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Rye (Secale cereale L.), a member of the grass tribe Triticeae 
and close relative of wheat (Triticum aestivum L.) and barley 
(Hordeum vulgare L.), is grown primarily for human con-

sumption and animal feed. Rye is uniquely stress tolerant (biotic 

and abiotic) and thus shows high yield potential under marginal 
conditions. This makes rye an important crop along the northern 
boreal-hemiboreal belt, a climatic zone predicted to expand con-
siderably in Eurasia and North America with anthropogenic global 
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Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat variet-
ies via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is 
allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To 
further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye 
genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of 
this resource with a broad range of investigations. We present findings on cultivated rye’s incomplete genetic isolation from 
wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control 
systems for hybrid breeding and the yield benefits of rye–wheat introgressions.
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warming1. Currently, rye is produced on 4.1 million ha (http://www.
fao.org/faostat/en/, accessed June 2020), 81% of which is in north-
eastern Europe. More importantly, however, rye chromatin is com-
monly introgressed into bread wheat varieties to improve yield and 
thus rye genetic material is present in a far greater proportion of cul-
tivated land area2–5. Rye is a diploid with a large genome (~7–8 giga-
bases, Gb)6, 50% larger than the syntenic diploid barley and bread 
wheat subgenomes7. Like barley and wheat, rye entered the genom-
ics era very recently. A virtual gene-order was released in 20138 and 
a shotgun de novo genome survey of the same line became available 
in 20179. Both resources have been rapidly adopted by research-
ers and breeders10–12 but cannot offer equivalent opportunities to 
the high-quality genome assemblies available for other Triticeae 
species7,13–17.

We report a short-read based chromosome-scale genome assem-
bly for rye inbred line ‘Lo7’ and demonstrate the potential of this 
new genomic resource by dissecting the incomplete genetic isola-
tion of rye from wild relatives. We showcase detailed analyses of 
the genomic organization and complexity of gene families impli-
cated in stress tolerance and pollen fertility. This resource will 
guide future rye breeding and provide immediate benefit in manag-
ing the trade-offs of using rye as a genetic resource in wheat crop 
improvement.

Results
Genome assembly, validation and annotation. We de novo 
assembled scaffolds representing 6.74 Gb of the estimated 7.9 Gb 
‘Lo7’ genome from >1.8 Tb of short-read sequence (Methods; 
Supplementary Table 1 and Supplementary Note). These scaffolds 
were ordered, oriented and curated using: (1) chromosome-specific 
shotgun (CSS) reads8, (2) 10x Chromium linked reads, (3) genetic 
map markers9, (4) three-dimensional chromosome conformation 
capture sequencing (Hi-C)18 and (5) a Bionano optical genome 
map (Supplementary Tables 2–7). After intensive manual curation 
(Supplementary Note), 92% of this assembled sequence (~78% of 
the estimated genome size) was arranged first into super-scaffolds 
(N50 > 29 megabases, Mb) and then into pseudomolecules. 
Shotgun reads (~947 Gb of data, ~120× mean depth-of coverage) 
were mapped back to the assembly to confirm a near-unimodal 
coverage distribution consistent with a high-quality assem-
bly (Supplementary Table 8 and Supplementary Note). De novo 
annotation (Methods; Supplementary Table 9) yielded 34,441 
high-confidence (HC) genes, including 96.4% of the BUSCO (v.3) 
near-universal single-copy ortholog set (Supplementary Table 1), 
19,456 full-length DNA long terminal repeat (LTR) retrotranspo-
sons (LTR-RTs) from six transposon families (Supplementary Table 
10)19, 13,238 putative microRNAs (miRNAs) in 90 miRNA families 
(Supplementary Tables 11–17) and 1,382,323 tandem repeat arrays 
(Supplementary Tables 18 and 19). Full-length LTR-RTs represent 
a similar proportion of the total assembly in relation to genome 
size as shown by other recent Triticeae chromosome-scale assem-
blies (Supplementary Note and Supplementary Table 20) provid-
ing further evidence for high assembly quality and completeness20. 
Fluorescence in situ hybridization (FISH) to mitotic rye chromo-
somes confirmed agreement between in silico predicted and true 
physical distribution of distinct low- and high-copy probe sequences 
(Methods; Supplementary Note and Supplementary Table 21).

The rye genome follows similar organization as previously 
reported for other Triticeae genomes7,13 (Fig. 1 and Supplementary 
Note): chromosomes are lacking recombination over ~50% of their 
physical length (Fig. 1a) and gene density increases by a factor of 
>10 towards the telomeres (Fig. 1b).

Gene collinearity plots (Fig. 1c and Supplementary Notes) 
between rye (‘Lo7’), barley (cv. ‘Morex’) and wheat (cv. ‘Chinese 
Spring’), confirm, with the exception of the gene-scarce zones sur-
rounding centromeres, extensive genome collinearity. Genome 

expansion occurred rather uniformly over most of the chromo-
some arms with some acceleration toward distal regions, reflected 
by collinearity plots curving towards the telomeres (Supplementary 
Note). This expansion might be attributed predominantly to activ-
ity of LTR-RT families affecting the intergenic space21,22. We there-
fore estimated the time of highest insertion activity for the most 
frequent rye LTR-RT families RLG_SABRINA, RLG_WHAM and 
RLC_ANGELA (Methods; Fig. 1d–g and Supplementary Note). 
RLC_ANGELA elements did recently target this genomic niche and 
older RLG_SABRINA and RLG_WHAM expansions affected more 
proximal parts of the chromosome arms. Two distal regions on the 
long arms of rye chromosomes 4R and 6R, however, differed by a 
lack of the more ancient activity of the RLG_SABRINA and RLG_
WHAM families, possibly highlighting regions affected by ancient 
translocation events from a rye with a different retrotransposon 
landscape to ‘Lo7’ (Supplementary Note). RLG_CEREBA elements 
(Fig. 1g) were active in centromeres, acting more constantly over 
longer time scales than the other frequent LTR-RT families.

Rye genome evolution. Large structural variations—mechanisms 
of genetic isolation. Megabase-scale inversions are a common fea-
ture of structural variation (SV) in the related barley genome23. In 
the absence of multiple rye genome assemblies, we sought to make 
a first survey of large SV prevalence among rye cultivars and wild 
relatives using three-dimensional conformation capture sequencing 
(Hi-C; Methods; Supplementary Note)23. In the comparison between 
two cereal rye cultivars ‘Lo7’ and ‘Lo225’, representing the two dis-
tinct heterotic gene pools in hybrid-rye breeding, megabase-scale 
inversions are apparent on four of the seven rye chromosomes 
(Fig. 2a and Supplementary Note). Among them, a 50-Mb inver-
sion (comprising 382 HC genes) on chromosome 5R (positions 
~650–700 Mb), coincides with a region lacking genetic recombi-
nation (Fig. 2b), providing genetic corroboration for its presence. 
This observation points to a previously undocumented source of 
unwanted linkage drag potentially affecting rye breeding efforts. 
Large inversions between ‘Lo7’ and other Secale representatives in 
the sample increase in number dependent on the phylogenetic dis-
tance to S. cereale and occur preferentially in the pericentromeric 
low-collinearity regions (P < 0.001, one-tailed empirical distribu-
tion derived from 10,000 simulations; Supplementary Note). Large 
SVs therefore provide a potential mechanism for localized collin-
earity loss between the pericentromeric regions of Triticeae species. 
This collinearity loss provides, in turn, at least one mechanism for 
effective genetic isolation during speciation24.

Reticulate evolution of rye. Rye’s divergence from its close relatives 
wheat and barley has not been comprehensively resolved. Using 
a draft assembly, Martis et al.8 interpreted variation in sequence 
identity between rye and barley along chromosomes as a pos-
sible indicator of ancient species hybridization creating a ‘mosaic’ 
genome. Genome-wide estimations of fixation indices (Fst) and 
ABBA-BABA-based D-statistics have reflected varying levels of 
recent genetic exchange among Secale groups25. We confirmed, 
using D-statistics, that directional gene flow has occurred between 
rye groups (Methods; Supplementary Table 22). We then extended 
Martis et al.8 sequence identity approaches with higher resolution 
proxies measurable across the chromosomes. Reticulation reduces 
the evolutionary distance between individuals of each species at 
any site where chromatin was secondarily exchanged, causing phy-
logenetic discordance among loci. Using the sequence identity of 
reciprocal best BLAST matches between rye CDS sequences and 
CDS sequences from barley cv. ‘Morex’13 and wheat cv. ‘Chinese 
Spring’7(Methods; Supplementary Note), we found no strong evi-
dence of discordance among these genera: rye is more closely 
related to the bread wheat genomes than to barley across the whole 
genome (Table 1).
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We then produced an analogous analysis for Secale species 
by calculating identity-by-state (IBS) statistics between ‘Lo7’ 
and sequence data from a population of 955 cultivated and wild 
ryes (dataset of Schreiber et al.25, expanded here by a further 
352 genotypes; Methods). We used k-means clustering to define 
seven rye genetic clusters (Fig. 2c,d). In contrast to the interge-
nus comparisons, recent reticulation among rye clusters was 
strongly supported. In general, ‘Lo7’ is most closely related to 
S. cereale and S. vavilovii-dominated clusters and successively 
less related to S. strictum-like clusters and most distant from the 
S. sylvestre-dominated cluster (Fig. 2d; Supplementary Note). 
However, clear departure from this pattern occurs frequently 
(Fig. 2e,f and Supplementary Note). For example, at regions on 
chromosomes 1R and 4R (marked on Fig. 2e,f), S. sylvestre-like 
individuals are closely related to ‘Lo7’, often more closely even 
than some S. strictum-like individuals, suggesting recent genetic 
exchange between S. cereale-like and S. sylvestre-like genotypes. 
Pairwise Fst was calculated to assess the proportions of genetic 
variability within and between cluster groups and shows consid-
erable variability across the chromosomes, especially comparing 
within- and between-group variability among S. strictum-like 

and ‘domesticated’-like clusters (Fig. 2d–f). On chromosome 4R, 
for instance, Fst is almost 0.8 along the pericentromeric region 
(~200–400 Mb) but approaches zero at two interstitial positions 
(~600 and 720 Mb), corroborating incomplete genetic separation 
between these subgroups.

To investigate the effects of incomplete genetic isolation on 
recent selection pressures exerted on domesticated rye, we exam-
ined the ratio of nonsynonymous to synonymous mutations in 
exonic single nucleotide polymorphisms (SNPs) segregating among 
ryes (Pn/Ps) but which shared an allele with the consensus state of 
the three bread wheat genomes (a proxy for the ancestral state), 
thus surveying primarily recent mutations within rye lineages 
(Methods). Under equivalent selective regimes, Pn/Ps values for 
wild and domesticated ryes are expected to be approximately equal 
but we observed Pn/Ps divergence in the low-collinearity pericen-
tromeric regions of chromosomes 1R, 3R and 4R. This divergence 
probably reflects the reduced efficacy of selection in such regions 
where recombination is limited (for example, by SVs).

On the basis of these collected observations, we concur with the 
Martis et al.8 hypothesis that the genome of cereal rye is a mosaic in 
the sense that different rye species are not completely reproductively  
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isolated; however, we did not produce any evidence to suggest that 
the mosaic involves intergeneric hybridization.

Tracking the fate of rye chromatin in wheat improvement. The trans-
fer of rye genetic material into bread wheat can provide substan-
tive yield and stress tolerance benefits26, though at the expense of 
bread-making quality27. These transfers involved a single 1BL.1RS 
Robertsonian translocation originating from cv. ‘Kavkaz’ and a 

single 1AL.1RS translocation from cv. ‘Amigo’ (Fig. 3)3,4. Due to the 
trade-off between yield and quality, wheat breeders must screen 
their programs for rye introgressions. Taking advantage of the new 
rye assembly, we implemented a high-throughput sequencing-based 
approach on four expansive wheat germplasm panels (Kansas 
State University (KSU), United States Department of Agriculture 
Regional Performance Nursery (USDA-RPN), International Maize 
and Wheat Improvement Center (CIMMYT), Wheat and Barley 
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Legacy for Breeding Improvement (WHEALBI); Methods) seg-
regating for both 1AL.1RS and 1BL.1RS. Translocations can be 
observed as obvious changes in normalized read depth across both 
the translocated and replaced chromosomal regions (Fig. 3b and 
Supplementary Note).

Human classification of a whole panel of karyotypes is still 
costly in terms of time. To alleviate this bottleneck, we developed 
an automated support vector machine (SVM) classifier that repli-
cates human assignment with over 97% accuracy (Methods; Fig. 
3c,d). We then demonstrated that the automated classifications 
predict yield. A mixed-effects linear model applied to yield data 
available for the autoclassified individuals in the KSU (n = 19,677) 
and USDA (n = 29,035) breeding panels showed that 1R introgres-
sions could increase average yields up to ~4.55% (Table 2; Methods; 
Supplementary Tables 23–25). The 1AL.1RS karyotype significantly 

outyielded 1BL.1RS in the KSU panel but the reverse was true of 
the USDA panel (Table 2). This is probably due to the effects of for-
eign chromatin being highly nonuniform and influenced by diverse 
factors (Supplementary Note), in particular the wheat genetic 
background27,28. Taking advantage of the ‘Lo7’ chromosome-scale 
assembly, tracking of rye chromatin in wheat breeding programs 
will now become more reliable and predictable.

Rye vigor is in the genes. Rye distinguishes itself from other 
Triticeae through strong allogamy, which facilitates commercial 
hybrid-rye breeding, as well as conferring resilience to biotic stress 
and extreme winter-hardiness, qualifying rye as an important plant 
genetic resource in wheat improvement. Here, we showcase how the 
high-quality genome assembly sheds light on the genetic control of 
these specific aspects of rye biology.

Fertility restoration in rye and wheat. Rye hybrid breeding relies on 
efficient cytoplasmic male-sterility (CMS)/restorer-of-fertility (Rf) 
systems; however, the underlying molecular mechanisms have yet 
to be elucidated. Known Rf genes belong to a distinct clade of the 
pentatricopeptide repeat (PPR) RNA-binding factor family, referred 
to as Rf-like (RFL)29,30. Members of the mitochondrial transcription 
TERmination factor (mTERF) family are probably also involved in 
male fertility restoration in cereals31,32. The ‘Lo7’ assembly reveals 
a PPR-RFL/mTERF hotspot on 4RL coinciding with known Rf 
loci for two rye CMS systems known as CMS-P (the commercially 
predominant ‘Pampa’-type) and CMS-C12,33–35(Methods; Fig. 4a–f, 
Supplementary Tables 26 and 27 and Supplementary Note). We 
determined, as previously suggested, that these two loci, Rfp and 
Rfc, are closely linked but physically distinct36 (Supplementary Table 
28). Two members of the PPR-RFL clade reside within 0.186 Mb of 
the Rfc1 locus (Supplementary Tables 26–28). The Rfp locus, in con-
trast, is neighbored by four mTERF genes (Supplementary Tables 
27–28), in agreement with previous reports that an mTERF protein 
represents the Rfp1 candidate gene in rye32,37.

The new assembly also helped to dissect a strong candidate gene 
for the wheat locus Rfmulti (Restoration-of-fertility in multiple CMS 
systems) on wheat chromosome 1BS. Replacement of the wheat 
Rfmulti locus by its rye ortholog using 1RS.1BL chromosome trans-
locations produces the male-sterile phenotype38,39. At the syntenic 
position of Rfmulti, wheat and rye share a PPR-RFL gene cluster7 (Fig. 
4k, Supplementary Table 26 and Supplementary Note). Only two 
wheat RFL-PPR genes in the cluster, TraesCS1B02G071642.1 and 
TraesCS1B02G072900.1, encode full-length proteins; only the latter 
corresponds to a putative rye ortholog (SECCE1Rv1G0008410.1). 
Thus, the absence of a TraesCS1B02G071642.1 ortholog in the 
nonrestorer rye suggest it as an attractive Rfmulti candidate. Current 
implementations of a wheat–rye Rfmulti CMS system involve 1RS.1BL 
translocations5,40,41, which are typically linked to reduced bak-
ing quality27. Efforts to break this linkage may now benefit from 
marker development and/or genome editing approaches targeting 
TraesCS1B02G071642.1 (ref. 42).

Divergence of disease resistance loci in Triticeae. Rye plays an impor-
tant role as genetic resource of biotic stress tolerance in wheat 
varieties carrying rye chromatin insertions. Race-specific patho-
gen resistance is typically associated with members of the class of 
nucleotide-binding-site and leucine-rich repeat (NLR)-motif genes43. 
We annotated 792 full-length rye NLR genes, finding them enriched 
in distal chromosomal regions, similar to what has been seen recently 
in the bread wheat genome7,44 (Fig. 4e and Supplementary Tables 29 
and 30). We compared the genomic regions in rye that are ortholo-
gous to mildew (Pm2, Pm3 and Mla) and rust (Lr10) resistance gene 
loci from wheat and barley (Fig. 4g–j, Supplementary Table 31 and 
Supplementary Note). All loci, except for Lr10, contained complex 
gene families with several subfamilies either present or absent in 

Table 1 | Genome assembly and annotation statistics

Assembly Raw scaffolds 
(after chimera 
breaking)

In chromosome-scale 
pseudomolecules

Scaffolds 109,776 476

Total length (Mb) 6,670.03 6,206.74

N50 length (Mb) 15.16 29.44

Length with 
chromosome 
assignment (%)

95.3% 100%

Optical genome map

Maps 5,601

Total length (Mb) 6,660.18

N50 length (Mb) 1.671

Assembly/optical map alignment

Total aligned length 
(Mb)

6,248.60

Uniquely aligned 
length (Mb)

6,029.11

Gene feature 
annotation

High-confidence 
(HC) set

Low-confidence (LC) set

Number of genes 34,441 22,781

Mean gene length 2,892 946

Mean exons per 
gene

4.42 1.79

Proportion of 
complete BUSCO 
set

96.4% 5.8%

LTR-RT annotation Superfamily Full-length copies Mean 
age 
(Ma)

RLC_Angela Copia 11,128 0.53

RLG_Cereba Gypsy 934 1.24

RLG_Sabrina Gypsy 3,996 2.10

RLG_WHAM Gypsy 1,457 2.06

DTC_Clifford CACTA 1,480 NA

DTC_Conan CACTA 516 NA

RLC total NA 13,124 NA

RLG total NA 1,973 NA

LTR-RT total NA 15,097 NA

BUSCO, benchmarking universal single-copy orthologs (v.3; https://busco.ezlab.org/); NA, not 
applicable.
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individual genomes, indicating either functional redundancy or the 
evolution of distinct resistance specificities or targets. For example, 
the wheat Pm3 and rye Pm8/Pm17 genes are orthologs and belong 
to a subfamily (clade A, Fig. 4i) which is absent in barley, whereas a 
different distinct subfamily (clade B, Fig. 4i) of the Pm3 genes is pres-
ent in wheat and barley but absent in rye (Supplementary Note). In 
essence, the ‘Lo7’ assembly reveals the genomic organization of con-
served or nonorthologous NLR gene clusters, which can be exploited 
in future rye and wheat improvement efforts.

Frost tolerance. Rye possesses superior low-temperature tolerance 
(LTT) to other Triticeae crops45. A syntenic locus Fr2 compris-
ing a cluster of CBF (C-repeat/DRE-binding factor) genes is pres-
ent on Triticeae group 5 chromosomes controlling LTT46 in rye47, 
T. monococcum48, bread wheat49,50 and barley51. In cold-tolerant 
varieties, LTT-implicated CBF genes of the Fr2 locus are tran-
scriptionally upregulated52,53. In ‘Lo7’, the Fr2 locus comprises a 
cluster of 21 CBF-related genes at 614.3–616.5 Mb on 5R (Fig. 4f 
and Supplementary Table 32).
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Table 2 | Summary of fixed effects estimates from linear mixed model estimating the influence of rye–wheat translocations upon 
yield, in two wheat diversity panels

Panel Introgression type Estimated yield effect s.e. t Degrees of freedom P

KSU 1AL.1RS 4.06% 0.54 7.54 1.89 × 104 4.95 × 10−14

KSU 1BL.1RS 1.50% 0.41 3.68 1.88 × 104 0.00023

USDA 1AL.1RS 0.86% 0.31 2.72 2.82 × 104 0.0064

USDA 1BL.1RS 4.55% 0.39 11.78 2.82 × 104 < 2.0 × 10−16

P values are calculated using a one-sided Student’s t-test on the null hypothesis that the true yield effect is zero (Methods; Supplementary Table 25).
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Since CBF gene family expansion correlates with increased 
LTT in other Triticeae54 (Supplementary Note), we analysed 
phased-linked-read (10x Genomics Chromium) data of an 
Fr2-homozygous line with exceptional LTT (‘Puma-SK’ derived 

from rye variety ‘Puma’) in comparison to ‘Lo7’ (low LTT). Four 
of the Fr2 CBF genes, all members of the same CBF subfam-
ily (Supplementary Note) for which CNV has been previously 
implicated in LTT in wheat54, showed patterns of copy number 
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variation (CNV) (SECCE5Rv1G030450, SECCE5Rv1G030460, 
SECCE5Rv1G030480 and SECCE5Rv1G030490; Supplementary 
Table 33 and Supplementary Note).

Transferring superior LTT from rye to wheat by transloca-
tion is an attractive breeding goal. We derived a 5A.5RL trans-
location line in winter wheat ‘Norstar’ using ‘Puma’ rye as the 5R 
donor, thus replacing the wheat 5A CBF cluster (Methods; Fig. 
5a,b). LTT, however, was not notably altered by the translocation 
compared to ‘Norstar’ (Fig. 5c), suggesting that the rye CBF gene 
cluster is activated but, as previously suggested by Campoli et al.53, 
differently regulated in the wheat background. Gene expression of 
‘Puma’ CBFs with CNV were indeed attenuated during treatments 
of cold stress in ‘Norstar5A:5R’ (Methods; Fig. 5c). Therefore, 
transferring LTT from rye into wheat will require indepth under-
standing of differences in the LTT regulatory network between 
rye and wheat.

Discussion
The high-quality chromosome-scale assembly of rye inbred line 
‘Lo7’ constitutes an important step forward in genome analy-
sis of the Triticeae crop species and complements the resources 
recently made available for different wheat species14,55–58 and bar-
ley13,59. This resource will help reveal the genomic basis of differ-
ences in major life-history traits between the self-incompatible, 
cross-pollinating rye and its selfing and inbreeding relatives. Our 
evolutionary analyses demonstrate that rye subspecies are bet-

ter conceptualized as a reticulated group of incipient species and 
that mechanisms such as transposable-element expansion and 
SV between genotypes are probably acting to bring about evolu-
tionary divergence. The joint use of the rye and wheat genomes 
to characterize the effects of rye chromatin introgressions may 
provide a short-term opportunity to breeders as they continue to 
better separate confounding variables from the genetic combina-
tions that best improve yield in various environments; but these 
benefits will ultimately be affected by negative linkage so long as 
whole chromosome arm translocations are involved. Discoveries 
at the single-gene level—such as the contributions offered here to 
pathogen resistance, LTT and male fertility restoration control—
will be best tested and exploited by finer-scale manipulation in 
dedicated experiments12. This is an indispensable prerequisite for 
the development of gene-based strategies that exploit untapped 
genetic diversity in breeding materials and ex situ gene banks to 
improve small grain cereals and meet the changing demands of 
global environments, farmers and society.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41588-021-00807-0.
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Methods
Genome size estimation by flow cytometry. We characterized the landscape of 
S. cereale genome sizes to contextualize the size of the ‘Lo7’ genome and gain an 
impression of genome size variation within the species. Grains from 15 diverse rye 
accessions were from nine providers listed in Supplementary Table 1. Plants of pea 
(seeds provided by Semo breeding station, Smržice, Czech Republic) served as an 
internal reference standard in flow cytometric estimation of nuclear DNA content 
in all accessions, except of the tetraploid accession ACE-1, for which S. cereale 
line ‘Lo7’ was used as a reference. Plants were raised in garden compost in pots 
and maintained in a greenhouse until they reached a height of 10–20 cm. Nuclear 
genome size was estimated essentially as described by Doležel et al.60 using a 
CyFlow Space flow cytometer (Sysmex Partec) equipped with a 532-nm green laser. 
The gain of the instrument was adjusted so that the peak representing interphase 
first growth (G1) nuclei of the standard was positioned approximately on channel 
100 on a histogram of relative fluorescence intensity when using a 512-channel 
scale. Five individual plants per test species were sampled and each sample was 
analysed three times, each time on a different day. A minimum of 5,000 nuclei per 
sample was analysed and 2C DNA contents in pg were calculated from the means 
of the G1 peak positions by applying the following formula:

2C nuclear DNA content
¼ sampleG1 peakmean ´ standard 2CDNA content

standardG1 peakmean

Mean nuclear DNA content (2C) was then calculated for each accession. DNA 
contents in pg were converted to genome size in bp using the conversion factor 
1 pg DNA = 0.978 Gb (ref. 61). Statistical analysis was performed using NCSS 97 
statistical software package (Statistical Solutions). One-way analysis of variance 
and a Bonferroni’s (all pairwise) multiple comparison test were used for analysis of 
variation in monoploid (1C×) genome size. A significance level α = 0.01 was used.

‘Lo7’ genome assembly and gene annotation. Descriptions of the assembly 
methods, descriptions of the data generation and the annotation procedure for 
gene features, are given in the Supplementary Note.

Fluorescence in situ hybridization (FISH). Three-day-old roots of the rye 
accession were pretreated in 0.002 M 8-hydroxyquinoline at 7 °C for 24 h and 
fixed in ethanol:acetic acid (3:1 v/v). Chromosome preparation and FISH were 
performed according to the methods described by Aliyeva-Schnorr et al.62. The 
hybridization mixture contained 50% deionized formamide, 2× SSC, 20% dextran 
sulfate and 5 ng µl–1 of each probe. Slides were denatured at 75 °C for 3 min and 
the final stringency of hybridization was 76%. We used 34–65 nucleotide-long 
5′-labeled oligo probes designed for the in silico identified repeats and published 
probe sequence (Supplementary Table 21). Images were captured using an 
epifluorescence microscope BX61 Olympus equipped with a cooled CCD camera 
(Orca-ER, Hamamatsu). Chromosomes were identified visually on the basis 
primarily of morphology, heterochromatic DAPI + bands and the localization of 
probe pSc119.2.1 (ref. 63) (Supplementary Note).

Gene-level synteny and percentage identity scores between rye and other 
Triticeae species. HC gene sequences from the ‘Lo7’ gene annotation were aligned 
to the annotated transcriptomes of bread wheat7 (T. aestivum cv. ‘Chinese Spring’) 
and barley13 (H. vulgare cv. ‘Morex’) using BLASTn (v.2.9.0+)64 with default 
parameters. The lowest E-value alignment for each gene against the transcriptome 
associated with each subject genome (or subgenome) was selected, with the highest 
bitscore and then longest alignment chosen in the case of a tie. Only reciprocal 
best matches per (sub)genome were accepted. Relative evolutionary distances 
between rye, barley and the wheat subgenomes were estimated using the mean 
percentage identity scores of these filtered matches, calculated in bins of 100 
reciprocal matches (in increments of 20 bins). The positions of the bins on the 
pseudomolecules were taken to be the mean match position of the matches within 
each bin.

Phylogenetic analyses, IBS statistics, Fst, D-statistics and Pn/Ps. The 
genotyping-by-sequencing (GBS) dataset of 603 samples from Schreiber et al.25 
was extended by a 347 further GBS samples from the IPK gene bank (mainly 
wild Secale taxa) and the five samples used in the Hi-C SV-detection study (‘Lo7’, 
‘Lo225’, ‘R1003’, ‘R925’ and ‘R2446’). The resulting sample set (n = 955) and 
passport data are listed in Supplementary Table 34. DNA isolated from the five 
Hi-C samples was sent to Novogene (en.novogene.com/) for Illumina library 
construction and sequencing in multiplex on the NovaSeq platform (paired-end 
150-bp reads, ~140 Gb per sample, S2 flow cell). Demultiplexing, adapter 
trimming, read mapping and variant calling correspond to the approach described 
in Schreiber et al.25, using the new reference for read mapping. The dataset was 
filtered for a maximum of 30% missing data and a minor allele frequency of 1% 
resulting in 72,465 SNPs was used (Supplementary Note). A neighbor joining 
tree was constructed with the R package ‘ape’65, on the basis of genetic distances 
computed with the R package SNPRelate66. Principal component analysis (PCA) 
was performed with smartPCA from the EIGENSOFT v.6.0.1 package (github.
com/DReichLab/EIG) using least square projection without outlier removal. Seven 

rye genetic clusters were designated using the ‘kmeans’ R function, with default 
parameters, using the first three principal components from the PCA as input.

For IBS and Fst analyses, a more stringent filtering regime requiring read 
depth ≥ 6, maximum 5% missing data and call quality ≥ 250 (resulting in 9,538 
SNPs) was selected (Supplementary Note). IBS scores between ‘Lo7’ and the other 
lines in the set were calculated in windows of 100 consecutive SNP loci (at intervals 
of 25 SNP loci) using the snpgdsIBS function in the R package SNPRelate. Fst was 
calculated in the same windows using the snpgdsFst function in the R package 
SNPRelate (using method=’W&H02’). The calculation was performed for every 
pairwise combination of the following groups: ‘Domesticated-like’ (cluster 3), 
‘Wild–S. strictum-like’ (clusters 1, 5 and 6) and ‘Wild–S. sylvestre-like’ (cluster 4).

To assign ancestral states to variant SNPs segregating in rye, exonic variants 
identified in the GBS dataset were coupled to their orthologs alleles in the three 
bread wheat (‘Chinese Spring’)7 alleles using the rye-versus-wheat CDS BLAST 
alignments (see above) and parsing the BLAST alignment strings using the custom 
script blast_get_alleles_at_position.c (https://github.com/mtrw/tim_bioinfo_
tools). Reciprocal best matches were calculated separately for the alignments 
between the rye CDS set and the set of CDSs from each wheat genome. The 
ancestral allele was assigned by consensus among the wheat genomes and, if no 
allele claimed a majority, the variant was omitted from the dataset. Genome-wide 
D-statistics were calculated according to the four-taxon ABBA-BABA method as 
described in ref. 67, with the wheat consensus allele as the outgroup and selections 
of the k-means-assigned clusters selected as the three test populations. Estimator 
variance was approximated via the block jackknife procedure, with 5 Mb exclusion 
bins. The effects of the rye-versus-wheat nucleotide differences falling within 
coding sequences were annotated using SnpEff (v.4, ‘ann’ function), with default 
parameters. Pn/Ps scores (the ratio of counts of nonsynonymous to synonymous 
differences to wheat in variants segregating in rye) were calculated using the 
same binning scheme as was used for Fst and IBS (see above). Pn/Ps scores were 
calculated separately for subgroups of rye clusters representing ‘wild-like’ and 
‘domesticated-like’ ryes separately (see main text). Pn/Ps scores were only estimated 
for bins in which the combined number of rye-segregating variants exceeded nine.

Wheat–rye introgression haplotype identification and classification. We 
assayed for the presence of 1R germplasm in wheat genotypes in silico by mapping 
various wheat sequence data to a combined reference genome made up of the 
pseudomolecules of rye line ‘Lo7’ (this study) and wheat cv. ‘Chinese Spring’7. 
Publicly available data were obtained from WHEALBI project resources68 (n = 506), 
CIMMYT (n = 903) and KSU (n = 4,277). GBS libraries were constructed and 
sequenced for samples from USDA-RPN (n = 875; Supplementary Table 23) as 
described in Rife et al.69. On the basis of the approach described by Keilwagen 
et al.70, reads were demultiplexed with a custom C script (github.com/umngao/
splitgbs) and aligned to the combined reference using bwa mem (v.0.7, arguments 
-M)71 after trimming adapters with cutadapt72. The aligned reads from all panels 
were filtered for quality using samtools73 (v.1.9, arguments -F3332 -q20). The 
numbers of reads aligned to 1 Mb nonoverlapping bins on each pseudomolecule 
were tabulated. The counts were expressed as rpmm ≡ log2(reads mapped to bin 
per million reads mapped). To control for mappability biases over the genome, 
the rpmm for each bin was normalized by subtracting the rpmm attained by the 
‘Chinese Spring’ sample for the same bin to give the normalized rpmm, r.

To investigate the possibility of classifying the samples automatically, visual 
representations of r across the combined reference genome were inspected and 
obvious cases of 1R.1A and 1R.1B introgression were distinguished from several 
other karyotypes, including nonintrogressed samples and ambiguous samples 
showing a slight overabundance of 1RS reads but less discernible signals of 
depletion in 1A or 1B (Supplementary Note). We defined the following features for 
each sample: featureA = –log[(mean(r1A

I) – mean(r1A
N)) × (mean(r1R

I) – mean(r1R
N))] 

and featureB = –log[(mean(r1B
I) – mean(r1B

N)) × (mean(r1R
I) – mean(r1R

N))]. 
Whenever the term inside the log was negative (and would thus give an undefined 
result), the value of the feature was set to the minimum of the defined values for 
that feature. The quantity mean(r1R

I) refers to the average value of r for all bins 
within the terminal 200 Mb of the normally introgressed (I) end of 1R (an N in 
the subscript denotes the terminal 300 Mb of the normally nonintrogressed (N) 
arm) and so forth for other chromosomes. This choice of feature definition meant 
that, wherever little difference in r occurred between 1RS and 1RL, suggesting no 
presence of rye, the factor mean(r1R

I) – mean(r1R
N) would pull the feature values 

close to the origin and differences between r on the long and short arms of 1A or 
1B would pull the values of A or B respectively away from the origin, depending 
upon which introgressions are present. A classifier was developed by training an 
SVM to distinguish nonintrogressed, 1A.1R-introgressed, 1B.1R-introgressed 
and ambiguously introgressed samples, using the function ksvm (arguments 
Type=’C-svc’, kernel=‘rbfdot’, C=1) from the R package kernlab. Classification 
results are given in Supplementary Table 25. Testing was performed by generating 
sets of between 50 and 600 random samples from the dataset and using these to 
train a model, then using the kernlab::predict() to test the model’s accuracy of 
prediction on the remaining data not used in training. This was repeated 100 times 
for each training dataset size.

To confirm the common origin of the 1AL.RS and 1BL.1RS introgressions, 
predicted 1RS carriers were selected to form a combined 1RS panel (over 1,200 

NATURE GENETICS | www.nature.com/naturegenetics

https://en.novogene.com/
https://github.com/DReichLab/EIG
https://github.com/DReichLab/EIG
https://github.com/mtrw/tim_bioinfo_tools
https://github.com/mtrw/tim_bioinfo_tools
https://github.com/umngao/splitgbs
https://github.com/umngao/splitgbs
http://www.nature.com/naturegenetics


ArticlesNaTuRe GeNeTics

lines) to call SNPs. A total of over 3 million SNPs were called with samtools/
bcftools v.1.9 (mpileup -q20, -r chr1R:1-300000000; call -mv). SNPs were filtered 
on the basis of combined minimum read depth of 25, minor allele frequency of 
0.01. A total of >900,000 SNPs were obtained. All IBS percentages were calculated 
and the square root values of per cent different calls were used to derive a heatmap 
for all pairwise comparisons (Supplementary Note).

SV detection in ‘Puma-SK’ and ‘NorstarPuma5A:5R’. To characterize the Fr2 
region in ‘Puma-SK’ and the introgression in ‘NorstarPuma5A:5R’, whole-genome 
sequencing was performed using the Chromium 10x Genomics platform. Nuclei 
were isolated from 30 seedlings and high molecular-weight genomic DNA was 
extracted from nuclei using phenol chloroform according to the protocol of Zheng 
et al.74. Genomic DNA was quantified by fluorometry using Qubit 2.0 Broad 
Range (Thermofisher) and size selection was performed to remove fragments 
smaller than 40 kb using pulsed field electrophoresis on a Blue Pippin (Sage 
Science) according to the manufacturer’s specifications. Integrity and size of the 
size-selected DNA were determined using a Tapestation 2200 (Agilent) and Qubit 
2.0 Broad Range (Thermofisher), respectively. Library preparation was performed 
as per the 10x Genomics Genome Library protocol (https://support.10xgenomics.
com/genome-exome/library-prep/doc/user-guide-chromium-genome-reagent-kit-
v2-chemistry) and uniquely barcoded libraries were prepared and multiplexed for 
sequencing by Illumina HiSeq. Demultiplexing and the generation of fastq files 
were performed using LongRanger v.2.2.0 mkfastq (https://support.10xgenomics.
com/genome-exome/software/pipelines/latest/using/mkfastq; default parameters).

Sequencing reads from ‘Puma-SK’ and ‘NorstarPuma5A:5R’ were aligned 
to the rye line ‘Lo7’ and bread wheat cv. ‘Chinese Spring’7 genome assemblies, 
respectively, using LongRanger WGS (https://support.10xgenomics.com/
genome-exome/software/pipelines/latest/using/wgs; arguments -vcmode 
‘freebayes’). Large-scale structural variants detected by LongRanger were 
visualized with a combination of Loupe (v.2.1.1; https://support.10xgenomics.com/
genome-exome/software/visualization/latest/what-is-loupe; downloaded February 
2019; Supplementary Table 33). Short variants were called using the Freebayes 
software (github.com/ekg/freebayes) implemented within the Longranger v.2.2.0 
WGS pipeline. For determining the introgression, ‘NorstarPuma5A5R’ reads 
which did not map to the ‘Chinese Spring’ reference were aligned to the ‘Lo7’ 
assembly using the LongRanger align pipeline (https://support.10xgenomics.com/
genome-exome/software/pipelines/latest/advanced/other-pipelines). Samtools 
(v.1.9)73 bedcov was used to calculate the genome-wide read coverage across both 
references. CNV between ‘Puma-SK’ and ‘Lo7’ was detected using a combination 
of barcode coverage analysis output by the Longranger WGS pipeline and read 
depth-of-coverage based analysis using CNVnator75 v.0.4 and cn.mops76 v.1.12.0.

Expression profiling of ‘NorstarPuma5A:5R’ and ‘Puma’. RNA from 
‘NorstarPuma5A:5R’ and ‘Puma’ was isolated and sequenced as described 
above. Sequencing adapters were removed and low-quality reads were trimmed 
using Trimmomatic77. RNA reads from ‘NorstarPuma5A:5R’ and ‘Puma’ were 
aligned to the ‘Lo7’ reference using Hisat2 (ref. 78; v.2.1.0; default arguments) 
and transcripts were quantified with htseq (ref. 79; v.11.1; default parameters). 
Differential expression analysis was carried out using DESeq2 (ref. 80; v.3.11; default 
parameters).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The ‘Lo7’ assembly and gene feature annotation data are available via e!DAL at 
https://doi.org/10.5447/ipk/2020/33 and https://doi.org/10.5447/ipk/2020/29. 
The visual suite of resources for assembly assessment are stored at https://doi.
org/10.5447/ipk/2020/32. Raw sequence data generated in the course of the study 
are available at European Nucleotide Archive (ENA) with accession numbers 
PRJEB32636 (PE and MP data for assembly), PRJEB32574 and PRJEB34626 
(Hi-C), PRJEB34439 (10x), PRJEB32587 (CSS), PRJEB35392 (GBS data) and 
PRJEB35461 (RNAseq and IsoSeq for annotation of ‘Lo7’). Chromium 10x 
and RNAseq data for ‘Puma’ and ‘Norstar’ are available at PRJNA564622. The 
SNP matrix used for rye population genetic analyses is available via e!DAL at 
https://doi.org/10.5447/ipk/2020/31. GBS and sequence data generated for the 
USDA and CIMMYT wheat diversity panels are available at ENA with accession 
numbers PRJNA566410, PRJNA566408 and PRJNA566409. Optical map data 
and alignments are available via e!DAL at https://doi.org/10.5447/ipk/2020/30. 
High-stringency transposable element annotations (used for evolutionary analyses) 
are given in Supplementary Table 10, while the larger, low-stringency annotations 
(used for assembly quality comparisons) are available via e!DAL at https://doi.
org/10.5447/ipk/2020/34.

Code availability
The custom miRNA manipulation scripts used in miRNA annotation (SumirFind.
pl, SumirFold.pl, SumirLocate_v2.py and Sumircreen_v2.py) are available at 
https://github.com/hikmetbudak/miRNA-annotation. Two custom scripts used for 

parsing BLAST output (get_alleles_at_position.c and blast_to_snps.c) are available 
at https://github.com/mtrw/tim_bioinfo_tools and custom R functions extending 
or modifying functions of the TRITEX assembly pipeline (version corresponding 
to commit ID 2898e74) are available at https://github.com/mtrw/Sc_genome_
assembly. The custom tool used to demultiplex wheat panel GBS data (splitgbs.c) is 
available at github.com/umngao/splitgbs.

References
 60. Dolezel, J., Kubaláková, M., Paux, E., Bartos, J. & Feuillet, C. Chromosome- 

based genomics in the cereals. Chromosome Res. 15, 51–66 (2007).
 61. Dolezel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and 

genome size of trout and human. Cytom. A 51, 127–128 (2003).
 62. Aliyeva-Schnorr, L., Ma, L. & Houben, A. A fast air-dry dropping 

chromosome preparation method suitable for FISH in plants. J. Vis. Exp. 16, 
e53470 (2015).

 63. Cuadrado, A., Jouve, N. & Ceoloni, C. Variation in highly repetitive DNA 
composition of heterochromatin in rye studied by fluorescence in situ 
hybridization. Genome 38, 1061–1069 (1995).

 64. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local 
alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

 65. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics 
and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).

 66. Zheng, X. et al. A high-performance computing toolset for relatedness and 
principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).

 67. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 
710–722 (2010).

 68. Pont, C. et al. Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 
905–911 (2019).

 69. Rife, T.W., Graybosch, R.A. & Poland, J.A. Genomic analysis and prediction 
within a US public collaborative winter wheat regional testing nursery. Plant 
Genome 11, e180004 (2018).

 70. Keilwagen, J. et al. Detecting large chromosomal modifications using short 
read data from genotyping-by-sequencing. Front. Plant Sci. 10, 1133 (2019).

 71. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–
Wheeler transform. Bioinformatics 26, 589–595 (2010).

 72. Martin, M. Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet J. 17, 10–12 (2011).

 73. Li, H. et al. The sequence Alignment/Map format and SAMtools. 
Bioinformatics 25, 2078–2079 (2009).

 74. Zhang, M. et al. Preparation of megabase-sized DNA from a variety of 
organisms using the nuclei method for advanced genomics research. Nat. 
Protoc. 7, 467–478 (2012).

 75. Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach 
to discover, genotype, and characterize typical and atypical CNVs from family 
and population genome sequencing. Genome Res. 21, 974–984 (2011).

 76. Klambauer, G. et al. cn. MOPS: mixture of poissons for discovering copy 
number variations in next-generation sequencing data with a low false 
discovery rate. Nucleic Acids Res. 40, e69 (2012).

 77. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

 78. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with 
low memory requirements. Nat. Methods 12, 357–360 (2015).

 79. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with 
high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

 80. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

Acknowledgements
We are grateful to M. Knauft, I. Walde, S. Koenig, M. Ziems and S. Thumm (Leibniz 
Institute of Plant Genetics and Crop Plant Research, IPK), J. Ens (University of 
Saskatchewan), C. Uauy and J. Simmonds (John Innes Centre), S. Duncan (Earlham 
Institute), Z. Dubská and J. Weiserová (Institute of Experimental Botany), A. Hastie 
(Bionano Genomics), K. Baruch (NRGene) and S. Taudien (Universitätsmedizin 
Göttingen) for providing technical, laboratory, greenhouse or bioinformatics services.  
A. Fiebig, D. Arend, J. Bauernfeind, T. Münch and H. Miehe (IPK) provided IT services. 
We thank A. Graner for helpful advice. Research for this project was supported by funding 
from: the Czech Science Foundation (grant no. 17-17564S) to H.S.; the Agriculture 
and Agri-Food Canada International Collaboration Agri-Innovation Program to A.L.; 
the Natural Resources Institute Finland Innofood Stategic Funds program to A.S.; the 
Biotechnology and Biological Sciences Research Council Designing Future Wheat 
program (grant no. BB/P016855/1) to A. Hall; the German Federal Ministry of Education 
and Research (BMBF) to K.F.X.M. and U.S. (project de.NBI no. FKZ 031A536) and E.B. 
(project RYE-SELECT no. FKZ 0315946A); the German Federal Ministry of Food and 
Agriculture (BMEL) (WHEATSEQ no. 2819103915) to K.F.X.M.; HYBRO Saatzucht 
GmbH & Co. KG to D.S.; the European Regional Development Fund’s plants as a tool 
for sustainable global development project (grant no. CZ.02.1.01/0.0/0.0/16_019/00
00827) to J.D.; the 2Blades Foundation to B.W.; the Julius Kühn-Institute to B.H. and 
F.O.; KWS SAAT SE & Co. KGaA to V.K.; the Deutsche Forschungsgemeinschaft (grant 

NATURE GENETICS | www.nature.com/naturegenetics

https://support.10xgenomics.com/genome-exome/library-prep/doc/user-guide-chromium-genome-reagent-kit-v2-chemistry
https://support.10xgenomics.com/genome-exome/library-prep/doc/user-guide-chromium-genome-reagent-kit-v2-chemistry
https://support.10xgenomics.com/genome-exome/library-prep/doc/user-guide-chromium-genome-reagent-kit-v2-chemistry
https://support.10xgenomics.com/genome-exome/software/pipelines/latest/using/mkfastq
https://support.10xgenomics.com/genome-exome/software/pipelines/latest/using/mkfastq
https://support.10xgenomics.com/genome-exome/software/pipelines/latest/using/wgs
https://support.10xgenomics.com/genome-exome/software/pipelines/latest/using/wgs
https://support.10xgenomics.com/genome-exome/software/visualization/latest/what-is-loupe
https://support.10xgenomics.com/genome-exome/software/visualization/latest/what-is-loupe
https://github.com/freebayes/freebayes
https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
https://doi.org/10.5447/ipk/2020/33
https://doi.org/10.5447/ipk/2020/29
https://doi.org/10.5447/ipk/2020/32
https://doi.org/10.5447/ipk/2020/32
https://www.ebi.ac.uk/ena/data/view/PRJEB32636
https://www.ebi.ac.uk/ena/data/view/PRJEB32574
https://www.ebi.ac.uk/ena/data/view/PRJEB34626
https://www.ebi.ac.uk/ena/data/view/PRJEB34439
https://www.ebi.ac.uk/ena/data/view/PRJEB32587
https://www.ebi.ac.uk/ena/data/view/PRJEB35392
https://www.ebi.ac.uk/ena/data/view/PRJEB35461
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA564622
https://doi.org/10.5447/ipk/2020/31
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA566410
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA566408
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA566409
https://doi.org/10.5447/ipk/2020/30
https://doi.org/10.5447/ipk/2020/34
https://doi.org/10.5447/ipk/2020/34
https://github.com/hikmetbudak/miRNA-annotation
https://github.com/mtrw/tim_bioinfo_tools
https://github.com/mtrw/Sc_genome_assembly
https://github.com/mtrw/Sc_genome_assembly
https://github.com/umngao/splitgbs
http://www.nature.com/naturegenetics


Articles NaTuRe GeNeTics

no. HO 1779/30-1) to A. Houben; the Montana Wheat and Barley Committee to H.B.; 
the Noble Research Institute, LLC to X.-F. M.; the Australian Research Council (grant 
no. CE140100008) to I.S. and J.M.; Genome Canada and Genome Prairie (grant no. 
CTAG2) to C.J.P.; the National Research Council Canada’s Wheat Flagship Program to 
D.K. and A.S.; the Province of Saskatchewan Agriculture Development Fund to D.B.F.; 
the Bundesamt für Landwirtschaft, Bern (grant no. PGREL NN-0036) to B.K.; the Polish 
National Science Centre (grant nos. DEC-2015/19/B/NZ9/00921, DEC-2014/14/E/
NZ9/00285 and 2015/17/B/NZ9/01694) to M.R.-T., H.B.-B., S.S. and B.M.

Author contributions
N.S. conceived the study and coordinated the research together with H.B., H.B.-B., B.H., 
A. Houben, J.J., V.K., B.K., J.L., A.L., K.F.X.M., M.M., D.M., X.M., H.Ö., F.O., C.J.P., J.P., 
N.R., A.H.S., U.S., S.S., V.T., M.R.-T. and B.B.H.W. M.T.R.-W. and M.M. carried out 
data generation and analysis for genome assembly and data integration. A.B. (Secale 
diversity panel), V.K. (‘Lo7’), B.B., D.B.F., B.H., Q.L., C.J.P. (‘Norstar’ and ‘Puma’) 
and H.B.-B., B.H., V.K., B.M., S.S. and M.R.-T. (Secale genome size estimation panel) 
contributed to provision, curation, cultivation and phenotyping of genetic resources. 
B.B., A. Himmelbach, D.K., S.P., C.J.P. and A.S. generated the sequencing data. J.Č., J.D. 
and J.V. carried out the genome size estimation and chromosome flow sorting. E.B., 
H.Š. and H.T. produced the Bionano optical map. M.B. and A. Houben carried out the 
FISH analysis. A. Hall, G.K., J.K., T.L., K.F.X.M., D.S. and M. Spannagl contributed to 
the gene annotation. H.G., K.F.X.M., M. Spannagl and T.W. contributed to the repetitive 

element annotation and analysis. H.B. and B.S. contributed to the miRNA annotation. 
M.T.R.-W., M.M., M. Schreiber, H.S. and U.S. carried out the diversity and evolutionary 
analysis. M.T.R.-W. and M.M. carried out the Hi-C-based SV detection. B.H., M.H., B.K., 
C.P., B.S., N.T., A.V.V., B.B.H.W. and T.W. carried out the resistance gene identification 
and analysis. B.H., J.M. and I.S. carried out the fertility restorer gene prediction and 
analysis. L.G., M.M., J.P., M.T.R.-W. and B.H. carried out the wheat–rye introgression 
analysis. B.B., A.F., C.J.P. and S.W. carried out the low-temperature tolerance analysis. 
The manuscript was written by M.T.R.-W., B.H. and N.S., with input from all authors. All 
authors have read and approved the manuscript.

Competing interests
V.K. is an employee of KWS SAAT SE & Co. KGaA. D.S. is an employee of HYBRO 
Saatzucht GmbH & Co. KG. All other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41588-021-00807-0.

Correspondence and requests for materials should be addressed to N.S.

Peer review information Nature Genetics thanks Peter Morrell and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

NATURE GENETICS | www.nature.com/naturegenetics

https://doi.org/10.1038/s41588-021-00807-0
http://www.nature.com/reprints
http://www.nature.com/naturegenetics









	Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential
	Results
	Genome assembly, validation and annotation. 
	Rye genome evolution. 
	Large structural variations—mechanisms of genetic isolation
	Reticulate evolution of rye
	Tracking the fate of rye chromatin in wheat improvement

	Rye vigor is in the genes. 
	Fertility restoration in rye and wheat
	Divergence of disease resistance loci in Triticeae
	Frost tolerance


	Discussion
	Online content
	Fig. 1 Rye (‘Lo7’) genome composition and structure over chromosomes 1R to 7R.
	Fig. 2 Dissecting the relationships among rye genotypes.
	Fig. 3 Combined reference mapping as a means to classify wheat and wheat–rye introgression karyotypes.
	Fig. 4 Comparative genomics of rye genes with agricultural importance.
	Fig. 5 The cold tolerance associated region Fr2 in ‘Puma’ and ‘NorstarPuma5A:5R’ translocation line.
	Table 1 Genome assembly and annotation statistics.
	Table 2 Summary of fixed effects estimates from linear mixed model estimating the influence of rye–wheat translocations upon yield, in two wheat diversity panels.




