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Problem description:

Legged robot locomotion is a challenging problem due to its hybrid dynamics (discrete contact sequenc-
ing and continuous whole-body motion), and the constraints imposed on the contact forces. Recently,
the related concepts of the three-dimensional Divergent Component of Motion (DCM) and the Virtual
Repellent Point (VRP) were introduced in [1], decomposing the second-order center-of-mass (CoM)
dynamics into two first-order dynamics, with the CoM converging to the DCM (stable dynamics), and
the DCM diverging away from the VRP (unstable dynamics). Based on this formulation, continuous
closed-form DCM and CoM trajectories can be generated using a piecewise interpolation of the VRP
trajectory over a sequence of waypoints [2]. This highly compact motion representation is a natural
way of handling the locomotion hybrid dynamics, with the discrete contact sequencing being mapped
onto the VRP waypoints. This approach has been used successfully for bipedal locomotion in [1], and
dynamic multi-contact motion in [3].
For a practical implementation on a real robot there are two important aspects to consider: First,
during the swing leg motion, the whole-body dynamics requires a compensating torque to be applied
at the point of contact. This corresponds to a shift of the center-of-pressure (CoP) within the foot
from the nominal position (typically the middle of the foot). Second, model uncertainties lead to
imperfect tracking of the reference trajectories, and require adjustments of the commanded VRP.
Both aspects thereby limit the maximum walking speed and reduce the robustness with respect to
external disturbances. A compensative Zero Moment Point (ZMP) trajectory addressing these two
aspects in the context of the Linear Inverted Pendulum (LIP) model was proposed in [4].
This thesis will apply the iterative learning control approach similar to the one presented in [4] for
the LIP to the three-dimensional DCM framework. The goal is to learn and generate online a VRP
compensation trajectory which reduces the CoP motion within the foot and keeps the commanded
VRP close to the center of the foot. The algorithm will be tested in simulation using a point-mass
model and a whole-body simulation, and in experiments with the humanoid robot TORO.

Tasks:

• Literature research on 3-D DCM-based control, and online iterative learning approach for ZMP
compensation

• Build an online learning framework for VRP compensation against unmodeled uncertainties
• Test the approach in simulation and on the real robot
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Abstract

The legged robot locomotion based on the concepts of the three dimensional Di-
vergent Component of Motion (DCM) and the Virtual Repellent Point (VRP) is
a state-of-the-art walking algorithm, which decomposes the second-order center of
mass (CoM) dynamics into a first-order stable dynamics (with CoM converging to
DCM) and a first-order unstable dynamics (with DCM diverging away from VRP).
However, the swing leg motion and model inaccuracies cause imperfect tracking of
the reference trajectories, limiting the maximum walking speed and a↵ecting the
walking robustness. In this thesis, an online learning framework is proposed to
enhance the DCM-based walking algorithm’s robustness. The framework learns a
feedforward adjusted VRP reference trajectory from the VRP errors of the repet-
itive walking behaviors by using the concept of iterative learning control (ILC).
This adjusted VRP reference trajectory is applied to the walking pattern gener-
ator to generate the adjusted DCM and CoM reference trajectory. Specifically,
the framework is presented in two di↵erent implementations learning from di↵er-
ent VRP error signals: measured and commanded error. For the measured VRP,
the measurement-error-based implementation performs better reference trajectory
tracking performance. Moreover, a pre-learned knowledge database, which consists
of compensative VRP trajectories obtained from the walking trials with di↵erent pa-
rameter sets, is constructed to predict an initial pre-learned knowledge based on the
k-nearest neighbor regression. This initial knowledge can further stabilize the initial
two steps when the framework is first applied. The improved walking robustness is
demonstrated from the reduced average VRP error, suppressed sliding behavior and
increased achievable walking speed on the DLR humanoid robot TORO.
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Chapter 1

Introduction

1.1 Problem Statement and Related Work

Humanoid robot locomotion is a complex problem due to the hybrid system dy-
namics and the system non-linearity. Based on the concept of zero-moment point
(ZMP) [VS72], many early works were successful on the biped walking of legged
robots [TLTK90]-[Tak89]. The key idea for controlling walking is to generate a sta-
ble walking pattern and subsequently track the planned trajectory precisely. The
walking pattern can be planned o✏ine based on an accurate robot model [Tak89]. To
simplify the complexity of the bipedal walking problems, a simplified walking model,
Linear Inverted Pendulum (LIP) model [SNI02], was commonly used to achieve an
online walking control by focusing on the center of mass (CoM) dynamics. The
LIP model defines that an inverted pendulum remains the same height during the
movement in practice. However, the model inaccuracies between the actual robot
dynamics model and the simplified model lead to an imperfect tracking of the ref-
erence trajectories. In the worst case, the imperfect tracking causes the robot to
fall if the ZMP leaves the support polygon. The standard way to avoid falling is
by adding a feedback stabilization controller into the system [KMM+10, CKOY07].
However, these balance methods do not fundamentally solve the e↵ect caused by
the model inaccuracies. A persistent ZMP error still exists.

Learning control algorithm is one of the solutions to improve the trajectory track-
ing performance. In [KKF+85], a feedforward compensation was learned to track
the reference trajectory of each joint precisely. However, this method does not use
the concept of ZMP, which means the walking stability is not guaranteed. Li et
al. [LTK93] used the concept of ZMP and learned a compensative trunk motion
based on the ZMP error from the previous complete walking trial. Yet, this method
only plans the whole walking trial o✏ine. To compensate for the ZMP error on-
line, Kajita et al. [KKK+03] utilized the dynamical filter (DF), which calculates
the expected ZMP error from the multibody dynamics to adjust the ZMP reference
trajectory and uses the preview control [She66] to generate an adjusted CoM refer-
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ence trajectory subsequently. The drawback of this method is that it requires the
computation of the multibody dynamics. It means that it is model-based and has a
heavy computation load.

Iterative learning control (ILC) is one of the widely used learning control algorithms,
which is presented by Uchiyama [Uch78] originally and introduced by Arimoto et
al. [AKM84] in English. Since humans can learn the experience from the repeti-
tive trials to improve motion performance, the motivation of developing ILC is to
empower the robots with these learning capabilities to improve the trajectory track-
ing performance. According to [AKM84, BTA06], ILC can reduce the trajectory
tracking errors caused by the large repeating disturbances and model uncertainties.
Inspired by ILC, Hu et al. [HOL16] applied an Online Iterative Learning Control ap-
proach (ZMP-OILC) to learn a compensative ZMP (CZMP) trajectory that reduced
the ZMP error (i.e., improved the robustness of biped walking). The comparisons
between the DF and the ZMP-OILC were presented in [HOL16]: 1. In the case
of short-period disturbance, both DF and ZMP-OILC can resist the disturbance.
However, the ZMP of ZMP-OILC recovers slower; 2. In the long-period disturbance
scenario, the ZMP of ZMP-OILC still converged to the desired trajectory after few
learning iterations, whereas there was a large ZMP deviation in the case of DF; 3.
During the non-repetitive transition phases, both DF and ZMP-OILC augmented
with a pre-compensation procedure are suitable for non-repetitive transition phases.
These comparisons show that DF and ZMP-OILC have similar but slightly dif-
ferent performance. Compared with DF, the main advantages of ZMP-OILC are
model-free, lighter computation load, and online adaptation to unknown constant
disturbances. However, both DF and ZMP-OILC use the ZMP-based walking algo-
rithm, which needs a simplifying model assumption.

The concept of three dimensional Divergent Component of Motion (DCM) and Vir-
tual Repellent Point (VRP) [EOAS15] has been used recently, where the CoM dy-
namics can be split into a stable dynamics (CoM converges to DCM) and an unstable
dynamics (DCM diverges from VRP). This DCM-based walking algorithm can re-
duce the calculation load of the CoM reference trajectory generation without using
any approximation models. Moreover, walking on uneven and compliant terrains
can also be achieved by combining the DCM-based algorithm with the passivity-
based whole-body controller [MEG+19].

Inspired by ZMP-OILC and DCM framework, this research aims to develop an online
VRP adaptation framework using the iterative learning control method for DCM-
based walking controller, which is called VRP-OILC. The VRP-OILC learns an
adjusted VRP reference trajectory from the repetitive walking motions and reduces
the VRP error caused by the model inaccuracies or unmodeled external distur-
bances. In particular, two di↵erent implementations with stability and convergence
analysis for VRP-OILC are proposed: measurement-error-based and commanded-
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error-based framework. These implementations present the learning from di↵erent
VRP error signals. Furthermore, the VRP-OILC is also augmented with a predicted
pre-compensation (or it can also be called pre-learned knowledge) to stabilize the
initial two steps after the VRP-OILC is applied and to achieve a faster VRP con-
vergence. This pre-learned knowledge is predicted from a database composed of
the compensative VRP trajectories obtained from di↵erent walking trials. Unlike
ZMP-OILC, our VRP-OILC does not need any approximated robot models and is
compatible with force-controlled robots.

1.2 Outline

The thesis is organized as follows. Chapter 2 introduces the fundamentals of DCM-
based walking and iterative learning control (ILC). Chapter 3 clarifies the principles
and shows the stability proof and convergence analysis of the framework. The sim-
ulation and experimental results are evaluated in Chapter 4. Their discussions and
interpretations are shown in Chapter 5. Chapter 6 concludes the thesis and provides
some potential ideas for future work.

Moreover, a shortened version of this thesis was submitted for publication at the
2020 IEEE-RAS International Conference on Humanoid Robots.
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Chapter 2

Technical Background

All the relevant technical background of this thesis is elaborated in the following
sections. Section 2.1 describes the mechanism of the DCM-based biped walking
algorithm. In particular, the concepts of DCM and VRP, the generation of reference
trajectory, and the DCM-tracking control are introduced in this section. In Section
2.2, the general ILC approach and its stability analysis are present.

2.1 Bipedal Walking Based on Divergent Compo-

nent of Motion

2.1.1 Fundamentals

Before we start with the introduction, one thing needs to be emphasized: there is no
angular momentum balance strategy used in this work. In this case, the Center of
Pressure (CoP, equivalent to ZMP) coincides with the Enhanced Centroidal Moment
Pivot Point (eCMP) and the Centroidal Moment Pivot (CMP), as described in
[EOAS15]. Then, the biped walking dynamics can be shown in Figure 2.1.

ground
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#̇ $̇
#(+)	
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Figure 2.1: General humanoid robot dynamics.
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As described in [EOAS15], the 3-D DCM ⇠ can be obtained by the CoM position x
and its velocity ẋ:

⇠ = x+ b ẋ, (2.1)

where b =
p

�zvrp/g is the time constant of the DCM dynamics, with �zvrp is the
distance in Z direction between VRP v and CoP rcop on the contact foot and g is
the gravitational constant. (2.1) can be reordered to:

ẋ = �1

b
(x� ⇠). (2.2)

The (2.2) is a stable first-order dynamics. As shown in Figure 2.1, the velocity of
CoM points towards DCM. In other words, the CoM follows the DCM. To obtain
the DCM dynamics, it is necessary to di↵erentiate (2.1) as:

⇠̇ = ẋ+ b ẍ. (2.3)

Inserting Newton’s 2nd law ẍ = F /m (F is the total force acting on the CoM, and
m is the robot’s total mass) into (2.3), it becomes:

⇠̇ = ẋ+
bF

m
. (2.4)

According to the concept of ZMP [VS72], the distributed ground reaction force act-
ing on the robot’s supporting foot can be replaced by a single support force acting
on the ZMP. When there is no angular momentum on the hip of the robot, this
support force points towards the CoM, which is represented as the Fsup shown in
Figure 2.1. Basically, the total force F is the sum of the support force Fsup and the
gravitational force Fg when no other external forces act on the robot.

According to [EOAS15], the VRP v encodes the total force F by:

F =
m

b2
(x� v). (2.5)

Inserting (2.1) and (2.5) into (2.4), the DCM dynamics is obtained as:

⇠̇ =
1

b
(⇠ � v). (2.6)

Here, the DCM dynamics is an unstable first-order dynamics when b > 0. As shown
in Figure 2.1, the DCM is “pushed” away by VRP, while the CoM tracks the DCM.

2.1.2 Reference Trajectory Generation

The total robot walking motion can be split into n' transition phases’ sequence1.
There are nwp = n' + 1 VRP, DCM and CoM waypoints respectively. In the tran-
sition phase ' 2 {1, . . . , n'}, we denote the VRP trajectory by v'(t), the DCM

1
One single support or double support phase is one transition phase.
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trajectory by ⇠'(t), and the CoM trajectory by x'(t). Here, t is the local time in
each transition phase. Moreover, we use v'(0), ⇠'(0) and x'(0) to represent the
start waypoints, and v'(T'), ⇠'(T') and x'(T') to represent the end waypoints
in phase ', where T' is the phase duration. For the case of the single support
(SS) phase, the VRP reference remains at the same position, i.e., v'(0) = v'(T'),
whereas it does not remain at the same position for the double support (DS) phase.
To ensure the continuity of the whole trajectories, the equations v'(0) = v'�1(T'),
⇠'(0) = ⇠'�1(T') and x'(0) = x'�1(T') must be held for all the transition phases.
The terminal DCM waypoint is denoted as ⇠f = ⇠n'(T').

Figure 2.2(a) shows an example of the VRP, DCM and CoM reference trajectory for
4-step walking. The points v1, . . . ,v12 are the VRP waypoints, ⇠1, . . . , ⇠12 are the
DCM waypoints and x1, . . . ,x12 are the CoM waypoints. For example, the second
transition phase (' = 2) is a SS phase, which means that the start VRP waypoint
v2 (is equivalent to v2(0) of the reference trajectory) and the end VRP waypoint
v3 in the figure (is equivalent to v2(T') of the reference trajectory) of the second
transition phase are at the same position. ⇠2 and x2 are the start DCM and CoM
waypoints, whereas ⇠3 and x3 are the end DCM and CoM waypoints respectively at
this phase. In the DS phase for ' = 3, the start VRP waypoint v3 (is equivalent to
v3(0)) and the end VRP waypoint v4 (is equivalent to v3(T')) are not at the same
position. ⇠3 and x3 are the start DCM and CoM waypoints, whereas ⇠4 and x4 are
the end DCM and CoM waypoints.

In this section, the calculation for the reference trajectory of VRP, DCM and CoM
is reported in a single transition phase '.

VRP Trajectory

For generating the VRP trajectory v'(t) at phase ', spatial linear interpolation
between the start and end VRP waypoint is used. According to [EMO17], the
general form of the interpolation can be expressed as:

v'(t) = (1� f'(t)) v'(0) + f'(t)v'(T'), t 2 [0, T'] (2.7)

where f'(t) is a time-dependent polynomial satisfying f'(0) = 0, f' (T') = 1, and
0 6 f'(t) 6 1 for all t 2 [0, T']. For di↵erent polynomial order npoly, the expression
of f'(t) is di↵erent. For instance, the first-order polynomial is f'(t) = t/T', whereas
the third-order polynomial is represented as f'(t) = (t/T')

2 (3� 2t'/T') and the
fifth-order polynomial is expressed as (t/T')

3 �10� 15t/T' + 6t2/T 2
'

�
.

DCM Trajectory

To obtain the DCM reference trajectory, Englsberger et al. [EMO17] inserted (2.7)
into (2.6) and then solved the resulting di↵erential equation. The closed-form solu-
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(a) Discontinuity of the DCM trajectory from stance to walk.
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(b) Continuity of the DCM trajectory from stance to walk.

Figure 2.2: Examples of 4-step VRP, DCM and CoM reference trajectory.
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tion of the DCM trajectory is expressed as:

⇠'(t) =
⇣
1� �'(t)� e

t�T'
b (1� �' (T'))

⌘

| {z }
↵',⇠(t)

v'(0)

+
⇣
�'(t)� e

t�T'
b �' (T')

⌘

| {z }
�',⇠(t)

v'(T') + e
t�T'

b| {z }
�',⇠(t)

⇠'(T'),
(2.8)

with

�'(t) =

npolyX

p=0

✓
bp

(p)

f' (t)

◆
, (2.9)

where
(p)

f' (t) represents the pth time derivative of f'(t). Note that the sum of ↵',⇠(t),
�',⇠(t) and �',⇠(t) is always equal to 1. This coe�cients’ relation denotes the convex
property of the DCM reference trajectory ⇠'(t), i.e., the DCM trajectory is consis-
tently within a triangle whose vertices are composed by v'(0), v'(T') and ⇠'(T')
(an example can be seen in Fig.3. of [MEOAS18]). By calculating the start DCM
waypoint (at t = 0) at each transition phase recursively from the terminal way-
point ⇠f = ⇠n',T with the equation (2.8), all the DCM waypoints can be obtained.
The piecewise DCM reference trajectory ⇠'(t) can be calculated by inserting the
waypoints v'(0), v'(T') and ⇠'(T') into the equation (2.8).

CoM Trajectory

According to [MEOAS18], the CoM reference trajectory is obtained by inserting
(2.8) into (2.1) and solving the resulting di↵erential equation subsequently. The
solution for the CoM trajectory is:

x'(t) =

 
1� ⇢'(t)�

1� ⇢'(0)
e

t
b

� e
t
b � e�

t
b

2e
T'
b

(1� �'(T'))
!

| {z }
↵',x(t)

v'(0)

+

 
⇢'(t)�

⇢'(0)

e
t
b

� e
t
b � e�

t
b

2e
T'
b

�'(T')

!

| {z }
�',x(t)

v'(T')

+
e

t
b � e�

t
b

2e
T'
b| {z }

�',x(t)

⇠'(T') + e�
t
b|{z}

�',x(t)

x'(0),

(2.10)

with

⇢'(t) =

bnpoly/2cX

p=0

✓
b2p

(2p)

f' (t)

◆
. (2.11)
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The CoM trajectory also has a convex property since the sum of ↵',x(t), �',x(t),
�',x(t) and �',x(t) equals 1. As shown in Fig.4. of [MEOAS18], the CoM trajectory
always stays within the triangular pyramid composed by v'(0), v'(T'), ⇠'(T') and
x'(0).

When the robot is standing and not walking, the VRP, DCM, and CoM points should
be in the same position. Notice that the start DCM waypoint ⇠1 in Figure 2.2(a) does
not coincide with the start VRP and CoM waypoint. This causes a discontinuity
of the DCM trajectory when the robot starts walking. To avoid the discontinuity,
Englsberger et al. [EMO17] calculated an additional VRP waypoint in the initial
transfer phase to ensure the continuity of the DCM trajectory without violating
the VRP boundary condition. An example of the continuous DCM trajectory and
adjusted VRP trajectory can be seen in Figure 2.2(b). Here, the ⇠2 in Figure 2.2(b)
is not the same as the ⇠1 in Figure 2.2(a) quantitatively, while the ⇠3 in Figure 2.2(b)
and the ⇠2 in Figure 2.2(a) are the same. And the VRP waypoint v2 in Figure 2.2(b)
is the additional point.

2.1.3 Divergent Component of Motion Tracking Control

For the DCM tracking control, [EOAS15] design a DCM tracking controller with
closed-loop dynamics:

⇠̇ � ⇠̇d| {z }
ė⇠

= �k⇠ (⇠ � ⇠d)| {z }
e⇠

, (2.12)

where ⇠̇d is the reference DCM velocity, ⇠ is the measured DCM position and ⇠d
denotes the reference DCM position. When k⇠ > 0, the ⇠ converges to ⇠d. According
to the DCM dynamics (2.6), the reference DCM velocity can be expressed as:

⇠̇d =
1

b
(⇠d � vd) . (2.13)

Substituting (2.6) and (2.13) into (2.12) yields a DCM control law:

v = vd + (1 + k⇠b) (⇠ � ⇠d)| {z }
e⇠

, (2.14)

where k⇠ is the DCM controller gain. Englsberger et al. [EOAS15] designed v = vc

to achieve the desired tracking behavior, where vc is the commanded VRP. The
commanded VRP converges to the desired VRP if the DCM error e⇠ equals 0,
while the commanded VRP deviates from its reference in case of disturbances. This
property can be used for the step adjustment during walking, as shown in [EOAS15].

A commanded force is calculated through substituting the commanded VRP vc for v
in (2.5). The commanded force is then used as input to a whole-body controller, e.g.,
the passivity-based whole-body controller [MEG+19]. The whole-body controller
generates a corresponding commanded torque to control the robot.
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2.1.4 Measurement of Virtual Repellent Point

There are two general ways to measure the model’s VRP position: 1) measurement
based on the force-torque (FT) sensors; 2) measurement based on the DCM dynam-
ics model. The first method is suitable for the robots in which the FT sensors are
installed in the feet. If a robot is not equipped with the FT sensors in the feet, the
second method can be an alternative solution.

Measurement Based on Force-Torque Sensors

Assume there are two FT sensors mounted in the feet. The FL and FR are the
measured force in the sensor’s frame from the left and right FT sensor respectively.
Except for the gravity and contact force with the ground, we assume that no other
external forces exist. The total force F acting on the CoM can be expressed as:

F =
X

p=L,R

Rp
CoMFp �mg, (2.15)

where Rp
CoM is the rotation matrix from the CoM’s coordinate frame to the frame

of the FT sensor in the left or right foot, and mg is the total gravitational force of
the robot. From (2.5) and (2.15), the measured VRP can be derived as:

vm = x� b2

m
F

= x� b2

m

X

p=L,R

Rp
CoMFp � b2g,

(2.16)

where x is the measured CoM position. It can be estimated by IMU as shown in
[HRO16].

Measurement Based on DCM Dynamics Model

From the DCM dynamics (2.6), the measured VRP vm can also be derived as:

vm = ⇠ � b ⇠̇, (2.17)

where ⇠ is the measured DCM and ⇠̇ is the measured DCM velocity. As defined in
(2.1), the measured DCM can be obtained by ⇠ = x + b ẋ, where x and ẋ are the
measured CoM position and velocity.

The measurement based on the FT sensors has a higher priority because it directly
uses the sensor information to compute the VRP. In comparison, the measurement
based on the DCM model is noisier because of the signal noise, as discussed in
Chapter 5. Therefore, the first measurement method is recommended unless there
are not FT sensors in robots’ feet. Nevertheless, the drawback of the first method
is that no external forces can be applied to the robot except gravity and contact
forces between the feet and ground.



16 CHAPTER 2. TECHNICAL BACKGROUND

2.2 Iterative Learning Control

2.2.1 General Algorithm

Humans can learn a new sport or improve their sports performance by learning from
repeating some motions. For instance, a basketball three-point shooter can improve
the shooting accuracy by practicing the shot repeatedly. Inspired by this learning
process, the ILC aims to control the robots to track the reference trajectory per-
fectly by learning from the previous repetitive trials.

Assume there is a system with the state-space representation as follows:

⇢
x(t+ 1, k) = Ax(t, k) + Bu(t, k) + w(t, k)
y(t, k) = Cx(t, k) + v(t, k)

t = 0, 1, . . . , T � 1; k = 1, 2, . . .

(2.18)

where x, u, y, w and v represents states, control inputs, system outputs, system
uncertainties and noise from the measurement, with certain dimensions respectively.
Moreover, t is the local time step in the kth iteration and T is the iteration duration.
The ultimate goal of applying ILC is to reduce the tracking error e(t, k) to 0, where
e(t, k) is expressed by:

e(t, k)=̂yr(t)� y(t, k), (2.19)

with yr(t) is the reference output trajectory. A general ILC formulation is described
in [WGDI09] as:

u(t, k) = QILC(u(t, k � 1)) + LILC(e(t, k � 1)), (2.20)

where QILC(·) and LILC(·) are called Q-filter and L-filter respectively. In general, the
Q-filter determines how the current iteration’s control input depends on the input of
the last iteration, while the L-filter represents how the current control input should
be adjusted according to the system output error from the last iteration. Moreover,
the Q-filter and L-filter can have di↵erent representation forms. For example, if
the control input u is a scalar (or a vector), the Q is called the forgetting factor
(or forgetting factor matrix, is a diagonal matrix) when QILC(u) = Q · u. In this
case, the Q is within [0, 1] (or all the entries on the diagonal of the Q are in this
range). In the literature, QILC(u) = u is widely used as described in [WGDI09].
In terms of the L-filter, the di↵erent forms of L-filter lead to di↵erent types of
ILC. For instance, LILC(e(t, k � 1)) = KILC · e(t, k � 1) implies a P-type ILC and
LILC(e(t, k � 1)) = KILC · (e(t, k � 1) � e(t � 1, k � 1)) leads to a D-type ILC. The
KILC here is called the learning gain if the output error e is a scalar (or learning
gain matrix if the e is a vector).
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2.2.2 Stability Analysis

For the stability analysis of ILC, the lifted form [WGDI09, BTA06] is used. To this
end, (2.20) is reformulated as follows:

2

6664

u(0, k + 1)
u(1, k + 1)

...
u(T � 1, k + 1)

3

7775

| {z }
U(k+1)

=

2

6664

Q0 Q�1 . . . Q�(T�1)

Q1 Q0 . . . Q�(T�2)
...

...
. . .

...
QT�1 QT�2 . . . Q0

3

7775

| {z }
Q

2

6664

u(0, k)
u(1, k)

...
u(T � 1, k)

3

7775

| {z }
U(k)

+

2

6664

KILC,0 KILC,�1 . . . KILC,�(T�1)

KILC,1 KILC,0 . . . KILC,�(T�2)
...

...
. . .

...
KILC,T�1 KILC,T�2 . . . KILC,0

3

7775

| {z }
KILC

2

6664

e(0, k)
e(1, k)

...
e(T � 1, k)

3

7775

| {z }
E(k)

,

(2.21)
where Q and KILC are the general matrix form of the Q-filter and L-filter respec-
tively. As aforementioned, the Q and KILC have di↵erent forms according to the
di↵erent types of the Q-filter and L-filter. For example, if QILC(u) = Q · u, the Q

becomes:

Q =

2

6664

Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . Q

3

7775
. (2.22)

And if LILC(e(t, k � 1)) = KILC · e(t, k � 1), the KILC is:

KILC =

2

6664

KILC 0 . . . 0
0 KILC . . . 0
...

...
. . .

...
0 0 . . . KILC

3

7775
. (2.23)

From (2.18), the system output y(t, k) can be rewritten as follows (2  t  T ):

y(t, k) = Cx(t, k) + v(t, k)

= CAx(t� 1, k) + CBu(t� 1, k) + Cw(t� 1, k) + v(t, k)

= CAtx(0, k) + CAt�1Bu(0, k) + CAt�2Bu(1, k) + . . .+ CBu(t� 1, k)

+ CAt�1w(0, k) + . . .+ Cw(t� 1, k) + v(t, k).
(2.24)

For t = 1, the system output is expressed as follows:

y(1, k) = CAx(0, k) + CBu(0, k) + Cw(0, k) + v(1, k). (2.25)
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The system output is represented for t = 0 as:

y(0, k) = Cx(0, k) + v(0, k). (2.26)

The lifted form of the system output can be derived from (2.24), (2.25) and (2.26)
as:
2

6664

y(0, k)
y(1, k)

...
y(T � 1, k)

3

7775

| {z }
Y(k)

=

2

6664

0 0 . . . 0
CB 0 . . . 0
...

. . . . . .
...

CAT�2B . . . CB 0

3

7775

| {z }
A

2

6664

u(0, k)
u(1, k)

...
u(T � 1, k)

3

7775

| {z }
U(k)

+

2

6664

C
CA
...

CAT�1

3

7775
x(0, k)

| {z }
b(k)

+

2

6664

0 0 . . . 0
C 0 . . . 0
...

. . . . . .
...

CAT�2 . . . C 0

3

7775

2

6664

w(0, k)
w(1, k)

...
w(T � 1, k)

3

7775
+

2

6664

v(0, k)
v(1, k)

...
v(T � 1, k)

3

7775

| {z }
"(k)

.

(2.27)
According to (2.19), (2.21) is rearranged by inserting (2.27) into (2.21) and obtain:

U(k + 1) = (Q�KILCA)U(k)�KILC (b(k)�Yr + "(k)) , (2.28)

where

Yr =

2

6664

yr(0)
yr(1)
...

yr(T � 1)

3

7775
. (2.29)

The stability of the system can be verified by analyzing the eigenvalues ofQ�KILCA

from (2.28). An operator ⇢(⇤) = maxi|�i(⇤)| from [BTA06] is used to extract the
maximum absolute eigenvalue of the matrix ⇤, where �i(⇤) is the ith eigenvalue of
⇤. According to [NG02], the system is asymptotically stable if and only if:

⇢(Q�KILCA) < 1. (2.30)

TheQ�KILCA is Toeplitz2 [GS58] and low triangular whenQ andKILC are causal3.
In this case, the Q � KILCA has repetitive eigenvalues that are identical to its
diagonal entries. So the stability condition is simplified as:

|diag
i

(Q�KILCA)| < 1, i 2 {1, . . . ,m}, (2.31)

2
Toeplitz means that the diagonal entries of the matrix are the same.

3
According to [BTA06], the ILC learning equation is causal if the u(t, k) is depending on the

u(h, k � 1) and e(h, k � 1), where h  t. For example, (2.20) is causal if QILC(u) = Q · u and

LILC(e(t, k � 1)) = KILC · e(t, k � 1).
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where m is the number of diagonal entries of Q �KILCA, and diag
i

(⇤) selects the

ith diagonal entry of ⇤. Since Q �KILCA is Toeplitz, an arbitrary diagonal entry
can be selected for the stability analysis in (2.31).
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Chapter 3

Technical Approach

This chapter explains the online iterative learning control framework for bipedal
walking robots in more detail. Section 3.1 elaborates on how the ILC is combined
with the DCM-based walking algorithm in the framework. Section 3.2 proves the
stability of the framework, and Section 3.3 demonstrates the convergence property
of the VRP by using the framework.

3.1 Design of Online Iterative Learning Control

Framework

3.1.1 Definition of Iteration

Humanoid robots’ bipedal walking can be considered as a repetitive locomotion
behavior of the legs. This implies the possibility of combining the ILC with a DCM-
based bipedal walking algorithm. In the framework, one iteration is defined as one
walking cycle, where the robot starts on the first foot, goes to the second foot, and
then ends back to the first foot. It means that one iteration contains 2 SS phases
and 2 DS phases. For instance, Figure 3.1 shows a bipedal walking in (i � 1)th

and ith iteration. We assume the current iteration is (i � 1)th iteration. Here, the
iteration starts at the beginning of the SS phase of the left foot step and ends at the
end of the DS phase from the right foot step to the next left foot step. Specifically,
the robot’s walking starts from the 0th iteration. In Figure 3.1, G0 is the global
coordinate frame, Gi�1 and Gi are the local coordinate frames of (i � 1)th and ith

iteration respectively. The orange lines between the feet’s centers are the desired
VRP trajectory, and the angle �↵ represents the rotation from frame Gi�1 to frame
Gi along the Z axis. Since the stepping behavior is repetitive in the local frame,
the rotation matrix R� that transforms the learned information from Gi�1 to Gi
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Figure 3.1: An example of two walking iterations.

can be expressed as:

R� = RZ(�↵) =

2

4
cos�↵ � sin�↵ 0
sin�↵ cos�↵ 0

0 0 1

3

5 (3.1)

3.1.2 Measurement-Error-Based Reference Trajectories Adap-

tation

Our learning framework is an online VRP-waypoint-based adaptation approach.
The system adjusts the future VRP reference trajectory by using ILC to learn from
the current VRP measurement error. In this subsection, our online ILC framework
(VRP-OILC) is elaborated. Firstly, three essential definitions for the explanation of
the VRP-OILC are shown in Definition 3.1.1 - 3.1.3:

Definition 3.1.1 (VRP Measurement Error). A VRP measurement error is defined
as the di↵erence between the desired and measured VRP, i.e., vd � vm.

Definition 3.1.2 (Learned VRP Waypoint). A learned VRP waypoint is a dis-
crete reference VRP point on the learned VRP reference trajectory. This reference
trajectory is learned using the ILC updating law (3.2).

Definition 3.1.3 (ILC Update Interval). An ILC update interval �tILC is defined
as the time interval between two ILC update cycles. For instance, if �tILC = 0.01
s, the VRP-OILC framework obtains a learned VRP waypoint every 0.01 s. Note
that the relation between �tILC and the system sampling time1 �ts should be:
�tILC � �ts.

1
The sampling time of controlling the whole robot system.
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Algorithm 1: Pseudocode of VRP-OILC
Input: Step Information.
Output: Adjusted VRP and DCM Trajectory (vl,i(t) and ⇠l,i(t)).

1 i btg/Titerc
2 t tg rem Titer

3 if i = 0 and t = 0 then

4 Initialize Vl: Vl  [vd,0(0), vd,0(�tILC), . . . , vd,0(Titer ��tILC)]
5 vl,i(t) Vl(1)
6 ⇠l,i(t) ⇠d,0(0)

7 else

8 k  bt/�tILCc
9 tin w  t rem k�tILC

10 if tin w = 0 then

11 if 'c + 4  n' then

12 vl,i(t) Vl(2)
13 vl,i+1(t) vd,i+1(t) + kfR� (vl,i(t)� vd,i(t)) + klR� (vd,i(t)� vm,i(t))
14 V 0

l  [Vl(2 : end), vl,i+1(t)]

15 else

16 V 0
l  [Vl(2 : end), Vl(end)]

17 Vl  V 0
l

18 vl,i(t) (1� fILC(tin w))Vl(1) + fILC(tin w)Vl(2)
19 if 'c + 4  n' then

20 ⇠f  ⇠d,i+1(k�tILC)

21 else

22 ⇠f  Vl(end)

23 ⇠mid  ⇠f
24 for j  Titer

�tILC
: �1 : 3 do

25 ⇠mid  ↵ILC,⇠(0)Vl(j � 1) + �ILC,⇠(0)Vl(j) + �ILC,⇠(0)⇠mid

26 ⇠l,i(t) ↵ILC,⇠(tin w)Vl(1) + �ILC,⇠(tin w)Vl(2) + �ILC,⇠(tin w)⇠mid

27 tg  tg +�ts

General Framework Procedure

In the VRP-OILC, a learned VRP waypoint list is used, which can be used as a
bu↵er to save the learned VRP waypoints and calculate the adjusted DCM refer-
ence trajectory. The learned VRP waypoints’ number in the list is Titer

�tILC
, where

Titer is an iteration duration and �tILC is an ILC update interval. For example, if
the iteration duration is Titer = 2.4 s and the ILC updating interval is �tILC = 0.01
s, the learned VRP waypoint list always has 240 learned VRP waypoints. The Vl is
used as the learned VRP waypoint list before updated by the ILC updating law, and
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V 0
l represents the updated learned VRP waypoint list after using the ILC updating

law. A pseudocode of the VRP-OILC is presented in Algorithm 1.

Explanation of Algorithm 1: The general idea of VRP-OILC is elaborated line
by line as follows:

Lines 1 - 2: The iteration index i and the local time t within an iteration are calculated.
Note that tg 2 R is a global time elapsed from the start of the VRP-OILC.
Here, the iteration index is expressed using a floor operator b·c, while the local
time is obtained by a remainder operator rem. For instance, b2.5c = 2, and
5 rem 2 = 1.

Lines 3 - 6: When i = 0 and t = 0, it is at the start time step of VRP-OILC (or
0th iteration). At this time step, the learned VRP waypoint list Vl is ini-
tialized by using the 0th iteration’s VRP original reference trajectory. Par-
ticularly, the trajectory is discretized by using the ILC updating interval
�tILC as sampling time, then place all the sampled VRP reference points
[vd,0(0), vd,0(�tILC), . . . , vd,0(Titer ��tILC)] into Vl. After the Vl is initial-
ized, the first waypoint of the Vl (i.e., vd,0(0)) is selected as the current VRP
reference point. Also, the original DCM reference point ⇠d,0(0) is treated as
the current DCM reference point. Here, the current VRP and DCM reference
point mean the adjusted VRP and DCM reference trajectory (i.e., vl,i(t) and
⇠l,i(t)) at t = 0 and i = 0, which are the adjusted reference trajectories the
robot needs to track in DCM-based walking. In short, the adjusted VRP and
DCM reference trajectory are equivalent to their original reference trajectory
when t = 0 and i = 0.

Lines 7 - 26: These lines represent the trajectory adjustment case. Specifically, lines 8 - 9
show the calculation of the learned waypoint index k and the elapsed local
time tin w between two learned waypoints. Since the system sampling time
�ts and the ILC updating interval �tILC might be di↵erent, the index k and
k+1 are used to determine which two learned waypoints the current position is
between, while the time tin w 2 [0,�tILC) denotes how long it elapsed after the
last ILC update (i.e., the local time between current and next waypoint). For
instance, if i = 1, t = 0.032 s, �tILC = 0.01 s and �ts = 0.001 s, then k = 3
and tin w = 0.002 s. For the VRP trajectory, it means that the current ad-
justed VRP trajectory is between the 3rd VRP learned waypoint vl,i(3�tILC)
and the 4th waypoint vl,i(4�tILC), and 0.002 s has passed inside the period
between the 3rd and 4th waypoint (i.e., since the last ILC update).

Lines 10 - 17 denotes the update process of the learned VRP waypoint list
at tin w = 0. Particularly, lines 11 - 14 present the learning process when
the robot will keep walking within the 4 transition phases in the future (i.e.,
'c + 4  n', with current transition phase index 'c and total transition
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phase’s number n'). As shown in lines 12 - 13, the next iteration’s reference
VRP waypoint vl,i+1(t) is adjusted by:

vl,i+1(t) = vd,i+1(t) + kfR� (vl,i(t)� vd,i(t)) + klR� (vd,i(t)� vm,i(t)) , (3.2)

where vm,i(t) is the measured VRP trajectory, 0 < kf  1 is the forgetting
factor and kl > 0 is the learning gain. In line 14, the V 0

l is obtained by dis-
carding the first waypoint, then inserting the learned VRP future waypoint
vl,i+1(t) into the end of the waypoint list. In this way, the learned future
waypoint is reused to calculate the adjusted VRP reference trajectory when it
entries the next iteration at the same local time step t. When the robot stops
walking within the 4 transition phases in the future, the waypoint list is up-
dated by replicating the last waypoint of the waypoint list, as shown in line 16.

After the waypoint list is updated, the current VRP reference trajectory vl,i(t)
is adjusted by the linear interpolation between Vl(1) and Vl(2) in line 18, where
fILC(·) uses the ILC updating interval �tILC as the time duration in the
polynomial. Lines 19 - 26 show the process of obtaining the current adjusted
DCM reference trajectory ⇠l,i(t). In particular, lines 19 - 22 determine the
terminal DCM point for the calculation of ⇠l,i(t) bases on whether the robot
will stop within the next 4 transition phases, while lines 23 - 26 elaborate
the backward calculation from terminal DCM point to the current adjusted
DCM reference point by using the DCM trajectory calculation (2.8) and all
the learned VRP waypoints in Vl. Again, the ↵ILC,⇠(·), �ILC,⇠(·) and �ILC,⇠(·)
in lines 25 - 26 replace the transition phase duration T' in (2.8) with the ILC
updating interval �tILC . In the end, the vl,i(t) and ⇠l,i(t) are the outputs of
the VRP-OILC.

The outputs of the VRP-OILC are the inputs to the DCM-controller. Here, the DCM
control law (2.14) is modified by substituting the adjusted reference trajectories for
the original desired trajectories as follows:

vc = vl + (1 + k⇠b) (⇠ � ⇠l). (3.3)

In summary, the VRP-OILC framework learns the future VRP waypoint from the
VRP error at the current iteration. This future waypoint is stored in the learned
waypoint list Vl and reused when it entries the corresponding future iteration at
the same local time step. In this way, on the one hand, the current adjusted VRP
reference trajectory is not a↵ected by the newly learned future waypoint, and on
the other hand, the current adjusted DCM reference trajectory is smoother than the
one in the failed attempt described in ”Learning from Previous Iteration“ of Section
3.1.5. These properties of the VRP-OILC guarantee the stability of the whole robot
system.
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Pre-learning Procedure for Fast Walking

After the VRP-OILC framework is used, the robot’s walking behavior is wobbling
during the 0th iteration’s two steps for fast walking2. Inspired by the precompensa-
tion procedure for the ZMP adaptation in [HOL16], a pre-learning procedure for the
initialization of the learned VRP waypoint list Vl at the beginning of the 0th iter-
ation is designed to enhance the walking robustness in this iteration for fast walking.

Specifically, a database of the pre-learned knowledge is constructed for di↵erent
walking parameters firstly. To learn the database, walking trials under a designed
sample walking parameter vector set ⇥ = {✓i|i = 1, . . . ,m} are conducted, where
m is the number of the di↵erent parameter vectors, and parameter vector ✓i consists
of n walking parameters, e.g., the SS time, DS time and the step distance in sagittal
direction are examples of the walking parameter. During the walking experiment
under each parameter vector ✓i, the compensative VRP trajectory is extracted only
at the beginning of the 1st iteration (i.e., at the moment of t = 0 and i = 1). The
compensative VRP trajectory �V is defined as:

�V = RT
1 [Vl,1 � Vd,1] , (3.4)

where

Vl,1 = [vl,1(0), vl,1(�tILC,i), vl,1(2�tILC,i), . . . , vl,1(Titer,i ��tILC,i)] , (3.5)

Vd,1 = [vd,1(0), vd,1(�tILC,i), vd,1(2�tILC,i), . . . , vd,1(Titer,i ��tILC,i)] , (3.6)

and R1 is the rotation matrix from the global frame to local frame G1. Moreover,
the �tILC,i and Titer,i in (3.5) and (3.6) represent the ILC updating interval and
iteration duration for the walking under the parameter vector ✓i respectively. The
Vl,1 is the learned VRP waypoint list extracted at the moment of t = 0 and i = 1,
so all the waypoints in the list are the learned VRP waypoints only from the 1st

iteration. To obtain the proper compensative VRP trajectory �V , the Vd,1 contains
the corresponding original VRP reference waypoint from the 1st iteration, as shown
in (3.6). The compensative VRP trajectory is marked as �V (✓i) according to the
parameter vector ✓i and saved in the database. In the end, the database can be
considered as a lookup table of the compensative VRP trajectories corresponding
to di↵erent walking parameter vectors.

Assume the robot is running under a new walking parameter vector ✓⇤ = [✓⇤1, . . . , ✓
⇤
n].

A k-nearest neighbors algorithm (k-NN) is used to predict a pre-learned knowledge
�V (✓⇤) for the initialization of the Vl in line 4 in Algorithm 1. The prediction of
the pre-learned knowledge �V (✓⇤) is conducted as follows:

2
The DLR humanoid robot TORO cannot walk with a SS time less than 0.9 s and a DS time

less than 0.3 s without applying the VRP-OILC framework. Fast walking means the case where

the SS time is less than 0.9 s and the DS time is less than 0.3 s.
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1) The k nearest parameter vectors from the database are selected based on the
Mahalanobis distance in the following form [HOL16]:

d (✓i,✓
⇤) =

q
(✓i � ✓⇤)T ⌃ (✓i � ✓⇤), (3.7)

where ⌃ denotes the covariance matrix of the walking parameter vector set
⇥.

2) The weight of each selected data is computed as:

! (✓i) =
1/d (✓i,✓?)Pk
j=1 1/d (✓j,✓?)

, i = 1, . . . , k (3.8)

3) To match the size of the learned VRP waypoint list of the walking under
the new walking parameter vector ✓⇤, the candidate pre-learned knowledge
�V (✓i) must be modified as:

�mV (j;✓i) = �V (bjTiter,i

T ⇤
iter

c;✓i), j = 1, . . . ,
T ⇤
iter

�t⇤ILC
, (3.9)

where�mV (j;✓i) denotes the jth entry of the modified pre-learned knowledge,
T ⇤
iter and �t⇤ILC are the iteration duration and ILC updating interval under

the parameter vector ✓⇤ respectively.

4) The pre-learned knowledge of the parameter vector ✓⇤ is predicted as:

�V (✓⇤) =
kX

i=1

! (✓i)�mV (✓i), (3.10)

After the pre-learned knowledge �V (✓⇤) is predicted, the VRP waypoint list Vl for
the step described in line 4 in Algorithm 1 is initialized by:

Vl = Vd,0(✓
⇤) +R0 �V (✓⇤), (3.11)

where

Vd,0(✓
⇤) = [vd,0(0), vd,0(�t⇤ILC), vd,0(2�t⇤ILC), . . . , vd,0(T

⇤
iter ��t⇤ILC)] , (3.12)

and R0 is the rotation matrix from the global frame to G0.

3.1.3 Commanded-Error-Based Reference Trajectories Adap-

tation

Line 13 of the Algorithm 1 in Section 3.1.2 shows the ILC updating law learning
from the VRP measurement error. Unfortunately, the FT sensors of the humanoid
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robot TORO were not available for the experimental phase of this thesis. As an
alternative solution, the VRP measurement based on the DCM model described in
Section 2.1.4 was used for the ILC updating law. The results in Section 4.2 shows
that this alternative method made the robot always fall during the experiment. The
reasons for the falling are the noisy measurements and the overuse of the low pass
filters, as discussed in Chapter 5. So the alternative measurement solution cannot
be used further. Instead of the VRP measurement error, the VRP commanded error
is used as a compromise. The VRP commanded error is defined as:

Definition 3.1.4 (VRP Commanded Error). A VRP commanded error is the dif-
ference between the desired and commanded VRP, i.e., vd � vc.

Specifically, the VRP measurement error is replaced by the VRP commanded error
in line 13 of the Algorithm 1 as a proposed commanded-error-based reference tra-
jectories adaptation of the VRP-OILC framework. It means that the ILC updating
law in commanded-error-based framework becomes as:

vl,i+1(t��ts) = vd,i+1(t��ts) + kfR� (vl,i(t��ts)� vd,i(t��ts))

+ klR� (vd,i(t��ts)� vc,i(t��ts)) , t 2 [�ts, Titer], i � 0.
(3.13)

Notice that all the VRP quantities used in (3.13) are from the last time step (i.e.,
time step t ��ts). The reason is that the current commanded VRP vc,i(t) is only
obtained after the adjusted VRP and DCM reference trajectory vl,i(t) and ⇠l,i(t)
are calculated by VRP-OILC and inserted as inputs to the DCM-controller. Since
vl,i+1(t � �ts) is the learned future waypoint, it is used to replace the vl,i+1(t)
in line 14 of Algorithm 1 for the framework. The ILC updating law (3.13) and
the time step where the learning is executed are the only di↵erences between the
commanded-error-based and measurement-error-based reference trajectory adapta-
tion. Moreover, we also prove the stability of the commanded-error-based framework
in Section 3.2.

3.1.4 Convergence Condition

Hu et al. [HOL16] evaluated their system convergence by calculating and compar-
ing the average ZMP deviation of each iteration. If the error between two itera-
tions is smaller than a threshold value, then the system converges. Inspired by this
idea, an average VRP error is used to evaluate the performance of the VRP-OILC
framework. Since there are two reference trajectories adaptation implementations as
aforementioned, two kinds of average VRP error are defined: average measured and
commanded VRP error. The average measured VRP error em,i of the ith iteration
is expressed as:

em,i =
1

Titer

Z Titer

0

|vd,i(t)� vm,i(t)| dt. (3.14)
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And the average commanded VRP error ec,i is calculated as:

ec,i =
1

Titer

Z Titer

0

|vd,i(t)� vc,i(t)| dt. (3.15)

3.1.5 Failed Design

Before we came up with the current VRP-OILC framework, we designed various
frameworks with many di↵erent failed trials. Here, two important failed designs are
introduced, which are the milestones on the path to the current framework.

Learning from Previous Iteration

Assume the current iteration index is i, and the current transition phase is '. In-
spired by the ILC learning control law in [HOL16], the VRP reference trajectory is
adjusted as:

vl,i(t) = vd,i(t)+kfR
i
i�1 (vl,i�1(t)� vd,i�1(t))+klR

i
i�1 (vd,i�1(t)� vm,i�1(t)) , i � 1,

(3.16)
where Ri

i�1 here is the rotation matrix from the frame Gi�1 to Gi. The ad-
justed VRP reference trajectory vl,i(t) is learned from the last iteration’s VRP error
vd,i�1(t)�vm,i�1(t). The VRP di↵erence trajectory �v(t) between vl,i(t) and vd,i(t)
can be derived from (3.16) as:

�v(t) = vl,i(t)� vd,i(t) = kfR
i
i�1 (vl,i�1(t)� vd,i�1(t))

+ klR
i
i�1 (vd,i�1(t)� vm,i�1(t)) , i � 1.

(3.17)

The �v(t) is then used to adjust the start VRP waypoint vs
d,i,' and the end VRP

waypoint ve
d,i,' of the current transition phase ' as:

vs
l,i,'(t) = vs

d,i,' +�v(t), (3.18)

ve
l,i,'(t) = ve

d,i,' +�v(t), (3.19)

where vs
l,i,'(t) and ve

l,i,'(t) denote the learned VRP start and end waypoint of the
'th transition phase which is at the ith iteration, respectively. Note that the vs

l,i,'(t)
and ve

l,i,'(t) are both functions of time because �v(t) is a function of time. It means
that the learned start and end VRP waypoint of the phase ' are not constant. In
this way, the vl,i(t) always stays on the linear interpolation between vs

l,i,'(t) and
ve
l,i,'(t). However, the non-constant learned start and end VRP waypoint cause a

discontinuity of the learned DCM reference trajectory ⇠l,i(t) and commanded VRP
trajectory, which leads to VRP and DCM deviation and unstable walking behavior.
Therefore, adjusting the current VRP reference trajectory by learning from the VRP
error of the previous iteration is not an appropriate method.
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Figure 3.2 illustrates a DCM-based walking simulated on a point-mass model. A
constant force for 30N acts as an external disturbance on the CoM in the lateral
direction consistently. Note that the deviation of the measured VRP vm and the
measured DCM ⇠m at the beginning of each transition phase become larger and
larger, which means this learning strategy cannot successfully bring the VRP back
to the originally desired trajectory, and the walking robustness is not enhanced.
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Figure 3.2: Lateral VRP and DCM deviation by ILC learning from the previous
iteration.

Start Waypoint Learning for Future Iteration

Since the ILC learning from the VRP error of the previous iteration is not suitable
for the DCM-based walking, the method is improved by learning from the VRP error
of the current iteration to adjust the start waypoint of the corresponding transition
phase of the next iteration. Specifically, the ILC approach is only applied at the
beginning of the transition phase to learn the adjustment of the future transition
phase’s start VRP waypoint. Assume the current transition phase is ', and the
current iteration is i. The future VRP waypoint is adjusted as:

vs
l,i+1,'+4 = vs

d,i+1,'+4 + kfR
i+1
i

�
vs
l,i,' � vs

d,i,'

�
+ klR

i+1
i

�
vs
d,i,' � vs

m,i,'

�
, i � 0,

(3.20)
where vs

l,i+1,'+4 is the learned start VRP waypoint of the global transition phase
'+4 in the next iteration i+1, and vs

d,i+1,'+4 represents the original reference start
VRP waypoint. Here, the global transition phases ' + 4 and ' present the same
local transition phase in the future iteration i+1 and current iteration i respectively.

Figure 3.3 shows a simulation’s performance of this learning design applied on the
TORO robot in OpenHRP3 [KHK04]. When the waypoint learning method was
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not applied, the measured VRP trajectory, i.e., the solid green line in the zoomed-
in figure, deviated from the desired trajectory. In comparison, our learning design
brought the measured VRP trajectory (the red line) closer to the desired trajectory.
The start and end of the measured VRP trajectory were already back to the desired
trajectory. However, the middle of the trajectory cannot perfectly track the desired
one. The reason for that is: we only focused on the learning for the start VRP
waypoint but ignored the learning inside each transition phase. This motivated us
to use a learned VRP waypoint list to save the whole adjusted future VRP trajectory
and reuse it later, as described in Algorithm 1.
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Figure 3.3: Lateral VRP trajectories by start waypoint learning for future iteration.

3.2 Stability Proof

To prove the stability of the VRP-OILC, we first simplify the model for the analysis
by assuming there is only one VRP and DCM waypoint per iteration, as described
in Section 3.2.1. Section 3.2.2 shows the analysis for the case of having two way-
points per iteration, and Section 3.2.3 introduces the general case. In each section,
the stability of the VRP-OILC regarding both the measurement-error-based and
commanded-error-based reference trajectories adaptation is analyzed, respectively.
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3.2.1 Simple One Waypoint Case

Assume that there is only one waypoint in each iteration. This assumption aims
to simplify the stability proof by reducing the waypoint number in each iteration.
Since there is only one waypoint per iteration, the notation for the waypoint is also
becoming simple. For instance, the single desired VRP waypoint at the ith iteration
is noted as vd,i. Moreover, the only waypoint is represented as the point at the
iteration’s local time step of t = 0. For example, the desired VRP waypoint vd,i is
equivalent to the vd,i(0).

From now on, the ith iteration is always considered as the current iteration (i � 0).
So all the analysis is based on this consideration. Moreover, the robot’s straightfor-
ward walking is first concerned. It means that there is not any turning behavior.
To distinguish the duration T between two waypoints from the iteration duration
Titer, the relation between them is: Titer = nwT , with nw is the waypoint number
in each iteration. In this section, since there is only one waypoint per iteration, so
nw = 1. Section 3.2.2 and Section 3.2.3 have nw = 2 and nw = Titer

�tILC
, respectively.

Measurement-Error-Based Adaptation Framework

Calculation of vl,i+1 For the stability proof, we start with the calculation of
vl,i+1. For the calculation of the reference trajectories, the first-order polynomial
f'(t) = t/T' is used for the interpolation. As aforementioned in Algorithm 1, since
we have the current learned VRP waypoint vl,i, the learned DCM is calculated as:

⇠l,i =

✓
1� b

T
+

b

T
e�

T
b

◆

| {z }
↵

vl,i +

✓
b

T
�
✓
1 +

b

T

◆
e�

T
b

◆

| {z }
�

vd,i+1 + e�
T
b|{z}

�

⇠d,i+1.
(3.21)

Then, the commanded VRP vc,i at the current iteration is expressed as:

vc,i = vl,i + (1 + k⇠b) (⇠i � ⇠l,i) . (3.22)

The ILC updating law for vl,i+1 is:

vl,i+1 = vd,i+1 + kf (vl,i � vd,i) + kl (vd,i � vm,i) . (3.23)

According to the force error modeling in (41) of [EOAS15], when model inaccuracies
and external forces exist, the total force error �F (t) on the CoM can be modeled
as:

�F (t) = Fm(t)� Fc(t), (3.24)

where Fm(t) is the measured CoM total force and Fc(t) is the commanded force. As
defined in (2.5), Fm(t) and Fc(t) can be computed by Fm(t) =

m
b2 (x(t)�vm(t)) and

Fc(t) =
m
b2 (x(t)� vc(t)) respectively. Therefore, the VRP disturbance error d(t) in

the ith iteration can be modeled similar to (3.24) as:

d(t) = vm,i(t)� vc,i(t). (3.25)
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Since there is only one waypoint in each iteration, (3.25) can be adapted to this case
as:

d(0) = vm,i � vc,i. (3.26)

Inserting (3.21), (3.22) and (3.26) into the ILC updating law (3.23):

vl,i+1 = vd,i+1 + kfvl,i � kfvd,i + klvd,i � klvl,i � kl (1 + k⇠b)| {z }
⇣

(⇠i � ⇠l,i)� kld(0)

= (kf � kl)vl,i + vd,i+1 + (kl � kf )vd,i � kl⇣⇠i + kl⇣⇠l,i � kld(0)

= [kf + kl(⇣↵� 1)]vl,i + (�kl⇣)⇠i
+ (kl⇣� + 1)vd,i+1 + (kl � kf )vd,i + kl⇣�⇠d,i+1| {z }

Feedforward Term (FFT1)

�kld(0)

= [kf + kl(⇣↵� 1)]| {z }
a4

vl,i + (�kl⇣)| {z }
a3

⇠i + FFT1 � kld(0),

(3.27)
where FFT1 denotes the sum of all the original desired terms. To simplify the
equations in the following stability proof, the feedforward term’s symbol FFT is
always used to represent the original desired terms3. Note that there is a DCM state
⇠i in the equation (3.27). Basically, the idea for the stability proof is to treat the
vl,i and ⇠i as the system states, and subsequently build a state-space representation
and analyze the stability of the representation. To build the system state-space
representation, it is necessary to find out the relation between ⇠i+1, ⇠i and vl,i.

Calculation of ⇠i+1 There is a discontinuity of the ⇠l,i caused by adjusting the
reference VRP point from the original desired VRP waypoint to the learned VRP
waypoint, and also adjusting the reference DCM from the original desired DCM
waypoint to the learned DCM waypoint after the future waypoints are updated
using the ILC in the framework. More specifically, the desired VRP waypoint vd,i+1

and the desired DCM waypoint ⇠d,i+1 from the equation (3.21) are adjusted to vl,i+1

and ⇠l,i+1 respectively after the waypoints’ update conducted by the VRP-OILC.
The calculation of ⇠l,i+1 is expressed by substituting i+ 1 for i in (3.21):

⇠l,i+1 = ↵vl,i+1 + FFT2. (3.28)

So after the adjustment, the equation (3.21) becomes to the following equation based
on the equation (3.27) and (3.28):

⇠?l,i = ↵vl,i + �vl,i+1 + �⇠l,i+1

= ↵vl,i + (� + �↵)vl,i+1 + FFT3

= ↵vl,i + (� + �↵) a4vl,i + (� + �↵) a3⇠i � kl (� + �↵)d(0) + FFT4

= [↵ + (� + �↵) a4]vl,i + (� + �↵) a3⇠i � kl (� + �↵)d(0) + FFT4,

(3.29)

3
E.g., vd,i+1 and ⇠d,i+1. Basically all the terms with a subscript “d”
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where ⇠?l,i represents the learned DCM waypoint at the ith iteration after the adjust-
ment.

To find the relation between ⇠i+1 and ⇠i, it is vital to start from the DCM dynam-
ics. The continue-time DCM dynamics in ith iteration is expanded by inserting the
equations (3.22) and (3.25) as:

⇠̇i(t) =
1

b
(⇠i(t)� vm,i(t))

=
1

b
(⇠i(t)� vc,i(t)� d(t))

=
1

b
(⇠i(t)� vl,i(t)� (1 + k⇠b) (⇠i(t)� ⇠l,i(t))� d(t))

=
1

b

0

B@���⇠i(t)����⇠i(t) + ⇠l,i(t)� vl,i(t)| {z }
=b ⇠̇l,i(t)

�k⇠b (⇠i(t)� ⇠l,i(t))� d(t)

1

CA

= ⇠̇l,i(t)� k⇠ (⇠i(t)� ⇠l,i(t))�
d(t)

b
.

(3.30)

Moving the ⇠̇l,i(t) to the left side of the equation (3.30), a DCM closed-loop dynamics
with the disturbance term can be obtained as:

⇠̇i(t)� ⇠̇l,i(t)| {z }
✏̇i(t)

= �k⇠ (⇠i(t)� ⇠l,i(t))| {z }
✏i(t)

�d(t)

b
, (3.31)

which can derive the DCM error ✏i(t) as:

⇠i(t)� ⇠l,i(t)| {z }
✏i(t)

= e�k⇠t

0

B@⇠i(0)� ⇠?l,i(0)| {z }
✏i(0)

�1

b

Z t

0

ek⇠⌧d(⌧)d⌧

1

CA

= e�k⇠t · ⇠i � e�k⇠t · ⇠?l,i �
1

b
e�k⇠t

Z t

0

ek⇠⌧d(⌧)d⌧
| {z }

D(t)

,

(3.32)

where ⇠i(0) = ⇠i and ⇠?l,i(0) = ⇠?l,i because the only waypoint in each iteration
is equivalent to the point at the beginning of the iteration, as mentioned in the
beginning of this section. Inserting (3.27), (3.28) and (3.29) into (3.32), the relation
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between ⇠i+1, ⇠i and vl,i can be found as:

⇠i+1 = ⇠i(T ) = ⇠l,i(T ) + e�k⇠T · ⇠i � e�k⇠T · ⇠?l,i �
D(T )

b

= ⇠l,i+1 + e�k⇠T · ⇠i � e�k⇠T · ⇠?l,i �
D(T )

b
=
⇥
↵a4 � e�k⇠T [↵ + a4 (� + �↵)]

⇤
| {z }

a2

vl,i

+
⇥
e�k⇠T + ↵a3 + e�k⇠Tkl⇣ (� + �↵)

⇤
| {z }

a1

⇠i

+
⇥
e�k⇠Tkl(� + �↵)� ↵kl

⇤
| {z }

a5

d(0)� D(T )

b
+ FFT5.

(3.33)

Stability Analysis of State-Space Representation According to the (3.27)

and (3.33),
⇥
⇠Ti ,v

T
l,i

⇤T
is considered a system state vector. So the system state-space

representation can be built as:


⇠i+1

vl,i+1

�
=


a1 a2
a3 a4

�

| {z }
A


⇠i
vl,i

�
+


a5d(0)� D(T )

b
�kld(0)

�
+


FFT5

FFT1

�
. (3.34)

Because all the terms in the state-space representation (3.34) are not functions of
time, this state-space representation is linear. For a linear system, it is possible to
prove the system stability by analyzing the eigenvalues of matrix A. Since (3.34) is
a discrete-time model, the system is stable when all the absolute eigenvalues of A
are smaller than 1.

The entries a1 - a4 are composed of five essential parameters: the ILC forgetting
factor kf , the ILC learning gain kl, the duration T between two waypoints, the time
constant b, and the DCM controller gain k⇠. In the robot system, the b and k⇠ are
not changed any more since they have been set to optimal values. Here, b ⇡ 0.3112
and k⇠ = 4 are used not only for the eigenvalue analysis but also for the simulation
and experiment. By this, only the impact of the kf , kl, and T on the eigenvalues
need to be analyzed.

In this section, the waypoint duration T is always equal to the iteration duration
Titer because there is only one waypoint per iteration. For the eigenvalue analysis,
we start from the following two cases of the waypoint duration T :

1) e�k⇠T ⇡ 0 : The entry a1 and a2 in the matrix A include a term “e�k⇠T”. For
normal speed walking during the simulations and experiments, a SS time for
0.9 s and a DS time for 0.3 s are always used. In this case, the waypoint
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duration is T = 2.4 s, which causes e�k⇠T ⇡ 0. For fast walking after applying
the VRP-OILC framework, the shortest SS and DS time we tried is 0.7 s and
0.2 s respectively, which means the T = 1.8 s. Still, this shortest T also leads
to e�k⇠T ⇡ 0. It guarantees the e�k⇠T is always approximately equal to 0 for
all the simulations and experiments we conducted. In this case, the matrix A
can be expressed as:

A ⇡ A0 =


↵a3 ↵a4
a3 a4

�
, (3.35)

where matrix A0 sets the terms e�k⇠T to be 0 for its entries. To calculate the
eigenvalues, the determinant of A0 � �I is first calculated:

|A0 � �I| =
����
↵a3 � � ↵a4

a3 a4 � �

����

= (↵a3 � �)(a4 � �)� ↵a3a4
= �2 � (↵a3 + a4)�

= �2 � (kf � kl)�

= 0

(3.36)

From (3.36), the eigenvalues of the matrix A0 can be solved as:

�1(A
0) = kf � kl; �2(A

0) = 0. (3.37)

The eigenvalues of the matrix A are:

�1(A) ⇡ �1(A
0) = kf � kl; �2(A) ⇡ �2(A

0) = 0. (3.38)

Under the condition of e�k⇠T ⇡ 0, one of the eigenvalues of the matrix A is only
relative to the kl and kf , where the other is close to 0 all the time. Therefore,
the stability condition of the system (3.34) becomes as follows:

|kf � kl| < 1. (3.39)

2) e�k⇠T 6⇡ 0 : The SS time and DS time used in the simulations and experiments
ensure the condition e�k⇠T ⇡ 0. Here, the relation between the T and the
eigenvalues with e�k⇠T 6⇡ 0 is investigated. To analyze the eigenvalues numer-
ically, the waypoint duration T varies from 0.01 s to 2.4 s, and the kl and
kf are set to the combinations of {0.1, 0.5, 1.0}. These combinations ensure
|kf � kl| < 1. Figure 3.4 illustrates the relation between the eigenvalues and
the T for di↵erent kl and kf . The subfigures in the same row show the relations
under the same kl value. Likewise, the subfigures in the same column have the
same kf value. In each single subfigure, the X-axis represents the duration T ,
where the Y-axis denotes the absolute eigenvalue |�i|. From Figure 3.4, three
important observations can be obtained: i) one of the absolute eigenvalue be-
comes greater than 1 for kf = 1 and T < 0.2 s. Except for this kf value and
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duration range, the absolute eigenvalues are always less than 1, which ensures
the stability condition for the system. Basically, T < 0.2 s is an extremely
short duration and unrealistic for a real robot. As known so far, there is not
any bipedal robot that can walk with such a short duration (i.e., the sum of
the SS time and DS time is less than 0.1 s). As aforementioned, the shortest
iteration duration Titer applied in the DLR humanoid robot TORO is 1.8 s
(i.e., the waypoint duration T = 1.8 s for one waypoint case). It concludes
that in the robot system (i.e., Titer � 1.8 s), the phenomenon with an eigen-
value greater than 1 as mentioned before does not occur; ii) As the waypoint
duration T increases, one absolute eigenvalue converges to 0, where the other
one converges to |kf � kl|. The reason for the convergence is that when T is
increasing, the e�k⇠T , where k⇠ = 4, is then approaching 0. As analyzed in
(3.38), when e�k⇠T ! 0, |�1(A)| converges to |kf � kl|, and |�2(A)| converges
to 0. Figure 3.4 shows that both absolute eigenvalues are already converged
when T is equal to or greater than 1.2 s (i.e., equivalent to Titer � 1.2 s). We
conclude that when T � 1.2 s (or Titer � 1.2 s), the eigenvalue analysis can be
simplified by analyzing the |kf �kl| < 1; iii) In the range of 0.2 s  T < 1.2 s,
although the absolute eigenvalues are not converged and need to be determined
by numerical analysis, they are still smaller than 1 with the pre-condition of
|kf � kl| < 1. This concludes that when |kf � kl| < 1 and 0.2 s  T < 1.2 s,
the system is still stable, but the eigenvalues need to be calculated numerically
for the analysis.

After analyzing the case of e�k⇠T ⇡ 0 and e�k⇠T 6⇡ 0, we can conclude that the sys-
tem is stable for T > 0.2 s (i.e., Titer > 0.2 s) and |kf�kl| < 1. The stability analysis
can particularly be simplified to only focus on the condition |kf � kl| < 1 because
one of the absolute eigenvalues converges to |kf�kl| when T � 1.2 s. Since the robot
system cannot achieve an iteration duration Titer less than 1.8 s, the |kf � kl| < 1
becomes the only condition that needs to be considered for stability.

As mentioned in the beginning, the stability analysis so far is based on the robot’s
straight walking. For a walking with turning, the ILC updating law (3.23) becomes:

vl,i+1 = vd,i+1 + kfR� (vl,i � vd,i) + klR� (vd,i � vm,i) . (3.40)

As known, the absolute eigenvalues of the rotation matrix |�(R�)| are always equal
to 1. It means that the rotation matrix R� does not a↵ect the stability proof until
now. The turning behavior is ignored to simplify all the analysis below.

Commanded-Error-Based Adaptation Framework

As aforementioned, the turning behavior does not a↵ect the stability analysis. So
the straight walking is also used for the analysis of the commanded-error-based
adaptation. Here, the ILC updating law becomes:

vl,i+1 = vd,i+1 + kf (vl,i � vd,i) + kl (vd,i � vc,i) . (3.41)
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Figure 3.4: Relation between the eigenvalues and the waypoint duration T under
di↵erent kf and kl (one waypoint case).

Note that (3.41) is the same as (3.27) without the disturbance term d(0). Therefore,
(3.41) can be expanded from (3.27) to:

vl,i+1 = a4vl,i + a3⇠i + FFT1. (3.42)

Consequently, the relation between ⇠i+1, ⇠i and vl,i can be obtained by following the
calculation ideas of (3.28) - (3.34) as:

⇠i+1 = a2vl,i + a1⇠i �
D(T )

b
+ FFT5. (3.43)

The final state space representation is built from (3.42) and (3.43) as:


⇠i+1

vl,i+1

�
=


a1 a2
a3 a4

�

| {z }
A


⇠i
vl,i

�
+


�D(T )

b
0

�
+


FFT5

FFT1

�
. (3.44)
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Since the A matrix of (3.44) is exactly the same as the one in (3.34), the stability
analysis of the measurement-error-based adaptation framework is also applicable to
the commanded-error-based adaptation.

3.2.2 Simple Two Waypoints Case

This section analyzes the stability of a more complex system: two waypoints system.
Since there are two waypoints per iteration, the superscript “1” and “2” are used to
denote the first and second waypoints. For instance, the first learned VRP waypoint
of the ith iteration is v1

l,i, and the second one is v2
l,i (note that v2

l,i is not a square,
i.e., v2

l,i 6= vl,i · vl,i). These two waypoints are the discrete points at the moment of

the iteration’s local time t = 0 and t = Titer
2 of the corresponding trajectory. For

example, v1
l,i = vl,i(0) and v2

l,i = vl,i(
Titer
2 ) are presented.

Assume that the ith iteration is the current iteration (i � 0). As known, the waypoint
number in each iteration is nw = 2. So the waypoint duration is: T = Titer

nw
= Titer

2 .

Measurement-Error-Based Adaptation Framework

Calculation of v1
l,i+1 To calculate the first VRP learned waypoint v1

l,i+1 in the
next iteration, we start from the calculation of the second DCM learned waypoint
⇠2l,i at the current iteration as:

⇠2l,i = ↵v2
l,i + �v1

d,i+1 + �⇠1d,i+1, (3.45)

where the first-order polynomial is applied for the linear interpolation. Here, the ⇠2l,i
represents the learned DCM waypoint before the future VRP waypoint is updated.
The first DCM learned waypoint can be derived from (3.45) as:

⇠1l,i = ↵v1
l,i + �v2

l,i + �⇠2l,i
= ↵v1

l,i + (� + ↵�)v2
l,i + FFT6.

(3.46)

The first commanded VRP waypoint v1
c,i is expressed as:

v1
c,i = v1

l,i + ⇣
�
⇠1i � ⇠1l,i

�
. (3.47)

The disturbance error of the first and second VRP waypoint is modeled respectively
as:

d(0) = v1
m,i � v1

c,i. (3.48)

d(T ) = v2
m,i � v2

c,i. (3.49)
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The ILC updating law can be expressed and expanded by inserting the equations
(3.46) - (3.48) as:

v1
l,i+1 = v1

d,i+1 + kfv
1
l,i � kfv

1
d,i + klv

1
d,i � klv

1
l,i � kl⇣

�
⇠1i � ⇠1l,i

�
� kld(0)

= [kf + kl(⇣↵� 1)]| {z }
b5

v1
l,i + kl⇣(� + ↵�)| {z }

b6

v2
l,i + (�kl⇣)| {z }

b4

⇠1i + FFT7 � kld(0).

(3.50)

Calculation of v2
l,i+1 For the learning of the second VRP reference waypoint in

the next iteration, we start from calculating the first DCM learned waypoint in the
(i+ 1)th iteration:

⇠1l,i+1 = ↵v1
l,i+1 + FFT8. (3.51)

As aforementioned, the second DCM learned waypoint ⇠2l,i at the current iteration
has a discontinuity behavior attributed to the future reference VRP waypoint’s
update. Here, the first VRP reference VRP waypoint in the next iteration v1

d,i+1 is
updated to v1

l,i+1, so the ⇠2l,i becomes to ⇠2?l,i , shown as:

⇠2?l,i = ↵v2
l,i + �v1

l,i+1 + �⇠1l,i+1. (3.52)

And the current iteration’s first DCM learned waypoint is calculated after the future
VRP waypoint’s update as:

⇠1?l,i = ↵v1
l,i + �v2

l,i + �⇠2?l,i . (3.53)

According to (3.32), the second measured DCM waypoint ⇠2i can be derived from
the first measured waypoint ⇠1i as:

⇠2i = ⇠i(T ) = ⇠2?l,i + e�k⇠T · ⇠1i � e�k⇠T · ⇠1?l,i �
D(T )

b
. (3.54)

The second commanded VRP waypoint v2
c,i is calculated as:

v2
c,i = v2

l,i + ⇣
�
⇠2i � ⇠2?l,i

�
. (3.55)

The ILC updating law of the v2
l,i+1 can be expanded by using the error model (3.49)

and the equations (3.50) - (3.55) as:

v2
l,i+1 = b8v

1
l,i + b9v

2
l,i + b7⇠

1
i +

⇥
�
⇥
⇣k2

l e
�k⇠T (� + ↵�)�

⇤⇤
| {z }

b13

d(0)

� kld(T ) +
kl⇣

b
D(T ) + FFT9,

(3.56)

where the parameters b7 - b9 are not expanded here because they are too long. With
the Symbolic Math Toolbox of Matlab [TM19], these parameters can be analyzed in
symbolic form for stability proof.
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Calculation of ⇠1i+1 To obtain the measured DCM waypoint ⇠1i+1 of the next
iteration, we start from the calculation of ⇠2l,i+1:

⇠2l,i+1 = ↵v2
l,i+1 + FFT10. (3.57)

Since the second VRP reference waypoint in the next iteration is updated to v2
l,i+1,

the fisrt DCM learned waypoint ⇠1l,i+1 in the next iteration is changed to ⇠1?l,i+1 as:

⇠1?l,i+1 = ↵v1
l,i+1 + �v2

l,i+1 + �⇠2l,i+1. (3.58)

The second DCM learned waypoint ⇠2?l,i , which is the discontinue waypoint after the
first future VRP reference waypoint is updated to v1

l,i+1, is changed again to ⇠2??l,i

when the second VRP reference waypoint of the (i+1)th iteration v2
d,i+1 is updated

to v2
l,i+1. The ⇠2??l,i is therefore expressed as:

⇠2??l,i = ↵v2
l,i + �v1

l,i+1 + �⇠1?l,i+1. (3.59)

Based on (3.32), (3.54), and (3.56) - (3.59), the first measured DCM ⇠1i+1 of the next
iteration is calculated as:

⇠1i+1 = ⇠i(2T ) = ⇠1?l,i+1 + e�k⇠T · ⇠2i � e�k⇠T · ⇠2??l,i �
1

b
[D(2T )�D(T )]

= b2v
1
l,i + b3v

2
l,i + b1⇠

1
i + b10D(T )� 1

b
D(2T )

+ b11d(0) + b12d(T ) + FFT11,

(3.60)

where the parameters b1 - b3 and b10 - b12 are not expanded because of their length
and complexity.

It is redundant to investigate the second measured DCM waypoint ⇠2i+1 because it
can be derived from the first waypoint ⇠1i+1 by following the similar idea of (3.54).
For the measured DCM waypoint, the equation of ⇠1i+1 as shown in (3.60) is already
su�cient for the stability analysis.

Stability Analysis of State-Space Representation From (3.50), (3.56) and
(3.60), a state-space representation for the two waypoint case is built as:

2

4
⇠1i+1

v1
l,i+1

v2
l,i+1

3

5 =

2

4
b1 b2 b3
b4 b5 b6
b7 b8 b9

3

5

| {z }
B

2

4
⇠1i
v1
l,i

v2
l,i

3

5+

2

4
b10D(T )� 1

bD(2T ) + b11d(0) + b12d(T )
�kld(0)

kl⇣
b D(T ) + b13d(0)� kld(T )

3

5

+

2

4
FFT11

FFT7

FFT9

3

5 .

(3.61)
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Figure 3.5: Relation between the eigenvalues and the waypoint duration T under
di↵erent kf and kl (two waypoints case).

Here, the Symbolic Math Toolbox of Matlab is used to analyze the eigenvalues of the
matrix B. Specifically, kl and kf are set to the values selected from the di↵erent com-
binations of {0.1, 0.5, 1.0}, set b ⇡ 0.3112 and k⇠ = 4 as aforementioned, and then
change the waypoint duration T from 0.01 s to 1.2 s with the interval 0.01 s (i.e., the
iteration duration Titer is changing from 0.02 s to 2.4 s) to analyze the eigenvalues’
responses. Figure 3.5 shows the absolute eigenvalues’ plots response to the changing
of T . Here, the same conclusions are obtained as concluding from the Figure 3.4:
i) when waypoint duration T is greater than 0.1 s (i.e., the iteration duration Titer

is greater than 0.2 s) under the condition of |kf � kl| < 1, all the three absolute
eigenvalues are smaller than 1; ii) when Titer � 1.2 s, one of the absolute eigen-
value converges to 0, where the others converge to |kf � kl|. Because the Titer in the
system is not less than 1.8 s, this assures the system is always stable for |kf�kl| < 1.

Inspired by the root locus analysis method, a maximum eigenvalue locus is drawn as
an auxiliary analysis method in the complex plane. Figure 3.6 illustrates an example
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of the maximum eigenvalue locus with a varying kl. In particular, the kf is fixed to
1, the SS time TSS is set to 0.9 s and the DS time TDS is 0.3 s, and kl is varying
from �1.2 to 2.2. The blue circle denotes a unit circle in the complex plane, and the
red curve �max is the eigenvalue locus which has the greatest absolute value within
all the eigenvalues of the state matrix B. When kl changes from �1.2 to 2.2, the
eigenvalue locus starts from the right side and ends at the left side of the unit circle.
The locus crosses the circle at kl = 0 and kl = 2, where the equality |kf � kl| = 1
holds. When |kf � kl| < 1, the maximum eigenvalue stays inside the unit circle,
ensuring the system is stable. Again, this firms the conclusion we mentioned before:
when Titer � 1.2 s, the system’s stability condition can be simplified to the inequality
of |kf � kl| < 1.
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Figure 3.6: Maximum eigenvalue locus of two waypoints case for fixed parameters:
kf = 1, Titer = 2.4 s, b ⇡ 0.3112 and k⇠ = 4. The kl is varying from �1.2 to 2.2.

Commanded-Error-Based Adaptation Framework

The commanded-error-based adaptation framework replaces the VRP measurement
error with the commanded error in the ILC updating law. The disturbance error
terms related to d(0) and d(T ) in (3.50), (3.56) and (3.60) disappear. So the state-
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space model of the commanded-error-based adaptation framework becomes:

2

4
⇠1i+1

v1
l,i+1

v2
l,i+1

3

5 =

2

4
b1 b2 b3
b4 b5 b6
b7 b8 b9

3

5

| {z }
B

2

4
⇠1i
v1
l,i

v2
l,i

3

5+

2

4
b10D(T )� 1

bD(2T )
0

kl⇣
b D(T )

3

5+

2

4
FFT11

FFT7

FFT9

3

5 .

(3.62)
Comparing (3.61) and (3.62), the state matrices are the same. This guarantees that
they have the same stability condition.

3.2.3 Generalized Case

In this section, the stability of a general system is further analyzed. The general
system means that the waypoint number in one iteration is the same as the one
applied in the simulations and experiments. It is no longer a simplified waypoint
model described in Section 3.2.1 and 3.2.2. In particular, nw = 240 is used for
the analysis. This waypoint number is the same as walking with the parameters
TSS = 0.9 s, TDS = 0.3 s and �tILC = 0.01 s. Moreover, we also proved in Section
3.2.1 and 3.2.2 that the commanded-error-based adaptation framework has the same
stability property as the measured-error-based framework. So the analysis in this
section only focuses on the measured-error-based framework.

Because of the huge dimension of the waypoint per iteration, the Symbolic Math
Toolbox of Matlab is applied to compute the state-space model by following the
calculation ideas shown in Section 3.2.1 and 3.2.2. Figure 3.7 shows an example
of the relation between the eigenvalues of the state-space model and the waypoint
duration T . In this case, the kf = 0.8, and kl = 1. The red curve in the figure
is the eigenvalue that always converges to 0 as T increases, where the blue curves
denote all the rest eigenvalues. When Titer is greater than 0.2 s, all the eigenvalues
are smaller than 1. Particularly, the blue curves converge to |kf � kl| = 0.2 for
Titer � 1.2 s (i.e., T � 0.005 s).

Another example of the eigenvalue analysis is shown in Figure 3.8. Here, the same
parameters setting used in Figure 3.6 is applied to draw the maximum eigenvalue
locus. As result, the loci of Figure 3.6 and 3.8 are exactly the same.

From the results shown in Figure 3.7 and 3.8, we can conclude that whatever the
waypoint number in one iteration is, the stability proof of a general system is iden-
tical to the proof of the simplified waypoint model shown in Section 3.2.1 and 3.2.2.
Since the walking iteration duration in simulations and experiments was not less
than 1.8 s, the inequality |kf � kl| < 1 is the only condition that needs to be con-
sidered for the stability of the VRP-OILC framework.
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Figure 3.7: Relation between the eigenvalues and the waypoint duration T for kf =
0.8 and kl = 1 (general 240 waypoints case). �i denotes the ith eigenvalue.
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Figure 3.8: Maximum eigenvalue locus of general 240 waypoints case for fixed pa-
rameters: kf = 1, Titer = 2.4 s, b ⇡ 0.3112 and k⇠ = 4. The kl is varying from �1.2
to 2.2.
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3.3 Convergence Analysis

Section 3.2 proved the stability of the VRP-OILC framework. In this section, the
convergence property of the system is further analyzed. To simplify the model, the
one waypoint model described in Section 3.2.1 is used. To further simplify the anal-
ysis, walking in place behavior is considered. The local coordinate frames coincide
with the global frame, where all the trajectories can be represented within the same
frame.

Assume that the robot system is stable under a certain parameters’ setting. Since
the system is stable and no external force exists, all the VRP and DCM trajectories
(including adjusted trajectory, original desired trajectory and measurement trajec-
tory for both VRP and DCM, and commanded trajectory only for VRP) converge
locally in each iteration. Because only the walking in place behavior is considered,
it means that as the iteration index i increases to 1, the convergence of the VRP
and DCM terms is shown as:

lim
i!1

vd,i+1 = lim
i!1

vd,i = vd; lim
i!1

vl,i+1 = lim
i!1

vl,i = vl;

lim
i!1

⇠d,i+1 = lim
i!1

⇠d,i = ⇠d; lim
i!1

⇠l,i+1 = lim
i!1

⇠l,i = ⇠l;

lim
i!1

vc,i = vc; lim
i!1

vm,i = vm; lim
i!1

⇠i = ⇠; (3.63)

According to (3.26), the error model between commanded and measured VRP after
the convergence is:

d(0) = vm � vc. (3.64)

Measurement-Error-Based Adaptation Framework

In the measurement-error-based adaptation framework, we investigate where the
measured VRP converges to. Firstly, we start from the calculation of learned DCM
⇠l before the future VRP waypoint is updated as:

⇠l = ↵v1 + �vd + r⇠d. (3.65)

When all the VRP and DCM terms converge, the DCM control law becomes:

vc = vl + ⇣ (⇠ � ⇠l) . (3.66)

The ILC updating equation of the vl is expressed and expanded by inserting (3.64)
- (3.66) as:

vl = vd + kf (vl � vd) + kl (vd � vm)

= (kf � kl + ↵kl⇣)vl � kld(0) + [kl(�⇣ + 1)� kf + 1]vd � kl⇣⇠ + �kl⇣⇠d.
(3.67)
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There is a measured DCM waypoint ⇠ on the right hand side of (3.67) which is still
unknown. To calculate the ⇠, the learned DCM waypoint ⇠?l is first computed after
the future VRP waypoint is updated:

⇠?l = ↵vl + �vl + �⇠l. (3.68)

According to the calculation in (3.33), the ⇠ is expressed as:

⇠ = ⇠l + e�k⇠T (⇠ � ⇠?l )�
D(T )

b
. (3.69)

Inserting the (3.65) and (3.68) into (3.69), the ⇠ finally becomes:

⇠ =

⇥
↵� e�k⇠T (1� � + ↵�)

⇤

1� e�k⇠T| {z }
�

vl+

�
� � e�k⇠T��

�

1� e�k⇠T| {z }


vd+
� � e�k⇠T�2

1� e�k⇠T| {z }
 

⇠d�
D(T )

b(1� e�k⇠T )| {z }
$

.

(3.70)
Using (3.70) to replace the ⇠ in (3.67), the vl is finally calculated as:

vl =
� [kf � kl(�⇣ + 1) + kl⇣ � 1]

1� ⌘| {z }
%

vd +
�kl⇣ � kl ⇣

1� ⌘| {z }
z

⇠d �
kld(0)

1� ⌘ +
kl$⇣

1� ⌘ , (3.71)

where ⌘ = (kf � kl + ↵kl⇣ � kl�⇣) 6= 1. Finally, the formula of the measured VRP
vm can be derived from (3.67) and (3.71) as:

vm =
1� kf + kl

kl
vd +

kf � 1

kl
vl

=
kl + (kf � 1)(%� 1)

kl
vd +

(kf � 1)z
kl

⇠d +
(d(0)�$⇣) · (kf � 1)

⌘ � 1
.

(3.72)

From (3.72), we conclude that the measured VRP vm converges to di↵erent tra-
jectories by setting the parameters di↵erently. Specifically, the measured VRP vm

equals the original desired VRP vd when kf = 1. This theoretically proves that the
framework can successfully bring the measured VRP trajectory back to the original
desired VRP trajectory when the forgetting factor kf is set to 1. This convergence
analysis can also be applied to other walking behaviors, e.g., forward walking.

Commanded-Error-Based Adaptation Framework

By looking closely at the formulas (3.65) - (3.72), the disturbance term d(0) does not
exist in the analysis of the commanded-error-based adaptation framework because
the vc is directly used in the ILC updating law. Therefore, the formula of the
commanded VRP vc can be expressed as:

vc =
kl + (kf � 1)(%� 1)

kl
vd +

(kf � 1)z
kl

⇠d +
$⇣ · (kf � 1)

1� ⌘ . (3.73)

Again, the vc converges to vd when kf equals 1.
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Chapter 4

Evaluation

This chapter shows the performance of the VRP-OILC framework. In Section 4.1,
the results of the simulation are informed. Specifically, we simulated model in-
accuracies on the robot in OpenHRP3, then applied the measurement-error-based
adaptation framework. The measurement method used in the simulation was based
on FT sensors. The performance of the framework was first compared with the
framework included a varying forgetting factor design. After that, the performance
was evaluated for di↵erent kl. Furthermore, the performance between the frame-
work with and without using the pre-learning procedure was compared. Section 4.2
presents the experimental results of the humanoid robot TORO (see Figure 4.1).
In particular, the measurement-error-based adaptation framework, where the VRP
measurement was based on the DCM model, was first tested on TORO. Secondly,
the commanded-error-based VRP-OILC for normal speed and fast speed walking
was applied. Lastly, the pre-learning design was tested on TORO for fast walking.
Section 4.3 summarizes all the simulation and experimental results.

For the setup of VRP-OILC, there are two important design decisions:

1) All the results shown in Section 4.1 - 4.2 are based on the 2-dimensional VRP-
OILC framework. It means that the ILC updating law only learns from the
VRP error in the X and Y direction. The reason for giving up the learning in
the Z direction is: only the VRP in X and Y direction needs to be inside the
support polygon to avoid falling.

2) The ILC updating interval �tILC was always set to 0.01 s by default among
all the simulations and experiments, except for specified declarations. This
time value is chosen to avoid the problems caused by the measurement noise.

4.1 Simulation Results

Because the FT sensors in the feet of the TORO were not available for performing
experiments, it is impossible to measure the VRP by the FT-sensor-based method
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Figure 4.1: DLR humanoid robot TORO.

in the experiments. Therefore, the measurement-error-based adaptation framework
with this measurement method was tested in simulation.

To simulate model inaccuracies, almost all the robot link masses were changed with
the principle of maintaining the total robot’s mass to be 77.5 kg. Appendix A.1
lists the link’s name whose mass was modified (the first column), the corresponding
original mass (the second column), and the modified mass (the third column).

4.1.1 General Framework

In the general framework, the pre-learning procedure was not applied. The straight-
forward walkings with SS time TSS = 0.9 s, DS time TDS = 0.3 s and sagittal step
distance 0.15 m were conducted with respect to di↵erent learning parameters kf and
kl.

VRP Discontinuity and Varying Forgetting Factor Method

Figure 4.2 illustrates a comparison of the VRP trajectory with and without using
VRP-OILC for constant kf = kl = 1. The VRP measurement trajectory vm,ILC

obtained by using VRP-OILC converged to the desired trajectory during the SS
phases. However, a discontinuity of the measured VRP during the DS phases caused
by the foot landing and lifting can be noticed. A zoomed-in discontinuity can be
seen in the upper graph of Figure 4.3. The VRP-OILC with constant forgetting
factor kf = 1 did not suppress the discontinuity of the measured VRP and even
exacerbated the VRP oscillation during the DS phases. This exacerbated oscillation
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is why the average measured VRP error eILC, c (c stands for using constant kf )
increased from the 2nd iteration in Figure 4.4. Inspired by Hu et al. [HOL16], a
varying forgetting factor method was applied during the DS phases. In particular,
this method changed the kf from 1 to 0.5 during the DS phase and changed it back
to 1 at the beginning of the next SS phase. The lower graph of Figure 4.3 shows that
the discontinuity of the measured VRP was well suppressed by the varying forgetting
factor method. So as shown in Figure 4.4, using the VRP-OILC with the varying
forgetting factor method not only reduced the average VRP error but also kept the
learning result not to drift compared with the constant forgetting factor case. All
the simulations and experiments below were based on the varying forgetting factor
method.
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Figure 4.2: Simulation result of a straightforward walking with SS time TSS = 0.9 s,
DS time TDS = 0.3 s, sagittal step distance 0.15 m, and learning parameters kl = 1,
kf = 1.

Convergence Speed of Di↵erent Learning Gain

To investigate the e↵ect of learning gain on convergence speed, di↵erent learning
gains on the same walking behavior were used. As for the varying forgetting factor,
the kf was set to 1 during the SS phases and to 0.5 during the DS phases. As
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Figure 4.3: Comparison of using constant and varying forgetting factor. The upper
plot shows a discontinuity of the measured VRP caused by the foot impact and
lifting; The lower plot shows the varying forgetting factor method. Here the kf
varied from 1 to 0.5 during the DS phases, and remained to 1 during the SS phases.
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Figure 4.4: 2D average measured VRP error of the straightforward walking with SS
time TSS = 0.9 s, DS time TDS = 0.3 s, sagittal step distance 0.15 m. en denotes the
average error without using the VRP-OILC, where eILC, c is the average error using
the framework with a constant kf , and eILC, v represents the average error with the
varying kf method. The frameworks of both eILC, c and eILC, v used kl = 1.
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discussed in Section 3.2, the framework should converge for 0 < kl < 1.5 when
0.5  kf  1. Regarding the di↵erent kl from 0.4 to 1.4, Figure 4.5 shows the
2D average VRP errors in each iteration. The VRP-OILC converged faster with
a higher kl value but ended up with a larger average VRP error. The framework
started to diverge for kl = 1.4 in simulation.
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Figure 4.5: 2D average measured VRP error of the straightforward walking with SS
time TSS = 0.9 s, DS time TDS = 0.3 s, sagittal step distance 0.15 m with respect
to di↵erent learning gains.

4.1.2 Framework with Pre-Learning Procedure

To construct the pre-learned knowledge database, we sampled from the sagittal
straightforward (SSW), lateral straightforward (LSW) and circle walking under the
specified parameter vector sets shown in Appendix A.2. Specifically in Table A.2,
the Titer = 2.0 s means TSS = 0.8 s and TDS = 0.2 s, where Titer = 2.4 s denotes
TSS = 0.9 s and TDS = 0.3 s. For each sample, we set kl,sa = 1 in the sagittal
direction and kl,la = 0.5 in the lateral direction. The kf was varying from 1 to
0.5 during the DS phases and remaining at 1 during the SS phases. To test the
performance of the pre-learned knowledge database, fast straightforward walking
with TSS = 0.7 s, TDS = 0.2 s, sagittal step distance 0.15 m was conducted with
respect to kl,sa = kl,la = 0.4 and kf varied in the range of [0.5, 1]. Figure 4.6 compares
the average VRP error using and without using the pre-learned knowledge. By using
the pre-learning procedure, the average error eILC, p converged faster than the error
eILC, np without using the procedure. Moreover, the pre-learning procedure yielded
a lower average error at the 0th iteration (i.e., at the beginning of the VRP-OILC
being used).
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Figure 4.6: 2D average measured VRP error of using and without using the pre-
learning database in simulation. eILC, np means that no pre-learning procedure was
applied, where eILC, p denotes that the pre-learned knowledge was used.

4.2 Experimental Results

4.2.1 Measurement-Error-Based Reference Trajectories Adap-

tation

Since the FT sensors in the feet of the robot were not available, the measurement-
error-based adaptation framework that measured the VRP by calculating from the
DCM dynamics model was used, as shown in 2.1.4. An experiment of walking in
place was conducted with TSS = 0.9 s, TDS = 0.3 s, kl,sa = 1, kl,la = 0.5, varying kf
from 1 to 0.5, and �tILC = 0.1 s. Figure 4.7 illustrates the resulted measured VRP
trajectory vm,ILC and the corresponding adjusted reference trajectory vl. Both of
them showed a tendency of divergence and oscillation, which exceeded the torque
limits of the left foot and led to the robot’s fall at t = 12.2 s. Therefore, this VRP
measurement method cannot be a successful alternative to the FT-sensor-based
method.

4.2.2 Commanded-Error-Based Reference Trajectories Adap-

tation

As an alternative solution for the measurement-error-based reference trajectories
adaptation, the commanded-error-based reference trajectories adaptation was used
as a compromise shown in Section 3.1.3.
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Robot fell at t=12.2s

Figure 4.7: The lateral result of the experiment applying measurement-error-based
VRP-OILC for walking in place behavior with respect to SS time TSS = 0.9 s, DS
time TDS = 0.3 s, kl,sa = 1, kl,la = 0.5, kf varying from 1 to 0.5 and ILC updating
interval �tILC = 0.1 s.

General Framework

As aforementioned, the pre-learning procedure was not applied yet in a general
framework. Here, two di↵erent types of walking were conducted: normal speed and
fast speed walking. In the normal speed walking, the SS time was TSS = 0.9 s and
DS time was TDS = 0.3 s, where they were set to TSS = 0.7 s and TDS = 0.2 s
respectively in the fast speed walking.

• Normal Speed Walking: Figure 4.8 shows a comparison of the performance
between using and without using the commanded-error-based adaptation frame-
work for a straightforward walking with sagittal step length 0.15 m. The measured
VRP trajectory vm,noILC and commanded VRP trajectory vc,noILC without using
the framework are illustrated in Figure 4.8(a). After using the commanded-error-
based VRP-OILC as shown in Figure 4.8(b), the commanded VRP converged to the
original reference trajectory vd in both sagittal and lateral direction, while the mea-
sured VRP was closer to the original reference trajectory as well. The convergence
of the commanded and measured VRP can be reflected by the reduced average VRP
error illustrated in Figure 4.8(c), where the average commanded error was reduced
from 25 mm to a value less than 5 mm and the average measured error decreased
from around 40 mm to 30 mm. Figure 4.9 compares the walking robustness before
and after using the VRP-OILC framework. It demonstrates that the VRP-OILC
improved the walking robustness by suppressing the heel-out behavior.
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Figure 4.8: Performance comparison of using and without using commanded-error-
based VRP-OILC for normal speed walking. a) VRP trajectories without using
VRP-OILC in the sagittal direction (above) and in the lateral direction (below); b)
VRP trajectories with using VRP-OILC in the sagittal direction (above) and in the
lateral direction (below) regarding to parameter sets kl,sa = 1, kl,la = 0.5 and varying
kf in the range from 0.5 to 1; c) 2D average VRP error of using and without using
VRP-OILC. ec, noILC and em, noILC represent the average commanded and measured
VRP error respectively without using VRP-OILC, where ec, ILC and em, ILC denote
the average errors when the VRP-OILC was applied.

No VRP-OILC Using VRP-OILC

Figure 4.9: Walking robustness comparison of using and without using commanded-
error-based VRP-OILC for normal speed walking. The picture on the left shows a
heel-out sliding behavior during the walking without using VRP-OILC, while the
picture on the right denotes that the VRP-OILC suppressed the heel-out behavior
and enhanced the walking robustness.
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• Fast Speed Walking: Without using the VRP-OILC framework, the robot did
not finish the fast walking and fell at the global time 4.6 s, as shown in Figure 4.10(a).
On the contrary, the framework enabled the robot to walk successfully under a fast
speed walking SS time for 0.7 s and a DS time for 0.2 s, which are less than the SS
and DS lower time limit1 for walking without VRP-OILC. Figure 4.10(b) illustrates
the successful fast straightforward walking with respect to a sagittal step distance
0.15 m and the learning parameters kl,sa = 1, kl,la = 0.5, and varying kf in the
range from 0.5 to 1. In this figure, the commanded VRP trajectory converged to
the original reference trajectory again, while the measured VRP trajectory in the
sagittal direction was also getting closer to the reference trajectory. A more intuitive
representation of the VRP convergence can be shown in Figure 4.10(c): the average
commanded VRP error decreased from 30 mm to a value less than 10 mm, and the
average measured error was reduced from 50 mm to around 40 mm simultaneously.
Moreover, an unexpected toe-out sliding behavior occurred in the later stage after
the VRP-OILC was applied in the case of fast walking, where there was not sliding
on the feet in the early stage, as shown in Figure 4.11.

Framework with Pre-Learning Procedure

The robot’s walking behavior is wobbling during the 0th iteration’s two steps for
fast walking. As aforementioned, the pre-learning procedure aims to stabilize these
two steps of an initial iteration. To learn the pre-learned knowledge database, the
experiments were conducted by using di↵erent walking parameter sets of Appendix
A.2. We set the kl,sa = 1, kl,la = 0.5 and kf varying from 1 to 0.5 for each sample
walking. As result, we visually observed that the fast walking robustness of the initial
two steps was improved. Figure 4.12 shows the average commanded and measured
VRP error before and after using pre-learned knowledge. The average commanded
error of using the pre-learning procedure yielded 10 mm less than without using it
at the initial iteration, while the average measured error of using the pre-learning
procedure was reduced by about 5 mm. The toe-out behavior also occurred in the
later stage of the fast walking even though the pre-learning procedure was used.

4.3 Result Summary

Based on the results of all the simulations and experiments, we can make the fol-
lowing conclusions:

1. The VRP-OILC can improve the walking robustness by bringing the VRP
trajectory back to its original reference trajectory. Specifically, a varying for-
getting factor method can also suppress the VRP trajectory’s oscillation during
the DS.

1
The shortest SS and DS time of TORO without using VRP-OILC is 0.9 s and 0.3 s respectively.
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Figure 4.10: Performance comparison of using and without using commanded-error-
based VRP-OILC for fast speed walking. a) VRP trajectories without using VRP-
OILC in the sagittal direction (above) and in the lateral direction (below). The
robot fell at 4.6 s; b) VRP trajectories with using VRP-OILC in the sagittal direction
(above) and in the lateral direction (below) regarding to parameter sets kl,sa = 1,
kl,la = 0.5 and varying kf in the range from 0.5 to 1; c) 2D average VRP error of
using VRP-OILC. ec, ILC and em, ILC denote the average commanded and measured
error respectively.

Early stage later stage

Figure 4.11: Walking robustness comparison of early and later stage after the
commanded-error-based VRP-OILC was applied for fast speed walking.
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Figure 4.12: 2D average commanded and measured VRP error of using and without
using the pre-learning database in experiment. ec, np and em, np represent the average
commanded and measured VRP error when no pre-learning procedure was applied,
where ec, p and em, p denote that the pre-learned knowledge was used.

2. The learning gain kl determines the convergence speed of the VRP trajectory.
It is crucial to choose the kl and kf such that the system is stable.

3. In the experiment, the measurement-error-based reference trajectories adap-
tation, whose VRP is measured using the DCM dynamics model, is not usable
for the humanoid robot’s walking. The commanded-error-based VRP-OILC
can be an alternative to improve the walking robustness. The improved walk-
ing robustness can be represented by the suppression of the heel-out behavior
in normal speed walking.

4. Moreover, the commanded-error-based VRP-OILC can also enable the robot
to achieve fast walking with the SS and DS time less than 0.9 s and 0.3 s
respectively, which are the shortest SS and DS time limit in case that no
VRP-OILC is applied. However, an unexpected toe-out behavior will occur in
the later stage of fast speed walking after the VRP-OILC is used.

5. The pre-learning procedure can make the walking more stable at the initial
iteration of the fast walking. The reduced average VRP error can reflect this
at the 0th iteration.
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Chapter 5

Discussion

As shown in Section 3.3, the VRP trajectory converges to the desired trajectory
for a constant forgetting factor kf = 1 theoretically. The VRP-OILC framework
successfully brought the measured VRP back to the desired trajectory during the
SS phases with a constant forgetting factor. We notice that a discontinuity of the
measured VRP occurred when the foot was landing and the other foot was lifting
during the walking (i.e., during the DS phases). Unfortunately, our framework with
constant kf failed to compensate for the discontinuity during the DS phases because
the discontinuity did not occur in the same way repetitively during the DS phases
inside the corresponding local iteration. According to [WGDI09], traditional ILC
cannot deal well with non-repetitive behavior. As result, the learned VRP trajectory
vl was accumulated for a constant kf = 1 and grew larger among the iteration, which
led to the oscillation of the measured VRP during the DS phases. The oscillation
was reflected by the increasing average VRP error (the blue curve) in Figure 4.4.
On the contrary, the varying kf method forgot some part of the learned VRP tra-
jectory from the last iteration to update the current iteration’s learned trajectory.
In this way, the accumulation (or divergence) of the learned VRP trajectory was
suppressed. Consequently, the oscillation of the measured VRP was not worsened
and was even suppressed in the long term. This indicates that the varying forgetting
factor method can adapt the traditional ILC to a non-repetitive circumstance.

As shown in Section 4.2.1, it failed to use the VRP measurement calculated from
the DCM dynamics model for the learning. In fact, this is exactly the result we
expected. As introduced in Section 2.1.4, the measured VRP based on the DCM
model is calculated by the measured DCM position and velocity. Actually, the DCM
position and velocity were strongly filtered signals because the joint velocity q̇ was
filtered by a strong low pass filter before calculating the CoM velocity ẋ by ẋ = Jq̇,
and the CoM velocity was filtered by a low pass filter again before calculating the
DCM position by ⇠ = x + b ẋ. A strong low pass filter was used again on the re-
sulted DCM velocity before calculating the measured VRP by equation (2.17). All
these low pass filters were designed to filter out the measurement noise during the
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experiment. However, strong filters also led to a deformation of the output signal.
Therefore, the calculated measurement VRP was severely deformed and became not
reliable for the ILC method.

The commanded-error-based VRP-OILC improved the walking robustness during
the experiments. Without using the VRP-OILC framework on a straightforward
walking at normal speed, the measured VRP was almost higher than the original
reference VRP in sagittal direction during the SS phases, as shown in the upper
graph of Figure 4.8(a). It means that the 2D projection of the measured VRP
was located on the front of the support foot, which made the friction between the
hindfoot and the ground less than the one of the front foot. As known, the whole-
body dynamics requires a compensating torque to be applied at the point of contact
during the swing leg motion. The compensating torque caused the heel-out sliding
behavior since the friction di↵erence existed during the SS phases. After using our
framework, Figure 4.8(b) illustrates that the measured VRP in sagittal direction
during the SS phases was closer to the desired VRP (i.e., the center of the foot),
which reduced the friction di↵erence between the front and hindfoot. Thus, the heel-
out behavior was suppressed after using our framework in the normal speed walking.

Without using our framework, TORO cannot achieve fast walking because the VRP
deviation was exacerbated by the e↵ect of the model inaccuracies, as shown in Fig-
ure 4.10(a). Contrary, Figure 4.10(b) shows that the fast speed walking of TORO
succeeded after applying VRP-OILC. However, an unexpected toe-out sliding oc-
curred in the later stage of fast speed walking. As shown in the lower graph of
Figure 4.10(b), the measured and learned VRP started to oscillate and diverge from
the reference trajectory even during the SS phases in the later stage (i.e., from t = 8
s to the end of the walking), which produced again a friction di↵erence between the
inside and outside of the foot. The compensating torque in feet during the swing leg
motion rotated the toe towards the outside. Besides, we can further conclude that
the robot system produced a non-repetitive behavior in the lateral direction during
the fast walking because the oscillation and divergence of the measured and learned
VRP were caused by the non-repetitive system behavior, as mentioned before. To
solve the toe-out behavior, we can either reduce the forgetting factor kf,la in the
lateral direction or use an additional ILC to compensate for the foot torque, which
causes a toe-out sliding behavior.



65

Chapter 6

Conclusion and Future Work

Model uncertainties are common problems that lead to an imperfect tracking of the
reference trajectories. The imperfect tracking will limit the maximum walking speed
and reduce the robustness of bipedal walking robots. In this thesis, an online VRP
adaptation framework for biped walking based on the concept of ILC is proposed.
In short, our framework learns the future iteration’s VRP reference trajectory adap-
tation from the VRP error at the current iteration by using the ILC and saves the
learned future adaptation into a VRP waypoint list for later reuse. The framework
can be implemented in two di↵erent learning designs: measurement-error-based and
commanded-error-based learning, where the former uses the VRP measured error
and the latter uses the VRP commanded error for learning. Moreover, the frame-
work is extended with a pre-compensation procedure, which predicts a compensative
VRP reference trajectory from the database to stabilize the walking in the initial it-
eration and increase the VRP convergence speed among the whole walking sequence.

The stability of the framework is proved in the thesis. The stability condition can
be simplified to the inequality of |kf�kl| < 1 when the iteration duration Titer > 1.2
s. Additionally, we analyze the VRP convergence position theoretically. It is proved
that the VRP converges to the original reference trajectory when kf = 1 and the
system is assumed to be stable.

All the simulation and experimental results demonstrate that the walking robustness
was significantly improved after applying the VRP-OILC framework. Especially,
the framework achieved fast walking, which is impossible without the framework.
However, there are several limitations to our work:

1. The FT sensors were not available during the experiments. This makes the FT-
sensor-based VRP measurement method impossible to be used in the frame-
work.

2. The commanded-error-based adaptation framework cannot suppress the toe-
out sliding behavior in the later stage of fast walking.
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3. All the experiments were conducted on flat ground in the laboratory, where the
external disturbances from the ground were subtle and repetitive. However,
bipedal robot research’s ultimate goal is to enable robots to walk robustly in
di↵erent environments. Therefore, walking on complex terrains outside of the
laboratory, where non-repetitive disturbances will be generated on the robot
system, needs to be further studied.

Future work will be considered as follows:

1. We will test the measurement-error-based VRP adaptation framework, where
the VRP measurement bases on the FT sensors, on TORO.

2. To suppress the toe-out behavior in the fast walking, we will try two di↵erent
ideas in the future: i) reduce the value of the forgetting factor kf,la in the
lateral direction; ii) apply an additional ILC method to compensate for the
foot torque in yaw direction which causes the toe-out behavior.

3. Wang et al. [WGDI09] mentioned that the run-to-run control (R2R) is suitable
for the case when the system has not good repetitive behaviors. For the robot
walking in the complex environments outside the laboratory, an R2R-based
VRP online adaptation framework can be developed to overcome the problems
caused by the non-repetitive disturbances.



A.1. MODEL INACCURACIES MODELING 67

Appendix A

Parameter Setting in Simulation

A.1 Model Inaccuracies Modeling

Table A.1: Robot link masses before and after the modification for the model inac-
curacies modeling in OpenHRP3.

Link name Original mass (kg) Modified mass (kg)

WAIST 19.6 21.6
NECK LINK 0.2 1.2
HEAD LINK 1.5 0.5
HIP LINK 5.6 3.6

RARM SHOULDER1 2.6 1.6
RARM SHOULDER2 1.1 2.1
RARM SHOULDER3 2.4 3.4
RARM LOWERARM 2.2 1.2
LARM SHOULDER1 2.6 1.6
LARM SHOULDER2 1.1 2.1
LARM SHOULDER3 2.4 3.4
LARM LOWERARM 2.2 1.2

RLEG HIP R 3.2 4.2
RLEG HIP Y 2.6 0.6
RLEG KNEE 5.7 6.7
LLEG HIP R 3.2 0.2
LLEG HIP P 2.6 8.6
LLEG HIP Y 2.6 0.6
LLEG KNEE 5.7 4.7

LLEG ANKLE R 0.4 1.4
LLEG ANKLE P 1.4 0.4
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A.2 Construction of Pre-Learned Knowledge Database

Table A.2: Walking parameter sets for constructing the pre-learned knowledge
database.

Sagittal Straight Walking (SSW) Lateral Straight Walking (LSW) Circle Walking
dsa = {�10, 15}cm dsa = 0 cm �↵ = {�10, 10}�
dla = 0 cm dla = {�8, 8}cm
Titer = {2.0, 2.4}s Titer = {2.0, 2.4}s Titer = {2.0, 2.4}s
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