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Abstract— Humans must remain unharmed during their
interaction with robots. We present a new method guaranteeing
impact force limits when humans and robots share a workspace.
Formal guarantees are realized using an online verification
method, which plans and verifies fail-safe maneuvers through
predicting reachable impact forces by considering all future pos-
sible scenarios. We model collisions as a coupled human-robot
dynamical system with uncertainties and identify reachset-
conforming models based on real-world collision experiments.
The effectiveness of our approach for human-robot co-existence
is demonstrated for the human hand interacting with the end
effector of a six-axis robot manipulator with force sensing. By
integrating a human pose detection system, the efficiency of
robot movements increases.

I. INTRODUCTION

Humans and robots are sharing their workspaces, collabo-
rating, and interacting with each other. Trending application
areas include collaborative manufacturing, assistive robotics
for rehabilitation and elderly care, and robotic surgery. When
designing robot controllers, safety is one of the top priorities;
humans should never be harmed or injured. To mitigate pain,
ISO/TS 15066 [1] defined interaction-force thresholds for
each body part, which should not be exceeded. However,
guaranteeing safety through limiting these forces is a chal-
lenging task:

• The human body is capable of performing a range of
movements, making it difficult to predict exact collision
scenarios.

• Interaction forces depend on the mechanical properties
of robots and humans. These are subject to uncertainty,
e.g., stiffnesses changes according to muscle activity.

• Varying tasks and diverse environments create many
possibilities for collision, thus, offline assessments be-
come infeasible. Therefore, an online approach should
be preferred, considering only the current situation.

• To guarantee safety properties despite uncertainties,
formal methods should be used.

We propose to tackle these challenges through an online
verification approach based on human pose detection, fail-
safe planning, and reachability analysis. The fail-safe planner
decides whether an upcoming motion command can be exe-
cuted by verifying the safety of possible fail-safe maneuvers.
The online proofs are based on reachability analysis, which
checks, whether all possible interaction forces are within
specified limits. Reachable sets are computed using a model

Authors are with Cyber-Physical Systems Group, Department of In-
formatics, Technical University of Munich, 85748 Garching, Germany
[stefan.liu,althoff]@tum.de

of the coupled human-robot interaction dynamics. Uncertain-
ties in the system, such as human velocity, collision time,
varying stiffnesses, control performance are all modeled as
sets, and the interaction dynamics are identified in a way that
preserves reachset conformance with real behaviors.

Most of the previous approaches only assess safety without
proving thresholds. Shivakumar et al. [2] propose that impact
forces with environmental objects can be predicted using a
spring-damper model or an energy-based model. Yamada et
al. [3] describe how to design the thickness of a viscoelastic
coat for robots to avoid exceeding pain limits during colli-
sions. Ikuta et al. [4] introduce a danger index relative to the
maximum tolerable collision force at the end effector, which
depends on factors such as the robot’s mass and velocity and
joint- and and coating elasticities. Heinzmann and Zelinski
[5] propose an online safety controller that derives admissible
control torques from the maximum collision forces of a rigid
robot, coupled with scaling of the robot velocity. Models
used in [3]–[5], however, assume that human is a rigid
obstacle, which reduces uncertainty but contributes to a
conservative force estimation. Post-collision force-limiting
strategies in Navarro et al. [6] and Li et al. [7] focus
on reactive behavior for overshoots during the interaction,
however, it cannot guarantee impact-force limits. Some non-
mentioned works use the model provided in ISO/TS 15066
[1] to guarantee force limits. However, Kirschner et al.
[8] reported that the model is inaccurate and unsuitable
for estimating collision forces. In contrast to these non-
formal studies, we consider impedance models with reachset
conforming uncertainties to provide formal guarantees.

In addition, alternative metrics for reducing impact injury
have been proposed, involving velocity [9], [10] or energy
and power [11]–[14], which are easier to evaluate, since only
the robot model is required. Haddadin et al. [9] realized that
injury occurrence is directly related to the impact velocity
beyond a certain robot mass. A database has been imple-
mented by Mansfeld et al. [10], which can be used for online
and offline injury assessments based on collision speeds and
robot modeling. Meguenani et al. [11] indirectly limit impact
force by limiting the kinetic and potential energy of the
robot. Raiola et al. [12] scale the stiffness and damping of
impedance controllers to guarantee energy and power limits.
The port-Hamiltonian formulation of coupled human-robot
dynamics in [13], [14] allows one to directly control energy
in physical interaction to preserve passivity. The difficulty
with speed, energy, and power metrics is that suitable limits
are unavailable, or are based on the non-formal derivations
from [1]. In contrast, we verify established force-based pain



limits [1] for humans.
Our study is the first one that uses formal methods to

verify controllers for physical human-robot interaction. In
addition, we provide an identification method for models and
uncertainties based on real-world experiments. Also, other
methods for formal verification, such as differential dynamic
logic theorem-proving [15] and inevitable collision states
[16] consider uncertainties in dynamical systems.

This study is structured as follows: we define the safety
properties to be verified in Sec. II. Modeling and identifi-
cation of the coupled human-robot dynamics are discussed
in Sec. III. The impact-force-limiting controller is presented
in Sec. IV. The experimental evaluation in Sec. V demon-
strates the effectiveness of our approach on a real interaction
scenario, followed by the conclusions in Sec. VI.

II. SAFETY OBJECTIVES

This section poses the safety problem that is encountered
inbetween humans and robots. We denote sets in calligraphic
letters (e.g., A), matrices with upper case letters (e.g., A),
vectors by !·, and scalar values by lower case letters (e.g.,
a). Considering a system with state vector !z, input vector
!u, and parameters !p, of which the dynamical equation is
!̇z = !f(!z, !u, !p). We make use of reachable sets, which are
defined as follows:

Definition 1 (Reachable Set). Given the initial set Z0, the
uncertain input set U , and the non-deterministic parameter
set P , the reachable set of !̇z = !f(!z, !u, !p) at time t is

R(t) =
!" t

0

!f(!z(τ), !u(τ), !p)dτ + !z(0)
###!z(0) ∈ Z0,

∀τ ∈ [0, t] : !u(τ) ∈ U , !p(τ) ∈ P
$
.

To compute R(t) (also denoted as reach(Z0,U ,P)), we
use an optimized version of the software CORA [17].

We regard systems consisting of humans sharing a
workspace with a robot manipulator. From the goal that a
robot should not actively cause harm to the human, we derive
three safety objectives:

1) A non-moving robot cannot actively cause harm to a
human. Consider a robot manipulator with n degree of
freedoms, where !q, !̇q ∈ Rn are the joint position and
velocity of the robot, and !x = [!q, !̇q]T is its state. Let
us define the predicate standstill(t) indicating whether
the system is safe:

standstill(t) ⇐⇒ !x(t) ∈ ISS := Rn ×!0,

where !0 is a vector of n zeros. We refer to the set on the
right hand side as an invariably safe set, implying that
our system is safe for an infinite time horizon when it
is reached.

2) We consider that a robot cannot cause harm to the
human, if they are not physically interacting, i.e., the
occupied space of the human does not overlap with the

occupied space of the robot. We denote M(t) and H(t)
as occupancy sets of the robot and human, respectively:

noInteraction(t) ⇐⇒ M(t) ∩H(t) = ∅.

To predict occupancy sets of humans, a tracking system
is required. For additional information, we refer to our
previous work in [18], [19].

3) We consider that harm is caused to the human if
force thresholds are violated during an impact. For
ISO/TS 15066, two limits are defined: a transient force
limit ftra,lim, which is the peak at the beginning of a
collision, and the quasi-static force fqs,lim limit, which
is the converged stationary force acting on a clamped
human. We introduce the reachable set of the absolute
force Fcoll(τ) ⊆ R, t < τ < t + te, where te is a
prediction horizon. Our system is safe if

safeForce(t) ⇐⇒ sup (Fcoll(τ)) ≤ ftra,lim

∧ lim
τ→te

sup(Fcoll(τ)) ≤ fqs,lim,

where sup is the supremum, and te needs to be large
to converge to the quasi-static force.

We consider a system to be verified as safe, if any of the
above three conditions hold at all times:

∀t : standstill(t) ∨ noInteraction(t)

∨ safeForce(t) ⇐⇒ safe. (1)

The remaining part of this paper focuses on the prediction of
reachable forces to evaluate the predicate safeForce(t). For
the other predicates, we refer to [18], [19].

III. INTERACTION MODELING

To represent physical interaction, we state the dynamical
models with uncertainties in Sec. III-A, and present its
reachset-conforming model identification in Sec. III-B.

A. Physical interaction modeling

The goal of the model is to predict the set of reachable
forces Fcoll, given the planned robot trajectory, and the
human and robot collision velocities. We make the following
assumptions:

• We model the case of a hand interacting with the
robot end-effector, which is controlled by a Cartesian
impedance controller.

• The collision is a blunt impact with any part of the end
effector from any direction, for which the force limits
apply [1]. We do not consider robots with sharp edges;
for their safety analysis, pressure limits apply [1].

• The collision is unintended, i.e., the human does not
push against the robot, and remains passive after impact.

In addition, we use a scalar model to represent the dynamics
in all possible (three-dim.) spatial directions. A projection
operator over-approximatively transforms three-dimensional
inputs of our models into a one-dimensional interval:
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Fig. 1. Physical interaction is modelled as mass-spring-damper systems.

Definition 2 (Scalar projection of a set). The scalar projec-
tion of a three-dimensional set S is defined as an interval

proj(S) := [−‖S‖2, ‖S‖2],

where the 2-norm of a set is ‖S‖2 := sup{‖s‖2|s ∈ S}.

Our modeling approach takes the following steps: 1) derive
a human model, 2) derive a robot model, and 3) couple
the dynamics and introduce uncertainty into the model. We
distinguish between two types of collisions [20]:

1) Unconstrained collision: the human hand can move
away after a collision, i.e., it is not clamped.

2) Constrained collision: the human hand is clamped be-
tween the robot end-effector and another static object.

We choose mass-spring-damper systems to model both inter-
actions (Fig. 1). For the unconstrained collision, the human
hand is modeled by a moving mass mh, where xsk are the
hand and skin position, respectively, and the impact force is
fcoll,1. The skin has a tissue stiffness kh, and a damping dh:

mhẍh = kh(xsk − xh) + dh(ẋsk − ẋh)% &' (
fcoll,1

, (2)

For the constrained collision, the hand position is assumed
to be fixed, thus cannot move (xh, ẋh, ẍh = 0). Therefore,
we define the dynamical equation as

fcoll,2 = khxsk + dhẋsk. (3)

To model the robot, we consider the rigid-body dynamics

M(!q)!̈q + C(!q, !̇q)!̇q + !g(!q) = !τ + J(!q)T !fext, (4)

where !q is the joint position, M(!q) the mass matrix, C(!q, !̇q)
the Coriolis and centripetal matrix, !g(!q) the gravity torques,
J(!q) the Jacobian, !fext the measured external force at the
end effector, and !τ the input torque. To track the desired
trajectory !xd(t), we use a Cartesian impedance controller
[21]—a prominent method for controlling human-robot in-
teraction [22]—given by

!τ =!g(!q) + J(!q)T (Λ(!q)!̈xd + µ(!q, !̇q)!̇xr)−
J(!q)TΛ(!q)Λ−1

r (Kr(!x− !xd) +Dr(!̇x− !̇xd))+

J(!q)T (Λ(!q)Λ−1
r − I)!fext,

Λ(!q) =J(!q)−TM(!q)J(!q)−1,

µ(!q, !̇q) =J(!q)−T
)
C(!q, !̇q)−M(!q)J(!q)−1J̇(!q)

*
J(!q)−1,

where !xr is the end effector position, Λr is the desired mass
matrix, Kr is the desired stiffness matrix, and Dr is the
desired damping matrix. Thus, the end effector behaves like a
mass-spring-damper system, which can be seen in the closed-
loop robot dynamics [21]:

Λr(!̈xr − !̈xd) +Dr(!̇xr − !̇xd) +Kr(!xr − !xd) = !fext. (5)

We consider only the translational part of the closed-loop
dynamics since our interest is in translational forces, i.e.,
!xr, !xd, !fext ∈ R3 and Λr, Dr,Kr ∈ R3×3. When choosing
Λr = mrI,Dr = drI and Kr = krI , where mr, dr, kr are
scalars and I is a three-dimensional identity matrix, then the
following equation

mr(ẍr − ẍd) + dr(ẋr − ẋd) + kr(xr − xd) = fext (6)

is the orthogonal projection of (5) onto any spatial direction.
We derive the coupled dynamics of the unconstrained

collision by coupling the forces fcoll,1,2 = −fext, con-
necting the end effector to the skin of the human hand
xr = xsk, and inserting (2) into (6). Given the vector
!z1 = [xr, ẋr, xh, ẋh]

T , the state-space representation of the
dynamics is:

!̇z1 =

+

,,-

0 1 0 0
(kr+kh)

mr
− (dh+dr)

mr

kr

mr

dh

mr

0 0 0 1
kh

mr

dh

mr
− kh

mr
− dh

mr

.

//0 !z1 +

+

,,-

0
1
0
0

.

//0u+ !w1,

(7)

fcoll,1 =
1
kh dh −kh −dh

2
!z1 + v1, (8)

and u is an orthogonal projection of

!u = !̈xd + Λ−1
r Dr!̇xd + Λ−1

r Kr!xd (9)

The coupled dynamics for the constrained collision are
derived by inserting (3) into (6). Given state !z2 = [xr, ẋr]

T :

!̇z2 =

3
0 1

− (kr+kh)
mr

− (dh+dr)
mr

4
!z2 +

3
0
1

4
u+ !w2 (10)

fcoll,2 =
1
kh dh

2
!z2 + v2. (11)

The state-space dynamics have been augmented by additive
disturbances !w1 ∈ W1, !w2 ∈ W2 and v1 ∈ V1, v2 ∈ V2,
which shall represent the model uncertainties. We assume
that the system starts in a relaxed state xr(0) = xh(0) = 0,
and without loss of generality, we set xr(0) as the origin of
the variables xr, xh, and xd. We can now apply Def. 1 to
compute the reachable forces fcoll,1 ∈ Fcoll,1 and fcoll,2 ∈
Fcoll,2.

The Cartesian impedance controller is a convenient choice,
since the resulting coupled dynamics are linear in the Carte-
sian spatial dimensions. Reachable sets of linear systems can
be efficiently computed [23]. Generally, choosing other robot
controllers is also possible, and the coupled dynamics can be
derived similarly. Then, the systems are generally non-linear.
The generalization into three-dimensional models is straight-
forward; the mass, spring, and damping parameters for
both robots and humans are replaced by three-dimensional



matrices. The proj() operator is not needed anymore, re-
ducing over-approximativity. The three-dimensional model is
general, however, the number of parameters increases, which
makes the model identification difficult. The number of states
increases from 4 to 12 for the unconstrained collision model,
which leads to a slower reachability analysis. A typical
algorithm with zonotopic set-representation has complexity
O(n3) [24], where n is the number of states.

B. Reachset-conforming model identification

For our chosen interaction models in (7)–(11), only the
parameters mr, dr, and kr of the Cartesian impedance con-
troller are known. The parameters mh, dh, and kh, as well
as the uncertainties P1 = {W1,V1},P2 = {W2,V2}, are
unknown.

The parameters are selected in a way that allows the reach-
able sets Fcoll to include the behavior of the real system. We
also refer to this property as reachset conformance [25]. We
propose to ensure this property by means of testing the real
system: from real collision experiments, we collect the inputs
for our models, which are the initial states !z1(0), !z1(0),
and u. We then make a forward prediction using a set of
parameters and check if measured forces fm(t) are contained
in Fcoll(t) for all times. We wish to keep the reachable sets
as small as possible.

Given m test cases, we formulate the identification as a
constrained optimization problem minimizing the norm of
the reachable sets, where P are the unknown parameters:

min
P

5

1≤i≤m

" t∗

0

‖F (i)
coll,P(t)‖dt, (12a)

subject to ∀i ∀t : fm(t) ⊆ F (i)
coll,P(t). (12b)

Because (7)–(11) are linear systems, the above optimization
can be solved in a nested fashion, according to [25]: an inner
loop computes the cost of optimal disturbances W and V
using linear programming, given mh, dh, and kh; an outer
loop uses nonlinear programming to find mh, dh, and kh
with the smallest cost computed using the inner loop.

For safety analysis, reachset-conformant force predictions
are sufficient. Requiring other variables (e.g., position tra-
jectories) to be reachset-conformant would pose unnecessary
constraints on the identification, which leads to more con-
servative models.

IV. ONLINE VERIF ICATION

This section describes our novel online verification pro-
cedure for our novel impact-force-limiting control, which
always ensures the safety objective in (1). We first illustrate
the fail-safe planning framework in Sec. IV-A, and then
present our algorithm for evaluating safeForce(tk) in Sec.
IV-B.

A. Fail-safe planning

The main idea of fail-safe planning [18], [26] is that during
normal operation, the controller aims to generate and verify
fail-safe maneuvers, as shown in Fig. 2. The next section

unsafe
region

invariably
safe states

fail-safe
maneuvers

long-term trajectory

Fig. 2. Fail-safe planning: The robot is moving on the trajectory on
[tk−1, tk]. The verification of the fail-safe maneuver on [tk+1, tb] fails,
because it passes an unsafe region. Therefore, the robot will execute the
previously stored verified maneuver for

!
tk, tb,prev

"
.

of an intended long-term trajectory in the time interval
[tk, tk+1] can only be executed, if a consecutive and verified
fail-safe maneuver to the invariably safe set ISS exists,
while satisfying (1) upon reaching the ISS . If a verified fail-
safe maneuver cannot be found, then the previously verified
one, starting at tk, will be immediately executed, as can
be seen in Fig. 2. If the robot has already been in a fail-
safe maneuver during [tk−1, tk], it is attempted to verify
and then execute a recovery maneuver for [tk, tk+1] to bring
the system back to the long-term trajectory. Similar to [18],
we limit ourselves to path-consistent fail-safe and recovery
maneuvers [27] in this work to focus on the novel aspect of
limiting forces.

Let us denote the time of reaching the ISS as tb. A fail-
safe maneuver for [tk+1, tb] is verified by first checking the
predicate noInteraction, by computing the reachable occu-
pancies of the robot and the tracked human for the interval
[tk, tb]. If the occupancies indicate a possible collision at
tk ≤ tc < tb, we also check the predicate safeForce for the
interval [tc, tb]. If humans are not tracked, then we disregard
noInteraction and directly evaluate safeForce by setting
tc = tk. If an actual collision occurs, as measured by force
sensors, then the robot brakes, until the force acting on the
robot has vanished.

In practice, due to the interplay of intended trajectories,
fail-safe trajectories, and recovery trajectories, the speed of
the robot will always be as high as safely possible. Thus, it
is not necessary to offline design a safe long-term trajectory.

B. Verifying compliance to impact-force limits

We present Alg. 1, which verifies at each time instant
tk that a fail-safe maneuver adheres to both transient and
quasi-static force limits. Given is the maneuver !xd(t) for
t ∈ [tk, tb], which brings the robot to an ISS . We first
compute the reachable occupancies of the human H([tk, tb])
and of the robot M([tk, tb]), using the approach in [19],
to detect possible future collisions, which trigger subsequent
force evaluations. In case of a potential collision, we compute
the set of reachable forces Fcoll,1 for possible unconstrained
collisions and Fcoll,2 for possible constrained collision dy-
namics, as presented Sec. III-A. However, additional uncer-
tainties have to be considered here:



Algorithm 1 Verification of safeForce(tk)
Input: !xd(t), t ∈ [tk, tb]
Output: isSafe

1: M(t),H(t) ← (see [19])
2: find tc, s.t. M([tc, tb]) ∩H([tc, tb]) ∕= ∅
3: !xr(t) ← !xd(t) + Er {assume tracking error bound}
4: !̇xr(t) ← !̇xd(t) + E̊r
5: U ← proj(!u([tc, tb])) {uncertain input set}
6: X̊r ← proj(!̇xr([tc, tb])) {robot collision velocities}
7: X̊h ← [−vmax, vmax] {maximum hand velocities}
8: Z0,1 ← 0× X̊r × 0× X̊h {initial set for z1}
9: Z0,2 ← 0× X̊r {initial set for z2}

10: Fcoll,1(τ) ← reach1(Z0,1,U ,P1)
11: Fcoll,2(τ) ← reach2(Z0,2,U ,P2)
12: ftra = sup(Fcoll,1(τ) ∪ Fcoll,2(τ)) for 0 ≤ τ ≤ te
13: fqs = limτ→te sup(Fcoll,2(τ))
14: if ftra ≤ ftra,lim ∧ fqs ≤ fqs,lim then
15: isSafe ← true
16: else
17: isSafe ← false
18: end if

• Due to the acceleration capabilities of the human hand,
we cannot predict its future velocity. Thus, we assume
that it is bounded by an interval X̊h := [−vmax, vmax].
E.g., vmax = 2 (m/s) complies with ISO 13855 [28].

• We assume that the robot position !xr and velocity !̇xr are
bounded by the errors Er, E̊r ∈ R3 around the desired
trajectory before a collision.

• The collision time can be at any t ∈ [tc, tb]. Therefore,
the collision speed of the robot is uncertain, but can be
bounded by the union of all possible robot velocities
X̊r = proj(!̇xr([tc, tb])). Similarly, we bound the input
by a U = proj(!u([tc, tb])).

The initial sets are defined as Z0,1 := 0× X̊r × 0× X̊h and
Z0,2 := 0× X̊r, accounting for the above uncertainties. The
operations in line 10–18 of Alg. 1 compute the reachable
sets and evaluate the predicate safeForce from Sec. II.

V. EXPERIMENTAL RESULTS

This section experimentally evaluates our verified impact-
force-limiting control for the interaction of a robot end-
effector with the right hand of a human. The robot used
is a Schunk LWA-4P lightweight robot using the Cartesian
impedance controller from Sec. III-A, where the desired
impedances are chosen as Λr = 5I,Dr = 50I , and Kr =
150I . To measure the impact force at the end effector, we
designed a custom 3D-printed blunt impactor, which contains
a 6-axis force-torque sensor. To measure the hand position
and velocities, we use a Vicon Vero motion capture system.
We show the experimental identification of the physical
interaction model in Sec. V-A. We show the effectiveness
of our controller in a human-robot co-existence scenario by
comparing the robot performance with and without human
tracking in Sec. V-B.

TABLE I
IDENTIF IED PARAMETERS OF UNCONSTRAINED (UP) AND CONSTRAINED

(DOWN) COLLISION MODELS

Dim. W1 V1 Param. Value
1 0.196 [−79.27, 85.33] mh 0.29
2 19.20 - dh 55.05
3 0 - kh 5434
4 0 -
Dim. W2 V2 Param. Value
1 −0.498 [−69.67, 38.37] dh 719.3
2 5.459 - kh 29900

A. Results for model identification

We use our approach in Sec. III-B to identify reachset
conforming model parameters. For that, two series of tests
are conducted with the impedance-controlled robot, one for
the unconstrained collision model, and the other for the
constrained collision model. In the first experiment, multiple
collisions of a hand with the end effector are initiated from
random directions, and with random parts of the hand. In the
second experiment, the robot collides with a resting hand on
a table at different velocities. The hand is moved around in-
between experiments, such that different parts of the hand
are clamped. Due to safety reasons, we only did a reduced
amount of tests, and these experiments were only conducted
by the first author of this paper. Forty-three collisions have
been evaluated for identifying the unconstrained collision
model, whereas 41 collisions for the constrained collision
model. The identified parameters are shown in Tab. I.

The results for a few randomly selected test cases are
plotted in Fig. 3. For the unconstrained collision model, we
only test until te = 0.06 seconds, since the impact transient
has finished for all test cases at that time. For the constrained
collision model, we test until te = 0.5s, because we are
interested in the quasi-static force, to which our system
converges. Regarding the values in Tab. I, we observe that
the identified stiffnesses are smaller than in other works (e.g.,
[1]), and the damping values are high. The reason is that
the identification algorithm decided that it is more effective
(i.e., smaller reachable sets) to let the nominal parameters
mh, kh, and dh model the low-frequency dynamics, whereas
high-frequency dynamics resulting from high stiffness and
low damping are lumped inside the sets V1,2.

B. Results for the impact-force-limiting control

We demonstrate the effectiveness of the impact-force-
limiting control using our online verification approach de-
scribed in Sec. IV. We consider two scenarios. In the first
scenario, we assume that human hand tracking is avail-
able to the controller, i.e., the collision time tc ≥ tk. In
the second scenario, tracking is not available, i.e., we set
tc = tk. The robot moves between the joint angles q1 =
[π2 ,

π
6 ,−

π
2 ,−

π
2 ,

π
2 , 0]

T and q2 = [−π
4 ,

π
6 ,−

π
2 ,−

π
2 ,

π
2 , 0]

T ,
for three times. At the first time, the human does not
intervene. At the second time, the human intervenes without
a collision, and at the third time with a collision. We set the
transient force limit to 220 N, and quasi-static force limit



Reachset conformance testing of unconstrained collision model

Reachset conformance testing of constrained collision model

Fig. 3. Reachset conformance testing of physical interaction models. The model identified in Tab. I is reachset conformant. The reachable sets (gray) of
of the models always over-approximate the force profiles (black) of real collision experiments. For each test case, the collision velocity is shown.
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3rd 1st 2nd 3rd

Fig. 4. Verified impact-force-limiting control. Upper graph: Transient force estimations are shown in green, quasi-static force estimations are shown in
blue, force measurements are shown in bold, and collisions are shown in red. Lower graph: robot velocity is shown in black, and the relative distance of
the hand to the robot is shown in orange All numbers are absolute values.

to 140 N. The resulting behavior of the robot is shown in
Fig. 4. A video recording of the experiments is provided in
supplementary materials.

For the scenario with tracking, we observe that in the first
run, the robot can run at full speed, although the human-
robot distance is closer than one meter. In the second run,
we place our hand directly on the path of the robot. The
robot automatically slows down because the reachable force
predictions hit the transient force limit. However, as soon
as the robot approaches a certain distance to the hand, it
speeds up again. In the third run, we initiate collisions with

the robot. The collision force never exceeds the estimated
maximum transient.

For the scenario without human tracking, the results are
similar, however, the robot remains at a slow speed for all
times, and thus needs more time to complete its task. Human
tracking benefits the efficiency of the robot.

VI. CONCLUSIONS AND FUTURE WORK

This study presents the first work on guaranteeing impact-
force limits during possible unintentional collisions between
the human hand and robot end-effectors, despite uncertain-



ties. We believe that this concept can be extended to the
entire human body and robot arm using similar coupled in-
teraction models. The primary innovation is the prediction of
the impact forces using reachability analysis, combined with
a fail-safe motion planning. Our model identification method
ensures that the interaction model is reachset conformant
with the real interaction. In an experiment, we demonstrated
that the impact force limit criterion allows robot motion, even
if humans work closely to the robot. In addition, we have
shown the advantages of tracking humans, which allows the
robot to move faster when humans are distant to the robot.
Multiple extensions to this work are possible:

• To extend this approach to the entire human body,
the identification experiments need to be repeated for
every body part. Additionally, high-volume testing and
experiments on more diverse human tissues are needed
to make sure that edge cases of the model are covered.

• We have not regarded the fact, that the robot closed-
loop dynamics can be uncertain. In this study, such
uncertainties were lumped inside the sets W1,2 and V1,2.
Thus, our approach is only applicable to the controller
used in the identification experiments. To verify variable
impedance controllers, the uncertain dynamics of the
robot and the human should be separately identified, and
the coupling between these should be created online to
analyze interaction forces.

• Online verification can also be combined with any other
safety metric, i.e., by exchanging predicate safeForce(t)
with power, energy, or safe velocity limits.

• An interesting extension is the verification of continuous
physical interaction, where the dynamics of the human
arm are also usually modeled as impedances.
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