drug 

screening, quasi-mesenchymal human PDAC cells exhibited a higher sensitivity towards 
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Gemcitabine administration compared to cells with a classical subtype, indicating a phenotype-

specific response towards chemotherapy (Collisson et al., 2011).  

Moffitt et al. performed in 2015 whole genome microarrays on 145 primary and 61 metastatic 

PDAC tumors using virtual microdissection (Moffitt et al., 2015). NMF and consensus 

clustering identified two stromal gene expression signatures – namely normal and activated. 

While the normal subtype showed an increased expression of smooth muscle actin (α-SMA) 

and Vimentin, the activated subtype showed increased expression of matrix metalloproteases 

as well as SPARC and WNT family members. Patients with the activated stroma subtype 

additionally had a worse median survival than patients with a normal subtype. They identified 

cancer-associated fibroblasts (CAFs) and not the tumor epithelium to be the origin of these 

stroma signatures. Furthermore, they identified the two tumor-specific subtypes – the classical 

and basal-like. When they compared their subtypes to the Collisson subtyping, they found high 

concordance in the gene list of the classical subtype, but detected the quasi-mesenchymal 

subtype to be a mixture of their basal-like and the stroma subtypes indicating a stromal 

contamination in the Collisson study. When analyzing survival of the patients, their subtypes 

significantly correlated with prognosis, showing an OS of 11 and 19 months in basal-like and 

classical subtypes, respectively. Interestingly, the response towards adjuvant chemotherapy 

was increased in individuals with the basal-like subtype exhibiting a hazard ratio of 0.38 

compared to 0.76 with a classical subtype, again suggesting a subtype-specific response 

towards chemotherapy. Additionally, after comparing different individuals as well as including 

several metastatic sites, they detected high inter-tumoral but low intra-tumoral heterogeneity 

(Moffitt et al., 2015).  

In 2016, Bailey et al. presented their work on integrated genomic as well as transcriptomic 

analysis of 456 pancreatic cancer tumors (Bailey et al., 2016). Unsupervised clustering of the 

RNA-Seq data revealed four subtypes: squamous, aberrantly differentiated endocrine exocrine 

(ADEX), pancreatic progenitor and immunogenic. These tumor subtypes were furthermore 

associated with tumor histology. The squamous subtype was associated with adenosquamous 

carcinomas, the pancreatic progenitor and immunogenic subtypes were associated with 

mucinous non-cystic and IPMN-driven carcinomas while the ADEX subtype was associated 

with rare acinar cell carcinomas. Transcriptional networks identified gene programs 

discriminating these four subtypes. The squamous group was characterized by processes 

such as inflammation, metabolic reprogramming, transforming growth factor β (TGF-β) 

signaling as well as epithelial-to-mesenchymal transition (EMT) and was found to be an 

independent prognostic factor for worse overall survival. While the pancreatic progenitor class 

showed increased expression of transcription factors, such as PDX1, involved in early stages 

of pancreatic development, the ADEX class was characterized by processes of later 
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development such as acinar and endocrine cell differentiation. Lastly, the immunogenic 

subtype showed a strong infiltration of immune cells with an upregulation of B cells as well as 

regulatory and cytotoxic T cell signaling. When comparing their data with the published 

classifiers, they found a strong overlap with the Collisson subtyping. The squamous, pancreatic 

progenitor and ADEX subtypes were equivalent to Collisson´s quasi-mesenchymal, classical 

and exocrine-like subtypes, respectively. Of note, the immunogenic subtype did not correlate 

with any subtype of the Collisson classification (Bailey et al., 2016).  

Additionally, to investigate KRAS instability, Chan-Seng-Yue et al. performed PDAC subtyping 

as well (Chan-Seng-Yue et al., 2020). Based on four tumor-specific expression signatures they 

identified five PDAC subtypes – basal-like A, basal-like B, classical A, classical B and hybrid. 

Their subtypes matched with the previously published classifications, with an exception of the 

hybrid subtype. Classical subtypes were found mainly in early stage tumors while basal-like 

subtypes occurred rather in late stage disease. A further sub-classification of basal-like and 

classical revealed different response rates towards chemotherapy in basal-like A and B with 

the basal-like B subtype being highly chemoresistant. Furthermore, analyzing intra-tumoral 

heterogeneity by single cell RNA sequencing (scRNAseq) revealed an enrichment of both 

classical and basal-like signatures in the primary tumor, suggesting a co-existence of different 

tumor cell populations. Interestingly, when comparing a matched primary tumor and metastasis 

sample, they detected a phenotype switch from the hybrid (Moffitt: classical) to the basal-like 

subtype due to raising mutant KRAS copy numbers. This molecular switch was driven by the 

outgrowth of a minor subclone in the primary tumor. Moreover, they compared liver metastasis 

before and after Gem/nP treatment from another patient and again found a subtype switch – 

this time from basal-like B to classical A due to a reduction in genome doubling. Hence, a 

reduction of mutant KRAS from KRASMa to KRASBa resulted in a transcriptional phenotype 

switch from a highly aggressive to a less aggressive phenotype (Chan-Seng-Yue et al., 2020).  

In recent studies, single cell profiling of tumor specimen and corresponding in vitro model 

systems such as PDOs identified in particular the tumor microenvironment (TME) as driver of 

tumor cell state and differentiation (Grunwald et al., 2021; Raghavan et al., 2021). For instance, 

they found paracrine factors such as interferon-γ (IFN-γ) secreted by CD8+ T cells to be 

enriched specifically in intermediate co-expressor PDAC cell states (classical and basal-like 

gene expression signatures) and single cell basal-like cells. Additionally, TGF-ß was the top 

differentially expressed gene in the PDAC cells of co-expressor and basal-like TMEs. Adding 

TGF-ß to the culture media induced a phenotype shift, which was accompanied by a differential 

response towards different drugs. While classical PDAC cells were more sensitive towards 

chemotherapeutics and drugs targeting DNA damage, basal-like cells were highly sensitive 

towards MAPK inhibitors (Raghavan et al., 2021). Grünwald et al. performed a deconvolution 
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of the TME in human PDAC specimen by combining histology-guided regional multiOMICs and 

PDO culture and identified two regional TME states, the deserted and reactive subTME. While 

the reactive subTME exhibited activated CAFs, an immune hot and T cell-inflamed phenotype 

as well as pro-proliferative features, the deserted subTME showed rather de-differentiated 

CAFs with immune cold and chemoprotective features. Interestingly, the presence of both 

subTMEs within one tumor were found in several PDAC patients proving again high levels of 

intratumoral heterogeneity. These differences in TME were driving fundamental differences in 

tumor cells, as well. PDAC cells surrounded by a reactive subTME showed an increased cell 

cycle progression and Myc signaling with squamous and poorly differentiated PDAC cells, 

whereas the deserted subTME induced increased metabolism including oxidative 

phosphorylation (OXPHOS) with well-polarized glands and well-differentiated PDAC cells 

(Grunwald et al., 2021).  

Likewise, we could recently show that deleting the plasticity regulator Prrx1 in CAFs induced 

enhanced CAF activation with an increased collagen production and immune cell infiltration of 

CD3/4/8+ T cells, B cells, macrophages and dendritic cells. This modification of the TME 

composition revealed significant impact also on tumor cell phenotype, tumor differentiation, 

dissemination as well as response towards chemotherapy (Feldmann et al., 2021).  

All studies mentioned above but in particular single cell studies clearly demonstrate the 

extremely heterogeneous composition of PDAC tumors and the complex relationship between 

all cell populations present within the tumor including the TME suggesting the implementation 

of scaleable single cell technologies for clinical application.  

 

3.1.4 Mechanisms involved in PDAC chemoresistance 

The enormous inter- and intratumoral heterogeneity makes treating PDAC efficiently a major 

challenge. Additional resistance and escape mechanisms upon chemotherapeutic treatment 

frequently result in either progression or relapse, further contributing to the poor prognosis 

associated with PDAC. The tumor microenvironment (TME), EMT as well as metabolism are 

well-known factors driving chemoresistance in several cancer entities.  

EMT – a phenotype switch towards a more aggressive mesenchymal morphology with 

changes in genome, transcriptome and proteome – is thought to be a major process in the 

primary as well as secondary resistance towards chemotherapy. For instance, silencing EMT-

inducing transcription factors such as the Zinc Finger E-Box Binding Homeobox 1 (Zeb1), 

Twist-related protein 1 (Twist1) or Zinc finger protein Snai1 (Snail1) led to increased sensitivity 

towards gemcitabine administration in vitro as well as in vivo due to an increased expression 

of the nucleoside transporters importing gemcitabine into the cell (Arumugam et al., 2009; 
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Zheng et al., 2015). In line with this experimental data, clinical data sets from Liu et al. and 

preliminary results from the COMPASS trial suggested the basal-like subtype to exhibit an 

increased resistance towards chemotherapy (Aung et al., 2018; Liu et al., 2017). However, 

Moffitt et al. indicated a trend towards a better response to adjuvant therapy in the patients 

with basal-like subtype (Moffitt et al., 2015). EMT can be induced tumor cell-intrinsically, but 

often extrinsic factors released from the TME, which makes up about 80% of the cellular 

compartment of the tumor, influence the phenotypic properties of tumor cells (Zeng et al., 

2019). 

The TME is composed of extracellular matrix (ECM), pancreatic stellate cells (PSCs), CAFs 

as well as different types of immune cells, all of which together has great impact on the 

response towards chemotherapy (Apte et al., 2015; Pothula et al., 2016). PDAC is a cancer 

entity extremely rich in ECM. The excessive ECM-production by PSCs and CAFs often leads 

to an imbalance between production and degradation of matrix components. This desmoplastic 

reaction results in an increased migration and invasion of tumor cells as well as 

chemoresistance due to limited drug access. Targeting the stroma in PDAC has shown 

controversial results in murine and human trials with less satisfactory effects in humans 

(Kindler et al., 2011; Kindler et al., 2010; Ko et al., 2016; Olive et al., 2009). Additionally, 

although depleting PSCs or CAFs could increase drug sensitivity, the stroma is likely to serve 

as a barrier and prevents tumor cells from invading and metastasizing (Liu et al., 2017). 

Furthermore, inflammation is a well-known hallmark of PDAC with an increased abundance of 

tumor-associated macrophages and myeloid-derived suppressor cells (Liu et al., 2017). For 

instance, tumor-associated macrophages were shown to limit the efficacy of chemotherapy by 

various mechanisms including blocking cytotoxic T cells, protecting cancer stem cells as well 

as altering the tumor vascularity and thereby inhibiting intra-tumoral drug access (Bruchard et 

al., 2013). They are additionally able to secrete cytidine deaminase, the enzyme known for 

metabolizing the active gemcitabine into its inactive form (Weizman et al., 2014).  

Lastly, the altered energy metabolism of the tumor affects the response towards conventional 

chemotherapy, as well. Hypoxic conditions within the tumor are sensed via the transcription 

factor hypoxia-inducible factor 1A (HIF1A) leading to the expression of genes involved in 

several pathways such as glycolysis and cell proliferation (Wang et al., 1995). HIF1A was 

shown to correlate in PDAC with tumor size and worse prognosis (Kitada et al., 2003; Shibaji 

et al., 2003). Hypoxic tumor areas – tumor as well as stromal compartment – exhibit an 

increased glycolytic metabolism with an enhanced lactate secretion. The secreted lactate in 

turn is metabolized by surrounding tumor cells for sustaining their cell growth. Additionally, 

HIF1A was found to trigger EMT with reduced E-Cadherin and increased N-Cadherin 

expression in murine PDAC (Guillaumond et al., 2013; Guillaumond and Vasseur, 2013). 
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Daemen et al. subtyped in 2015 human PDAC cells according to their metabolic profile into 

glycolytic and lipogenic. These subtypes could further be correlated with the quasi-

mesenchymal and epithelial phenotype, respectively. While epithelial PDAC cells use the 

glucose for the tricarboxylic acid cycle and de novo lipogenesis, quasi-mesenchymal PDAC 

cells use the glucose rather for glycolysis and lactate production (Daemen et al., 2015).  

Both recent single cell studies on PDAC confirmed that these mentioned components might 

play an important role in chemoresistance as the transcriptional cell state, which can be driven 

by the TME, might be a determinant for the chemosensitivity or -resistance in single cell 

classical or basal PDAC cells, respectively (Raghavan et al., 2021). Furthermore, they 

observed an increased chemoresistance of PDOs cultured in CAF-conditioned media derived 

from deserted versus reactive subTME. This was in line with clinical data from patients with 

deserted subTME, who showed the least change in tumor size after first-line chemotherapy 

(Grunwald et al., 2021).  

These single cell studies give more detailed insight into resistance mechanisms than studies 

using solely bulk technologies, as the majority of PDAC patients display high levels of 

intratumoral heterogeneity allowing to identify single cell resistance mechanisms. Therefore, 

the necessity arises to establish scaleable and clinically easy-to-implement single cell 

technologies to retrieve information about tumor cell state and inter- as well as intratumoral 

heterogeneity for guidance of treatment decision and therapy monitoring.  

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Introduction 
__________________________________________________________________________ 

__________________________________________________________________________
13 

 

3.2 Digital holographic microscopy (DHM) 

Brightfield microscopy offers an easy way for the visualization of samples without major 

adjustments needed. However, due to the low contrast properties, it is not possible to 

differentiate single cells from each other. Thus, new imaging techniques have been developed 

in the past years, with a special focus on three-dimensional (3D) biological imaging. Digital 

holographic microscopy (DHM) is one of these approaches enabling label-free high-precision 

quantitative phase-contrast imaging (Molder et al., 2008). This technology harbors great 

potential for the application in translational PDAC research as this approach is solely based 

on cellular phenotypes and is independent of the expression of certain markers allowing an 

unbiased and standardized analysis. Additionally, the DHM is capable of visualizing single 

cells, thereby enabling to investigate single cell plasticity and intratumoral heterogeneity and 

finally allowing to understand the complex single cell composition of the tumor.  

 

3.2.1 DHM setup 

The basic setup of a DHM includes an illumination source, an interferometer with microscopic 

imaging optics, a digitizing camera as well as the corresponding computer software. The 

operation principle is based on the detection of an optical path-length delay caused by the 

transparent unstained specimen against the surrounding medium. This optical path-length 

delay is used to assess the refractive index, which correlates with sample density and thus its 

intracellular structures. Once the light beam, which does not pass the object, interferes with 

the light beam passing the object, the interfering beams are recorded and quantitative phase 

information is reassembled from the recorded hologram. This phase-contrast created by the 

differences in the refractive index at internal structures, provides abundant intracellular 

information (El-Schich et al., 2018).  

Compared to standard DHM setups, coupling the DHM to an additional microfluidic system 

allows to analyze the cells not in an adherent condition but in a single cell suspension in a 

high-throughput manner. In our construct, the sample flows through a microchannel with the 

following dimensions: 50µM x 500 µM x 50.000 µM. Due to the combination of multiple laminar 

flows, the top and bottom flows as well as two side flows, the sample flow is kept in a steady 

focus and autofocusing procedures are eliminated (Ugele et al., 2018a; Ugele et al., 2018b).  

Hence, this customized DHM setup gives access to reliable and detailed quantitative phase 

information about the intracellular structures without prior staining and labeling procedures. 

Additionally, combining DHM with a microfluidic system allows to analyze samples in a high-

throughput manner.  
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3.2.3 DHM applications in cancer research 

Due to the above-mentioned advantages of the DHM, lately it is applied more frequently in 

biological and medical research fields. Many studies have already obtained clinically relevant 

information about several types of cancer cells by using DHM. For instance, platinum-resistant 

and -sensitive endometrial cancer cells were separated from each other by their respective cell 

height and cell projected area obtained by DHM (Yao et al., 2019). Similarly, drug-resistant 

ovarian cancer cells could be differentiated from their sensitive parental controls using DHM 

(Singh et al., 2017). Since triple-negative breast cancer cells often do not express EpCAM or 

do so in very low amounts, the analysis of circulating tumor cells (CTCs) via EpCAM staining 

is not the appropriate approach. For this reason, El-Schich et al. used DHM to discriminate six 

different breast cancer cell lines from the white blood cells THP-1 and Jurkat comparing cell 

area, cell volume and cell thickness (El-Schich et al., 2020). Furthermore, the metastatic 

potential – the extent of EMT – of PDAC cells has been determined via DHM, as well. The 

metastatic potential was negatively correlated with cell thickness, but positively correlated with 

cell elongation – in concordance with the mesenchymal morphology of tumor cells (Kastl et al., 

2019). Also, Colin et al. suggested the implementation of the quantitative phase information 

for detecting optical biomarkers for the metastatic potential of cancer cells (Calin et al., 2017). 

Additionally, breast cancer cells were graded on their morphological features using DHM and 

machine learning algorithms.  Using linear support vector machines yielded best results in the 

separation of epithelial MCF-7 and mesenchymal MDA-MB-231 breast cancer cells (Lam et 

al., 2020). Min et al. performed DHM in a flow cytometry arrangement in order to measure 

single PDAC cells in flow. By this, they were able to differentiate epithelial PatuS and quasi-

mesenchymal PatuT cells. They furthermore identified both populations in a mixed sample 

using DHM (Min et al., 2019).   

These results clearly illustrate the sensitivity of the phase signatures generated by DHM for 

characterizing tumor cells in various conditions due to the capability of detecting the smallest 

changes in their cellular features.  
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3.3 Objectives  

Our major aim of this project was to elucidate treatment-imposed pressure of PDAC cells upon 

the standard chemotherapeutic regimens FFX and Gem/nP. For that reason, we used 

functional model systems such as PDOs and DHM as new phenotyping tool in order to define 

treatment-induced phenotypic changes and understand mechanisms of chemoresistance as 

well as acquired vulnerabilities.  

First, we established DHM as a label-free tool for the high-throughput characterization of PDAC 

phenotypes on a single cell level. After implementing the workflow comprised of sample 

preparation, DHM measurement following computational analysis, we clustered numerous 

human and murine PDAC cells according to their cellular morphology and transcriptomic 

profile. Importantly, we analyzed the single cell EMT status of each cell line allowing to 

investigate inter- and particularly intratumoral heterogeneity in a label-free fashion. 

Additionally, DHM enabled to detect dynamic changes in tumor cell differentiation and 

heterogeneity of distinct PDAC subtypes upon induction of epithelial-to-mesenchymal 

transition and under treatment-imposed pressure in murine and patient-derived model 

systems.  

After implementing DHM as novel tool to asses heterogeneity, we exposed PDAC cells with 

different phenotypes to FFX and Gem/nP in order to investigate phenotype-specific response 

rates. For detecting possible resistance mechanisms occurring during or after treatment, we 

performed deep molecular analysis including proteomics and RNA-sequencing of cells treated 

with either drug combination. In the same experimental setup, we used the DHM pipeline to 

identify morphological changes upon chemotherapeutic treatment on a single cell level. 

Additionally, we established a longitudinal precision oncology platform to compare two PDAC 

specimen of a patient pre and post FFX treatment to translate the knowledge about treatment-

induced vulnerabilities generated by in vitro studies into clinics.  
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4. Materials  

4.1 Consumables  

Table 1. Consumables used in this study.  
Consumables Source 

Cell scrapers, 16cm  Sarstedt AG & Co., Nürnbrecht 

Cellstar Aspiration Pipette 2ml Greiner Bio-One, Kremsmünster, AU 

Cellstar Stripette 5ml Greiner Bio-One, Kremsmünster, AU 

Cellstar Stripette 10ml Greiner Bio-One, Kremsmünster, AU 

Cellstar Stripette 25ml Greiner Bio-One, Kremsmünster, AU 

Cryogenic Vial 2ml Corning Inc., NY, USA  

Cellstar Tubes 15ml, 50ml Greiner Bio-One, Kremsmünster, AU 

Cellstar cell culture flask 75cm2 Greiner Bio-One, Kremsmünster, AU 

Coverslips  Menzel-Gläser, Braunschweig, Germany 

Combitips BioPur®, 0.5 mL, 

1mL, 5 mL, 10 mL 

Eppendorf AG, Hamburg 

Conical tubes, 15 mL Greiner Bio-one GmbH, Frickenhausen 

Conical tubes, 50 mL Greiner Bio-one GmbH, Frickenhausen 

CryoPure tubes Sarstedt AG & Co., Nümbrecht 

Disposable scalpels Feather Safety Razor Co., Ltd., Osaka, Japan 

EASYstrainer, 100µm Greiner Bio-One, Kremsmünster, AU 

Falcon Tissue Culture Plate 

24-well 

Corning Inc., NY, USA 

 

Ibidi µ-Slide 2 well, 8 well Ibidi GmbH, Gräfelfing 

MicroAmp® optical 96-well 

reaction plate 

Applied Biosystems, Inc., Carlsbad, CA, USA 

MicroAmp Optical Adhesive 

Film 

Thermo Fischer, Waltham, MA, USA 

 

Micro Slides, frosted end Assistent, Sondheim vor der Rhön 

Nitrocellulose Membrane,  

3 mm 

GE Healthcare Europe GmbH, Munich 

 

Parafilm® Merck, Darmstadt 

Pasteur pipettes Hirschmann Laborgeräte GmbH & Co. KG,Eberstadt 

PCR reaction tubes Brand GmbH + Co. KG, Wertheim; Eppendorf AG, 

Hamburg 

Petri dishes   Sarstedt AG & Co., Nümbrecht 

Pipette tips Sarstedt AG & Co., Nümbrecht 
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Reaction tubes, 0.5 mL, 1.5 

mL and 2 mL 

Eppendorf AG, Hamburg 

Safe seal pipette tips, 

professional 

Biozym Scientific GmbH, Hessisch Oldenburg 

Safe-lock reaction tubes 

BioPur® 

Eppendorf AG, Hamburg 

 

Single use needles Sterican® 

27 gauge 

B. Braun Melsungen AG, Melsungen 

Single use syringes Omnifix® B. Braun Melsungen AG, Melsungen 

SteriFlip Vacuum Filtration 

System 0.22µm 

Merck Millipore, Burlington, USA  

Transfer membrane 

Immobilon-FL 

Millipore GmbH, Schwalbach am Taunus 

Blotting Paper Whatman, Dassel, Germany 

Microscope slides  Carl Roth GmbH, Karlsruhe, Germany 

Serological pipette, 2ml, 5ml, 

10ml, 25ml 

Greiner Bio-one GmbH, Solingen,  

Tissue culture plate, 6, 94 well BD Bioscience, Heidelberg 

  

  

4.2 Equipment  

Table 2. Equipment used in this study.  
Consumables Source 

Analytical balance A 1200 S Sartorius AG, Göttingen 

Analytical balance BP 610 Sartorius AG, Göttingen 

Autoclave 2540 EL Tuttnauer Europe B.V., Breda, The Netherlands 

AxioCam HRc Carl Zeiss AG, Oberkochen 

AxioCam MRc  Carl Zeiss AG, Oberkochen 

Bag sealer Folio FS 3602 Severin Elektrogeräte GmbH, Sundern 

Biometra Compact Agarose 

Gel Eletrophorsis 

Analytik Jena, Jena 

Brand Neubauer Improved Brand GmbH, Wertheim 

Centrifuge Avanti® J25 Beckman Coulter GmbH, Krefeld 

Centrifuge Rotina 46R Andreas Hettich GmbH & Co. KG, Tuttlingen 

Centrifuge Rotina 380 Andreas Hettich GmbH & Co. KG, Tuttlingen 
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CO2 incubator HERAcell 240 Thermo Fisher Scientific, Inc., Waltham, MA, USA 

Countess II Fl Life Technologies, Waltham, MA, USA 

Dewar carrying flask, type B   KGW-Isotherm, Karlsruhe 

Digital holographic microscope Ovizio, Brussels, Belgium 

Drying Cabinet Memmert type 

II 96 

Memmert GmbH, Schwabach 

EcoVac Schuett Biotec GmbH, Göttingen 

Electrophoresis Power Supply 

Model 100/500 

Bio-Rad Laboratories GmbH, Munich 

Electrophoresis Power Supply 

Model 

Life Technologies Waltham, MA, USA 

Electrophoresis power supply 

Power Pac 200 

Bio-Rad Laboratories GmbH, Munich 

FLUOstar OPTIMA microplate 

reader 

BMG Labtech GmbH, Ortenberg 

Gel DocTM XR+ system Bio-Rad Laboratories GmbH, Munich 

GentleMACSTM Dissociator Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach 

Glass ware, Schott Duran® Schott AG, Mainz 

HERAsafe® biological safety 

cabinet 

Thermo Fisher Scientific, Inc., Waltham, MA, USA 

Homogenizer SilentCrusher M 

with tool 6F 

Heidolph Instruments GmbH & Co. KG, Schwabach 

 

Horizontal gel electrophoresis 

system 

Biozym Scientific GmbH, Hessisch Oldenburg 

 

Horizontal shaker Titertek Instruments, Inc., Huntsville, USA 

Immunostainer Bond RXm Leica, Wetzlar 

Incubator shaker Thermoshake C. Gerhardt GmbH & Co. KG, Königswinter 

Laminar Flow type HS 18/2 Heraeus Instruments, Hanau 

Leica Bond RXm Leica, Wetzlar 

Leica TCS SP8 Confocal 

Microscope 

Leica, Wetzlar 

Magnetic stirrer, Ikamag® RCT IKA® Werke GmbH & Co. KG, Staufen 

Microcentrifuge 5415 D Eppendorf AG, Hamburg 

Microcentrifuge 5417 R Eppendorf AG, Hamburg 

Microscope Axio Imager.A1 Carl Zeiss AG, Oberkochen 

Microscope Axiovert 25 Carl Zeiss AG, Oberkochen 
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Microspoce Camera Axiocam 

MRC 

Carl Zeiss AG, Oberkochen 

Microwave Siemens AG, Munich 

Minicentrifuge MCF-2360 LMS Consult GmbH & Co. KG, Brigachtal 

Multipette® stream Eppendorf AG, Hamburg 

Multiscan FC Thermo Fisher Scientific, Waltham, MA, USA 

Nanodrop Thermo Fisher Scientific, Waltham, MA, USA 

NextSeq 500 Illumina, San Diego, USA 

Odyssey® infrared imaging 

system 

Li-Cor Biosciences, Lincoln, NE, USA 

pH meter FiveEasy  Mettler-Toledo, Greifensee, Switzerland 

Pipettes Reference®, 

Research® 

Eppendorf AG, Hamburg 

Pipetus® Hirschmann Laborgeräte GmbH & Co. KG, Eberstadt 

Power supplies E844, E822, 

EV243 

Peqlab Biotechnologie GmbH, Erlangen 

Qubit 2.0 fluorometer Thermo Fisher Scientific, Inc., Waltham, MA, USA 

QX200 ddPCR system Bio-Rad Laboratories GmbH, Munich 

Rotary Microtome Microm 

HM355S 

Thermo Fisher Scientific, Inc., Waltham, MA, USA 

Spectrophotometer NanoDrop 

1000 

Thermo Fisher Scientific, Inc., Waltham, MA, USA 

StepOnePlusTM real time PCR 

system 

Thermo Fisher Scientific, Inc., Waltham, MA, USA 

Surgical instruments Thermo Fisher Scientific, Inc., Waltham, MA, USA 

Thermocycle FlexCycler Analytik Jena, Jena 

Tumbling Table WT 17 Biometra GmbH, Göttingen 

UVsolo TS imaging System Biometra Analytik Jena Company, Überlingen 

Vortex Genius 3 IKA® Werke GmbH & Co. KG, Staufen 

Water bath 1003 GFL (Gesellschaft für Labortechnik) mbH, Burgwedel 

Western blot system Mini-

PROTEAN Tetra System  

Bio-Rad Laboratories GmbH, Munich 

3T PET/MRI system Siemens Healthcare, Erlangen 
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4.3 Chemicals and reagents 

Table 3. Chemicals and reagents used in this study.  
Chemicals and reagents Source 

2-Mercaptoethanol, 98% Sigma-Aldrich Chemie GmbH, Munich 

2-Propanol (isopropanol)  Carl Roth GmbH + Co. 

3,3,5-Triiodo-L-thyronine Sigma-Aldrich Chemie GmbH, Munich 

3-(4,5-dimethyl-2-thiazolyl)-

2,5-diphenyl-   

tetrazolium bromide (MTT) 

Sigma-Aldrich Chemie GmbH, Munich 

A83-01 STEMCELL Technologies, Vancouver, Canada 

Acetic Acid, 2N Carl Roth GmbH + Co. KG, Karlsruhe 

ACK lysis buffer Thermo Fisher Scientific Inc, Waltham, USA 

Agarose Sigma-Aldrich Chemie GmbH, Munich 

ALLin RedTaq HighQu GmbH, Kraichtal 

Ammonium persulfate (APS) Sigma-Aldrich Chemie GmbH, Munich 

Antigen unmasking solution  Vector laboratories Inc., Burlingame, USA 

Aqua-Poly/Mounting Polysciences Inc., Pennsylvania, USA 

Bovine Pituitary Extract Sigma-Aldrich Chemie GmbH, Munich 

Bovine serum albumin,  

fraction V 

Sigma-Aldrich Chemie GmbH, Munich 

Bradford reagent  Sigma-Aldrich Chemie GmbH, Munich 

Cell Recovery Solution Corning Inc., NY, USA 

Cholera toxin  Sigma-Aldrich Chemie GmbH, Munich 

Collagen Type I, rat tail Corning Inc., NY, USA  

Collagenase Type II Invitrogen GmbH, Karlsruhe 

Collagenase Type IV Worthington Biochemical Corporation, Lakewood, USA 

Complete, EDTA-free, 

protease inhibitor cocktail 

tablets 

Roche Deutschland Holding GmbH, Grenzach-Wyhlen 

 

ddPCR mutation assay: KRAS 

WT, G12D 

Bio-Rad Laboratories GmbH, Munich 

DAPI  Sigma-Aldrich Chemie GmbH, Munich 

Dexamethasone Sigma-Aldrich Chemie GmbH, Munich 

D-Glucose  Sigma-Aldrich Chemie GmbH, Munich 

Dimethylsulfoxide (DMSO)  Carl Roth GmbH + Co. KG, Karlsruhe 
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Dodecylsulfate Na-salt in 

pellets (SDS) 

Serva Electrophoresis GmbH, Heidelberg 

Donkey serum Biozol Diagnostica Vertrieb GmbH, Eching 

Doxycycline  Sigma-Aldrich Chemie GmbH, Munich 

Dulbecco's modified eagle 

medium (DMEM),   

with L-Glutamine, high 

Glucose 

Invitrogen GmbH, Karlsruhe 

DMEM low Glucose Invitrogen GmbH, Karlsruhe 

DMEM/F-12 Invitrogen GmbH, Karlsruhe 

Eosin   Waldeck GmbH & Co KG, Münster 

Ethanol (70%, 80%, 96%, 

100%) 

Merck KGaA, Darmstadt 

 

Ethylenediaminetetraacetic 

acid (EDTA) 

Invitrogen GmbH, Karlsruhe 

Fetal Bovine Serum (FBS) Invitrogen GmbH, Karlsruhe 

Glycerol Sigma-Aldrich Chemie GmbH, Munich 

Glycin Pufferan® Carl Roth GmbH + Co. KG, Karlsruhe 

Hematoxylin  Merck KGaA, Darmstadt 

HEPES Pufferan®  Carl Roth GmbH + Co. KG, Karlsruhe 

Hydrochloric acid (HCl) Merck KGaA, Darmstadt 

ITS+ premix  Corning Inc., NY, USA 

Keratinocyte-SFM medium Thermo Fisher Scientific Inc, Waltham, USA 

Laemmli Sample buffer, 4x Bio-Rad Laboratories GmbH, Munich 

Magnesium chloride Carl Roth GmbH + Co. KG, Karlsruhe 

Matrigel, growth factor reduced Corning Inc., NY, USA 

Methanol Merck KGaA, Darmstadt 

Milk powder Carl Roth GmbH + Co. KG, Karlsruhe 

NaOH Lösung, 1N Carl Roth GmbH + Co. KG, Karlsruhe 

Nicotinamide Sigma-Aldrich Chemie GmbH, Munich 

Nu-Serum IV Corning Inc., NY, USA 

Paraformaldehyde (PFA)  

16% w/v 

Alfa Aesar, Massachusetts, USA 

 

Penicillin/Streptomycin Thermo Fisher Scientific Inc, Waltham, USA 

Pertex Mountin media Histolab, Askim, Norway 

Phosphatase inhibitor mix I  Serva Electrophoresis GmbH, Heidelberg 
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Phosphate buffered saline 

(PBS), 1x, 10x 

Thermo Fisher Scientific Inc, Waltham, USA 

 

Polyethylene glycol 4000 Merck KGaA, Darmstadt 

Polyvinylpyrrolidon (PVP) Carl Roth GmbH + Co. KG, Karlsruhe 

Precision Plus ProteinTM all 

blue standard 

Bio-Rad Laboratories GmbH, Munich 

 

Primocin InvivoGen, San Diego, USA 

Proteinase K, recombinant, 

PCR grade 

Roche Deutschland Holding GmbH, Grenzach- Wyhlen 

 

Recombinant human  

heregulin ß1 

PeproTech Inc., New Jersey, USA 

Recombinant human 

transforming growth factor ß1 

(TGF-ß1) 

PeproTech Inc., New Jersey, USA 

Recombinant mouse epidermal 

growth factor (EGF) 

R&D Systems, Minnesota, USA 

RIPA buffer, 10x Abcam, Cambridge, UK 

RNase ZapTM Sigma-Aldrich Chemie GmbH, Munich 

ROCK inhibitor Y-27632 Cayman Chemical, Ann Arbor, USA 

Roswell Park Memorial 

Institute (RPMI) medium 

Thermo Fisher Scientific Inc, Waltham, USA 

Roti® Histofix  4% Carl Roth GmbH + Co. KG, Karlsruhe 

Roti® Histol  Carl Roth GmbH + Co. KG, Karlsruhe 

Rotiphorese® gel 30   Carl Roth GmbH + Co. KG, Karlsruhe 

Sodium acetate buffer solution Sigma-Aldrich Chemie GmbH, Munich 

Sodium chloride (NaCl) Merck KGaA, Darmstadt 

Sodium hydroxide solution 

(NaOH) 

Merck KGaA, Darmstadt 

Soy Trypsin Inhibitor (STI) Thermo Fisher Scientific Inc, Waltham, USA 

StainIN Green Nucleic Acid 

Stain 

HighQu GmbH, Kraichtal 

Sterile Water  B.Braun Melsungen AG, Melsungen 

TEMED Carl Roth GmbH + Co. KG, Karlsruhe 

TRIS Carl Roth GmbH + Co. KG, Karlsruhe 

Triton® X-100  Merck KGaA, Darmstadt 

Trypan Blue Stain 0.4% Invitrogen GmbH, Karlsruhe 
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Trypsin-EDTA 0.5% (10x) Thermo Fisher Scientific Inc, Waltham, USA 

Tween® 20 Carl Roth GmbH + Co. KG, Karlsruhe 

  

4.4 Kits 

Table 4. Kits used in this study.  
Kits Source 

Bond Polymer Refine Kit Leica, Wetzlar 

Nextera XT kit Illumina, San Diego, USA 

QIAamp® DNA Mini kit Qiagen GmbH, Hilden 

QIAshredder   Qiagen GmbH, Hilden 

RNeasy mini kit Qiagen GmbH, Hilden 

RNeasy micro plus kit Qiagen GmbH, Hilden 

SensiFastTM cDNA Synthesis 

Kit 

Bioline, London, UK 

SensiFastTM SYBR Hi-Rox Kit Bioline, London, UK 

RNase-free DNase Qiagen GmbH, Hilden 

Senescence ß-Galactosidase 

Cell Staining kit    

Signaling Technology, Massachusetts, USA 

 

CellTiter-Glo Luminescent cell 

viability assay 

Promega GmbH, Walldorf 

 

 
 

4.5 Antibodies 

Table 5. Antibodies used in this study.  
Antibody Dilution Source 

Phalloidin-Atto 647 1:250 Sigma-Aldrich Chemie GmbH, Munich 

TROMA-III CK19 1:250 DSHB 

aSMA 1:100 Cell Signaling Technology, Massachusetts, 

USA 

Zeb1 1:100 Cell Signaling Technology, Massachusetts, 

USA 

E-Cadherin 1:200 R&D Systems, Minnesota, USA 

E-Cadherin 1:1000 Cell Signaling Technology, Massachusetts, 

USA 

Vimentin 1:50 R&D Systems, Minnesota, USA 
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GATA 6 1:1000 Cell Signaling Technology, Massachusetts, 

USA 

Ki67 1:50 Abcam, Cambridge, UK 

Keratin 81 1:500 Santa Cruz Biotechnology, Dallas, USA 

Phospho-p44/42 MAPK 

(pErk1/2) 

1:1000 Cell Signaling Technology, Massachusetts, 

USA 

p44/42 MAPK (Erk1/2) 1:1000 Cell Signaling Technology, Massachusetts, 

USA 

GLUT1 1:750 Abcam, Cambridge, UK 

donkey anti-goat AF488 1:250 Thermo Fisher Scientific Inc, Waltham, USA 

donkey anti-rat AF594 1:250 Thermo Fisher Scientific Inc, Waltham, USA 

donkey anti-rabbit AF680 1:250 Thermo Fisher Scientific Inc, Waltham, USA 

donkey anti-mouse AF488 1:250 Thermo Fisher Scientific Inc, Waltham, USA 

IRDye® 680RD Donkey anti-

Rabbit IgG 

1:10000 LI-COR Biosciences, Lincoln, USA 

IRDye® 800CW Donkey 

anti-Rabbit IgG 

1:10000 LI-COR Biosciences, Lincoln, USA 

IRDye® 680RD Donkey anti-

Mouse IgG 

1:10000 LI-COR Biosciences, Lincoln, USA 

 

4.6 Drugs  

Table 6. Drugs used in this study. 
Drug Source 

Irinotecan Fresenius Kabi Deutschland GmbH, Bad Homburg 

Oxaliplatin Fresenius Kabi Deutschland GmbH, Bad Homburg 

Fluorouracil  Medac GmbH, Wedel 

Gemcitabine  Hexal AG, Holzkirchen 

nab-Paclitaxel Ratiopharm GmbH, Ulm 

Poziotinib SelleckChem, Houston, USA 

Lapatinib SelleckChem, Houston, USA 

Binimetinib SelleckChem, Houston, USA 

Cobimetinib SelleckChem, Houston, USA 

PF-3758309 SelleckChem, Houston, USA 

IACS-010759 SelleckChem, Houston, USA 

 



4. Materials 
__________________________________________________________________________ 

__________________________________________________________________________
25 

 

4.7 Primers 

Table 7. Primers used in this study. 
Primer name Sequence (5´  3´) 

Quantitative real-time PCR 

mE-Cadherin Forward 

mE-Cadherin Reverse 

hE-Cadherin Forward 

hE-Cadherin Reverse 

hVimentin Forward 

hVimentin Reverse 

mN-Cadherin Forward 

mN-Cadherin Reverse 

mß-Actin Forward 

mß-Actin Reverse 

hß-Actin Forward 

hß-Actin Reverse 

5'-TCAAGCTCGCGGATAACCAGAACA-3' 

5'-ATTCCCGCCTTCATGCAGTTGTTG-3' 

5'-GCCTCCTGAAAAGAGAGTGGAAG-3'  

5'-TGGCAGTGTCTCTCCAAATCCG-3' 

5'-AGGCAAAGCAGGAGTCCACTGA-3' 

5'-ATCTGGCGTTCCAGGGACTCAT-3'  

5'-ATGGCCTTTCAAACACAGCCACAG-3' 

5'-ACAATGACGTCCACCCTGTTCTCA-3' 

5'-GTCGAGTCGCGTCCACC-3' 

5'-GTCATCCATGGCGAACTGGT-3' 

5'-CACCATTGGCAATGAGCGGTTC-3' 

5'-AGGTCTTTGCGGATGTCCACGT-3'   

Mycoplasm test  

5’Primer #1 

5’Primer #2 

5’Primer #3 

5’Primer #4 

5’Primer #5 

5’Primer #6 

5’Primer #7 

3’Primer #1 

3’Primer #2 

3’Primer #3 

CGCCTGAGTAGTACGTTCGC 

CGCCTGAGTAGTACGTACGC 

TGCCTGGGTAGTACATTCGC 

TGCCTGAGTAGTACATTCGC 

CGCCTGAGTAGTAGTCTCGC 

CACCTGAGTAGTATGCTCGC 

CGCCTGGGTAGTACATTCGC 

GCGGTGTGTACAAGACCCGA 

GCGGTGTGTACAAAACCCGA 

GCGGTGTGTACAAACCCCGA 

 

4.8 Molecular biology 

Table 8. Buffers and solutions used for molecular biology. 
Buffer Composition 

RIPA lysis buffer, pH 7.9 10x RIPA buffer 

ddH20 

Phosphatase inhibitor (add prior use) 

Protease inhibitor (add prior use) 
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Stacking gel buffer, pH 6.8   0.5 M Tris, adjusted to pH 6.8 with HCl 

Stacking gel buffer, pH 6.8   1.5 M Tris, adjusted to pH 8.8 with HCl 

Running buffer 25 mM Tris 

192 mM Glycine 

0.1% SDS 

Transfer buffer, pH 8.3 25 mM Tris 

192 mM Glycine 

20% Methanol/Ethanol 

PBS-Tween (PBST) 1x PBS 

0.1 % v/v Tween® 20 

SDS lysis buffer 80 mM Tris, adjusted to pH 7.6 with HCl 

4% SDS 

ddH20 

50x Tris acetate EDTA (TAE) buffer,  

pH 8.5  

2 M Tris 

50 mM EDTA 

5.71% Acetic acid 

 

4.9 Cell culture 

Table 9. Media and buffers used for cell culture.  
Media and buffers Composition 

Cancer cell media 1 DMEM      

10% FBS 

1% Penicillin/Streptomycin 

Cancer cell media 2 RPMI      

10% FBS 

1% Penicillin/Streptomycin 

Fibroblast media   50% DMEM low Glucose 

50% DMEM/F12  

20% FBS 

1% Penicillin/Streptomycin 

HPDEC media Keratinocyte media  

2.5 µg Human recombinant epidermal 

growth factor 

25 mg Bovine pituitary extract 

PDC media DMEM/F12 
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5% Nu-Serum IV  

1% Penicillin/Streptomycin 

25 µg/mL Bovine pituitary extract 

0.5% ITS+ premix  

20 ng/mL Epidermal Growth Factor 

100 ng/mL Cholera toxin 

5nM 3,3,5-Triiodo-L-thyronine 

1 µM Dexamethasone 

5 mg/mL D-Glucose 

1.22 mg/mL Nicotinamide 

Organoid media DMEM/F12 

5% Nu-Serum IV  

1% Penicillin/Streptomycin 

25 µg/mL Bovine pituitary extract 

0.5% ITS+ premix  

100 ng/mL Cholera toxin 

5nM 3,3,5-Triiodo-L-thyronine 

1 µM Dexamethasone 

5 mg/mL Glucose 

10 mM Nicotinamide  

100 µg/mL Primocin 

0.5µM A83-01 

10% R-Spondin (self-produced) 

100 ng/mL Neuregulin or 50 ng/mL WNT3A 

Freezing media 90% FBS 

10% DMSO 

Freezing media (PDCs) 95% PDC media 

5% DMSO 

Digestion buffer (PDCs) DMEM/F12 

1.5 mg/mL Collagenase Type IV 

Digestion buffer (human biopsies) DMEM/F12 

6 mg/mL Collagenase Type II 

 

 

 



4. Materials 
__________________________________________________________________________ 

__________________________________________________________________________
28 

 

Table 10. Cell lines used in this study. 
Cell line ID Source 

murine 

8442 Mueller et al., 2018 

9591 Mueller et al., 2018 

53631 Mueller et al., 2018 

8028  Mueller et al., 2018 

9091 Mueller et al., 2018 

16992 Mueller et al., 2018 

793 Y (p120+/+) Reichert et al., 2018 

363 Y (p120+/-) Reichert et al., 2018 

288 Y (p120-/-) Reichert et al., 2018 

human 

B361 (CAF) Organoid core facility 

HPDEC RRID:CVCL_4376 

ID188 Organoid core facility 

ID211 Organoid core facility 

ID203 Organoid core facility 

ID208 Organoid core facility 

ID226 Organoid core facility 

ID250 Organoid core facility 

PatuS RRID: CVCL_1846 

PatuT RRID:CVCL_1847 

DanG RRID: CVCL_0243 

HPAC RRID:CVCL_3517 

PSN-1 RRID:CVCL_1644 
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4.10 Software 

Table 11. Software used in this study.    
Software Source 

Adobe Photoshop 7.0 Adobe Systems Software Ireland Limited, Dublin, Ireland 

Adobe Illustrator CS Adobe Systems Software Ireland Limited, Dublin, Ireland 

Ascent Software Version 2.6 Ascent Software, London, Great Britain 

AxioVision 4.8 Carl Zeiss AG, Oberkochen 

Microsoft Excel Microsoft Corporation, Redmont, WA, USA 

GraphPad Prism 8 La Jolla, CA, USA 

Odyssey® v1.2 Li-Cor Biosciences, Lincoln, NE, USA 

OsOne Ovizio, Brussels, Belgium 

OsiriX OsiriX Foundation; Geneva, Switzerland 

Perseus software 1.6.14.0 Max-Planck Institute of biochemistry, Munich 

QuantaSoft droplet reader 

software 

Bio-Rad Laboratories GmbH, Munich 
 

Quantity One    Bio-Rad Laboratories GmbH, Munich 

R studio 4.0.02, 4.0.04 R studio PBC, Boston, USA 

StepOneTM v2.3 Applied Biosystems, Inc., Carlsbad, CA, USA 

Fiji Version 1.0 LOCI, Madison, WI, USA 

Textmaker Free Software Foundation Boston, MA, USA 
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5 Methods  

5.1 Clinical data 

5.1.1 Patient recruitment 

The study was conducted in accordance with the Declaration of Helsinki. Approval by the local 

ethics committee (Project 207/15, 1946/07, 330/19, 181/17S and 80/17S) was given and 

written informed consent was obtained from the patient prior to the investigation.  

The following clinical data were obtained for the patient using the hospital’s information system: 

sex, age at diagnosis, tumor markers CEA and CA 19-9, tumor formula, type of chemotherapy 

(neoadjuvant, adjuvant) and chemotherapeutic regime (FOLFIRINOX). Clinical evaluation of 

the tumor size, lymph node status and metastasis were performed on baseline CT before 

starting the treatment and in follow-up examinations.   

 

5.1.2 Imaging protocol and analysis  

Simultaneous 18F-FDG PET/MRI was performed using an integrated whole-body 3T PET/MRI 

system as previously described (Harder et al., 2021). The patient was instructed to fast for at 

least 6 hours before injection of 400 MBq (baseline) and 393 MBq (follow-up) 18F-FDG 

injection. In addition, 20 mg furosemide as well as oral contrast (Telebrix, 15ml on 1l) were 

applied. The PET/MRI scans were started 51 min (baseline) and 63 min (follow-up) after tracer 

injection.   

PET/MRI examination of the pancreas was performed simultaneously within a 20-min PET 

scan of the upper abdomen. A T1-VIBE Dixon sequence was used for attenuation correction. 

Further MRI sequences included an axial and coronal T2 haste sequence, axial fat saturated 

(FS) T2 haste sequence, axial DWI (b-values 0, 50, 300 and 600 s/mm2), axial T1 VIBE Dixon 

sequence in breath-hold before and after dynamic administration of contrast agent (arterial, 

venous and late venous phase) with gadolinium (0,2 ml/kg bodyweight) and an axial T1 VIBE 

Dixon FS after contrast administration.   

PET data were reconstructed using a vendor-provided iterative reconstruction algorithm (3 

iterations, 21 subsets, image matrix 172 ×172, zoom 1, gauss filter, full width at half maximum 

4.0 mm, relative scatter correction). Image analysis was performed by one radiologist with 3 

years of experience (FNH) under supervision of a board certified expert abdominal radiologist 

with 10 years of experience (RFB) as well as a board certified expert nuclear medicine 

physician with 10 years of experience (ME).  
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Reviewing the axial T2w, DWI and ADC together with the PET images using OsiriX, the tumor 

localization was identified. The maximum as well as the peak standardized uptake values 

(SUVmax and SUVpeak; in g/ml) were obtained from the tumor (Harder et al., 2021). 

 

5.2 Histological analysis  

5.2.1 Paraffin-embedded sections 

For histological analysis, tissue samples were fixed in 4% Roti® Histofix for 48 h and organoids 

were fixed in 4% PFA for 15min, dehydrated using the tissue processor ASP300, embedded 

in paraffin and stored at room temperature (RT) until further use. For following stainings, series 

of 2.5–3 µm thick serial sections were cut using the microtome Microm HM355S. 

 

5.2.2 Hematoxylin and eosin (HE) staining  

Paraffin-embedded sections were deparaffinized by incubation in xylol (2 x 5 min) and 

rehydrated in isopropanol, 96% and 70% EtOH for 2 x 5min each. After 25 s in water, slides 

were stained for 8 min with mayer´s hematoxylin and subsequently blued in running tab water 

for 10 min. Slides were then stained in eosin for 4 min and applied to 96% EtOH for 30 s, 

isopropanol for 2 x 25 s and xylol for 2 x 1.5 min before they were covered with mounting 

medium. 

 

5.2.3 Immunohistochemical (IHC) staining  

Immunohistochemistry (IHC) staining was performed at the Comparative Experimental 

Pathology Department at Klinikum rechts der Isar using a Leica Bond RXm system. Therefore, 

slides were briefly deparaffinized using a deparaffinization solution and epitope retrieval was 

performed using a citrate buffer with pH 6 or ETDA buffer with pH 9 for 20 – 40 min. The 

primary antibodies Ki67, GLUT1, pERK and ERK were diluted and applied for 15min. Antibody 

binding was detected using the polymer refine detection kit and visualized after 10 min of 

incubation with DAB as a dark brown precipitate. Counterstaining was performed using 

hematoxylin for 5 min. Dehydration was manually performed by alcohol washes with increasing 

concentrations (70%, 96% and 100%) and a final xylene incubation. Afterwards, slides were 

mounted with coverslips using Pertex mounting medium and scanned with 40x magnification.  

Quantification was performed on five organoid images per condition and cell line using Fiji 

2.1.1 (RRID:SCR_002285). Therefore, the plugin for color deconvolution was used to 

separately quantify the expression of Ki67, pERK as well as ERK and the hematoxylin staining. 
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Finally, the respective protein expression was normalized to hematoxylin in order to obtain 

relative expression levels.   

 

5.3 Cell culture  

5.3.1 Culturing of 2D cell lines 

The different two-dimension (2D) cell lines were cultured in their respective medium and were 

maintained at 37°C and 5% CO2. Murine PDAC cells as well as PatuS and PatuT were cultured 

in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin 

(P/S), while DanG, HPAC and PSN-1 were cultured in RPMI plus 10% FBS and 1% P/S. 

Murine pancreatic ductal cells (PDCs) were cultured in the PDC medium (Reichert et al., 2013), 

while human pancreatic ductal epithelial cells (HPDECs) were maintained in Keratinocyte-SF 

media, which was enriched with  human recombinant Epidermal Growth Factor 1-53 (EGF 1-

53) and Bovine Pituitary Extract (BPE). Fibroblasts were cultivated in the fibroblast medium 

containing 50% DMEM-F12, 50% DMEM low Glucose, 20% FBS and 1% P/S.  

For passaging PDAC cells and fibroblasts, medium was removed and cells were washed with 

PBS. Afterwards, 1-2mL of trypsin were added for 5-10min in order to detach the cells from 

the bottom of the flask. Trypsinization was stopped by adding new media and cells were 

distributed into new flasks or seeded for experiments.  

For HPDECs, trypsinization was stopped using 4mL of Soybean Trypsin Inhibitor (STI) and an 

additional centrifugation step for 5min at 1000 rpm was performed to remove trypsin from the 

cells. 

Murine PDCs were seeded onto collagen-coated plates (Table 12). For passaging, medium 

was carefully removed and the collagen layer containing the cells was collected in a reaction 

tube filled with filter sterilized digestion media and incubated for approximately 30min at 37°C. 

After the collagen was properly digested, cells were centrifuged at 1000 rpm for 5min and the 

pellet was resuspended in 1mL of trypsin. After 5min, trypsinization was stopped using 3mL of 

STI and washed by adding 5mL of PBS. Cells were centrifuged again and the cell pellet was 

resuspended in new PDC medium.  

Table 12. Components used for collagen coating. 
Components Concentration 

Collagen Type I, rat tail 2.31 mg/mL  

10x PBS 10 % 

1N NaOH 1.65% 

ddH2O Adjust volume 
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For seeding a certain number of cells for an experiment, cell number was calculated using the 

Neubauer chamber.  

Cells were thawed quickly to prevent cell damage. Then, cells were taken up with medium and 

transferred into a new flask. In order to remove DMSO present in freezing medium, medium 

was changed the next day.    

For cryopreservation, cells were washed and trypsinized. Afterwards, they were centrifuged 

for 5 min at 1000 rpm and 4 °C and the supernatant was removed. The cell pellet was 

resuspended in 1 ml freezing medium per vial and quickly frozen in the -80 °C freezer. 

 

5.3.2 Generation and culture of patient-derived organoids  

Primary patient-derived PDAC 3D organoids (PDOs) were generated from endoscopic 

ultrasound-guided fine needle aspirations/biopsies (EUS-FNA/B) and surgical resections as it 

was described previously (Dantes et al., 2020). Briefly, biopsies were minced into small pieces 

and surgery specimen were incubated rotating for collagen digestion using a digestion buffer 

for 1-2 h. Tissue pellets were incubated for 3-10 min with red blood cell lysis buffer and 

afterwards further digested using TrypLE. Lastly, cell pellets were resuspended in 50 µl of 

Matrigel/well and PDO was added 10 min later.  

For passaging, the media was aspirated and 250 µl of Cell Recovery Solution was added to 

each well for 5 min. Subsequently, this mixture was dissolved in 1 ml of ice-cold PBS 

supplemented with 0.1 % BSA. After 30 min on ice, organoids were centrifuged at 1000 rpm 

at 4°C for 5 minutes, washed and centrifuged again. Thereafter, cell pellets were resuspended 

in 50 µl Matrigel/well and medium was added 10 min later.   

In order to make PDOs applicable to high-throughput drug screening using a liquid-handling 

robot, we generated 2D lines from PDOs using the outgrowth method. Briefly, after the 

establishment of 3D organoids from primary PDAC specimen, 2D cells were allowed to grow 

out from the Matrigel and attach to the plastic. Matrigel and organoids were removed and 2D 

cells were further cultured using RPMI medium supplemented with 10 % fetal bovine serum 

and 1 % penicillin/streptomycin. Passaging was performed as described in 5.3.1. 

 

5.3.3 Pharmacotyping of murine PDAC cells 

The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to 

determine cell viability after drug administration by measuring the metabolic activity of the 

murine cells. Therefore, 1000 cells/well were seeded in a 96-well plate as triplicates. Cells 
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were incubated with 20 µl of the drugs, which were added the next day in a 7-point drug dilution 

for 72 h. For MTT measurement, 10 µl of MTT reagent were added per well and incubated for 

4 h at 37 °C. Afterwards, cell media was removed and 200 µl of an EtOH-DMSO mixture, 

diluted 1:1, were added. After 15 min of shaking at room temperature (RT), the absorption was 

measured at a wavelength of 595 nm using the spectrophotometer Multiscan FC.  

 

5.3.4 Pharmacotyping of patient-derived organoids  

For pharmacotyping of human 3D cells, organoids were processed as described in 5.3 and 

digested to a single cell suspension using 1x trypsin. 500 cells/well were seeded in a total 

volume of 20 µl/well (2 µl Matrigel + 18 µl PDO media) in a 384-well plate. After 24 hours, 

drugs were added in a 7-point drug dilution to the cells (highest concentration = 10 µM) and 

incubated for 72 hours. In order to measure cell viability, the metabolic activity was determined 

by measuring ATP present. Therefore, 5µl of CellTiter-Glo® Luminescent Cell Viability reagent 

was added and incubated for 15 min shaking. Afterwards, luminescence was measured on a 

FLUOstar OPTIMA microplate reader (BMG Labtech GmbH).  

 

5.3.5 Growth rate of patient-derived organoids  

For investigating the growth rates of human 3D cells, organoids were processed as described 

in 5.3 and digested to a single cell suspension using 1x trypsin. 500 cells/well were seeded in 

a total volume of 20 µl/well (2 µl Matrigel + 18 µl PDO media) in a 384-well plate. Cell growth 

was determined for 5 consecutive days using 5 µL of the CellTiter-Glo® Luminescent Cell 

Viability reagent and values were normalized to the first day.  

 

5.3.6 Automated drug screening 

Automated drug screening of ID188 and ID211 2D cells was performed in the SFB1321 Core. 

Therefore, 1500-3000 cells per well (depending on growth rate) were seeded in 96-well plates 

using a Multidrop™ Combi Reagent Dispenser (Thermo Fisher Scientific). After overnight 

incubation at 37 °C and in 5 % CO2 in a Cytomat™ 24C automated incubator (Thermo Fisher 

Scientific), cells were treated with a compound library using a CyBio® FeliX pipetting platform 

(Analytik Jena). All compounds were obtained from SelleckChem. Each drug was added in 7 

concentrations (3-fold dilution series, highest concentration 10 µM). Cell viability was 

measured after 72 hours using CellTiter-Glo® Luminescent Cell Viability Assay (Promega). 

The reagent was added using a Multidrop™ Combi Reagent Dispenser (Thermo Fisher 
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Scientific). After incubation for 10 minutes luminescence was measured in an Infinite® 200 

PRO microplate reader (Tecan). Drug response was analyzed using the R package GRmetrics 

(Clark et al., 2017; Hafner et al., 2016). The difference of the area under the curve (delta AUC) 

between ID188 and ID211 for each drug was calculated and a threshold of >0.3 and <-0.3 was 

set to identify top hits.  

 

5.3.7 Senescence β-Galactosidase Staining  

HPDECs were seeded in a 6 well plate and in order to activate the KrasG12D mutation, cells 

were treated for 24h with 125 ng/mL doxycycline. For senescence β-Galactosidase staining, 

the Senescence β-Galactosidase Staining Kit was used according to manufacterer´s protocol. 

Briefly, cells were washed with PBS and fixed for 15min. The β-Galactosidase staining solution 

was incubated overnight at 37°C without CO2. The development of blue color was analyzed by 

taking images with a brightfield microscope.  

 

5.4 Molecular biology 

5.4.1 Isolation of genomic DNA 

Murine and human 2D cells were seeded in 10cm dishes and genomic DNA was harvested 

once they were 80% confluent. Therefore, media was removed, cells washed with PBS and 

collected using cell scrapers. Genomic DNA was isolated using the QIAamp® DNA Mini kit 

according to manufacturer´s protocol. DNA concentrations were measured using Nanodrop. 

Organoids were processed to a cell pellet as described in 5.3.2 and genomic DNA was isolated 

from organoid lines (ID188 passage 7, ID211 passage 6) and blood as reference tissue using 

the AllPrep® DNA/RNA micro kit according to the manufacturer’s instructions. DNA 

concentration was fluorimetrically determined using the Qubit 3.0 system. 

 

5.4.2 Test for mycoplasm contamination 

Before cryopreservation and after experiments, cells were tested for mycoplasm 

contamination. When cells were almost completely confluent, 2 ml of medium were taken and 

frozen at -20°C until further use. After thawing on ice, medium was centrifuged at 250 g for 

2 min and supernatant was transferred into a new reaction tube. After centrifugation at 20000 

g for 10 min, supernatant was discarded and pellet was resuspended in 50 µl PBS. 2 µl 

therefrom were used for polymerase chain reaction (PCR) according to Table 13. Agarose gel 

electrophoresis was performed as described in 5.2.3. 
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Table 13. Reaction mix and PCR conditions used for mycoplasm test. 
Reaction mix Conditions 

PCR-premix 15 µl 95 °C 15 min  

5’primer mix 2 µl 94 °C 1 min  

40 x 3’primer mix 2 µl 60 °C 1 min 

distilled water 9 µl 74 °C 1 min 

templated 2 µl 72 °C 10 min  

 

5.4.3 Separation of DNA by agarose gel electrophoresis  

For separating the DNA via agarose gel electrophoresis, 2% agarose gels were prepared. 

Therefore, 6-8 g agarose were dissolved in 400 ml 1xTAE buffer and heated for 7 min at 

maximal temperature. After 15 min of cooling, StainIN green nucleic acid stain were added 

according to the protocol and the gel chambers were filled with the mixture. When gels were 

polymerized, combs were loaded with 12 µl of PCR sample and electrophoresis was carried 

out at 120 V for 1-2 h.  

 

5.4.4 Droplet digital polymerase chain reaction (ddPCR) 

DNA of the three conditions, untreated, 72h FFX or Gem/nP and 72h wash out, was isolated 

and submitted for detection and absolute quantification of the KRASG12D mutation via ddPCR 

to the collaboration partners from the Department of Clinical Chemistry and Pathobiochemistry 

at Klinikum rechts der Isar. 

The different components necessary for ddPCR were mixed as indicated (Table 14) and 

pipetted into a 96-well ddPCR plate. Reactions were carried out on a QX200 ddPCR system 

with automated droplet generation. Negative controls (murine pancreas tissue without Kras 

mutation), positive controls (gBlocks, synthetic DNA with amplicon sequence and KRAS 

mutation or KRAS wildtype) and no template controls (purified, nuclease-free water) were 

included. All samples were measured in duplicates.  

After automatically generating 20.000 nanoliter-sized droplets per sample, 96-well plates were 

sealed and PCR was performed according to the cycling protocol for ddPCR (Table 15). 

Finally, the raw droplet fluorescence intensity of each droplet was analyzed individually by the 

QX200 droplet reader using a two-color detection system and the QuantaSoft droplet reader 

software. Custom R scripts were used to quantify the concentrations (c) of mutant and wildtype 

Kras.  
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Calculation was performed as follows:  

c = (In (Np + Nn) – In (Nn)) / V 

In = natural logarithm 

Np = number of positive droplets 

Nn = number of negative droplets 

V = average droplet volume 0.85 nL 

 
Table 14. Components used for one ddPCR reaction.  
Components Volume for one reaction 

ddPCR Supermix for Probes 10.5 µL (900 nM) 

Target-specific primers 1.05 µL (250 nM) 

Msel restricition enzyme 1.05 µL 

ddH2O 1.05 µL 

DNA 6.3 µL (10 ng) 

Total volume 21 µL 

 
 
Table 15. Cycling protocol for ddPCR. 

Reaction Mix Conditions 

Enzyme activation 95 °C 10min  

Denaturation 94°C 30s 40x 

 Annealing/extension 55°C 60 s 

Enzyme deactivation 98°C 10min  

 4 °C hold  

 

5.4.5 Whole exome sequencing 

Genomic DNA was isolated as described in 5.4.1 from both organoid lines and blood as 

reference tissue. DNA concentration was fluorimetrically determined using the Qubit 3.0 

system. Library for Whole Exome Sequencing were prepared using the Agilent SureSelectXT 

Low Input Exome-Seq Human v7 kit following the manufacturer’s instructions. Samples were 

sequenced on an Illumina NovaSeq 6000 sequencer, resulting in approximately 140 Mio. 100 

bp-long paired-end reads per sample. The GATK Best Practice suggestions were followed for 

alignment and mutation calling. After read trimming using Trimmomatic 0.38 (LEADING:25 

TRAILING:25 MINLEN:50), BWA-MEM 0.7.17 was used to align reads to the human reference 

genome (GRCh38.p7). Picard 2.18.26 and GATK 4.1.0.0 were used for postprocessing 

(CleanSam, MarkDuplicates, BaseRecalibrator) using default settings. Somatic mutations 



5 Methods 
__________________________________________________________________________ 

__________________________________________________________________________
38 

 

were called using MuTect2 v4.1.0.0 (default settings). Mutations with at least two reads 

supporting the alternate allele and a base coverage of at least 10 in the tumor and germline 

were kept. Single nucleotide variants (SNVs) and insertions/deletions (Indels) ≤ 10 base pairs 

were annotated using SnpEff 4.3t, based on ENSEMBL 92. Copywriter 2.6.1.2 (default 

settings) was used for the detection of copy number variations. 

 

5.4.6 RNA isolation and cDNA synthesis 

Cells were seeded in a 10 cm dish and harvested when they reached approximately 80% 

confluency. Thus, medium was aspirated and 350 µl of RLT buffer supplemented with 3.5 µl 

of 2-mercaptoethanol were added. Cells were harvested using a cell scraper and disrupted 

using a syringe. For organoids, cells of approximately 5-6 confluent wells were collected in a 

cell pellet and 350 µl of RLT buffer supplemented with 3.5 µl of 2-mercaptoethanol were added. 

RNA isolation was carried out using the RNeasy mini kit according to manufacturer´s protocol. 

cDNA synthesis was performed using the SensiFastTM cDNA Synthesis Kit following the 

manufacturer´s instructions. Generally, 1 μg of RNA were used for generation of cDNA, which 

was stored at -20 °C.  

 

5.4.7 Quantitate real-time PCR (RT-qPCR) 

RT-qPCR was performed with the StepOnePlus™ real time PCR system. As fluorescent DNA 

binding dye, the SensiFastTM SYBR Hi-Rox Kit was used according to manufacturer´s 

protocol in a 20µL mixture. mRNA expression was analyzed in triplicates on 5µL of cDNA, 

which was diluted 1:10 in qPCR water prior to usage. As a reference gene, the housekeeping 

gene β-actin was used. A melt curve was always done after the run to check for unwanted 

primer dimerization. Data analysis was performed with StepOne™ software and Excel 

according to the 2-ΔΔCt method (Pfaffl, 2001). Calculation was performed as follows:   

∆Ct= Ct [gene of interest] – Ct [control gene]  

∆∆Ct= ∆Ct [treated sample] – ∆Ct [reference sample]  

2-ΔΔCt was used for data analysis and presentation of results. 

 

5.4.8 Library preparation and RNA-Sequencing 

To compare gene signatures and underlying signaling pathways, RNA sequencing analysis of 

PDAC cells upon FFX and Gem/nP treatment as well as a washout phase was performed. 

mRNA was extracted as described in 5.2.4. Library preparation for bulk-sequencing of poly(A)-
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RNA was done as described previously (Parekh et al., 2016). Briefly, barcoded cDNA of each 

sample was generated with a Maxima RT polymerase (Thermo Fisher) using oligo-dT primer 

containing barcodes, unique molecular identifiers (UMI) and an adaptor. Ends of the cDNAs 

were extended by a template switch oligo and full-length cDNA was amplified with primers 

binding to the TSO-site and the adaptor. NEB UltraII FS kit was used to fragment cDNA. After 

end repair and A-tailing a TruSeq adapter was ligated and 3’-end-fragments were finally 

amplified using primers with Illumina P5 and P7 overhangs. In comparison to Parekh et al., the 

P5 and P7 sites were exchanged to allow sequencing of the cDNA in read1 and barcodes and 

UMIs in read2 to achieve a better cluster recognition. The library was sequenced on a NextSeq 

500 (Illumina) with 63 cycles for the cDNA in read1 and 16 cycles for the barcodes and UMIs 

in read2. Data was processed using the published Drop-seq pipeline (v1.0) to generate 

sample- and gene-wise UMI tables (Macosko et al., 2015). Reference genome (GRCm38) was 

used for alignment. Transcript and gene definitions were used according to the GENCODE 

Version M25. 

 

5.5 Protein biochemistry 

5.5.1 Protein extraction 

For harvesting protein, cells were cultured in a 10 cm dish until they reached around 80% 

confluency. Then, medium was removed and cells were washed twice with PBS. Organoids 

were processed as mentioned above to a cell pellet. Depending on the number of cells, 150 to 

200 µl of cold RIPA lysis buffer were added and cells were harvested using a cell scraper. The 

protein samples were snap frozen in liquid nitrogen and stored at -20 °C until they were further 

used.   

 

5.5.2 Protein concentration estimation 

In order to determine the protein concentration in the lysates, the Bradford assay was carried 

out. Therefore, lysates were centrifuged at 4 °C and 15000 rpm for 20 min and the supernatant 

was transferred to a new reaction tube. 300 µl of the Bradford reagent, diluted 1:5 in distilled 

water, were placed into the wells of a 96-well plate and 1 µl of protein lysate was added as 

triplicates. To obtain a standard curve as reference, 0, 0.5, 1, 2, 4 and 8 µl of 1xBSA were 

used. Absorbance was measured at 595 nm using the photospectrometer Multiscan FC. 

Afterwards, all lysates were adjusted to the same protein concentration using protein loading 

(4x Laemmli) and RIPA buffer. For denaturation, samples were heated at 95 °C for 5 min and 

then stored at -20 °C.  
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5.5.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

To allow the separation of proteins according to their molecular weight, SDS-PAGE was 

performed. Due to the protein size of the proteins of interest, 12% gels were prepared 

according to Table 16. After mixing the reagents for the separating gel and filling the gel 

chambers, 2-propanol was added to prevent gels from drying out. After polymerization, the 

stacking gel was prepared and added on top. Pockets were loaded with 100-120 µg of protein 

sample and SDS-PAGE was carried out the first 30 min at 80 V and later at 120 V for 

approximately 1.5 h.  

Table 16. Mixture of components for one SDS polyacrylamide gel. 
Compounds 12% separating gel Stacking gel 

H2O 1700 µL 1500 µL 

Separating gel buffer 1300 µL - 

Stacking gel buffer - 650 µL 

Rotiphorese® gel 30 2000 µL 375 µL 

10% SDS 50 µL 25 µL 

10% APS 25 µL 12.5 µL 

TEMED 7.5 µL 5 µL 

 

5.5.4 Immunoblot  

After the gel electrophoresis, proteins were transferred onto a nitrocellulose membrane using 

a tank blot system. Blotting was performed at 350 mA for 1.5 h or 90 mA for 16 h at 4 °C. 

Afterwards, membranes were blocked with 5% skim milk or 5% BSA in PBS at RT and then 

incubated with the primary antibodies, diluted 1:1000 in 5% milk or BSA, overnight at 4 °C. 

After washing membranes three times with PBST for 15 min, they were incubated with the 

secondary antibody, diluted 1:10000 in 5% milk or BSA, for 1 h at RT in the dark. Before 

detecting the proteins at either 700 nm or 800 nm wavelength using the Odyssey ® infrared 

imaging system, three washing steps with PBST were carried out. 

 

5.5.5 Proteomic analysis 

Sample Preparation 

Proteomic analysis was performed at the Institute of proteomics and bioanalytics at the TUM 

school of life sciences. Therefore, protein of cells in an untreated, 72h FFX and 72h wash out 

condition was harvested. Therefore, medium was removed and cells were washed twice with 

PBS. 200 µL of SDS lysis buffer was added and evenly distributed on the cells. After 5min of 
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incubation on ice, the lysate was collected using cell scrapers. To hydrolize the DNA and 

thereby reduce viscocity, the sample was boiled at 95 °C for 10 min and trifluoroacetic acid 

was added to a final concentration of 1 %, incubated for 1-2 min at 95°C and subsequently 

quenched with N-methylmorpholin (final concentration of 2 %) to obtain a pH of 7.5-8. The 

protein concentration in cell lysate was determined using the PierceTM BCA Protein Assay Kit 

according to the manufacturer’s protocol. In order to remove detergent from the sample, the 

protein lysate was processed via SP3 sample workup. The beads suspension was prepared 

by mixing magnetic SeraMag-A (c = 50 mg/ml) and SeraMag-B (c = 50 mg/ml) beads in a ratio 

of 1:1, immobilized on a magnet and the Supernatant was removed (Volume of the supernatant 

was noted down). Beads were washed twice with ddH2O and then resuspended in ddH2O in 

the original volume. A total of 200 µg per sample for the tandem mass tags (TMT) workflow 

and 150 µg for the Label free experiment was mixed 1:10 (protein/beads weight) with the beads 

suspension. Acetonitrile (ACN) was added to a final concentration of 70 % and incubated at 

room temperature, 18 min, 800 rpm. After discarding the supernatant, beads were washed 

twice using 1 ml 80% ethanol and then once more washed with 1 ml of 100 % ACN and air 

dried for 2 min. For reduction and alkylation, beads were resuspended in 100 µl digestion buffer 

without trypsin (100 mM HEPPS, 2 mM CaCl2, 55 mM 2-Chloracetamid, 10 mM Tris-(2-

carboxyethyl)-phosphin) and incubated for 1h at 37 °C and 800 rpm. Proteins were digested 

o/n at 37 °C by adding Trypsin 1:50 (trypsin/substrate weight) resuspended in 10 mM HEPPS 

in a volume of 10 µl per sample at 1000 rpm. Samples were sonicated 3 times for 30 sec, 

centrifuged (5 min, 13000 g) and supernatant was collected. Beads were washed once with 

50 µl ddH2O, sonicated 3 times for 30 sec, centrifuged (5 min, 13000 g), and supernatants 

were combined with previous supernatants. Peptide concentration was determined using a 

NanoDrop spectrophotometer. Samples were frozen at -80 °C and dried in a SpeedVac. 

Samples were reconstituted in 500 µl 0.1 % FA, desalted using tC18 RP solid-phase extraction 

cartridges (Waters Corp.; wash solvent: 0.1% FA; elution solvent: 0.1% FA in 50% ACN), 

frozen at -80 °C and dried in a SpeedVac. After desalting, LFQ samples were ready for 

measurement and stored at -20 °C until LC-MS3. Samples that were analyzed via LC-MS3 were 

further processed. Therefore, 100 ug of the desalted protein digest were labeled withTMT10-

plex (Thermo Fisher Scientific) as previously described (Zecha et al., 2019).  One TMT channel 

was used for each treatment condition and replicates (126 = Control, 127N = 4 h CTX, 127C 

= 8 h CTX, 128N = 24 h CTX, 128C = 48 h CTX, 129N = 72 h CTX, 129C = 4 h WO, 130N = 

8 h WO, 130C = 24 h WO, 131N = 48 h WO). After labeling, peptides were pooled in a fresh 

tube. The TMT pool was frozen at – 80 C and dried in a SpeedVac. The peptide pool was 

reconstituted in 500 µl 0.1 % FA and desalted using tC18 RP solid-phase extraction cartridges 

(Waters Corp.; wash solvent: 0.1% FA; elution solvent: 0.1% FA in 50% ACN). A Dionex Ultra 

3000 HPLC system operating a Waters XBridge BEH130 C18 3.5 µm 2.1 × 150 mm column 
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was used to fractionate 500 ug of the pooled protein digest (reconstituted in 200 µl solvent A). 

Solvent A was 25 mM ammonium bicarbonate (pH = 8.5), solvent B was 100 % ultrapure water 

(ELGA), solvent C was 100 % ACN. The proportion of buffer A was kept at 10 % during 

separation. Separation was obtained from a linear gradient from 7-45% C in 45 min at a flow 

rate of 200 µl/min, followed by a linear gradient from 45-85% C in 6 min. Fractions were 

collected every 30 sec into a 96 well plate and subsequently pooled into 48 fractions by adding 

fraction 49 to fraction 1, fraction 50 to fraction 2 and so forth and acidified with FA to a final 

concentration of 0.1 %. Peptide fractions were frozen at −80 °C freezer, dried in a SpeedVac 

without prior desalting, and stored at -20 °C until LC-MS3 analysis. 

 

Liquid chromatography and mass spectrometry 

For microflow LC-MSMS analysis samples were analyzed on a micro-flow LC-MS/MS system 

using a modified Vanquish pump (Thermo Fisher Scientific) coupled online to a Q Exactive 

Orbitrap HF-X mass spectrometer (Thermo Fisher Scientific). Chromatographic separation 

was performed via direct sample injection onto the head of a 15 cm Acclaim PepMap 100 C18 

column (2 μm particle size, 1 40mm ID, Thermo Fisher Scientific) at a flow rate of 50 μL/min. 

Solvent A was 0.1% FA, 3% DMSO in ddH2O, and solvent B was 0.1% FA, 3% DMSO in ACN 

(Bian et al., 2020). Column temperature was maintained at 55 °C using the integrated column 

oven. Samples were dissolved in 0.1 % FA and 50 ug of the protein digest were injected into 

the system. Samples were separated with a gradient of 1% to 24% B in 105 min followed by 

an increase of B to 35 % in 15 min. The HF-X was operated in positive ion mode, using an 

electrospray spray voltage at 4.0 kV, a funnel RF lens value of 40, capillary temperature of 320 

°C and auxillary gas heater temperature of 300 °C. The flow rates for sheath gas, aux gas and 

sweep gas were set to 35, 5, and 0, respectively. Full MS resolution was set to 60,000 at m/z 

200 and full MS AGC target was 3E6 with a maximum injection time (IT) of 50 ms. Mass range 

was set to 360–1300. AGC target value for fragment spectra was set to 1E5. The dynamic 

exclusion duration was set to 40 s. The TopN value was set to 50. For MS2 spectra, the 

minimum AGC target was kept at 2E3. The isolation width was set to 1.3 m/z, and the first 

mass was fixed at 100 m/z. The normalized collision energy was set to 28 %. MS1 and MS2 

spectra were acquired in profile and centroid mode, respectively. For the full proteome 

analysis, the optimized 28 or 41 Hz methods were used, which were optimized in the previous 

literature (Kelstrup et al., 2018). 

For microflow LC-MS3 measurement, a Dionex UltiMate 3000 RSLCnano System was coupled 

online to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) (Bian et al., 

2020). Peptides were dissolved in 0.1 % FA and one half was directly injected onto the 
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microflow LC system. Online chromatography was performed using a commercially available 

Thermo Fisher Scientific Acclaim 15 cm Acclaim PepMap 100 C18 column (2 μm particle size, 

1 40mm ID, Thermo Fisher Scientific catalog number 164711)) at a flow rate of 50 μL/min. 

Column temperature was maintained at 55 °C using the integrated column oven. Peptides were 

delivered at a flow rate of 50 µl/min and separated using a 25 min linear gradient from 4 % to 

32 % LC solvent B (0.1 % FA, 3 % DMSO in ACN) in LC solvent A (0.1 % FA, 3 % DMSO 

(Hahne et al., 2013). The Orbitrap Fusion Lumos was operated as follows: positive polarity; 

spray voltage 3.5 kV, capillary temperature 325 °C; vaporizer temperature 125 °C. The flow 

rates of sheath gas, aux gas and sweep gas were set to 32, 5, and 0, respectively. Cycle time 

was set to 1.2 s. Full MS was readout in the Orbitrap, resolution was set to 60,000 and the 

mass range was set to 360–1560. Full MS AGC target value was 4E5 with a maximum IT of 

50 ms and RF lens value was set to 50. The MIPS properties were set to peptide. The MIPS 

properties were set to peptide. Default charges were set to state 2–6. The dynamic exclusion 

duration was set to 50 s, exclude after one time. For readout of MS2 spectra, the ion trap was 

used applying the rapid scan function. The isolation width was set to 0.6 m/z, the first mass 

was fixed at 100 m/z, activation type was HCD, HCD collision energy [%] was 32. The AGC 

target value was set to 1.2E4 at a maximum IT of 40 ms. The precursor selection range was 

set to 400–2000, exclusion mass widths were set to 20 m/z for low and 5 m/z for high. For MS3 

spectra readout, the orbitrap was used at 50,000 resolution and over a scan range of 100–

1000. Synchronous precursor selection (SPS) was enabled, the number of SPS precursors 

was set to 8. MS2 isolation window was 3 m/z, activation type was HCD, and HCD collision 

energy was 55 %. The AGC target was 1E5 with a maximum IT of 86 ms. 

 

Data Analysis 

Protein and peptide identification and quantification was performed MaxQuant (Cox and Mann, 

2008) by searching the MS2 and MS3 data against all protein sequences (canonical and 

isoforms) as annotated in the UniProt reference database (mouse proteins only, 25333 

swissprot entries, downloaded 17.12.2020, internally annotated with PFAM domains) using the 

search engine Andromeda (Cox et al., 2011). Carbamidomethylated cysteine was set as fixed 

modification. Oxidation of methionine and N-terminal protein acetylation were set as variable 

modification. Trypsin/P was specified as the proteolytic enzyme and up to two missed cleavage 

sites were allowed. The Match-between-runs feature and label-free quantification were 

enabled for samples that were measured via LC-MS2 (Cox et al., 2014). All other settings were 

set to standard Maxquant default settings. For TMT quantification of LC-MS3 measured data 

the data was quantified by a MS3 search also applying default settings and TMT correction 

factors as supplied by the manufacturer were considered. 
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5.5.6 Immunofluorescence (IF) staining  

For immunofluorescence (IF) staining, 2D cells were cultured on cover slips in a 6 well plate 

and when ready, washed and fixed for 10 min at RT using 4% PFA. In order to avoid 

background signal, cells were treated with 0.15% glycine for 5 min. For IF staining, cells were 

briefly permeabilized with 0.2% Triton-X 100 in PBS. After washing, cells were blocked for 1.5 

h in 10% donkey serum and 0.1% BSA diluted in PBS. The primary antibodies were incubated 

overnight at 4°C in 0.1% BSA diluted in PBS. After washing, the secondary antibodies were 

incubated for 2.5 h at RT in the dark. Thereafter, cells were treated for 2 min with DAPI (0.03 

µL/mL in PBS), washed and mounted. Slides were kept at 4°C until further analysis using the 

Leica TCS SP8 Confocal Microscope.  

For the IF staining of PDOs, organoids were washed and fixed with 4% PFA for 15 min at RT 

and treated with 0.15% glycine for 5 min followed by a 2 min permeabilization using 0.2% 

Triton-X 100 in PBS. After washing, cells were blocked in 10% donkey serum and 0.1% BSA 

diluted in PBS overnight at 4°C. Afterwards, phalloidin (Phalloidin-Atto 647N, 1:250) was 

incubated for 2.5 h at RT in the dark. Thereafter, cells were treated for 2 min with DAPI 

(0.03µL/mL), washed and imaged using the Leica TCS SP8 Confocal Microscope. 

 

5.6 Bioinformatic analysis of transcriptomic and proteomic data 

High-throughput mRNA gene expression data from the conditions indicated in the text were 

carried out using the R environment for statistical computing1 (v4.0.4).  

Proteomic data analysis was performed using the Perseus software suite and R (version 

4.0.02) on identified and quantified protein groups, which were filtered for contaminants and 

reverse hits. The data was normalized using median centering and log2 transformed. 

Genome-wide differential gene expression analysis was calculated using the DESeq2 R 

package (Love et al., 2014) for RNA-Seq count data and the limma R package (Ritchie et al., 

2015) for normalized protein expression data. A false discovery rate (FDR) of < 0.1 was 

considered significant. Phenotype specific contrasts were generated examined using per 

sample information on morphological subtype (epithelial, mesenchymal) and on drug treatment 

(control, FOLFIRINOX=FFX, Gemcitabine/nab-Paclitaxel=Gem/nP) at different time points (72 

hours=main drug effect and 72 hours=wash out/WO).  

One versus rest differential gene expression signatures comparisons were calculated within 

each morphological subtype by contrasting biological replicates from each treatment (control, 

FFX, Gem/nP, WO-FFX, WO Gem/nP) with all other samples using DESeq2 for RNA count 

data and limma for normalized protein expression data, respectively, as described above. 
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These subtype- and treatment-specific gene expression signatures (GES) were represented 

by Wald and moderated t statistics per gene for RNA count and normalized protein expression 

data, respectively. GES were interrogated by gene set enrichment analysis (GSEA) 

(Korotkevich, 2021; Subramanian et al., 2005) using the HALLMARK gene set collection from 

MSigDb version 7.4 (Liberzon et al., 2015). The resulting normalized enrichment score (NES) 

matrix with HALLMARKS in rows and subtype- and treatment-specific one vs. rest signatures 

in columns were illustrated using the pheatmap R package (Kolde, 2019).  

For selected human PDO cultures and human 2D cell lines, respectively, molecular subtype 

classifier gene sets (Bailey et al., 2016; Chan-Seng-Yue et al., 2020; Collisson et al., 2011; 

Moffitt et al., 2015) were scored per sample using analytic rank-based enrichment analysis 

(aREA) (Alvarez, 2016) after  computing transcriptome-wide expression single-sample 

signatures first rank transforming and rescaling first each column (cell line sample) and then 

each row (gene) between 0 and 1. The resulting NES matrix with classifier sets in rows and 

individual cell lines in columns was illustrated using the pheatmap R package (Kolde, 2019). 

To determine single-sample normalized enrichment scores (NES) regarding EMT, aREA was 

applied on normalized RNA-Seq count and protein expression data, respectively, using the 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION gene set without rescaling genes 

before single-sample enrichment analysis. Single sample EMT (ssEMT) scores were rescaled 

between 0 and 1 for better comparability between results from RNA-Seq and protein 

expression samples, respectively. 

Raw count data from RNA sequencing from each of the two technical replicates for each 

organoid line were collapsed by summing all counts per gene into one final raw count profile 

per organoid line. Afterwards, the variance was stabilized by applying a regularized log 

transformation to the data as implemented in the DESeq2 R package while accounting for 

different library sizes (Love et al., 2014).  

A log2 fold change gene expression signature was generated between post- and pre-treatment 

organoid lines and was used as the input for GSEA which was carried out using the fgsea R 

package (Korotkevich, 2021). Gene sets were retrieved from the MSigDb v7.3 (Liberzon et al., 

2015; Subramanian et al., 2005). Enrichment results for select pathways were illustrated using 

custom R code.  

Continuous classification using probabilities of class membership were determined for each 

PDO line using its normalized RNA-Seq profile. The purity independent subtyping of tumors 

(PurIST) single-sample classification scheme was implemented based on the gene pairs and 

coefficients provided by the authors using custom R code (Rashid et al., 2020). Importantly, 

adjustment of gene expression for total gene length was omitted because of the 3'prime end 
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sequencing protocol described above. For the respective PurIST gene pairs, gene expression 

values were illustrated in a heatmap comparing pre- and post-treatment PDO lines. 

 

5.7 Digital holographic microscopy  

5.7.1 Sample preparation 

Cell lines or organoids were processed as mentioned in 5.3 and trypsinized for 5 – 15 min to 

obtain a single cell suspension. Trypsinization was stopped using STI and cells were 

centrifuged at 1000 rpm for 5min. Afterwards the cell pellet was resuspended in 500 – 1000 

µL of 0.9% of polyvinylpyrrolidone (PVP) diluted in PBS. 

 

5.7.2 DHM measurement 

DHM 

In order to distinguish between mesenchymal and epithelial cells, an imaging technique that 

provides sufficient contrast is required. For this reason, a digital holographic microscope 

(DHM) from Ovizio Imaging Systems (Ovizio) was used which is based on a Mach-Zehnder off 

axis interferometer setup. The microscope is equipped with a Nikon CFI LWD objective with 

40x magnification and a numerical aperture of NA = 0.55, an Oslon PowerStar SLED (Osram) 

with a wavelength of λ = 528 nm and a PointGrey Grashopper GS3U332S4 camera which 

takes 105 frames per second with an exposure time of 5 μs. By using a low coherent SLED 

instead of a laser, image degradation is eliminated and the image quality is improved. The light 

beam from the SLED first transmits the sample, which is located in the back focal plane of the 

microscope objective. Afterwards the beam is split with a grating filter into diffraction parts and 

a non-diffraction part (reference). The diffracted part is further shifted in x and y direction 

compared to the reference. By recombination of the shifted parts and the reference, they can 

be interfered, resulting in a hologram, which is recorded on the camera. Finally phase and 

amplitude images can be extracted out of the hologram using common off-axis interferometer 

reconstruction algorithms (Kemper et al., 2019; Anand et al., 2018). A more detailed 

description of the setup and the working principle has been described before (Dubois et al., 

2015; Ugele et al., 2018; Klenk et al., 2019).   
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Microfluidic chip 

To be able to measure cell in high throughput the imaging setup was combined with a 

microfluidic chip. The channel has a height of 50 µm, a width of 500 µm and a total length of 

50,000 µm and is made of poly(methyl methacrylate) (PMMA) (Fraunhofer ICT-IMM). Two 

microfluidic focusing methods were combined for precise alignment of a submonolayer of cells, 

thus eliminating the need for further adjustment of the focus after an initial setup. 

Hydrodynamic focusing could be achieved by using 5 inlets, containing one sample flow, two 

side flows (y-sheaths), a top and a bottom flow (z-sheaths). Here, the flow rates were adjusted 

so that the lateral streams were fixed at 0.5 µl/s and all other streams (sample, top and bottom) 

at 0.2 µl/s. This leads to a total flow rate of 1.6 µl/s which was adjusted with a neMESYS Base 

120 syringe pump system with 5 modules (cetoni GmbH). Each slot was equipped with a 2.5-

ml gas tight syringe (VWR). Furthermore, 0.9% of PVP diluted in PBS was used as media for 

each of the 5 inlets to achieve viscoelastic focusing of the sample. Overall the maximum 

Reynolds number during the measurements is in the single digit range (Re ≈6.5), which implies 

that all measurements were performed in the laminar flow regime. 

 

5.7.3 Computational analysis 

 Pre-Processing 

Capturing 100 hologram images per second, a single measurement contains roughly 10.000 

shots. From these holograms the commercial OsOne Software reconstructs the phase 

information using Poisson integration (Ugele et al., 2018a). The software provides 384px by 

512px phase images with floating point precision (typically within an interval [–2, 6]) that 

contain multiple cells. These images were preprocessed to obtain usable single-cell patches 

for the following classification. As a first step, any background noise was removed, and 

afterwards, single cells were segmented, features extracted and then filtered to get rid of poor 

images. 

To remove background noise and artifacts of the microfluidic channel, background subtraction 

is estimated by taking the median of n images generating significantly better results in 

comparison to using the mean. Best results regarding computing time and quality of the 

background are obtained for n = 50, while for n<50, artifacts of cells are still detected in the 

computed background. Due to the fixed alignment of lens, camera, light, and microfluidic 

channel, the background is not showing any changes during a single capture. This allows the 

computation to be done the background to be calculated only once based on the first few 

images. Afterwards, the calculated background is subtracted from every image. 
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In order to find the important regions of the image containing cells, we apply binary thresholding 

to the phase images. Here, a threshold value of 0.8 delivered good results for filtering out small 

debris. From the resulting binary images we extracted the contours of each region of interest 

(Suzuki, 1985). Each contour which covers more than 30 pixels is stored with its corresponding 

96px x 96px image patch around its center. 

For feature extraction, we combined two features types, morphological features and residual 

neural networks (ResNet) features. Therefore, we analyzed each digitalized cell for its 

morphology (Ugele et al., 2018a; Ugele et al., 2018b). Using established functions from 

OpenCV together with hand crafted methods, the following features in table 17 showed the 

most descriptive power for several discrimination tasks. Here, N is the number of pixels 

assigned to the cell in the image, λ is the wavelength of the coherent light source, vi,j is the 

intensity value of the pixel at the 2D index(i,j) and r is the radius estimation for each point of 

the cell contour. 

Table 17. Overview of morphological features, their calculations and applied filter boundaries 
used in this study.  
Feature Equation Filter 

aspect ratio max(width*height)/min(width*height) - 

cell area  N * (0,345µm)2 [50, 500] 

circularity 4π*cell area/perimeter2 [0.85, 1] 

optical height max max(vi,j) * (λ/2π) 2∀i,j - 

optical height min min(vi,j) * (λ/2π) 2∀i,j - 

optical height mean mean(vi,j) * (λ/2π) 2∀i,j - 

solidity cell area/conex hull area - 

sphericity correlation to f(x)=-x2+1 - 

biconcavity correlation to f(x)=-4x2+4x2+0.5 - 

radius variance var(r) * 0,345µm - 

homogeneity ,

( ),
 with Pi, j =

,

∑ ,,

 
- 

correlation 
𝑃𝑖, 𝑗

( µ)( µ)

,
, with,  

𝜎 = 𝑃𝑖, 𝑗(𝑖 − µ)
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contrast 
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ResNets and their characteristic skip connections (He, 2015) are inspired by pyramidal cells 

in the cerebral cortex. Here, a lightweight ResNet with 18 convolutional layers (ResNet18) has 

been used for feature extraction. The network has been pretrained on the ImageNet dataset 

and thereby, it is capable of extracting the most prominent structures within images. In contrast 

to previous state of the art image classification networks like VGG-16 its layers are not simply 

stacked one on each other but organized in residual blocks. Using it as a feature extractor is 

possible by cutting the last fully connected layer, that would already perform a classification, 

and use the output of the second to last layer as features for our analysis. This layer provides 

512 abstract features that describe the inherent structures of the images. 

Sample preparation of our cells as well as our measurement setup with its high-throughput can 

lead to some damaged, deformed or unfocused cells. Since they can possibly disturb the 

classification, they have to be filtered. Therefore, we set some boundaries to the calculated 

morphological features based on their distribution and our experience with this approach in 

general. The applied filter rules are depicted in table 1. 

 

Classification 

The two generated feature sets, morphological and resnet features, are then used in various 

classification and clustering approaches to achieve the goal of separating the different cells 

respectively in each experiment. All of the experiments have been conducted with balanced 

datasets and using a cross-validation with 5 splits. 

Random Forest (RF) is an ensemble classification method based on decision trees (Breiman, 

2001). For random forests classification, a multitude of decision trees is automatically 

constructed based on different fractions of the given dataset. For classification of unknown 

samples, the average result of all trained decision trees is used. This concept reduces 

overfitting very effectively and works well for more complex classification tasks with large 

amounts of features. In our implementation we limited the algorithm to 100 individual decision 

trees without setting a bound for the maximum depth of a single tree. 

A Support Vector Machine (SVM) is a binary linear classification technique, which divides data 

into two classes using the best hyperplane decision boundary. This decision boundary is 

obtained by maximizing the margin between the class border and sample data (Boser, 1992; 

Cortes, 1995). To classify non-linearly separable sample data the so-called kernel trick is 

utilized to provide non-linear combinations of the input data. Most commonly polynomial, 

sigmoid, or gaussian radial basis function kernels are used. Since in practice datasets are 

usually not perfectly separable, a concept named soft margin is applied which allows some 
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data points to violate the margin condition resulting in penalization. As a result, we achieved 

the best performances using a penalty parameter C =1 and radial basis function as kernel. 

The K-Nearest Neighbor (k-NN) classifier is one of the simplest methods to classify data. It 

assumes that every class can be represented as a single cluster. For new data points it 

calculates the distance to all the other points using e.g. the euclidean distance and then 

assigns them to the class to which the majority of the neighbors belong. With the parameter k 

you can define how many of the nearest neighbors will be analyzed before assigning the class 

(Cover, 1967; Cunningham, 2021). k-NN is based on the idea that similar samples lie closer 

together in the feature space. The easiest and fastest classification is achieved with k=1, which 

simply classifies depending on the nearest sample point. This implementation is very 

vulnerable to noise which can be prevented with a higher k to get results that are more robust 

to noisy data or imperfect training samples. For this paper we set k=5. 

(Artificial) Neural Networks (NN) are based on the biological concept of neurons simulating the 

human brain. They prove to be very successful in many but not solely machine vision problems 

due to their learning capabilities. An artificial neuron (Rosenblatt, 1958) takes multiple inputs 

and outputs the weighted sum of these inputs after applying an activation function. Many 

interconnected artificial neurons form a network (Hornik, 1989). The learning ability is achieved 

by adapting the neuron’s weights (axons) based on a sequence of training samples during a 

learning phase. Fostered by rapidly growing available computational power, networks with 

multiple hidden layers, called deep neural networks, are getting increasingly popular. For this 

work, a rather simple multi-layer neural network was created. It consists of a single hidden 

layer with 100 neurons and utilizes the Adam algorithm (Kingma, 2017) and a cross-entropy 

(Wang, 2020) loss function for optimization. The training was performed in batches of 256 

samples. 
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Visualization 

For the dendrogram we selected the 26 features with the highest impact (based on the RF 

Importance) to be shown on the y-axis. The hierarchical clustering at the top is performed using 

single linkage (Nielsen, 2016). 

The Uniform Manifold Approximation and Projection (UMAP) (McInnes, 2018) is a clustering 

and visualization approach that uses all available features and represents them in a lower 

dimensional representation, e.g. in two dimensions as we did in the paper. In comparison to a 

standard dot plot, where you are limited to selecting two features for your visualization, this 

method can lead to more distinct clusters since it can make use of more information.  

Based on the euclidean distance, it calculates a similarity measure among all data points. This 

describes how likely it is that these data points lie close together. The data points are then 

placed in the two-dimensional representation and moved around in an iterative fashion, until 

the similarity conditions are best satisfied. 

As an indicator for the homogeneity of a cluster, you can calculate the distance of the data 

points to the cluster center. For an individual data point xi, this is calculated as  

di=||xi-c||2, 

with c being the center of the cluster. The resulting values can then be compared by either 

calculating a mean value for each cluster or by analyzing their distribution in a violin plot. 

Since this measure focuses on the dispersion of the individual cluster without considering the 

structure of the other clusters, it results in a robust analysis that is not susceptible to influence 

by poor measurements. 
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6 Results 

6.1 DHM as label-free tool for high-throughput characterization of PDAC 

6.1.1 Establishment of the DHM workflow 

The aim of this study was to establish DHM for a detailed phenotypic characterization of PDAC 

on a cellular level in a label-free high-throughput fashion. We used a customized DHM (Oliver 

Hayden, TUM) coupled to a microfluidic system allowing us to focus on a single cell suspension 

flowing through the DHM system. Therefore, we processed cells derived from cell culture into 

a single cell suspension to measure them with DHM in flow. Single-cell phase images were 

then subjected to a computational analysis pipeline. In the first step we pre-processed the 

obtained phase images by subtracting the background to remove noise and artifacts. Then, 

using binary thresholding, we performed cell segmentation to find the regions of interest. For 

feature extraction and filtering we combined morphological features, partly derived from 

OpenCV and partly hand-created, with a lightweight residual neural network with 18 

convolutional layers (ResNet18). As a last step, we applied the commonly used pixel-based 

classification tools random forest (RF), support vector machine (SVM), K-nearest neighbors 

(K-NN) and neuronal networks (NN) in order to discriminate experimental samples and 

visualized the results using hierarchical or UMAP clustering. The obtained results provide 

insight into tumor cell plasticity and particularly intratumoral heterogeneity. The established 

workflow is illustrated in Figure 1. 

 

 
Figure 1. Schematic illustration of the established workflow of digital holographic microscopy. 
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6.1.2 Differentiation of two most distinct cell morphologies 

Since cells in suspension appear round and consequently are visually inseparable from each 

other, we determined whether cells with most distinct morphologies in adherent cell culture 

can still be differentiated in a label-free single-cell approach using DHM.  

To do so, we chose HPDECs with a classical cobblestone morphology and CAFs with spindle-

like shape in our first comparison. The difference in morphology in an adherent condition is 

clearly recognizable by normal phase contrast microscopy as well as immunofluorescence 

staining of the actin filaments (Figure 2A). In addition, the expression of lineage markers for 

ductal epithelial cells such as cytokeratin 19 (CK19) and E-Cadherin as well as for CAFs such 

as α-SMA, Zeb1 and Vimentin were significantly different between the two cell types at RNA 

and protein levels (Figure 2B, C). Next, cells were measured in flow using DHM and analyzed 

with the four established machine learning classifiers (Figure 2D, E). All classifiers delivered 

good results, however Random Forest classification performed best throughout this study, 

therefore we focus further on only on this classification method. Here, using Random Forest 

classification we observed a separation of almost 85% based on morphological+ResNet18 

features (Figure 2E). In addition, a right shift of the CAFs compared to the HPDECs was 

observed in UMAP analysis (Figure 2F). DHM demonstrates that even though HPDECs and 

CAFs look similiar in a round-up condition, the algorithm is capable of separating and clustering 

them with high accuracy.  

 
 
Figure 2. Separating ductal epithelial cells and cancer-associated fibroblasts. 
A, Phase-contrast images and immunofluorescence staining of the cytoskeleton of HPDECs and CAFs. 
Scale bars represent 200µm (left) and 100µm (right). B, Immunofluorescence staining of CK19, α-SMA 
and Zeb1 of HPDECs and CAFs. Scale bars represent 100µm. C, Relative mRNA expression of E-
cadherin and Vimentin in HPDECs and CAFs. Unpaired student´s t test of n=3 independent replicates, 
***p<0.001. D, DHM phase images of HPDECs and CAFs. Scale bars indicate 10 µm. E, Accuracy for 
separating HPDECs and CAFs using different classification methods: random forest (RF), support vector 
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machine (SVM), K-nearest neighbors (K-NN) and neuronal network (NN). F, Unsupervised clustering of 
HPDECs and CAFs based on DHM phase images and visualized using the UMAP plot 

 

6.1.3 Identifying TGF-β-induced EMT on a single-cell level 

We next wanted to address whether we are able to identify morphological changes within a 

cell line. Treatment regimens like chemotherapy often induce phenotypic changes, such as 

EMT, in tumor cells (Hwang, 2020; Porter et al., 2019), which we wanted to mimic in a 

controlled setting using TGF-β. Therefore, we treated well-characterized murine epithelial 

PDAC cells for 14 days with TGF-β in order to induce EMT and to determine the phenotype 

switch within each line using DHM (Mueller et al., 2018). As expected, the epithelial cells lost 

their cell-cell contact and transformed into spindle-like spiky cells illustrated via phase contrast 

microscopy and F-actin staining (Figure 3A, C). For validation, EMT markers of untreated as 

well as TGF-β-treated cells were assessed on mRNA as well as protein level. Both showed a 

dramatic decrease in the epithelial marker E-Cadherin and an increase in the mesenchymal 

markers N-Cadherin and Vimentin (Figure 3B, C). However, the cell line 8442 did not respond 

as strongly to TGF-β treatment in comparison to 9591 and 53631, where a better response 

was observed as depicted in the phase-contrast images as well as IF staining. At a single cell 

level, comparing the morphological features upon EMT induction clearly showed differences 

in the respective DHM phase images (Figure 3D). For cell lines 9591 and 53631 the algorithm 

could predict a difference in morphology of 81% and 85% of untreated versus treated cells, 

respectively. In contrast, line 8442 showed a difference in only 75% of cells (Figure 3E). These 

results were visualized using UMAP analysis, in which a clear right shift was identified in 9591 

and 53631 while 8442 showed a minor transition with a big overlap between control and TGF-

β-treated cell morphologies (Figure 3F). This in turn recapitulated our observations of line 8442 

in the validation experiments and was taken as an internal quality control for the algorithm we 

used in this study. Using DHM allowed us to identify TGF-β-induced EMT in murine PDAC 

cells and we additionally found a high degree of inter- as well as intratumoral heterogeneity 

strengthening the utility of our single-cell approach. 
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Figure 3. Identification of TGF-β-induced EMT. 
A, Phase contrast images of control and TGF-β-treated epithelial PDAC cells. Scale bars represent 200 
µm. B, Relative mRNA expression of E-cadherin and N-Cadherin compared between the control and 
TGF-β-treated condition. Unpaired student´s t test, ns = not significant, *p<0.05, **p<0.01 ***p<0.001. 
C, Immunofluorescence staining of Phalloidin, E-Cadherin and Vimentin in control and TGF-β-treated 
PDAC cells. Scale bars represent 100 µm. D, DHM phase images of control and TGF-β-treated PDAC 
cells. Scale bars represent 10 µm. E, Accuracy for separating control and TGF-β-treated PDAC cells 
individually for every cell line using different classification methods: random forest (RF), support vector 
machine (SVM), K-nearest neighbors (K-NN) and neuronal network (NN). F, Unsupervised clustering of 
control and TGF-β-treated PDAC cells based on DHM phase images and visualized using UMAP plots.  
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 6.1.4 Clustering tumor cell plasticity according to their p120catenin mutation status 

In a similar approach, we used genetically engineered murine Kras-mutant cells with wildtype 

(WT) or a homozygous deletion of p120-catenin (p120ctn) – the cytosolic binding partner of E-

Cadherin and thus, an important component for adherens junctions (Reichert et al., 2018). The 

bi-allelic depletion of p120ctn leads to endocytosis and degradation of E-Cadherin and thereby 

induces the loss of epithelial identity accompanied by an acquisition of morphological features 

related to EMT. Consequently, genetically modulating epithelial plasticity via p120ctn was used 

as an alternative model system to train DHM for detecting different stages of EMT and 

plasticity, features that are important for PDAC characterization. The differences in phenotype 

upon p120ctn ablation were clearly visible in phase contrast microscopy as well as IF staining 

of cells in an adherent condition with the p120ctn -/- cells demonstrating spindle-like features 

(Figure 4A, B). Thus, indirectly removing E-Cadherin from the adherens junctions without the 

increase of the mesenchymal marker Vimentin is enough to remodel cellular morphology 

(Figure 4B). These morphologically different lines were subjected to DHM analysis (Figure 4C). 

Random Forest classification allowed a separation of 80% between WT and knockout cells 

with a clear right shift in the cells harboring a p120ctn deletion (Figure 4D, E). Again, this 

illustrates the capability of DHM to correctly identify the EMT status of PDAC cells in a 

controlled and characterized setting.  

 
Figure 4. Detecting EMT in genetically engineered tumor cells harboring a p120catenin knockout. 
A, Phase contrast images of cells with p120catenin wildtype (p120+/+) or homozygous (p120-/-) 
deletion. Scale bars represent 200µm. B, Immunofluorescence staining of the EMT markers E-Cadherin, 
Vimentin and Phalloidin in p120+/+ and p120-/- cells. Scale bar represents 100µm. C, Representative 
DHM phase images of p120+/+ and p120-/- cells. Scale bars represent 10 µm. D, Accuracy for 
separating p120+/+ and p120-/- cells using different classification methods: random forest (RF), support 
vector machine (SVM), K-nearest neighbors (K-NN) and neuronal network (NN). E, Unsupervised 
clustering of p120+/+ and p120-/- cells based on DHM phase images and visualized using UMAP plots.  
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6.1.5 Phenotypic subtyping of characterized murine PDAC cells  

As we have looked at EMT in a controlled setting by now, we wanted to focus on pancreatic 

cancer plasticity and heterogeneity in a more complex environment. Therefore, we used 

molecularly characterized murine PDAC cells recently grouped into the C2b and C1 cluster 

representing epithelial and mesenchymal cell morphology, respectively (Mueller et al., 2018). 

Hierarchical clustering based on their bulk transcriptomes (2000 most differentially expressed 

genes) clearly separates them according to their defined phenotype (Figure 5A). However, the 

mRNA expression levels of the main EMT markers like E-Cadherin, EpCAM, N-Cadherin, 

Vimentin, Zeb1 and Snail1 strongly vary not only between the two clusters but also within each 

cell line indicating a certain degree of heterogeneity within each cluster (Figure 5B). Going 

back to the cell morphology in an adherent cell culture condition, we indeed found a hybrid-

like phenotype in 8442 with a large number of cells showing mesenchymal features and 8028 

exhibiting a considerable sub-population of epithelial cells (Figure 5C). The other cell lines 

showed a subpopulation of the opposite phenotype as well, but not to the same extent as 8442 

and 8028 emphasizing the presence of intratumoral heterogeneity, which remained undetected 

in bulk RNA sequencing.  

As expected, measuring these lines with DHM and analyzing it using morphological+ResNet18 

features did not predict a clear separation of phenotypes (Figure 5D). Random Forest 

classification of cells derived from the C2b versus C1 cluster showed a differentiation accuracy 

of only 72% (Figure 5E). However, UMAP clustering revealed a continuum of cellular 

phenotypes within each cluster as well as each cell line confirming high levels of inter- and 

intratumoral heterogeneity, a well-known and challenging feature of PDAC (Figure 5F). While 

the vast majority of 9591 and 53631 clustered on the left side of the spectrum, 8442 covered 

the whole spectrum with the majority located in the middle. Similar to this, 8028 showed a great 

overlap with the epithelial phenotype, while 9091 and 16992 clustered mainly on the right side 

of the spectrum (Figure 5G). Additionally, hierarchical clustering based on DHM showed a 

closer relationship between 8442 and 8028 than each cell line has to the members of their 

transcriptomic subtype further strengthening the hybrid-like EMT state of both (Figure 5H). 

Calculating the single cell distance to the cluster centroid allowed us to evaluate and quantify 

intratumoral heterogeneity from DHM-derived phase images. As expected, the cell lines 9591 

and 53631 exhibited the lowest degree of intra-cell line heterogeneity while 8028 showed the 

highest score (Figure 5I). These data strongly indicate that although cells are grouped into a 

defined tumor subtype based on their bulk transcriptomic profile, they can be composed of a 

highly heterogeneous cell population, which can be analyzed in detail only using single cell 

technologies.  
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Figure 5. Label-free clustering of epithelial and mesenchymal murine PDAC cells.  
A, Hierarchical clustering of 2000 most variable genes based on transcriptomic profiles of the six murine 
PDAC cell lines. n = three independent replicates per cell line. B, Relative expression of EMT markers 
(E-Cadherin, EpCAM, N-Cadherin, Vimentin, Zeb1 and Snail1) based on RNA sequencing compared 
between epithelial (E) and mesenchymal (M) PDAC cells. n = three independent replicates per cell line. 
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C, Phase contrast images of epithelial and mesenchymal PDAC cells. Arrows indicate subpopulations 
of the opposing phenotype. Scale bars represent 200 µm. D, DHM phase images of PDAC cells. Scale 
bars indicate 10 µm. E, Accuracy for separating epithelial and mesenchymal PDAC cells using different 
classification methods: random forest (RF), support vector machine (SVM), K-nearest neighbors (K-NN) 
and neuronal network (NN). F, Unsupervised clustering of DHM phase images derived from cells of the 
C2b and the C1 cluster visualized using the UMAP plot. G, Unsupervised clustering of individual PDAC 
lines based on DHM phase images and visualized using UMAP plots H, Hierarchical clustering of 
epithelial and mesenchymal PDAC cells based on the 26 most different ResNet18 and morphological 
features. I, Evaluation of intra-cell line heterogeneity using single cell distance to cluster centroid. 
Kruskal-Wallis test, ****p<0.0001. 

 

In order to use DHM as a tool to investigate the phenotype of an unknown sample, it is key to 

identify different morphological subpopulations within one sample. Thus, we performed a spike 

experiment, mixing an epithelial (9591) as well as a mesenchymal cell line (16992) in different 

known concentrations (Figure 6A). The algorithm was trained using pure populations of both 

lines and the mixed populations were afterwards tested. The results of the DHM measurement 

significantly correlated with the calculated concentrations with a maximum deviation of 3% in 

the sample of 25% epithelial mixed with 75% mesenchymal cells (Figure 6B). These data 

clearly demonstrate the robustness of this technique in order to identify subpopulations of 

varying morphologies within one sample. This in turn is an important factor, as intra- as well 

as intertumoral heterogeneity is highly abundant in PDAC, which can be recorded on a single 

cell level using our DHM approach.  

 

Figure 6. Detecting morphological subpopulations in unknown samples.  
A, Schematic illustration of the spike experiment setup. B, Accuracies obtained using Random Forest 
classification when trained with 100% epithelial and 100% mesenchymal PDAC cells.  
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6.1.6 Phenotypic subtyping of characterized human PDAC cells  

In parallel, we have performed the same approach using human established and well-

characterized PDAC cell lines. When cultured in 2D, PatuS and HPAC exhibited an epithelial 

morphology with colony formation and cell-cell contact while PSN-1, DanG and PatuT showed 

a spindle-like single cell growth pattern (Figure 7A). When applying the well-known PDAC 

subtyping methodologies to these cell lines, we did not obtain definite subtypes for all cell lines 

(Figure 7B). While PatuS as well as PatuT and DanG were clustered into the classical and the 

quasi-mesenchymal PDAC subtype, respectively, HPAC and PSN-1 failed to be assigned to 

either subtype suggesting either a hybrid-like phenotype or a failure of subtyping approaches 

as Topham et al. demonstrated (Topham et al., 2021). However, when we measured these 

cells with DHM, we obtained a clear separation of the cells with epithelial and quasi-

mesenchymal morphology (Figure 7C). Hierarchical clustering based on DHM phase images 

clearly separated HPAC and PatuS from PatuT, PSN-1 and DanG, similar to the morphology 

observed in adherent cell culture (Figure 7D). Random Forest classification and UMAP 

clustering further verified this grouping as the epithelial and quasi-mesenchymal cell lines 

could be separated with an accuracy of almost 90% with a clear left shift in the quasi-

mesenchymal lines (Figure 7E, F). Interestingly, levels of intra-cell line heterogeneity differed 

independently of cellular morphology with PatuS and PatuT showing the lowest and PSN1 

showing the highest intratumoral heterogeneity score (Figure 7G, H). 
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Figure 7. Label-free clustering of epithelial and mesenchymal human PDAC cells.  
A, Phase contrast images of human PDAC cells. Scale bars represent 200 µm. B, Molecular subtype 
classifier gene sets applied to transcriptomic profiles of established PDAC cells. C, DHM phase images 
of PDAC cells. Scale bars indicate 10 µm. D, Hierarchical clustering of epithelial and mesenchymal 
human PDAC cells based on the most different Resnet18 and morphological features. E, Accuracy for 
separating epithelial and mesenchymal PDAC cells using different classification methods: random forest 
(RF), support vector machine (SVM), K-nearest neighbors (K-NN) and neuronal network (NN). F, 
Unsupervised clustering of epithelial (PatuS and HPAC) versus mesenchymal (PSN1, DanG and PatuT) 
PDAC cells based on DHM phase images and visualized using the UMAP plot. G, Unsupervised 
clustering of individual cell lines based on DHM phase images and visualized using UMAP plots.   
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6.1.7 Phenotypic characterization of patient-derived organoid heterogeneity 

In the past decade, 3D model systems such as organoid cultures have been extensively 

studied since they more closely recapitulate human physiology and better depict heterogeneity 

compared to 2D cell cultures (Kim et al., 2020). Indeed, Juiz et al. performed scRNAseq of six 

PDAC PDOs and grouped their transcriptomic profiles into four clusters illustrating different 

levels of EMT. Interestingly, these clusters were found throughout the whole cell line panel. 

However, the cell count of each cluster was different between the PDO lines representing a 

high degree of intratumoral heterogeneity in these organoids (Juiz et al., 2020). Therefore, we 

next used six different PDO lines in order to identify inter- and intratumoral heterogeneity on a 

single cell level using DHM in a clinically relevant setting. When grown as organoids, ID188, 

ID203, ID208 and ID226 showed a lumen-filling growth pattern, while ID211 and ID250 grew 

with hollow lumen structures (Figure 8A). Transcriptional subtyping of PDO bulk RNA 

sequencing clustered them into 2 groups, however only ID211 was characterized as clearly 

classical and ID250 as quasi-mesenchymal. For the rest of the lines no definite subtype could 

be assigned (Figure 8B). Once PDOs were dissociated to a single cell suspension, DHM-based 

phenotyping did not predict a clear separation of the PDO lines into classical and quasi-

mesenchymal based on single cell phase images using hierarchical clustering (Figure 8C, D) 

but rather demonstrated high inter- and intratumoral heterogeneity in the corresponding UMAP 

analysis (Figure 8E).  Indeed, when quantifying the intra-cell line heterogeneity, we found 

significantly different levels in the six lines. While ID211 and ID226 showed the lowest 

heterogeneity within their respective cluster, ID208 showed by far the highest intratumoral 

heterogeneity (Figure 8F).  
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Figure 8. Detecting single cell tumor plasticity and heterogeneity in patient-derived organoids of 
PDAC. 
A, Phase contrast images of patient-derived organoids (PDOs). Scale bar represents 200µm. B, 
Molecular subtype classifier gene sets applied to transcriptomic profiles of PDOs. C, DHM phase images 
of PDOs. Scale bars indicate 10 µm. D, Hierarchical clustering of PDOs based on the most different 
morphological+ResNet18 features. E, Unsupervised clustering of individual PDAC organoid lines based 
on DHM phase images and visualized using UMAP plots. F, Evaluation of intra-organoid line 
heterogeneity using single cell distance to cluster centroid. Kruskal-Wallis test, ****p<0.0001. 
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6.1.8 Detecting oncogene-induced changes in morphology 

Differentiation and plasticity are indispensable parameters of PDAC characterization. 

However, oncogenic activity is the major factor for PDAC onset and progression and is 

influencing cellular morphology, as well. In particular, oncogene-induced senescence has been 

considered a potent anticancer mechanism in precursor lesions to prevent replication of 

malignant cells (Herranz and Gil, 2018) and thus might serve as diagnostic parameter for early 

detection. Senescence leads to cell cycle exit, morphological changes, chromatin remodeling 

as well as secretion of proinflammatory factors.  Especially the change in phenotype might be 

detectable using DHM and thereby we might be able to use DHM as a diagnostic tool. For that 

reason, we used a doxycycline-inducible model system in HPDECs, in which a major hallmark 

of PDAC – the KRASG12D mutation, is activated upon treatment (Figure 9A). In order to potently 

activate KRASG12D, cells were treated for 24h with 125 ng/mL doxycycline. The activation of 

KRASG12D resulted in a senescent phenotype with increased lysosomal content, which returned 

to its baseline phenotype after a doxycycline withdrawal for 7 days (Figure 9B). The senescent 

phenotype of the cells was validated by assessing the senescence-associated β-galactosidase 

activity. While cells in the baseline and washout state did not exhibit high β-galactosidase 

activity, HPDECs with KRASG12D activation showed strongly increased levels (Figure 9C). In 

contrast to our expectations, the algorithm could predict only a difference in phenotype 

between with and without doxycycline-treated cells of approximately 78% upon oncogene 

induction, which was similar (82%) when we included also the doxycycline washout cells 

(Figure 9D, F). Using UMAP clustering of DHM phase images, we still observed a shift in 

morphology upon doxycycline-treatment, which returned to baseline after doxycycline-washout 

(Figure 9G). However, for validation purposes we additionally used HPDECs with doxycycline-

inducible EGFP instead of KRASG12D. Phase contrast images as well as phase images of DHM 

demonstrated that doxycycline itself did not induce the senescent phenotype noticed upon 

KRASG12D activation since no difference in UMAP clustering and classification was observed 

(Figure 9H, I, J). Importantly, we observed a heterogeneous induction of EGFP in our IF 

staining suggesting different expression intensities of KRASG12D on a single cell level, leading 

to a heterogenous cell population (Figure 9H). This in turn explains the relatively low 

differentiation rate of only 78% upon KRASG12D activation and proves the propriety of our DHM 

system.  



6 Results 
__________________________________________________________________________ 

__________________________________________________________________________
65 

 

 
Figure 9. Detection of oncogenic activation of KRAS in HPDECs using DHM.  
A, Schematic illustration of the doxycycline-inducible Tet-On system. B, Phase contrast images of 
control HPDECs and cells after doxycycline treatment and washout. Scale bar represents 50µm. C, β-
Galactosidase staining of cells in doxycycline untreated, treated or washout stage. Scale bar represents 
50µm. D, DHM-derived phase images of HPDECs. Scale bar represents 10µm. E, Accuracy for 
separating HPDECs with and without doxycycline using different classification methods: random forest 
(RF), support vector machine (SVM), K-nearest neighbors (K-NN) and neuronal network (NN). F, 
Accuracy HPDECs with and without doxycycline and the washout using different classification methods: 
random forest (RF), support vector machine (SVM), K-nearest neighbors (K-NN) and neuronal network 
(NN). G, Unsupervised clustering of HPDECs based on DHM phase images and visualized using UMAP 
plots. H, Phase contrast images (upper panel) and immunofluorescence staining (lower panel) of 
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HPDECs with doxycycline-inducible EGFP. Scale bars represent 50µm (up) and 100µm (down). Arrows 
indicate cells lacking EGFP expression. I, Accuracy for separating HPDECs (GFP-inducible) with and 
without doxycycline using different classification methods: random forest (RF), support vector machine 
(SVM), K-nearest neighbors (K-NN) and neuronal network (NN). J, Unsupervised clustering of HPDECs 
(GFP-inducible) based on DHM phase images and visualized using UMAP plots. 

 

6.2 Treatment-induced vulnerabilities in murine PDAC cells  

Research in the past mainly focused on the molecular effects of gemcitabine treatment, since 

it has been standard of care for many decades. Research groups were able to show that 

particularly EMT and the differentiation status of a tumor plays an important role in the 

response towards chemotherapy. However, the gold standard changed and therefore the 

necessity arises to study chemoresistance upon FFX as well as Gem/nP administration.  

 

6.2.1 Phenotype-specific response rate towards chemotherapeutic treatment 

First, we used the well characterized cell lines from the C2b as well as C1 Cluster in order to 

investigate phenotype-specific response towards FFX as well as Gem/nP. Single drug 

treatments of all cytostatic components of FFX revealed an increased sensitivity in the 

mesenchymal cells of the C1 Cluster compared to the epithelial cells with partially significantly 

reduced area under the curve as well as IC50 values (Figure 10A, B). Combining 5-FU, 

Irinotecan and Oxaliplatin in a ratio comparable to the one in clinical routine yielded similar 

results as the single drug treatments with increased resistance in the epithelial phenotype 

(Figure 10 C, D, E).  

When treating the cells with gemcitabine only, mesenchymal cells showed again an increased 

sensitivity compared to the epithelial cells. Strikingly, paclitaxel as single agent showed the 

opposite result with significantly reduced area under the curve and IC50 value in the epithelial 

versus the mesenchymal lines (Figure 11A, B). When combining both cytostatic components 

based on the clinical ratio with 1µM of gemcitabine plus 0.125µM paclitaxel, the effects of 

paclitaxel outweigh the ones of gemcitabine (Figure C, D, E). Even though the concentration 

of gemcitabine is 8-way higher than paclitaxel, the epithelial cells again showed a significantly 

increased sensitivity compared to the mesenchymal cells.  

This in turn shows a phenotype-specific response towards FFX and Gem/nP with 

mesenchymal cells being more sensitive towards FFX, but more resistant towards Gem/nP 

and epithelial cells acting vice versa.  
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Figure 10. Increased sensitivity towards FFX treatment in mesenchymal cells.  
A, Single treatment of 5-FU, Irinotecan and Oxaliplatin in epithelial and mesenchymal cells. B, 
Corresponding area under the curve for all single treatments. Unpaired student´s t-test C, Drug 
concentrations in clinic and research for FFX. D, FFX drug response curve. E, Corresponding area 
under the curve for FFX treatment.  
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Figure 11. Increased sensitivity towards Gem/nP treatment in epithelial cells.  
A, Single treatment of gemcitabine and paclitaxel in epithelial and mesenchymal cells. B, Corresponding 
area under the curve for all single treatments. Unpaired student´s t-test C, Drug concentrations in clinic 
and research for Gem/nP. D, Gem/nP drug response curve. E, Corresponding area under the curve for 
Gem/nP treatment.  
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6.2.2 Molecular mechanisms contributing to chemoresistance in PDAC cells 

In order to analyze molecular changes and adaption processes occurring upon FFX and 

Gem/nP treatment, we have treated the murine epithelial and mesenchymal PDAC cells for 

72h with their respective IC50 concentration of either drug combination. Surviving cells were 

recovered for additional 72h in normal medium in a wash out phase to differentiate between 

temporary and prolonged effects (Figure 12A). Different analyses were performed in order to 

obtain detailed insight into the individual mechanisms of chemoresistance, mainly focusing on 

FFX treatment. A time-lapse proteomics analysis of one cell line (9591) over 72h of FFX 

treatment and 48h of wash out period was performed in order to find the appropriate time points 

for later RNA sequencing and proteomics analysis (Figure 12B). The expression of most 

proteins was increased over time, however reached the plateau at 72h of FFX treatment and 

remained stable until the end of the wash out suggesting these time points for further analyses. 

Interestingly, epithelial cells responded phenotypically stronger compared to mesenchymal 

cells upon FFX treatment as well as wash out phase (Figure 12C). While mesenchymal cells 

barely change upon treatment, epithelial cells lost their cell-cell contact and acquired an EMT-

like morphology. In contrast, neither epithelial nor mesenchymal PDAC cells changed in their 

respective morphology upon 72h of Gem/nP treatment and the wash out period (Figure 12C). 

Since Chan-Seng-Yue et al. found a reduction of mutant KRAS from KRASMa to KRASBa upon 

Gem/nP treatment to be the reason for the subtype switch from basal-like to classical in liver 

metastasis (Chan-Seng-Yue et al., 2020), we analyzed the mutant allele frequency of KrasG12D 

using digital droplet PCR for all time points and treatment regimens (Figure 12D). However, 

we could not observe any treatment-induced changes of KrasG12D in any cell line or treatment 

regimen. A possible explanation could be the short time period (72h) of chemotherapeutic 

treatment, which might not be sufficient to induce selective processes that are comparable to 

clinical chemotherapy administration.  
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Figure 12. Molecular and phenotypic characterization of chemotherapy-treated PDAC cells. 
A, Schematic illustration of the experimental workflow. B, Hierarchical clustering of proteins with a >2fold 
change in protein expression upon time-lapse FFX treatment. C, Representative images of epithelial 
and mesenchymal PDAC cells upon FFX or Gem/nP treatment and wash out. D, Mutant allele frequency 
of KrasG12D obtained by digital droplet PCR upon FFX or Gem/nP treatment and wash out. 
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As mentioned above, RNA sequencing of three epithelial and mesenchymal PDAC lines in an 

untreated, FFX- or Gem/nP-treated condition or after the wash out period was performed. A 

first genome-wide differential gene expression analysis was conducted to discover global 

effects of either treatment regimen compared to the control cells irrespective of their cellular 

phenotype (Figure 13A). Strikingly, Gem/nP treatment itself did not induce major changes on 

mRNA level (88 genes different compared to control), which was in line with Figure 12C where 

no morphological changes were observed upon Gem/nP. However, a delayed response was 

detected after the wash out period on mRNA level with 2693 genes in total differentially 

expressed in Gem/nP wash out compared to the control. Highly upregulated pathways upon 

FFX treatment include p53 signaling, hypoxia as well as PI3K signaling, whereas cellular 

senescence as well as the response to external stimuli was downregulated (Figure 13B). 

Gem/nP treatment resulted in increased lipid metabolism with fatty acid oxidation and 

cholesterol biosynthesis, while glucose metabolism as well as cell cycle and cell growth were 

downregulated (Figure 13B). Although this was a phenotype-independent gene expression 

analysis, an augmented gene expression upon FFX was observed in a phenotype-dependent 

manner. 

 

Figure 13. Genome-wide differential gene expression analysis upon FFX and Gem/nP treatment.  
A, Genome-wide differential gene expression of PDAC cells upon FFX or Gem/nP treatment and their 
respective wash out compared to their untreated counterparts. B, Hierarchical clustering of genome-
wide differential gene expression analysis (top 100 differentially expressed genes) of control, FFX- and 
Gem/nP-treated PDAC cells. 
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In order to gain insight into specific pathways that are up- or downregulated upon either 

treatment option, we performed a phenotype-specific GSEA of both transcriptomic and 

proteomic data sets. As already mentioned, both phenotypes actually share most of the 

molecular changes during FFX treatment as well as the wash out phase, however to a variable 

extent with epithelial cells reacting the most (Figure 14C,D).  

For instance, metabolic pathways such as glycolysis, fatty acid metabolism, OXPHOS and 

hypoxia as well as processes involved in epithelial plasticity like EMT and TGF-β signaling 

were highly upregulated upon chemotherapeutic treatment. In contrast, the expression of 

genes involved in cell cycle and proliferation such as E2F targets, mitotic spindle and G2M 

checkpoint were highly downregulated upon chemotherapy indicating good treatment efficacy. 

Interestingly, pathways involved in immune response s, ch as generation of reactive oxygen 

species (ROS) tumor necrosis factor-α (TNFA), interleukin 2 and 6 (IL-2, IL-6) as well as IFN-

γ signaling were highly upregulated in epithelial and mesenchymal PDAC cells upon treatment. 

Additionally, Kras, PI3K and p53 signaling were upregulated, while the mammalian target of 

rapamycin (mTOR) C1, Myc and Wnt signaling were highly downregulated upon 

chemotherapy. The majority of pathways was uniformly altered, independent of phenotype or 

treatment regimen. However, Gem/nP did not induce EMT and TGF-β signaling as much 

compared to FFX treatment. Additionally, p53 and PI3K signaling were downregulated in 

epithelial PDAC cells upon Gem/nP, while mesenchymal PDAC cells increased mTORC1 

signaling. Moreover, mesenchymal PDAC cells did not produce ROS upon Gem/nP as they 

did upon FFX. In sum, pathways involved in metabolism, plasticity, immune response as well 

as oncogenic signaling were highly upregulated upon FFX and Gem/nP often with a prolonged 

effect even in the wash out cells.  

Slight discrepancies between mRNA and protein expression is typically due to differential 

regulatory processes during transcription and translation or epigenetic mechanisms.  
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Figure 14. Gene set enrichment analysis upon FFX and Gem/nP treatment.  
Normalized enrichment score matrix with HALLMARK gene sets in rows and subtype- and treatment-
specific one versus rest signatures in columns of epithelial (A) and mesenchymal (B) PDAC cells. Data 
retrieved from transcriptomic (left) and proteomic (right) analysis.  
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In order to find potent targets for a combinatorial or sequential treatment regimen with FFX, 

we actively included the wash out time point into our RNA sequencing analysis. Since the 

status of tumor differentiation and subtype is mainly unclear in clinical routine, we decided to 

identify actionable targets, which were uniformly up- or down-regulated in epithelial as well as 

mesenchymal cells for a longer period. Therefore, genes with a log2 fold change of ≥1 or ≤ -1 

as well as an FDR q-value of ≤ 0.05 between FFX and WOFFX compared to control were 

included into the analysis. Additionally, only genes with log2foldchange <1 and > -1 as well as 

FDR q-values > 0.05 between FFX and WOFFX were included, thus considering only targets 

with sustained effects upon wash out of FFX (Figure 15A). Here, we detected nine final hits 

meeting all abovementioned criteria and their respective gene expression pattern over time is 

illustrated (Figure 15B, C). These top genes are implicated in very distinct molecular pathways 

such as metabolism or immune response, particularly Ddit4l, Ifit3 or Egln3 suggesting high 

relevance for potential resistance mechanisms (Figure 15D).   

 

 

Figure 15. Time-dependent gene expression to identify actionable targets upon FFX treatment.  
A, Inclusion criteria for genes significantly changed upon FFX and in wash out period. B, Venn diagram 
visualizing the number of genes identical between different conditions. e = epithelial, m = mesenchymal, 
l2FC = log2fold change, FDR = FDR q-values. C, Gene expression time course of the 9 top hits identified 
in B. D, Gene symbols and corresponding pathways of 9 top hits.  
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6.2.3 FFX-induced changes in plasticity and heterogeneity 

In order to analyze single cell phenotypic differences in a label-free fashion, we measured the 

six cell lines in the untreated (control), FFX-treated and FFX wash out condition using our DHM 

approach (Figure 16A). Hierarchical clustering revealed acquired similarities as well as 

differences between the cell lines upon FFX induction (Figure 16B). We have already shown 

a tight relationship between 8442 and 8028 with a rather hybrid-like phenotype in the control 

setting (Figure 5G), however, upon FFX treatment both cell lines phenotypically drifted apart 

and acquired further phenotypic characteristics of the opposing transcriptomic subtype. While 

8442 was tightly related to the mesenchymal line 9091 upon FFX treatment, 8028 

morphologically behaved similar to the epithelial lines 9591 and 53631 confirming them as 

outliers of their transcriptomic cluster again. Additionally, DHM enabled a differentiation 

between untreated and FFX-treated cells with an accuracy of about 87% when compared in a 

cell line- and phenotype-independent fashion using Random Forest classification (Figure 16C). 

When plotted using UMAP clustering we observed a right shift in the FFX and the FFX wash 

out cells indicating a certain degree of EMT occurring upon FFX treatment (Figure 16D), which 

was observed in transcriptomic and proteomic profiling as well (Figure 14A, B).  

 

Figure 16. DHM-based separation of PDAC cells upon FFX treatment. 
A, DHM phase images of murine PDAC cells untreated, FFX treated or after FFX washout. Scale bars 
indicate 10 µm. B, Hierarchical clustering of DHM phase images derived from murine PDAC cells in 
untreated, FFX treated or FFX wash out condition based on the most different Resnet18 and 
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morphological features. C, Accuracy for separating untreated versus FFX treated PDAC cells using 
different classification methods: random forest (RF), support vector machine (SVM), K-nearest 
neighbors (K-NN) and neuronal network (NN). D, Unsupervised clustering of murine PDAC cells 
untreated, FFX treated or after FFX washout based on DHM phase images and visualized using the 
UMAP plot.  

 

Next, we performed a cell line-specific UMAP clustering to illustrate the single cell behavior 

and EMT status of individual lines upon FFX (Figure 17A).  While we detected a clear right 

shift towards a more mesenchymal phenotype for the lines 8442, 9591, 53631 and 8028 in the 

treated and wash out condition, half of the population of 9091 and 16992 remained rather 

unaffected by FFX treatment. In order to validate these DHM results we compared the ssEMT 

score of the HALLMARK gene set retrieved from transcriptomic and proteomic profiling 

between the control, FFX and wash out FFX conditions. As shown in Figure 14, PDAC cells 

from both transcriptomic clusters (C2b and C1) have an upregulation of the EMT gene set. 

However, individual cell lines exhibited different levels of EMT upon FFX (Figure 17B). On 

mRNA level, 53631 showed the highest EMT score of the epithelial lines, which was detected 

in the cell line-specific UMAP clustering, as well. Interestingly, the mesenchymal line 16992 

showed a significant increase in the EMT score upon FFX too, which, however, cannot be fully 

confirmed on single cell level as half of the population remain rather unaffected. On protein 

level, the effects of FFX treatment on the EMT score were augmented in all lines. Nevertheless, 

53631 and 16992 were the lines with the greatest change in the ssEMT score upon FFX in 

their respective transcriptomic cluster. The discrepancy between transcriptomics as well as 

proteomics and DHM-based phenotyping might be explained by bulk sequencing and single 

cell analysis, respectively.   

Interestingly, when analyzing the single cell distance to the cluster centroid, we found a 

subtype-dependent change in intratumoral heterogeneity upon FFX administration (Figure 

17C). While the intratumoral heterogeneity significantly decreased in the epithelial lines 9591 

and 53631 in the FFX and the wash out cells, it significantly increased in the mesenchymal 

lines 9091 and 16992 upon chemotherapy. Again, the line 8442 behaved similar to the 

mesenchymal lines showing an increase in intratumoral heterogeneity upon FFX compared to 

its untreated controls.  
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Figure 17. Single sample analysis of plasticity and intratumoral heterogeneity upon FFX 
treatment.  
A, Unsupervised clustering different conditions in the individual cell lines based on DHM phase images 
and visualized using UMAP plots. B, Single-sample normalized enrichment scores (NES) of the 
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION gene set (ssEMT score) retrieved from 
RNA sequencing (upper panel) and proteomic analysis (lower panel). Unpaired student´s t test: ns = not 
significant, *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001. C, Evaluation of intra-cell line heterogeneity 
upon FFX treatment using single cell distance to cluster centroid. Kruskal Wallis test: ns = not significant 
and ****p<0.0001. 
 

 

 

 



6 Results 
__________________________________________________________________________ 

__________________________________________________________________________
78 

 

6.3 Treatment-induced vulnerabilities in patient-derived PDAC cells  

6.3.1 Generation of chemotherapy-naïve and -exposed patient-derived models 

In order to translate our findings into clinical research, we compared the tumor of one PDAC 

patient before and after neoadjuvant FFX treatment (4 cycles) using a multi-dimensional 

workflow for in-depth characterization including clinical, genomic, transcriptomic, functional 

and DHM analysis (Figure 18A). The patient was diagnosed with borderline resectable PDAC 

in March 2019 and was therefore treated with 4 cycles of neoadjuvant FFX prior to surgical 

resection. After 4 cycles of adjuvant FFX administration, he showed a partial response, 

however in May 2020, he relapsed with liver metastasis as well as peritoneal carcinosis and 

died 486 days after diagnosis (Figure 18B). The patient received 18F-FDG-PET before and 

after one cycle of FFX induction. Although tumor size did not change upon treatment, the 

glucose uptake (SUVmax) markedly decreased from 5.4 to 4 (Figure 18C). Histologically, the 

pre-FFX (ID188) and the post-FFX (ID211) biopsies showed a well to moderate tumor 

differentiation (Figure 18D). Additional biopsies at both time points were used for generating 

2D as well as 3D cell lines, ID188 and ID211, which were then subjected to in-depth molecular 

and functional characterization. Interestingly, while organoids of ID188 exhibited a lumen-filling 

growth pattern, ID211 organoids formed a hollow lumen as shown in phase contrast as well as 

confocal imaging of the actin filaments and HE staining (Figure 18E, F). Also, 2D cells of ID188 

exhibited a more mesenchymal-like phenotype compared to ID211, which showed more colony 

formation (Figure 18E). Moreover, ID188 expressed highly ID211 demonstrated a significant 

increase in the proliferation rate upon FFX treatment compared to ID188 indicating selection 

processes or escape mechanisms occurring upon chemotherapy (Figure 18F).  
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Figure 18. Generation and characterization of chemotherapy-naïve and -exposed patient-derived 
models to investigate treatment-imposed reprogramming. 
A, Schematic illustration of the biopsy strategy and downstream applications. B, Clinical history of a 
PDAC patient receiving perioperative FOLFIRINOX including follow-up. C, 18F-FDG PET-MRI at the 
time of the diagnosis and in the interim staging after one cycle of FOLFIRINOX. D, H&E staining of FNB 
and the resection specimen. Scale bar represents 50µm. E, Phase-contrast images of organoids (upper 
panel) and respective 2D cultures (isolated from the biopsy before FOLFIRINOX (ID188) or after the 
neoadjuvant therapy from the resected cancer (ID211). Scale bar represents 200µm. F, 
Immunofluorescence staining of the F-Actin filaments (upper panel) and HE staining (lower panel) in 
ID188 and ID211 organoids. Scale bars represent 50 µm. G, GLUT1 IHC staining of embedded and 
sectioned organoids. Scale bar represents 50 µm. H, Proliferation of ID188 and ID211 measured using 
CellTiter Glo assay for five consecutive days. Shown is the mean ±SEM of three independent replicates. 
Unpaired student´s t test on day 5, **** p<0.0001. 
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6.3.2 Genomic and transcriptomic characterization of FFX-induced changes 

Since Chan-Seng-Yue et al. observed a re-differentiation from the basal-like to classical PDAC 

subtype after Gem/nP treatment due to a clonal selection during treatment leading to a 

reduction of mutant KRAS from KRASMa to KRASBa (Chan-Seng-Yue et al., 2020), we 

performed whole-exome sequencing of both organoid lines, as well. However, this did not 

reveal a general genomic instability or variation in KRAS copy numbers caused by FFX 

administration (Figure 19A). In fact, both organoid lines shared the same driver mutations such 

as KRASG12D, MEN1L329P or MAP2K4R298C and showed highly similar SNVs with a relevant 

mutant allele frequency (Figure 19B) suggesting that in this case these adaptive processes 

upon chemotherapy were driven by tumor cell plasticity rather than changes in the genetic 

landscape of the tumor.  Transcriptomic PDAC subtyping using the purity independent 

subtyping of tumors (PurIST) as single sample classifier, which is based on 8 gene pairs each 

composed of a basal-like (gene 1) and classical (gene 2) gene, revealed a classical PDAC 

subtype in both organoid lines (Rashid et al., 2020). However, the probability of being basal-

like was reduced in ID211 (0.00829) compared to ID188 (0.02073) suggesting a certain degree 

of re-differentiation (Figure 19C). This was verified on protein levels using western blot 

analysis. While the expression of E-Cadherin was increased in ID211, the mesenchymal 

markers Vimentin and KRT81 were decreased in ID211 (Figure 19D). The GSEA of both 

organoid transcriptomes further revealed a decreased activation of pathways associated with 

the basal-like PDAC subtype such as KRAS and TGF-β signaling, cell cycle, hypoxia as well 

as inflammation in ID211 compared to ID188 (Figure 19E). Additionally, in accordance with the 

reduced signal in 18F-FDG-PET after FFX induction, glycolysis was depleted in the ID211, while 

OXPHOS and fatty acid metabolism were strongly increased compared to ID188.  
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Figure 19. Molecular characterization of chemotherapy-naïve and -exposed patient-derived 
models to investigate treatment-imposed reprogramming. 
A, Allele frequencies of miss- and nonsense SNVs and Indels which are shared between both organoid 
lines (purple), private to ID188 (red) or private to ID211 (blue). B, Whole exome sequencing-based copy 
number profiles for ID188 and ID211 organoids. C, Normalized expression (log2 scale) for gene pairs 
evaluated during Purity independent subtyping of tumors (PurIST) for pre-(ID188) and post-treatment 
(ID211) PDO lines. D, Gene Set Enrichment Analysis (GSEA) of the indicated HALLMARK gene sets 
on a gene expression signature between post-(ID211, on the left)) and pre-treatment (ID188, on the 
right) PDO lines. Genes were sorted from high (positive in red, leftmost) to low (negative in blue, 
rightmost) log2 fold change. The respective genes from each gene set are indicated by vertical bars 
whose color matches their position in the signature. Results are summarized as the normalized 
enrichment score (NES) and the associated adjusted p-value.  
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6.3.3 Functional layer to identify phenotypic changes and actionable targets upon FFX 

In order to analyze the morphological differences in an unbiased fashion, we imaged the single 

cells with DHM for detailed 3D information (Figure 20A). Using Random Forest classification, 

we were able to differentiate pre and post FFX-treated cells in roughly 88% of cells (Figure 

20B). Furthermore, we detected a left shift in the post FFX organoids ID211 confirming a 

certain degree of re-differentiation upon FFX treatment as observed on the molecular level 

with decreased KRAS signaling (Figure 20C, D). Interestingly, comparing the single cell 

distance to cluster centroid identified a highly significant decrease in intratumoral heterogeneity 

upon FFX treatment in ID211 compared to ID188 (Figure 20E). This is in line with results 

derived from the murine FFX treatment suggesting that FFX significantly reduces intratumoral 

heterogeneity in epithelial PDAC cells (Figure 16C).  

 

Figure 20. DHM-based identification of phenotypic changes upon FFX treatment in PDOs.  
A, DHM phase images of pre (ID188) and post (ID211) FFX-treated organoids. Scale bars indicate 10 
µm. B, Accuracy for separating ID188 and ID211 using different classification methods: random forest 
(RF), support vector machine (SVM), K-nearest neighbors (K-NN) and neuronal network (NN). C, 
Unsupervised clustering of ID188 and ID211 organoids based on DHM phase images and visualized 
using UMAP plots. D, Gene set enrichment analysis (HALLMARK gene sets) based on transcriptomic 
profiles of organoids pre and post FOLFIRINOX treatment. E, Evaluation of intra-organoid line 
heterogeneity of ID188 and ID211 using single cell distance to cluster centroid. Mann-Whitney test, 
****p<0.0001. 
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Next, we investigated whether these molecular and phenotypic changes upon FFX 

administration were functionally relevant and can be used as potential chemotherapy-induced 

vulnerabilites for targeted therapies. Therefore, the 2D cells of ID188 and ID211 were 

subjected to an unbiased drug screen with a drug library containing 415 compounds (Figure 

21A). Delta AUC between ID188 and ID211 was analyzed for all drugs and a threshold of >0.3 

and <-0.3 was set to obtain top hits (Figure 21B). Interestingly, the top drugs that showed a 

highly different response between ID188 and ID211 were EGFR (Lapatinib, Poziotinib) and 

MEK inhibitors (Trametinib, Cobimetinib, BI-847325) proving evidence for the functional 

relevance of these targets.  

 

Figure 21. Unbiased drug screening revealed FFX-induced vulnerabilities. 
A, Schematic illustration of the drug screen workflow. B, Delta AUC of 415 drugs in ID188 versus ID211. 
Red lines indicate the threshold of >0.3 and <-0.3. C, Heatmap of top hits derived from the unbiased 
drug screening with highest deviation of drug response between ID188 and ID211.  
  

In order to validate these findings in the organoid lines, we performed drug screens with the 

EGFR inhibitors Lapatinib and Poziotinib and the MEK inhibitors Cobimetinib and Binimetinib. 

Although the OXPHOS inhibitor Elesclomol did not meet the inclusion criteria in the unbiased 

drug screening (delta AUC 0.15), we additionally included the OXPHOS inhibitors IACS-

010759 and PF-3758309 for validation, as the OXPHOS gene set was stronly upregulated in 

ID211 compared to ID188 on mRNA level.  

We observed in all three target groups a left shift of the drug-response curve in the post-FFX 

line ID211 indicating an increased sensitivity (Figure 22A, C, E). Although for the EGFR 

inhibitors it is just a trend, for the MEK and OXPHOS inhibitors the AUC was significantly 

decreased in ID211 compared to ID188 proving their functional relevance (Figure 22B, D, F).  
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Figure 22. Functional screening of FOLFIRINOX-induced vulnerabilities. 
A, C and E, Dose response curves of ID188 and ID211 treated with EGFR inhibitors (A), MEK inhibitors 
(B) and OXPHOS inhibitors (C) for 72h. Viability was measured using CellTiter Glo assay. Shown is the 
mean ±SEM of three independent replicates. B, D and F, Calculation of area under the curve for EGFR 
inhibitors (B), MEK inhibitors (D) and OXPHOS inhibitors. Student´s t test with ns=not significant, 
*p<0.05, **p<0.01 and ***p<0.001. 

 

We further validated the efficacy of the MEK inhibitors Binimetinib and Cobimetinib and 

therefore stained the PDOs treated with different drug concentrations for the proliferation 

marker Ki67 (Figure 23A). As mentioned above, in the untreated condition ID188 exhibited a 

reduced proliferation compared to ID211 (Figure 18H). However, upon treatment the 

proliferation of ID188 remained mainly unaffected, whereas the proliferation of ID211 

decreased in a dose-dependent manner in both treatment regimens confirming an increased 

sensitivity in the FFX-treated PDOs (Figure 23A, B). Additionally, we stained for the 

phosphorylation of ERK, the downstream target of MEK, and found a slight decrease in ID188 

upon treatment, while the ERK phosphorylation was highly decreased in ID211 in the highest 

concentration of both MEK inhibitors (Figure 23C, D). Interestingly, the expression of ERK was 

significantly increased upon MEK inhibition in ID211 indicating a feedback loop due to a 

decreased ERK phosphorylation (Figure 23C, D). Despite the fact that both models were 

classified as classical PDAC subtype, they highly differ in their responsivness towards targeted 

therapies such as MEK inhibition suggesting to implement an additional functional layer such 

as unbiased drug screenings for precision oncology.  
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Figure 23. Validating the efficacy of MEK inhibition pre and post FOLFIRINOX treatment.  
A, Ki67 staining of ID188 and ID211 upon 24 hours of Binimetinib and Cobimetinib treatment. Scale bar 
indicates 50 µm. B, Quantification of Ki67 normalized to hematoxylin (n = 5 organoid images). Student´s 
t test with ns=not significant, *p<0.05, ***p<0.001 and ****p<0.0001. C, Phospho-ERK and ERK staining 
of ID188 and ID211 upon 24 hours of Binimetinib and Cobimetinib treatment. Scale bar indicates 50 µm. 
D, Quantification of pERK and ERK normalized to hematoxylin (n = 5 organoid images). Student´s t test 
with ns=not significant, *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001. 
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7 Discussion  

7.1 DHM as label-free tool for high-throughput characterization of PDAC 

PDAC is a complex disease with a highly diverse tumor composition including tumor cells as 

well as the tumor microenvironment with CAFs and different immune cell populations. 

However, the tumoral compartment itself displays an extensive inter- but also intratumoral 

heterogeneity, which is a key parameter for overall survival, dissemination and treatment 

response. Several studies have been performed using scRNAseq approaches to identify 

intratumoral heterogeneity in PDAC specimen and PDO cultures and they found a co-

existence of the classical and basal-like tumor cells in majority of the samples ((Chan-Seng-

Yue et al., 2020; Juiz et al., 2020; Krieger et al., 2021). 

Currently, the characterization of PDAC takes place mainly by in-depth molecular analysis 

using multi-omics technologies with RNA- and DNA-sequencing as well as proteomics 

approaches mainly from bulk tumors. Even though these genomic and transcriptomic analysis 

were substantial contributions for understanding the tumor biology in the past (Bailey et al., 

2016; Chan-Seng-Yue et al., 2020; Collisson et al., 2011; Moffitt et al., 2015), the considerable 

amount of time and money make it very difficult to implement these procedures into clinical 

routine for diagnostic and functional purposes. Information about the tumor differentiation and 

composition is needed immediately in order to not waste time and treat PDAC patients right.  

Therefore, in this study we established DHM as a novel tool for the high-throughput 

characterization of PDAC heterogeneity on a single cell level in real-time. This approach allows 

us to examine samples in a rapid and cost-efficient fashion without the need of prior labeling 

and staining procedures. Samples are processed to a single-cell suspension and subjected to 

DHM measurement, followed by a computational analysis composed of segmentation, filtering, 

feature extraction and the final classification and visualization. We first started with cells – 

epithelial cells versus fibroblasts – most distinct in their respective phenotypes and continued 

with different characterized human and murine epithelial as well as (quasi-)mesenchymal 

PDAC cells in order to prime the applied algorithm for different stages of EMT. We found a 

high degree of intratumoral heterogeneity even in cell lines classified as epithelial or 

mesenchymal according to their transcriptomic profiles. Furthermore, we were able to monitor 

treatment-induced phenotypic changes upon TGF-β and FFX treatment on a single cell level, 

which allowed us to track changes in intratumoral heterogeneity as well. Here, we observed a 

phenotype-specific change in intratumoral heterogeneity upon FFX treatment with a decrease 

in epithelial and an increase in mesenchymal PDAC cells. The ultimate goal of this DHM 

approach is to directly analyze patient biopsies, FNAs as well as surgical resections, in order 
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to obtain detailed information regarding tumor cell plasticity as well as tumor composition and 

TME in a clinically-relevant time frame.  

Since EMT is a major factor for chemoresistance and patient outcome, many research projects 

in the field of holographic imaging have focused on this particular process, as well. For 

instance, Kamlund et al. applied digital holographic cytometry to human and mouse epithelial 

and mesenchymal cell lines grown in an adherent condition, which presented highly 

differentiated morphological features. The digital holographic cytometry-derived correlation 

matrix was then used to develop an epithelial-mesenchymal phenotypic classifier score, which 

was tested with different cell lines as well as under TGF-ß treatment. They could show a peak 

of this classifier score 16 hours after TGF-ß administration, which remained significantly 

different until the end time point (Kamlund S, 2020). Similarly, noncancerous epithelial and 

mesenchymal cells cultured on plates were used to establish an epithelial-mesenchymal score 

based on machine learning algorithms in order to grade cancer cells. This algorithm was then 

applied to the breast cancer cells MCF-7 and MDA-MB-231 with mixed morphology in order to 

test the algorithm. While MCF-7 cells exhibited a more epithelial score, the MDA-MB-231 cells 

showed rather a mesenchymal score (Lam et al., 2020). Moreover, the metastatic potential of 

PDAC cells was assessed using DHM-derived quantitative phase images. The segmentation-

based evaluation of the phase images revealed a decreased cell thickness and increased 

elongation in the cells with higher metastatic potential compared to the ones with low 

metastatic potential. Tracking the movement of these cells on plates over 12 hours showed 

additionally a higher motility and longer distance of the highly metastatic cells (Kastl et al., 

2019). Varol et al. used DHM in combination with fluidic chips as well in order to detect the 

dynamic process of EMT by TGF-ß treatment. However, in contrast to our approach they used 

the fluidic chip to reduce the signal-to-noise ratio introduced by the cell culture medium and 

seeded cells into three different channels. A watershed transform-based segmentation method 

allowed them to detect morphological changes during 48 hours of TGF-ß treatment derived 

from the cell depth maps. DHM-obtained parameters such as eccentricity, describing the 

circularity of a cell, as well as surface area as an indicator for adhesion was decreased during 

the process of EMT (Varol et al., 2020). Although these studies present a similar approach 

compared to ours in order to detect the different stages of EMT, all of the experiments are 

based on cells grown in 2D in an adherent state leading to a bias in cellular morphology due 

to cell culture conditions. Using a microfluidic cytometry chip, Liu et al. tried to mimic the 

circulatory system in order to study cancer heterogeneity and invasive phenotypes by 

separating cells by size and transportability. The transportability-derived parameters cell 

stiffness and cell-surface frictional property were further on used to distinguish epithelial from 

basal-like breast cancer cells. High transportability was observed in the basal-like subtype as 
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well as the epithelial breast cancer cell line MCF-7 treated with EMT-inducer 12-O-

tetradecanoylphorbol-13-acetate. Increased transportability was additionally correlated with an 

up-regulation of the cancer stem cell marker CD44. Interestingly, they have analyzed the 

transportability parameters of single tumor cells located in the periphery versus the center 

derived from mouse tumor xenografts. Tumor cells located in the center showed a decreased 

transportability correlating with high E-cadherin and low vimentin expression, while 

contradictory behavior was observed in tumor cells derived from the tumor periphery (Liu et 

al., 2015). Moreover, an automated microfluidic technology with a uniform delivery was 

established allowing to probe single-cell deformability of pleural effusions in a high-throughput 

manner in order to obtain useful information regarding cytoskeleton rearrangement, degree of 

differentiation as well as metastatic potential. They used constructed deformability profiles of 

47 patients to characterize disease stages such as control, acute or chronic inflammation as 

well as malignancy. Especially cases with diagnosed malignancy showed an increase in cell 

size as well as increased deformability. They furthermore analyzed the effects of cytoskeletal 

perturbation on the cellular deformability. Blebbistatin treatment, which is inhibiting myosin 

contractility, changed the deformation capacity with an increased population of deformable 

cells (Gossett et al., 2012). These novel single-cell technologies based on the investigation of 

cellular phenotypes is not only useful for the tumor characterization but might have diagnostic 

value, as well. In order to establish a rapid, quantitative and easy-to-implement biomarker in 

clinical oncology, it is necessary to distinguish phenotypic characteristics of several different 

cell types present in e.g. tumor tissue, blood, ascites or pleural fluids. Therefore, in the future 

we will use single-cell phase images of different cell populations of the TME such as various 

leukocytes including lymphocytes, myeloid-derived suppressor cells, monocytes and 

granulocytes as well as CAFs in order to accurately differentiate them from the tumor cells. A 

similar approach was performed using six breast cancer cells as well as the lymphocyte cells 

THP-1 and monocyte cells Jurkat in a stationary cell culture setting. The leukocytes were in 

general of smaller size with a reduced cell area as well as volume and optical thickness. 

Especially the volume showed a 3-fold and the cell area a 2-fold increase in the tumor cells 

compared to the leukocytes (El-Schich et al., 2020). In a real-time and stain-free classification, 

Nissim et al. tried to differentiate single cancer cells from leukocytes in flow as well using a 

microfluidic channel alike ours and subjected resulting quantitative phase images to machine 

learning classification based on support vector machines and feature extraction. The leukocytic 

cell population with monocytes, erythrocytes, lymphocytes and granulocytes could be 

predicted with a probability ranging from 82.6 to 97.8 percentage depending on the cell line. 

The classification of the primary colon cancer cells SW-480 and the corresponding lymph node 

metastasis cells SW-620 achieved a separation of 97.5 and 90.1 percentage, respectively 

(Nissim et al., 2020). So far, DHM approaches mainly focus on the identification of CTCs in 
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blood samples, the identification of various cell populations derived from patient tumor biopsies 

has not yet been described in literature. Thus, we would like to establish an experimental and 

analysis pipeline for the measurement of primary and metastatic PDAC specimen on a single 

cell level in order to fully characterize tumor composition as well as intratumoral heterogeneity. 

However, considering the various cell types present in these PDAC specimen ranging from 

CAFs, lymphocytes, tissue-associated macrophages, classical and quasi-mesenchymal tumor 

cells as well as healthy endothelial and acinar cells detected via single-cell transcriptomics (Lin 

et al., 2020; Peng et al., 2019), the major challenge in this approach is to accurately identify 

each cell population and distinguish it from others.  

Apart from already mentioned applications for PDAC, an interesting and promising application 

of DHM is to monitor treatment response and treatment-induced vulnerabilities in PDAC cells 

as well as patients in order to obtain clinically relevant information. Here, we have treated 

different cell lines from both transcriptomic subtypes with FFX and identified a phenotypic shift 

towards a more mesenchymal phenotype in all lines, however to various extents. In contrast, 

we were able to correctly identify a shift towards a more epithelial phenotype in PDOs (ID211) 

isolated after neoadjuvant FFX treatment. In addition, DHM allowed us to quantify changes in 

intratumoral heterogeneity. Thereby, we detected a significant decrease in intratumoral 

heterogeneity in epithelial/classical PDAC cells upon FFX administration, while it highly 

increased in mesenchymal cells. Being able to analyze intratumoral heterogeneity will allow us 

to directly monitor for instance the efficacy of neoadjuvant chemotherapy in patients. Once we 

observe an increase in heterogeneity, we can assume that the treatment regimen will fail as 

tumor cells will rapidly acquire resistance eventually suggesting to change treatment.  

Monitoring treatment response is of high interest also in the field of DHM and imaging. For 

instance, drug-resistant ovarian cancer cells as well as platinum-resistant endometrial cancer 

cells were distinguished from their sensitive counterparts using DHM-derived morphological 

parameters such as cell height and density (Singh et al., 2017; Yao et al., 2019). Using tissue 

dynamics spectroscopic imaging of a 3D grown intestinal adenocarcinoma line as well as ex 

vivo grown human esophageal tumor biopsies treated with different chemotherapeutic drugs 

detected spatial drug response variabilities (Li et al., 2020). High-throughput drug screening 

approaches often possess limited predictive power and fail, since they do not consider 

intratumoral heterogeneity. Thus, several technologies are evolving for testing 

chemosensitivity on a single-cell level including droplet-based microfluidics, fluorescence 

imaging, flow/mass/ghost cytometry or single-cell RNA sequencing (Jabs et al., 2017; Yang et 

al., 2021).  

The advantage of the DHM approach for drug testing is the automated high-throughput 

procedure, which does not require prior labeling, can be performed in a scalable and cost-
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effective manner and is analyzed in a standardized fashion. In the future, DHM can be included 

into our precision oncology platform as additional functional layer for testing and monitoring 

patient drug response.  

 

7.2 Treatment-induced vulnerabilities in PDAC  

As PDAC patients often rapidly acquire resistance towards chemotherapies such as FFX and 

Gem/nP, deciphering treatment-induced vulnerabilities might allow to additionally apply 

targeted therapies in order to effectively kill escaping tumor cells. Here, we characterized in 

detail short-term and prolonged resistance mechanisms occurring upon FFX and Gem/nP 

treatment in murine and human 2D and 3D functional model systems.  

Treating murine PDAC cells, derived from the epithelial and mesenchymal transcriptomic 

subtype, with both standard of care polychemotherapies in a time course experiment including 

wash out phase allowed us to analyze phenotype- and treatment-specific response processes. 

Interestingly, the identified adaptive mechanisms occurred rather in a phenotype- and 

treatment-independent fashion. In general, we observed a phenotypic shift towards a more 

mesenchymal phenotype in all cell lines, which could be confirmed by DHM-based single cell 

phenotyping and proteomic and transcriptomic analysis with an increased upregulation of EMT 

and TGF-β signaling. Additionally, metabolic processes such as glycolysis, OXPHOS, fatty 

acid metabolism and hypoxia were highly upregulated upon chemotherapy. Interestingly, also 

mechanisms involved in inflammatory response including TNFA, IL-2 and 6 as well as IFN-γ 

signaling were upregulated upon treatment accompanied by an increased production of ROS. 

Furthermore, we identified genes in our RNA sequencing data set that were up- or 

downregulated for a prolonged time period such as Egln3 and Ddit4l. Both genes are known 

to be involved in cellular metabolism making them an attractive target for functional screenings. 

In parallel, we compared in detail the tumor of one PDAC patient before and after neoadjuvant 

FFX treatment using a longitudinal precision oncology platform. Although both PDO lines were 

classified as classical PDAC and did not show significant alterations in their genomic 

landscape, they drastically differed regarding cellular phenotype and response to targeted 

therapies. In this setting, FFX administration in the patient induced a susceptibility for the 

inhibition of the EGFR, MEK and OXPHOS pathways in ID211, suggesting beneficial effects 

when applied as targeted therapies in combination or consecutively with FFX. Expanding this 

precision oncology platform for additional patients will enable us to apply personalized 

medicine and identify uniform resistance mechanisms occurring upon chemotherapy 

administration.  
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Comparing the murine and human study, we found similarities particularly in the metabolic 

switch towards enhanced OXHPOS and fatty acid metabolism based on GSEA. Interestingly, 

chemotherapy-resistant acute myeloid leukemia cells were found to have an increased 

mitochondrial mass with increased OXPHOS and fatty acid oxidation, which was additionally 

accompanied by an increased production of ROS, similar to what we observed in our GSEA. 

Targeting these metabolic processes re-sensitized tumor cells for the first-line chemotherapy 

treatment (Farge et al., 2017). Likewise, chemoresistant breast cancer cells showed a 

phenotypic change towards a more aggressive state with increased expression of CD44 

accompanied by increased expression of cytokines such as IL-6 and IL-23 and IFN-γ. This in 

turn resulted in enhanced oxidative stress with ROS production and HIF1A expression, leading 

to an increase in GLUT1 expression and glycolysis. When inhibiting the cytokines, CD44-high 

chemoresistant breast cancer cells returned back to their original phenotype. Additionally, the 

inhibition of the mitochandrial machinery, which is a major driver of ROS production (Sena and 

Chandel, 2012),  reduced oxidative stress and thus the secretion of pro-oxidative cytokiness. 

Interestingly, they found chemoresistant tumor cells to escape and tolerate oxidative stress by 

increasingly activating the pentose-phosphate pathway (Goldman et al., 2019). Due to a high 

concordance between this resistance mechanism and pathways enriched upon FFX and 

Gem/nP treatment, this signaling network deserves to be followed up in future in our 

experimental setting of murine PDAC cells, as well.  

The major discrepancy between our murine and human chemotherapy studies is that all murine 

cells, independent of baseline morphology, underwent EMT during and after treatment, 

whereas the post-FFX PDOs and 2D cells acquired a more epithelial-like phenotype upon FFX 

treatment in vivo. Recent studies investigating the impact of chemotherapy-induced 

vulnerabilities suggest rather a one-way direction towards a more aggressive mesenchymal 

phenotype. Porter et al. performed a FFX treatment of six patient-derived 3D PDAC cell lines 

and found an enrichment of the quasi-mesenchymal subtype in all lines after 14 days of 

treatment. GSEA identified MYC targets, KRAS signaling, EMT and TNFA signaling as top 

enriched pathways. Additionally, they compared a cohort of untreated versus neoadjuvant 

FFX-treated PDAC tissue specimen and identified an increase in the QM subtype from 37.5% 

to 67% (Porter et al., 2019). Moreover, single-nucleus RNA sequencing of untreated and 

neoadjuvant treated PDAC specimen detected a depletion of the classical subtype favoring 

more quasi-mesenchymal signatures such as TNFA and IFN-γ signaling (Hwang, 2020). 

Futhermore, tissue and PDOs of five untreated and five neoadjuvant FFX-treated tumors was 

compared regarding resistance mechanisms. GSEA of the Reactome gene sets identified 

mainly genomic instability and alternative energy metabolism as upregulated pathways, 

whereas immune system and senescence were downregulated upon treatment (Farshadi et 
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al., 2021). However, the major limitation of all these studies is that treatment-naïve and 

chemotherapy-treated samples were not derived from the same patient, which makes a direct 

comparison more challenging and strengthens our approach using this longitudinal precision 

oncology platform.  

Pishvaian et al. performed molecular profiling of PDAC in the Know Your Tumor registry trial 

in order to apply targeted therapies, which allowed a survival advantage of 2.58 years versus 

1.51 years with unmatched therapies (Pishvaian et al., 2020). However, 3 out of 4 patients did 

not reveal actionable targets, similar to the patient in our study, who only showed a few 

mutations including KRASG12D. Therefore, functional screenings are essential add-ons for 

precision oncology, as molecular characterization alone is mostly insufficient to effectively 

propose targeted therapies. In the past, similar screening approaches were performed in 

different tumor entities in order to evaluate the functional relevance of inhibiting genes of 

interest for precision oncology. Vecchione et al. performed a short hairpin RNA screening for 

genes solely upregulated in the BRAF-mutant subtype of colorectal cancer, which can be 

exploited therapeutically. They have identified the RAN binding protein 2 to be essential for the 

survival of the BRAF-mutant but not the BRAF-WT tumors cells. Further effective in vitro and 

in vivo inhibition experiments allowed them to suggest this gene as a potent target for precision 

oncology in BRAF-mutant colorectal cancer (Vecchione et al., 2016). Similar to PDAC, 

melanoma patients often acquire resistance towards inhibition of the MAPK pathway. 

Therefore, Wang et al. have generated MEK- and BRAF-resistant melanoma cells and tested 

them for functional and genomic differences to their parental and sensitive counterparts. They 

identified a strong correlation between increased resistance and increasing levels of ROS. 

Treating the ROS-high resistant tumor cells with histone deacetylase inhibitors further 

enhanced ROS production to a lethal dosage, while their drug-sensitive counterparts stayed 

unaffected demonstrating the effectiveness of testing for functional relevance (Wang et al., 

2018). Furthermore, a kinome-focused screening was performed in hepatocellular carcinoma, 

in which the DNA replication kinase CDC7 was identified to selectively induce senescence in 

Trp53-mutant cancer cells. A follow-up chemical testing detected the antidepressant sertraline 

to potently kill escaping tumor cells by targeting the mTOR pathway (Wang et al., 2019). These 

studies clearly illustrate the benefit of adding functional screenings to the molecular 

characterization in order to identify treatment-induced vulnerabilities and in future successfully 

apply targeted therapies.  

 

 

 



7 Discussion 
__________________________________________________________________________ 

__________________________________________________________________________
93 

 

7.3 Conclusion 

In summary, in this study we have established and combined two functional approaches for 

the detailed characterization of treatment-induced vulnerabilities in pancreatic cancer. Using 

DHM-based phenotyping allowed us to detect the single cell EMT status of numerous cell lines 

including PDOs and additionally gave insight into the degree of intratumoral heterogeneity. By 

now, it is still a major challenge to asses intratumoral heterogeneity on a cellular level in clinical 

routine, which is why our DHM approach is a significant contribution for the implementation of 

easy-to-use single cell technologies into clinics. In addition, we have applied a longitudinal 

precision oncology platform with in-depth genomic, transcriptomic and particularly functional 

characterization of PDAC specimen and functional model systems in a neoadjuvant setting. 

This allowed us to identify and validate treatment-induced vulnerabilities such as the sensitivity 

towards MEK inhibition. In future, integrating both approaches into clinics will enable us to 

apply personalized medicine to PDAC patients by identifying functionally relevant targets and 

monitoring treatment response.  
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