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Abstract 

The use of magnetic resonance imaging plays a crucial role in the initial diagnosis and 

monitoring of patients with multiple sclerosis. In recent years, a growing number of compu-

tational tools were developed to meet the challenge of image data analysis in general and 

for this disease. In clinical routine, images from patients with (suspected) multiple sclerosis 

are visually screened by neuroradiologists for signs of inflammation, which present as T2w-

hyperintense white matter lesions. Images are also compared to previous images to eval-

uate the disease course, looking for the occurrence of new or significantly enlarging lesions 

as surrogate markers of ongoing disease activity. This process is cumbersome and chal-

lenging due to the high lesion variety in terms of size, shape, and location. A tool to relieve 

this process is desirable. Patients in the possible preliminary stage of multiple sclerosis, 

the clinically isolated syndrome, frequently convert to multiple sclerosis while details about 

this pathogenesis are not well understood yet. Identifying parameters that can provide a 

reliable prediction of future conversion from clinically isolated syndrome allows the selec-

tion of patients who benefit from early therapy. We aimed to develop two computational 

tools to improve the diagnostic process and the image data utility for patients with multiple 

sclerosis.  

In the first project, we wanted to improve the lesion detection in follow-up magnetic reso-

nance imaging of patients with multiple sclerosis regarding accuracy and time. Therefore, 

we paired up the follow-up scan with the initial scan of 106 patients with multiple sclerosis. 

We built a computer script that aligns and subtracts the intensity values of these image 

pairs, creating subtraction maps for the sequences double inversion recovery (DIR) and 

fluid-attenuated inversion recovery (FLAIR). Two neuroradiologists assessed the existence 

of new or enlarged lesions for each patient in three different ways: by standard visual com-

parison, by using FLAIR subtraction maps, and by using DIR subtraction maps. All infor-

mation from all readouts and all readers was combined to define a reference standard. 

Using DIR subtraction maps resulted in a higher lesion-detection accuracy than by stand-

ard visual comparison (0.96 vs. 0.86, p = 0.013) or by using FLAIR maps (0.82, p < 0.001). 

Using DIR maps increased the sensitivity (0.95 vs. 0.82) and provided a better negative 

predictive value (0.88 vs. 0.67) for detecting new or enlarged lesions in comparison to the 

standard readout method. Also, significantly more lesions were found in DIR maps (mean 

6.26 vs. 3.68), while evaluation time per patient reduced tremendously compared to the 

standard readout time (median 2 min vs 8 min). Our results suggest that the DIR sequence 

on its own can provide reliable lesion detection in follow-up images of patients with multiple 

sclerosis when subtraction maps are used. Our protocol is ready to be used in everyday 

clinical practice. 

The second project aimed to predict the conversion of patients in the clinically isolated 

syndrome stage to multiple sclerosis by analyzing lesion image features in their initial mag-

netic resonance imaging scan. For 84 patients with clinically isolated syndrome, lesions in 

the baseline scan were segmented based on three-dimensional FLAIR and three-



 
 

dimensional T1-weighted sequences. For each patient, two sets of brain lesion masks were 

generated to assess the influence of different segmentation methods on the prediction: one 

by computer-assisted manual segmentation and one by an automated segmentation algo-

rithm. The intensity and shape parameters of the lesions were calculated from these masks 

and functioned as input for a random forest model. Oblique random forest models were 

trained with three different inputs: shape features, intensity features and including features 

from both categories. Prediction accuracies were validated through three-fold cross-valida-

tion. Conversion to multiple sclerosis for the patients in our cohort was defined according 

to the 2010 McDonald criteria at the time of follow-up of three years. The model based on 

shape features acquired from the manual segmentation showed the best prediction accu-

racy and outperformed the gold standard based on dissemination in space (0.85 vs. 0.79, 

p = 0.03). Shape parameters played a major role in a promising prediction, while intensity 

parameters could not improve prediction performance (accuracy 0.85 vs. 0.62). Especially 

those shape features that describe the ovality of the lesions, contributed the most to the 

prediction: mean lesion volume, minimal sphericity, and minimal surface-volume ratio. 

We developed two computational tools to improve the radiological diagnostic process of 

multiple sclerosis and proved their advantage over the present clinical workflow. New and 

enlarged lesions in follow-up magnetic resonance imaging examinations were recognized 

faster and more reliably using DIR subtraction maps than via standard procedure. We 

showed that our random forest model relying on lesion-shape features in the initial mag-

netic resonance imaging examination can predict the conversion from clinically isolated 

syndrome to multiple sclerosis more accurately than the gold standard. 

  



 
 

Zusammenfassung 

Die Magnetresonanztomographie spielt eine entscheidende Rolle bei der Erstdiagnose und 

Verlaufskontrolle von Patient:innen mit Multipler Sklerose. In den letzten Jahren wurde eine 

wachsende Zahl von Computerwerkzeugen entwickelt, um die Herausforderung der Bild-

datenanalyse im Allgemeinen und für diese Krankheit zu bewältigen. In der klinischen Rou-

tine werden Magnetresonanztomographieaufnahmen von Patient:innen mit (vermuteter) 

Multipler Sklerose von Neuroradiolog:innen visuell auf Anzeichen einer Entzündung unter-

sucht, die sich als T2-gewichtete hyperintense Läsionen der weißen Substanz zeigen. Bil-

der werden auch mit früheren Aufnahmen verglichen und nach neuen oder deutlich ver-

größerten Läsionen als Anzeichen für eine anhaltende Krankheitsaktivität abgesucht. Die-

ser Vorgang ist aufgrund der großen Vielfalt an Läsionen in Bezug auf ihre Größe, Form 

und Lage mühsam und schwierig. Patient:innen im möglichen Vorstadium der Multiplen 

Sklerose, dem klinisch isolierten Syndrom, konvertieren häufig in das Stadium der Multiple 

Sklerose, wobei die Details dieser Pathogenese noch nicht genau verstanden sind. Die 

Identifizierung von Parametern, die eine zuverlässige Vorhersage bezüglich einer Konver-

sion ermöglichen, würde die Auswahl von Patient:innen mit klinisch isoliertem Syndrom 

erlauben, die von einer frühzeitigen Therapie profitieren. Unser Ziel war es, zwei Compu-

terwerkzeuge zu entwickeln, die den Diagnoseprozess und die Nutzung von Bilddaten für 

Patient:innen mit Multipler Sklerose verbessern.  

Das erste Projekt hatte das Ziel das Auffinden von Läsionen in der Magnetresonanztomo-

graphie von Patient:innen mit Multipler Sklerose hinsichtlich Genauigkeit und dafür nötigen 

Zeitaufwand zu verbessern. Zu diesem Zweck wurden die Nachuntersuchung mit der je-

weiligen Erstuntersuchung von 106 Patienten mit Multipler Sklerose gepaart. Ein Compu-

terskript wurde entwickelt, das die Intensitätswerte dieser seriellen Magnetresonanztomo-

graphie-Untersuchungen zueinander kongruent ausrichtet und subtrahiert, sodass Sub-

traktionskarten für die Sequenzen Double Inversion Recovery (DIR) und Fluid Attenuated 

Inversion Recovery (FLAIR) erstellt wurden. Zwei Neuroradiologen suchten auf drei ver-

schiedene Weisen nach neuen oder vergrößerten Läsionen für jede Patient:in: mittels kli-

nischen Standards, dem visuellen Abgleich, mittels FLAIR-Subtraktionskarte und mittels 

DIR-Subtraktionskarte. Alle Informationen von allen Analysedurchgängen und allen Ana-

lysten wurden kombiniert, um einen Referenzstandard zu definieren. Die Verwendung von 

DIR-Subtraktionskarten führte zu einer höheren Genauigkeit bei der Läsionsdetektion ver-

glichen mit der Standardmethode (0.96 vs. 0.86, p = 0,013) oder der Verwendung von 

FLAIR-Karten (0.82, p < 0,001). Die Verwendung von DIR-Karten erhöhte die Sensitivität 

(0.95 vs. 0.82) und lieferte einen besseren negativen Vorhersagewert (0.88 vs. 0.67) für 

die Erkennung neuer oder vergrößerter Läsionen im Vergleich zur Standard-Analyseme-

thode. Außerdem wurden in den DIR-Karten signifikant mehr Läsionen gefunden (Mittel-

wert 6.26 vs. 3.68), und gleichzeitig verkürzte sich bei dieser Methode die Auswertungszeit 

pro Patient:in auf ein Drittel der Standardanalysezeit (Median 2 min vs. 8 min). Unsere 

Ergebnisse deuten darauf hin, dass die DIR-Sequenz allein eine zuverlässige Erkennung 



 
 

von Läsionen in Folgebildern von MS-Patient:innen ermöglichen kann, wenn Subtraktions-

karten verwendet werden. Unser Protokoll kann in der täglichen klinischen Praxis einge-

setzt werden. 

Das zweite Projekt zielte darauf ab, die Konversion von Patient:innen im Stadium des kli-

nisch isolierten Syndroms in eine Multiple Sklerose vorherzusagen, indem Bildmerkmale 

der Läsionen im ersten Magnetresonanztomographie-Scan analysiert wurden. Bei 84 Pa-

tient:innen mit klinisch isoliertem Syndrom wurden die Läsionen im Ausgangsscan anhand 

von dreidimensionalen FLAIR- und dreidimensionalen T1-gewichtete Sequenzen segmen-

tiert. Die Läsionen wurden für jede Patient:in durch zwei verschiedene Methoden segmen-

tiert, um den Einfluss verschiedener Segmentierungsmethoden auf die Vorhersage zu be-

werten: eine durch computergestützte manuelle Segmentierung und eine durch einen au-

tomatischen Segmentierungsalgorithmus. Intensitäts- und Formparameter der Läsionen 

wurden aus diesen Segmentierungsasken berechnet und dienten als Input für ein Oblique-

Random-Forest-Modell. Dieses wurde mit drei verschiedenen Eingaben trainiert: Form-

merkmale, Intensitätsmerkmale und Einbeziehung sowohl von Formmerkmalen als auch 

Intensitätsmerkmalen. Die Vorhersagegenauigkeit wurde anschließend durch eine dreifa-

che Kreuzvalidierung geprüft. Die Konversion zu Multipler Sklerose wurde für die Pati-

ent:innen in unserer Kohorte nach den McDonald-Kriterien von 2010 in einer Nachbe-

obachtungszeit von drei Jahren definiert. Das Computermodell, das auf Formmerkmalen 

aus der manuellen Segmentierung basiert, zeigte die beste Vorhersagegenauigkeit und 

übertraf den Goldstandard, der auf der räumlichen Dissemination basiert (0.85 vs. 0.79, p 

= 0.03). Formparameter spielten eine wichtige Rolle für eine vielversprechende Vorher-

sage, während Intensitätsparameter die Vorhersageleistung nicht verbessern konnten. Ins-

besondere die Formmerkmale, die die Ovalität der Läsionen beschreiben, trugen am meis-

ten zur Vorhersage bei: mittleres Läsionsvolumen, minimale Sphärizität und minimales 

Oberflächen-Volumen-Verhältnis. 

Wir haben zwei computergestützte Verfahren zur Verbesserung der radiologischen Diag-

nostik von Multipler Sklerose entwickelt und ihre Vorteile gegenüber dem derzeitigen klini-

schen Arbeitsablauf nachgewiesen. Neue und vergrößerte Läsionen in Magnetresonanzto-

mographie-Folgeuntersuchungen konnten mit Hilfe von DIR-Subtraktionskarten schneller 

und zuverlässiger erkannt werden als mit dem Standardverfahren. Wir konnten zeigen, 

dass unser Random-Forest-Modell, das sich auf die Formmerkmale der Läsionen in der 

ersten Magnetresonanztomographie-Untersuchung stützt, die Konversion eines klinisch 

isolierten Syndroms in eine Multiple Sklerose genauer vorhersagen kann als der Goldstan-

dard. 
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1 Introduction 

In 1868, Parisian neurologist Jean-Martin Charcot was the first to identify multiple sclerosis 

(MS) in one of his patients. Approximately a century later, the development of imaging 

techniques in the 1970s allowed more insight into the central nervous system (CNS) and 

improved the diagnosis of this disease. Today, magnetic resonance imaging (MRI) is rec-

ognized as the most sensitive and specific paraclinical test for MS (Polman et al., 2011; 

Swanton et al., 2007). Magnetic resonance findings support the clinical diagnosis and rep-

resent a sensitive and objective method to monitor disease activity over time (Thompson 

et al., 2017).  

Regardless of the speciality, images account for a large proportion of data in the healthcare 

industry. However, the mere production of a large amount of data is not advantageous 

unless correct analysis that exploits their intrinsic value is executed. In the present clinical 

routine, MRI analysis is done manually by the radiologist screening the three-dimensional 

(3D) scan layer by layer, which is time-consuming and tiring. There are currently only lim-

ited tools for assisting radiologists in extracting information from medical images. The emer-

gence of artificial intelligence (AI) via breakthroughs in technology and computer science 

since the 1960s paved the way for strategies to improve the analysis of extensive data 

collections and provide a suitable solution to processing and harnessing large amounts of 

data in a meaningful way. 

Computational image analysis can compensate for the weaknesses of human image anal-

ysis and can serve as a solution for utilizing hidden information otherwise lost. As a branch 

of AI, machine learning (ML) can search for patterns that eludes the human eye, be quicker 

and never tire; therefore, providing suitable solutions to the problem of accurate image 

analysis in the medical field.  

This thesis developed computational tools that assist radiologists in their diagnostic work-

flow regarding time-efficiency and accuracy for patients with MS. The basic understanding 

of MS, the role of MRI for this disease, existing computational tools, and AI methods are 

crucial for this purpose. The following chapters provide background information and are 

followed by the objectives of this thesis.  
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 Multiple sclerosis  

Multiple sclerosis is primarily an inflammatory disease of the CNS, characterized by multi-

focal demyelination and subsequent axonal degeneration. It is a challenging and disabling 

condition with a mean global prevalence of 33 per 100,000 (Multiple Sclerosis International 

Federation, 2014). Multiple sclerosis is one of the most common neurological diseases in 

young adults and the most common cause of non-traumatic neurological disability among 

this group (Koch-Henriksen & Sørensen, 2010).  

Unknown triggers cause a regulatory defect in lymphocytes, starting a cascade of immune 

responses, leading to the breakdown of the CNS’s blood-brain barrier (Viglietta, Baecher-

Allan, Weiner, & Hafler, 2004). Due to this focal inflammation, perivenular autoreactive lym-

phocytes infiltrate and damage the myelin sheath of axons, leading to axonal loss, edema, 

and gliosis. These focal damages induce the reactive proliferation of astrocytes and, thus, 

the formation of multiple sclerotic plaques. These injuries mainly occur along veins 

(Tallantyre et al., 2008; Tan et al., 2000). The progression of MS happens due to neuro-

degeneration and is maintained by ongoing inflammation. 

Although MS's exact etiology is unknown, underlying genetic susceptibility and environ-

mental exposure, such as low vitamin D levels, cigarette smoking, viral infection, and obe-

sity, are discussed as driving the condition (Thompson, Baranzini, Geurts, Hemmer, & 

Ciccarelli, 2018). Multiple sclerosis prevalence increases when family members are af-

fected by this disease (Compston & Coles, 2008). The epidemiology pattern with dispro-

portionately high frequencies in regions populated with mostly northern Europeans might 

suggest a genetic predisposition to MS. However, the change in risk by migration among 

people of the same ancestry indicates a role of environmental factors in this disease's gen-

esis (Gale & Martyn, 1995; Kurtzke, 1993).  

Due to different locations of inflammation and different forms of MS, the symptoms are 

highly heterogeneous. The most common syndromes and symptoms in the early stages 

are sensory disturbance, fatigue, and unilateral optic neuritis, resulting in blurred vision and 

painful eye movements. During the progression of MS, more symptoms can affect the pa-

tient, such as muscle spasms, urination incontinence and dysphagia. A systemic classifi-

cation tool for the disability grade in MS patients is the expanded disability status scale 

(EDSS) of Kurtzke (Kurtzke, 1983). This scale is the most widely used score to assess the 

clinical disease progression and the effectiveness of therapy (Meyer-Moock, Feng, 

Maeurer, Dippel, & Kohlmann, 2014). The score classifies the patient's possible walking 

distance and eight functional systems, such as motor function, sensory function, bladder 

and bowel regulation, and the function of the brainstem, the cerebellum and vision (Kurtzke, 

1983). The score ranges from 0, indicating no neurological deficits, to 10, meaning death 

due to MS (Kurtzke, 1983).   
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  Diagnosis of multiple sclerosis 

A definite MS diagnosis cannot be provided by any existing test, even including biopsy 

(Rovira et al., 2015). Therefore, diagnostic criteria were adopted, subject to constant mod-

ification as new evidence emerges, to interpret symptoms for their probability of MS being 

their etiology and excluding alternative diagnoses that can mimic MS.  

The diagnostic principles are based on three steps. First, the suspected diagnosis of an 

inflammatory demyelinating disease of the CNS is formed by anamnesis of the symptoms 

and clinical examination. Second, differential diagnoses are excluded via laboratory results 

and MRI. Third, MS is confirmed by the criteria dissemination in time (DIT) and dissemina-

tion in space (DIS) by either imaging or clinical evidence. 

Over time, imaging assessment has been increasingly incorporated in the information 

channel to diagnose MS. Magnetic resonance imaging is the best non-invasive diagnostic 

tool for imaging soft tissue in anatomic detail. The tool relies on strong magnetic fields and 

radio waves that measure the relative water content in the area of interest. In the field of 

MS, MRI is based on substantiating the suspicion of ongoing or lapsed inflammation in the 

brain and spinal cord, which are displayed in the form of lesions. These lesions are spots 

of demyelination and correspond to pathological findings in autopsy (Stewart, Hall, Berry, 

& Paty, 1984). Magnetic resonance imaging is the most sensitive technique detecting these 

lesions (Grossman & McGowan, 1998) since they represent an increase in tissue water 

due to the breakdown of the blood-brain barrier and subsequent macrophage migration 

and infiltration. Therefore, after the gadolinium application, these lesions are visible in con-

trast-enhanced MRI as bright areas. 

Since 2001, a set of guidelines called the McDonald criteria have incorporated MRI findings 

to facilitate MS diagnoses (Mcdonald et al., 2001). This guideline has been updated several 

times. The McDonald criteria highlight the importance of lesion location and apply two key 

concepts: first, the proof of DIS, which means the presence of at least one lesion in at least 

two of the following regions: infratentorial, juxtacortical, periventricular, and spinal cord; 

second, the DIT, which is proven either by the simultaneous presence of a gadolinium-

enhancing lesion and a non-enhancing lesion or the detection of a new lesion in a follow-

up image (Thompson et al., 2017). According to these guidelines, radiological findings may 

even supplement clinical proof of DIT and DIS (Thompson et al., 2017). 

In addition to being an essential tool for the diagnosis of MS, MRI plays a crucial role in the 

monitoring of MS disease progression: Images provide objective data that enable a precise 

comparison between scans of two time points. The monitoring of disease activity by iden-

tifying new or enlarged MS lesions between scan time-points has implications for the diag-

nostic and therapeutic procedure (e.g. selection of medication, neuroimaging frequency, 

and clinical follow-up).  
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According to the present guidelines, several MRI sequences are recommended for the 

standardized brain MRI protocol (Rovira et al., 2015). For the baseline evaluation, manda-

tory sequences include inter alia fluid-attenuated inversion recovery (FLAIR), T2-weighted 

(T2w) sequences and contrast-enhanced T1-weighted (T1w) sequences (Rovira et al., 

2015). Characteristic abnormalities in MRI for MS patients include T2w-hyperintense or T1-

hypointense lesions in the white matter. Sequences of FLAIR improve the detection of white 

matter and gray matter lesions by suppressing cerebrospinal fluid signal and blood-flow 

effects. 

The double inversion recovery (DIR) sequence has an emerging role as a diagnostic tool 

for MS patients. The DIR sequence at 3 tesla provides the highest overall sensitivity for 

detecting MS lesions, compared with the T2w turbo spin echo and the FLAIR sequence 

(Khangure & Khangure, 2011; Wattjes et al., 2007). The DIR sequence is also a powerful 

tool for detecting cortical and infratentorial lesions in MS (Geurts et al., 2005; Vural, 

Keklikoǧlu, Temel, Deniz, & Ercan, 2013; Wattjes et al., 2007). This sequence offers im-

ages with a lower signal-to-noise ratio than FLAIR images. Therefore, DIR images appear 

noisier, but the high contrast-to-noise ratio makes them usable in a subtraction map ap-

proach. 

 

 

Figure 1 MRI sequences used for patients with MS a) DIR b) FLAIR c) T2w 
This example displays the same brain-scan slice from a patient of the second project. The 
blue arrows point at a subcortical MS lesion. 
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 Neuroradiologists’ workflow for patients with multiple sclerosis 

A core task of radiological diagnostics for patients with MS is analyzing new and enlarged 

lesions representing active inflammation. In clinical routine, this lesion quantification is 

done manually by neuroradiologists looking at T2w and FLAIR sequences to compute le-

sion count and total lesion volume. However, manual lesion detection and segmentation 

are difficult due to high variability in size, shape, and location and due to artifacts, which 

occur even under ideal conditions, making the processing time-consuming and suffering 

from interobserver variability. 

Semi-automated and fully automated quantitative lesion segmentation methods that deliver 

reliable and accurate results compared with manual segmentation have been reported 

(Ashton et al., 2003; Egger et al., 2017; Filippi et al., 1995; P. Schmidt et al., 2012; 

Zijdenbos, Forghani, & Evans, 2002). These methods are beneficial regarding time effec-

tiveness and the reduction of interrater variability while delivering objective measurements 

regarding lesion volume and lesion count. Thus, they enable standardized MRI quantifica-

tion. 

Semi-automated methods rely on threshold-based algorithms or region-growing algo-

rithms. The first method is based on the automatic recognition of brightness thresholds. 

The user manually marks an area in the two-dimensional reformation, and the lesion border 

is delineated in that slice according to the highest difference in brightness between neigh-

boring voxels. For region-growing algorithms, a beginning voxel, called seed, is selected 

manually by the user using a single mouse click, preferably in the middle of the lesion. 

Subsequently, neighbor voxels are analyzed and assigned iteratively to the lesion when 

meeting certain conditions. This algorithm ends when no further voxels are assigned to the 

lesion (Ashton et al., 2003; P. Schmidt et al., 2012). 

There are several methods for the fully automatic segmentation of MS lesions. One ap-

proach was developed and evaluated in-house: the lesion segmentation tool (LST) for SPM 

(P. Schmidt et al., 2012). This algorithm uses a combination of a 3D gradient-echo T1-

weighted and a FLAIR scan at 3 tesla to detect FLAIR-hyperintensities in patients with MS.  

The assessment of lesion activity in follow-up images can be even more cumbersome since 

a comparison is needed between the current and previous scans. The images to be com-

pared are not oriented and sliced in the same way, which complicates this procedure. For 

every lesion in the current image, a correlation must be searched for in the previous scan, 

making the evaluation especially time-consuming for patients with a high lesion load. Sev-

eral studies have investigated the use of subtraction maps to address this problem. For this 

approach, serial scans of MS patients are co-registered, and the intensity values are sub-

tracted voxel by voxel to produce images in which the radiological-stable situation and the 

background noise are cancelled out while alterations are directly visualized.  

The foundation of using subtraction images to detect lesion change was laid by Hajnal et 

al. (1995), who investigated the improved detection of subtle changes with registered 
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subtraction images in patients with MS, among other brain diseases. In that study, differ-

ences due to contrast enhancement, such as in patients with MS, were visible.  

Further studies have investigated subtraction maps for patients with MS using T2w se-

quences (Moraal, Pohl, et al., 2009; Tan, Van Schijndel, et al., 2002), 3D FLAIR sequences 

(Moraal et al., 2010; Tan, van Schijndel, Pouwels, Adèr, & Barkhof, 2002), and DIR se-

quences (Moraal et al., 2010), proving the superiority of subtraction maps over the standard 

pairwise comparison. More complex approaches in this field are based on supervised 

(Elliott, Arnold, Collins, & Arbel, 2013; Sweeney, Shinohara, Shea, Reich, & Crainiceanu, 

2013) and unsupervised (Battaglini et al., 2014; Ganiler et al., 2014) subtraction pipelines 

to interpret the results of subtraction maps. 

The DIR sequence, with its high lesion-to-parenchyma contrast, is promising for subtraction 

maps to visualize active lesions prominently. Moraal et al. (2010) investigated DIR subtrac-

tion maps for lesion detection in MS patients and found an increased detection of new 

lesions, but included only a small number of patients and testing in a clinical setting was 

not executed. Therefore, our goal was to provide a study that investigates a cohort of a 

bigger size with the hypothesis that DIR subtraction maps may provide an advantage in the 

analysis of follow-up images over the present gold standard. We aimed to provide a study 

of this hypothesis with a large study cohort. 
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 Treatment of multiple sclerosis and clinically isolated syndrome 

There is medication available to slow MS progression and relieve symptoms. The disease 

is usually diagnosed in young adulthood, and patients may need treatment for an extended 

period. The selection of those patients who benefit from early therapy is essential infor-

mation since MS agents may come with severe side effects. For the long-term management 

of MS patients, disease-modifying therapies (DMT) delay progression and reduce early 

disease activity that would likely contribute to future disability. (Hart & Bainbridge, 2016) 

These DMTs are especially of interest for patients with clinically isolated syndrome (CIS), 

a possible preliminary stage of MS. The syndrome refers to a single episode of neurologic 

symptoms suspected of an inflammatory demyelinating event of the CNS. The clinically 

isolated syndrome is recognized as an initial presentation of MS without fulfilling the DIT 

criterion (Miller et al., 2005; Miller, Chard, & Ciccarelli, 2012). A second clinical exacerba-

tion is evidence of DIT and would qualify as clinically definite MS (CDMS). Additionally, 

conversion from CIS can also be determined by radiological proof of DIT, which is the sim-

ultaneous presence of active and lapsed lesions or the appearance of new lesions in later 

scans. These cases are considered radiologically definite MS (RDMS). The number of CIS 

patients who suffer a second clinical attack can be reduced by admission of DMTs, as well 

as their MRI activity and MS conversion can be delayed by DMTs (Comi et al., 2001, 2009; 

Jacobs et al., 2000; Kappos et al., 2016). The effect of these drugs is particularly beneficial 

in the very early stages (Comi et al., 2001; Kappos et al., 2016). 

Therefore, MRI plays a key role in the initial evaluation of patients with CIS. Magnetic res-

onance imaging abnormalities in patients with MS or its preliminary stage are considered 

predictive for disease progression and future disability (Barkhof et al., 1997; Brex et al., 

2002; Fisniku et al., 2008). Although the risk of a second clinical attack is affected by clinical 

factors including oligoclonal bands in the central spinal fluid, and male gender and older 

age at onset, the conversion risk can be assessed most consistently by the presence of 

lesions (Dalton, Brex, Miszkiel, et al., 2002; Swanton et al., 2007; M. Tintoré et al., 2003; 

W. Y. Zhang & Hou, 2013), as well as the number of lesions in the initial scan (Fisniku et 

al., 2008; M. Tintoré et al., 2006). Furthermore, 70–80% of CIS patients with an abnormal 

scan developed CDMS in long-term follow-up studies of 15–20 years, whereas only 20–

25% of CIS patients with normal imaging converted to CDMS (Brodsky et al., 2008; Fisniku 

et al., 2008). Periventricular lesions and lesions in the brainstem and spinal cord also cor-

relate with disease progression (Di Filippo et al., 2010; Giorgio et al., 2013; Mostert et al., 

2010) 

Early detection of CIS and its early management are crucial for delaying disability progres-

sion via the early administration of MS agents. Moreover, the proportion of CIS patients 

who experience a favorable course should not be neglected, and their needless medication 

should be avoided. Therefore, the reliable prediction of the individual conversion risk is 

highly relevant from the first presentation. 
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 Machine-learning methods  

Given that modern (neuro-)radiology is primarily a data analysis task, implementing modern 

ML techniques is a suitable solution to cope with the high numbers of generated data. As 

a branch of AI, ML enables systems to learn automatically and improve from data without 

relying on a predetermined equation. Machine learning begins with a mathematical algo-

rithm called a learner, which repeatedly modifies its operating ways by iterating over the 

training data, and thereby builds a ML model. With continuous exposure to new data, ML 

models adapt independently and learn from previous computations until a robust pattern is 

found. This process results in reliable and repeatable decisions. The trained model is tested 

on unseen data, called test data, to evaluate its real-world performance. (Mitchell, 2010) 

The two main basic approaches in ML are supervised learning and unsupervised learning. 

Supervised learning algorithms are used to classify data or predict outcomes from historical 

data. These algorithms are trained by receiving a set of labeled inputs and outputs, mean-

ing inputs have corresponding outputs (e.g. a medical record that contains several potential 

risk factors and the corresponding information of whether a patient developed a disease). 

The algorithm learns patterns and measures their accuracy from training data to predict 

values on unseen test data. Labeling the datasets for training can be a laborious process. 

One advantage of unsupervised learning algorithms is that no corresponding outputs are 

necessary because they are trained with unlabeled data to explore the structure within (e.g. 

similarities or anomalies that stand out) to gain insights into large volumes of new data. 

(Mitchell, 2010)  

A random forest (RF) is a supervised ML algorithm used for prediction. It is a commonly 

used and popular algorithm because of its simplicity and utility for classification and regres-

sion tasks. An RF model builds multiple decision trees and then merges them to develop a 

stable prediction. A decision tree is built on two elements: nodes and branches. Each node 

represents a test on input features, and each branch represents the outcome of the test. 

Each individual tree is trained via a randomly chosen sample of subsets of the entire da-

taset, and at every node, certain input features are selected randomly for evaluation. This 

process leads to constructed heterogeneity and decorrelation. The final nodes are called 

leaf nodes and represent the final prediction, and therefore, the attribution of a category 

(e.g. disease or no disease) or a numerical class is made. (Breiman, 2001; Masetic & 

Subasi, 2016) 

An additional useful quality of the RF is the possibility to measure the relative importance 

of each input feature on the prediction. In the medical field, clinical risk factors often function 

as input features, and onset of a disease as the prediction endpoint; thus, the feature im-

portance can deliver a better understanding of the genesis and development of a disease. 

Additionally, the feature importance enables the user to decide on which features could be 

excluded from a model since they do not contribute enough to the prediction process. The 

limitation of features is important because of a general rule in ML: the more features put 
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into an algorithm, the more likely it will suffer from overfitting, and vice versa. (Breiman, 

2001)  

Overfitting is one of the biggest problems in machine learning. It occurs when a model with 

high capacity essentially memorizes the training data by fitting them too closely. The prob-

lem stems from the model not only learning the actual relationships in the training data, but 

also any present noise, thus, generalizing unsatisfyingly on unseen test data. Fortunately, 

the RF solves this problem by resampling the trees and constraining the number of nodes. 

However, a selection of input features with high contribution to the classification may im-

prove the model’s performance. (Breiman, 2001) 

 

 

 Machine learning in the field of multiple sclerosis 

Applying ML in the field of MS is particularly interesting since clinicians aim to prevent or 

delay the disease progression from the preliminary stage of CIS and from early MS stages, 

but the details of risk factors and pathogenesis are still unclear.  

As mentioned previously, MRI is the most sensitive paraclinical tool for MS and delivers 

objective data. Neuroimaging predictors of clinical outcomes in patients with CIS have 

demonstrated that number, location, and distribution of asymptomatic white matter lesions 

on baseline scans are associated with conversion to CDMS (Alroughani, Al Hashel, 

Lamdhade, & Ahmed, 2012; Brex et al., 2002; Fisniku et al., 2008; Giorgio et al., 2013; M. 

Tintoré et al., 2003; W. Y. Zhang & Hou, 2013). These predictors only incorporate data 

visible to the human eye and somehow tangible for the radiologist. Machine-learning meth-

ods can help to extract and process further intrinsic value from these data to include in the 

prediction criteria. 

At the time of the second project (March to October 2017), only a few studies had dealt 

with the prediction of conversion from CIS to MS using ML methods. Wottschel et al. (2014) 

used support vector machines to predict the conversion by combining clinical features and 

information from baseline MRI scans, including inter alia, lesion count, lesion load, lesion 

intensities, and lesion distances. Other studies with a similar aim used advanced MR tech-

niques, such as measuring myelin water fraction in white matter (Kitzler et al., 2018) or MR 

spectroscopy (Ion-Mărgineanu et al., 2017). A prediction of conversion by analyzing le-

sions’ shape and intensity features from MRI baseline scans via a RF model has not been 

performed at that time. 
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 Research aims and objectives 

Evaluating lesions in MR images is an important part of the diagnosis and follow-up for 

patients with MS. This process is tedious and lengthy; therefore, tools to simplify and ac-

celerate this process for neuroradiologists are desirable in everyday clinical practice. Fur-

thermore, the evaluation of image data beyond human perception can improve each pa-

tient's individual assessment. This work was driven by the motivation to provide practical 

solutions that are ready and easy enough to be integrated into the clinical routine. The aim 

was to build computational tools that assist neuroradiologists in the diagnosis of patients 

with MS and CIS. This thesis consists of two parts.  

The first project was implemented between September 2016 and July 2017. At that time, 

few studies of subtraction maps of patients with MS have investigated the diagnostic per-

formance and time saving with a large cohort. We aimed to develop an algorithm that cal-

culates longitudinal intensity subtraction maps from DIR sequences to improve the detec-

tion of new or enlarged lesions in follow-up images of patients with MS. The specific objec-

tives were as follows: 

• Analyse the accuracy and time of lesion detection using DIR subtraction maps and 

FLAIR subtraction maps 

• Compare the results with the standard pairwise image analysis 

• Investigate the tool’s utility for non-neuroradiologists  

The second project was implemented between September 2017 and November 2018 and 

aimed to develop a machine-learning tool to predict CIS patients' possible conversion to 

MS using imaging features from their baseline scans. The specific objectives of the second 

project were as follows: 

• Assess the predictive performance of shape and intensity features 

• Compare the best predictive model with the gold standard  

• Determine the features that are the most important for the prediction 

• Identify the possible effect of the segmentation method on the prediction perfor-

mance 

• Study weak points for future application of ML methods in this field 

In the following chapter, the first project about subtraction maps is described. Chapter 3 

contains the second project about the RF prediction model. Chapter 4 outlines the main 

conclusions of both projects and delivers recommendations for further research.  
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2 Lesion detection using a DIR subtraction map  

The content of this chapter was published as “A novel imaging technique for better detect-

ing new lesions in multiple sclerosis” in the Journal of Neurology on 29th July 2017 

(Eichinger et al., 2017).  
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 Methods 

2.1.1 Subjects 

The observational cohort included 106 patients with a confirmed MS or CIS diagnosis from 

the MS database of the Department of Neurology of the Klinikum Rechts der Isar: 65.0% 

(n = 69) were female and 35.0% (n = 37) were male. The F:M ratio was 1.86:1. The age 

ranged from 17 to 66 years old, and the mean age at onset was 33 ± 11 years. All patients 

received at least two MRI scans between January 2014 and March 2016 every 6 to 12 

months. The first and the last scans were at least 13 months apart and were used as a 

follow-up pair. In total, 212 scans were evaluated.  

 

 

2.1.2 MRI acquisition 

All MR images were acquired using a 3 tesla MR scanner (Achieva, Philips Healthcare, 

Best, the Netherlands). Every scan included the sequences 3D FLAIR, 3D DIR, and 3D T2-

turbo spin echo. Additionally, at least one 3D gradient-echo T1w sequence using a mag-

netization-prepared 180-degree radiofrequency pulse and rapid gradient-echo sampling 

(pre- and/or post-contrast) were included. The imaging parameters are stated in the Ap-

pendix (Chapter 6.1.1 on page XXII).  

 

 

2.1.3 Data processing 

For this stated workflow, we used MATLAB 8.6. The citation of all software used for this 

project can be found in the Appendix on page XXVII. Our custom-developed scripts are in 

the Appendix on page XXIII and also public on Github: ‘https://github.com/CompImg/DIR-

sub’.  

FLAIR and DIR sequences were converted manually from the Digital Imaging and Com-

munications in Medicine (DICOM) file format in the Picture Archiving and Communication 

System (PACS) to the Neuroimaging Informatics Technology Initiative (NIfTI) file format. 

We used the custom-built script Statistical Parametric Mapping package (SPM 12) for 

MATLAB to perform a rigid registration to co-register the baseline DIR image and the follow-

up DIR image of each patient. The follow-up image was set as reference, and the baseline 

image as source. Subsequently, the intensities of the registered baseline images were sub-

tracted voxel by voxel from the intensities of the follow-up images, obtaining a subtraction 

map (Figure 2).  
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Figure 2 Figurative illustration of the subtraction pipeline for DIR images 
The same axial images from a patient of the study cohort: a) baseline image set as source, 
b) follow-up set as reference, c) resulting subtraction image. 

 

For the FLAIR images, subtraction maps were calculated amorously with additional post-

processing steps: we used the N4 bias correction algorithm to perform biasfield correction. 

Then, we used the Robust Brain Extraction (ROBEX) algorithm for brain extraction. The 

citation of all algorithms used for this project can be found in the Appendix on page XVIII. 

The follow-up scan was set as reference, and the baseline scan was set as source. Later, 

histogram matching was performed on the baseline scan using MATLAB’s imhistmatch 

function. The resulting image was subtracted in the same manner as described for DIR 

images from the follow-up image, obtaining the FLAIR subtraction map (Figure 3).  

A similar post-processing procedure was performed for DIR subtraction maps. However, 

both neuroradiologists came to the same conclusion, via the visual inspection of examples 

of generated subtraction maps, that no benefit was gained compared with the subtraction 

maps obtained from non-post-processed DIR images. Thus, this post-processing step was 

omitted in the DIR subtraction map algorithm to avoid slowing the process.  

 

 

 

Figure 3 Figurative illustration of the subtraction pipeline for FLAIR images 
The same axial brain slices of the same patient as in Figure 2: a) FLAIR baseline image, 
b) FLAIR follow-up image, c) subtraction map without post-processing steps, d) corrected 
subtraction map. 
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2.1.4 Image readout protocols  

Two experienced neuroradiologists assessed the images (Paul Eichinger, five years’ ex-

perience; Benedikt Wiestler, eight years’ experience) on multi-display PACS workstations. 

Each neuroradiologist assessed all patients in three different readouts, with one week be-

tween each to minimize memory bias. Images were viewed and annotated for new lesions 

in consensus using ITK Snap 3.6. 

The first readout imitated the standard clinical process. Therefore, images were compared 

pairwise visual screening of all the available sequences in a non-registered form featuring a 

split-screen modality. Each axial brain slice of the follow-up image was evaluated. In the 

case of a lesion, the corresponding lesion was searched for in the baseline picture to judge 

whether it was a new lesion or an enlargement of an existing one.  

In the second readout, only DIR subtraction maps, the co-registered follow-up DIR image, 

and baseline DIR image were viewed on a single laptop screen. The axial slices of the DIR 

subtraction map were screened for hyperintensities. In case of detection, both DIR images 

were used to confirm the finding as a real new lesion as opposed to an artifact in the sub-

traction map. In Figure 4, two examples illustrate how new and enlarged lesions were de-

picted to the viewer in the second readout. For the third readout, the FLAIR subtraction 

maps, the co-registered FLAIR follow-up images, and the FLAIR baseline images were 

used analogously. 

A neurologist (Hanni Wiestler, five years’ clinical expertise in MS treatment) and a medical 

student (Haike Zhang, 4th year, no prior imaging experience, brief introduction) executed 

the same readout protocols on single laptop screens.  

The two neuroradiologists reviewed the combined information from all four readers, and all 

readout protocols in a consensus read to define the reference standard. No other inde-

pendent standard was used to define the lesions on the imaging data. The primary outcome 

measure was set as the existence of new or enlarged lesions. For each patient, all readers 

recorded the overall time for evaluation and lesion annotation. The number of new and 

enlarged lesions was counted and classified according to their location into periventricular, 

juxtacortical/cortical, subcortical, or infratentorial. Additionally, lesion size was semi-quan-

titatively classified into small or large based on their diameter.  

The diameter was measured by the distance measuring tool provided by ITK Snap 3.6. As 

proposed in the 2016 MAGNIMS criteria (Filippi et al., 2016), only lesions with a diameter 

greater than or equal to 3 mm were considered. As proposed by Moraal et al. (2009b), 

lesions were regarded as enlarged in the case of an increase in diameter of more than 

50%. A change in lesion shape suggestive of confluent lesions was considered enlarge-

ment, even if the diameter did not increase more than 50%.  

 



15 
 

 

Figure 4 Examples of new and enlarged lesions in the DIR subtraction map 
The upper row illustrates a patient from the study cohort with a lesion (green arrows) in the 
white matter of the left posterior brain quadrant that is enlarged compared with the baseline 
scan. The lower row displays another patient from the study cohort with a new lesion (red 
arrows) in the white matter of the left posterior quadrant of the brain. 

 

The threshold for large lesions was set as a diameter longer or equal to 5 mm. This thresh-

old was chosen since it divides the group of new or enlarged lesions found by the standard 

readout into two nearly equally large groups (192 lesions < 5 mm, 198 lesions ≥ 5 mm). 

This separation allows statistically meaningful analysis. 

The quality of the subtraction images was semi-quantitatively graded into three categories: 

2: all hyperintensities in brain parenchyma on subtraction maps depict new lesions; 1: 

source images were needed in at least some hyperintensities to decide whether these de-

pict new lesions or are artificial; and 0: no additional benefit of the subtraction images over-

using the source images alone. 
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2.1.5 Statistical analysis 

The statistical calculations were performed in MATLAB 8.6 and R 4.0.3. The significance 

level was set at p = 0.05. Standard diagnostic accuracy measures were calculated, includ-

ing sensitivity, specificity, negative predictive value (NPV), and positive predictive value 

(PPV). The image analysis methods were compared with each other and the reference 

standard using an exact conditional McNemar’s test (McNemar, 1947). Wilcoxon signed-

rank tests for paired observations were used to compare the numbers of new lesions per 

patient, the time needed for each image analysis, and the image quality of the subtraction 

maps.  
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 Results 

2.2.1 Image processing 

In a clinical setting, the average time for preparing the image for the MATLAB script took 

approximately 4 min. The preparation included transferring the image data from the MR 

scanner to the processing computer and the organization of the data to be put into 

MATLAB. The proposed subtraction algorithms' calculation took approximately 45 s for 

each DIR map, and approximately 3:15 min for FLAIR subtraction maps since post-pro-

cessing, as mentioned in Chapter 2.1.3 (page 13), was needed.  

 
 
 

2.2.2 Subtraction map quality  

In both versions of the subtraction maps, newly occurring lesions revealed as hyperintense, 

whereas preexisting lesions were cancelled out (Figure 4, above). Table 1 lists the quality 

of the subtraction maps. The one DIR map with grade 0 was due to heavy motion artifacts 

in both DIR images (Figure 5). In comparison, the DIR map quality proved significantly 

higher than that of the FLAIR maps (p = 0.004, Wilcoxon signed-rank test). 

 

Table 1 Quality of the subtraction maps 

Grade 0 1 2 

DIR maps 1 37 68 

FLAIR maps 2 55 49 

 

 

 

 

Figure 5 The one DIR map with grade 0 
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2.2.3 Algorithm performance 

In our cohort, 77 out of 106 patients (73%) displayed disease activity as per retrospective 

ground-truth assessment. Since the reference was set as the consensus read, as previ-

ously explained, all classification in the standard reference is considered correct. Table 2 

lists the results of the three readout sessions. Seventy-three patients (95%) with new or 

enlarged lesions were detected using the DIR subtraction maps, whereas using the stand-

ard comparison only correctly detected 63 patients (82%). 

The measures of diagnostic accuracy are stated in Table 3. The DIR readout significantly 

outperformed the standard readout: a sensitivity of 0.95 compared with 0.82 (McNemar 

test, p = 0.013). No false positives occurred in either of these two readouts, so specificity 

was 1.00 twice. The diagnostic accuracy of the DIR map readout of 0.96 was significantly 

higher than the standard readout of 0.87 (exact McNemar, p = 0.013).  

The FLAIR map readout correctly classified 61 patients (79%) with new or enlarged lesions 

and with three false positives, resulting in a sensitivity of 0.79 and a specificity of 0.90. The 

sensitivity proved significantly worse than in the DIR maps (exact McNemar, p < 0.001), 

whereas the discrepancy from the standard readout did not prove significant (exact 

McNemar, p = 0.36). 

 

Table 2 Results from the three readouts 

a) Standard comparison New lesion No new lesion 

New lesion found 63 0 

No new lesion found 14 29 

b) DIR map   

New lesion found 73 0 

No new lesion found 4 29 

c) FLAIR map   

New lesion found 61 3 

No new lesion found 16 26 

Source: Table based on Eichinger et al. (2017, Tab. 2b) 
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Table 3 Diagnostic accuracy measures for all readouts 
 

Abbreviations: PPV positive predictive value, NPV negative predictive value. The 95% confidence interval is 
shown in parenthesis. 

Source: Table based on Eichinger et al. (2017, Tab. 2a) 

 

 

2.2.4 Lesion counts 

The mean number of total lesions per person and the mean numbers classified into their 

location are listed in Table 4. In the DIR readout, approximately 1.7 times as many new 

lesions were found, on average, per person compared with the standard readout (6.24 vs. 

3.67). This discrepancy proved significant in the Wilcoxon signed-rank test (p < 0.001). 

Regarding the individual predefined areas, significantly more lesions were detected by us-

ing DIR subtraction maps than by the standard assessment for every location (p < 0.001 

for each location, Wilcoxon signed-rank test). Lesion detection in one location in particular 

benefited from the use of DIR maps: The juxtacortical/cortical region reached a 2.1-fold 

increase in mean lesion detection compared with the visual readout (1.20 vs. 0.58). Re-

garding lesion size, the DIR subtraction maps offered a significant improvement, compared 

to standard readout, for detecting lesions that are assigned as big (2.90 vs. 1.87, p < 0.001) 

and small (3.35 vs. 1.81, p < 0.001). 

 

FLAIR maps only provided an advantage over the standard assessment regarding location 

in subcortical lesions, but not significantly (Wilcoxon signed-rank test, p = 0.053). In all 

other lesion locations, using FLAIR maps led to worse results than by using the standard 

comparison. The difference is significant for juxtacortical (p = 0.001) and infratentorial le-

sions (p = 0.002), but not significant for periventricular lesions (p = 0.099). The difference 

between DIR- and FLAIR readouts regarding all lesion locations and total lesion count was 

highly significant in favor of the DIR readouts (Wilcoxon signed-rank tests, subcortical p = 

0.005, all other locations p < 0.001).  

  

 Standard readout DIR map FLAIR map 

Accuracy 
0.87 

(0.81–0.93) 

0.96 

(0.92–1.00) 

0.82 

(0.75–0.89) 

Sensitivity 
0.82 

(0.79–0.90) 

0.95 

(0.87–0.99) 

0.79 

(0.68–0.88) 

Specificity 
1.00 

(0.88–1.00) 

1.00 

(0.88–1.00) 

0.90 

(0.73–0.98) 

PPV 
1.00 

 

1.00 

 

0.95 

(0.87–0.99) 

NPV 
0.67 

(0.56–0.77) 

0.88 

(0.74–0.95) 

0.62 

(0.51–0.72) 
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Table 4 Mean number of new lesions per patient in the respective location 
 Standard DIR map FLAIR 

map 

DIR map 

vs 

stand-

ard1 

FLAIR 

map vs 

stand-

ard1 

DIR map 

vs FLAIR 

map1 

Periventricular 1.47 ± 3.58 2.25 ± 4.46 1.15 ± 2.49 P < 0.001 P = 0.099 P < 0.001 

Juxtacortical / 

cortical 

0.58 ± 1.70 1.20 ± 2.89 0.28 ± 0.95 P < 0.001 P = 0.001 P < 0.001 

Subcortical 1.35 ± 3.68 2.24 ± 5.44 1.55 ± 3.51 P < 0.001 P = 0.053 P = 0.005 

Infratentorial 0.27 ± 3.51 0.55 ± 1.26 0.08 ± 0.36 P < 0.001 P = 0.002 P < 0.001 

Total 3.68 ± 9.05 6.26 ± 12.67 3.06 ± 6.69 P < 0.001 P = 0.19 P < 0.001 

Small 1.81 ± 4.44 3.35 ± 6.88 1.12 ± 2.32 P < 0.001 P = 0.004 P < 0.001 

Big 1.87 ± 5.26 2.90 ± 6.24 1.93 ± 4.80 P < 0.001 P = 0.228 P < 0.001 

Mean ± standard deviation 
1Wilcoxon signed-rank test  

Source: Table based on Eichinger et al. (2017, Tab. 3) 

 

 

2.2.5 Readout time 

The time per patient for each readout was documented in full minutes. Figure 6 illustrates 

the median time and interquartile range per readout. The DIR map readouts and FLAIR 

map readouts were significantly quicker than the standard readouts (2 min vs. 8 min, p < 

0.001, Wilcoxon signed-rank test). Significance even remained in a comparison between 

the DIR readout time and one-third of the standard readout time (p = 0.007, Wilcoxon 

signed-rank test). For patients without new lesions, the median standard readout was 6 

min, whereas readout using DIR maps took 1 min in median and 2 min at most, and the 

readout with FLAIR maps took 2 min in median. 

Transferring the image data to the computer, which processes the subtraction algorithm, 

took 4:45 min per patient. Adding this time to the readout time for the DIR maps, this pipe-

line still provides a quicker overall process than the standard readout (6:45 min vs. 8 min, 

p = 0.002, Wilcoxon signed-rank test). 
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Figure 6 Median readout times and their interquartile range in comparison 
The median readout time using the standard method is 8 min, whereas the median times 
for DIR and FLAIR map readouts is 2 min. The remaining exact numbers are in the Appen-
dix on page XXII.  

Source: Figure based on Eichinger et al. (2017, Fig. 5)  
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2.2.6 Application for non-neuroradiologists  

To assess the usefulness of the subtraction maps for readers without prior training in the 

radiological screening of MS patients, a neurologist and a medical student performed the 

three readout protocols. The results of each readout are summarized in Table 5. 

The neurologist and the medical student improved their detection sensitivity using DIR 

maps, but specificity decreased for the medical student from 0.90 to 0.79. In the FLAIR 

readout, both the neurologist and the medical student decreased in specificity to 0.52 and 

0.59, respectively. 

The DIR maps allowed both the neurologist and the medical student to speed up their 

evaluation. The median time per patient improved significantly, from 10 min to 3 min for the 

neurologist, and from 15 min to 5 min for the medical student (two-tailed t-test, both p < 

0.001). 

 

 

Table 5 Evaluation of the readouts by the neurologist and the medical student 

neurologist standard DIR map FLAIR map 

sensitivity 0.82 0.95 - 

specificity 0.86 1.00 0.52 

median time per patient [min] 
± standard deviation 

10 ± 6.91 3 ± 5.27 3 ± 2.80 

medical student    

sensitivity 0.59 0.80 - 

specificity 0.90 0.79 0.59 

median time per patient [min] 
± standard deviation 

15 ± 6.62 5 ± 2.06 5 ± 2.15 
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 Discussion 

This project investigated using DIR subtraction maps to improve detection of new or en-

larged lesions in follow-up images of patients with MS in a clinical setting. In this context, 

accuracy and speed of the proposed method were assessed in comparison with the stand-

ard readout.  

The DIR maps outperformed lesion detection by standard visual comparison and FLAIR 

maps in terms of accuracy and speed. Additionally, by using DIR maps, significantly more 

lesions per patient were found than by using the standard readout. Using subtraction maps 

also improved the sensitivity and speed of lesion detection for non-neuroradiologists. 

This study delivered promising results and suggests using DIR subtraction maps as a use-

ful application in a clinical setting. For the evaluation of these novel imaging techniques, 

the significant findings are discussed in detail in the following sections.  

 

 

2.3.1 Higher detection accuracy using DIR subtraction maps  

The sensitivity for detecting new or enlarged lesions increased markedly from 0.82 using 

the standard readout to 0.95 using the DIR maps. For neuroradiologists, who are experi-

enced with DIR images, specificity was not compromised. Specificity was 1.00, since no 

false-positive cases occurred, although no additional MR sequences were analyzed in the 

DIR readout.  

Our sensitivity is similar to the value (0.91) in the study of Battaglini et al. (2014), who 

applied an automated lesion-detection method on DIR subtraction maps of 19 patients. A 

unsupervised subtraction approach, incorporating multisequence information, was pro-

posed by Ganiler et al. (2014) and tested on 20 patients. That pipeline provided slightly 

lower sensitivity (0.83) than our DIR map subtraction approach.  

Our findings suggest that a reliable assessment of new or enlarged lesions' overall pres-

ence is possible using DIR images only. This finding supports the present considerations 

of using DIR as a single sequence imaging technique to detect alterations of MS lesions 

(Khangure & Khangure, 2011). A single MRI sequence would be favorable since image-

acquisition time in follow-up monitoring would be decreased when serial contrast scans are 

unnecessary. At the same time, it must be considered that follow-up scans also deliver 

information about negative drug side effects, which might be poorly presented in the DIR 

sequence.  

It should be noted also that the reference is set up by combining the results from all the 

different readouts from all four readers because a human reader is naturally necessary to 

interpret imaging. All values of diagnostic accuracy are related to this reference, which was 

acquired by a “consensus read” by the two neuroradiologists, therefore not being 
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completely independent. However, we put great effort into establishing a reliable reference 

via an independent consensus read. A considerable improvement to this approach could 

be to determine the reference from independent neuroradiologists. 

 

 

2.3.2 Higher detected lesion count using DIR maps  

In the DIR readout, significantly more lesions were found, on average per patient, than by 

the standard readout (median lesion number 6.24 vs. 3.67). Detection of new or enlarged 

lesions increased 1.7-fold using the DIR subtraction maps compared with the standard 

readout. The DIR maps exceeded visual comparison, particularly for detecting juxtacorti-

cal/cortical lesions, with more than twice as many new active lesions, on average, being 

found (1.2 vs. 0.58).  

Our lesion count factor is in line with a previous study that proved a 1.7-fold higher lesion-

detection rate using 2D subtraction maps (Moraal, Meier, et al., 2009) compared with the 

conventional pairwise readout. 

Patients in our cohort presented with a high base rate of overall existence of new lesions, 

because we chose scan pairs with maximized time interval between to allow the maximi-

zation of new lesions. This interval was needed to obtain a substantial quotient of new 

lesions found by the different methods. However, this act leads to a less pronounced dif-

ference in NPVs for new lesions' overall existence in a clinical setting, in which follow-up 

scans are taken every six to 12 months.  

Changes in lesion count and total lesion load are used in a clinical setting to assess disease 

progression and response to therapy. These are quantitative measures of focal differences 

in pathology between scans. A sensitive and robust method to determine these values 

quickly is useful to treat patients individually.  

 

 

2.3.3 Quicker lesion detection using DIR maps 

The DIR subtraction maps sped up image analysis significantly. Using the DIR maps took 

less than one-third of the time required for the visual comparison (median time: 2 min vs. 7 

min). In patients without new lesions, the median readout time was 2 min, and 1 min at 

most using DIR maps, compared with 7 min in the standard-setting.  

The readout time for these patients is a reasonable speed indicator for detecting new le-

sions' overall existence since the additional time for readouts of patients with new lesions 

was needed to mark and annotate lesions. When the time for data organization and algo-

rithm performance was added, lesion evaluation took 7 min in total per patient.  
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Both studies by Moraal et al. (2009; 2010) which explore the advantage of DIR subtraction 

maps in patients with MS, closely to our objectives, did not investigate the time efficiency 

in his studies about DIR subtraction maps. 

The time for transferring the data from PACS to other computers, organizing them, and 

performing the subtraction algorithm must be added to the subtraction maps' readout time 

to evaluate the time savings of subtraction maps compared with the standard procedure. 

The existence of new lesions can reliably be evaluated within 7 min after acquiring the 

scan. However, this approach requires basic familiarity with the working pipeline using the 

program MATLAB. To increase the subtraction algorithm's acceptance into the clinical rou-

tine, we recommend implementing the algorithm in the computer that communicates with 

the PACS system. This integration would also benefit the preparation time between scan 

acquirement and analysis.  

Although it takes time and software familiarity to use this algorithm, it saves overall time 

compared with the standard visual comparison. Therefore, the reasonable effort necessary 

is a trade-off for substantially quicker image analysis. The proposed DIR subtraction map 

approach delivers rapid detection of newly developed or enlarged lesions in MS patients' 

follow-up scans.  

 

 

2.3.4 No advantage of FLAIR maps in terms of time and accuracy 

In the FLAIR readout, less lesions were found, on average, per patient than by the standard 

readout (median lesion number: 3.06 vs 3.67) and by using DIR maps (6.26). FLAIR maps 

only provided a non-significant advantage in detected lesion number over the standard 

readout in one location: the subcortical region. The sensitivity for detecting new lesions 

decreased markedly to 0.79 using the FLAIR maps, which is non-significantly worse than 

in the standard readout (0.82) and significantly worse than using DIR maps (0.95). In this 

study, FLAIR maps showed no advantage over standard comparison regarding lesion 

count and detection sensitivity.  

When comparing our results to a previous study with similar aim by Tan and Van Schijndel 

et al. (2002), it must be pointed out that they found a 1.46-fold increase in lesion detection 

using FLAIR maps compared with the conventional pairwise readout. However, only a 

small cohort of 20 patients was investigated with a 6-month period between the serial scans 

and 3 of the patients did not develop any new or enlarged lesions. 

FLAIR maps readouts took less than one-third of the time required for visual comparison 

(median time: 2 min vs 7 min, respectively). This finding is in accordance to another study 

which used 3D FLAIR subtraction maps to detect new MS lesions: M.A. Schmidt et al. 

(2018)  found a 5-fold improvement in mean reading time compared with the standard side-

by-side readout (35.6 s vs 163.7 s). The low mean reading time and increase in reading 

speed that exceeds our numbers could be explained by the low number of investigated 



26 
 

patients: The study only included 20 patients, and 10 of those had no new lesions, and only 

one patient had more than four lesions.  

FLAIR maps provide a faster lesion detection than the standard readout and a comparable 

readout time as DIR map readouts. However, calculating, and post-processing for each 

FLAIR subtraction image (3:15 min) takes more time than for DIR maps (0:45 min). Taking 

this into account, the total amount of time for calculation and readout of FLAIR maps is 

longer than for DIR maps according to our approach.  

 

 

2.3.5 DIR maps also useful for non-neuroradiologists 

We assessed the usefulness of our proposed method for readers who are not trained neu-

roradiologists. The neurologists achieved the same sensitivity (0.82) in the standard 

readout as the neuroradiologists at the cost of a lower specificity (0.86 vs 1.00). This implies 

a less restrictive approach by the neurologist with the downside of producing more false-

positive results. With DIR maps, the neurologist’s performance increased to a level that 

exactly matches the results of the neuroradiologists (sensitivity 0.95, specificity 1.00).  

The medical student expectedly delivered a lower detection sensitivity in the standard 

readout (0.51) and increased her performance using DIR maps to 0.80. However, specific-

ity declined from 0.90 to 0.79. This finding indicates that our DIR subtraction map improves 

the visual lesion analysis for patients with MS, regardless of the reader’s imaging analysis 

experience. However, readers with no prior experience in brain image analysis in general 

cannot deliver satisfying discrimination between MS lesions and artefacts even when our 

DIR subtraction map is used. Training in imaging is necessary for image analysis even with 

help of computational tools. The amount of prior experience for a sufficient analysis quality 

with help of subtraction images is a question for further research. 
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3 Prediction of conversion from CIS to MS 

The content of this chapter was published in “Predicting conversion from clinically isolated 

syndrome to multiple sclerosis – An imaging-based machine learning approach” in Neu-

roImage: Clinical on 5th November 2018 (H. Zhang et al., 2018).  
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 Methods 

3.1.1 Subjects 

We included 84 patients from the MS database of the Department of Neurology of the 

Klinikum Rechts der Isar for this retrospective observational study. All patients initially pre-

sented with CIS; thus, not fulfilling the 2010 McDonald criteria. All patients received a base-

line MRI scan between 2009 and 2013. Subsequently, the patients were followed up for at 

least three years, and the endpoint of the study was set three years after the initial scan. 

Conversion to MS was defined according to the McDonald criteria 2010; therefore, includ-

ing the radiological occurrence of a new lesion and clinical proof of DIT by a second clinical 

attack. 

 

 

3.1.2 MRI acquisition 

All MR images were acquired using a 3 tesla MR scanner (Achieva, Philips Healthcare, 

Best, the Netherlands). All MR scans contained a 3D FLAIR sequence and a 3D T1w se-

quence used for this study. The imaging parameters are stated in the Appendix on page 

XXII.  

 

 

3.1.3 Image processing and lesion segmentation 

The FLAIR and T1w images were processed in MATLAB 9.1. A custom-built script was 

used to co-register the FLAIR and T1w image of each patient by performing a rigid regis-

tration using the SPM 12 package for MATLAB. The T1w image was set as reference, 

whereas the FLAIR image was set as source. Then, two sets of segmentation masks were 

generated.  

One set of lesion masks was acquired using the Lesion Segmentation Tool 2.0.1 (LST), 

which was designed for the SPM package. Lesions were segmented using the lesion 

growth algorithm (LGA), which calculates lesion belief masks from co-registered T1w and 

FLAIR images. Later, these maps are thresholded with a pre-chosen threshold (κ). The 

optimal initial threshold was determined for the in-house MR scanners at κ =0.3. Following 

thresholding, an initial binary lesion map was attained. 

The other segmentation mask set was acquired by performing a computer-assisted manual 

segmentation with BrainSeg3D, which is based on the software Seg3D. The citation of the 

software can be found in the Appendix on page XXVII. An experienced neuroradiologist of 

six years (Paul Eichinger) and a medical student in the fifth year (Haike Zhang) were 

blinded to the clinical information and then segmented all lesions in the baseline MRI scans 

independently. Therefore, the segmentation assistant with the brightness separation 
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function (Lesjak et al., 2018) was applied to axial reformations of the FLAIR images. A two-

dimensional field containing the target lesion's full area was marked manually in the viewed 

brain slice. The precise borders of the lesion were delineated automatically and confirmed 

by visual inspection (Figure 7). Manual readjustment of the segmentation was possible and 

performed if necessary. Later, segmentation masks were chosen from the mask selection 

of both viewers by consensus. 

 

 

Figure 7 Example of an axial slice with overlaid lesion mask of a patient from the 
cohort 
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3.1.4 Random forest model 

We calculated the parameters of interest in the programming language Python 3.8.1 using 

the packages nibabel, NumPy, scikit-image, and SciPy. The citation of the packages can 

be found in the Appendix on page XXVIII and XXIX. 

The total number of lesions and the total lesion volume per patient were calculated using 

the co-registered FLAIR and T1w images for each patient. Then, for each lesion in each 

patient, single lesion volume, intensity features, and shape features were calculated.  

Intensity features included skewness, kurtosis, and entropy of intensity histograms. Shape 

features included surface area (A), sphericity (S), and surface-volume-ratio (SVR). The 

lesion volume (V) was calculated as follows:  

V = n* Vn 

Vn volume of one voxel, n number of voxels in the lesion 

 

We used the marching cubes algorithm (Lorensen & Cline, 1987) that is implemented in 

skimage to approximate the lesion surface area (A). Sphericity, in general, is defined as 

the ratio of the surface area of a sphere of equal volume to the body's surface (Wadell, 

1935). The following formula was used to calculate the sphericity (S):  

S = 
√36𝜋𝑉²
3

𝐴
 

A surface area, V volume 

 

Subsequently, we calculated the descriptive statistics for the features of each patient de-

scribing volume, intensity, and shape because the RF algorithm requires a feature vector 

of the same length for each patient, but lesion numbers varied between the patients. The 

statistics included the minimum, maximum, mean, and standard deviation of each feature 

concerning all lesions in each patient, because only averaging across all patients' lesions 

would neglect the lesions’ heterogenic information. The total lesion volume and lesion 

count were included as additional vector elements.  

The calculated uniform feature vectors were used as input for the RF algorithm. Analysis 

was conducted in R 3.4.4 using the package obliqueRF to perform three classification mod-

els. The first model was based on intensity features, the second model on shape features, 

and the third model on both intensity and shape features.  

All three models included the features of total lesion count and lesion volume. The hyperpa-

rameters mtry (number of variables tested in each node) and ntree (number of trees gen-

erated) were optimized on the out-of-bag error (Breiman, 2001). 
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3.1.5 Reference standard for prediction 

A second predictive model was obtained based on the DIS criterion according to the 2010 

McDonald criteria, analogous to Filippi et al. (2018). This model predicts the conversion in 

the baseline scan when DIS is present, whereas a lack of this criterion predicts non-con-

version. This model functioned as a benchmark for the RF model.  

 

 

 

Figure 8 Example of a CIS patient from the cohort fulfilling DIS according to the 2010 
McDonald criteria by presenting several lesions at a time without evidence of DIT 
Lesions marked by red triangles. 

 

 

3.1.6 Data analysis  

Three-fold cross-validation using the scikit-learn package was performed to validate the 

model’s performance. For this validation method, the study collective set was randomly 

split into three subsets, called folds, of approximately equal size. The first fold was treated 

as a validation fold. The other two folds were used to train the RF model and then tested 

on the validation fold. This procedure was performed three times, so every fold was used 

as a validation set once and every subject was within the validation fold once. The overall 

performance was determined by calculating the average performance of the three folds.  

We applied a bootstrapping approach with 100 iterations to calculate the feature im-

portance scores. The most important features for the classification were identified by in-

specting each feature's relative contribution to the model. The feature importance counts 

how often a variable was considered relevant when chosen for a split at a node. The factor 

is calculated by a logistic regression model employed at every node. The importance value 

increases by one if a variable leads to a logistic regression model with p < 0.05 at a node, 

and decreases by one otherwise.  
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3.1.7 Statistical analysis 

Statistical analysis was performed using MATLAB 9.1 and IBM SPSS Statistics 24. Demo-

graphic data of the patients were compared between the groups of converters and non-

converters. For gender and age, a Pearson chi-square test and a two-tailed t-test were 

applied, respectively. The EDSS values were compared using Mann-Whitney U tests, and 

the comparison between the EDSS value at baseline and after three years within the 

groups was compared by a Wilcoxon signed-rank-sum test. A Mann-Whitney U-test com-

pared the mean lesion volume of all the lesions in the two groups. 

The results from the defined prediction models were expressed as confusion matrices. Ac-

curacy, sensitivity, specificity, PPV, and NPV were selected as statistical measures. Since 

the conversion rate of 79% is high, balanced accuracy was also calculated to improve the 

assessment of the model performance with the posterior probability interval for α = 0.05 

using the MATLAB tools provided by Brodersen et al. (2010) and the diagnostic odds ratio 

(DOR) (Glas et al., 2013).  

The confidence intervals for accuracy, sensitivity, and specificity were calculated as Clop-

per-Pearson confidence intervals. The confidence intervals for PPVs and NPVs were cal-

culated as standard logit confidence intervals (Mercaldo, Lau, & Zhou, 2007). The confi-

dence interval for the DOR was calculated according to Glas et al. (2003). The RF classifi-

er's performance was compared with the prediction based on the DIS criterion by using an 

exact McNemar’s test. 

The correlation between the three most important shape features for the RF model was 

calculated as Pearson correlation coefficient (Pearson’s r). The correlation between mini-

mum sphericity and minimum SVR was calculated by Spearman rank correlation (Spear-

man’s rho). 

The following figures (9–14) were created using the ggplot2 package in R 3.4.4. The con-

fusion matrices (Table 7) were created using the crate function in R.3.4.4. 
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 Results 

3.2.1 Subjects 

Our observational cohort included 84 CIS patients: 69.0% (n = 58) were female and 31.0% 

(n = 26) were male. The F:M ratio was 2.2:1. The distribution of gender and age for our 

cohort is illustrated in Figure 9. 81 patients received no therapy before their baseline scans 

were acquired. One person received interferon-beta, one received steroids, and one re-

ceived plasmapheresis before the baseline scan.  

 

 

Figure 9 Age and gender distribution in our cohort 

 

 

After three years, 66 patients (78.5%) converted to MS, hereafter referred as converters, 

and 18 stayed in the CIS course (21.5%), hereafter referred to as non-converters. Out of 

the converters, 33 persons (50.0%) suffered a second clinical attack defining CDMS, 

whereas the other 33 converters fulfilled the radiological McDonald criteria of DIT, defining 

RDMS (Figure 10).  
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Although more patients in our cohort were female, there was no significant difference be-

tween converters and non-converters regarding gender. The same applies to age and the 

EDSS at baseline (Table 6). Figure 11 depicts the comparison of the EDSS between the 

converters and non-converters, and Figure 12 depicts the comparison in age. 51 patients 

had a change in the EDSS during observation: in 25 patients, the EDSS improved, whereas 

in 26 patients, the EDSS deteriorated. There was no significant change in the EDSS within 

the groups during the follow-up (p = 0.87 and p = 0.29; Wilcoxon signed-rank-sum test). A 

significant difference in mean lesion volume between the converters and non-converters 

was found (Table 6). 

 

Table 6 Patients’ characteristics of converters compared with non-converters 

 Non-converter Converter Tests 

Gender 

7 men 

11 women 

18 men 

47 women 

Pearson chi-square, 

p = 0.411 

Age at onset 

mean = 44.44 

STD = 11.21 

mean = 41.89 

STD = 8.808 

2-tailed t-Test, 

p = 0.308 

EDSS at baseline 

median = 1 

range 0–2.5 

median = 1 

range 0–6 

Mann-Whitney U-test, 

p = 0.560 

EDSS after three years 

median = 0 

range 0–2.5 

median = 1 

range 0–6.5 

Mann-Whitney U-test, 

p = 0.0800 

Mean lesion volume [mm³] 

mean = 71 

range 22–314 

mean = 135 

range 22–671 

Mann-Whitney U-test, 

p = 0.0013 

STD: standard deviation 
Source: Table based on Zhang et al. (2018, Tab. 1) 

 

 

Source: Own table 
Figure 10 Distribution of disease course after follow-up in our cohort 
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Figure 11 Comparison of the EDSS spread between the non-converter (CIS) and con-
verter group (MS) at baseline and at follow-up 

 

 

 

 

 

 

  

Figure 12 Comparison of the age spread between non-converters (CIS) course and 
converters (MS) 
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3.2.2 Classification outcome and accuracy 

The confusion matrices (Table 7) display the numbers of converters and non-converters 

who were predicted correctly or wrongly by each model. The gold standard prediction 

model using DIS from the 2010 McDonald criteria was used as the benchmark. 

The RF algorithm was performed three times: with shape features calculated from com-

puter-assisted (BrainSeg3D) segmentation mask; with shape features calculated from fully 

automatically (LST for SPM) generated segmentation masks; and with intensity features 

from computer-assisted (BrainSeg3D) segmentation masks. An algorithm with intensity 

features from fully automatically generated segmentation masks was not performed due to 

unsatisfying results of the model. 

 

Table 7 Confusion matrices for predictions from McDonald criteria 2010 

a) McDonald 2010 (DIS) Non-conversion Conversion 

Predicted non-conversion 4 4 

Predicted conversion 14 62 

b) Intensity-based model   

Predicted non-conversion 11 25 

Predicted conversion 7 41 

c) Shape-based model   

Predicted non-conversion 9 4 

Predicted conversion 9 62 

d) Shape-based model (LST)   

Predicted non-conversion 6 3 

Predicted conversion 12 63 

DIS dissemination in space. LST lesion segmentation tool 

Source: Table based on Zhang et al. (2018, Tab. 2) 

 

The shape-based model with features derived from the LST segmentation masks achieved 

the best prediction performance of the three developed classifiers, with a balanced accu-

racy of 0.72 and a DOR of 15.50. This model achieved a significantly better predictive 

accuracy than the McDonald criteria 2010 (McNemar's test, p = 0.03). 

We compared both segmentation methods by calculating the correlation between the val-

ues of the three most important features. These features were explored according to their 

relevance to the final choice of the classifier, which is referred to in the following section. 

We found a high correlation between each of these three features: mean lesion volume 

(Pearson's r = 0.79, p < 0.0001), minimum sphericity (Pearson's r = 0.42, p < 0.0001), and 

minimum SVR (Pearson's r = 0.88, p < 0.0001).  

https://www.sciencedirect.com/topics/medicine-and-dentistry/mcnemar-test
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Table 8 Statistical measures calculated from the confusion matrices in Table 7 

 

DOR diagnostic odds ratio. PPV positive predictive value. NPV negative predictive value. LST lesion segmenta-

tion tool. 95%-confidence intervals in parenthesis, except for balanced accuracy the posterior probability interval 

for the level 0.05 is given. 

Source: Table based on Zhang et al. (2018, Tab. 3) 

 

 

  

 

M
c
 D

o
n

a
ld

 2
0

1
0
 (

D
IS

) 

In
te

n
s
it

y
-b

a
s
e
d

 m
o

d
e
l 

S
h

a
p

e
-b

a
s

e
d

 m
o

d
e
l 

S
h

a
p

e
-b

a
s

e
d

 m
o

d
e
l 

(L
S

T
) 

Accuracy 
0.79 

(0.68–0.87) 

0.62 

(0.51–0.72) 

0.85 

(0.75–0.91) 

0.82 

(0.72–0.90) 

Sensitivity 
0.94 

(0.85–0.98) 

0.62 

(0.49–0.74) 

0.94 

(0.85–0.98) 

0.95 

(0.87–0.99) 

Specificity 
0.22 

(0.06–0.48) 

0.61 

(0.36–0.83) 

0.50 

(0.26–0.74) 

0.33 

(0.13–0.59) 

PPV 
0.81 

(0.77–0.85) 

0.85 

(0.76–0.92) 

0.87 

(0.81–0.91) 

0.84 

(0.79–0.87) 

NPV 
0.50 

(0.22–0.78) 

0.31 

(0.21–0.42) 

0.69 

(0.44–0.87) 

0.67 

(0.36–0.88) 

Balanced 

Accuracy 

0.58 

(0.50–0.70) 

0.62 

(0.49–0.72) 

0.72 

(0.60–0.82) 

0.64 

(0.54–0.76) 

DOR 
4.43 

(0.99–19.89) 

2.58 

(0.88–7.51) 

15.50 

(3.93–60.98) 

10.50 

(2.30–47.87) 
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3.2.3 Three most relevant features for classification 

To explore the relative influence of shape features for the classifier, the shape features' 

importance scores were calculated using a bootstrapping approach (Figure 13). Mean le-

sion volume, minimum sphericity, and minimum SVR had the highest importance for the 

RF model's final vote. Minimum sphericity and minimum SVR displayed an expected sig-

nificant positive correlation (Spearman's rho = 0.53, p < 0.001). Lesion count was not of 

high importance. 

Regarding the distribution of lesion features between the classes, the model found that the 

converter group's lesions had a higher mean lesion volume and smaller minimum sphericity 

and smaller minimum SVR (Figure 14). Figurately, these lesions appeared, on average, 

larger and less round. Illustrative examples for this feature distribution are in Figure 15.  

 

 

Figure 13 Bootstrapped feature importance 
Each dot represents one shape feature. Dots represent from left to right: minimum, maxi-
mum, mean, and standard deviation. For volume the additional fifth dot at first place (from 
left to right) represents total lesion volume. The higher the value, the more important the 
feature is.  
Reference: The slight differences to the analogous figure in the paper Zhang et al. (2018, Fig. 1a) are explained 
in the Chapter 3.3.6 on page 44. 

Source: Figure based on Zhang et al. (2018, Fig. 1a) 
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Figure 14 Comparison of three most important lesion features for the shape-based 
RF model between converters (CIS) and non-converters (MS) 
The exact numbers are in the Appendix on page XXIII. 

Source: Figure based on Zhang et al. (2018, Fig. 1b–d) 

 

 

Figure 15 Illustrative example images with overlaid lesion masks of two patients from 
our cohort 
The upper row displays a scan of a converter with prominently larger and less-round le-
sions, whereas the lower row displays a scan of a non-converter with smaller and rounder 
lesions. 

Source: Zhang et al. (2018, Fig. 2) 
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 Discussion 

In this second project, we developed an RF model to predict the possible conversion of CIS 

patients to MS. The classifier was based on lesion features in the baseline MRI scan. 

Shape features demonstrated high discriminative potential, whereas intensity features did 

not provide a satisfying contribution to the classification. We segmented the lesions by two 

methods, and both proved useful in constructing an accurate prediction model. Our best 

performing classifier relies on shape features and achieved a better prediction accuracy 

than the gold standard, the DIS criterion from the 2010 McDonald criteria. The shape fea-

tures that contributed the most to the classification were mean lesion volume, minimum 

sphericity, and minimum SVR. Comparing these features between the groups revealed that 

converters presented with larger and less-round lesions in their baseline scan. 

 

 

3.3.1 Predictive accuracy of the random forest model 

Our RF classifier predicted the conversion to MS more accurately than using the DIS crite-

rion from the 2010 McDonald criteria. The shape-based RF model, with features derived 

from manual segmentation, achieved a prediction sensitivity of 0.94 and a specificity of 

0.50, whereas the DIS criterion achieved 0.94 and 0.22, respectively. The measures of 

balanced accuracy and DOR are designed for unbalanced cohorts and were calculated to 

consider the imbalanced conversion rate. The RF classifier achieved a balanced accuracy 

of 0.72 and a DOR of 15.50, as opposed to 0.58 and 4.43 for the DIS criterion.  

The prediction performance for the 2010 McDonald criteria closely matches that from a 

study that investigated a large cohort, which found a sensitivity of 0.92 and a specificity of 

0.33 (Filippi et al., 2018). Other studies that applied the 2010 McDonald criteria for the 

prediction of conversion reported a sensitivity of 0.86 and specificity of 0.65 for a Spanish 

cohort of 67 patients (Gómez-Moreno, Díaz-Sánchez, & Ramos-González, 2012), and a 

sensitivity of 0.71 and a specificity of 0.63 for a Korean cohort of 170 patients (Hyun et al., 

2017). The difference may be explained by the different ethnicities of these cohorts, as our 

cohort mainly consisted mainly of Caucasian patients. Filippi (2018) had the largest cohort, 

with 368 patients, and the most similar results.  

In this project, we focused mainly on imaging features that describe lesion properties. In 

an earlier study with a similar aim, basic clinical features were combined with lesion locali-

zation features and basic intensity features (Wottschel et al., 2015). This classifier pre-

dicted the conversion to CDMS with a sensitivity of 0.77 and a specificity of 0.66, one year 

after the baseline scan (Wottschel et al., 2015). In contrast to our classifier, support vector 

machines were used as a machine-learning method (Wottschel et al., 2015). 

Other studies have used advanced MR techniques to include imaging biomarkers in their 

prediction model. Kitzler et al. (2018) measured myelin water fraction in white matter and 
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found that myelin loss was crucial for conversion prediction. Ion-Mărgineanu et al. (2017) 

also combined clinical data with lesion load. Additionally, they used MR spectroscopy to 

extract magnetic resonance metabolic features, which allowed differentiation between MS 

forms.  

Using the whole range of technical possibilities can provide new insights into the radiolog-

ical assessment of MS patients. However, these methods are rarely used in the clinical 

setting. In contrast, our RF models rely on FLAIR and T1w images, which are part of the 

standard imaging protocol for MS patients. 

 

 

3.3.2 Discriminative contribution of shape features 

The best prediction was achieved by our RF which is based solely on shape features. The 

calculation of the individual features' importance scores revealed that lesion load is not of 

high importance for the classification. 

Several studies have found that the lesion number in CIS patients' baseline images is as-

sociated with an increased risk of conversion to CDMS (Alroughani et al., 2012; Brex et al., 

2001; Dalton, Brex, Miszkiel, et al., 2002). However, our finding regarding the low im-

portance of lesion load is in line with a meta-analysis that concludes that the presentation 

of an abnormal T2w image alone was associated with the risk of conversion, regardless of 

the lesion load (W. Y. Zhang & Hou, 2013). 

Intensity features also could not contribute to a successful prediction model. The model 

based on intensity features delivered a worse prediction accuracy than all other investi-

gated models. Although intensity features have long been used in image analysis, they are, 

unlike shape features, variable and poorly comparable across different scanners. However, 

the robustness of shape features is limited by the issue of spatial resolution of a scan: The 

voxel size of the scan determines the minimum depictable diameter of a lesion and can 

therefore influence the shape of small lesions. To keep our high spatial resolution 3D se-

quences unaffected from these effects, we followed the minimum size threshold as pro-

posed in the MAGNIMS and McDonald criteria (Filippi et al., 2016; Polman et al., 2011). 

The extraction of reliable shape features from small lesions in 2D images may be impossi-

ble due to this described limitation. 

 

 

3.3.3 Lesion shape useful in differentiating MS lesions from its mimics 

In this study, we identified the most important features for the classifier's final decision: 

mean lesion volume, minimum sphericity, and minimum SVR. Figurately, lesions found in 

patients of the converter group were, on average, larger, and the lesion that was least 

spherical in the patients’ scans contributed the most to the prediction model. 
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Our findings regarding difference in size and shape may reflect the specific pathophysio-

logical origin of MS lesions. These lesions correspond to axonal and neuronal injuries which 

mainly occur along veins (Tallantyre et al., 2008; Tan et al., 2000). A vein positioned cen-

trally in white matter lesions of the brain is called a central vein sign and distinguishes 

lesions caused by MS from white matter hyperintensities caused by other neurological phe-

notypes, such as chronic inflammatory vasculopathy (Cortese et al., 2018; Maggi et al., 

2020). The central vein sign is recommended as a potential MS-specific imaging marker to 

reduce misdiagnosis risk (Margareta A. Clarke et al., 2020; Maggi et al., 2020; Sinnecker 

et al., 2019). A similar conclusion was found by M. A. Clarke et al. (2020), who investigated 

the prediction performance of central vein signs in baseline MRI scans for CIS patients to 

convert to MS and found that 3 lesions with central vein sign delivered a prediction sensi-

tivity of 0.70 and a specificity of 0.86.  

The inflammatory origin of lesions of converters might explain the more elongated and less-

spherical shape of their lesions. The typical Dawson finger configurations of MS lesions 

reflect the elongated lesion shape and explain how (neuro-)radiologists incorporate shape 

information in their lesion classification. Elongated and less spherical lesion properties may 

translate as these configurations for the RF algorithm.  

In contrast, lesions in non-converters are probably caused by a pathomechanism that dif-

fers substantially from the chronic demyelinating events with persistent inflammation in MS, 

and therefore, present a different shape than lesions found in converters. Newton et al. 

(2017) demonstrated that MS lesions present as more elongated and with a more complex 

surface morphology than non-specific white matter lesions. This stands in line with our 

finding of bigger and less round lesions being predictive of future conversion to MS. Further 

research, regarding the predictive value of CIS patients’ lesion shape could be promising. 

 

 

3.3.4 Comparability of segmentation types regarding classification out-

come 

One of the strengths of our study is that two methods of lesion segmentation were exe-

cuted, and both methods yielded shape features to construct an accurate classifier. The 

computer-assisted segmentation classifier achieved a sensitivity of 0.94, a specificity of 

0.50, and a balanced accuracy of 0.72. The classifier using fully automatically generated 

segmentation masks achieved 0.95, 0.33, and 0.64, respectively. The three most important 

features were calculated from both segmentation methods and displayed a high correlation. 

Classifiers based on shape features calculated from both techniques can significantly dis-

tinguish between converters and non-converters. Although high variability of MS lesion ap-

pearance is a problem for satisfying automated segmentation performance, our findings 

indicate that the existing differences to manually segmented masks play a subordinate role 

for further processing. This independence of the segmentation method enables the time-
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efficient transfer of our proposed technique to larger cohorts, for which quick lesion seg-

mentation is required. 

Our comparable prediction result between fully automatically generated segmentation and 

computer-assisted segmentation is limited, and our segmentation methods and subse-

quent prediction model should be tested on datasets acquired from other neuroradiological 

departments that use MRI scanners of a different brand to test the robustness of the seg-

mentation method for the classification. Additionally, it would be interesting to test our clas-

sifier with inputs segmented by different automatic algorithms. 

 

 

3.3.5 High conversion rate due to the inclusion of radiological criteria 

After three years, 79% of patients (n = 66) in the investigated cohort (n = 84) converted to 

MS. Multiple sclerosis was determined according to the 2010 McDonald criteria, which al-

low the diagnosis of MS by radiological criteria in the absence of clinical proof. This deter-

mination of diagnosis differs from other studies in which only the occurrence of a second 

clinical attack is considered as conversion to MS; thus, counting only those cases as con-

version, which meet the definition of CDMS.  

Therefore, we reported a remarkably higher conversion rate of 79% for our cohort than 

previous studies: Lo et al. (2009) described a conversion of 46.9% out of 64 patients within 

a mean of 9.5 months; Ruet et al. (2014) described 35.2% out of 505 patients within a 

median follow-up of 44.6 months; Wottschel et al. (2015b) described 44% out of 74 patients 

within three years; and Filippi et al. (2018) described 51% out of 368 patients within a me-

dian follow-up of 50 months. However, the rate of CDMS in our cohort is 39%, which is 

comparable to these studies. 

Ruet et al. (2014) reported a 77.6% conversion rate in a study with 505 patients. In 42.4% 

of patients, the conversion was based solely on imaging findings, and 35.2% of patients 

had a second clinical attack, delivering a similar rate to our study. Recent studies that in-

cluded RDMS in their conversion criteria have also found comparable conversion rates of 

84.7% (Gaetani et al., 2017) and 74% (Gómez-Moreno et al., 2012). 

Studies reporting long-term CDMS conversion rates also display a higher percentage: 80% 

(Fisniku et al., 2008) and 61% (Chard et al., 2011) both within two decades. Additionally, 

Chard et al. (2011) found that only 11–15% of patients with RDMS exhibited no second 

clinical attack within two decades. Hence, we regarded our choice as sensible to define MS 

according to the 2010 McDonald criteria for a prediction model used to evaluate CIS pa-

tients' long-term prognosis.  

It cannot be excluded that some patients of the non-converter group may develop MS after 

our follow-up period. However, our conversion rates are consistent with other studies, as 

the comparisons above indicate. Furthermore, according to the predominance of 
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converters in our cohort, hyperplane weighting bias toward the larger group can occur. The 

statistical measures that balanced accuracy and DOR were calculated to compensate for 

this effect. It is desirable to test the RF algorithm on a larger cohort with better-balanced 

groups.  

 

 

3.3.6 Machine learning limitations 

Machine learning models such as the RF method are often complicated and predisposed 

to overfitting. Due to the small cohort size, our training data was not abundant. Thus, inde-

pendent training with unused data was not possible, and we employed three-fold cross-

validation to validate the classifier’s prediction. This validation method comes with a posi-

tive bias in the absolute accuracy, possibly leading to a lower prediction accuracy for un-

seen data. Validation in an independent and larger cohort, even from another hospital with 

data acquired from a different MRI scanner, would be preferable. The k-fold cross-valida-

tion estimates the prediction accuracy more realistically than our method (James, Witten, 

Hastie, & Tibshirani, n.d.), and the training and validation of our classifier with this method 

would be desirable. 

Another weakness of supervised learning, which also applies to our RF models, is that the 

features, which the classifier will be trained on, must be selected beforehand. The size of 

our dataset also precluded extensive testing of large feature vectors. Since we aimed to 

assess intracranial lesion characteristics' contribution to classification performance, our 

feature analysis was limited to the predefined choice of those shape and intensity features 

described in the previous chapters. Other clinical parameters with predictive value, such 

as intrathecal synthesis of oligoclonal bands (Mar Tintoré et al., 2008), age (Ruet et al., 

2014), inflammatory cerebrospinal fluid (Ruet et al., 2014), gender, genetic preposition 

(Kelly et al., 1993; Tossberg et al., 2013), ventricular enlargement (C. M. Dalton et al., 

2002), and gray matter atrophy (Di Filippo et al., 2010; Zivadinov et al., 2013) were not 

included in our prediction algorithm even though they are associated with a higher risk of 

conversion. It remains unclear how the combination of features of radiological and clinical 

nature could contribute to the prediction accuracy.  

Furthermore, only intracranial lesions were segmented and used for our purpose. The im-

provement in prediction accuracy when spinal lesions are integrated into prediction models 

remains to be investigated in future studies. The same applies to other promising subdivi-

sions of ML (e.g. neuronal networks). 

The values depicted in the importance score plot (Figure 13) on page 38 slightly differ from 

those depicted in the analogous plot in the paper (Zhang et al., 2018, Fig. 1a). This is 

because the structure of the resampling procedure is not determined in advance. This leads 

to slight shifts for the dots in the figure, but the core statement and distribution of the feature 

importance score remain. 
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4 Conclusion 

This present thesis aimed to develop and assess computational tools that relieve human 

drawbacks in image analysis for patients with MS. We developed two tools that are ready 

to use in clinical routine in two separate projects. 

In the first project, our proposed lesion analysis method improved the visualization of 

change in lesion load and lesion size in follow-up MR images by erasing radiological-stable 

status. The proposed method sped up the analysis process and improved the detection 

accuracy significantly. Since MS lesions are small and can be widely distributed throughout 

the CNS, a tool to relieve this cumbersome analysis is helpful. Lesion count and information 

about the occurrence of new or enlarged lesions are crucial factors in disease monitoring 

and for determining further therapy strategy, amongst other factors. For the second project, 

our proposed RF model predicted conversion of patients with CIS to MS based on radio-

logical lesion data in their baseline MRI scan more accurately than by the McDonald criteria 

of 2010. Lesion shape parameters proved to have a high discriminative potential in classi-

fying converters and non-converters on a three-year time scale. A more accurate prediction 

at the early disease stage can help to identify patients who benefit from early treatment and 

reduce unnecessary treatments, with their side effects, for patients who do not. The seg-

mentation method did not significantly affect the prediction result, raising the possibility of 

replacing manual segmentation for this purpose in clinical routine. Our cohort size did not 

allow a deep-learning model, which offers far more possibilities for investigating a wider 

range of features with no previous selection. Such an investigation, with a multicentre back-

ground, including more clinical and paraclinical features for a more differentiated prediction 

of the expected disease progression, would be interesting.  

This thesis is an example of how computational methods improve the interpretation of im-

aging data whose full value eludes human vision. Imaging is progressively taking a bigger 

account in the diagnostics and further therapy strategy of patients. To ensure that the utility 

and diagnostic value is growing with the amount of data, such clinically relevant algorithms 

must be integrated into radiologists’ workflow. This requires infrastructure, implementation 

of guidelines, and the system’s ability to update. A preferable aim for the near future, re-

garding imaging for patients with MS, is a continuous diagnostic pipeline: starting from pro-

cessing MRI sequences and arranging clinical data to an automatically constructed individ-

ual report and prognosis for each patient. Ultimately, more work will be needed to achieve 

such a pipeline.
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6 Appendix 

 Supplementary materials 

6.1.1 MRI parameters 

The imaging parameters were as follows: 

3D DIR: Acquired voxel size, 1.2 × 1.2 × 1.3 mm3; acquisition matrix, 208 × 208; field of 

view, 250; repetition time (TR) 5500 ms; echo time (TE) 328 ms; inversion time (TI) 2550 

ms; TSE factor 173; number of slices 300; acquisition time 6 min; plane, sagittal. 

3D FLAIR: Acquired voxel size, 1.03 x 1.03 x 1.5 mm³; acquisition matrix, 224 x 154; field 

of view, 230; TR, 10000 ms; TE, 140 ms; TSE factor, 20; number of slices, 96; acquisition 

time, 5 min; plane, axial. 

3D T1: Acquired voxel size, 1 x 1 x 1 mm³; acquisition matrix, 240 x 240; field of view, 240; 

TR, 9 ms; TE, 4 ms; number of slices, 170; acquisition time, 6 min; plane, sagittal. 

3D T2-TSE: Acquired voxel size, 1.03 × 1.03 × 1.5 mm3; acquisition matrix 224 × 162; field 

of view 230; TR 4000–6000 ms (variable); TE 35 ms; TSE factor 7; number of slices 96; 

acquisition time 5 min; plane, axial. 

 

 

6.1.2 Associated data 

Exact numbers of the boxplots that are shown in Figure 6 on page 21: 

 Standard DIR map FLAIR map 

Mean [min] 9.6 3.1 3.1 

Median [min] 8 2 2 

25%-interquartile [min] 5 1 2 

75%-interquartile [min] 12 3 3 

Minimum [min] 0 1 1 

Maximum [min] 42 22 25 
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Numbers to the boxplots in Figure 14 on page 39: 

 Mean Median 25%-IQ 75%-IQ Mini-

mum 

Maxi-

mum 

Mean volume - CIS [mm3] 70.99 49.55 33.90 84.85 22.00 341.00 

Mean volume–MS [mm3] 135.64 103.50 61.58 171.75 22,70 671.00 

Minimum SVR–CIS [mm-1] 1.2162 1.1150 0.9952 1.3750 0.6180 2.0300 

Minimum SVR–MS [mm-1] 0.5474 0.5530 0.4990 1.1175 0.2520 1.7500 

Minimum sphericity–CIS  0.6292 0.9490 0.5590 0.6845 0.4240 0.8260 

Minimum sphericity–MS  0.5474 0.5530 0.4990 0.6252 0.2520 0.6960 

 

 

6.1.3 MATLAB script for calculating subtraction maps 

This script calculates the subtraction maps for serial MR images in NIFTI file format without 

further post-processing steps. Line 14-20 show an automatically generated code by SPM 

12. The follow-up image is named “post.nii” and the baseline image is named “pre.nii”. 
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6.1.4 Python script for the prediction project 

This python script calculates the parameters of interest in the second project and also the 

descriptive statistics of these parameters:    
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6.1.5 R Script for the prediction project 

This script performs the oblique random forest classification and the three-fold cross-vali-

dation (line 1, line 6-25); and performs a bootstrapping approach to calculate the most 

important shape features (line 51-72). 
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6.1.6 Software Reference and URLs 

 

BrainSeg3D Laboratory of Imaging Technologies, Faculty of Electrical Engineering, 
University of Ljubljana, Slovenia 

URL: https://www.quantim.eu/knowledge-base 

 

ITK-Snap Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel 
Gimpel Smith, Sean Ho, James C. Gee, and Guido Gerig. User-guided 
3D active contour segmentation of anatomical structures: Significantly 
improved efficiency and reliability. Neuroimage 2006 Jul 1;31(3):1116-
28. 

URL: http://www.itksnap.org/ 

 

LST Paul Schmidt, Christian Gaser, Milan Arsic, Dorothea Buck, Annette 
Förschler, Achim Berthele, Muna Hoshi, Rüdiger Ilg, Volker J Schmid, 
Claus Zimmer, et al. An automated tool for detection of FLAIR-hyper-
intense white-matter lesions in multiple sclerosis. Neuroimage, 
59(4):3774–3783, 2012.  

URL: www.statisticalmodelling.de/lst.html 

 

MATLAB MATLAB and Statistics Toolbox, Natick, Massachusetts: The Math-
Works Inc. 

URL: https://de.mathworks.com/ 

 

Python Python Software Foundation. Python Language Reference. 

URL: http://www.python.org 

 

R R Core Team (2014). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria.  

URL: http://www.R-project.org/ 

 

Seg3D Center for Integrative and Biomedical Computing (2016). Seg3D: Vol-
umetric Image Segmentation and Visualization. Scientific Computing 
and Imaging Institute (SCI) 

URL: https://www.sci.utah.edu/cibc-software/seg3d.html 

 

SPM12 The Wellcome Centre for Human Neuroimaging, UCL Queen Square 
Institute of Neurology, London, UK. 

URL: https://www.fil.ion.ucl.ac.uk/spm/software/download/ 

 

SPSS IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 
25.0. Armonk, NY: IBM Corp. 

URL: https://www.ibm.com/products/spss-statistics 

  

https://www.r-project.org/


XXVIII 
 

6.1.7 MATLAB algorithms 

ROBEX Iglesias, J. E., Liu, C. Y., Thompson, P. M., & Tu, Z. (2011). Robust 

brain extraction across datasets and comparison with publicly 

available methods. IEEE Transactions on Medical Imaging. 

https://doi.org/10.1109/TMI.2011.2138152 

N4 bias correc-

tion algorithm 

Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., 

Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias 

correction. IEEE Transactions on Medical Imaging. 

https://doi.org/10.1109/TMI.2010.2046908 

 

 

6.1.8 Python libraries 

 

nibabel Brett, M., Markiewicz, C. J., Hanke, M., Côté, M.-A., Cipollini, B., 

McCarthy, P., … freec84. (2020). nipy/nibabel: 3.2.1. 

https://doi.org/10.5281/ZENODO.4295521 

NumPy Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, 

P., Cournapeau, D., … Oliphant, T. E. (2020). Array programming 

with NumPy. Nature 2020 585:7825, 585(7825), 357–362. 

https://doi.org/10.1038/s41586-020-2649-2 

Scikit-learn Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., 

Grisel, O., … Duchesnay, É. (2011). Scikit-learn: Machine 

Learning in Python. Journal of Machine Learning Research, 

12(85), 2825–2830. Retrieved from 

http://jmlr.org/papers/v12/pedregosa11a.html 

SciPy Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., 

Cournapeau, D., … van Mulbregt, P. (2020). SciPy 1.0: 

fundamental algorithms for scientific computing in Python. Nature 

Methods 2020 17:3, 17(3), 261–272. 

https://doi.org/10.1038/s41592-019-0686-2 

Scikit-image Van Der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., 

Warner, J. D., Yager, N., … Yu, T. (2014). Scikit-image: Image 

processing in python. PeerJ, 2014(1). 

https://doi.org/10.7717/PEERJ.453 
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6.1.9 R packages 

 

obliqueRF Menze, B. H., Kelm, B. M., Splitthoff, D. N., Koethe, U., & Hamprecht, F. 

A. (2011). On oblique random forests. In Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics) (Vol. 6912 LNAI, 

pp. 453–469). https://doi.org/10.1007/978-3-642-23783-6_29 

ggplot Wickham, H. (2009). ggplot2. Ggplot2. Elegant Graphics for Data Anal-

ysis. Springer-Verlag New York. Retrieved from https://ggplot2.ti-

dyverse.org. https://doi.org/10.1007/978-0-387-98141-3 
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