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Purpose: The knowledge of the contribution of anatomical and physiological parameters to interindivid-
ual pharmacokinetic differences could potentially be used to improve individualized treatment planning
for radionuclide therapy. The aim of this study was therefore to identify the physiologically based pharma-
cokinetic (PBPK) model parameters that determine the interindividual variability of absorbed doses
(ADs) to kidneys and tumor lesions in therapy with 177Lu-labeled PSMA-targeting radioligands.
Methods: A global sensitivity analysis (GSA) with the extended Fourier Amplitude Sensitivity Test
(eFAST) algorithm was performed. The whole-body PBPK model for PSMA-targeting radioligand
therapy from our previous studies was used in this study. The model parameters of interest (input of
the GSA) were the organ receptor densities [R0], the organ blood flows f, and the organ release rates
λ. These parameters were systematically sampled NE times according to their distribution in the
patient population. The corresponding pharmacokinetics were simulated and the ADs (model output)
to kidneys and tumor lesions were collected. The main effect Si and total effect STi were calculated
using the eFAST algorithm based on the variability of the model output: The main effect Si of input
parameter i represents the reduction in variance of the output if the “true” value of parameter i would
be known. The total effect STi of an input parameter i represents the proportion of variance remaining
if the “true” values of all other input parameters except for i are known. The numbers of samples NE
were increased up to 8193 to check the stability (i.e., convergence) of the calculated main effects Si
and total effects STi.
Results: From the simulations, the relative interindividual variability of ADs in the kidneys (coefficient
of variation CV = 31%) was lower than that of ADs in the tumors (CV up to 59%). Based on the GSA,
the most important parameters that determine the ADs to the kidneys were kidneys flow (Si = 0.36,
STi = 0.43) and kidneys receptor density (Si = 0.25, STi = 0.30). Tumor receptor density was identified
as the most important parameter determining the ADs to tumors (Si and STi up to 0.72).
Conclusions: The results suggest that an accurate measurement of receptor density and flow before
therapy could be a promising approach for developing an individualized treatment with 177Lu-labeled
PSMA-targeting radioligands. © 2020 The Authors. Medical Physics published by Wiley Periodicals
LLC on behalf of American Association of Physicists in Medicine [https://doi.org/10.1002/
mp.14622]
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1. INTRODUCTION

Radionuclide treatment is expected to be improved by an
individualized treatment planning approach, that is by consid-
ering the individual pharmacokinetics.1–4 In radioligand ther-
apy it has been shown that the interindividual variability of
the internal absorbed doses (ADs) might be introduced by
from several sources, for example, biokinetic parameters.4–6

Some of these parameters might be measured/estimated prior
to therapy and allow adjustment of the injected activity and
ligand amount.3,7–9 However, quantitative analyses of the
contribution of these parameters to the interindividual vari-
ability of ADs are not available. Such quantitative analyses
can be conducted using sensitivity analysis (SA).

For model development, knowledge of the variability of
the model output in relation to the model input is essential.
By definition, sensitivity analysis examines how the variabil-
ity of a model’s output can be attributed to the variabilities of
the model’s input.10,11 Based on the results of the SA, strate-
gies can then be developed to reduce the variability of output.
SA allows to identify the most important input parameter, for
example, individual anatomical and physiological parameters
(as used in mathematical physiologically based pharmacoki-
netic (PBPK) models), which have a large effect to the model
output, for example, to the ADs. In general, SA methods
can be grouped into two categories: (a) local methods that
consider sensitivities related to a specific set of input parame-
ter values, and (b) global methods, which calculate the contri-
bution of a parameter over the set of all possible input
parameters.

Recently, a variance-based global sensitivity analysis
(GSA) using the Sobol method has been used to investigate
the effect of interindividual variabilities of the time-integrated
activity coefficients (TIACs) and S-values to the calculation
of the organ ADs of 18F-FSPG using the MIRD formalism.4

The interindividual variability of the TIACs and S-values was
computed from the individual TIAC data of five volunteers
(the coefficients of variation CV of the organs ranged from
10% to 57%) and from the individual phantom-specific sets
of S-values of six human computational phantoms (the CVs
of various pairs of the organs ranged from 0.24% to 206%).4

As a result, an accurate determination of individual TIACs
was shown to possibly decrease the interindividual variability
of the ADs in the population (around 90% for the interindi-
vidual variability of ADs in the kidneys based on the main
effect Si value) while the S-values contributed less to the AD
interindividual variability (less than 10% for the interindivid-
ual variability of ADs in the kidneys based on the main effect
Si value).

4 However, the source of the interindividual variabil-
ity of the TIACs (which strongly affects the calculation of
ADs interindividual variability) was not investigated. The
knowledge of the main anatomical and physiological parame-
ters defining/determining the interindividual differences
would possibly allow an individual treatment planning con-
sidering the trade-off between patient load/costs and gain in
treatment efficacy (i.e., ADs) based on the needed measure-
ments. Thus, a systematic study on this topic is needed.

Individual TIACs are usually determined by fitting the
biokinetic data with a sum of exponential functions12,13 or a
physiologically based pharmacokinetic (PBPK) model.8,14

Previously, we showed that the implementation of a PBPK
model for dosimetry has advantages over the sum of exponen-
tial functions in the number of data per fitted parameter.15 Fur-
thermore, PBPK models have been shown to be a powerful
tool to simulate the biokinetics of radiolabeled drugs and to
predict both organ TIACs and ADs during peptide-receptor
radionuclide therapy, radioimmunotherapy and radioligand
therapy.3,9,16,17 Unlike the sum of exponential functions,
PBPK models include anatomical and physiological relevant
mechanisms, such as the distribution of drugs via blood flow,
specific binding, internalization, and release of drug from the
cells, excretion, and physical decay.3,14,18,19 Therefore, by
using PBPK models, the determination of the interindividual
variability of TIACs and AD can be explained by parameters
of the subject (anatomical and/or physiological) and/or the
drug. A strategy to individualize treatment is therefore to
investigate the source of the interindividual TIACs variability
in terms of subject and drug parameters using a PBPK model.

Such strategy can be implemented for example using a SA
with a local or a global approach. In the local SA approach,
the parameter of interest is sampled based on its variability
one-at-a-time (OAT) while fixing other parameters to a certain
value. OATsampling in the local SA method is fast and simple
to implement but can lead to misleading results if significant
interactions between parameters exist.20–22 In contrast, a glo-
bal SA approach perturbs all input parameters of interest in
each sampling step and takes into account the interactions
between the parameters.11 In PBPK models, the global SA is
more appropriate as it perturbs all parameters within a plausi-
ble range and shows the full effect map of the input parameters
to the output.11 The identification of important PBPK model
parameters that affect the interindividual variability of TIACs
(and thus of ADs) is essential for the individualization of
treatment planning in nuclear medicine. Therefore, in this
study, we performed a GSA algorithm using the extended
Fourier Amplitude Sensitivity Test (eFAST) to identify influ-
ential anatomical and/or physiological parameters of a PBPK
model that have a large contribution to the interindividual dif-
ferences of the ADs in 177Lu-labeled prostate-specific mem-
brane antigen (PSMA) targeting therapy to build patient-
specific AD treatment schemes. Finally, we show how the
information extracted from the GSA can be used to individual-
ize the ADs. This is done by performing simulations that
demonstrate how knowledge of the most important parameters
identified by the GSA affects the interindividual variability in
the kidneys and tumor lesions.

2. MATERIAL AND METHODS

2.A. Biokinetic data, PBPK model, parameters,
interindividual variability, and absorbed doses

A population of 13 patients with metastatic castration-re-
sistant prostate cancer who underwent pretherapeutic 68Ga-
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PSMA PET/CT (68Ga-PSMA-H-BED-CC) and post-thera-
peutic planar whole-body scintigraphies after 177Lu-PSMA
I&T RLTwere used in this study.23 The Ethics Committee of
the Technical University Munich approved the retrospective
analysis (permit 115/18 S), and the requirement to obtain
informed consent was waived. Anterior and posterior planar
whole-body scintigraphies were obtained with a double head
gamma camera. The regions of interest (ROIs) were drawn
manually over the source organ. The biokinetic data, that is,
the time-activity data, were calculated from the organ ROIs
using the geometric mean of anterior and posterior counts
with the background corrections. The volume of the tumors
and kidneys were determined using PET/CT.19 Two lesions
with high uptake and no superimposition with other organs/
lesions were selected as tumor one TU1 and tumor two TU2.
The remaining tumor lesions were merged into tumor rest
TUR.

A previously published18,19,24 whole-body PBPK model
for PSMA-targeting therapy was used as the basic frame-
work for the GSA analysis in this study. In brief, the model
includes all physiological and physically relevant mecha-
nisms, such as blood flow, PSMA-specific binding, internal-
ization, and release of 177Lu from the cells, excretion, and
physical decay. Labeled and unlabeled peptides are modeled
separately. The two models are connected by the competi-
tion for binding to the same free receptors and by radionu-
clide decay. All organs such as kidneys, tumor, salivary
glands, liver, spleen, GI tract, prostate, muscle, fat, lung,
bone, red marrow, heart, brain, and skin are connected via
blood flow. A detailed description of the PBPK model used
in this study can be found elsewhere.18,19,24 The PBPK
model for the 177Lu-labeled PSMA-targeting radioligand
therapy contains many fixed parameters that have been
shown to have a marginal effect to the estimation of indi-
vidual TIACs.25 Therefore, the input of interest, as the sub-
ject of the GSA analysis, are those parameters which have

been estimated from the biokinetic data of the patient popu-
lation.18 The list of the investigated parameters in this study
is shown in Table I. The log-normal distribution with a
Latin hypercube sampling method was chosen for the model
parameters, as physiological quantities need to be positive
and this distribution was shown to be a good approximation
for the investigation of the interindividual variability of the
ADs.26

The standard MIRD formalism described by Bolch et al.27

for the calculation of the absorbed dose is implemented:

D rTð Þ¼∑
rs
TIAC rsð Þ�Svalues rT rsð Þ (1)

where D rTð Þ is the total absorbed dose in the target organ rT
due to the irradiations from the source organs rS, TIAC is the
time-integrated activity coefficient of the source organ rS cal-
culated as the ratio of the area under the curve of the time-ac-
tivity curve and administered activity, and S rT rsð Þ are the
S-values of the pair of target rT and source rs organ (Supple-
mental file Table A).18,28 Self-doses were used for the calcu-
lation of the absorbed doses based on S-values of the kidneys
and tumors obtained from the OLINDA/EXM software ver-
sion 1.0.18,28

2.B. Global sensitivity analysis

The eFAST was introduced by Saltelli et al.29 The eFAST
test is a variance-based global sensitivity method that is inde-
pendent of any assumptions regarding model structure (it
does not rely on assumptions as to the functional relationship
between the model output and its inputs).29 Although several
variance-based global sensitivity methods, such as the
Sobol30 or the top marginal variances (TMV)31 method, are
available, they require a larger number of evaluations than
eFAST.11 A relatively low number of model evaluations and
the feature of a good approximation for nonlinear systems

TABLE I. Investigated physiologically based pharmacokinetic (PBPK) model parameters and their corresponding distribution parameters taken from our previous
study.18 The log-normal distribution was used for the simulations to avoid negative PBPK model parameter values.

Parameters Description

Normal distribution Log-normal distribution

Mean SD Meana SDb

[RK,0] (nmol/l) Receptor density in kidneys 17.61 2.90 2.87 0.16

[RTU1,0] (nmol/l) Receptor density in tumor 1 44.94 26.87 3.65 0.55

[RTU2,0] (nmol/l) Receptor density in tumor 2 47.38 29.62 3.69 0.57

fK,C (ml/min g) Kidney age-independent blood flow 4.26 0.65 1.43 0.15

fTU1 (ml/min g) Flow of tumor 1 0.13 0.11 −2.27 0.74

fTU2 (ml/min g) Flow of tumor 2 0.26 0.45 −1.99 1.16

λKrelease (1/min) Kidneys release rate 2.26e-4 0.61e-4 −8.43 0.26

λTUrelease (1/min) Tumor release rate 1.40e-4 5.73e-5 −8.91 0.38

xf (unitless) Tumor flow factor 0.53 7.00e-5 −0.63 1.30e-4

xv (unitless) Ratio of actual volume to the CTvolume 0.64 0.26 −0.52 0.39

aMean of the log-normal distribution calculated as 2� ln meannormalð Þ�0:5� ln mean2normalþSD2
normal

� �
.

bSD of the log-normal distribution calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln mean2normalþSD2

normal

� ��2� ln meannormalð Þ
q

.
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(such as the here used PBPK model) make eFAST the appro-
priate tool for the GSA analysis. The method provides a way
to estimate the expected value E and variance V of the model
output and the contribution of input parameters and their
interactions to this variance, given physiologically feasible
parameter ranges for the inputs. The eFAST technique out-
puts two types of sensitivity measures, that is, main effects
(Si) and total effects (STi). The main effect Si of an input
parameter i represents the reduction in variance of the output
if the “true” value of parameter i would be known, for exam-
ple, the Si value of input parameter fK,C for the output of ADs
to the kidneys shows the relative reduction of the interindi-
vidual variability of the ADs in the kidneys if the exact “true”
value of fK,C would be known. The total effect STi of an input
parameter i represents the proportion of variance remaining if
the “true” values of all the other parameters ∼ i are known:
For example STi of input parameter fK,C for the output “ADs
to the kidneys” shows the interindividual variability of the
ADs in the kidneys due to solely the variability of fK,C (be-
cause the exact “true” values of all other parameters are
assumed known). The calculation of the main effect Si and
the total effect STi is a standard practice in GSA.4,11,29 In this
study, the main effect Si and total effect STi of the input
parameters of the PBPK model used for treatment planning
in PSMA therapy to the interindividual variabilities of the
absorbed dose (model output) were quantitatively investi-
gated.

The main concept of the FAST method is the conversion
of the k-dimensional integral in Eq. (2) into a one-dimen-
sional integral based on the Weyl theorem.32

E Yð Þ¼
Z
Ωk
f Xð Þp Xð ÞdX (2)

where the expected value of the output E Yð Þ is calculated by
the k-dimensional integral in the input space Ωk of the product
between the model f Xð Þ and the joint probability density func-
tion of the input p Xð Þ. A unique frequency ωi is assigned for
each input parameter Xi and then transformed according to

Xi sð Þ¼Gi sin ωisð Þð Þ, (3)

where Gi is the transformation function and s is a scalar vari-
able varying over the range -∞<s <∞. All the factors are
changed along a curve that scans the input space Ωk for differ-
ent values of s. Note that the oscillation of Xi only depends
on its corresponding ωi. The model output has its own peri-
odicities combined with different frequencies of the input ωi

and does not depend on the model f Xð Þ. Therefore, if the ith
input parameter has a strong effect on the model output, the
oscillations of the output at the ωi will have a high amplitude.
The k-dimensional integral in Eq. (2) can be estimated by29

E Yð Þ¼
Z π

�π
f sð Þds, (4)

where f sð Þ¼ f G1 sin ω1sð Þð Þ,G2 sin ω2sð Þð Þ, . . .,Gk sin ωksð Þð Þð Þ.
The total variance of the model output can be approximated by
using Fourier analysis:

V Yð Þ¼ 1
2π

Z π

�π
f 2 sð Þds�E2 Yð Þ≈2 ∑

N

j¼1
A2
j þB2

j

� �
, (5)

The function f sð Þ is symmetric around s¼�π=2 for a set
of odd frequencies. Therefore, we restricted the range of inte-
gration from �π,πð Þ to �π

2 ,
π
2

� �
halving the number of

required evaluations (NE), that is, Ns. In this study, NE is the
total number of simulations of the PBPK model using the
sampled parameters. The Fourier coefficients were calculated
as follows

Aj¼ 1
Ns

f sNoð Þþ ∑
Nq

q¼1
f sNoþq
� �þ f sNo�q

� �� �� cos j
π

Ns
q

	 
( )
,

(6)

Bj¼ 1
Ns

∑
Nq

q¼1
f sNoþq
� �� f sNo�q

� �� �� sin j
π

Ns
q

	 
( )
, (7)

where Ns¼ NEþ1ð Þ=2, Nq¼ Ns�1ð Þ=2, and
No¼ Ns�1ð Þ=2: The partial variance of the output due to
the effect of input i is approximated by

Vi Yð Þ¼ 2 ∑
M

p¼1
A2
pωi
þB2

pωi

� �
, (8)

where M is the number of the maximum harmonic we con-
sider. The main effect Si of parameter i is calculated as

Si¼Vi Yð Þ
V Yð Þ , (9)

where Vi Yð Þ is the variance of output Y due to the effect of
parameter i [Eq. (8)] and V Yð Þ is the total variance of output
Y [Eq. (5)]. The partial variance of the complementary set of
the input parameter is calculated according to

Vci Yð Þ¼ 2 ∑
M

p¼1
A2
pω∼ i
þB2

pω∼ i

� �
(10)

By using eFAST, the user could estimate the total effect
indices (as in the Sobol method) together with estimation of
the complementary set Vci. Vci is calculated by assigning a
high frequency ωi for the input of interest i and a low fre-
quency ω∼ i with maximum values shown in Table II to the

TABLE II. Combinations of the total number of model evaluations and fre-
quencies as suggested in the literature29 used for the frequency-based sam-
pling in Eq. (3).

Total number of model
evaluations (NE)

Frequency of the input of
interest i (ωi) max ω∼ ið Þ

129 16 2

257 32 4

513 64 8

1025 128 16

2049 256 32

4097 512 64

8193 1028 128
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remaining input. Table II shows all sets of frequencies used
in this study. Supplemental File Table B shows the example
of sets of frequencies used in this study according to Table II.

The total effect STi of input parameter i is calculated as

STi¼ 1�Vci Yð Þ
V Yð Þ , (11)

where Vci Yð Þ is the partial variance of the complementary
set, calculated using Eq. (10), and V Yð Þ is the total variance
of output Y , calculated using Eq. (5). For the sampling, a fre-
quency-based sampling method for eFAST as suggested by
Saltelli et al.29 was used in this study, that is,

Xi sð Þ¼Gi sin ωisð Þð Þ¼ 1
2
þ 1
π
arcsin sin ωisþφið Þð Þ, (12)

where s is a modified scalar variable varying over the range
-π/2<s<π/2, and ωi is the frequency value used for parameter
Xi and φi is a random phase-shift chosen uniformly between
0 and 2π. Parameters of interest Xi were sampled from the
variability shown in Table II (log-normal). The frequencies
show a specific number related to the sinusoidal functions
which were assigned to each parameter according to Eq. (12),
Table II and Supplemental File Table B. The vector of the
input parameters of interest Xi was generated using Eq. (12)
with frequency ωi (Table II). While, the vectors of the com-
plementary parameters X ∼ i (all parameters outside the
parameter of interest) were generated using Eq. (12) with
maximum frequency of ω∼ i (Table II and Supplemental File
B). Note that a new set of model evaluations is needed to
compute each of the k complementary variances Vci. Conse-
quently, the total number of PBPK model simulations NE to
calculate the main and total effects is

k 2Mωmaxþ1ð Þ, (13)

where k is the number of the complementary variance, M is
the interference factor (factor used to avoid the interference
of the frequencies in the sampling)29 with a value of 4 as sug-
gested in the literature29 and ωmax or (ωi) is the frequency of
input of interest.

2.C. Study workflow

The PBPK model was implemented using Simbiology/
MATLAB software version R2019b (MathWorks, Inc., Nat-
ick Massachusetts, USA 2019). The outputs of interests for
the GSA analysis were the ADs to kidneys and tumor
lesions. There were three different types of tumor in the
model, that is, two tumors (lesions) TU1 and TU2 and tumor
located in the remainder of the body TUR. An in-house pro-
gram based on the MATLAB software was implemented to
calculate Si and STi using the eFAST algorithm29 as
described above. The most important PBPK parameters that
strongly affect the interindividual variability of ADs in kid-
neys and tumors were analyzed for a total injected amount of
100 nmol and an activity of 7.4 GBq. The model input
parameters were obtained from previous work (Section 2.A
and Table I) and were processed using in-house software for

the GSA. The following computational settings were used
for the GSA: interference factor M equal to 4 as suggested in
the literature,29 parameters with log-normal distribution to
avoid any negative value of the PBPK parameters,5 Latin-hy-
percube sampling strategy, and frequency-based sampling
method.29 Figure 1 shows the flowchart of the workflow in
this study.

The interindividual variability of the calculated ADs in
this study only depend on the variability of TIACs calculated
using the PBPK model as the S-values were fixed as sug-
gested in the literature.4 The main effect Si and total effect STi
of parameter i were calculated from the simulated ADs.
Model simulations were repeated until the main effect Si and
total effect STi of all parameters for certain NE were collected.
Increasing numbers of samples NE were calculated, that is,
129, 257, 513, 1025, 2049, 4097, and 8193, to check the sta-
bility (i.e., convergence) of the calculated main effects Si and
total effects STi.

29 The NE which generated the main effect Si
and total effect STi with a difference of less than 1% to the
lower consecutive number of the investigated NE was defined
as the NE with a converged Si and STi. Finally, simulations
were performed to investigate how knowledge of the "true"
value of the input parameters with the highest Si, for example,
fK,C, [RTU1,0] and [RTU2,0], affects the variability of the ADs
in the kidneys and tumor lesions.

3. RESULTS

Figure 2 shows an example of the frequency-based sam-
pling of the population PBPK parameters. The same sam-
pling method was used to investigate the effect of each of the
chosen input parameters in Table I on the interindividual vari-
ability of the ADs in the kidneys, TU1, TU2 and TUR.

The interindividual variabilities of the ADs in the kidneys,
TU1, TU2, and TUR are shown in Fig. 3. The coefficients of
variation CV (ratio of the standard deviation to the mean) of
the ADs were higher for the tumors compared to the kidneys,
that is, (4.9 � 1.5) Gy, CV = 31%, (15.0 � 8.3) Gy, CV =
55%, (15.5 � 9.1) Gy, CV = 59%, and (18.6 � 7.7) Gy,
CV = 41% for the ADs to kidneys, TU1, TU2, and TUR,
respectively. The ADs to the kidneys and to the tumor lesions
showed a relatively low correlations (correlation coefficient
less than 0.1).

Figures 4 and 5 show the effect of the number of model
evaluations NE on the estimated Si and STi values, respec-
tively. In most of the cases, NE of about 8193 is needed to
assure the convergence of the estimation of the main effect Si
and the total effect STi.

The most important PBPK parameters that determine the
interindividual variability of ADs in tumor and kidneys were
successfully identified using the eFAST method (Fig. 6). For
example, the most important three parameters that affect the
interindividual variability of the ADs in the kidneys (other
parameters had Si and STi less than 10%) were the age-inde-
pendent kidney flow fK,C (Si = 0.36, STi = 0.43), the recep-
tor density in the kidneys [RK,0] (Si = 0.25, STi=0.30), and
the kidneys release rate λKrelease (Si = 0.23, STi = 0.27).
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Tumor receptor densities and release rates were identified
as the important parameters that determine the interindividual
variability of ADs in TU1, TU2, and TUR (other parameters
had Si and STi less than 0.1, except for TUR). For example, in
TU1: [RTU1,0] (Si = 0.59, STi = 0.71) and λTUrelease
(Si = 0.11, STi=0.16), in TU2: [RTU2,0] (Si = 0.57,
STi = 0.72) and λTUrelease (Si = 0.11, STi = 0.17), in TUR:
[RTU1,0] (Si = 0.13, STi = 0.19), [RTU2,0] (Si = 0.17,
STi = 0.24) and λTUrelease (Si = 0.21, STi = 0.26).

Knowing the “true” value of fK,C by fixing the number to
a certain value, for example, the mean value (Table I),
decreased the CV of the variability of the ADs in the kidneys
from 31% to 23% (Supplemental File Table C and Fig. 7).
This level of decrease in the variability from 31% to 23%,
that is, %Diff = 26%, is similar to the predicted level of rela-
tive decrease shown by the Si values, that is, 36%. In contrast,
the less important parameters determining the interindividual
variability of the ADs in the kidneys predicted by the Si

value, for example, tumor receptor densities were found to
have a marginal effect on the %Diff of the ADs in the kidneys
(Supplemental File Table C and Figure A). The same results
were also found for the ADs to tumors where the percentages
of the Si values were able to reflect the decrease level of the
ADs variability %Diff (Supplemental File Table C and
Fig. 7). Additional simulations were performed to investigate
the effect of fixing the fK,C and [RTU1,0] to the 25th and 75th
percentile values to the variability of the ADs in the kidneys
and TU1. Again, the relative decreases of the Si values for the
parameters fK,C and [RTU1,0] were also reflecting the decrease
level of the variability of the ADs (Supplemental File
Table C).

4. DISCUSSION

Individualized therapy planning in nuclear medicine has the
potential to improve the treatment outcome.2,3,5 However,

FIG. 1. The flowchart of the workflow in this study. The calculations of the main effect Si and total effect STi were repeated for different NE numbers as shown in
Table II. The indices i and k are showing to the input of interest and model evaluations number, respectively. In brief, the parameters (Table I) were sampled
using the frequency-based sampling [Eq. (12)] to generate the vectors of input of interest Xi and the complementary set X ∼ i for certain number of NE. Total of
NE model simulations were performed using the vectors of Xi and X ∼ i and the ADs to the kidneys and tumors were calculated from each simulation.
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FIG. 2. The histogram of the frequency-based sampling [Eq. (3)] of the PBPK model parameters (Table I) used as the input for the GSA with 8193 evaluations.
The sampling was done using the Latin-hypercube sampling strategy and log-normal distribution to avoid negative values. The distributions of the sampled
parameters are asymmetrical due to the used log-normal distribution. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 3. The histogram of the interindividual variability of the population ADs in the kidneys, TU1, TU2, and TUR generated as the output of the PBPK model
using the input parameters. The input of the PBPK model was the sampled parameters (Table I). [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 48 (2), February 2021

562 Hardiansyah et al.: Individualization of 177Lu-PSMA therapy 562

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


individualized treatment planning is not always feasible in clin-
ical practice due to its complexity and high effort. Therefore,
the treatment is often based on a standard activity which will
result in a broad distribution of doses in the target organs and
the organs at risks in the patient population (Fig. 3). Therefore,
a study to investigate the basis of the interindividual variability
of the ADs is needed to possibly improve therapy by adapting
the treatment planning to the individual patient using individ-
ual anatomical or physiological parameters.

In this study, we used a PBPK model and a GSA to inves-
tigate the source of TIACs/ADs interindividual variability.
By using the PBPK model and a GSA, TIACs and ADs
interindividual variability can be explained by the interindi-
vidual variability of subject and/or drug-dependent parame-
ters. The PBPK model consists of fixed parameters and of
estimated parameters. The latter were obtained from the fit of
the PBPK model to individual biokinetic data.18 Our previ-
ous study showed a marginal effect of changed fixed parame-
ters to the estimation of individual TIACs.25 Therefore, in
this study, we investigated the effect of the interindividual
variability of the estimated parameters (Table I) on the vari-
ability of the ADs in 177Lu-labeled PSMA-targeting radioli-
gand therapy using a GSA and a PBPK model.

In this study, we show (a) the application of a GSA for a
PBPK model previously developed for 177Lu-labeled PSMA-

targeting radioligand, (b) the distribution of the absorbed
doses (ADs) in kidneys and tumor in the population, defined
by the distribution of the input parameters, in 177Lu-labeled
PSMA-targeting radioligand therapy as a result of the
PBPK model (Fig. 3), (c) correlations between the ADs in
the kidneys and tumor lesions with the physiologic parame-
ters of the patient (Figs. 4 and 5), (d) correlations between
the ADs (Supplemental File Figure A), and (e) the effect of
knowing an important physiologic parameter identified by
the GSA on the uncertainty of the ADs in kidneys, TU1 and
TU2 (Fig. 7).

Figure 3 shows the histograms of the ADs in the kidneys
and tumor lesions. The interindividual variability of ADs in
the kidneys (CV = 30%) is lower than that in tumor (CV up
to 59%) in all cases. This result compares favorably with the
studies showing a large variation of tumor ADs in patients
compared to the organ at risk ADs such as kidneys.5,28,33

Based on these broad distributions of the ADs to kidneys and
tumor lesions in the population, a standard treatment is not
optimal for all patients. It is therefore necessary to identify
the most important physiological parameters that can reduce
this large interindividual variability of AD values. For this
purpose a GSA is well suited. Another result showed a weak
correlation between the ADs in the kidneys and in the tumor
(correlation coefficient less than 0.1).

FIG. 4. Convergence of the calculated main effect Si for kidneys TU1, TU2, and TUR. Various numbers of model evaluation NE and its corresponding frequencies
(Table II) were analyzed to ensure the convergence of the calculated main effects Si and total effects STi. [Color figure can be viewed at wileyonlinelibrary.com]
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Based on the convergence test (Figs. 4 and 5), a total num-
ber of at least 8193 model evaluation NE is sufficient to con-
verge the calculation of the main effect Si and total effect STi
values in all organs. The total number of evaluations needed
to converge the Si and STi calculations is considerably higher
than that reported by Zvereva et al. (i.e., NE ~ 800).4 This
result is as expected, as a more complex model such as the
PBPK model used in this study may increase the necessary
total number of evaluations NE10,29,30 compared to the MIRD
model used by Zvereva et al.4

A GSA allows attributing the distribution of an output to
different inputs. We therefore investigated the most important
parameters (inputs) determining the different organ doses
(outputs) for a population of thirteen patients treated with a
177Lu-labeled PSMA-targeting radioligand. Based on the
used PBPK model together with the elsewhere determined
parameter distribution in the population18 we could identify
those parameters which determine the largest differences of
absorbed doses in kidneys and tumors between patients and
which, therefore, maybe should be taken into account during
individualized treatment planning. As a result, we could
demonstrate by using the GSA that for an individualized pre-
diction of the kidneys dose the parameter flow fK,C is most
important. For the tumor dose the receptor density parameters
are most relevant (Fig. 6).

To individualize therapy the inherent variability (i.e., not
knowing the individual parameters of a patient) needs to be
reduced. In this study, we showed the importance of the organ
receptor densities and flows to decrease the variability of the
individual ADs during 177Lu-labeled PSMA-targeting radioli-
gand therapy. It has been shown that positron-emission
tomography (PET) imaging can be used to measure the cell-
surface concentrations of receptors in tumor lesions and kid-
neys flow.34,35 Therefore, the organ receptor densities and
flows possibly can be determined accurately for an individual
patient before treatment with 177Lu-labeled PSMA-targeting
radioligands to— partially — individualize the treatment.

Another strategy to reduce the interindividual variability
of ADs, instead of directly measuring the flow and receptor
density, is to identify further covariates and clinical data (in-
cluded as Bayesian knowledge or in the nonlinear mixed
effect model style) and by measuring the patient prior to ther-
apy. In addition, peri-therapeutic measurements of the first
cycle allow to identify important parameters which determine
the pharmacokinetics in the later phase and to adapt the
remaining cycles accordingly. In Kletting et al.,19 it has been
shown that the receptor density, flow and release rates can be
estimated with good accuracy by simultaneously fitting the
parameters to PET and therapy data. Some of the parameters
can even be determined prior to the first cycle.3 In

FIG. 5. Convergence of the calculated total effect STi for kidneys TU1, TU2, and TUR. Various numbers of model evaluation NE and its corresponding frequen-
cies (Table II) were analyzed to ensure the convergence of the calculated main effects Si and total effects STi. [Color figure can be viewed at wileyonlinelibrary.c
om]
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conclusion, the GSA can be used to define which parameters
need to be measured to individualize therapy, for example, by
adapting the injected activity.

A specific PBPK model was used for the analysis.18,23

Clearly, a fit of a sum of exponentials for each organ or tumor
could also have been used. However, in this case a larger num-
ber of parameters are needed,36 which (a) results in a higher
uncertainty of each fit parameter and (b) it remains unclear
how this specific parameter could be measured (except for the
specific fit to the therapeutic time-activity curve which is
defining it). This is very different for a PBPK model where the
parameters have a physiological meaning and thus could possi-
bly be measured before treatment, for example, by a theranostic
PET or SPECT study. Such a measurement is impossible when
using the fitting of sums of exponentials due to (a) the short
half-lives of the diagnostic radionuclides, (b) the use of differ-
ent radioligands and (c) different amounts of substances.8,9 In
addition, correlations between the TIACs of different organs
and/or tumors are not available. The PBPK model used in this
study has been proven to be a relatively “well-suited” model
for simulating the biodistribution of a 177Lu-labeled radioli-
gand targeting PSMA based on the physiological parame-
ters.18,23 Therefore, even if different models exist, the
physiological parameters should mostly be the same as they
reflect physiological information of the patients.

The main idea of the GSA is to search for important
parameters (shown by the main effect Si and total effect STi
values) determining the variability of the ADs. Then, for
every important parameter one can check, if the possible
improvement in therapy justifies the cost of determining these
parameters to individualize the treatment planning. In the last
part of this study, simulations were performed to show how
the variability of the ADs in the kidneys and tumor lesions is
reduced when a true value of a parameter is known for a
patient. As a result, knowing the true value of the fK,C,
[RTU1,0] and [RTU2,0] were able to decrease the variability of
the ADs in the kidneys and tumor lesions to the level which
was predicted by the Si values. These results show an impor-
tant benefit of the GSA for the development of individualiza-
tion in internal dosimetry (at the example of a 177Lu-labeled
PSMA-targeting radioligand).

Here, we used the GSA for the analysis of the interindivid-
ual variability of the ADs. Curve fitting provides information
about the estimated individual ADs. These individual ADs
are different between patients. Although the calculation of
the interindividual variability of ADs is possible using curve
fitting for all patients in a population, identification of the
source of the interindividual variability using curve fitting
alone is not possible. Here the GSA takes an important part:
GSA provides information about the most important

FIG. 6. Map of the main effect Si and total effect STi for all investigated inputs for the variability of the population ADs in kidneys, TU1, TU2, and TUR. In gen-
eral, parameters related directly to the calculated organ ADs were identified as the parameters with a strong effect to the variability of the population ADs based
on the main effect Si and total effect STi values, for example, tumor receptor density [RTU1,0] to the AD in TU1.
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parameter(s) determining the interindividual variability of the
ADs in the kidneys and the tumor lesions in a population
which curve fitting can not.

Input, processing and output of the GSA in this study have
the following limitations.

For the input of the GSA:

1. A specific PBPK model18,23 was used for the analysis.
Clearly, a model which is more supported by the data
could exist. However, as the most important physiologi-
cal parameters are included in our model, we do not
expect that important differences in the results could
occur when using such a better PBPK model.

2. The model parameters are assumed to be known in this
study, and consequently also the TIACs. Although the
intraindividual variability from the uncertainty of an
individual dosimetry has been reported to be about 10-
20% in several studies,5,6,26 this is a common

assumption.4 Nevertheless, the performed GSA should
yield reliable hypotheses for a knowledge-based indi-
vidualization approach and thus optimization of treat-
ments in nuclear medicine.

3. The used S-values are not patient specific. Assuming
additional distributions for the S-values and including
these as input in the GSA would result in a large
increase in calculation times. This investigation was
not performed as it has been shown that the S-values
have a marginal effect to the interindividual variability
of the ADs.4

4. The model contains fixed parameters, which were
assumed to be “true” for all patients. Clearly, this is not
the case, however, we have shown earlier a marginal
effect of changed fixed parameters to the TIACs due to
the fitting of the individual parameters.25

5. The population used for the definition of the parameter
distribution is relatively small (n = 13). Therefore a
study based on a larger population is desired. Never-
theless, the important input variabilities can be calcu-
lated, which largely determine the output variabilities.

6. The parameter distributions were assumed to follow a
log-normal distribution. Different parameter distribu-
tions restricted to positive values could be used, to
investigate an effect on the results. We used the log-
normal distribution and Latin hypercube sampling that
has been shown to be a good approximation for analyz-
ing the interindividual variability of the ADs.26

For the processing of the GSA:

1. Other GSA algorithms could have been used. However,
a relatively low number of model simulations and the
feature of a good approximation for nonlinear systems
(such as the here used PBPK model) make eFAST the
appropriate tool for the GSA.11,29

2. A higher sampling number NE could have been used.
However, our investigation of the dependence of the
GSA results on NE demonstrated a small change in
main and total effect for the used maximum NE =
8193 compared to NE = 4097 (<1%).

For the output there is a limitation that not all interactions
of the input parameters were used for the analysis, but only
main and total effects. The reason for this is that there would
be too many “results” (i.e., all possible interactions for all
outputs) which makes the analysis difficult. Therefore, the
calculation of the main effect Si and the total effect STi is
standard practice in variability studies.4,11,20,29

5. CONCLUSIONS

We have shown the first implementation of a GSA for a
whole-body PBPK model developed for 177Lu-labeled
PSMA-targeting radioligand therapy. By using a GSA, we
identified the most important parameters that lead to the
broad distributions of the ADs to kidneys and to tumors in

FIG. 7. The normalized histogram showing the effect of knowing the physio-
logic parameters, that is, fK,C (black), [RTU1,0] (blue), and [RTU2,0] (green), to
the interindividual variability of the ADs in kidneys, TU1 and TU2. The orig-
inal ADs are shown in red. [Color figure can be viewed at wileyonlinelibra
ry.com]

Medical Physics, 48 (2), February 2021

566 Hardiansyah et al.: Individualization of 177Lu-PSMA therapy 566

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


the population (CVs ranged from 31% to 59%). We have
shown that the information obtained from the GSA makes it
possible to identify those physiological parameters whose
knowledge leads to the largest reduction in the uncertainty of
ADs. These results show that a quantitative pre- and/or
peritherapeutic measurement to precisely determine the indi-
vidual values of the relevant model parameters may be a pos-
sible approach to individualized treatment planning. Thus,
based on the PBPK model and the knowledge of these rele-
vant individual parameters, the actual therapy could then pos-
sibly be improved by optimizing the activity and the ligand
amount administered.
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