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Abstract

We propose a novel framework for constructing linear time-invariant (LTI) models for data-
driven representations of the Koopman operator for a class of stable nonlinear dynamics.
The Koopman operator (generator) lifts a finite-dimensional nonlinear system to a possibly
infinite-dimensional linear feature space. To utilize it for modeling, one needs to discover
finite-dimensional representations of the Koopman operator. Learning suitable features is
challenging, as one needs to learn LTI features that are both Koopman-invariant (evolve
linearly under the dynamics) as well as relevant (spanning the original state) - a gener-
ally unsupervised learning task. For a theoretically well-founded solution to this problem,
we propose learning Koopman-invariant coordinates by composing a diffeomorphic learner
with a lifted aggregate system of a latent linear model. Using an unconstrained parameter-
ization of stable matrices along with the aforementioned feature construction, we learn the
Koopman operator features without assuming a predefined library of functions or knowing
the spectrum, while ensuring stability regardless of the operator approximation accuracy.
We demonstrate the superior efficacy of the proposed method in comparison to a state-of-
the-art method on the well-known LASA handwriting dataset.

Keywords: Koopman operator, safe learning, learning of dynamical systems

1. Introduction

Global linearization methods for nonlinear systems inspired by the infinite-dimensional,
linear Koopman operator (Koopman, 1931) have received increased attention for modeling
nonlinear dynamics in recent years. By lifting a finite-dimensional nonlinear system to
a higher-dimensional linear operator representation, superior complexity-accuracy balance
compared to conventional nonlinear modeling is possible through the use of efficient linear
techniques for prediction, analysis and control (Bevanda et al., 2021).

To strike a meaningful accuracy-complexity balance, finite-dimensional Koopman oper-
ator dynamical models are required to be long-term accurate with finite amount of features
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and data. Researchers aiming to achieve this property are faced with an unsupervised learn-
ing problem that involves learning linear time-invariant features that are both Koopman-
invariant, i.e., their evolution remains in the span of the features, as well as relevant enough
to (almost) fully span the original state - reconstructing it in a linear fashion.

As solving the aforementioned unsupervised learning task is challenging, the majority of
works predicate on lifting the original nonlinear system to a projection of the operator onto
predetermined features - akin to Galerkin methods - using well-known EDMD (Williams
et al., 2015a) and its different variants (Williams et al., 2015b; Huang and Vaidya, 2018;
Haseli and Cortes, 2021). However, presupposing a suitable basis of functions is a very
strong assumption for linear time-invariant prediction - leading to only locally accurate
models. Other approaches learn the features simultaneously (Li et al., 2017) or in a decou-
pled manner (Lian and Jones, 2019) leveraging the expressive power of neural networks or
kernel methods, but often lack theoretical justification. Instead of arbitrary feature maps,
Korda and Mezić (2020) learn the eigenfunctions of the operator for linear prediction - which
is a promising proposition. Still, this approach leaves a gap between the operator-theoretic
considerations and the data-driven realization.

Nevertheless, the sole expressivity of the learning methods does not immediately lead to
reliability in constructing Koopman-invariant coordinates as the unsupervised problem of
learning Koopman operator dynamical models requires certain structure to be well-posed.
For dissipative systems, a way to improve the reliability of learning these models is enforcing
stability. Nonetheless, most approaches do not impose such a constraint with guarantees.
Notably, the recent work of Fan et al. (2021) demonstrates improved performance through
stability guarantees in a fully data-driven manner. However, it’s state reconstruction is
done in a nonlinear fashion, limiting its practicability compared to immediate nonlinear
modeling.

The contribution of this paper is the development of a novel principled framework for
learning provably stable Koopman operator dynamical models, ensuring the system- and
operator-theoretic considerations are fully embedded in our learning approach. Further-
more, it is fully data-driven as the features and the operator spectrum are learned simulta-
neously. We construct Koopman-invariant coordinates for a nonlinear system by composing
a diffeomorphic learner with a lifted aggregate system of a latent linear model. Using an
unconstrained parameterization of stable matrices, along with the aforementioned feature
construction, we ensure stability regardless of the operator approximation accuracy. To
the best of our knowledge, this is the first fully-data driven framework where the learning
approach is well-founded in an operator- and system-theoretic sense. We demonstrate the
superior performance of the proposed method in comparison to a state-of-the-art method
on the well-known LASA handwriting dataset.

This paper is structured as follows. After the problem statement in Section 2, we present
a novel data-driven framework - KoopmanizingFlow Stable Dynamical Systems (KF-SDS)
- for constructing stable, Koopman operator dynamical models in Section 3 which is followed
by evaluation in Section 4 and a conclusion.
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2. Problem Statement

Consider an unknown, continuous-time nonlinear dynamical system1

ẋ = f(x) (1)

with continuous states on a compact set x ∈ X ⊂ Rd such that f ∈ C2(X).

Assumption 1 We assume the fixed point of (1) is globally exponentially stable.

The above assumption is not restrictive in practice as it admits dynamical systems repre-
senting motion, e.g., human reaching movements (Khansari-Zadeh and Billard, 2011), or
physical systems, e.g., a pendulum which rests in hanging position.

Due to their continuous-time nature, the dynamics are fully described by the forward-
complete flow map (Bittracher et al., 2015) of (1) given by

x(t0) ≡ x0, F t(x0) := x0 +

∫ t0+t

t0

f(x(τ))dτ, (2)

which has a unique solution on [0,+∞) from the initial condition x at t = 0 due to stability
of the isolated attractor (Angeli and Sontag, 1999). This flow map naturally induces the
associated Koopman operator semigroup as defined in the following.

Definition 1 The semigroup of Koopman operators {Kt}t∈R+,0 :C(X) 7→C(X) for the flow
(2) acts on a scalar observable function h∈C(X) on the state space X through Ktfh = h◦F t.

In simple terms, the operator applied to an observable function h at time t0 moves it
along the flow (2) as Ktfh(x(t0)) = h(x(t0 + t)). Applied component-wise to the identity

observable h(x) = x, it equals the flow (2). Crucially, every Ktf is a linear2 operator. With
a well-defined Koopman operator semigroup, we introduce its infinitesimal generator.

Definition 2 (Lasota and Mackey (1994)) The evolution operator

GKfh = lim
t→0+

Kth− h
t

=
d

dt
h, (3)

is the infinitesimal generator of the semigroup of Koopman operators {Kt}t∈R+,0.

The strength of the Koopman operator formalism is that it allows to decompose dynam-
ics into linearly evolving coordinates, which naturally arise through the eigenfunctions of
evolution operator GKf . These eigenfunctions are formally defined as follows.

Definition 3 An observable φ ∈ C(X) is called an eigenfunction of GKf if it satisfies
GKfφ = λφ, for an eigenvalue λ ∈ C. The span of eigenfunctions φ of GKf is denoted by Φ.

With the above definitions, it is evident that the Koopman operator theory is inherently
tied to the temporal evolution of dynamical systems (Bevanda et al., 2021). Moreover, due
to Assumption 1, the Koopman operator generator has a pure point spectrum for the

1. Notation: Lower/upper case bold symbols x/X denote vectors/matrices. Symbols N/R/C denote
sets of natural/real/complex numbers, while N0 denotes all natural numbers with zero, and R+,0/R+

all positive reals with/without zero. Function spaces with a specific integrability/regularity order are
denoted as L/C with the order (class) specified in their exponent. The Jacobian matrix of vector-valued
map ψ evaluated at x is denoted as Jψ(x). The Lp-norm on a set X is denoted as ‖·‖p,X. Writing �
denotes the Hadamard product, exp pointwise exponential and ◦ function composition.

2. Consider h1, h2 ∈ C(X) and β ∈ C. Then, using Definition 1, Kt (βh1 + h2) = (βh1 + h2) ◦ Ft =
βh1 ◦ Ft + h2 ◦ Ft = βKth1 +Kth2.
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dynamics (1) (Mauroy and Mezić, 2016). Therefore, for each observable h, there exists a
sequence vj(h) ∈ C of mode weights, such that we obtain the decomposition

ḣ = GKfh = GKf

 ∞∑
j=1

vj(h)φj

 =
∞∑
j=1

vj(h)λjφj . (4)

Looking at the above decomposition, we can observe it is a superposition of infinitely many
linear ODEs. With a slight abuse of operator notation, we can write the decomposition
(4) compactly as ḣ = VhGKfΦ, where Vh is an operator projecting on the observable. As
working with infinitely many states is not directly helpful in practice, we look to obtain
a finite-dimensional representation. Since finding a meaningful finite-dimensional model is
not analytically possible in general, we use data samples in order to obtain one.

Assumption 2 A data-set of N input-output pairs DN =
{
x(i), ẋ(i)

}N
i=1

for the system (1)
is available.

Having measurements of the state and its time-derivative at disposal is a common assump-
tion. If not directly available, the time-derivative of the state can be approximated through
finite differences for practical applications. Based on the above data set, we consider the
problem of learning a finite-dimensional model of (4) for the full-state observable h(x)=x,
which can be posed as the optimization problem

min
A,C,ψ(·)

N∑
i=1

prediction︷ ︸︸ ︷
‖ẋ(i) −CAψ(x(i))‖22 +

reconstruction︷ ︸︸ ︷
‖x(i) −Cψ(x(i))‖22 (5a)

subject to: ψ ∈ Φ (Koopman-invariance) (5b)

A is Hurwitz (stability) (5c)

with ψ = [ψ1, · · · , ψD]>, A ∈ RD×D and C ∈ Rd×D providing a finite-dimensional repre-
sentation in terms of a state-space model3

z0 = ψ(x(0)), (6a)

ż = Az , (6b)

x̂ = Cz . (6c)

With this model, the nonlinearity of a d-dimensional ODE (1) is traded for a nonlinear
“lift” (6a) of the initial condition x(0) to higher dimensional (D � d) Koopman-invariant
coordinates (6b) such that the original state can be linearly reconstructed via (6c). Note
that the Hurwitz condition (5c) generally suffices to ensure the asymptotic stability of the
lifted dynamics. Moreover, (5) requires to learn an arbitrary amount of Koopman-invariant
features directly instead of only finding ones that lie in a heuristically predetermined dic-
tionary of functions. Thus, the sole error source in the resulting system (6) is due to the
finite truncation of the infinite sum in (4). This is crucial for long-term accurate linear pre-
diction, especially when, e.g., the model (6) is used as a motion generator (Khansari-Zadeh
and Billard, 2012) for a system with safety-critical operation limits.

3. Without loss of generality, generalized eigenfunctions, eigenvalues and modes are recovered with a sim-
ilarity transform as the Koopman invariant-subspace of the generalized eigenfunctions of an arbitrary
matrix is identical to that of its Jordan normal form (Korda and Mezić, 2020).
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3. Diffeoorphicaly Learning Koopman-invariant Coordinates

3.1. Construction of Lifting Functions

For constructing a model satisfying (5b), we formally introduce a general description of
Koopman-invariant coordinates. These coordinates do not necessarily have to be (gen-
eralized) eigenfunctions, but they need to be linear combinations thereof, as required by
(5b). This property can be reformulated as a partial differential equation, as shown in the
following lemma4.

Lemma 4 Consider the system (1), a matrix A ∈ RD×D and a finite set of features
ψ := [ψ1(x), . . . , ψD(x)]> with ψi(x) ∈ C1(X) on a compact set X. If this feature set solves
the following linear partial differential equation (PDE)

Jψ(x)f(x) = Aψ(x), (7)

the features are admissible Koopman-invariant coordinates satisfying (5b).

Instead of directly attempting to find solutions to the PDE of Lemma 4, we use a
diffeomorphic relation to a latent linear model to obtain solutions for (7), providing us with
Koopman-invariant lifting coordinates that fulfill (5b). The overview of our construction
can be found in Figure 1.

Definition 5 Vector fields ẋ = f(x) and ẏ = t(y) are diffeomorphic, or smoothly equiv-
alent, if there exists a diffeomorphism d : Rd 7→ Rd such that f(x) = J−1

d (x)t(d(x)).

In essence, diffeomorphic systems have equivalent dynamics just in different coordinates.
For example, the eigenvalues of corresponding equilibria are the same (Kuznetsov, 2004).
This is what we exploit as the system (1) is diffeomorphic to a latent linear system ẏ = Ãy
under Assumption 1 (Lan and Mezić, 2013). Standalone, the diffeomorphic relation directly
provides a nonlinear model

y0 = d(x(0)), (8a)

ẏ = Ãy, (8b)

x = d−1(y), (8c)

for (1). It is straightforward to see that the diffeomorphism d satisfies the conditions of
Lemma 5, such that ψ = d are features satisfying condition (5b). Nevertheless, (8) is
still a nonlinear model after the initial transformation (8a), while the goal is to find a
linear reconstruction map (6c) for a finite representation of (4). For achieving this linear
reconstruction, we need to allow the latent dynamical system to have a dimension D � d,
which cannot be achieved directly with diffeomorphisms since they preserve dimensionality.
Therefore, we propose to ”lift” the diffeomorphic features d to a higher dimensional space
to exploit their natural satisfaction of (5b). This requires the lifting to maintain Koopman-
invariance, which we achieve through a monomial expansion inspired by the notion of linear
tensor systems (Zeng, 2018). Here, the idea is to define monomial coordinates based on
the latent vector d(x) = y = [y1, . . . , yd]

> through yα = yα1
1 yα2

2 · · · y
αd
d , where α ∈ Nd0 is a

multi-index. Then, we obtain a lifted coordinate vector by concatenating all monomials yα

up to order ‖α‖1 = α1 + · · · + αd ≤ p in a lexicographical ordering in a vector y[p]. Due

4. Proofs for all theoretical results can be found in Appendix A
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X Y Z

TxX TyY TzZ

d

f (1)

ψ

Prop. 7

Ã

%: y 7→y[p]

Lem. 6

A[p](Ã)

∂d
∂x

C

Figure 1: The diagram of our construction for learning model of the form (6a)-(6c) with the
construction pathway in bold and the maps to be learned in magenta. The sets
X,Y,Z correspond to the immediate state-space, latent and lifted linear model
space, respectively; with corresponding tangent spaces denotes as TxX, TyY, TzZ.

to the construction of this vector, it inherits the linear dynamical system description from
y = d(x) in (8b), as shown in the following lemma.

Lemma 6 There exists a matrix A[p](Ã) ∈ RD×D, D = ((d+p)!/(d!p!))−1, such that the

evolution of the lifted coordinates y[p̄] is described by the linear ordinary differential equation

d

dt
y[p] = A[p](Ã)y[p]. (9)

The matrixA[p](Ã) in (9) can be straightforwardly calculated given Ã, such that it provides
a low-dimensional parameterization of the latent linear dynamics. Moreover, this monomial
lifting of the latent linear syetem preserves the Koopman-invariance of the diffeomorphism
d and satisfies (5b) as shown in the following proposition.

Proposition 7 Assume the linear system ẏ = Ãy is smoothly equivalent to system (1) via
a diffeomorphism d such that y = d(x). Then the lifted features ψ = d[p] satisfy (5b), i.e.,
ψ(x) = d[p](x) = y[p] are Koopman-invariant coordinates and define a latent linear system

z0 = d[p](x(0)), (10a)

ż = A[p](Ã)z . (10b)

Due the above result, learning Koopman-invariant features reduces to learning a diffeomor-
phism, which allows us to replace the constraint (5b) by the condition

f(x) = J−1
d (x)Ãd(x), (11)

which ensures the smooth equivalence between f and A. This can be interpreted as turning
an unsupervised to a supervised learning problem, since we generally do not have access
to Koopman invariant coordinates (5b), while it is straightforward to check (11) given a
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diffeomorphism d. Therefore, Proposition 7 allows us to simplify problem (5) to

min
Ã,C,d(·)

N∑
i=1

‖ẋ(i) −CA[p](Ã)d[p](x(i))‖22 + ‖x(i) −Cd[p](x(i))‖22 (12a)

subject to: A[p](Ã) is Hurwitz (stability) (12b)

f(x) = J−1
d (x)Ãd(x). (smooth equivalence) (12c)

3.2. Parameterizing Stable System Matrices

To simplify the computations involved for satisfying (12b), we propose to employ an un-
constrained parameterization of stable matrices akin to Fan et al. (2021). As the latent
dynamics is parameterized in terms of low-dimensional matrices Ã, we utilize an uncon-
strained parameterization of all Hurwitz Ã matrices, described by the following lemma.

Lemma 8 Consider real-valued matrices N ,Q,R ∈ Rn×n, a positive constant ε ∈ R+,
and the matrix Ã(N ,Q,R) ∈ Rn×n defined as

Ã(N ,Q,R) =
(
NN> + εI

)−1
(
−QQ> − εI +

1

2

(
R−R>

))
. (13)

(⇒) For all N ,Q,R, ε as above, Ã(N ,Q,R) is Hurwitz.

(⇐) For all Hurwitz matrices A, ∃ N ,Q,R, ε as above, such that A = Ã(N ,Q,R).

With ε > 0 fixed and sufficiently small, N ,Q,R from Lemma 8 serve as an unconstrained
parameterization of (practically) all Hurwitz matrices. For ε→ 0+, the space of all Hurwitz
matrices is covered. Thus, we can optimize over the low-dimensional matrices N , Q and
R without worrying about the stability condition (12b) as it is guaranteed by construction.
Due to Lemma 6, this stability extends to the lifted system matrix A[p](Ã(N ,Q,R)), such
that we can reformulate the optimization problem (5) as shown in the following theorem.

Theorem 9 The minimizers N̂ , Q̂, R̂, Ĉ, d̂(·) of the optimization problem

min
N ,Q,R,C,d(·)

N∑
i=1

‖ẋ(i) −CA[p](Ã(N ,Q,R))d[p](x(i))‖22 + ‖x(i) −Cd[p](x(i))‖22 (14a)

subject to : f(x) = J−1
d (x)Ã(N ,Q,R)d(x) (smooth equivalence) (14b)

define a solution ψ = d̂[p], A = A[p](Ã(N̂ , Q̂, R̂)), C = Ĉ for the optimization problem (5)
and thereby define a model of the form (6).

In principle, the above optimization problem admits a direct implementation using Lagrange
multipliers (Nocedal and Wright, 2006). This, in turn, allows us to reformulate problem
(14) in an unconstrained manner - simplifying the optimization task in principle.

3.3. Structured Relaxation of Exact Smooth Equivalence

To ease the use of standard training algorithms for expressive function approximators such
as neural networks, we relax the optimization problem (14) by considering (14b) as an
additional summand in the cost (14a), which can be considered as fixing the value of a
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Lagrange multiplier to a specific value. This results in the unconstrained optimization
problem

min
N ,Q,R,C,d(·)

N∑
i=1

‖ẋ(i)−CA[p](Ã(N ,Q,R))d[p](x(i))‖22+‖x(i)−Cd[p](x(i))‖22+LSE(x(i),ẋ(i)),

(15)

where the cost

LSE(x(i), ẋ(i)) = ‖ẋ− J−1
d (x)Ã(N,Q,R)d(x)‖22 + ‖Jd(0)− I‖22 + ‖d(0)− 0‖22 (16)

replaces the constraint (14b). Note that the two last summands of LSE are not necessary in
principle, but can be used to enforce near-identity of the diffeomorphism, thereby improving
convergence in a local neighborhood of the equilibrium (Lan and Mezić, 2013, Theorem 2.3).

In order to finally solve (15), one needs to ensure the function approximator used for
learning d is guaranteed to be a diffeomorphism. For this, we utilize coupling flow invertible
neural networks (CF-INN). Although predominantly used as distribution estimators (Dinh
et al., 2017), they can also be employed for regression, e.g., modeling stable nonlinear dy-
namics in immediate state-spaces (Rana et al., 2020). Moreover, CF-INN have been shown
to exhibit universal approximation properties (Teshima et al., 2020), which allows to ap-
proximate a large class of diffeomorphisms arbitrarily well with respect to the Lp-/sup-norm.

For realizing complex diffeomorphisms, CF-INN successively compose simpler diffeomor-
phisms called coupling layers d̂i using the fact that diffeomorphic maps are closed under
composition, so that y = d̂(x) = d̂k ◦ ...◦ d̂1(x). Each coupling layer d̂i is defined to couple
a disjoint partition of the input x = [x>a ,x

>
b ]> with two subspaces xa ∈ Rd−n, xb ∈ Rn

where n ∈ N and d ≥ 2, in a manner that ensures bijectivity. This can be realized via affine
coupling flows (ACF), which have coupling layers

d̂i(x
(i)) =

[
x

(i)
a

x
(i)
b � exp(si(x

(i)
a )) + ti(x

(i)
a )

]
(17)

with scaling functions si : Rn 7→ RN−n and translation functions ti : Rn 7→ RN−n that can
be chosen freely. The parameters of the diffeomorphic learner consist of the the weights
and biases in the neural networks of the scaling and translation functions concatenated in
parameters w = [w>s1 ,w

>
t1 , · · · ,w

>
sk
,w>tk ]>.

Since the ACF are constructed to be diffeomorphisms, we can optimize over the param-
eters w instead of diffeomorphisms in (12). Moreover, it allows us to guarantee the stability
of systems (6) induced by the solutions of (12), as shown in the following theorem.

Theorem 10 Consider diffeomorphisms d = d̂k ◦ ... ◦ d̂1(x) parameterized through cou-
pling layers (17), which are defined using continuously differentiable functions si, ti.Then,
every optimization problem (15) has a solution and yields a stable system (6).

This theorem allows to efficiently obtain approximate solutions to the optimization problem
(5) in practice, since the differentiability condition for si, ti can be easily satisfied using
neural networks with smooth activation functions. Therefore, it transforms the practically
intractable problem (5) into an easily implementable deep learning problem. While we
cannot ensure that the results of this deep learning problem are an exact solution to (5),
Theorem 10 guarantees that these solutions yield stable systems (6).
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equilibrium reproduction extended simulation training data learned system streamlines

Figure 2: KF-SDS yields trajectories similar in shape to the real ones, demonstrating the
lifting construction captures the geometry of the original state-space.

4. Evaluation

We evaluate our methods on the real-world LASA5 handwriting dataset (Khansari-Zadeh
and Billard, 2011). All data is scaled to the range [−1, 1]d before training. We have sampled
900 data points for each of the 7 demonstration trajectories of the dataset. The inputs and
targets are the 2D position and velocity, respectively. For all experiments, ACF with
10 coupling layers are used to learn the diffeomorphisms. The neural networks for the
scaling and translation functions in each of the affine coupling layers have 3 hidden layers,
with 120 neurons, each with a smooth Exponential Linear Unit (ELU) as the activation
function. The dimension of the lifting coordinates is D = 44 (p̄ = 8). Full batch learning
is performed, employing the ADAM optimizer (Kingma and Ba, 2015). The reproduction
of the demonstrated trajectories displayed in Figure 2 is simulated until five times the
demonstration time, with a different coloring from the point when the demonstration time is
exceeded. Due to the deterministic nature of KF-SDS, cross-sections of the demonstrations

5. https://cs.stanford.edu/people/khansari/download.html

9



KoopmanizingFlows: Diffeomorphically Learning Stable Koopman Operators

DTWD RMSE PCM
0

.5

1

SKEL (Fan et al., 2021) KF-SDS (ours)

Figure 3: KF-SDS shows superior performance, especially in capturing the accuracy of the
shapes. Each metric is normalized to lie in the range [0, 1] for ease of comparison.

lead to a contraction to a mean trajectory when reproduced. In order to evaluate our
performance with respect to the related work of Fan et al. (2021), we compare our position
prediction in terms of dynamic time warping distance (DTWD) (Berndt and Clifford, 1994),
root mean squared error (RMSE) and partial curve matching (PCM) (Jekel et al., 2019).
The statistics for each of the frameworks in the respective metrics are visualized in Figure 3.
In comparison to SKEL6, KF-SDS shows superior performance in all metrics - especially
ones strongly related to the accuracy of the state-space geometry such as DTWD and
PCM. This is to be expected as KF-SDS is geared towards directly learning features that
lie in span of (generalized) eigenfunctions and inherently describe the state-space geometry
(Mezić, 2019). Furthermore, the performance of SKEL deteriorates in the long-term due
to a nonlinear reconstruction map, which can cause the equilibrium point of the model to
not lie at the end-point of the demonstrated movement7. Therefore, the proposed KF-SDS
framework shows how a theoretically well-founded construction of lifting features results in
significant performance advantages.

5. Conclusion

We have presented KF-SDS, an approach for fully data-driven learning of stable Koop-
man operator models with linear prediction and reconstruction. Our results demonstrate
improved performance compared to related work with nonlinear original state reconstruc-
tion even though employing the more practicable linear reconstruction. An experimental
evaluation on a handwriting dataset shows the superior efficacy of our structured learning
approach.
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Appendix A. Proofs of Theoretical Results

A.1. Lifting Functions

Proof of Lemma 4 By construction, we seek a vector ψ of observable functions that is
governed by a linear differential equation, meaning it satisfies

d

dt
ψ(x) = Aψ(x). (18)

By Definition 2, the infinitesimal-time evolution operator, Koopman generator, acts on the
observables vectors such that

GKfψ(x) = lim
t→0+

ψ
(
F t (x0)

)
−ψ (x0)

t
= lim

t→0+

ψ(x(t))−ψ (x0)

t
, (19)

directly following the definition of the infinitesimal generator (Lasota and Mackey, 1994).
As ψ is a vector of continuously differentiable functions on a compact set X, such that
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ψi ∈ C1(X)8, applying the mean value theorem to (19) gives

GKfψ(x) =
∂ψ

∂x
(x)ẋ (20)

= Jψ(x)f(x), (21)

equivalent to the Lie derivative. Equation (18) together with (20) give the following PDE

Jψ(x)f(x) =
∂ψ

∂x
(x)ẋ (22)

= Aψ(x) (23)

proving the lemma.

Proof of Lemma 6 By examining the dynamics of a monomial corresponding to the
multi-index α = [α1, . . . , αd]

> with order ‖α‖1 = p (Zeng, 2018), we see that

d

dt
yα =

d∑
i=1

αiy
αi−1
i

∏
j 6=i

y
αj

j

 ẏi (24)

holds. Now, let us denote y[p] as vector of all yα of all different multi-indices of order
‖α‖1 = p. For example, by considering a monomial mapping % : y 7→ y[2] with multi-
indices α1 = [2, 0]>, α2 = [1, 1]>, α3 = [0, 2]> the following

d

dt
y[2] =

 d
dty

α1

d
dty

α2

d
dty

α3

 =
∂%

∂y
(y)ẏ (25)

=

 2y1 0
y1 y2

0 2y2

 Ãy (26)

=

 2ã11 2ã12 0
ã21 ã11 + ã22 ã12

0 2ã21 2ã22


 y[2,0]>

y[1,1]>

y[0,2]>

 (27)

=

 2ã11 2ã12 0
ã21 ã11 + ã22 ã12

0 2ã21 2ã22

 y2
1

y1y2

y2
2

 (28)

= A[2](Ã)y[2] (29)

(30)

demonstrates that y[2] has dynamics linearly dependent on Ã. This follows in a straight
forward manner for the dynamics of any other y[p] (Zeng, 2018). Thus, we can write their
dynamics as a set of linear ordinary differential equations

d

dt
y[p] = A[p](Ã)y[p]. (31)

8. For a more general X, the result holds for hi(x) ∈ C2(X) Bollt et al. (2017)
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Since all y[p] systems p ∈ N are decoupled from each other, their concatenation up to order
p̄ as

d

dt
y[p] = A[p](Ã)y[p] (32)

with y[p] = [y[1]> , . . . ,y[p]> , . . . ,y[p̄]> ]> and A[p](Ã) = diag{A[1](Ã), . . . ,A[p](Ã)} ∈ RD×D

while still remaining a set of linear ordinary differential equations. Given that every y[p] has
as many elements as there are combinations with replacement of d elements and p samples,
the total amount of concatenated coordinates up to order p equals to

D =

p∑
p=1

(
p+ d− 1

p

)
=

(
d+ p
d

)
− 1. (33)

The above sum is simplified using the ”hockey-stick” identity (Jones, 1996). This proves
the concatenation up to order p leads to an extended system ẏ[p] = A[p](Ã)y[p] spanning

invariant subspaces of ẏ = Ãy of size D.

Proof of Proposition 7 Consider vector fields ẋ = f(x) and ẏ = Ãy smoothly equivalent
through a diffeomorphism y = d(x). A simple chain of equalities

GKfd(x)
Lem.4

= Jd(x)f(x) (34)

Def.5
= Ãd(x) (35)

= GKÃy (36)

shows Koopman-invariant subspaces related though a diffeomorphism of the respective vec-
tor fields’ infinitesimal generators evolve linearly with the same Ã. Following the construc-
tion of Proposition 7, d[p](x) are Koopman-invariant coordinates of GKf evolving linearly

with A[p](Ã) - concluding the proof.

A.2. Parameterizing Stable System Matrices

Proof of Lemma 8 To show the parameterization covers all Hurwitz matrices, we prove
necessity and sufficiency. ⇒: Let X = NN> + εI, Y = QQ> + εI and Z = 1

2

(
R−R>

)
.

We want to show that A = X−1 (−Y +Z) is Hurwitz.
With X and Y symmetric real positive definite matrices we have v>Y v > 0 ∀v ∈ Rn \{0}.
Since Z is a skew-symmetric real matrix, its eigenvalues are zero and v>Zv = 0.
Now v> (−Y +Z)v = −v>Y v < 0 and since v>X−1v > 0 finally

v>Av = v>X−1 (−Y +Z)v =

(
v>X−1v

) (
v> (−Y +Z)v

)
vv>

< 0

as vv> > 0.
⇐: From equation (13),

(
NN> + εI

)
A+εI = −QQ>+ 1

2

(
R−R>

)
immediately follows.

We use the facts that all real matrices can be decomposed into a symmetric and skew-
symmetric part, and that all real symmetric positive definite matrices can be decomposed
into QQ> via the Cholesky decomposition. Since v>

(
NN> + εI

)
Av < 0 for ε small

enough, Q and R exist for all N , decomposing
(
NN> + εI

)
A + εI into a (negative
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definite) symmetric part −QQ> via the Cholesky decomposition and the corresponding
skew-symmetric part 1

2

(
R−R>

)
.

Proof of Theorem 9 By Lemma 8, the low-rank matrix Ã is Hurwitz by construction.
Following Proposition 7, the eigenvalues of A[p̄](Ã) satisfy

∑d
i=1 αiλ̃i with αi ∈ N0, making

A[p](Ã) Hurwitz as well - allowing us to replace the constraint (12b) with a Hurwitz matrix
parameterization from Lemma 8.

A.3. Structured Relaxation of Exact Smooth Equivalence

Lemma 11 Affine Coupling Flows with continuously differentiable scaling and translation
mappings are diffeomorphisms.

Proof of Lemma 11 Affine Coupling Flows are compositions of bijective coupling layers
with the following forward

xa,xb = split(x) (37a)

(log s, t) = FA (xb) (37b)

s = exp(log s) (37c)

ya = s� xa + t (37d)

yb = xb (37e)

y = concat (ya,yb) (37f)

and backward

ya,yb = split(y) (38a)

(log s, t) = FA (yb) (38b)

s = exp(log s) (38c)

xa = (ya − t) /s (38d)

xb = yb (38e)

x = concat (xa,xb) (38f)

structure (Kingma and Ba, 2015). Given ACFs are compositions of coupling layers, to
prove ACFs are diffeomorphic maps we need the show the coupling layers are themselves
diffeomorphisms - satisfying the following conditions:

[1] Bijective,

[2] Forward and inverse map C1.

[1] Due to the special structure of (37) and (38), Coupling layers are bijective by con-
struction. We can then consider the regularity of the bijection independently.

[2] Consider the function approximators employed in (37b) and (38b) are at least contin-
uously differentiable9. The previous together with all other transformations in (37)

9. This is not a strong assumption and covers many function approximators, e.g. kernel methods with C≥1

kernels or neural networks with C≥1 activation functions.
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and (38) being arithmetic operations present arithmetic operations forward and back-
ward maps preserve the regularity of the function approximator - as C1-functions are
closed under composition and arithmetic operations.

Proof of Theorem 10 With Ã Hurwitz by construction due to Lemma 8, following
Proposition 7, the eigenvalues of A[p̄](Ã) are linear combinations

∑d
i=1 αiλ̃i of multi-index

entries αi ∈ N0, making A[p](Ã) Hurwitz as well. By Proposition 7 the map % : y 7→ y[p],
representing a monomial basis of the argument, is an immersion as rank(J%(y)) = dim(y).
Following Lemma 11, d is an immersion by construction. Its composition with the lifting
map % ◦ d : y 7→ d[p] is as well due to immersions being invariant under composition. With
A[p](Ã) Hurwitz and d[p] immersible, the asymptotic stability of the lifted model (6a)-(6b)
follows via (Yi and Manchester, 2021, Propositon 1). Hence, every optimization problem
(15) yields an asymptotically stable system.

Appendix B. Details on the comparison versus SKEL Fan et al. (2021)

B.1. Parameters and Implementation

The KF-SDS algorithm was implemented in PyTorch10. For all experiments, ACF with
10 coupling layers are used to learn the diffeomorphisms. The neural networks for the
scaling and translation functions in each affine coupling layer have 3 hidden layers, with
120 neurons, each with a smooth Exponential Linear Unit (ELU) as the activation function.
The dimension of the lifting coordinates is D = 44 (p̄ = 8). We employ the ADAM optimizer
with a learning rate of 0.0025 and full batch training. Further we use weight decay and
clip gradients. We do not use weights on loss terms, due to the highly coupled structure of
the optimization problem (14). To ease the training process we initialize KF-SDS with the
least-square linear model: the diffeomorphic system matrix Ã with Ã = arg min ‖ẋ−Ax‖22,
the ACF to be the identity map and the reconstruction matrix C to reconstruct the linear
diffeomorphic system. The aggregate system- and lift-equations are obtained symbolically.
Our models used for comparison were trained for 5000 epochs.

The SKEL (Fan et al., 2021) models were trained as in Fan et al. (2021), but on all
seven demonstrations: They have a concatenated immediate state z = [x>, ẋ>]>, a 20-
dimensional lifted system matrix and use fully-connected-neural-networks with two hidden-
layers with 50 nodes each for nonlinear lifting and reconstruction maps. They were trained
for 50000 epochs with a batch-size of 1000.

To ensure a fair comparison to SKEL we use the same base data to train both models.
Due to the the discrete time nature of SKEL the LASA-trajectories are resampled with
dt = 0.05s. As training data for KF-SDS we sampled 900 datapoints per demonstration
from the SKEL dataset, using cubic interpolation. This ensures that both models see
a similar amount of datapoints (with repetition) during the training process. For both
methods data is normalized to stay within the unit box. Notably both SKEL and KF-SDS,
although being discrete-time and continuous-time, use the same input data: positions and
velocities.

10. https://github.com/pytorch/pytorch
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equilibrium reproduction extended simulation training data

Figure 4: SKEL trajectories until five times the demonstration end-time
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equilibrium reproduction extended simulation training data learned system streamlines

Figure 5: KF-SDS trajectories until five times the demonstration end-time
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equilibrium reproduction extended simulation training data learned system streamlines

Figure 6: KF-SDS trained for 20000 epochs

B.2. Discussion

Figure 4 and 5 show the simulated trajectories until the demonstration end-time (red) and
its continuation (blue) until five times the demonstration time for SKEL (Fan et al., 2021)
and KF-SDS, respectively. While SKEL manages to reproduce the demonstrations, it fails
at guaranteeing long term behavior due to its nonlinear reconstruction. Long-term behavior
is a major advantage of KF-SDS, as its linear reconstruction with the special construction
of lifting features ensures well behaved convergence to the equilibrium. The linear evolution
leads to a settling phase in the neighborhood of the equilibrium. Note that both models are
ODEs in the lifted and aggregated space respectively, this does not necessarily apply to the
immediate state-space, allowing for sharp and self-intersecting, but slow, immediate state
trajectories near the equilibrium. For physical dynamical systems, like human handwriting
motions, a settling phase is to be expected since velocities will approach zero in a rather
smooth way.

For shapes N and S, KF-SDS did not converge to a satisfactory solution with the pre-
scribed 5000 epochs. This is, however, due to slower convergence, rather than convergence
to a local minimum and is resolved by extended training as shown in Figure 6. Our results
show how KF-SDS can predict system dynamics in a linear fashion for a long time horizon
given the duration of the demonstrations ranges from 1.9 to 8.7 seconds. This makes it
promising for motion generation and model simplification, practicable for receding horizon
prediction and control strategies.
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