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1. Introduction

Cardinal exponential B-splines of order n ∈ N are defined as n-fold convolution
products of exponential functions of the form ea(·) restricted to the unit interval
[0, 1]. More precisely, let n ∈ N and a := (a1, . . . , an) ∈ R

n, with at least one
aj �= 0, j = 1, . . . , n. A cardinal exponential B-spline of order n associated with
the n-tuple of parameters a is defined by

Ea
n :=

n∗
j=1

(
eaj( · )χ

)
, (1)

where χ denotes the characteristic function of the unit interval [0, 1].
This wider class of splines shares several properties with the classical

Schoenberg polynomial B-splines, but there are also significant differences that
makes them useful for different purposes. In [3], an explicit formula for these
functions was established and those cases characterized for which the integer
translates of an exponential B-spline form a partition of unity up to a nonzero
multiplicative factor. In addition, series expansions for L2(R)–functions in
terms of shifted and modulated versions of exponential B-splines were derived
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and dual pairs of Gabor frames based on exponential B-splines constructed.
We remark that exponential B-splines have also been employed to construct
multiresolution analyses and to obtain wavelet expansions. (See, e.g., [14,18].)
Furthermore, in [2] it is shown that exponential splines play an important
role in setting up a one-to-one correspondence between dual pairs of Gabor
frames and dual pairs of wavelet frames. For an application to some numerical
methods, we refer the interested reader to [5] and [12].
In [15], a new class of more general cardinal exponential B-splines, so-called
cardinal exponential B-splines of complex order, was introduced, some proper-
ties derived and connections to fractional differential operators and sampling
theory exhibited.

Classical polynomial B-splines B can be used to derive fundamental
splines which are linear combinations of integer-translate of B and which in-
terpolate the set of data points {(m, δm,0) : m ∈ Z}. As it turns out, even
generalizations of these polynomial B-splines, namely, polynomial B-splines
of complex and even quaternionic order, do possess associated fundamental
splines provided the order is chosen to lie in certain nonempty subregions of
the complex plane or quaternionic space. For details, we refer the interested
reader to [7] in the former case and to [11] in the latter.

In this article, we consider cardinal exponential B-splines of positive real
order, so-called cardinal fractional exponential B-splines (to follow the termi-
nology already in place for the polynomial B-splines). As we only deal with
cardinal splines, we drop the adjective “cardinal” from now on. By extending
the integral order n ∈ N of the classical exponential B-splines to real orders
σ > 1, one achieves a higher degree of regularity at the knots.

The structure of this paper is as follows. In Sect. 2 we define fractional
exponential splines and present those properties that are important for the
remainder of this article. The fundamental exponential B-spline is constructed
in Sect. 3 following the procedure for the polynomial splines. However, as the
Fourier transform of an exponential B-spline includes an additional positive
term, the construction and the proof of existence of fundamental exponential
B-splines associated with fractional exponential B-splines is more involved.
Section 4 deals with a sampling result for fundamental exponential B-splines.

2. Fractional Exponential B-Splines

In order to extend the classical exponential B-splines to incorporate real orders
σ, we work in the Fourier domain. To this end, we take the Fourier transform
of an exponential function of the form e−axχ, a ∈ R, and define a fractional
exponential B-spline in the Fourier domain by

Êσ
a (ξ) := F(ξ) :=

∫

R

e−axχ(x) e−ixξ dx =
(

1 − e−(a+iξ)

a + iξ

)σ

, ξ ∈ R. (2)
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Note that we may interpret the above Fourier transform for real-valued ar-
gument ξ as a Fourier transform for complex-valued argument by setting
z := ξ + i a:

Êσ
a (ξ) = F(z) :=

∫

R

χ(x) e−zx dx, z ∈ C. (3)

It can be shown [15] (for complex σ) that the function

Ξ(ξ, a) :=
1 − e−(a+iξ)

a + iξ
,

is only well-defined for a ≥ 0. As a = 0 yields fractional polynomial B-splines,
we assume henceforth that a > 0.

From [15], we immediately derive the time domain representation for a
fractional exponential B-spline Ea

σ assuming σ > 1:

Eσ
a (x) =

1
Γ(σ)

∞∑
k=0

(
σ

k

)
(−1)ke−kae

−a(x−k)
+ (x − k)σ−1

+ , (4)

where e
(·)
+ := χ[0,∞) e(·) and x+ := max{x, 0}. It was shown that the sum

converges both point-wise in R and in the L2–sense.
Next, we summarize some additional properties of exponential B-splines.

Proposition 1.
∣∣∣ Êσ

a

∣∣∣ ∈ O(| ξ |−σ) as | ξ | → ∞.

Proof. This follows directly from the following chain of inequalities:
∣∣∣ Êσ

a (ξ)
∣∣∣ =

∣∣∣∣∣
(

1 − e−(a+iξ)

a + iξ

)σ
∣∣∣∣∣ ≤ 2σ

| a + iξ |σ =
2σ

(a2 + ξ2)σ/2
≤ 2σ

| ξ |σ , | ξ | 	 1.

�

Proposition 2. Eσ
a is in the Sobolev space W s,2(R) for s < σ − 1

2 .

Proof. This is implied by Proposition 1 and the corresponding result for poly-
nomial B-splines (cf. [6, Section 5.1]).

Proposition 3. Eσ
a ∈ C�σ�−1(R).

Proof. The function ξ 
→ ξn

(a2+ξ2)σ/2 is in L1(R) only if n ≤ �σ� − 1. �

3. The Interpolation Problem for Fractional Exponential
B-Splines

In order to solve the cardinal spline interpolation problem using the classical
Curry-Schoenberg splines [4,16], one constructs a fundamental cardinal spline
function that is a linear bi-infinite combination of polynomial B-splines Bn
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of fixed order n ∈ N which interpolates the data set {δm,0 : m ∈ Z}. More
precisely, one looks for a solution of the bi-infinite system

∑
k∈Z

c
(n)
k Bn

(n

2
+ m − k

)
= δm,0, m ∈ Z, (5)

i.e., for a sequence {c
(n)
k : k ∈ Z}. The left-hand side of (5) defines the funda-

mental cardinal spline Ln : R → R of order n ∈ N. A formula for Ln is given
in terms of its Fourier transforms by

L̂n(ξ) =

(
B̂n(· + n

2 )
)

(ξ)
∑
k∈Z

(
B̂n(· +

n

2
)
)

(ξ + 2πk)
. (6)

Using the Euler-Frobenius polynomials associated with the B-splines Bn, one
can show that the denominator in (6) does not vanish on the unit circle |z| = 1,
where z = e−iξ. For details, see [4,16].

One of the goals in the theory of fractional exponential B-splines is to
construct a fundamental cardinal exponential spline Lσ

a : R → R of real order
σ > 1 of the form

Lσ
a :=

∑
k∈Z

c
(σ)
k Eσ

a ( · − k) , (7)

satisfying the interpolation problem

Lσ
a(m) = δm,0, m ∈ Z, (8)

for an appropriate bi-infinite sequence {c
(σ)
k : k ∈ Z} and for an appropriate σ

belonging to some nonempty subset of R.
Taking the Fourier transform of (7) and (8), applying the Poisson sum-

mation formula and eliminating the expression containing the unknowns {c
(z)
k :

k ∈ Z}, a formula for Lσ
a similar to (6) is, at first, formally obtained:

L̂σ
a(ξ) =

Êσ
a (ξ)∑

k∈Z

Êσ
a (ξ + 2πk)

. (9)

Inserting (2) into the above expression for L̂σ
a and simplifying yields

L̂σ
a(ξ) =

1/(ξ + ia)σ

∑
k∈Z

1
[ξ + 2πk + ia)]σ

, σ > 1.

As the denominator of (9) is 2π-periodic in ξ, we may assume without loss of
generality that ξ ∈ [0, 2π]. Let q := q(a) := ξ+ia

2π , and note that 0 ≤ Re q ≤ 1
and Im q > 0. The denominator in the above expression for L̂σ

a can then - after



Vol. 76 (2021) Interpolation and Sampling with Exponential Splines Page 5 of 15 121

cancelation of the (2π)σ term - be formally rewritten in the form
∑
k∈Z

1
(q + k)σ

=
∞∑

k=0

1
(q + k)σ

+
∞∑

k=0

1
(q − (1 + k))σ

=
∞∑

k=0

1
(q + k)σ

+ e−iπσ
∞∑

k=0

1
(1 − q + k)σ

= ζ(σ, q) + e−iπσ ζ(σ, 1 − q), (10)

where we take the principal value of the multi-valued function e−iπ(·) and
where ζ(σ, q), q /∈ Z

−
0 , denotes the generalized zeta function [1, Section 1.10]

which agrees with the Hurwitz zeta function when Re q > 0, the case we are
dealing with here.

For ξ = 0, we have Re q = 0 and thus
∞∑

k=0

1
| q + k |σ =

∞∑
k=0

1
(k2 + a2/4π2)σ/2

≤
(

2π

a

)σ

+
∫ 1

0

dx

(x2 + a2/4π2)σ/2
+

∫ ∞

1

dx

(x2 + a2/4π2)σ/2
< ∞,

as σ > 1. The last integral above evaluates to
( a

2π

)−σ
[( a

4π

)
B

(
1
2
,
σ − 1

2

)
− 2F1

(
1
2
,
σ

2
;
3
2
;−4π2

a2

)]
,

where B and 2F1 denote the Beta and Gauss’s hypergeometric function, re-
spectively. (See, e.g., [10].)

Replacing in the above expression k by k + 1, one shows in a similar

fashion that
∞∑

k=0

1
(1−q+k)σ also converges absolutely. Hence, L̂σ

a is defined and

finite at ξ = 0.
For ξ = 2π, q and 1−q are interchanged and we immediately obtain from

the above arguments that L̂σ
a is defined and finite at ξ = 2π. Thus, it suffices

to consider 0 < Re q < 1.
Next, we show that the denominator in (9) does not vanish, i.e., that

Lσ
a is well-defined for appropriately chosen σ. To this end, it suffices to find

conditions on σ such that the function

Z(σ, q) := ζ(σ, q) + e−iπσ ζ(σ, 1 − q)

has no zeros for all Re q ∈ (0, 1) and a fixed a > 0.
We require the following lemma which is based on a result in [17] for the

case of real q.

Lemma 4. Let q = u + iv where 0 < u := ξ
2π < 1 and v := a

2π > 0. If

σ > σ0 := 1
2 +

√
2
√

1 + v2 + v4,

then ζ(σ, q) �= 0.
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Proof. We have that

| ζ(σ, q) | ≥ 1
| q |σ −

∑
k≥1

1
| k + q |σ

>
1

| q |σ − 1
| q + 1 |σ −

∫ ∞

1

dx[
(u + x)2 + v2

]σ/2
.

Now, for x ≥ 1, 0 < u < 1 and v > 0,
√

(u + x)2 + v2 ≥
√

(u + 1)2 + v2 +
(1 + u)(x − 1)√

(u + 1)2 + v2

as can be shown by direct computation:

(u + x)2 + v2 −
(√

(u + 1)2 + v2 +
(1 + u)(x − 1)√

(u + 1)2 + v2

)2

=
(x − 1)2v2

(u + 1)2 + v2
≥ 0.

The above inequality shows that∫ ∞

1

dx[
(u + x)2 + v2

]σ/2
<

∫ ∞

1

dx(√
(u + 1)2 + v2 + (1+u)(x−1)√

(u+1)2+v2

)σ

=

[
(u + 1)2 + v2

]1−σ/2

(σ − 1)(u + 1)
.

Therefore,

| ζ(σ, q) | >
1

| q |σ − 1
|q + 1|σ −

[
(u + 1)2 + v2

]1−σ/2

(σ − 1)(u + 1)
,

and the right-hand side of this inequality is strictly positive if

1
| q |σ >

1
|q + 1|σ +

[
(u + 1)2 + v2

]1−σ/2

(σ − 1)(u + 1)
. (11)

Replacing q by u+ iv and simplifying shows that inequality (11) is equiv-
alent to (

1 +
2u + 1
u2 + v2

)σ/2

> 1 +
(u + 1)2 + v2

(σ − 1)(u + 1)
. (12)

Employing the Bernoulli inequality to the expression on the left-hand side of
(12), yields

(
1 +

2u + 1
u2 + v2

)σ/2

≥ 1 +
σ

2
2u + 1
u2 + v2

,

which implies that (12) holds if

σ

2
· 2u + 1
u2 + v2

>
(u + 1)2 + v2

(σ − 1)(u + 1)
,
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or, equivalently,

σ (σ − 1) >
2(u2 + v2)[(u + 1)2 + v2]

(1 + u)(1 + 2u)
.

Performing the polynomial division on the right-hand side of the above in-
equality produces

σ (σ − 1) > 2v2 + u2 + 1
2u − 1

4 +
1
4 + 2v4 + 1

4u − 2uv2

(1 + u)(1 + 2u)

and this inequality holds if

σ (σ − 1) > 2v2 + 2v4 − 7
4 , (13)

where we used the fact that 0 < u < 1.
Thus, inequality (13) holds if

σ > σ0 := 1
2 +

√
2
√

1 + v2 + v4.

�

Theorem 5. The function Z(σ, q) = ζ(σ, q)+ e−iπσ ζ(σ, 1− q) with q = 1
2π (ξ +

i a) has no zeros provided

σ ≥ σ0 = 1
2 +

√
2

√
1 +

a2

4π2
+

a4

16π4
(14)

and
π

2
(σ − 1) + Arg

(
ζ(σ, 1

2 − i a
2π )

)
/∈ πN. (15)

Proof. For a given q, we consider three cases: (I) 0 < Re q < 1
2 , (II) 1

2 < Re q <

1, and (III) Re q = 1
2 .

To this end, fix a > 0 and choose σ > σ0. Note that the above argument
employed to derive σ0 also applies to the case of q being replaced by1 − q =
1 − u − iv and yields the same value. Thus, by Lemma 4, ζ(σ, q) �= 0 and
ζ(σ, 1 − q) �= 0.
Case I: If 0 < Re q < 1

2 then | k + q | < | k + 1 − q |, for all k ∈ N0. Therefore,

∣∣ e−i πσ ζ(σ, 1 − q)
∣∣ <

∞∑
k=0

1
| k + q |σ = | ζ(σ, q) |.

Similarly, one obtains in Case II with 1
2 < Re q < 1 that

| ζ(σ, q) | <
∣∣ e−i πσ ζ(σ, 1 − q)

∣∣.
Hence, | Z(σ, q) | ≥ | | ζ(σ, q) | − | ζ(σ, 1 − q) | | > 0, for Re q �= 1

2 .
In Case III with Re q = 1

2 and σ satisfying (14), we set q∗ := 1
2 + i a

2π
and observe that

ζ(σ, q∗) =
∞∑

k=0

1
(k + 1

2 + i a
2π )σ
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and

ζ(σ, 1 − q∗) =
∞∑

k=0

1
(k + 1

2 − i a
2π )σ

.

Hence, ζ(σ, 1 − q∗) = ζ(σ, q∗) and therefore

Z(σ, q∗) = ζ(σ, q∗) + e−i πσζ(σ, q∗) = ζ(σ, q∗)

(
1 + e−i πσ ζ(σ, q∗)

ζ(σ, q∗)

)
.

Setting for simplicity ζ∗ := ζ(σ, q∗), the expression in parentheses becomes
zero if

1 + e−i πσ

(
ζ∗

ζ∗

)
= 0

or, equivalently, as ζ∗
ζ∗ = exp(−2i arg ζ∗),

exp(−i πσ − 2i arg ζ∗) = exp(i arg(−1)).

Using the principal values of arg, Arg, this latter equation can be rewritten
as

π

2
σ + Arg(ζ∗) = (2m + 1)

π

2
, m ∈ Z.

Note that σ ≥ 1 +
√

1 + a2

4π2 > 2 and that Arg(ζ∗) ∈ (−π, π] (taking the
negative real axis as a branch cut) and therefore, we need to impose condition
(15) to ensure that Z(σ, q∗) �= 0 as ζ(σ, q∗) �= 0. �

Remark 6. As −π < Arg z ≤ π, condition (15) can for fixed a > 0 have at
most one solution.

Remark 7. Note that if q ∈ R, i.e., a = 0, we obtain the conditions derived in
[8] for polynomial B-splines of fractional order.

Definition 8. We call real orders σ that fulfill conditions (14) and (15) for a
fixed a > 0 admissible.

Example 9. Let σ :=
√

6 and a := 2. Hence,
√

6 > σ0 ≈ 1.99103 and condi-
tion (14) holds. A numerical evaluation of ζ(

√
6, 1

2 + i
π ) using Mathematica’s

HurwitzZeta function produces the value ζ∗ = 1.19269 − i 3.76542. The prin-
cipal value of arg ζ∗ is therefore Arg ζ∗ = −1.26405. As π

2 (σ − 1) + Arg ζ∗ =
1.01281 /∈ πN, the second condition (15) is also satisfied. Thus, σ :=

√
6 is an

admissible real order. By the continuous dependence of conditions (14) and
(15) on σ, there exist therefore uncountably many admissible σ.

Example 10. Selecting a := 2, the value σ ≈ 4.68126 is not admissible as
condition (14) is satisfied but the left-hand side of (15) yields the value π.
(See Fig. 1 below.)

We finally arrive at one of the main results (Fig. 5).
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π

2 π 3π
2

2π

0.02

0.04

Figure 1. Example of a non-admissible σ

Figure 2. | h(ξ, a, σ) | for fixed a and varying σ (left) and for
fixed σ and varying a (right)

Theorem 11. Suppose that Eσ
a is an exponential B-spline of admissible real

order σ. Then

Lσ
a(x) :=

1
2π

∫

R

((ξ + ia)/2π)−σ eiξx dξ

ζ(σ, (ξ + i a)/2π) + e−iπσζ(σ, 1 − (ξ + i a)/2π)
(16)

is a fundamental exponential interpolating spline of real order σ in the sense
that

Lσ
a(m) = δm,0, for all m ∈ Z.

The Fourier inverse in (16) holds in the L1 and L2 sense.

Let

h(ξ, a, σ) :=
((ξ + ia)/2π)−σ

ζ(σ, (ξ + i a)/2π) + e−iπσζ(σ, 1 − (ξ + i a)/2π)
.

Figures 2, 3, and 4 show | h |, Re h, and Im h as functions of fixed a := 2
and varying σ ∈ {2.5, 2.75, 3, 3.5}, and for fixed σ :=

√
6 and varying a ∈

{2, 3, 4, 5}.

Example 12. We choose again a := 2 and σ ∈ {√6, 3.5, 4.25}. Figure 5 below
displays the graph of the fundamental exponential interpolating spline Lσ

2 .
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Figure 3. Re h(ξ, a, σ) for fixed a and varying σ (left) and
for fixed σ and varying a (right)

Figure 4. Im h(ξ, a, σ) for fixed a and varying σ (left) and
for fixed σ and varying a (right)

Figure 5. The fundamental exponential interpolating
splines Lσ

2 with σ ∈ {√6, 3.5, 4.25}
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Proposition 13. The coefficients c
(σ)
k in Eqn. (7) decay like

∣∣∣ c
(σ)
k

∣∣∣ ≤ Cσ | k |�σ�−1
,

for some positive constant Cσ. Therefore, the fundamental exponential spline
Lσ

a with admissible σ satisfies the pointwise estimate

| Lσ
a(x) | ≤ Mq | x |−�σ�

, x ∈ R,

where Mσ denotes a positive constant.

Proof. Eqns. (7) and (9) together with the Poisson summation formula yield
∑
k∈Z

c
(σ)
k wk =

1∑
k∈Z

Eσ
a (k)wk

=: ϑσ
a(w), w = eiξ.

The function ϑσ
a(w) has no zeros on the unit circle | w | = 1 provided σ is

admissible. Proposition 3 implies that the Fourier coefficients of ϑσ
a(w) satisfy∣∣∣ c

(σ)
k

∣∣∣ ≤ Cσ | k |�σ�−1
,

for some positive constant Cσ.
Noting that suppEσ

a ( · − k) = [k,∞), k ∈ Z, we thus obtain using Eqn.
(7)

| Lσ
a(x) | =

∣∣∣∣∣∣

�x�∑
k=−∞

c
(σ)
k Eσ

a (x − k)

∣∣∣∣∣∣
≤ Kσ

�x�∑
k=−∞

| k |−�σ� ≤ Mq | x |−�σ�
.

Here, we used the boundedness of Eσ
a on R. (Cf. for instance [15, Proposition

4.5].) �

4. A Sampling Theorem

In this section, we derive a sampling theorem for the fundamental cardinal
exponential spline Lσ

a , where σ satisfies conditions (14) and (15). For this pur-
pose, we employ the following version of Kramer’s lemma [13] which appears
in [9]. We summarize those properties that are relevant for our needs.

Theorem 14. Let ∅ �= I, M ⊆ R and let {ϕk : k ∈ Z} be an orthonormal basis
of L2(I). Suppose that {Sk : k ∈ Z} is a sequence of functions Sk : M → C

and t := {tk ∈ R : k ∈ Z} a numerical sequence in M satisfying the conditions
C1. Sk(tl) = akδkl, (k, l) ∈ Z × Z, where ak �= 0;
C2.

∑
k∈Z

|Sk(t)|2 < ∞, for each t ∈ ξ.

Define a function K : I × M → C by

K(x, t) :=
∑
k∈Z

Sk(t)ϕk(x),
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and a linear integral transform K on L2(I) by

(Kf)(t) :=
∫

I

f(x)K(x, t) dx.

Then K is well-defined and injective. Furthermore, if the range of K is denoted
by

H :=
{
g : R → C : g = Kf, f ∈ L2(I)

}
,

then

(i) (H, 〈·, ·〉H) is a Hilbert space isometrically isomorphic to L2(I), H ∼=
L2(I), when endowed with the inner product

〈F,G〉H := 〈f, g〉L2(I),

where F := Kf and G = Kg.
(ii) {Sk : k ∈ Z} is an orthonormal basis for H.
(iii) Each function f ∈ H can be recovered from its samples on the sequence

{tk : k ∈ Z} via the formula

f(t) =
∑
k∈Z

f(tk)
Sk(t)
ak

.

The above series converges absolutely and uniformly on subsets of R

where the kernel K( · , t) is bounded in L2(I).

Proof. For the proof and further details, we refer to [9]. �

For our purposes, we choose M := R, t := Z, ak = 1 for all k ∈ Z, and
for the interpolating function Sk = Lσ

a(· − k) with σ satisfying conditions (14)
and (15). Then Theorem 14 implies the next result.

Theorem 15. Let ∅ �= I ⊆ R and let {ϕk : k ∈ Z} be an orthonormal basis of
L2(I). Let Lσ

a denote the fundamental cardinal spline of admissible real order
σ. Then the following holds:

(i) The family {Lσ
a(· − k) : k ∈ Z} is an orthonormal basis of the Hilbert

space (H, 〈·, ·〉H), where H = K(L2(I)) and K is the injective integral
operator

Kf =
∑
k∈Z

〈f, ϕk〉L2(I) Lσ
a(· − k), f ∈ L2(I).

(ii) Every function f ∈ H ∼= L2(I) can be recovered from its samples on the
integers via

f =
∑
k∈Z

f(k)Lσ
a(· − k), (17)

where the above series converges absolutely and uniformly on all subsets
of R.
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Proof. Conditions C1. and C2. for Sk = Lσ
a(· − k), k ∈ Z, in Theorem 14 are

readily verified. Since the unfiltered splines {Eσ
a (· − k) : k ∈ Z} already form

a Riesz basis of the L2-closure of their span [15], ‖K(·, t)‖L2(I) is bounded on
R. �

Finally, we consider two examples illustrating the above theorem. These
examples can also be found in [8] in case one deals with cardinal polynomial
B-splines of fractional order.

Example 16. Consider L2[ 0, 2π ] with orthonormal basis {exp(ik (·))}k∈Z. Then

K(x, t) =
∑
k∈Z

Lσ
a(t − k) exp(−ikx)

and

Kf(t) =
∫ 2π

0

f(x)
∑
k∈Z

Lσ
a(t − k) exp(−ikx) dx

=
∑
k∈Z

∫ 2π

0

f(x) exp(−ikx) dx Lσ
a(t − k)

= 2π
∑
k∈Z

f̂(k)Lσ
a(t − k).

This equation holds in L2-norm and we applied the Lebesgue dominated con-
vergence theorem. Thus, Kf interpolates the sequence of Fourier coefficients
{f̂(k)}k∈Z on R with shifts of the fundamental cardinal spline Lσ

a of real order
σ.

Moreover, if f ∈ H = K(L2[ 0, 2π ]) ∼= L2[ 0, 2π ], then, by Theorem 15, f
can be reconstructed from its samples by the similar series

f =
∑
k∈Z

f(k)Lσ
a(· − k),

which converges absolutely and uniformly on all subsets of R.

Example 17. Consider L2(R) endowed with the (orthonormal) Hermite basis
defined by

ϕk(x) =
(−1)k

k!
exp

(
x2

2

) (
d

dx

)k

exp(−x2), k ∈ N0.

Then

K(x, t) =
∑
k∈Z

Lz(t − k)ϕp(k)(x),

where p : N0 → Z maps the natural numbers bijectively to the integers. An
application of the Lebesgue dominated convergence theorem yields

Kf(t) =
∫

R

f(x)
∑
k∈Z

Lz(t − k)ϕp(k)(x) dx
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=
∑
k∈Z

∫

R

f(x)ϕp(k)(x) dx Lz(t − k).

The integral represents the coefficients of f in the orthonormal basis {ϕk}k∈N0 .
Again by Theorem 15, all functions f ∈ H = K(L2(R)) ∼= L2(R) can be
reconstructed from its samples at the integers via the series (17).
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