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We propose a data-driven physics-informed finite-volume scheme for the approximation 
of small-scale dependent shocks. Nonlinear hyperbolic conservation laws with non-convex 
fluxes allow nonclassical shock wave solutions. In this work, we consider the cubic scalar 
conservation law as representative of such systems. As standard numerical schemes fail to 
approximate nonclassical shocks, schemes with controlled dissipation and schemes with 
well-controlled dissipation have been introduced by LeFloch and Mohammadian and by 
Ernest and coworkers, respectively. Emphasis has been placed on matching the truncation 
error of the numerical scheme with physically relevant small-scale mechanisms. However, 
aforementioned schemes can introduce oscillations as well as excessive dissipation around 
shocks. In our approach, a convolutional neural network is used for an adaptive nonlinear 
flux reconstruction. Based on the local flow field, the network combines local interpolation 
polynomials with a regularization term to form the numerical flux. This allows to modify 
the discretization error by nonlinear terms. In a supervised learning task, the model is 
trained to predict the time evolution of exact solutions to Riemann problems. The model is 
physics-informed as it respects the underlying conservation law. Numerical experiments for 
the cubic scalar conservation law show that the resulting method is able to approximate 
nonclassical shocks very well. The adaptive reconstruction suppresses oscillations and 
enables sharp shock capturing. Generalization to unseen shock configurations, smooth 
initial value problems, and shock interactions is robust and shows very good results.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nonlinear hyperbolic partial differential equations (PDEs) describe many physical systems of interest, e.g. compressible 
fluid dynamics. Solutions to these equations admit discontinuous solutions, i.e. shock waves, which can develop from smooth 
initial conditions over time. Weak solutions to the conservation laws are sought which are no longer uniquely defined. It is 
well known that hyperbolic conservation laws may admit unphysical solutions. Incorporating small-scale mechanisms, such 
as diffusion or dispersion, leads to regularized systems of conservations laws [1,2]. Physically consistent solutions to the 
hyperbolic conservation laws result from vanishing small-scale limits of the corresponding regularized systems.

For a wide class of conservation laws, a suitable entropy condition can be found which is consistent with the underlying 
small-scale effects. These entropy conditions are sufficient to single out the physically consistent solution [3]. Many numer-
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ical methods are available for approximating entropy-satisfying solutions of hyperbolic conservation laws [4]. Amongst the 
most popular methods are finite-volume methods which evolve cell averages in time by computing cell interface fluxes. 
Interface fluxes can be obtained from exact or approximate Riemann solvers. High-order spatial accuracy can be achieved 
by nonlinear adaptive reconstruction methods, e.g. essentially non-oscillatory (ENO) [5], weighted-essentially non-oscillatory 
(WENO) [6], and targeted ENO (TENO) [7,8] schemes.

However, there are many physical systems whose shock solutions explicitly depend on the underlying small-scale mech-
anisms [2]. Examples include conservative hyperbolic systems with dispersive phenomena, nonconservative hyperbolic 
systems, and boundary layer problems. A comprehensive overview of the literature dealing with the modeling and ap-
proximation of small-scale dependent shock solutions to nonlinear hyperbolic systems is given in [2]. For these small-scale 
dependent shock solutions a standard entropy condition is insufficient to single out the physically consistent solution. In 
fact, aforementioned standard numerical approaches are inadequate for the solution of such systems [2,9]. Hou and LeFloch 
[10] and Hayes and LeFloch [11] explained this failure in terms of the equivalent equation (also referred to as modified 
differential equation) of aforementioned schemes. As the leading-order truncation error terms need not match the small-
scale mechanisms of these regularized hyperbolic equations, convergence towards the physically consistent solution is not 
guaranteed. An additional admissibility criterium has to be prescribed. Note that the importance of the equivalent equation 
or the truncation error, respectively, of a numerical scheme has also been emphasized in implicit turbulence modeling [12].

In this study, we focus on nonclassical entropy solutions to nonlinear hyperbolic systems with diffusive-dispersive regu-
larization. The linear diffusion-dispersion model (also referred to as modified Korteweg-deVries-Burgers equation) was first 
studied by Jacobs, McKinney and Shearer [13], and later by Hayes and LeFloch [14,15] and Bedjaoui and LeFloch [16]. More 
involved systems include models of thin liquid films [17–20], the generalized Camassa-Holm model [21,22,20], and models 
of viscous-capillary materials [23], to name a few. The interested reader will find a thorough overview on systems with 
undercompressive shocks in [2]. In all of the above systems, nonclassical shock waves, i.e. shock waves which violate the 
Lax entropy condition [1,3], may arise [1,2]. In [14], the authors introduced a kinetic relation as an admissibility condition 
for selecting the correct nonclassical weak solution and assessed the capabilities of numerical schemes to produce nonclas-
sical shocks. In [15], the same authors investigated the capability of conservative finite difference schemes to approximate 
nonclassical shocks by analyzing equivalent equations and determining the corresponding kinetic functions numerically. Fol-
lowing these preliminary works, LeFloch and coworkers designed a family of high-order linear finite difference schemes - so 
called schemes with controlled dissipation - whose equivalent equations match the regularizing equations to leading order 
[20]. Schemes with controlled dissipation explicitly discretize diffusive and dispersive regularization terms. Recognizing that 
the approximation quality of schemes with controlled dissipation deteriorates with increasing shock strength, an extension 
of said schemes to arbitrary shock strengths was proposed by Ernest et al. [9]. These so called schemes with well-controlled 
dissipation (WCD) balance the higher order terms in the equivalent equation with the small-scale dependent terms of the 
underlying physical model. Beljadid et al. have recently applied WCD schemes to hyperbolic systems in nonconservative form 
[24]. Boutin et al. combined finite difference schemes with an interface tracking to ensure sharp interfaces and essentially 
exact calculation of nonclassical shocks [25].

In recent years, machine learning has been successfully applied to various problems in fluid mechanics. In [26], Brunton 
et al. discuss applications of machine learning in the field of fluid mechanics, especially in flow modeling and optimization. 
Duraisamy et al. [27] review data-driven techniques for turbulence modeling. Significant emphasis has been placed on the 
identification of underlying physical systems, so called hidden physics, and the recovery of unknown dynamics [28] from 
data. Raissi, Karniadakis and collaborators introduced the idea of physics-informed learning machines, i.e. learning machines 
that adhere to any given law of physics. Numerical Gaussian Processes [29] use the time-discretized PDE as covariance func-
tions while Physics-Informed Neural Networks (PINNs) [30] explicitly include the PDE into their objective function. Making 
use of sparse regression algorithms, Brunton and coworkers introduced a framework for the identification of ordinary [31]
and partial differential equations [32]. Sparse identification has recently been applied to the identification of truncation er-
ror terms [33]. Related to this, PDE-Net [34] identifies underlying hidden PDE models by learning convolutional kernels from 
data. At the same time, PDE-Net is capable to make long-time predictions of the dynamics of the learned system. A series 
of work has investigated the approximation of flow dynamics in a lower dimensional space [35]. Machine learning has also 
been successfully applied in designing numerical methods. Related to this work, the data-driven discretization by Bar-Sinai 
et al. [36] learns optimal spatial discretizations to PDEs from fine-resolved simulations. Stevens et al. [37,38] have trained 
neural networks to perturb the original smoothness measures of WENO5-JS to find an improved and equation independent 
discretization scheme. In [39], the authors applied neural networks as Riemann solvers in a finite volume scheme to the 
cubic flux function.

Recognizing that schemes with controlled as well as schemes with well-controlled dissipation show strong dispersive 
oscillations around shock discontinuities and struggle with sharp shock capturing, and building upon recent advances in 
machine learning, we develop in this paper a data-driven physics-informed finite-volume method for undercompressive 
shocks. In particular, we study the cubic scalar conservation law as a prototype for a nonlinear hyperbolic conservation law 
with non-convex flux. Solutions of this equation allow for nonclassical shocks. We train a neural network to find an optimal 
interface reconstruction. The neural network outputs a probability distribution over a fixed set of WENO reconstruction sten-
cils and locally introduces a dispersive regularization term. This allows us to match the underlying small-scale mechanisms 
by a combination of nonlinear truncation error terms. Our scheme is able to sharply resolve shock discontinuities without 
introducing spurious oscillations, generalizes well to configurations with unseen data, and delivers excellent results for a 
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wide range of shock strengths. Especially, it also approximates nonclassical shocks from unseen smooth initial conditions 
and shock interactions very well.

The remainder of this paper is organized as follows. In the following section, we consider the scalar cubic conservation 
law with linear diffusion and dispersion. In section 3, we discuss the proposed data-driven physics-informed finite-volume 
scheme for undercompressive shocks. In section 4, we explain the network architecture and training routine in detail. In 
section 5, we show results for standard Riemann problems with nonclassical shocks. We analyze the convergence properties 
of said neural network scheme and test it on configurations with smooth initial conditions and combinations of Riemann 
problems. Finally, section 6 summarizes the work and gives concluding remarks.

2. Cubic scalar conservation law

We consider the scalar hyperbolic conservation law

ut + f (u)x = 0, u = u(t, x) ∈ R, t ≥ 0. (1)

Equation (1) is supplemented by initial and boundary conditions. Additionally, an entropy inequality of the form

η(u)t + ψ(u)x ≤ 0 (2)

is provided, where (η, ψ) is any strictly convex entropy pair. ψ(u) is determined by ψ ′(u) = η′(u) f ′(u), where the prime 
denotes the functional derivative.

Solutions to Eq. (1) may contain discontinuities even if initial conditions are smooth. Hence, solutions are considered 
in the sense of distributions. It is well known from the theory of nonclassical solutions [1], that Eq. (1) may generate 
nonclassical behaviour when f is a non-convex flux function. Nonclassical shocks violate standard entropy inequalities. In 
contrast to classical shocks, on which characteristics converge, characteristics pass through nonclassical shocks. That is,

sNC < λ(u−,+), (3)

where sNC is the propagation velocity of a nonclassical shock, λ = f ′(u) is the speed of the characteristics, and u−,+ denote 
the values left and right of the shock. In that sense, nonclassical shocks are undercompressive.

Undercompressive shocks introduce non-uniqueness. A single entropy inequality like Eq. (2) does not suffice to determine 
a unique solution. As shown in [1], a nonclassical Riemann problem of the form of Eq. (1) allows for a one-parameter family 
of solutions. The non-uniqueness can be resolved by supplementing Eq. (1) by regularization terms. In this work, we focus 
on linear diffusive-dispersive regularizations of the hyperbolic conservation law in (1),

uε
t + f (uε)x = εuε

xx + δε2uε
xxx, (4)

where δ ∈ R is a parameter that gives the ratio of the dispersive to the diffusive terms. Thus, the diffusive and dispersive 
terms are balanced. ε is a small-scale parameter. Taking the limit

u := lim
ε→0

uε, (5)

generates a unique solution u of the underlying hyperbolic conservation law (1). Note that these solutions explicitly depend 
on the dynamics of the small-scales, i.e. the coefficient δ.

The same small-scale dependent solution can also be attained by providing an additional algebraic condition to the 
hyperbolic conservation law (1). The so called kinetic function ϕb is imposed at each nonclassical shock and connects the 
states left u− and right u+ of the nonclassical shock,

u+ = ϕb (u−) . (6)

ϕ−b denotes the inverse of the kinetic function, i.e. u− = ϕ−b(u+). Naturally, each kinetic function is directly associated 
with the specific diffusive-dispersive model (4).

For the remainder of this work, we define the flux function as f (u) = u3. The resulting scalar cubic conservation law is 
a prototype for nongenuinely nonlinear equations. Equation (1) becomes

ut + (u3)x = 0, (7)

and the regularized system reads

uε
t + ((uε)3)x = εuε

xx + δε2uε
xxx. (8)

The corresponding kinetic function and nonclassical Riemann solver are presented in Appendix A.
3
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3. Numerical method

The finite volume discretization of Eq. (1) corresponds to a convolution with a top-hat filter.

dūi

dt
= − F (ui+1/2) − F (ui−1/2)

�xi
, (9)

where ūi denotes the cell average value at the cell center xi , ui±1/2 are the unfiltered solution at the cell faces xi±1/2, 
�xi is the width of cell i, and F (u) is the physical flux in the (semi-)discrete setting, the cell index i = 1, · · · , nx . The 
cell face values of the unfiltered solution u(x) have to be approximated by ũ(x). Such approximations to the unfiltered 
solution can be achieved by primitive-function reconstruction [5]. Essentially non-oscillatory (ENO) and weighted essentially 
non-oscillatory (WENO) schemes are prominent examples of nonlinear approximation methods.

Since the classical methods are restricted to stencils of fixed size, we apply an extension of the ENO/WENO methodology 
introduced by Adams et al. [12]. That is, we allow a set of interpolation polynomials up to a given cumulative order K and 
construct a combination to approximate the cell face value according to

ũ∓
i±1/2 =

K∑
k=1

k−1∑
r=0

w∓
k,r p∓

k,r(xi±1/2). (10)

wk,r is the non-negative weight for the k-th order interpolation polynomial with left shift r, i.e. pk,r . The left-face interpolant 
p−

k,r and the right-face interpolant p+
k,r are given by

p−
k,r(xi+1/2) =

k−1∑
l=0

c(k)

r,l (i)ūi−r+l, p+
k,r(xi−1/2) =

k−1∑
l=0

c(k)

r−1,l(i)ūi−r+l. (11)

The coefficients c(k)

r,l (i) are computed according to Eq. (9) of [12]

c(k)

r,l (i) = �xi−r+l

k∑
μ=l+1

k∑
p=0
p 	=μ

k∑
ν=0

ν 	=μ,p

xi+1/2 − xi−r+ν−1/2

k∏
ν=0
ν 	=μ

xi−r+μ−1/2 − xi−r+ν−1/2

(12)

The derivation of the computation of the coefficients as well as a simplification for equally spaced meshes can be found 
in [40]. The sum of all weights w±

k,r over k and r has to be unity,

K∑
k=1

k−1∑
r=0

w±
k,r = 1.

In general, the computation of the weights is based on a heuristic smoothness measure, e.g. the WENO smoothness 
measure [6] or the total variation within the considered stencil [12]. In the present work, the weights are outputs of the 
neural network which inherently provides a discrete smoothness measure.

Finally, to complete the numerical scheme, we have to introduce a numerical flux F̃ N which approximates the physical 
flux F . We choose the numerical flux as

F̃ N,i+1/2 = F (ũ−
i+1/2) − δ̃i+1/2(c�xi)

2uxx(xi+1/2) (13)

which consists of the physical flux enhanced by a dispersive regularization term. c is a scaling parameter. δ̃i+1/2 is the 
dispersion coefficient at the cell face xi+1/2 and is an output of a neural network. In general, a numerical flux function 
is a two argument function of left and right state reconstruction, i.e. F̃ N,i+1/2 = F̃ N(ũ−

i+1/2, ̃u
+
i+1/2). Due to the fact that 

all characteristics for the cubic scalar conservation law are right-travelling waves (see Sec. 2), we are only interested in 
the downstream reconstruction polynomials p−

k,r(xi+1/2) of cell i. The numerical flux function reduces to F̃ N (ũ−
i+1/2). This 

corresponds to an upwind numerical flux. Note that the reconstructed state ũ−
i+1/2 itself may have upwind-biased, central, 

and down-biased contributions according to the local WENO coefficients. In Eq. (13), uxx,i+1/2 is the second derivative 
evaluated at xi+1/2 and is computed by centered finite differences. Assuming an equidistant mesh, �xi = �x, uxx(xi+1/2)

becomes

uxx(xi+1/2) = ūi−1 − ūi − ūi+1 + ūi+2

2�x2
. (14)
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The numerical flux, Eq. (13), allows us to tune the truncation error of the numerical scheme by adaptive reconstruction 
and adaptive regularization. We consider reconstruction polynomials up to order K = 3. The underlying small-scale mech-
anisms can be matched by a combination of nonlinear truncation error terms. While a first-order reconstruction (w−

1,0) 
introduces dissipation, second-order contributions (w−

2,0 and w−
2,1) manage the amount of dispersion. The third order 

reconstruction introduces hyper-dissipation. During numerical experimentation, we found that the amount of numerical 
dispersion introduced by second-order reconstruction was insufficient to balance the numerical dissipation in such a way 
that undercompressive shocks could be approximated, thus motivating the use of an explicit dispersive regularization term 
in the flux function (13). We expect our scheme - upon proper training - to be able to ensure a discrete diffusion-dispersion 
balance around nonclassical shocks, delivering physically consistent approximations of nonclassical shocks.

4. Machine learning

4.1. Convolutional neural networks

Neural networks are parameterizable nonlinear compound functions that map any input x to an output y = f (x, θ), 
where θ are free and learnable parameters. Deep neural networks (DNNs) consist of multiple layers of units (so called 
neurons) in between in- and output. They perform successive elementary nonlinear transformations to map x to y. The 
numerical values in each layer are called activations.

In multilayer perceptrons (MLPs), neurons in adjacent layers are densely connected. The vector of activations al in layer 
l is computed from the activations of the previous layer al−1 by first applying an affine linear transformation, followed by 
an element-wise nonlinearity σ(·). The activation of the i-th neuron in layer l denoted as al

i is calculated as

al
i = σ

⎛
⎝Nl−1∑

j=1

W l−1
i, j al−1

j + bl−1
i

⎞
⎠ , (15)

where W l−1
i, j indicates the weight matrix linking layers (l − 1) and l, bl−1

i is the bias vector, and Nl−1 indicates the number 
of neurons in layer (l − 1). The error between the network prediction y and the true output ŷ is calculated by a suitable 
loss function C(y, ŷ). Training a neural network means finding a set of parameters θ that approximately minimizes said loss 
function. Typically, the loss function is minimized via mini-batch gradient descent or the popular Adam optimizer [41].

Convolutional neural networks (CNNs) are a special type of deep neural network for structured input data. CNNs exploit 
sparsity and weight sharing to increase learning efficiency. First, neuron activations are computed only by local sparse 
interactions with neurons from the previous layer. The local weight matrix is called the filter kernel. Second, CNNs make use 
of parameter sharing, i.e. the same weight matrix is used for each neuron in a given layer, and, therefore, are translational 
invariant. Each CNN layer is typically made out of multiple feature maps, each of which is computed by a corresponding 
filter. The activation of the i-th neuron in the j-th feature map in layer l is denoted as al

i, j and is calculated as

al
i, j = σ

⎛
⎜⎝

nl−1
W∑

m=1

nl−1
C∑

n=1

W l−1
m,n, ja

l−1
i+m−1,n + bl−1

i, j

⎞
⎟⎠ . (16)

W l−1
m,n, j is the filter kernel connecting the n-th feature map in layer (l − 1) to the j-th feature map in layer l. nl−1

W is the 
filter width of W l−1

m,n, j , n
l−1
C is the number of feature maps in layer (l − 1).

4.2. Network architecture

In the design of the neural network scheme, we make use of the methods of lines idea. Equation (9) is the semi-discrete 
approximation of the underlying hyperbolic PDE. For the integration of Eq. (9), cell interface fluxes have to be calculated. 
We use an artificial neural network for the cell interface flux calculation. Fig. 1 shows the integration of the neural network 
into the flow solver. The detailed interaction of the network and the flow field is shown in Fig. 2.

The network takes as input the cell-averaged solution at a given time step ūn . The CNN has two outputs: It gives 
reconstruction weights w−

k,r for each reconstruction polynomial and the dispersion coefficient δ̃i+1/2. With these quantities, 
we can calculate the cell interface fluxes via Eq. (13) and finally the temporal derivatives dūi/dt for each cell average. 
Depending on the time integration scheme, multiple substeps have to be calculated before an integration step can be 
performed. Each substep requires an evaluation of the CNN. Fig. 1 depicts the training framework for the forward Euler time 
integration (Runge-Kutta 1). During training, the network parameters are optimized over multiple time integration steps. 
This process can be seen as the optimization of a recursive process. Conceptually, this approach is similar to Bar-Sinai et al. 
[36]. However, we further restrict the neural network to weighting given reconstruction polynomials and a regularization 
term. Using WENO polynomials compared to a more liberal reconstruction, e.g. the pseudo-linear filter in [36], has several 
5
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Fig. 1. Interaction between neural network and flow solver. The neural network is integrated in the flow solver. The WENO weights wk,r and the dispersion 
coefficient δ̃ predicted by the network are used for the cell interface flux calculation. During training, updated flow states ūn+1 up to ūn+nint are recorded 
for the loss calculation. The finite volume solver has to be differentiated using automatic differentiation to compute gradients w.r.t. network parameters. 
Here, the training routine is depicted for a forward Euler integration scheme. For a general Runge-Kutta time integrator, multiple substeps have to be 
calculated before an updated flow state is recorded.

Fig. 2. Detailed view of the neural network architecture. The flow field ūn is the input to the network. The input is passed through 1-D convolutional layers 
with ReLU activation functions before reaching the output. The output consists of two parts: the WENO weights wk,r and the dispersion coefficient δ̃. The 
softmax activation is used for wk,r to ensure convexity of the WENO weights.

advantages: (i) we benefit from the theoretic background of a well-established numerical method; (ii) the machine learning 
intrusion into the numerical scheme is kept to a minimum; (iii) it provides a physics-informed scheme which adheres to 
any given law of physics, and provides comprehensible and interpretable results.

In this work, we use a three layer convolutional neural network (CNN) [42] with 16 kernels in each hidden layer. 
The kernel size is 3 and the stride is 1. The total number of trainable parameters is 1191. CNNs are a natural choice 
in the design of numerical schemes, as they provide sparse interactions and parameter sharing [42]. This enables us to 
train the neural network scheme, at a certain resolution and then, at test time, use the same network parameters for 
predictions at different resolutions. We add mild l2 weight regularization with a regularization factor of 1 × 10−5 to prevent 
overfitting. In the hidden layers rectified linear units (ReLU) defined as ReLU (x) = max(0, x) are used. The output layer 
for the reconstruction weights uses a softmax activation function. The softmax activation can be interpreted as a discrete 
probability distribution over the different stencil types. Naturally, this ensures that the reconstruction stays consistent as ∑

wk,r = 1 and 0 ≤ wk,r ≤ 1 ∀ r, k. In the output layer for the δ̃-coefficient a ReLU activation is used, since we want to 
enforce the physical constraint δ̃i+1/2 ≥ 0.

The loss functional is defined as the absolute difference between predicted and analytical cell-averaged values over nint

time steps
6
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C =
nint∑
j=1

nx∑
i=1

|ūex(xi, t j) − ū(xi, t j)|. (17)

During numerical experimentation, we found that including successive predictions into the loss function greatly increases 
stability of the generated numerical scheme.

Our model was implemented with the TensorFlow library [43]. The model is trained with the Adam optimizer [41] on 
one Nvidia GTX 2080 GPU with a mini-batch size of 128. Weights are initialized according to the Glorot normal distribution 
[44]. We have trained two models for weak nonclassical shocks, one model for moderate and one for strong nonclassical 
shocks. For the weak shock models, we start with a learning rate of η = 10−2, divide it by 10 after 100 and 200 iterations, 
and terminate the training process at 300 iterations. For the moderate and strong model, we start with a learning rate of 
η = 10−3, divide it by 3 after 200 and 400 iterations, and terminate the training process at 600 iterations.

4.3. Time integration

Throughout this work, we use the classical fourth-order Runge Kutta scheme (RK4).

4.4. Training data

In a supervised learning task, we have to provide features and labels to train the network. In this subsection, we will 
explain the reasoning behind the training data generation.

Weak shocks have a shock strength less than 10, moderate shocks have shock strengths between 10 and 100. The 
maximum shock strength for strong shocks is greater than 100. We generate four distinct datasets. For weak, moderate, 
and strong shocks we generate one dataset each where we are only interested in Riemann problems with uL > 0. The 
corresponding NN schemes are referred to as weak, moderate, or strong model. In section 5.5 however, we test the NN 
scheme on a smooth initial condition which not only develops nonclassical shocks from u− > 0 to u+ < 0 but also u− < 0
to u+ > 0. To correctly approximate such a test case, we generate another training dataset with weak shocks in which we 
also include Riemann problems with uL < 0. We denote this model as the weak± model.

The training data is generated from exact solutions to Riemann problems which feature a nonclassical shock/classical 
shock (NCC) or nonclassical shock/rarefaction (NCR) wave structure. We use uL and uR to denote the constant states left 
and right of the initial discontinuity in the Riemann problem. uM denotes the state right of the nonclassical shock. The 
exact Riemann solver for the cubic scalar conservation law can be found in the Appendix A. Appendix B provides the 
specific Riemann problems used in each training dataset. Generally, we choose Riemann problems equidistantly spaced in 
the Riemann problem space. For moderate and strong shocks, we add additional Riemann problems with larger values of 
uR to the training sets. Such configurations are particularly challenging due to the similarity of shock speeds of nonclassical 
and classical shocks. For each Riemann problem, we sample snapshots of the exact solution in time between t0 = 0 and 
t f inal = L−x0

3max(u2
L ,u

2
R )

. L is the domain length and x0 is the position of the initial jump of the Riemann problem. For the 
training sets we have chosen the domain [0, 2], i.e. L = 2, and x0 = 0.4. t f inal is chosen such that all shocks remain within 
the computational domain.

Fig. 3 shows several training examples. The top row of Fig. 3 depicts training snapshots of the model for weak shocks. 
The first and third configuration display configurations with nonclassical shock and rarefaction wave, while the other con-
figurations are nonclassical shock/classical shock configurations. The bottom row of Fig. 3 shows snapshots from the training 
set of the weak± model. This training set includes configurations with uL < 0 and uR > 0, e.g. the third, fourth, and fifth 
plot in the bottom row.

We use these solutions as starting points for the integration and advance them in time by making use of the neural 
network prediction. That is, to each initial distribution at time tn corresponds a sequence of exact solutions at nint successive 
time steps, i.e. at tn + �t, tn + 2�t, ..., tn + nint�t . �t is determined by a suitable CFL-condition. We use C F L = 0.6 in this 
work. Throughout this work we optimize the network based on nint = 7 integration steps.

During numerical experimentation, it was found that it is crucial to provide enough training samples until the intermedi-
ate state (between nonclassical and classical shock or between nonclassical shock and rarefaction wave) is fully developed. 
The information gain for the network training process from samples with fully resolved two-shock or shock-rarefaction 
structure is marginal. We introduce a characteristic time scale tseparation for the separation between the nonclassical shock 
and the classical shock and the nonclassical shock and the rarefaction wave, respectively,

tseparation = �x

�v
, (18)

where �v is the speed with which the two shock waves separate. For NCC configurations

�v = sC − sNC = u3
M − u3

R

uM − uR
− u3

L − u3
M

uL − uM
, (19)

while for NCR configurations
7
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Fig. 3. Samples from the training dataset. Top row: training samples for the model for weak shocks. Bottom row: The training data for the weak± model is 
augmented by samples with uL < 0.

Table 1
Number of samples for each model. c is the scaling used in Eq. (13).

Model �x c Training Validation Testing

Weak 1 × 10−2 5 2800 900 100
Moderate 1 × 10−3 5 7200 900 100
Strong 1 × 10−3 10 3600 1000 100
Weak± 1 × 10−2 5 5600 1800 100

Table 2
Overview on model performance. The numbers in the brackets denote the standard deviation over the different initial conditions.

Model Mean Absolute Error Mean Absolute Percentage Error

Training Validation Testing Testing Ref.

Weak 7.816 × 10−4 7.548 × 10−4 0.67 (0.77) 4.86 (2.12)

Moderate 1.077 × 10−3 1.138 × 10−3 0.48 (0.80) 52.19 (37.37)

Strong 2.123 × 10−3 1.964 × 10−3 1.68 (0.59) 179.85 (49.42)

Weak± 8.223 × 10−4 7.993 × 10−4 0.79 (2.03) 4.89 (2.70)

�v = sR − sNC = 3u2
L − u3

L − u3
M

uL − uM
. (20)

sC is the speed of the classical shock, sNC is the speed of the nonclassical shock, and sR is the speed of the rarefaction 
wave. uM = −uL +

√
2

3
√

δ
is the value of the intermediate state. We sample up to 150 snapshots for each Riemann problem. 

50 snapshots are uniformly sampled from t0 ≤ t < tseparation , the rest of the configurations is uniformly sampled from 
tseparation ≤ t ≤ t f inal . Note that if the two shocks separate very quickly, such that it takes less than 50 time steps to reach the 
critical separation, all time steps until separation are sampled and the remaining samples are simply taken from tseparation ≤
t ≤ t f inal .

The validation set is generated analogously. For the test set, we choose random initial conditions from a uniform dis-
tribution over the corresponding Riemann problem space. These initial conditions are then integrated until the final time 
t f inal . We train one NN scheme on each dataset and thus obtain four models (weak, moderate, strong, and weak± model). 
Table 1 provides an overview over the four trained models. Table 2 shows an overview over the performance metrics of the 
different models. Wall-clock times are given in Appendix D. Training and validation error are calculated over nint successive 
integration steps, while for the testing error we simulate the testing configurations until t f inal - possibly over thousands of 
integration steps - and calculate the mean absolute percentage error (MAPE) compared to the exact solution at t f inal . To 
provide a reference metric for the testing error, we use an 8-th-order WCD scheme by LeFloch [9]. See Sec. 5 for details 
of the WCD scheme. Note that the MAPE of the WCD scheme increases significantly with the shock strength due to the 
dispersive oscillations while the order of the MAPE for the NN scheme stays roughly constant.

5. Results

In this section, we test the neural network scheme (NN scheme) on a series of relevant Riemann problems unseen by the 
network during training, either in terms of extended time range or in terms of an entirely different setup. We are interested 
in Riemann problems which develop weak, moderate, and strong nonclassical shocks. The Riemann initial data are

u(x, t = 0) =
{

uL for x ≤ 0.4,

uR for x > 0.4.
(21)
8



D.A. Bezgin, S.J. Schmidt and N.A. Adams Journal of Computational Physics 437 (2021) 110324
Fig. 4. Comparison of the NN scheme solution (13) with an 8-th-order WCD scheme. Solutions are shown at t = 3.333 ×10−2. Left: Solution of the Riemann 
problem for uL = 4 and uR = −2. Right: Solution of the Riemann problem for uL = 4 and uR = −5.

Fig. 5. Comparison of the NN scheme solution (13) with an 8-th-order WCD scheme. Solutions are shown at t = 7.052 ×10−2. Left: Solution of the Riemann 
problem for uL = 2.75 and uR = −2.25. Right: Solution of the Riemann problem for uL = 2.75 and uR = −3.25.

For most of the aforementioned test cases, we will set uR = −2. By varying uL , we determine the resulting shock 
strengths and solution structure. The domain of interest is [0, 2]. For all Riemann problems, we use transmissive boundaries. 
The initial distribution is integrated until T f inal = (L − x0)/(3u2

L), where L = 2 is the domain length and x0 = 0.4 is the 
position of the initial jump. For definiteness, we use the physical diffusion-dispersion ratio δ = 5. The CFL-number used for 
the NN scheme is 0.6.

Throughout this section we will use the scheme with well-controlled dissipation (WCD) [9] as a reference. We have 
adapted an 8-th-order WCD scheme to the finite volume formulation. In the WCD scheme, we have to choose the parameter 
τ which determines the ratio of high-order terms in the modified equation to leading-order diffusion and dispersion terms. 
We set τ = 0.04 in all our test cases. The CFL-number used for the WCD scheme is 0.4.

Having tested our scheme on Riemann problems, we analyze the convergence. Finally, we are interested whether the NN 
scheme is able to predict the formation of nonclassical shocks from smooth initial conditions and how shock interactions 
are handled. Additional test cases are provided in Appendix E.

5.1. Weak shocks

We consider two standard Riemann problems from literature with (uL , uR) = (4, −2) and (uL, uR) = (4, −5). The former 
one has a nonclassical-classical structure while the latter one develops a nonclassical-rarefaction structure. The domain is 
resolved by 200 points which corresponds to �x = 1 × 10−2. Fig. 4 compares the solution of the neural network scheme 
(13) with the finite volume scheme with well-controlled dissipation. The solution of our NN scheme is visually almost 
indistinguishable from the exact solution. The proposed scheme has very good shock capturing capabilities. For uR = −2, 
both shock discontinuities appear sharp. Especially, the nonclassical shock is well approximated. For uR = −5, the NN 
scheme is capable to approximate the nonclassical shock and the rarefaction wave. Since the dispersion is applied in a 
locally adaptive fashion, we can suppress dispersive oscillations around the leading shock which are present in the finite 
volume scheme with well-controlled dissipation. The shock position and the intermediate state are approximated well.

Although the results in Fig. 4 were integrated from initial conditions present in the training set, we want to emphasize 
that during training only a relatively small number of integration steps were performed. At test time, the proposed scheme 
provides very good results for integration far beyond the scope of the training process. Fig. 5 provides results for initial 
conditions which were neither part of the training nor the validation set. The approximation quality of the NN scheme for 
unseen configurations is very good. Nonclassical as well as classical shock discontinuities are captured sharply. Shock speeds 
and intermediate states are almost perfectly captured.

We are interested in how the neural network handles the cell face reconstruction. Fig. 6 shows a detailed view of the 
nonclassical and classical shock from Fig. 4, where (uL, uR) = (4, −2). Depicted are the flow state and the outputs of the 
network, i.e. the dispersion coefficient δ̃ and the reconstruction weights w− . There are several main findings: Firstly, we 
k,r
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Fig. 6. Close-up of the discontinuities in Fig. 4 (left). Top: ū. Middle: δ̃. Bottom: Reconstruction weights. δ̃ and wk,r are direct outputs of the neural network.

observe that the network detects shock discontinuities and introduces dispersion only locally. Note that around both, non-
classical and classical, discontinuities the δ̃ coefficient shows a peak. The local dispersion is preventing oscillatory behaviour 
away from the discontinuities. Secondly, the cell face reconstruction shows a systematic behaviour. We see that the network 
chooses the upwind reconstruction stencil w2,1 in flow regions behind the shock, while downwind reconstruction stencils 
w2,0 and w3,0 are picked in front of the shock. Note that diffusion is only locally introduced at the nonclassical shock, i.e. 
w1,0. This is in line with the understanding that in order to approximate a nonclassical shock diffusion and dispersion have 
to be balanced. At the classical shock, the network does not use diffusion (w1,0) but rather uses dispersion to stabilize the 
shock. Slight amounts of diffusion are introduced at locations right of the classical shock. The central stencil with upwind 
bias (w3,1) is not activated by the network in this example. The reconstruction away from discontinuities where the flow 
state is constant is determined by the last point affected by the shock discontinuity. Points in constant flow regions do not 
contribute to the loss function.

5.2. Moderate shocks

We consider two different nonclassical shocks of moderate strength and simulate them with the NN scheme for moderate 
shocks. The first Riemann problem consists of uL = 25 and uR = −2. The resulting exact solution is composed of a leading 
classical shock and a trailing nonclassical shock of strength around 50. The domain is relatively coarsely resolved with 2000
mesh points which corresponds to a cell width of �x = 10−3. Fig. 7 compares our scheme with the 8-th-order WCD scheme. 
The NN scheme approximates both shock discontinuities very well. The shock position is almost identical with the exact 
solution. A slight oscillation around the middle state uM is visible. However, the oscillation decreases upon mesh refinement 
(see the highly resolved middle state for the next test case in Fig. 8). Compared to the WCD scheme, the NN scheme is able 
to capture both shocks while introducing very mild spurious oscillations.

Tests on other configurations also showed very satisfactory results. In Fig. 8, a different moderate shock with uL = 30
and uR = −2 is shown at an increased mesh resolution of nx = 10000 points (�x = 2 × 10−4). Intermediate state and shock 
speeds are approximated well. The spurious oscillations of the middle state are considerably smaller compared to the WCD 
scheme. Dispersive oscillations at the leading shock are suppressed completely.

5.3. Strong shocks

To simulate a nonclassical shock of strength larger than 100, we choose uL = 55 and uR = −2. The exact solution consists 
of a leading classical shock of moderate strength and a trailing nonclassical shock of strength around 110. The shock speeds 
10
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Fig. 7. Moderate shock with uL = 25 and uR = −2 at t = 8.533 × 10−4. Left: Comparison of the Neural Network approximation with an 8-th-order WCD 
scheme. Right: Detailed view of the middle state uM .

Fig. 8. Moderate shock with uL = 30 and uR = −2 at t = 5.926 × 10−4. Left: Comparison of the Neural Network approximation with an 8-th-order WCD 
scheme. Right: Detailed view of the middle state uM .

Fig. 9. Large shock with uL = 55 and uR = −2 at t = 1.763 ×10−4. Left: Comparison of the Neural Network approximation with an 8-th-order WCD scheme. 
Right: Detailed view of the middle state uM .

are very similar, and resolving the intermediate state becomes more challenging. We compare the NN scheme solution at a 
resolution of 2000 (NN) and 10000 (NN fine) points to the WCD solution at 10000 points. For the NN scheme, we increase 
the multiplicative factor of the dispersive term to c = 10. Fig. 9 shows that the NN scheme can also handle strong shocks 
quite well. Compared to the WCD approximation, the NN scheme approximates the intermediate state very well and is 
able to capture the shocks sharply. We observe a slight offset between the exact shock positions and the shock positions 
predicted by the NN scheme. When compared to the coarse approximation, nonclassical and classical shock locations on the 
finer resolution are closer to the exact shock positions. This offset seems to be an artifact of the early development stages 
of the double shock structure. The difference in shock speeds for the given test case is very small which makes resolving 
the intermediate state very challenging.

5.4. Convergence

We conduct a mesh convergence study for the aforementioned models for weak, moderate, and strong shocks. The local 
interaction property of convolutional neural networks allows us to train a model at a given resolution and use the same 
network parameters for an increased or decreased spatial resolution without having to train a new model. On a sequence 
of grids, we compute solutions to the nonclassical Riemann problem with double shock structure. We compute the time 
averaged L1 error between the approximate finite volume solution ūnx at resolution nx and the exact solution uex as follows,
11
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Fig. 10. Convergence in L1 for the NN scheme across different regimes. Displayed are the L1 error for weak, moderate, and strong shocks.

E := 1

nt

nt∑
i=1

L∫
x=0

|ūnx(x, i�t) − uex(x, i�t)|dx.

We set nt = 100 and increase the resolution from nx = 200 to nx = 10000 mesh points. The exact nonclassical solution 
for the Riemann problem is given in analytical form. Fig. 10 shows the resulting error with respect to the number of grid 
points. We show convergence for the three different schemes for weak, moderate, and strong shocks, respectively. Generally, 
we observe a convergence behaviour in the L1 norm to the exact nonclassical solution as the resolution is increased. The 
model for weak shocks reaches a plateau at around nx = 2000, after which the L1 norm does not further decrease. For 
moderate shocks, we see that the minimal L1 error is achieved at the training resolution of nx = 2000 points. Further 
increasing the resolution does not further decrease the L1 norm. We want to emphasize that we can train a separate model 
for each resolution. During numerical experimentation, we found that these models generally perform better than a model 
for which the resolution was adapted after training.

5.5. Smooth initial conditions

Similarly to [25], we consider a smooth initial condition

u0(x) = 4sin(πx),

on the domain L = 2 with periodic boundary conditions. We expect the formation of nonclassical and classical shocks as 
time progresses. We regard this initial boundary value problem as a challenging test case since the network has neither 
seen any smooth initial conditions nor the dynamic development of shock discontinuities in the training process. As the 
exact solution is not known, we use a fine-resolved solution of the finite volume scheme with well-controlled dissipation as 
a reference solution. The increasing flanks form rarefactions, while the decreasing parts develop nonclassical-classical shock 
structures. As is known from [25], the sinusoidal initial condition will create nonclassical shocks with u− > 0 and u+ < 0
as well as nonclassical shocks with u− < 0 and u+ > 0. Therefore, we have supplemented the training data for the weak±
model with solutions of the Riemann problem with uL < 0, see Fig. B.14. During numerical experimentation, we found that 
when only nonclassical Riemann problems with uL > 0 were included in the training process, the inferred model was not 
able to correctly resolve nonclassical shocks from u− < 0 to u+ > 0. Instead, the model would wrongly choose the classical 
Riemann solution which consists of a classical shock and a rarefaction wave.

Fig. 11 compares the solution of the NN scheme (weak± model) with the reference scheme from LeFloch and coworkers. 
The left column shows flow state and reconstruction variables at t = 0.01 while the right column shows the later time 
t = 0.05. Two WCD schemes are run at a resolution of 200 and 2000 mesh points, respectively. The NN scheme is simulated 
on the coarser grid of 200 mesh points. First, we note that our scheme is able to develop the discontinuous solution from 
smooth initial conditions. At t = 0.01, we see that the steepened flanks begin to form shock discontinuities. The neural 
network detects this and adapts reconstruction and local dispersion accordingly. At t = 0.05, two NCC structures are fully 
developed. The WCD scheme on the coarser mesh barely manages to resolve the shock discontinuities. The NN scheme 
shows sharp shock capturing. The shock strengths and shock positions are captured very well. The shock positions of the 
NN scheme are in very good agreement with the fine WCD solution, only the leading classical shock is slightly trailing 
behind. The post shock state (which is not constant any longer) is approximated very well when compared with the fine-
resolved WCD solution. The quality of the solution is very satisfactory keeping in mind that during training only Riemann 
problems were used.
12
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Fig. 11. Periodic initial conditions - comparison of the WCD scheme and NN scheme. Left: Solution at t = 0.01. Right: Solution at t = 0.05.

5.6. Shock interaction

We assess whether the NN scheme can approximate shock interactions, even though it has not been trained on such 
data. We test weak shock interactions with the weak± model and strong shock interactions with the strong shock model. 
For both test cases, we start with three well-separated Riemann problems which will develop shock interactions over 
time.

We test the weak± model on the domain [0,6] with a resolution of �x = 1 × 10−2. As a comparison, we use the 8-th-
order WCD scheme on �x = 1 × 10−2 and on �x = 2 × 10−3. The three Riemann problems are determined by the following 
initial condition,

u(x, t = 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 for x < 0.25,

−2 for 0.25 ≥ x < 0.75,

3 for 0.75 ≥ x < 1.25,

−2 for 1.25 ≥ x.

(22)

The first Riemann problem results in a fast nonclassical shock/classical shock (NCC), the second Riemann problem gener-
ates a nonclassical shock/rarefaction wave (NCR) structure, and the final Riemann problem results in a second NCC. Fig. 12
compares the solution of the NN scheme with the solutions of the WCD scheme. At t = 1.25 × 10−2, the nonclassical solu-
tions to each of the three Riemann problems have developed. At t = 4.50 × 10−2, the leftmost classical shock has interacted 
with the neighbouring nonclassical shock and the rarefaction wave has run into the rightmost nonclassical shock. The NN 
scheme approximation agrees well with the WCD solution on the finer mesh. We want to emphasize that the network has 
not seen such interactions during the training process. The NN scheme manages to approximate small-scale structures when 
compared to the WCD solution on the same resolution. The bottom row of Fig. 12 shows the solution at later times. The 
NN scheme shows very good agreement with the fine-resolved WCD result.

For the test case with strong shock interactions, the initial distribution is given by Eq. (23). The computational domain is 
[0,2]. We choose a resolution of �x = 1 ×10−3. The NN scheme is compared with the 8-th-order WCD scheme on the same 
resolution. The first Riemann problem results in a fast travelling classical shock (55 to 50), the second Riemann problem 
13
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Fig. 12. Weak shock interaction - comparison between the NN scheme and the WCD scheme.

generates a strong nonclassical shock (50 to −50) and a classical shock (−50 to −5), and the final Riemann problem results 
in a slow travelling classical shock (−5 to 2).

u(x, t = 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

55 for x < 0.25,

50 for 0.25 ≥ x < 0.75,

−5 for 0.75 ≥ x < 1.25,

2 for 1.25 ≥ x.

(23)

Fig. 13 compares the NN scheme with the WCD scheme at three characteristic points in time. At t = 5.00 × 10−5, 
the solution structure of each Riemann problem is well developed. At t = 1.50 × 10−4, the fast travelling classical shock 
has interacted with the strong nonclassical shock. The resulting nonclassical shock from 55 to approximately −55 is well 
predicted by the NN scheme. The final interaction between both remaining classical shocks is complete at t = 2.00 × 10−4. 
The predicted NCC structure of the NN scheme is in good agreement with the WCD results.

6. Conclusion

The design of numerical methods for complex physics remains an important topic of research. Solutions to non-convex 
hyperbolic systems may include nonclassical shocks which depend on underlying small-scale physics. As standard numerical 
schemes fail to approximate such shock waves correctly, a plethora of work has been devoted to devise numerical schemes 
which explicitly discretize diffusive and dispersive regularization terms. Machine learning offers a new approach for de-
signing numerical methods. Training data can be used to optimize established methods or come up with new schemes 
altogether.

In this work, we have put forward a data-driven physics-informed finite-volume scheme for the computation of under-
compressive shocks. We have trained a convolutional neural network to combine an optimal cell interface reconstruction 
based on WENO polynomials with a local regularization term. This allowed us to devise a adaptive scheme which is able to 
capture nonclassical shocks sharply while suppressing spurious oscillations. The neural network recognizes nonclassical as 
well as classical shocks and chooses a reconstruction so that diffusion and dispersion are balanced. Our scheme has shown 
very satisfactory results for the approximation of shock speeds and post shock states for weak, moderate, and strong shocks. 
The generalizability of the neural network scheme is very good, the intermediate state for unseen Riemann configurations 
showed very good results. Even smooth initial conditions and shock interactions, which are not part of the training set, are 
handled very well. Restricting the neural network to the reconstruction task, provides not only a method which adheres to 
any given physical conservation law but also a scheme which yields interpretable results. We want to emphasize that the 
reconstruction systematics chosen by the neural network give detailed insight as to how a heuristic smoothness measures or 
numerical schemes for small-scale dependent shocks might look like. In this way, the scheme also serves as an analysis tool 
14
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Fig. 13. Strong shock interaction - comparison between the NN scheme and the WCD scheme.

for the future design of numerical schemes. To the knowledge of the authors, this is the first data-driven shock-capturing 
scheme for undercompressive shocks.

There are points which need further investigation. Although, our scheme has shown good results for smooth distributions, 
it did not achieve maximum accuracy order in smooth regions. Incorporating smooth training examples might enable the 
neural network also to learn an optimal reconstruction in smooth flow regions. So far, we have trained different models 
according to the expected shock strength. A dictionary of models for different shock strengths might be a straightforward 
way to tackle problems with shocks of various strengths. Making the form of the regularization term adaptive may also lead 
to increased performance, especially for strong shocks.

The proposed NN scheme is trained with exact solutions of the underlying conservation law. Clearly, a set of exact 
solutions as rich as the one used in this work can only be generated for 1-D scalar problems. While the multidimen-
sional case might be covered by a straightforward dimension-by-dimension application of the NN scheme, high fidelity 
training sets have to be assembled for more complicated systems of equations. Smoothed out high resolution WCD re-
sults, numerical solutions of interface tracking schemes, experimental data sets, and combinations of the aforementioned 
might offer the possibility to create high fidelity training sets for such systems. Therefore, an extension of the NN scheme 
to systems of conservation laws and to multidimensional problems remains a challenge and is the topic of ongoing re-
search.
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Appendix A. Riemann solver for the scalar cubic flux model

We want to solve the Riemann problem of the cubic flux model

ut + (u3)x = 0 (A.1)

with initial data

u(x,0) =
{

uL for x < 0,

uR for x > 0,
(A.2)

and uL > 0. We restrict the solutions to the vanishing small-scale limit of the diffusive-dispersive regularization of Eq. (A.1)
given by

uε
t + ((uε)3)x = εuε

xx + δε2uε
xxx. (A.3)

The constant δ is the ratio of dispersion to dissipation and describes the small-scale physics. The limiting solution of Eq. 
(A.3), i.e. ε → 0, is equivalent to the solution of Eq. (A.1) when prescribing the kinetic function ϕb

δ (u−) at each nonclassical 
shock,

ϕb
δ (u−) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−u− −
√

2
3
√

δ
for u− ≤ − 2

√
2

3
√

δ
,

−u−/2 for |u−| ≤ 2
√

2
3
√

δ
,

−u− +
√

2
3
√

δ
for u− ≥ 2

√
2

3
√

δ
.

(A.4)

Then, the Riemann problem has the following solution structure [14]:

(a) For uL ≤ 2
√

2
3
√

δ
the solution is the classical Riemann solution:

(i) A rarefaction wave, if uR ≥ uL ,
(ii) a classical shock wave, if uR ∈ [−uL/2, uL),
(iii) and a classical shock followed by a rarefaction wave, if uR < − 1

2 uL .

(b) For uL > 2
√

2
3
√

δ
the solution is the nonclassical Riemann solution:

(i) A rarefaction wave, if uR ≥ uL ,

(ii) a classical shock wave, if uR ∈ [−
√

2
3
√

δ
, uL),

(iii) a nonclassical shock wave from uL to −uL +
√

2
3
√

δ
, followed by a classical shock wave to uR , if uR ∈ (−uL +

√
2

3
√

δ
, −

√
2

3
√

δ
),

(iv) and a nonclassical shock wave from uL to −uL +
√

2
3
√

δ
, followed by a rarefaction wave to uR , if uR ≤ −uL +

√
2

3
√

δ
.

The Riemann solver for uL < 0 is structured analogously.

Appendix B. Training data

Fig. B.14 provides an overview of the training set for weak, moderate, strong, and weak± models. Note that the blank 
spaces in the training set for the weak± model could be filled with classical solutions to the Riemann problem.

Appendix C. Training history

Fig. B.15 shows the loss history of the weak, moderate, strong, and weak± models. We use the Adam optimizer for all 
models. For the weak and weak± model, the initial learning rate is η = 10−2. The learning rate is divided by 10 after 100
and 200 iterations. The training process is terminated after 300 iterations. The moderate and strong models are trained for 
600 iterations. The initial learning rate is η = 10−3 and we divide it by 3 after 200 and 400 iterations.
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Fig. B.14. Riemann initial configurations in training sets. ( ) Nonclassical shock + Classical shock, ( ) Nonclassical shock + rarefaction.

Fig. B.15. Loss history of the NN scheme models. From top left to bottom right: Weak, moderate, strong, and weak± model.

Appendix D. CPU/GPU benchmark

We provide the CPU/GPU time taken to generate the training dataset and train the neural network, see Table D.3. In 
Table D.4, we compare the wall-clock times of the NN scheme with the 8-th-order WCD scheme for weak, moderate, 
and strong shock Riemann problems. We choose the following Riemann problems (uL , uR) = (4, −2), (uL, uR) = (25, −2), 
and (uL, uR) = (55, −2). The numerical setups are detailed in sections 5.1, 5.2, and 5.3, respectively. We have averaged 
the wall-clock times of the NN scheme and the WCD scheme over 10 runs to get stable averages. Data generation and 
numerical simulations are performed on an AMD EPYC 7302P CPU. The network training is performed on one Nvidia GTX 
2080 GPU.
17
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Table D.3
Wall-clock times (in seconds) for training data generation and the network training.

Model Data Generation Training

Weak 34.28 1200.88
Moderate 876.98 7389.39
Strong 426.02 3843.03

Table D.4
Comparison of wall-clock times (in seconds) between the WCD scheme and our NN 
scheme. The numbers in brackets represent the time needed to evaluate the network 
inside the finite-volume solver.

Test case WCD scheme NN scheme

Weak 0.36 3.41 (3.07)

Moderate 10.29 35.34 (30.75)

Strong 10.44 34.98 (30.51)

Fig. E.16. NN scheme solution of the Riemann problem for uL = 55 and uR = −2 on an unseen spatial domain. Solution is shown at t = 4.408 × 10−4.

For the weak shock test case which is calculated on a coarse mesh (nx = 200), the NN scheme is roughly 10 times 
slower than the WCD scheme. Most of the computation time is spent for the network evaluation. This is not surprising as 
in classical WENO schemes the evaluation of the WENO coefficients is typically very time consuming as well. For the higher 
resolved test cases (nx = 2000) with moderate and strong shocks, the NN scheme needs roughly 3.5 times the computational 
resources of the WCD scheme. Considering the substantially increased approximation quality, the computational overhead 
of the NN scheme is acceptable.

Appendix E. Additional test cases

E.1. Translational invariance

We repeat the experiment with the strong shock, uL = 55 and uR = −2, from Sec. 5.3 on a different spatial domain. We 
want to demonstrate that the NN scheme is translational invariant. The domain is changed to [−4, 0]. The initial disconti-
nuity is located at x = −3.0. We choose a resolution of �x = 1 × 10−3 for the NN scheme and compare with the 8-th-order 
WCD scheme at the same resolution.

Fig. E.16 shows that the NN scheme is translational invariant. Change of domain does not affect the approximation quality 
of the NN scheme.

E.2. Shock strength study

We assess the extrapolation capabilities of the NN scheme. Fig. E.17 shows solutions of the strong shock model with 
shock strengths significantly larger than the ones in the training set. We keep uR = −5 fixed and increase uL step by step, 
uL = {60, 70, 75, 80}. The shock strength is increased from around 120 to 160. The maximum shock strength in the training 
set was around 115, corresponding to uL = 57.5. The resolution is �x = 1 × 10−3. Results are compared with an 8-th-order 
WCD scheme at the same resolution.

The NN scheme extrapolates well for shocks up to a strength of 150. The configurations with uL = 70 and uL = 75
show slight overshoots at the nonclassical shock, however the overall shock structure as well as the intermediate value is 
captured very well. For the strongest shock case, the NN scheme fails to approximate nonclassical and classical shocks. The 
NN scheme tries to approximate the intermediate state but fails to resolve the nonclassical-classical shock structure.
18
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Fig. E.17. Extrapolation capabilities of the NN scheme. From top left to bottom right: uL = {60,70,75,80} and uR = −5.
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