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ABSTRACT 
 

The organic Rankine cycle power system is an emerging technology, which is able to recover the waste 

heat from the diesel engine of heavy-duty trucks and thus increase the overall engine efficiency. One of 

the major technical challenges for the integration of the organic Rankine cycle unit on-board trucks are 

the broad and rapid fluctuations of the available waste heat, caused by the unsteady driving conditions 

of the truck. Model predictive control has shown to be a powerful tool to ensure safe operation and 

optimal performance of the organic Rankine cycle unit on-board trucks. This paper presents a novel 

systematic method for the tuning of model predictive controllers based on a multi-objective 

optimization routine using a fourth-order reduced linear model. The objectives of the optimization are 

the settling time due to a step change of the exhaust gas mass flow rate and the cumulative controller 

effort due to measurement noise. The results suggest that a trade-off exists between the two objectives. 

Among the controller design parameters, the input rate weight has the largest influence on the controller 

performance. Interestingly, the simplified optimization procedure based on the reduced-order linear 

model of the organic Rankine cycle unit can provide key information about the controller performance 

based on a more complex nonlinear model of the organic Rankine cycle unit when subjected to a 

realistic waste heat profile. It is found that the settling time due to a step change of the exhaust gas mass 

flow rate is a good indicator of the absolute mean square tracking error over the profile, and it should 

not exceed 15 s for an absolute mean square tracking error below 2 K. On the other hand, the cumulative 

controller effort due to measurement noise is strongly correlated to the cumulative controller effort over 

the profile, and it should stay below 0.5 %/s for a cumulative controller effort over the whole profile 

below 2 %/s. The presented method is a powerful tool to help the control designer to find the optimal 

design parameters of model predictive controllers in a systematic way, in contrast to the time-

consuming, experience-based trial and error methods.   
 

1 INTRODUCTION 
 

More than 50 % of the fuel energy consumed by the diesel engines of heavy-duty trucks is released 

unused to the environment in the form of low to medium temperature waste heat, thus contributing to 

high fuel consumption and carbon dioxide emissions (Lion et al., 2017). Especially in the last two 

decades, researchers have focused on the organic Rankine cycle (ORC) technology as a solution to 

recover the waste heat available from the truck diesel engines (Xu et al., 2019). One of the main 

challenges for the waste heat recovery are the large and rapid fluctuations of the mass flow rate and 

temperature of the waste heat caused by the unsteady driving conditions of the truck. In order to cope 

with these, increasing efforts have been dedicated to the development of suitable control strategies for 

the ORC unit (Xu et al., 2019). In particular, the control of the ORC unit has the unique tasks of ensuring 

safe operation while maximizing the net power output. Imran et al. (2020) reviewed the various control 

concepts suggested in literature, including conventional proportional-integral (PI) and proportional-

integral-derivative (PID) controllers, feedback/feedforward schemes, linear quadratic control, non- 
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Gaussian control, dynamic programming and model predictive control (MPC).  

 

Several works suggest that MPC is a very powerful tool to ensure safe operation of the ORC unit and 

maximize its net power output, especially in comparison to traditional PID controllers. Among its 

advantages, MPC can easily handle multi-variable systems, systematically account for plant 

mismatches and inherently deal with system constraints, which are crucial features to ensure operational 

and safety limits. Feru et al. (2014) compared a conventional PI controller with linear and nonlinear 

MPC and concluded that the MPC concepts could lead to 15 % more recovered thermal energy over a 

cold-start World Harmonized Transient Cycle than the conventional PI control strategy. Grelet et al. 

(2015) developed an explicit-model multi-model MPC formulation based on first-order-plus-time-delay 

models. The controller scheme could achieve good tracking performance when subjected to step 

changes in the set point. Hernandez et al. (2016) developed a perturbation-based extremum-seeking 

algorithm coupled to a low-level MPC and compared the performance with two PI control schemes. 

The net electrical energy produced with the MPC was 12 % higher than that of the PI controllers. 

Koppauer et al. (2018) developed a gain-scheduled MPC formulation coupled with an Extended 

Kalman Filter for state estimation. The solution showed good set point tracking capabilities and good 

robustness against model uncertainties. Given the nonlinear nature that characterizes the dynamic 

behavior of ORC systems, other authors focused on nonlinear MPC options. Although gains in 

performance can be achieved, nonlinear MPCs require higher development costs and computational 

effort than the linear MPCs (Liu et al., 2017; Petr et al., 2015; Rathod et al., 2019). 

 

The aforementioned works highlight the potential of the MPC concepts to control ORC power systems 

subjected to highly transient conditions, minimizing the deviations of the controlled variable from the 

desired set point and guaranteeing safe operation. However, in previous works the tuning of the MPC 

design parameters were only based on trial and error procedures, potentially leading to suboptimal 

solutions and instability issues. In contrast to previous works, this paper focuses on the optimization of 

the MPC design parameters, thus allowing for the exploitation of the full potential of the MPC solution. 

A novel systematic method is presented for the tuning of model predictive controllers based on a multi-

objective optimization routine written in MATLAB®/Simulink® (Mathworks®, 2019) using a fourth-

order reduced linear model. The analysis evaluates the MPC design not only in terms of disturbance 

rejection capabilities, but also in terms of cumulative controller effort and sensitivity to measurement 

noise, ensuring at the same time sufficient stability margins. The results of the optimization are 

numerically tested on a nonlinear model of an ORC unit subjected to a realistic waste heat profile from 

the tailpipe exhaust gas of a heavy-duty truck provided by a truck manufacturer. 

 

The case study is presented in section 2, while section 3 presents the model development used for the 

MPC design. Section 4 describes the multi-objective optimization routine, followed by the results in 

section 5 and the conclusions in section 6. 

  

2 CASE STUDY 
 

The investigated system is a subcritical ORC unit without recuperator, whose heat source is the 

available waste heat in the exhaust gas of a 450-hp 13L turbocharged diesel engine of a heavy-duty 

truck. The plant layout is shown in Figure 1a. The pump forwards the working fluid from liquid state 

at state 0 to the evaporator inlet at state 1. In this component, the working fluid is preheated, vaporized 

and superheated to state 2 by receiving heat from the engine exhaust gas. The vapor at state 2 expands 

in a turbo-expander generating mechanical power. The turbine exhaust vapor at state 3 is then 

condensed back to liquid state (state 0) by rejecting heat to a cooling medium. Two actuators control 

the operation of the ORC system: i) the mass flow rate of the pump 𝑚̇𝑤𝑓,1 (or, in practice, its rotational 

speed) is manipulated to control the degree of superheating at turbine inlet 𝑆𝐻𝑤𝑓,2, and ii) a bypass 

valve opening 𝑉𝑂 on the exhaust gas stream (0: fully closed, 1: fully open) limits the turbine inlet 

pressure 𝑝𝑤𝑓,2 to assure a pressure limit of 35 bar, thus preventing supercritical operation and excessive 

stress on the materials. The ORC unit uses R245fa as working fluid, due to its low flammability and 

high thermal degradation temperature of 300 ºC (Macchi and Astolfi, 2017). 
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(a) (b) 

Figure 1: (a) Layout of the ORC unit and (b) mass flow rate and temperature of the exhaust gas  

 

The  time profile of the engine exhaust gas is shown in Figure 1b; the raw data may be found in Pili et 

al., (2021). The mass flow rate of the engine exhaust gas fluctuates very rapidly between 0.05 kg/s and 

0.517 kg/s, whereas the temperature varies more slowly between 270 ºC and 334 ºC because of the 

dampening effect of the exhaust gas after-treatment system (selective catalytic reactor). 

 

The design of the ORC unit is based on a steady-state thermodynamic optimization using the 

approximate time-weighted average of the exhaust gas mass flow rate and temperature (0.25 kg/s and 

320 ºC). The objective function of the thermodynamic optimization (to be maximized) was the net 

power output. The optimization assumed the isentropic efficiencies for the turbine and the pump to be 

85 % and 75 %, respectively. The optimization led to the following nominal operating point for the 

ORC unit: a turbine inlet pressure 𝑝𝑤𝑓,2 of 29.0 bar, a degree of superheating 𝑆𝐻𝑤𝑓,2 of 28.9 K, a 

condensation pressure 𝑝𝑤𝑓,0 of 4.2 bar, a mass flow rate 𝑚̇𝑤𝑓,1 of 0.187 kg/s, a turbine mechanical 

power output of 6.8 kW and a nominal net mechanical power output of 6.1 kW. Based on the 

thermodynamic design, the ORC evaporator was designed to estimate its heat transfer area (13.6 m2), 

mass (42 kg) and volume (0.052 m3), together with the nominal heat transfer coefficients of the working 

fluid and the exhaust gas. This information was then used to develop a dynamic model of the high 

pressure part of the ORC unit, which includes the evaporator (fin-and-tube type), the pump and the 

turbine. The evaporator was discretized in the dynamic model by using 15 finite volume cells. The 

evaporator and the dynamic models used in this work were previously described and verified by the 

authors in a previous work (Pili et al., 2021). Since the dynamics of the ORC unit are mainly governed 

by the heat exchangers, the turbine and the pump were modelled at steady-state (Imran et al. 2020). 

Given the fact that ORC turbines typically work in sonic conditions, the turbine part-load characteristics 

was defined by the Stodola equation corrected for real gases (Capra and Martelli, 2015): 

𝑚̇𝑤𝑓,2 = 𝑘𝑇

𝑝𝑤𝑓,2

√𝛾𝑤𝑓,2 𝑍𝑤𝑓,2𝑇𝑤𝑓,3  
 (1) 

where 𝑚̇𝑤𝑓,2 is the mass flow rate of the working fluid, 𝑝𝑤𝑓,2 the pressure, 𝛾𝑤𝑓,2 the ratio of the specific 

heats, 𝑍𝑤𝑓,2 the compressibility factor and 𝑇𝑤𝑓,2 the temperature at turbine inlet. The constant 𝑘𝑇 = 

0.128 kg/s ˑK0.5/kPa was determined from the design conditions. The isentropic efficiencies of the 

turbine and the pump (positive-displacement type) were corrected at part-load according to (Vetter, 

2014) and (Bauer, 2016). To simplify the control problem, the condenser was modelled by assuming 

constant temperature and pressure of the working fluid, which is commonly done to simplify the 

complexity of the control problem (Koppauer et al., 2018; Seitz et al., 2018). Despite the model 

simplification, the MPC can handle variations in condensation conditions as an unmeasured 

disturbance and, hence, it can compensate for its influence on the controlled variable. 
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3 MODEL DEVELOPMENT AND ORDER REDUCTION 
 

The control strategy is based on two separate controllers: i) a single-input-single-output (SISO) MPC 

that has the most complex task of keeping of the degree of superheating 𝑆𝐻𝑤𝑓,2 close to the desired set 

point 𝑆𝐻𝑆𝑃 by rejecting the fluctuations of the mass flow rate and temperature of the exhaust gas, and 

ii) a SISO proportional controller that limits the pressure 𝑝𝑤𝑓,2 to the maximum value of 35 bar. The 

MPC acts on the mass flow rate of the pump 𝑚̇𝑤𝑓,1, while the proportional controller manipulates the 

opening of the exhaust bypass valve 𝑉𝑂. The latter was tuned by using the Controller Design Toolbox 

from MATLAB® (Mathworks®, 2019), leading to a proportional gain of -0.0036 kPa-1. The MPC 

design requires a dynamic model of the high-pressure part of the ORC system, which can be described 

by the following SISO nonlinear model with two measured disturbances: 

𝑥̇ = 𝑓(𝑥, 𝑚̇𝑤𝑓,1, 𝑑)  

𝑆𝐻𝑤𝑓,2 = 𝑔(𝑥, 𝑚̇𝑤𝑓,1 , 𝑑) 
(2) 

where 𝑥 is a vector of 47 states, 𝑓 is the state function, and 𝑔 is the output function. The measured 

disturbance vector 𝑑 consists of the actual mass flow rate (i.e. the non-bypassed portion) and the inlet 

temperature of the exhaust gas. Subsequently, the nonlinear system in equation (2) is linearized around 

the steady-state nominal point (𝑥∗ , 𝑚̇𝑤𝑓,1
∗ , 𝑑∗). The linear state-space model preserves the 47 states of 

the original nonlinear model in equation (2). This high number of states can lead to excessive 

computational time for a real-time implementation of the MPC. To prevent this, the order of the model 

is reduced. By subjecting the dynamic system to a 5 % step in mass flow rate of the pump 𝑚̇𝑤𝑓,1, it was 

found that four states are sufficient to limit the maximum deviation in degree of superheating 𝑆𝐻𝑤𝑓,2 to 

0.1 %. The reduction of the linearized system was carried out by using the ‘balred’ command of the 

Control System Toolbox from MATLAB® (Mathworks®, 2019). Next, the model is converted to a 

discrete-time model by using a zero-order hold with a sample time period of 0.5 s. 

 

4 PARAMETER TUNING VIA MULTI-OBJECTIVE OPTIMIZATION 
 

The fourth-order discrete-time linear system model presented in the previous section was used to tune 

the MPC parameters via multi-objective optimization. The MPC formulation used in the work is 

available in the Model Predictive Control Toolbox from MATLAB® (Mathworks®, 2019). The 

controller objective function 𝐽 and the constraint on the controller output are defined as follows: 

𝐽(𝜆, 𝑁𝑝, 𝑁𝑐)  = ∑ {
1

𝑆𝐻𝑟𝑒𝑓 [𝑆𝐻𝑆𝑃 − 𝑆𝐻𝑤𝑓,2(𝑖)]}
2

𝑁𝑝

𝑖=1

+ 𝜆2 ∑ {
1

𝑚̇𝑤𝑓,1
𝑟𝑒𝑓

[Δ𝑚̇𝑤𝑓,1(𝑖)]}

2𝑁𝑐

𝑖=1

 

 

𝑚̇𝑤𝑓,1,𝑚𝑖𝑛 ≤ 𝑚̇𝑤𝑓,1(𝑖) ≤ 𝑚̇𝑤𝑓,1,𝑚𝑎𝑥    𝑖 = 1, … , 𝑁𝑐 

(3) 

where 𝑆𝐻𝑟𝑒𝑓 = 20 K is a scaling factor for the degree of superheating, 𝑚̇𝑤𝑓,1
𝑟𝑒𝑓

=0.2 kg/s is a scaling factor 

for the pump mass flow rate and 𝑚̇𝑤𝑓,1,𝑚𝑖𝑛 and 𝑚̇𝑤𝑓,1,𝑚𝑎𝑥 correspond to 20 % and 120 % of the nominal 

mass flow rate of the ORC pump. The tuning parameters are the input rate weight 𝜆, the prediction 

horizon 𝑁𝑝 and the control horizon 𝑁𝑐. A high value of the input rate weight 𝜆 penalizes changes in 

pump mass flow rate with respect to deviations of the degree of superheating from the desired set point, 

and vice versa. A high number of the prediction horizons include more time steps in the future when 

minimizing the deviation of the degree of superheating 𝑆𝐻𝑤𝑓,2 from the set point 𝑆𝐻𝑆𝑃, and vice versa. 

The control horizon defines the number of changes for the pump mass flow rate Δ𝑚̇𝑤𝑓,1 in the future. 

In the time steps 𝑖 > 𝑁𝑐, the pump mass flow rate does not change anymore, i.e. Δ𝑚̇𝑤𝑓,1(𝑖 > 𝑁𝑐) = 0. 

The sample time of the MPC corresponds to the sample time of the dynamic model (0.5 s). For the 

multi-objective optimization, the unconstrained MPC formulation with the objective function 𝐽 in 

equation (3) was used. In other words, the constraint on the pump mass flow rate was not included in 

the MPC formulation. In this way, the MPC can be written explicitly as a linear time-invariant system 
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having as inputs the measured degree of superheating 𝑆𝐻𝑤𝑓,2 and the measured disturbance vector 𝑑, 

while the output is the mass flow rate of the pump for the next time step 𝑚̇𝑤𝑓,1(𝑖 = 1).  

The explicit MPC system acting on the reduced-order linear model described in section 3 is used by the 

multi-objective optimization to find the optimal tuning parameters. The genetic algorithm of the Global 

Optimization Toolbox from MATLAB® (Mathworks®, 2019) is able to handle a combination of real 

(such as the input rate weight 𝜆) and integer decision variables (such as the prediction horizon 𝑁𝑝 and 

the control horizons 𝑁𝑐) and was, therefore, used as optimization algorithm. The settings for the 

algorithm are: i) a population size of 100, ii) 500 generations, and iii) a stall generation limit of 200. 

The input rate weight 𝜆 can vary between 0.01 and 60, prediction horizon 𝑁𝑝 between 5 and 30, and the 

control horizon 𝑁𝑐 between 1 and 10. The two objectives of the multi-objective optimization routine 

are the following: i) the settling time of the degree of superheating 𝑡𝑆,𝑆𝐻,𝑤𝑓2 due to a 1 % step change 

in the mass flow rate of the exhaust gas, which quantifies the disturbance rejection capabilities of the 

controller and needs to be minimized, and ii) the cumulative controller effort 𝑄𝑛𝑜𝑖𝑠𝑒 when white noise 

of variance 0.01 K2 is added to 𝑆𝐻𝑤𝑓,2 before the measurement is fed back to the MPC, which quantifies 

the sensitivity of the MPC to measurement noise and needs to be minimized as well. The settling time 

is the time required by the controller error to fall below 2 % of the peak value, while the controller 

cumulative effort  

 

is defined as: 

𝑄 =
1

|𝑚̇𝑤𝑓,1,𝑚𝑎𝑥 − 𝑚̇𝑤𝑓,1,𝑚𝑖𝑛|

1

∆𝑡
∫ | 

∆𝑚̇𝑤𝑓,1

∆𝑡
| 𝑑𝑡

∆𝑡

0

    

 

(4) 

where 𝑡 is the time, ∆𝑡 the overall time period of the simulation. The variance of the measurement noise 

is based on the experimental results reported in Pili et al. (2020). A low value of the settling time 

𝑡𝑆,𝑆𝐻,𝑤𝑓,2 ensures rapid rejection of the waste heat fluctuations, but it can also imply a high sensitivity 

to measurement noise, i.e. a high 𝑄𝑛𝑜𝑖𝑠𝑒, potentially leading to an excessive control action and reduced 

lifetime of the ORC pump and its automation system. For this reason, a trade-off between the two 

objectives needs to be considered. Furthermore, in order to ensure sufficient stability margins, two 

constraints are included to the multi-objective optimization: only solutions having a disc gain margin 

above 2, and a disc phase margin above 45 º are accepted (Seiler et al., 2020). These margins should 

ensure sufficient stability, also for operating points far from the nominal point. 

 

5 RESULTS 
 

The multi-objective optimization results in the Pareto front of optimal solutions depicted in Figure 2a. 

It is important to highlight that Figures 2a to 2d do not show the results of a sensitivity analysis but 

show the solutions of the multi-objective optimization problem, and therefore represent an optimal 

tuning of the controller parameters. The results in Figure 2a suggest that a trade-off between the two 

objectives is required: low settling times 𝑡𝑆,𝑆𝐻,𝑤𝑓2 imply high 𝑄𝑛𝑜𝑖𝑠𝑒 and vice versa. The settling time 

𝑡𝑆,𝑆𝐻,𝑤𝑓2 is below 10 s for a cumulative controller effort above 0.3 %/s, although 𝑡𝑆,𝑆𝐻,𝑤𝑓2 increases 

considerably to more than 100 s for a cumulative controller effort below 0.1 %/s. The decision variable 

that has the largest impact on the settling time 𝑡𝑆,𝑆𝐻,𝑤𝑓,2 and the cumulative controller effort 𝑄𝑛𝑜𝑖𝑠𝑒 is 

the input rate weight 𝜆, as shown by Figure 2b.  A higher 𝜆 implies a larger penalty on variations of the 

pump mass flow rate ∆𝑚̇𝑤𝑓,1, and therefore, the controller becomes more gentle, taking more time to 

reach the desired set point (larger 𝑡𝑆,𝑆𝐻,𝑤𝑓2). At the same time, a more gentle reaction of the controller 

corresponds to a lower cumulative controller effort 𝑄𝑛𝑜𝑖𝑠𝑒. The prediction and the control horizons do 

not show a clear impact on the settling time and the cumulative controller effort, but the optimization 

still suggests an optimum range of selection (see Figures 2c and 2d). The prediction horizon 𝑁𝑝 varies 

in the range 10-17 for most of the points, but it is higher than 24 for points having a settling time 

𝑡𝑆,𝑆𝐻,𝑤𝑓2 of more than 30 s. No clear trend between 𝑁𝑝 and 𝑄𝑛𝑜𝑖𝑠𝑒 is found. The control horizon 𝑁𝑐 is 

in the range of 7-9 for most of the optimal points having a settling time 𝑡𝑆,𝑆𝐻,𝑤𝑓2 below 30 s, but it drops 
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to 4 for higher 𝑡𝑆,𝑆𝐻,𝑤𝑓2. Analogously for the prediction horizon 𝑁𝑝, no clear trend is found between 𝑁𝑐 

and 𝑄𝑛𝑜𝑖𝑠𝑒.  

 

In a next step, the MPC design Pareto-front optimal solutions were tested on the nonlinear model of the 

high pressure part of the ORC unit described by equation (2), subjected with the realistic waste heat 

profile in Figure 1b. The mass flow rate of the pump 𝑚̇𝑤𝑓,1 was constrained between 20 % and 120 % 

of the nominal value during the simulation. The response of the nonlinear system in equation (2) is 

assessed according to two quantities: i) the absolute root mean square tracking error (ARMSTE), 

quantifying the deviations between the degree of superheating 𝑆𝐻𝑤𝑓,2 and the set point 𝑆𝐻𝑆𝑃, and ii) 

the cumulative controller effort of the pump controller 𝑄 over the waste heat profile, see equation (4). 

The goal is to achieve the minimum ARMSTE as well as the minimum 𝑄 to reach good disturbance 

rejection while ensuring long lifetime of the pump. The results, plotted in Figure 3a, indicate that there 

is a trade-off between the cumulative controller effort 𝑄 and the absolute root mean square tracking 

error ARMSTE over the profile analogously to the Pareto-front optimal solutions shown in Fig. 2a. The 

cumulative controller effort increases considerably from 1.1 %/s for an ARMSTE of about 6 K to more 

than 4 %/s for an ARMSTE below 2 K. Analogously to the results of the multi-objective optimization, 

the input rate weight 𝜆 has the largest impact on the simulation performance, as indicated in Figure 3b. 

On the one hand, a low 𝜆 leads to a low ARMSTE because the controller can react very quickly to the 

waste heat fluctuations, although this leads to the highest cumulative controller efforts 𝑄. By increasing 

𝜆 up to 55, 𝑄 drops to 1 %/s while the ARMSTE increases to 10 K. Importantly, it can be seen in Figures 

3c  and 3d that there is a direct correlation between the settling time to a disturbance step 𝑡𝑆,𝑆𝐻,𝑤𝑓2 and 

the ARMSTE over the profile, as well as between the cumulative controller effort to noise 𝑄𝑛𝑜𝑖𝑠𝑒 and 

over the profile 𝑄. This means that the considerations based on the reduced-order model and only based 

 (a)  (b) 

  (c)  (d) 

Figure 2: (a) Pareto-front optimal solutions, and influence of the optimal decision variables on the 

objective functions: (b) input rate weight, (c) prediction horizon, and (d) control horizon  
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on a disturbance step change and measurement noise on the degree of superheating already provide 

important information about the controller performance over the profile. This allow saving significant 

time and computational effort for the controller tuning. For an ARMSTE below 2 K, the settling time 

𝑡𝑆,𝑆𝐻,𝑤𝑓2 should not exceed 15 s, while for 𝑄 below 2 %/s, 𝑄𝑛𝑜𝑖𝑠𝑒  should be below 0.5 %/s. 

 

6 CONCLUSIONS 
 

This work presented a multi-objective optimization of the design parameters of a model predictive 

controller, based on a fourth-order linear model of an organic Rankine cycle unit recovering the waste 

heat available in the exhaust gas of a heavy-duty truck. The performance of the optimal solutions was 

tested on a nonlinear model of the high pressure part of the organic Rankine cycle unit and on a realistic 

waste heat profile. The optimization results suggest that there is a trade-off between the settling time 

due to a step change in exhaust gas mass flow rate and the cumulative controller effort due to 

measurement noise. Additionally, the results indicate that the input rate weight has the largest influence 

on the controller performance, while the optimal prediction and control horizons should be in the range 

10-17 and 7-9, respectively, for most of the optimal points. It was found that a direct relationship exists 

between the settling time to a disturbance step and the absolute root mean square tracking error over 

the profile. Also, the cumulative controller effort over the profile increases for higher cumulative 

controller effort due to measurement noise. Because of these dependencies, the trade-off between the 

settling time to a disturbance step change and the cumulative controller effort to noise can be mapped 

into a trade-off between the absolute root mean square tracking error and the cumulative controller 

effort over the profile. Thus, the multi-objective optimization presented in the paper can be used to 
  

(a) (b) 

 (c)  (d) 

Figure 3: (a) Cumulative controller effort and ARMSTE over the profile, (b) influence of the input 

rate weight, (c) ARMSTE as a function of the settling time to a disturbance step, and (d) cumulative 

controller effort over the profile vs cumulative controller effort to noise  



 

Paper ID: 49, Page 8 
 

6th International Seminar on ORC Power Systems, October 11 - 13, 2021, Munich, Germany 

identify the optimal model predictive controller parameters, considerably lowering the computational 

effort compared with that of an optimization based on the more complex nonlinear model. The presented 

method is a powerful tool to tune the design parameters of model predictive controllers in a more 

systematic and effective way compared with time-consuming, experience-based trial and error methods. 

Future work will evaluate the tuning of the controller parameters also in terms of net power output and 

the economic performance of the organic Rankine cycle unit will be evaluated. 

 

NOMENCLATURE 

 
Symbols 

d disturbance vector (-)   𝑁𝑝 prediction horizon       (-) 

𝑓 state function  (-)   𝑝 pressure        (bar) 

𝑔 output function  (-)   𝑄 cumulative controller effort (%/s) 

𝑖 counter variable  (-)   𝑆𝐻 degree of superheating       (K) 

𝐽 cost function  (-)   𝑥 state vector        (-)  

𝑚̇ mass flow rate  (kg/s)   Δ variation        (-) 

𝑁𝑐 cost horizon  (-)   𝜆 input rate weight       (-) 

    

Subscript and superscripts 
̇  time derivative                 p participants 

* steady state (operating point)   𝑆𝑃 set point  

n nights       wf working fluid 

  

Abbreviations 

ARMSTE absolute mean square tracking error   PI proportional-integral (controller)   

MPC     model predictive control   PID proportional-integral-derivative  

ORC     organic Rankine cycle   SISO single-input-single-output (system) 
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