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Abstract

This thesis and the corresponding publications cover the local modeling and uncertainty quan-
tification of the linear flame response. The local flame modeling is required at high frequencies
when the flame is no longer acoustically compact. This thesis suggests to model a local flame
response by the linearized reactive flow (LRF) approach. This approach is analytically derived
by linearizing the Navier-Stokes equations and transport equations for reacting species. There-
fore, the LRF includes a flow–flame–acoustics interaction by design. As a proof of concept, the
LRF approach is applied to an attached and a lifted laminar premixed flame in a low-frequency
regime. The flame transfer functions (FTFs) computed with the LRF solver agree with the ref-
erence FTFs identified from the CFD simulation with a broadband excitation. The LRF solver
also computes thermo-acoustic eigenmodes of the laminar flames, i.e. the mode growth-rate,
frequency, and shape. Results are compared to the established hybrid methods that couple FTFs
with a low-order thermoacoustic network-model or with a linearized Navier-Stokes equations
solver. All solvers capture the dominant thermoacoustic mode, but only the LRF resolves the
local flow-flame interaction, revealing e.g. the onset of the flame movement and the convective
propagation of distortions along the flame. Although this example demonstrates that the LRF
approach works well for laminar flames in the low-frequency regime, the first application of the
LRF solver to a turbulent auto-ignition flame at high frequencies gives results that do not agree
at all with the CFD results. Nevertheless, a significant result is achieved: a simplified formula-
tion of the LRF (neglecting convection and one part of the reaction term) yields a conservation
equation for the fluctuating heat-release rate that captures the acoustic flame motion. This sim-
plified LRF model is compared against two other sophisticated linear local flame models: the
Eulerian Flame Acoustic Motion Equation by Méry [70] and the flame displacement model by
Zellhuber and Schwing [114].

The linear flame response models are developed to perform a fast stability analysis of combus-
tion systems. Nevertheless, the real-life combustion systems include many uncertain parameters
such as operating conditions, so the linear stability analysis has to be combined with an uncer-
tainty quantification to estimate the probability of instability. This thesis shows how to incorpo-
rate uncertainties in the modeling of the linear flame response using a non-intrusive polynomial
chaos expansion (NIPCE). The NIPCE is a simple black-box approach that perfectly suits prob-
lems with expensive system evaluations, e.g. CFD simulations, where it is unfeasible to generate
enough samples to propagate uncertainties confidently using a Monte Carlo technique. Instead,
the NIPCE requires only a few samples and can perform sensitivity analysis as well. This thesis
performs uncertainty quantification and sensitivity analysis of thermoacoustic stability for two
premixed flame configurations. The first configuration is a turbulent swirl combustor, modeled
by the Helmholtz equation with an n −τ flame; the flame parameters and the outlet reflection
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coefficients are uncertain. The first-order NIPCE suffices to yield an accurate growth rate of the
combustor. The second configuration is a laminar slit burner. Its stability is investigated using a
low-order network model with the flame transfer function identified from the reactive flow CFD
simulations. The uncertainties come from the boundary conditions in the CFD simulations (flow
velocity, burner-plate temperature, and equivalence ratio) and acoustic reflection coefficients in
the network model. In this case, the second-order NIPCE is sufficient to model the uncertainties
in the growth rate. Additionally, it is shown how to propagate the uncertain boundary conditions
in the CFD to the flame transfer function and identify the most dominant uncertain parameters
using Sobol indices.
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Kurzfassung

Diese Arbeit und die dazugehörenden Publikationen befassen sich mit der lokalen Modellierung
und Unsicherheitsquantifizierung der linearen Flammenantwort. Die lokale Modellierung der
linearen Flammenantwort ist die bei hohen Frequenzen erforderlich, weil die Flamme nicht
mehr akustisch kompakt ist. Es wird vorgeschlagen, ein lokales Flammenverhalten durch den
linearized reactive flow (LRF) Ansatz zu modellieren. Dieser Ansatz wird analytisch durch Lin-
earisierung der Navier-Stokes- und Transportgleichungen für reagierende Spezies hergeleitet.
Daher beinhaltet das LRF eine Interaktion zwischen Strömung, Akustik und Flamme. Als
Konzeptnachweis wird der LRF-Ansatz auf eine angehängte und eine angehobene laminare
vorgemischte Flamme in einem niederfrequenten Bereich angewendet. Die mit dem LRF-Löser
berechneten FTFs stimmen mit den aus den CFD-Zeitreihen ermittelten Referenz-FTFs überein.
Der LRF-Löser berechnet auch die thermoakustischen Eigenmoden der laminaren Flammen,
d.h. die Wachstumsrate, Frequenz und Form. Die Ergebnisse werden mit den etablierten hy-
briden Methoden verglichen die FTFs mit einem thermoakustischen Netzwerkmodell oder mit
einem linearisierten Navier-Stokes-Löser koppeln. Alle drei Löser sind in der Lage die insta-
bilen Moden zu bestimmen, aber nur der LRF-Löser löst die Interaktion zwischen Strömung,
Akustik und Flamme örtlich auf und kann deshalb den Ansatz der Flammenbewegung andeuten.
Obwohl dieses Beispiel beweist, dass der LRF-Ansatz für laminare Flammen im niederfre-
quenten Bereich gut funktioniert, scheitert die erste Anwendung des LRF-Lösers auf eine tur-
bulente Selbstzündungsflamme bei hohen Frequenzen. Dennoch wird ein wichtiges Ergebnis
erzielt: eine vereinfachte Formulierung des LRF (Vernachlässigung der Konvektion und eines
Teils des Reaktionsterms) liefert eine Erhaltungsgleichung für die fluktuierende Wärmefreiset-
zungsrate, die eine akustische Flammenbewegung darstellt. Das vereinfachte LRF-Modell wird
mit zwei anderen hochwertigen linearen lokalen Flammenmodellen verglichen: der Eulerian
Flame Acoustic Motion Equation von Méry [70] und dem Flammenverschiebungsmodell von
Zellhuber und Schwing [114].

Die linearen Flammenantwortmodelle wurden entwickelt, um eine schnelle Stabilitätsanalyse
von Verbrennungssystemen durchzuführen. Dennoch, muss die lineare Stabilitätsanalyse mit
einer Quantifizierung der Unsicherheit kombiniert werden, um die Wahrscheinlichkeit der Insta-
bilität abzuschätzen. In dieser Arbeit wird gezeigt, wie die Unsicherheiten bei der Modellierung
des linearen Flammenverhaltens mit non-intrusive polynomial chaos expansion (NIPCE) quan-
tifiziert werden. Das NIPCE ist ein einfacher Black-Box-Ansatz, der sich hervorragend für
Probleme mit teuren Systemauswertungen eignet, z. B. CFD-Simulationen, bei denen es un-
möglich ist, genügend Stichproben zu generieren, um Unsicherheiten mit der Monte-Carlo
Methode auszurechen. Stattdessen benötigt das NIPCE nur wenige Stichproben und kann zusät-
zlich auch eine Sensitivitätsanalyse durchführen. In dieser Arbeit wird eine Unsicherheitsquan-
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tifizierung (UQ) und Sensitivitätsanalyse der thermoakustischen Stabilität von zwei vorgemis-
chten Flammenkonfigurationen durchgeführt. Die erste Konfiguration ist ein turbulenter Drall-
brenner, der durch die Helmholtz-Gleichung mit einer n−τ Flamme modelliert wird; die Flam-
menparameter und die Auslassreflexionskoeffizienten sind unsicher. Das NIPCE erster Ordnung
reicht aus, um eine genaue Wachstumsrate der Brennkammer zu erhalten. Die zweite Konfigu-
ration ist ein laminarer Schlitzbrenner. Seine Stabilität wird unter Verwendung eines Netzwerk-
modells niederer Ordnung mit der Flammentransferfunktion (FTF) untersucht. Die FTF wird
aus den CFD-Simulationen der reaktiven Strömung identifiziert. Die Unsicherheiten kommen
von den Randbedingungen in den CFD-Simulationen (Strömungsgeschwindigkeit, Brennerplat-
tentemperatur und Äquivalenzverhältnis) und den akustischen Reflexionskoeffizienten im Net-
zwerkmodell. In diesem Fall ist das NIPCE zweiter Ordnung ausreichend, um die Unsicher-
heiten in der Wachstumsrate zu modellieren. Zusätzlich wird es gezeigt, wie die unsicheren
Randbedingungen in CFD-Simulationen sich auf die FTF übertragen lassen und die dominan-
ten unsicheren Parameter mit Sobol-Indizes identifiziert werden.
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1 Introduction

1.1 Thermoacoustic analysis

Thermoacoustics studies a coupling between acoustics and heat release, see Fig. 1.1. This cou-
pling may lead to a self-induced instability with excessive fluctuations in pressure, velocity, and
temperature. Such instabilities occur, e.g. in gas turbines or rocket engines, where they can lead
to a catastrophic system failure. To guarantee safety margins and normal operating conditions,
a combustor’s thermoacoustic behavior should be carefully analyzed. Indeed, a comprehensive
thermoacoustic stability analysis should be an essential step in any combustor design. Despite
increased efforts to explore non-linear aspects of combustion dynamics [56, 80, 94, 99], linear
analysis remains extremely useful and important for fundamental studies of flow–flame interac-
tion mechanisms, sensitivity or uncertainty analysis, optimization, and industrial applications.
Therefore, this thesis focuses on linear stability analysis.

Figure 1.1: Schematic of thermoacoustic coupling (feedback). Reprinted from Lieuwen and
Yang [66].

Usually, thermoacoustic instabilities are classified in low and high-frequency instabilities. The
following two sections give an overview of both instabilities and different methods to model
them.

1.2 Low-frequency instabilities

Low-frequency instabilities are longitudinal (or azimuthal) instabilities with acoustically com-
pact flames. An acoustic Helmholtz number Hea defines flame compactness as a ratio between
a characteristic flame dimension l f and an acoustic wavelength λa:

Hea = 2πl f /λa . (1.1)

If the flame is compact (He ¿ 1), the local perturbation of the flame front occurs at scales
much smaller than the acoustic wave length. In this case the entire flame can be described by
an integral quantity - the global heat release rate Q̇. Typically, the fluctuation of the global heat-
release rate Q̇ ′ is related to the acoustic velocity fluctuation at a reference point upstream of the
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Introduction

flame u′
r e f through a flame transfer function (FTF):

Q̇ ′

Q̇
=F

u′
ref

uref
(1.2)

Typically, the flame transfer function is a superposition of several time-lagged responses of
varying strength with distributed time delays [89, 102]. Following this idea, the simplest FTF is
a single time-lagged response. This simple FTF is the n−τmodel introduced by Crocco [26, 27].
More realistic flame response functions with several time delays are derived from experi-
ments [59] or CFD simulations [8, 104, 105]. Considering discrete-time signals, the flame re-
sponse can be expressed as a finite impulse response (FIR):

Q̇ ′ [l ]

Q̇
=

N−1∑
k=0

bk

u′
ref [l −k]

uref
, (1.3)

where [l ] indicates the l -th discrete time step, bk are the FIR coefficients. Given the sampling
time ∆t , the time delay between l -th and k-th steps is (l −k)∆t , and the length of FIR is N∆t .
The finite impulse response can be z-transformed to the flame transfer function F :

F (s) =
N−1∑
k=0

bk e−sk∆t . (1.4)

Note that this FTF is defined for a Laplace variable s, see for instance [32]. Nevertheless, for
practical purposes, the FTF is typically evaluated for purely imaginary values s, which corre-
sponds to the angular frequency ω̇ with zero growth-rate.

In experiments, the flame response is usually determined separately for each frequency, using
a harmonic excitation signal. The same procedure can be applied in numerical simulations, but
it results in a very significant computational effort. A more sophisticated method is to impose
a broadband excitation, estimate the FIR from the time series applying a system identification
technique [41, 88, 105], and convert the FIR to the FTF using Eqn. (1.4). This method requires
only a single dynamic simulation.

The state-of-the-art technique to predict the combustor stability in a low-frequency regime is
thermoacoustic network modeling (TNM) [31, 33, 88]. TNM is a low-order approach that
represents a combustion system as a conjunction of elements, such as ducts and area jumps.
Acoustic waves propagate through the resulting network of elements. The heat-release fluc-
tuations are modeled using an FTF and produce acoustic perturbations according to the lin-
earized Rankine–Hugoniot jump conditions [22]. TNM resolves acoustic plane waves, as well
as non-plane higher order modes [34, 90]. The main advantage of TNM is robustness and high
computational speed.

A more sophisticated method is the application of a Helmholtz solver with an FTF [79, 81, 99].
Helmholtz solver resolves acoustics in three dimensions and allows to study complex geome-
tries but requires more computational resources than TNM. Helmholtz solver does not account
for the mean flow effects, therefore it is extremely robust and does not require a fine mesh
resolution to resolve dominant acoustic modes accurately.

The next step towards higher accuracy that can incorporate mean-flow effects and yield an
accurate prediction of dissipative effects is applying the linearized Euler or linearized Navier-
Stokes equations [67, 112]. An FTF models again the flame–acoustics interaction. Because of
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1.2 Low-frequency instabilities

the convective terms, this approach is very sensitive to the mesh resolution. The local flow
changes (such as recirculation zones) must be well resolved to predict their dissipative effects
accurately. All the methods mentioned above are hybrid methods since they couple a model for
acoustic propagation and dissipation with an FTF, see Fig. 1.2

Figure 1.2: Schematic overview of the modeling methods for low-frequency stability analysis.

This thesis suggests another approach with an inherent description of the flame dynamics that
is more accurate than the hybrid methods. This new approach is the linearized reactive flow
(LRF). It is analytically derived by linearizing the Navier-Stokes and reacting species transport
equations. Hence, the LRF is monolithic: the linear flame dynamics is by design inherited from
the governing equations, the flame fluctuations are locally resolved, and an external FTF is not
required. The LRF solver requires only a single CFD simulation to obtain mean fields, but no
additional unsteady CFD simulations are needed to identify the FTF. The LRF is introduced in
PAPER-LRF and successfully applied for thermoacoustic analysis of attached and lifted laminar
premixed flames. The main aspects of the linearization procedure are revealed in Section 2.1,
whereas the outcomes of PAPER-LRF are briefly summarized in Section 3.1. The reprint of
PAPER-LRF is shown in Appendix 5. Recently, Meindl et al. [68] have shown, that a hybrid
method coupled with a global FTF generates spurious entropy waves in the heat release zone,
whereas the LRF approach shows no spurious entropy generation.

The works by van Kampen et al. [109] on the response of a premixed flame to equivalence-ratio
fluctuations and by Blanchard et al. [17] on the effects of flow disturbances on the flame (and
vice versa) may be regarded as precursors of the LRF approach. Those studies employ a nu-
merical linearization of the governing equations and compute the FTF by simulating the step
response in the time domain. The numerical linearization of the governing equations requires
deep modifications of the CFD solver, which might be cumbersome or not possible at all. In con-
trast, the LRF equations are derived analytically, so this solver can be realized in a stand-alone
application separately from the CFD solver. The LRF solver operates in the frequency domain1,

1The LRF solver can also operate in the time domain and simulate the step response in time to derive the FTF,
but it is more convenient and faster to work directly in the frequency domain.
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which allows to compute the FTF and thermoacoustic eigenmodes. Furthermore, LRF offers
flexibility in choosing plausible inputs and outputs, creating multiple-input and multiple-output
systems. Thus, any transfer or scattering matrix of the system can be computed, for instance,
a flame response to simultaneous excitations of the inlet velocity and equivalence-ratio, or the
local flame transfer function. The ability of the LRF to resolve local flame fluctuations will be
exploited at high frequencies, as shown in the following section.

1.3 High-frequency instabilities

In the high-frequency range, flames are acoustically non-compact, i.e. the characteristic flame
length is of the same order as the acoustic wavelength or even higher (He& 1). Typically, high-
frequency instabilities are transverse instabilities2 in rocket engines [28], ramjets, and after-
burners [92], or in the second stage of sequential combustion systems (reheat combustors) [111].
This thesis investigates the high-frequency transverse instabilities in a generic reheat combustor.

While low-frequency instabilities are already well understood, the "high-frequency world"
is still widely unexplored. The flame response mechanisms are not entirely understood, and
until now, there is no established approach to model high-frequency instabilities. The non-
compactness of the flame makes it difficult to model the flame–acoustics interaction. First, the
flame response should be spatially resolved, so the FTF should be defined for the local heat-
release rate q̇ ′ instead of the global heat-release rate Q̇ ′. Moreover, it is not clear what are the
inputs of such a non-compact flame transfer function q̇ ′ = f (?). Furthermore, experimental in-
vestigations of non-compact flames are complex and cost-intensive, so there are only few data
sets for the model validation. Nevertheless, there are some solution strategies:

• Black-box approach: consider all possible inputs, e.g. pressure and velocity from the en-
tire flow field, then use a special algorithm that fits a non-compact FTF and simultane-
ously minimizes the number of input parameters. One of such algorithms is Basis Pursuit
Denoising (BPDN) [108]. In report COOREFLEX-Turbo 2.1.2c [6] BPDN has been ap-
plied to identify a global FTF of a premixed laminar flame. Unfortunately, BPDN has
never been applied to any test case in the high-frequency regime due to the time con-
straints of the project COOREFLEX-Turbo 2.1.2c. Therefore, BPDN is out of the scope
of this thesis. A detailed investigation of the method is required. Although BPDN can
establish a relation between the local heat release rate and the flow field, it is not clear
how to give a physical interpretation to such results.

• Coupling a Helmholtz solver with an n −τ model or another global FTF distributed over
the entire flame region [40, 79]. The FTF can be tuned to fit the modal growth rates from
experimental or simulation data.

Nicoud et al. [79] studied azimuthal instabilities in annular combustors in the frequency
domain. They considered two approaches: passive and active flame. A passive (or steady)
flame results when the flame–acoustics coupling tends to zero, i.e. there is no fluctua-
tion in the heat release rate. For an active flame approach, the authors applied an n −τ

2Most of the azimuthal instabilities in annular combustors occur at high frequencies, but the flame usually
remains compact. So these instabilities belong rather to the Section 1.2.
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model. The time lag and interaction index were distributed locally and determined by
post-processing LES results with a broadband longitudinal excitation. The reference ve-
locity was taken at the injector mouth. The second approach accounts for the flame–
acoustics interaction but is more computationally demanding. The active flame calcula-
tions showed that the effect of the flame-acoustic coupling on the stability is not obvious
and can either stabilize or destabilize the system. Although the authors focused on az-
imuthal instabilities (i.e. compact flames), their active flame approach might be taken to
model high-frequency flame response if applying a transverse excitation.

Ghani et al. [40] studied an unstable transverse acoustic mode in a swirled kerosene/air
combustion chamber. The authors used an n −τ model with a single time lag and inter-
action index. They took the azimuthal acoustic velocity fluctuation at a point in the com-
bustion chamber as a reference. The azimuthal velocity was chosen because it showed a
higher correlation with the heat-release fluctuation than the streamwise velocity. The n
and τ were determined from the LES of a self-excited oscillation. This combustion model
allowed to recover the stability zones observed in the LES.

At first glace, the application of an n −τ model seems to be a fast and elegant solution,
but this model is not universal. Until now there is no analytical approach how to obtain n
and τ, so these parameters have to be determined separately for each load point.

• Zellhuber-Schwing (ZS) model: Schwing and Sattelmayer [96] experimentally investi-
gated a transverse mode in a lab-scale swirl burner and suggested that the transverse
flame displacement destabilizes the flame. Zellhuber et al. [114] formulated a correspond-
ing mathematical model. The authors linearized the local heat-release rate neglecting the
mean flow and using a frame, moving with the acoustic velocity. The linearized heat
release is modulated due to the flame displacement (caused by acoustic velocity fluctu-
ations), density fluctuations (caused by acoustic pressure fluctuations), and fluctuations
in chemical consumption rates. The authors did not explicitly resolve the latter contri-
bution. The ZS model can be coupled with a Helmholtz solver, the linearized Euler or
Navier-Stokes equations but neglecting the mean flow.

Berger et al. [12] performed another more extensive study of transverse instabilities in
the swirl burner, previously used by Schwing and Sattelmayer [96]. The authors recon-
structed the mean and fluctuating part of the heat-release rate in the burner midplane by
means of dynamic pressure measurements and OH∗ chemiluminescence imaging. Hum-
mel et al. performed a numerical stability analysis of the same burner using a Helmholtz
solver coupled with the ZS model in a joint publication [53]. The mean flow fields were
deduced from the experimental measurements. The frequencies of self-induced oscilla-
tions were captured well by the thermoacoustic solver. The computed spatial distribution
of the fluctuating heat-release rate was in qualitative agreement with the experimentally
derived one. The driving force of the density fluctuation was roughly three times larger
than the driving force of the flame displacement in this burner configuration. In the next
publication [13], Berger et al. investigated the flame behavior at different levels of pul-
sation amplitudes. The unstable acoustic modes converged into a predominantly rotating
character in the direction of the mean flow swirl. Pressure and heat-release rate fluctu-
ations were in phase for all pulsation amplitudes. With increasing pulsation amplitudes,
the driving force of the flame displacement becomes more important, than the driving
force of the density fluctuation. Although the ZS model suggests a parameter-free model
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for the flame displacement, the model derivation is cumbersome and might be flawed.
Furthermore, the authors do not provide the explicit model for the consumption rate.

• Eulerian Flame Acoustic Motion Equation (E-FLAME): this model was derived by Méry,
assuming that the flame motion does not produce a global fluctuation of the heat-release
rate. By definition, this model addresses the flame motion only and always has a desta-
bilizing effect. The E-FLAME model can also be coupled to the Helmholtz solver or any
other linearized flow solver, neglecting the mean flow. In publication [70], Méry intro-
duces the model and validates it in a one-dimensional configuration with a transversely
excited flame. Besides that, a parametric study is performed in an acoustic network of an
annular combustor. The superposition of two flame-acoustics coupling mechanisms was
considered in this example: a simple n−τ model and the E-FLAME. At low frequencies,
the global response of the compact flame (n−τmodel) is much larger than the response to
the flame motion. Nevertheless, the E-FLAME related growth rate increases at high fre-
quencies, and if the transverse combustion dimension becomes smaller, the flame motion
mechanism should not be neglected. The E-FLAME provides a parameter-free model-
ing of the flame movement as well as the SZ model. Section 2.1.6 compares both these
models and answers which one is superior.

• Linearization of the reaction term from the governing equations: Sharifi et al. [97] inves-
tigated a generic turbulent propagating flame using an LES with a flame surface density
approach. The authors excited the flame using transverse acoustic waves to obtain either
a velocity or pressure node at the burner centerline and measured the global Rayleigh
index. Then they linearized the combustion model and computed the contributions to the
RI from each linearized term: density, laminar flame speed, subgrid wrinkling, and flame
surface. This concept allowed to study how different heat-release mechanisms (i.e. linear
fluctuations of each term in the flame model) affect flame stability. Although the authors
did not create a reduced-order model for stability analysis using the linearized reaction
term, their work supports this idea and motivates to use the LRF approach to investigate
high-frequency instabilities.

As mentioned earlier, the SZ and E-FLAME models are parameter-free models, but they cap-
ture the flame motion only without reaction rate fluctuation. The LRF approach should close
this gap, since it linearizes the full set of governing equations including the combustion model.
Section 2.1 shows the derivation of the LRF model. Section 2.1.6 shows that after some simpli-
fications, the LRF equations can be reduced to the E-FLAME model representing the acoustic
flame motion. In Section 3.1, the LRF is successfully applied to a low-frequency response of a
laminar flame. Section 3.2 is dedicated to the application of the LRF to the high-frequency flame
resonse. Most of the previous numerical works on high-frequency transverse oscillations were
focused on the dominant eigenmodes. The eigenfrequencies and growth rates were calculated
with linear models at several burner load points. However, it is extremely difficult to extract
the growth rates from experiments or LES data. Therefore, the quantitative comparison is not
possible, and the results can only be classified as stable-neutral-unstable. This thesis suggests a
different approach inspired by the works of Zellhuber et al. [114] and Sharifi et al. [97]. An auto-
ignition flame in a generic reheat combustor is transversely excited, and the resulting Rayleigh
index is calculated That allows a quantitative comparison between LES, LRF, E-FLAME and
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ZS models. The Rayleigh index shows how much energy is supplied to the system per oscilla-
tion period T by combustion [78]:

RI =
∫
Ω

ri dV =
∫
Ω

1

T

∫ T

0

γ−1

γp
p ′q̇ ′d tdV , (1.5)

where ri and RI are the local and global Rayleigh indices;
∫
ΩdV and

∫ T
0 d t are the integrals

over the space and time; γ is the mean heat capacity ratio; p and p ′ are the mean and fluctuating
parts of the pressure; q ′ is the fluctuating part of the volume-specific heat-release rate. Under
the excitation, there is only one requirement that the burner remains stable. Thus the walls
in the simulations are made non-reflecting. In general, this quantitative method to assess the
driving force can be applied to experiments and other low-dimensional models. Unfortunately,
the straightforward application of the full LRF model to the reheat combustor fails: the results
do not agree at all with the CFD results. Hence, the remaining part of Section 3.2 is dedicated to
the simplified LRF solver with the E-FLAME and ZS models. Finally, conclusion and outlook
given in Section 3.2.4.

1.4 Uncertainty quantification in thermoacoustics

In real-life engineering applications, operating conditions and system parameters are not pre-
cisely known but are uncertain. These uncertainties propagate through the system and affect the
prediction of the quantities of interest, making them uncertain.

In (linear) thermoacoustic analysis, the most important quantity of interest is the mode growth
rate. Uncertainty quantification (UQ) analysis allows to predict the uncertainty of the growth
rate and determine the risk factor – a probability of the system being unstable.

The most common and straightforward UQ method is the Monte Carlo simulation [72]. The
simulation is performed in two steps. First, a set of uncertain input parameters, that follow a
presumed distribution, is generated. Then, the quantity of interest is computed for each input
sample. The resulting ensemble of realizations is used to characterize the uncertainty of the
quantity of interest. Unfortunately, Monte Carlo simulation requires many realizations (typically
several thousand) to obtain converged statistics. Therefore, it is feasible only if the computation
time of the quantity of interest is at most in the order of minutes. The number of realizations
can be somewhat reduced using a smart sampling technique, such as Latin hypercube sampling.

Nevertheless, if the computations are expensive (often in thermoacoustics), more sophisticated
UQ methods are required. These methods reduce the original system to a low-order surrogate
model that is cheap to evaluate and apply the Monte Carlo simulation on this surrogate model.

Bauerheim et al. [9] investigated a simplified annular combustor with 19 burners using a
Helmholtz equation coupled with uncertain n-τ flame models. The authors applied an active
subspace approach [25] reducing 38 input parameters to three active variables. Fifty sam-
ples, i.e. model evaluations, were required to identify the active variables. Linear and quadratic
reduced-order algebraic models were fitted using a few dozen samples. Finally, a Monte Carlo
simulation was performed on the reduced-order models to quantify the risk factor. The quadratic
model showed accurate results in comparison to the original model. The active subspace ap-

7



Introduction

proach is well suited for cases with a large number of uncertain parameters since it eliminates
the curse of dimensionality. However, it works only if the input parameters can be combined to
a few active variables, which is not always the case. Furthermore, the method requires several
tens or even hundreds of system evaluations to identify the active variables and fit a surrogate
model.

Guo et al. [44] followed the active subspace approach to investigate how the uncertainties from
identifying the flame impulse response (FIR) affect the growth rate of thermoacoustic modes.
The authors considered a turbulent swirled burner and identified the flame response coefficients
with the corresponding uncertainties from a CFD simulation with a broadband excitation [103].
The active subspace approach computed the resulting uncertainties in the growth rate with the
same accuracy as the reference Monte Carlo simulation, but 5000 times faster. Usually, the
uncertainties in the FIR coefficients are reduced by taking a longer time series for the identi-
fication, i.e. prolonging the CFD simulation. The developed methodology can also serve as an
indicator for terminating the CFD simulation [45].

Ndiaye et al. [76] investigated a single swirled burner, built at EM2C laboratory, using a
Helmholtz equation coupled with the uncertain n-τ flame model. The authors applied a multiple
linear regression technique to reduce the non-linear Helmholtz equation with two uncertain pa-
rameters to a bilinear algebraic model. Then, instead of the original system, the reduced model
was used to compute the risk factor with a Monte Carlo simulation. A few dozen samples were
enough to tune the reduced model.

Silva et al. [100] investigated the same swirled burner (EM2C) as Ndiaye et al [76], considering
four uncertain parameters: n, τ, as well as the magnitude and the phase of the outlet reflection
coefficient. Direct and adjoint eigenvectors were used to construct a first and second order ex-
pansions of the non-linear Helmholtz equation around a reference eigenvalue. Then applying
a Monte Carlo simulation on these expansions, deviations from the reference eigenvalue were
computed at a reduced computational cost. The second order expansion results were in good
agreement with the results obtained by solving the non-linear Helmholtz equation.

The same strategy was applied by Mensah et al. [69], but the authors used a flame transfer
function fitted from the experiment instead of a n–τ flame model. The uncertainty in the flame
transfer function was modeled with two parameters, relative error in gain and absolute error in
phase, which were assumed constant in the entire frequency range. The second order expansion
sufficed to accurately determine the stability margins of the EM2C burner.

Recently, Guo et al. [46] suggested a machine learning method called Gaussian process to quan-
tify the uncertainty of the dominant thermoacoustic modes in a swirled burner. The thermoa-
coustic modes of the burner were accessed using a low-order thermoacoustic network model
(TNM) coupled with an FTF. The mode uncertainties were computed with a Monte Carlo sim-
ulation. The authors inspected six uncertain input parameters: the reflection coefficient at the
burner outlet and the remaining five parameters described the FTF. The Gaussian process built
a surrogate model that predicted the growth rate of the dominant modes faster than the TNM.
One hundred training samples were needed to obtain good prediction quality. Besides that,
the authors explored the fundamental aspects of the robust design in thermoacoustic instability
analysis. In the following work [48], the authors applied the developed approach to approximate
the Helmholtz solver. They performed UQ of the linear instability (growth rate) and non-linear
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instability (amplitude of the limit cycle) in the EM2C burner. In paper [47], the authors studied
how the imperfectly trained surrogate model affected the UQ of thermoacoustic instability. They
suggested an active learning strategy further to enhance the efficiency of the GP model train-
ing. The latest work of these authors [49] indicated an extension of the GP – the multi-fidelity
Gaussian process that combined the flame response identification from a short broadband ex-
citation (low-fidelity) and harmonic excitations at few selected frequencies (high-fidelity). This
approach allowed for improving the accuracy of the flame response identification even in the
presence of strong noise.

This thesis presents a nonintrusive polynomial chaos expansion (NIPCE) for UQ and sensitiv-
ity analysis in thermoacoustics. NIPCE approximates the quantities of interest as a polynomial
expansion of the uncertain input parameters. This method is particularly appealing in the in-
dustrial design process since it is easy to use and it treats the investigated system as a black
box, so no modifications of the CFD solver are required. The method requires only a few sam-
ples to fit a low order polynomial. Hence it is perfectly suitable for problems with expensive
system evaluations (such as high fidelity CFD simulations), but constrained to a small number
of uncertain parameters. Besides uncertainties, the NIPCE provides a polynomial function for
the quantity of interest that can be used as a reduced-order model, or for sensitivity analysis,
computing derivatives with respect to the uncertain input parameters.

The NIPCE is an established approach, it has been applied frequently in computational fluid
dynamics [50–52, 75, 107] and in simulations of reacting flows [91]. Despite the success in the
CFD community, the NIPCE was applied in thermoacoustics only once by Nair et al. [74] to
quantify the uncertainty of subcritical bifurcations predicted by a simplistic model of a Rijke
tube. This thesis applies the NIPCE for UQ and sensitivity analysis for common thermoacoustic
tasks.

Section 2.2 explains the basic methodology. PAPER-UQ-STABILITY (Section 4.1) propagates
the uncertainties in operating conditions to the growth rate of the dominant thermoacoustic
mode and performs a sensitivity analysis. Additionally, PAPER-UQ-FTF (section 4.2) propa-
gates the uncertainties in operating conditions to the the flame transfer function and uses Sobol
indices for the sensitivity analysis.
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2 Methods

2.1 Linearized reactive flow

Figure 2.1: Schematic of the LRF approach and its features.

This chapter describes the LRF approach. Fig. 2.1 summarizes the LRF approach and its fea-
tures. The non-linear governing equations are introduced (Section 2.1.1) and then, they are lin-
earized (Section 2.1.2). The linearization of the combustion model is discussed in Section 2.1.3
followed by the turbulence treatment (Section 2.1.4) and the details on the numerical discretiza-
tion of the LRF (Section 2.1.5).

Besides that, Section 2.1.6 compares the LRF, E-FLAME and ZS models with focus on the
motion of acoustically non-compact flames at high frequencies.

2.1.1 Non-linear governing equations

At first, the non-linear governing equations should be defined. It is essential to linearize the
very same governing equations that are used in the CFD solver for the computation of the mean
fields. For instance, PAPER-LRF deploys an OpenFOAM solver with the inner energy equation
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formulated for sensible enthalpy h. The set of reactive governing equations reads as

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (2.1)

∂ρui

∂t
+ ∂ρui u j

∂x j
=− ∂p

∂xi
+ ∂τi j

∂x j
, (2.2)

∂

∂t

(
ρh −p

)+ ∂ρu j h

∂x j
= ∂

∂x j

(
α
∂h

∂x j

)
+ q̇ , (2.3)

∂ρYk

∂t
+ ∂ρu j Yk

∂x j
= ∂

∂x j

(
D
∂Yk

∂x j

)
+ ẇk . (2.4)

Variables ui and Yk denote velocity component in the i -direction and mass fraction of the
species k; ∂/∂t and ∂/∂xi are temporal and spatial partial derivatives. The viscous term is
neglected in equation for the sensible enthalpy h (2.3). The heat flux is approximated by
−α(

∂h/∂x j
)

with thermal diffusivity α instead of Fourier’s law. This heat-flux formulation
is typical for OpenFOAM solvers and is deployed in PAPER-LRF. However, section 3.2 studies
a turbulent auto-ignition flame with Ansys Fluent, where Fourier’s law models the heat flux, so
in that case ∂

∂x j

(
α ∂h
∂x j

)
is replaced by ∂

∂x j

(
κ ∂T
∂x j

)
with thermal conductivity κ (W/(mK)).

The sensible enthalpy for the species k is calculated from JANAF polynomials with coefficients
a j :

hk (T ) =
∫ T

Tr e f

cp,k dT̃ = Rk

5∑
j=1

a j
T j −T j

ref

j
, (2.5)

with the specific gas constant Rk for the species k. The sensible enthalpy of the mixture is
computed using the species mass fractions: h =∑

k hk Yk . The viscous stress tensor τi j reads:

τi j =µ
(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
µ
∂ul

∂xl
δi j , (2.6)

where δi j is the Kronecker delta. The ideal gas law links the pressure p, the density ρ,
and the temperature T : p = ρRT . The dynamic viscosity µ is given by Sutherland’s law:
µ = AsT 1/2/(1+TS/T ) with As = 1.67212 × 10−6 kg/(msK1/2) and TS = 170.672 K. To de-
termine thermal diffusivity α, a constant Prandtl number Pr = µ/α = 0.71 is assumed. Simi-
larly, with unity Lewis number for all species, Schmidt number Sc and mass diffusivity D obey
Sc = µ/D = 0.71. The reaction terms in the enthalpy equation q̇ and species equations ẇk are
addressed in Section 2.1.3.
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2.1.2 Linearized governing equations

Splitting field variables in Eqns. (2.1)–(2.4) into time-averaged and first-order fluctuating parts
(indicated by the overline and the prime) φ=φ+φ′ yields the lineazied equations:

∂ρ′

∂t
+ ∂

∂x j

(
ρu′

j +ρ′u j

)
= 0, (2.7)

∂

∂t

(
ρu′

i +ρ′ui
)+ ∂

∂x j

(
ρui u′

j +ρu′
i u j +ρ′ui u j

)
=−∂p ′

∂xi
+
∂τ′i j

∂x j
, (2.8)

∂

∂t

(
ρh′+ρ′h −p ′

)
+ ∂

∂x j

(
ρu j h′+ρu′

j h +ρ′u j h
)
= ∂

∂x j

(
α
∂h′

∂x j
+α′ ∂h

∂x j

)
+ q̇ ′, (2.9)

∂

∂t

(
ρY ′

k +ρ′Y k

)
+ ∂

∂x j

(
ρu j Y ′

k +ρu′
j Y k +ρ′u j Y k

)
= ∂

∂x j

(
D
∂Y ′

k

∂x j
+D ′∂Y k

∂x j

)
+ ẇ′

k , (2.10)

where the viscous stress tensor, dynamic viscosity, sensible enthalpy, and ideal gas law are
linearized to

τ′i j =−2

3
δi j

(
µ
∂u′

l

∂xl
+µ′∂ul

∂xl

)
+µ

(
∂u′

i

∂x j
+
∂u′

j

∂xi

)
+µ′

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (2.11)

µ′ =µ T +3TS

2(T +TS)

T ′

T
, (2.12)

(2.13)

h′ = cp T ′+∑
k

hk Y ′
k , (2.14)

T ′

T
= ρ′

ρ
− p ′

p
(2.15)

D ′ and α′ are computed analogously. Note that the enthalpy equation cannot be reduced to the
pressure equation because cp is not constant, see Eqns. (2.5) and (2.14). The linearization of
the reaction terms q̇ ′ and ẇ′

k is shown in Section 2.1.3.

The derived set of equations shows that LRF accounts for the mean-flow effects, allows prop-
agation of acoustic, vorticity, and entropy waves, as well as a linear energy transfer between
them. The linearized state variables are p ′, ρ′, u′

i and Y ′
k , where the number of transported

species depends on the reaction modeling (see Section 2.1.3). For the sake of compactness, we
avoid rewriting the linearized Eqs. (2.7)–(2.10) in terms of the selected linearized variables, it
can be done without essential difficulty using the expressions provided in Eqns (2.11)–(2.15).

In closing this section, it is emphasized that the first-order fluctuations of material properties are
retained to make the linearized equations fully consistent with the original non-linear problem.
PAPER-LRF shows that it is crucial to obtain the correct flame response of laminar flames.

2.1.3 Reaction term

This thesis pursues the approach of linearization of reaction kinetics. Alternatively, other ap-
proaches, such as the linearization of the G-equation [2, 3, 21, 98], are also feasible.
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2.1.3.1 One-step irreversible reaction

Following [87], the progress rate of a typical one-step irreversible reaction Q for the methane-
air combustion is defined as

Q = Aρa+b
Y a

O2
Y b

C H 4

W a
O2

W b
C H 4

exp

(
− Ea

T Runiv

)
. (2.16)

PAPER-LRF uses the reaction coefficients A, a, b from one-step Westbrook and Dryer [110]
chemistry mechanism. Note that this mechanism is taken just for proof of concept, but it is
entirely outdated and thus not recommended in general.

The methane/air consumption rates and the heat-release rate1 are

ẇCH4 =−WCH4Q, (2.17)
ẇO2 =−WO2Q, (2.18)
q̇ =∆h◦Q, (2.19)

where WCH4 and WO2 are the molar masses of methane and air; ∆h◦ is the standard enthalpy of
reaction. The linearized consumption rate of species k = {CH4,O2} reads

ẇ′
k = ẇk

(
(a +b)

ρ′

ρ
+ TaT ′

T
2 +a

Y ′
O2

Y O2

+b
Y ′

CH4

Y CH4

)
; (2.20)

q̇ ′ is computed in the same manner.

PAPER-LRF investigates a case of premixed combustion, so the equivalence ratio does not
vary. It is enough to include a single species transport equation, for instance CH4, in the set
of linearized governing equations (2.7)–(2.10). Then, the fluctuation of the air mass fraction is
given by

Y ′
O2

= (2WO2 /WCH4 )Y ′
CH4

. (2.21)

The mean mass fractions Y CH4 and Y O2 appear in the denominator of Eqn. (2.20), so they should
be limited to some small numbers when they go to zero avoiding numerical problems.

This concept of the linearized one-step irreversible reaction can be easily extended to model
additional perturbations in the equivalence ratio, as shown by M. Kühn in his term paper [61],
supervised by the present author. The extension introduces an additional transport equation for
O2 and modifies the linearized ideal gas law since the specific gas constant R depends on the
equivalence-ratio fluctuations.

2.1.3.2 Multi-step reaction

PAPER-LRF applies a one-step mechanism for the sake of simplicity. However, one-step mech-
anisms are inaccurate, so the reaction is usually approximated using a multi-step chemical

1Note that PAPER-LRF uses a slightly different notation for the heat-release rate (W/m3) and species reaction
rate (kg/(sm3)) – ω̇q and ω̇k . This thesis uses the notation q̇ and ẇ, respectively.
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mechanism. The current state of the art refers to the application of a two-step reaction mecha-
nism at least, such as 2S-CM2 [15]. The linearization of a multi-step reduced mechanism might
be a tedious task, but it is still straightforward. The linearized 2S-CM2 mechanism was recently
applied by Meindl et al. [68] in the framework of the LRF approach.

2.1.3.3 Tabulation of the progress variable

Instead of adding more and more steps to the reaction mechanism in order to achieve higher
accuracy at the cost of increased complexity, it is also possible to use a tabulated chemistry
approach. This approach is often used in turbulent combustion and is usually combined with
the laminar flamelet concept [83], which applies to a regime where the chemical time-scales
are shorter than the turbulent ones. In this regime, a turbulent flame can be approximated as
an ensemble of laminar flamelets. Exploiting this concept, turbulent combustion models com-
pute the thermochemical states of flamelets in a pre-processing step (before the CFD simula-
tion) and store them in a look-up table in dependence of progress variable Yc , mixture frac-
tion, etc. [11, 18, 29]. A specialized chemical kinetics solver generates this look-up table.
Depending on the combustion type and regime, the solver uses either perfectly stirred reac-
tors for auto-ignition flames [19, 30, 62–64], one-dimensional propagating flamelets for (par-
tially) premixed flames [18, 30, 36–38, 85], or counter-flow flamelets for premixed or diffusion
flames [11, 54, 57, 58, 93, 106, 115].

The tabulated chemistry was coupled with the stochastic-fields approach to model the turbulent
combustion of auto-ignition flames by Kulkarni et al. [62–64]. This methodology is applied in
Section 3.2 for large-eddy simulations of an adiabatic premixed auto-ignition stabilized flame
in a generic reheat combustor. For this case, the LRF solver is built by linearizing the same
combustion model as in the LES to preserve consistency.

This section illustrates the details of the tabulation and linearization of the combustion look-
up table. For the sake of simplicity, the heat loss effects are neglected in the reheat combustor
under investigation, so the tabulation has only one dimension (progress variable Yc). However,
the linearization approach can be easily extended to account for several tabulation dimensions.

For the auto-ignition of a methane-air mixture [62], the progress variable Yc is defined as

Yc = YCH2O +YCO +YCO2 . (2.22)

The chemical look-up table provides the mass-specific source term [ω̇c ]tab
Yc

for the progress
variable equation and the mass fractions for the transported species [Yk ]tab

Yc
in the LES. The

square brackets with superscript tab in expression [Yk ]tab
Yc

refers to the tabulated quantity of a
transported species in this case, and the subscript Yc refers to the interpolation of the tabulated
quantity at a given value of the progress variable. The reaction rate for the progress variable in
the LES is split in density and the mass-specific source term for the progress variable, thereby
the latter term comes from the look-up table:

˜̇wc = ρ̃ ˜̇ωc ≈ ρ̃ [ω̇c ]tab
Ỹc

, (2.23)

where (̃ ) denotes filtered LES fields. The reaction rates for the transported species in the LES
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can be computed in the same way:

˜̇wk = ρ̃ ˜̇ωk ≈ ρ̃ [ω̇k ]tab
Ỹc

. (2.24)

However, the direct application of the term [ω̇k ]tab
Ỹc

in LES produces high numerical errors ac-
cording to [73, 82]. Hence, a reconstruction of the reaction rates using the tabulated mass frac-
tions is applied:

˜̇wk ≈ ρ̃
[Yk ]tab

Ỹc
− Ỹk

∆tLES
, (2.25)

where ∆tLES is the time-step size in the LES. The reaction term in the enthalpy equation is
computed in a similar manner using the enthalpy of formation h◦

k of each transported species:

˜̇q = ρ̃ ˜̇ωq ≈−ρ̃
∑

k

(
[Yk ]tab

Ỹc
− Ỹk

)
h◦

k

∆tLES
. (2.26)

Now to build a linear model, the tabulated combustion approach is linearized. The linearization
of Eqn. (2.24) yields the linear fluctuation of the progress variable:

ẇ′
c = ω̇cρ

′+ρω̇′
c ≈ ω̇cρ

′+ρ
[

dω̇c

dYc

]tab

Y c

Y ′
c , (2.27)

where ( ) denotes a time-averaged LES field. So ẇ′
c depends on the fluctuations of the density

and the progress variable, where [dω̇c /dYc ]tab comes from the combustion tabulation. Due to
adiabatic fully-premixed combustion, there is only one tabulation dimension (Yc), hence [ω̇c ]tab

depends solely on Yc . In a more complex case, there will be several partial derivatives of [ω̇c ]tab

in Eqn. (2.27).

The linearized heat-release rate reads as

q̇ ′ = ω̇qρ
′+ρω̇′

q ≈ ω̇qρ
′+ρ

[
dω̇q

dYc

]tab

Y c

Y ′
c , (2.28)

where ω̇q is the mass-specific heat-release rate (W/kg) and
[
dω̇q /dYc

]tab is its tabulated deriva-
tive with respect to the progress variable2.

Applying the combustion tabulation to the LRF approach replaces the species transport equa-
tions (2.10) by a single transport equation for the progress variable with the source term given
by Eqn. (2.27). The source term for the enthalpy equation (2.9) is given by Eqn. (2.28), respec-
tively.

2.1.4 Turbulence modeling

There is currently no model that directly accounts for turbulence – combustion interactions in
the linearized concept. These interactions are taken into account indirectly via mean fields since

2If the tabulation yields only [ω̇c ]tab and [Yk ]tab, then [dω̇c /dYc ]tab and
[
dω̇q /dYc

]tab can be easily derived
using finite differences and the knowledge of formation enthalpy of transported species.
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2.1 Linearized reactive flow

they smear out shear layers and flame fronts. Additionally, turbulence contributes to the energy
dissipation in the LRF by a turbulent viscosity that is added to the molecular viscosity [42]:

µeff =µ+µturb. (2.29)

The same approximation applies for the thermal conductivity κeff = κ+κturb and the mass
diffusivity De f f = D +D tur b . In Section 3.2 that investigates a turbulent flame, the LRF solver
takes the mean fields from the LES, so the turbulent viscosity in the LRF is set to the time-
averaged subgrid-scale viscosity µturb =µSGS. Similarly, κturb = κSGS and Dturb = DSGS.

2.1.5 Discretization

In PAPER-LRF and Section 3.2, the LRF equations are discretized using the discontinuous
Galerkin finite-element method (DG-FEM) with a local Lax-Friedrichs flux formulation [23].
This method is chosen because it is an established method in CFD and is robust for convection-
dominated problems [24]. DG-FEM was only recently adopted for a hybrid thermoacoustic
solver [67]. The discretization with linear weighting functions for all linearized variables is im-
plemented in the commercial software COMSOL Multiphysics. The mean fields are provided
either by OpenFOAM simulations (PAPER-LRF), or Ansys Fluent (Section 3.2). The deriva-
tives of the mean fields, such as ∂ui /∂x j , ∂Y CH4 /∂x j , and ∂h/∂x j , are computed by the LRF
solver in COMSOL Multiphysic internally.

The LRF solver computes the flame response in the frequency domain. Alternatively, the flame
response may be deduced from a step response or broadband excitation in the time domain [88,
105]. That will lower RAM requirements, but the computational time will significantly rise.

The eigenvalues are computed with an implicitly restarted Arnoldi algorithm [65], which is a
default algorithm in COMSOL Multiphysics. Parallelization of computations is achieved using
the direct parallel solver MUMPS [4].

2.1.6 Flame modeling of acoustically non-compact flames

This section compares the LRF, ZS, and E-FLAME models focusing on the motion of acous-
tically non-compact flames at high frequencies. The first model contains the linear flame dy-
namics inherited directly from the linearization of the non-linear governing equations. Whereas
the two latter models describe only the linear flame dynamics, so these models should first be
coupled with a linearized flow solver.

The ZS model was developed by Zellhuber and Schwing [114] for the local fluctuation of the
heat-release rate (volume-specific), reads as

q̇ ′ = q̇
ρ′

ρ
− ∂q̇

∂xi
∆′

i + q̇
ω̇′

q

ω̇q
, (2.30)

where ∆′
i is the acoustic displacement. The first term in Eqn. (2.30) is the density sensitivity.

Assuming the isentropic flow, the density fluctuations can be replaced by the pressure fluctua-
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tions:

p ′ = c2ρ′ −→ ρ′

ρ
= 1

γ

p ′

p
. (2.31)

Berger et al. [12, 13, 53, 95] qualify the density-sensitivity term as the flame compression (ex-
pansion). The second term in Eqn. (2.30) is the sensitivity to the acoustic flame displacement3.
This term is derived in the original study using a concept of a moving frame that is quite cum-
bersome. The third term in Eqn. (2.30) is the fluctuation of the mass-specific reaction rate ω̇′

q ,
which comes from chemistry. Eqn. (2.30) cannot be coupled directly to a linear flow solver,
since it includes the time integral of the fluctuating velocity field (∆′

i ). Taking time derivative
solves the problem and yields an equation for the temporal evolution of the fluctuating local
heat-release rate:

∂q̇ ′

∂t
= q̇

ρ

∂ρ′

∂t
− ∂q̇

∂xi
u′

i +
q̇

ω̇q

∂ω̇′
q

∂t
. (2.32)

Zellhuber and Schwing do not provide an explicit expression for ω′
q , so it is neglected, as it was

done in all previous applications of the ZS model:

∂q̇ ′

∂t
= q̇

ρ

∂ρ′

∂t
− ∂q̇

∂xi
u′

i . (2.33)

The above equation is used in the numerical realization of the ZS model in Section 3.2.

For a better comparison to the E-FLAME and LRF models, Eqn. (2.33) is rewritten using the
relation q̇ = ρω̇q , the linearized continuity equation with no mean flow ∂ρ′/∂t =−∂(ρu′

i )/∂xi ,
and then applying the chain rule:

∂q̇ ′

∂t
=−ω̇q

∂(ρu′
i )

∂xi
− ∂ρω̇q

∂xi
u′

i =−ω̇qρ
∂u′

i

∂xi
−ω̇q u′

i
∂ρ

∂xi
− ∂ρω̇q

∂xi
u′

i =−∂(q̇u′
i )

∂xi
−ω̇q u′

i
∂ρ

∂xi
. (2.34)

Another concept – the Eulerian Flame Acoustic Motion Equation (E-FLAME) – was suggested
by Méry [70, 71] to model the linear motion of a non-compact flame at high frequencies. Méry
assumes that convective effects are negligible at high frequencies, and the flame strictly follows
the acoustic velocity only. While moving, the flame does not produce a fluctuation of the global
heat-release rate, so the E-FLAME is a conservation equation for the linearized heat-release
rate:

∂q̇ ′

∂t
=−∂(q̇u′

i )

∂xi
. (2.35)

Using the divergence theorem, it can be shown that
∫
Ω q̇ ′dV = 0. Furthermore, as shown in [70],

Eqn. (2.35) always yields a positive RI, so the flame motion always increases the growth rate
of the acoustic energy. The E-FLAME model, as well as the ZS model, can be coupled to any
linearized flow solver without the mean flow. Comparing Eqns. (2.34) and (2.35), one can see
that the ZS and E-FLAME models differ by one term −u′

i ω̇q
(
∂ρ/∂xi

)
. Obviously, this term is

non-negligible since the mean density changes across the flame. Due to this term, the ZS model

3Strictly following the work of Zellhuber et al. [114], the term −
(
∂q̇(x)/∂xi

)
∆′

i is valid for the acoustic dis-
placement only, so the ZS model can be coupled only with a linearized flow solver neglecting the mean flow
(u = 0).
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2.2 Non-intrusive polynomial chaos expansion

does not always yield a positive RI in contrast to the E-FLAME model, as it will be shown later
in Section 3.2.3.

In the following, the LRF is compared to the ZS and E-FLAME models. A time-derivative of
the linearized heat-release rate from the LRF model (2.28) yields:

∂q̇ ′

∂t
= ω̇q

∂ρ′

∂t
+ρ

[
dω̇q

dYc

]tab

Y c

∂Y ′
c

∂t
. (2.36)

The conservation equation for the progress variable without mean flow and diffusion reads as

ρ
∂Y ′

c

∂t
+ρu′

i
∂Y c

∂xi
= ω̇cρ

′+ρ
[

dω̇c

dYc

]tab

Y c

Y ′
c . (2.37)

Inserting Eqn. (2.37) into Eqn. (2.36), applying the linearized continuity equation and the sub-

stitution
[

dω̇q

dYc

]tab

Y c

∂Y c
∂xi

= ∂ω̇q

∂xi
yields

∂q̇ ′

∂t
=− ω̇q

∂(ρu′
i )

∂xi
+ρ

[
dω̇q

dYc

]tab

Y c

(
−u′

i
∂Y c

∂xi
+ ω̇c

ρ′

ρ
+

[
dω̇c

dYc

]tab

Y c

Y ′
c

)

=− ∂(q̇u′
i )

∂xi
+

(
ω̇c

[
dω̇c

dYc

]tab

Y c

ρ′+ρ
[

dω̇q

dYc

]tab

Y c

[
dω̇c

dYc

]tab

Y c

Y ′
c

)
︸ ︷︷ ︸[

dω̇c
dYc

]tab

Y c
ẇ′

c

(2.38)

The first term in the above equation is the convection of the heat-release rate, and the remain-
ing part in the parenthesis is the source term that comes from the reaction-rate fluctuations of
the progress variable ẇ′

c . Assuming no fluctuations of the reaction rate (ẇ′
c = 0) leads to the

transport equation for the heat-release rate, i.e. to the pure flame motion4. So the LRF model
reproduces exactly the E-FLAME model. In his work, Méry postulated the transport equation
for the heat-release rate. This thesis derives this equation from the full set of linearized equa-
tions, shows all assumptions that should be made and encourages the application of E-FLAME
model if ẇ′

c cannot be modeled. Another significant result is the following: the above deriva-
tion suggests that the ZS model (with an arguable derivation using a moving frame) has a flaw.
The ZS model obviously does not reproduce the pure flame motion because of the additional
term −u′

i ω̇q
(
∂ρ/∂xi

)
, see Eqn. (2.34). Besides, if the tabulated approach was used to resolve

the fluctuation of the mass-specific heat-release rate ω̇′
q in Eqn. (2.32), then this would result in

Eqn. (2.38), but again with the superfluous term −u′
i ω̇q

(
∂ρ/∂xi

)
.

2.2 Non-intrusive polynomial chaos expansion

2.2.1 Uncertainty quantification

The NIPCE is extensively documented and implemented in several open-source software
packages [1, 5, 35]. This thesis briefly summarizes the methodology in the same way as in

4As shown in PAPER-LRF, the LRF model even captures the convected linear flame motion when the mean
flow effects are included in the modeling, e.g. convected flame wrinkles)
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Distribution Probability density function Polynomial Support range
Normal 1p

2π
e−ξ2

i /2 Hermite [−∞,∞]

Uniform 1/2 Legendre [−1,1]

Beta (1−ξi )α(1+ξi )β

2α+β+1B(α+1,β+1)
Jacobi [−1,1]

Exponential e−ξi Laguerre [0,∞]

Gamma
ξαi e−ξi

Γ(α+1) Generalized Laguerre [0,∞]

Table 2.1: Most common probability distribution types and corresponding optimal polynomial
types [1].

PAPER-UQ-STABILITY and PAPER-UQ-FTF.

The NIPCE approximates an output quantity y as a truncated sum of multidimensional orthog-
onal polynomials Ψi of a number N of uncertain input parameters ξ= [ξ1,ξ2, ...,ξN ]:

y ∼=
P−1∑
i=0

αiΨi (ξ), (2.39)

where αi are the weighting coefficients and P is the total number of expansion terms. The
uncertain input parameters ξ are uncorrelated and standardized. If the uncertain input param-
eters are correlated, then they should be transformed into fewer independent variables. The
multidimensional polynomials Ψi (ξ) are constructed using a tensor-product expansion of one-
dimensional polynomials ψ(ξ j ), i.e. the are are permutations of one-dimensional polynomials
in all parameter dimensions. In this case, the total number of expansion terms is constrained by
the one-dimensional polynomial-order bounds p j for the j -th uncertain input parameter:

P =
N∏

j=1
(p j +1). (2.40)

The above-mentioned tensor-product expansion supports anisotropy. Hence, the polynomial-
order bounds p j can be chosen independently for each uncertain parameter ξ j . PAPER-UQ-
STABILITY and PAPER-UQ-FTF considered the same polynomial-order bounds for all uncer-
tain input parameters, but it is not mandatory. For instance, starting with a linear polynomial
(p j = 1 for all uncertain parameters), the order of each input parameter can be increased it-
eratively one by one. This iterative process allows identifying the most dominant uncertain
parameters and increasing only the polynomial order of these parameters.

The choice of the one-dimensional polynomial ψ(ξ j ) depends on the probability distribution of
the uncertain input parameter ξ j . Each probability distribution type has its optimal polynomial
type, as listed in [1]. Each ξ j can follow its particular distribution. The most common one-
dimensional orthogonal polynomials are listed in Tab. 2.1. Once the distribution type and p j are
chosen for each ξ j , the corresponding one-dimensional polynomials ψ(ξ j ) can be constructed
up to the order p j ; then the multidimensional polynomials are the permutations of all one-
dimensional polynomials in the entire parameter space ξ:
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2.2 Non-intrusive polynomial chaos expansion

Ψ0,0,...,0 (ξ1,ξ2, ...,ξN ) =ψ0 (ξ1)ψ0 (ξ2) · ... ·ψ0 (ξN ) , (2.41)
Ψ1,0,...,0 (ξ1,ξ2, ...,ξN ) =ψ1 (ξ1)ψ0 (ξ2) · ... ·ψ0 (ξN ) , (2.42)
Ψ1,1,...,0 (ξ1,ξ2, ...,ξN ) =ψ1 (ξ1)ψ1 (ξ2) · ... ·ψ0 (ξN ) , (2.43)
and so on.

The polynomials Ψi are orthogonal. Hence, the weighting coefficients αi of the expansion,
defined in Equation (2.39), are computed using a spectral projection

αi =

∫
Ω

yΨiρ(ξ)dξ∫
Ω

Ψ2
i ρ(ξ)dξ

, (2.44)

where Ω is the uncertain input-parameter space. The joint probability density function ρ(ξ)
is computed from the one-dimensional probability density functions since the uncertain input
parameters are uncorrelated. The integral in the denominator of Eqn. (2.44) is determined an-
alytically. The integral in the nominator is computed by a Gauss quadrature, which requires
p j +1 quadrature points for an exact integration in each dimension. If we consider, for instance,
a three-dimensional polynomial with p j = 3, then (3+1)3 = 64 integration points are required
to determine all coefficients of the expansion. Note that the Gauss quadrature rules strictly de-
fine the integration points, and the points do not coincide for different polynomial orders. That
makes reuse of already computed points impossible if the polynomial order increases. A nested
quadrature rule can be used to bypass this limitation, but this topic is out of scope of this thesis.

The mean E(y) and the variance Var(y) of the output quantity are defined as

E(y) =
∫
Ω

yρ(ξ)dξ, (2.45)

Var(y) =
∫
Ω

(
y −E(y)

)2
ρ(ξ)dξ. (2.46)

Due to the orthogonality condition, the mean and the variance are equal to the first two polyno-
mial coefficients: E(y) =α0 and Var(y) =α1.

Besides the analytical moments of y , the NIPCE allows to compute conditional expectations of
the output quantity E

(
y |ξi ,ξ j , ...

)
, which are used in the next section for a sensitivity analysis.

Furthermore, a probability density function (PDF) of the output quantity can be computed using
a Monte Carlo simulation applied to the polynomial expansion.

For all UQ studies in PAPER-UQ-STABILITY and PAPER-UQ-FTF, the polynomial expan-
sions are constructed using a MATLAB tool, developed by Češnovar in his term project [20],
supervised by the present author.

2.2.2 Sensitivity analysis

Besides computing uncertainties and probabilities, the polynomial expansion of the output
quantity makes possible an (approximate) analytical computation of local sensitivities, i.e. the
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derivatives of the output quantity with respect to the input parameters:

∂y

∂ξi
=

P−1∑
j=0

α j
∂Ψ j (ξ)

∂ξi
. (2.47)

These derivatives can be evaluated, for instance, at the means of the input parameters to make
a global statement about the system sensitivity. Another way is to compute the mean and the
variation of the derivatives. The latter approach is used in PAPER-UQ-STABILITY.

It is also possible to perform a derivative-free sensitivity analysis using variance-based sensitiv-
ity indices, so-called Sobol indices[101]. This approach provides a global sensitivity analysis
and is followed in PAPER-UQ-FTF. Sobol indices are a very effective tool to determine the
most dominant uncertain parameters. Sobol indices Sξi and Sξiξ j ... quantify contributions from
each input parameter and parameter interactions to the output variance:

Si =
Var

(
E

(
y |ξi

))
Var

(
y
) , (2.48)

Si j =
Var

(
E

(
y |ξi ,ξ j

))
Var

(
y
) −Si −S j , (2.49)

Si j k = Var
(
E

(
y |ξi ,ξ j ,ξk

))
Var

(
y
) −Si −S j −Si j −Si k −S j k , (2.50)

where E
(
y |...) is the conditional expectation. Si is the individual contribution of parameter ξi ,

Si j and Si j k are the contributions of interactions between parameters (ξi , ξ j ) and (ξi , ξ j , ξk).
The sum of all Sobol indices yields unity:

N∑
i=1

Si +
N∑

i=1

N∑
j>i

Si j + ...+S1,2,...,N = 1. (2.51)

Finally, Fig. 2.2 shows an overview of all features of the NIPCE, presented in this chapter.
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2.2 Non-intrusive polynomial chaos expansion

Figure 2.2: Overview of all features of the NIPCE presented in this thesis and the corresponding
publications.
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3 Applications of the LRF

This chapter of the thesis is devoted to the applications of the LRF approach. Section 3.1 de-
scribes the outcome of PAPER-LRF, which introduces the LRF approach to the thermoacoustic
research community and investigates the stability and the flame response of a laminar flame in
a low-frequency regime. In this case, the flame is acoustically compact.

Next, Section 3.2 applies LRF to a reheat combustor with a turbulent auto-ignition flame in a
high-frequency regime when the flame is no more acoustically compact.

3.1 PAPER-LRF: Thermoacoustic analysis of a laminar pre-
mixed flame using a linearized reacting flow solver

Label: PAPER-LRF

Summary: This paper is the first work about the LRF that introduces the concept and validates
it on a simple example of an attached and lifted laminar premixed flame. LRF includes the flow–
flame–acoustics interaction by design since it linearizes the reaction term and does not require
an external FTF. The FTF computed with the LRF solver agrees with the reference FTF identi-
fied from the CFD simulation with a broadband excitation. To achieve this quantitative agree-
ment, it was crucial to retain first-order fluctuations of material properties, such as viscosity and
thermal diffusivity. At the same time, the straightforward linearization of the reaction term fully
suffices, and no sophisticated treatment of the strongly non-linear Arrhenius term is required.
The LRF solver also computes eigenmodes of the laminar flames, i.e. the mode growth-rate,
frequency, and shape. Results are compared to the established hybrid methods that couple FTFs
with a low-order thermoacoustic network-model or with a linearized Navier-Stokes equations
solver. All solvers capture the dominant thermoacoustic mode, but only the LRF resolves the
local flow-flame interaction, revealing e.g. the onset of the flame movement and the convective
propagation of distortions along the flame.

Contribution: The present author proposed and implemented the reaction linearization, then
performed all corresponding simulations. M. Meindl developed the framework of the DG-FEM
discretized Navier-Stokes equations. W. Polifke contributed a refinement of the LRF approach
and a critical revision. All authors contributed to the rebuttal to the reviewers’ comments; the
present author implemented the comments into the manuscript.

Status: Presented at 37th International Symposium on Combustion, published in Proceedings
of the Combustion Institute.

Review process: Peer-reviewed
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Reference: A. Avdonin, M. Meindl, and W. Polifke. "Thermoacoustic Analysis of a Laminar
Premixed Flame Using a Linearized Reacting Flow Solver." Proceedings of the Combustion
Institute 37 (2019): 5307-14. https://doi.org/10.1016/j.proci.2018.06.142.

Comments: M. Kühn contributed to further developing the LRF approach in his term
project [61], supervised by the present author. He showed how to incorporate equivalence-ratio
perturbations in the LRF. Fig. 3.1 shows the flame response to equivalence-ratio perturbations
imposed on the laminar flames, studied in PAPER-LRF. The LRF results ( ) are somewhat dif-
ferent from the reference transfer function ( ), especially at maxima of the transfer function,
but the LRF captures the correct trend.
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Figure 3.1: Frequency response of the attached (left) and lifted flame (right) to equivalence-
ratio fluctuations identified using the CFD simulation ( ) and computed using the
LRF solver ( ). Adopted from [61].

Recently, Meindl et al. [68] applied a two-step linearized reaction mechanism and showed the
LRF approach exhibits no spurious entropy generation in contrast to a hybrid method coupled
with a global FTF.

3.2 High-frequency response of a non-compact turbulent
auto-ignition flame

3.2.1 Numerical setup

The next application of the LRF approach is a generic reheat combustor with a rectangular
cross-section. The choice of a simple rectangular geometry suppresses a mode rotation and thus
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3.2 High-frequency response of a non-compact turbulent auto-ignition flame

facilitates the analysis. Furthermore, this geometry allows to apply periodic boundary condi-
tions in the spanwise direction, so the case can be seen as quasi two-dimensional and the linear
analysis can proceed in 2D. The geometry as well as the flame front are shown in Fig. 3.2.
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Figure 3.2: Top left: sketch of the reheat combustor with a snapshot of the flame front. Bottom
left: instantaneous heat-release rate at the midplane (bottom left). Top right: time-
averaged heat-release rate at the midplane. Bottom right: partition of the midplane
in the top and bottom halves by a horizontal line and in the left and right quarters
by a vertical line at x = 0.18 m, each zone is labeled by its relative contribution to
the global heat-release rate.

Large-eddy simulations are performed in Ansys Fluent 18. Tab. 3.1 summarizes boundary con-
ditions and material properties. The reheat combustor is fed by perfectly homogenous mixture
of methane and first-stage combustion products. Because of the high inlet temperature and op-
erating pressure, the mixture auto-ignites after τign ≈ 3.9 ms at position 0.21 m downstream of
the inlet, building a vertical flame front of length l f ⊥ ≈ 0.08 m in the core flow, stabilized by
the auto-ignition (vertical reaction zone in Fig. 3.2, top right). The area jump in the combustor
creates recirculation zones that stabilize the flame by shear-layers (horizontal reaction zones in
Fig. 3.2, top right). The shear-layer stabilized flame has a length l f ∥ ≈ 0.11 m. Fig. 3.2 (bottom
right) shows the heat-release-rate distribution over four zones at the midplane. The auto-ignition
stabilized region contributes at most to the global heat release (2·0.38%). The inlet is laminar, so
the turbulence is generated in the shear layer at the area jump and disrupts the flame, which can
be seen in Fig. 3.2 (bottom left and right) that compares the instantaneous and time-averaged
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Inlet temperature 1270.7 K
Inlet velocity 55 m/s
Composition at the inlet:
YCH4 0.01
YO2 0.145
YCO2 0.0555
YH2O 0.0455
YN2 0.744
Outlet pressure 18×105 Pa
Heat capacity at constant pressure 1300 J/(kgK)
Average molar mass of the mixture 28.16 kg/kmol
Heat capacity ratio 1.29
Speed of sound at the inlet 697 m/s
Dynamic viscosity 1.72×10−5 kg/(ms)
Thermal conductivity 4.54×10−2 W/(mK)
(Turbulent) Schmidt number 0.71
Simulation time-step 5×10−6 s

Table 3.1: Boundary conditions, material and computational parameters for the reheat-
combustor simulations.

flame positions. The walls are adiabatic with a no-slip boundary condition, except the top and
bottom walls downstream of the area jump. These walls are used to create acoustic standing
waves (see Section 3.2.2). In the case with no excitation, these walls and the outlet are made non-
reflecting to ensure a stable configuration. Ansys Fluent models non-reflecting inlet and outlet
boundaries using the characteristics of the Navier-Stokes equations [86], but there is no non-
reflecting option for the walls in the solver, so they are modeled as a non-reflecting inlet with
zero velocity. M. Bertsch extensively studied this approach and the application of impedance
boundary conditions in Ansys Fluent in his term paper [14], supervised by the present author.

The material properties cp , µ, D1, and κ (see Tab. 3.1) are kept constant to avoid additional
terms in the LRF coming from the linearization of these parameters.

The turbulence is modeled by the WALE model [77]. The turbulent auto-ignition flame is mod-
eled using the approach of Kulkarni et al. [62, 63]: the reaction is tabulated (see Section 2.1.3.3)
and the turbulence–chemistry interaction is taken into account by eight stochastic fields. The
chemical look-up table is generated using perfectly stirred reactors in CANTERA [43] with Gal-
way C3-41 mechanism [84]. The reactant mixture is perfectly premixed, and there are no heat
losses at the walls, so the reaction is fully controlled by a single parameter – the progress vari-
able Yc . The adiabatic flame temperature is 1712 K, which corresponds to the speed of sound
809 m/s. The tabulation process does not account for pressure fluctuations, so the acoustic pres-
sure affects the heat-release rate only via density fluctuations2, see Eqns. (2.24)–(2.26).

The mesh of the reheat combustor for the LES is shown in Fig. 3.3. It has 850000 cells in total.

1The diffusion D is computed using the dynamic viscosity and the Schmidt number.
2To include the direct effects of pressure fluctuations on the mass-specific reaction rates, one can follow the

approach suggested by Zellhuber et al. [113].
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3.2 High-frequency response of a non-compact turbulent auto-ignition flame

The fine inner zone (x > 0.09 m ∩ x < 0.24 m) consists of cubic cells with ∆h = 0.001 m. The
inlet and outlet zones have a two times coarser mesh with an additional stretching towards the
inlet.

All linearized simulations are performed in COMSOL 5.3. Exploiting periodicity in the span-
wise direction allows reducing the original 3D problem to a 2D plane problem. Fig. 3.4 shows
the 2D mesh in COMSOL that consists of 26900 square elements with ∆h = 0.001 m, so it
has the same resolution as the inner zone in the LES. The time-averaged flow fields (u, p, T ,
ρ, h, Y c , ωh , ωc , µSGS), required to run the LRF solver, are taken from the midplane of the
LES with no excitation. The flow fields are time-averaged for 0.035 s (7000 time steps), which
corresponds roughly to 8 flow-through times.

3.2.2 Excitation mechanism

The reheat combustor is excited transversely by acoustic waves at the top and bottom walls
downstream of the area jump. These waves travel in the transverse direction across the flame,
see Fig. 3.5. The incoming acoustic wave intensities Iin are defined in pressure units (Pa) in
Ansys Fluent:

Iin,top = Aexc cos
(
2π f t

)
, (3.1)

Iin,bottom = Aexc cos
(
2π f t +θ)

. (3.2)

Thereby, the excitation is superimposed with the non-reflecting boundary conditions originally
applied at the walls. The non-reflecting walls are required to avoid resonance of the excitation
with the transverse modes. At the resonance (or close to it), the heat-release fluctuations no
longer depend on the excitation, and the approach to assess the driving force fails. The excitation
is performed with the amplitude Aexc = 32×103 Pa either asymmetrically or symmetrically at
discrete frequencies from 1000 Hz to 5000 Hz creating a standing wave. This amplitude is
chosen to achieve a clear sinusoidal response of the heat-release rate with a high signal-to-
noise ratio. Only at 1000 Hz the excitation amplitude is increased to Aexc,1000 Hz = 64 ·103 Pa
for a better signal-to-noise ratio. The asymmetric or out-of-phase (θ = 180◦) excitation creates
a standing wave, similar to the first transverse T1 mode with a pressure node and a velocity
anti-node at the centerline, moving the flame up and down, see Fig. 3.5 (left) and Fig. 3.9. The
symmetric or in-phase (θ = 0◦) excitation forces a pressure anti-node and a velocity node at
the centerline (like the second transverse T2 mode), causing the flame pulsation, see Fig. 3.5
(right).

The transverse dimension of the flame (l f ⊥ ≈ 0.08 m) is comparable to the dimensions of the
generated standing waves, therefore the flame is acoustically non-compact to the transverse
excitation, and local consideration of the heat-release response is mandatory. This requirement
motivates the application of the LRF solver.

The pressure p̃ and local heat-release rate ˜̇q fields are sampled at a certain rate for each ex-
citation frequency, see Table 3.2. Storing the time samples for each grid point will exceed the
memory available, so only one characteristic plane parallel to the excitation (the midplane) is
observed. The linear fluctuations of the pressure p ′ and the heat-release rate q̇ ′ are extracted
using a Fast Fourier Transformation. Then the local and the global Rayleigh indices ri, RI are
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Applications of the LRF

Figure 3.3: 3D mesh of the reheat combustor for the LES.

Figure 3.4: 2D mesh of the reheat combustor for the LRF simulations.

30



3.2 High-frequency response of a non-compact turbulent auto-ignition flame

Figure 3.5: Asymmetric excitations move the flame up and down (left); symmetric excitations
cause the flame pulsation (right). Red and blue arrows show the onset of the flame
motion with the phase shift 180◦.

Frequency (Hz) Settling time (period) Sampling time (period) Samples rate (samples/period)
1000 20 5 20
1429 20 15 20
2000 20 10 20
2500 20 17 20
3030 20 10 22
3500 20 15 19
3922 20 19 17
4545 20 25 22
5000 20 30 20

Table 3.2: Temporal parameters for the excitation simulations.

calculated in the frequency domain:

RIΩ =
∫
Ω

ri dV =
∫
Ω

γ−1

γp

1

2
p̂ q̂∗dV =

∫
Ωi

γ−1

γp

1

2
‖p̂‖‖q̂‖cos(θ)dV , (3.3)

where p̂ and q̂ are the complex fluctuations of the pressure and the heat-release rate, ∗ is the
complex conjugate, ‖.‖ denotes the magnitude, and θ is the phase difference between p̂ and q̂ .
All quantities in Eqn. 3.3 are defined locally and are, in general, not constant. But in this case, γ
is constant and the mean pressure p is approximated by the constant outlet pressure 18 ·105 Pa.
The latter approximation is justified as long the same definition of the Rayleigh index is used
in both LES and linear computations. All linear computations are performed directly in the
frequency domain. The Rayleigh index is normalized with the power of the incoming acoustic
waves Pin to compare results obtained with different excitation amplitudes:

RInorm = RI

Pin,top +Pin,bottom
, (3.4)
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where

Pin,top = Pin,bottom = 1

T

∫
t

[
p ′u′

i ni
]

top ltopd t = 1

T

∫
t

Iin,top

2

Iin,top

2ρtopc top
ltopd t = A2

excltop

8ρtopc top
(3.5)

with ltop = 0.15 m, ρtopc top ≈ 2900 kg/(m2s); n is a unit normal vector to the surface.

3.2.3 Flame response

LES results

Fig. 3.6 shows the fluctuating pressure field that is forced by the excitation in the LES. Under the
asymmetric excitation at frequencies lower than 4544 Hz, the pressure field is similar to the T1
mode with a node at the centerline. At higher frequencies, the excited pressure field looks like
the T1 mode mixed with the first longitudinal mode. Under the symmetric excitation with the
increasing frequency, the pressure field resembles the T2 mode mixed with the first longitudinal
mode. Besides the similarity with acoustic eigenmodes, the pressure field shows peaks in the
shear layer zones, that represent the vortex cores. The significance of these vortices decreases
with increasing frequency for both excitation types.

Fig. 3.7 shows a more or less sinusoidal response of the heat-release rate to the asymmetric (left)
and symmetric (right) excitations in the LES. The asymmetric excitation produces out-of-phase
heat-release-rate fluctuations in the top and bottom halves of the combustor that cancel each
other out and result in no net fluctuation over the entire combustor. In contrast, the symmetric
excitation yields a non-zero global heat-release-rate fluctuation Q̇ ′ 6= 0.

Fig. 3.8 shows the RI computed for the top and bottom halves of the combustor (◦). It is re-
markable that the asymmetric excitation with Q̇ ′ = 0 yields a positive RI, but the symmetric
excitation with Q̇ ′ 6= 0 yields a negative RI for frequencies between 2000 Hz and 4000 Hz. That
means the symmetric excitation stabilizes the flame in that frequency range despite the non-
zero global fluctuation in the heat-release rate. A possible reason for this behavior might be the
T1 mode. According to a Helmholtz solver with a passive flame3, the T1 mode occurs around
3000 Hz for a burner configuration with the reflecting walls, see Fig. 3.9. In the LES, the top
and bottom walls downstream of the area jump are non-reflecting, so the T1 mode should not
be present. Nevertheless, the walls might still be weakly reflecting, so a weak T1 mode might
occur and disturb the symmetric excitation decreasing the RI. The occurrence of the T1 mode
would also explain the maximum in RI around 3500 Hz for the asymmetric excitation.

Fig. 3.7 shows the RI, computed in the quarters of the midplane, previously defined in Fig. 3.3
(bottom right). This zonal approach separates the shear-layer (×) and auto-ignition (�) sta-
bilized regions. Surprisingly, both flame regions contribute almost equally to the global RI4,
although the auto-ignition region shows a comparatively higher mean heat-release rate, see
Fig. 3.3 (bottom right).

3The Helmholtz solver with the passive flame has no source terms related to the heat-release rate. Hence,
the flame affects the acoustics passively only through the change in the mean fields across the flame, see for
instance [79].

4If the chemistry tabulation would include pressure fluctuations, the situation could change.
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3.2 High-frequency response of a non-compact turbulent auto-ignition flame

Asymmetric excitation Symmetric excitation

1000 Hz

1429 Hz

2000 Hz

2500 Hz

3030 Hz

3500 Hz

3922 Hz

4545 Hz

5000 Hz

Figure 3.6: Pressure fluctuations extracted from the midplane of the excited LES.
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Figure 3.7: Response of the heat-release rate to the asymmetric (left) and symmetric (right)
excitations in the LES. Black and gray lines show the heat-release rate integrated
over the top and bottom halves of the combustor.
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Figure 3.8: Normalized Rayleigh index computed for different zones in LES: the top and bot-
tom halves (◦), the left (×) and right quarters (�).

Figure 3.9: The real part of the pressure fluctuations (left) and the imaginary part of the trans-
verse velocity fluctuations (right) of the T1 mode at 3029 Hz. Positive values are
colored in red, negative values in blue. The T1 mode is computed in COMSOL
using a Helmholtz solver with a passive flame for a burner configuration with re-
flecting walls.
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Figure 3.10: Normalized Rayleigh index in the top and bottom halves of the combustor mid-
plane computed in the LES (◦) and with the LRF neglecting convective effects
(+).
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The local distribution of the RI is shown in Fig. 3.11. The convected flame wrinkles in the
shear-layers lead to an alteration of the RI along the flame sheet with a characteristic convective
wavelength λc ≈U0/ fexc .

LRF results

Unfortunately, the straightforward application of the LRF model to the reheat combustor at high
frequencies fails. The global RI for both excitations is positive and more than three orders of
magnitude higher than in the LES. If the convective effects are neglected (u = 0), then the mag-
nitude of the RI becomes comparable to the LES results, but the trend is completely wrong,
see Fig. 3.10. First of all, the current formulation of the LRF has a problem in the source term,
amplified by the convection. A possible reason for that may be the application of the deriva-
tives [dω̇c /dYc ]tab and

[
dω̇q /dYc

]tab from the look-up table, see Eqns. (2.27)–(2.28). The LRF
approach has been validated in paper PAPER-LRF with the Arrhenius approach, but the lin-
earized tabulation has never been applied. Hence, simpler test cases have to be examined to find
out, where the LRF solver reaches its limits with the linearized tabulation. Maybe, a volume-
integration or some kind of filtering can be applied to the problematic part of the combustion
model in order to create a derivative-free formulation. Another reason for the LRF failure can
lie in the nature of the flame under investigation. PAPER-LRF investigated a laminar flame that
does not move without any excitation. However in the case of this reheat combustor, the flame
is turbulent, i.e. the time-averaged fields do not match with the instantaneous fields and cer-
tainly do not fulfill the stationary Navier-Stokes equations. The time-averaged flame front is
partially smeared out, so it is not clear if the linear flame dynamics can be captured well using
the averaged fields. To answer this question, the LRF approach should be applied to different
turbulent flame types. Such a deep additional investigation is not possible within this research.
It requires one or several additional research projects. Instead, the mass-specific reaction term
in the equation for the progress variable is set to zero (ẇ′

c = 0), and the convection is neglected
(u = 0), resulting in the E-FLAME model, see Section 2.1.6. The remaining part of this section
is dedicated to the simplified LRF solver with the E-FLAME model (LRFEF ).

Fig. 3.12 shows the excited pressure fields computed with the LRFEF . Since the mean flow is
neglected, these pressure fields have a pure acoustic nature and are not disturbed by shear layers,
as in the LES (see Fig. 3.6). Except for these differences in shear layers, the LES and LRFEF

results compare well.

Fig. 3.13 (top row) shows the fluctuations of the heat-release rate computed with the LRFEF

solver at 2500 Hz5. The change from a negative (blue color) to a positive (red color) value
across the flame indicates the onset of the flame motion. The mean flow is neglected, so the
flame is displaced by the acoustic velocity. The flame moves up and down for the asymmetric
excitation and pulsates for the symmetric excitation. At the bottom of the same figure there
is a local distribution of the RI. Although the RI changes across the flame, the integrated RI
remains positive, as shown later in this section. Unfortunately, a direct comparison to the local
RI distribution in the LES is difficult due to the convected flame wrinkles that are present in the
LES (see Fig. 3.11). Hence, the global RI is inspected next.

A quantitative comparison of the RI between the LES and the simplified LRF solver with the

5Although the fluctuation of the heat-release rate and the distribution of the RI are shown only for one frequency,
the character of the flame motion remains the same for all frequencies.
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Asymmetric excitation Symmetric excitation
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Asymmetric excitation Symmetric excitation

3500 Hz

3922 Hz

4545 Hz

5000 Hz

Figure 3.11: Local Rayleigh-index in the LES. Positive values are colored in red, negative val-
ues in blue.
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Asymmetric excitation Symmetric excitation

1000 Hz

1429 Hz

2000 Hz

2500 Hz

3030 Hz

3500 Hz

3922 Hz

4545 Hz

5000 Hz

Figure 3.12: Pressure fluctuations computed with the LRFEF .
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Asymmetric excitation Symmetric excitation

Figure 3.13: Real part of the fluctuating heat-release rate at the top and the RI distribution at
the bottom computed with the LRFEF at 2500 Hz. Positive values are colored in
red, negative values in blue. Black arrows show the corresponding flame motion.
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Figure 3.14: Normalized Rayleigh index in the top and bottom halves of the combustor mid-
plane computed in the LES (◦), with the LRFEF (+), LRFZS (O), and LRFEF ,u

with the mean flow (·).

E-FLAME (LRFEF ) and ZS (LRFZS) models is shown in Fig. 3.14. The LRFEF (+) always
yields a positive RI, as mentioned in Section 2.1.6. It hits the LES results at frequencies below
2000 Hz and above 4500 Hz. Hence, the assumption of no fluctuation of the mass-specific
reaction rate (ẇ′

c = 0) is appropriate in this frequency range. Nevertheless, the LRFEF can not
reproduce the peaks in RI around 3500 Hz (asymmetric excitation) and 3000 Hz (symmetric
excitations). This behavior might be due to a weak T1 mode present in the LES, but nearly
perfectly damped in the linear solver. Another reason might be a lack of a proper model for ẇ′

c .
It appears that the LRFZS (O) outperforms the LRFEF at some frequencies for the symmetric
excitation, but overall it is inferior to the LRFEF . Furthermore, the LRFZS shows a negative RI
for the asymmetric excitation at high frequencies, which is completely wrong. Fig. 3.14 shows
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3.2 High-frequency response of a non-compact turbulent auto-ignition flame

an additional data set that belongs to the LRFEF ,u that accounts for the convective effects (·).
Strictly speaking, the E-FLAME is not valid with non-zero mean flow. However, this artificial
model can show at which frequencies the velocity fluctuations lose their convective properties
and become dominated solely by acoustics, so the mean flow can be safely neglected. This
happens at frequencies higher than 2500 Hz when both LRFEF and LRFEF ,u yield the same
results.

A further investigation of the LRFEF shows that the assumption of an isentropic flow (neglecting
viscosity and heat conduction) does not change the resulting RI. The viscous energy dissipation
and the heat transfer are negligible at high frequencies, in contrast to the low-frequency regime
(see PAPER-LRF). Hence, the linearized flow equations can be simplified to the Helmholtz
equation6 that drastically reduces the degrees of freedom:

1

γp

∂2p ′

∂t 2
− ∂

∂xi

(
1

ρ

∂p ′

∂xi

)
= γ−1

γp

∂ω̇′
q

∂t
. (3.6)

3.2.4 Conclusion and Outlook

Three linear flame models are applied to study the high-frequency flame response in a generic
reheat combustor: the LRF solver, the linear flow solver with the SZ and E-FLAME models.
The auto-ignition flame is transversely excited in the LES (reference data) and in the linear sim-
ulations. The energy, supplied to the system by the excitation, is estimated using the Rayleigh
index. The LRF results do not agree at all with the LES results. The current formulation of the
LRF has a problem in the source term for the progress variable, more precisely in the derivative
[dω̇c /dYc ]tab and

[
dω̇q /dYc

]tab. The LRF approach has been validated in paper PAPER-LRF
with the Arrhenius approach, but the linearized tabulation has never been applied before, espe-
cially for d̈ifficultc̈ases such as turbulent auto-ignition flames. Some strategies to fix the problem
will be provided as outlook in the end of this section.

Considering the SZ and E-FLAME models, both models show the correct trend but fit the LES
results only partially. The E-FLAME shows somewhat better results than the SZ model. Even
though the straightforward application of the LRF to a high-frequency response of the auto-
ignition flame failed, a significant result is achieved. The E-FLAME is analytically verified
within the linearized reactive flow concept, giving more credit to the E-FLAME model than to
the SZ model. The latter model has an arguable derivation using a moving frame. Therefore
it is suggested to use the E-FLAME to obtain the first stability estimates, until the LRF is not
adjusted to handle auto-ignition turbulent flames in the high-frequency regime. For more precise
stability analysis, the large-eddy simulations are still required.

To adopt the LRF for high the auto-ignition flames at high-frequencies, a deep revision
of the method is required. The problem is identified down to derivatives [dω̇c /dYc ]tab and[
dω̇q /dYc

]tab. Maybe, a volume-integration or some kind of filtering can be applied in order
to create a derivative-free formulation. Another reason for the LRF failure can lie in the na-
ture of the auto-ignition flame: the linearization might simply not work for this type of flames.
To prove this hypothesis a more academic setup should be investigated. Furthermore, the LRF

6The same simplification applies to the LRFZS as well.
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approach should be applied to turbulent aerodynamically-stabilized flames. One can start with
the BRS burner [60, 105]. Recently, the present author accurately predicted the low-frequency
flame dynamics for this burner using the tabulated chemistry approach [8]. The high-frequency
instabilities of a swirl-Stabilized flame can be investigated in the test rig of Schwing and Sattel-
mayer [96].

There is also one important technical aspect of the LRF-solver that has to be improved in the fu-
ture. The LRF solver has been applied only to quasi-two-dimensional problems because switch-
ing to 3D requires more computational resources (computation time and RAM). Hence to study
3D problems, an appropriate iterative solver with low RAM requirements has to be found. Gar-
gouri has done preliminary work in this direction in his Bachelor’s thesis [39], supervised by
the present author.
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4 Applications of the NIPCE

4.1 PAPER-UQ-STABILITY: Uncertainty quantification and
sensitivity analysis of thermoacoustic stability with non-
intrusive polynomial chaos expansion

Label: PAPER-UQ-STABILITY

Summary: This paper successfully demonstrates the application of the NIPCE to UQ and sen-
sitivity analysis in thermoacoustics. It shows how to propagate uncertainties in the operating
conditions to the growth rate of the most dominant mode. The NIPCE is validated against a
Monte Carlo simulation. The NIPCE is able to predict the analytical moments of the growth-rate
uncertainty and construct the probability density function of the growth rate. The knowledge of
the PDF allows computing probabilities, for instance, the probability of instability. Moreover,
the sensitivity analysis is performed using a derivative-based approach to identify the most
dominant uncertain parameters.

The other important aspect, shown in this paper, is the NIPCE applicability to expensive CFD
computations. The NIPCE is fully capable of solving such problems in reasonable time, but
only if the number of uncertain parameters remains small.

Contribution: The present author introduced the concept of the paper and performed all corre-
sponding computations. W. Polifke and C. Silva refined the concept of the paper and contributed
a critical revision. S. Jeansch contributed the setup for the CFD simulations and the thermoa-
coustic network model. M. Češnovar developed a MATLAB tool to compute the NIPCE. The
present author and W. Polifke wrote the rebuttal to the reviewers’ comments and implemented
the comments into the manuscript.

Status: Published in Combustion and Flame journal.

Review process: Peer-reviewed

Reference: A. Avdonin, S. Jaensch, C. F. Silva, M. Češnovar, and W. Polifke. "Un-
certainty Quantification and Sensitivity Analysis of Thermoacoustic Stability with Non-
Intrusive Polynomial Chaos Expansion." Combustion and Flame 189 (March 2018): 300-310.
https://doi.org/10.1016/j.combustflame.2017.11.001.
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4.2 PAPER-UQ-FTF: Quantification of the impact of un-
certainties in operating conditions on the flame transfer
function with non-intrusive polynomial chaos expansion

Label: PAPER-UQ-FTF

Summary: This paper continues the study, performed in PAPER-UQ-STABILITY, and investi-
gates a more complex case with several correlated outputs. The NIPCE propagates the uncer-
tainties from the operating conditions to the flame transfer function that is identified in terms
of the finite impulse response and consists of a set of correlated coefficients. PAPER-UQ-FTF
neglects the uncertainties in the FIR coming from the identification procedure. How to account
both, uncertainties from the operating conditions and the identification process, should be ad-
dressed in future studies.

Besides the UQ, this paper introduces a derivative-free sensitivity analysis using Sobol indices
that suits better to identify the most dominant uncertain parameters than the derivative-based
method from PAPER-UQ-STABILITY.
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5 Contextualization and discussion of
publications

Local modeling of the flame response

PAPER-LRF suggests the linearized reactive flow approach for the local flame modeling. This
approach inherits the linear flame dynamics by design and creates a linear relationship be-
tween multiple plausible inputs and multiple outputs. The LRF shows a massive potential on
an example of a laminar flame at low frequencies: it captures the convective disturbance of
the flame front, solves for eigenmodes, computes the flame response to perturbations of the
velocity or equivalence ratio. The current state of the art in linear stability analysis at low fre-
quencies is applying low-order thermoacoustic network models [31, 33, 88]. This method is
fast but not very accurate. To increase the modeling accuracy, it is recommended to use the lin-
earized Navier-Stokes equations [67]. Anyway, both methods require coupling with the external
global FTF, measured in an experiment or identified from a CFD simulation with a broadband
excitation [41, 88, 105]. Running an unsteady CFD simulation for the FTF identification is com-
putationally expensive. When the validation of the LRF succeeds for industry-relevant flames
such as turbulent propagating/diffusion flames, the LRF might be applied for the linear ther-
moacoustic stability analysis at low frequencies, skipping the step of the FTF identification.
That will make the linear stability analysis drastically faster. Now, the application of the LRF is
still limited to fundamental studies of laminar flames, e.g. entropy generation [68].

At high frequencies, there is no established technique to predict linear thermoacoustic stability
behavior. The brute-force approach is a CFD simulation of the combustion system, e. g. LES
that directly resolves the flow field oscillations. However, LES is so computationally expensive
that any parametric study is unfeasible. Another way is applying a linear solver such as the
Helmholtz solver coupled with a local flame transfer function. The Helmholtz solver requires
the mean fields, so a single LES is still needed. The most straightforward local flame transfer
function is a n−τmodel with azimuthal reference velocity [40]. This approach is not convenient
since there is no analytical/empirical way to estimate the parameters n and τ. Hence, they
have to be approximated from the LES of a self-excited oscillation, and, most probably, they
depend on the type of the eigenmode and the load point of the combustor. There are two other
local modeling approaches for high frequencies: the Zellhuber-Schwing model [12, 13, 53, 96,
114] and the Eulerian Flame Acoustic Motion Equation [70]. Both models capture the linear
flame motion, but they do not take into account fluctuations in chemical consumption rates.
This drawback motivates the application of the LRF approach, since it inherits the complete
linearized flame dynamics by design. Unfortunately, the straightforward application of the LRF,
as it is, to a complex problem – transverse oscillations of a turbulent auto-ignition flame –
failed. The results did not agree at all with the CFD results. Nevertheless, a significant result
is achieved: the E-FLAME is analytically verified within the linearized reactive flow concept.
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Contextualization and discussion of publications

This work encourages the application of the E-FLAME to model the local flame response at
high frequencies, as long as the source term of the progress variable in the LRF is not adjusted
to handle auto-ignition turbulent flames in the high-frequency regime. A Helmholtz solver with
the E-FLAME can make the first stability estimates, but large-eddy simulations are still required
for more precise statements.

Uncertainty quantification and sensitivity analysis of the flame response

There are two publications, PAPER-UQ-STABILITY and PAPER-UQ-FTF, that cover the ap-
plication of the NIPCE for UQ and sensitivity analysis of flames in a low-frequency regime.
The main focus of both publications is schematically shown in a typical workflow of a low-
frequency thermoacoustic analysis, see Fig. 5.1. PAPER-UQ-STABILITY answers the general

Figure 5.1: Applications of the NIPCE on an example of a typical workflow of a low-frequency
thermoacoustic analysis.

question how to propagate uncertainties from operating conditions to the final quantity of inter-
est (the growth rate of the dominant thermoacoustic mode) and introduces the basics of sensi-
tivity analysis. Whereas the second paper solves more challenging tasks: it considers multiple
correlated outputs and performs sensitivity analysis using Sobol indices on an example of uncer-
tainty in the flame transfer function. Finally, both papers indicate that instead of doing a single
CFD simulation and waiving the UQ, it is worth doing several CFD simulations and estimating
the uncertainty of a quantity of interest using the NIPCE. Due to time constraints, uncertainty
quantification and sensitivity analysis are not performed for high-frequency instabilities in this
thesis. When switching to high frequencies, the proposed NIPCE workflow remains the same,
so there will be no novelty therein.

The most common methods for UQ in thermoacoustics, besides the Monte Carlo simulation, are
the active subspace [9, 25, 44] and adjoint method [69, 100]. The active subspace reduces the
number of uncertain parameters to few active variables. Then the combustor is approximated by
a low-order surrogate model. The adjoint method uses direct and adjoint eigenvectors to con-
struct a truncated Taylor expansion of the combustor. NIPCE is not a competitor to the methods
mentioned above but rather a complementary tool to solve problems where neither active sub-
space nor adjoints are feasible. For instance, if access to solver state-matrices is impossible,
then the adjoint method cannot be employed. On the contrary, NIPCE can easily be applied
here, since it treats the solver as a black box. If a single system evaluation is so expensive
that the random sampling required to identify the active subspace is impractical, then NIPCE
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with Gauss quadrature still solves the problem since the method requires only a few quadra-
ture points. Just keep in mind the main constraint of the method – the number of uncertain
parameters should be low (less than five).

There might be one competitor to the NIPCE in the future – the Gaussian process introduced re-
cently to the thermoacoustic community [46–48] that also treats the system under investigation
as a black box. It uses a machine learning technique to predict the output, so the samples are
chosen intelligently, probably resulting in a smaller sample number to get converged statistics
than using the NIPCE. Furthermore, the Gaussian process exploits correlations between low-
and high-accuracy data to enhance its learning efficiency [49]. However, the Gaussian process
has not been applied to truly computationally expensive cases, where a Monte Carlo validation
is no longer possible. When such studies appear, it will be clear which method is superior, the
NIPCE or the Gaussian process.

Besides the NIPCE with all its benefits, this thesis reveals a very useful method for sensitivity
analysis – the Sobol indices that represent a formal way to quantify the contribution of each
uncertain input parameter to the output uncertainty. It is a promising approach that has never
been used before in thermoacoustics and will find acknowledgment in the coming years. For
instance, the Sobol indices can be adopted for the Gaussian process.
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Reproduction of Papers

This chapter reproduces the papers PAPER-LRF, PAPER-UQ-STABILITY, and PAPER-UQ-
FTF.

During the work on the project COOREFLEX-Turbo 2.1.2c, the present author extended the
combustion modeling approach of Kulkarni et al. [62–64] to a premixed, aerodynamically-
stabilized flame and validated its flame dynamics against the experimental results. The results
were presented by W. Polifke at ASME Turbo Expo 2020 Turbomachinery Technical Confer-
ence and Exposition and published in proceedings of ASME [7] and in The Journal of Engi-
neering for Gas Turbines and Power [8]. Some of the project time was also spent investigating
Basis Pursuit Denoising (BPDN) – a regression technique that minimizes the number of the
input parameters. Initially, it was intended to use BPDN to identify the local flame response
at high frequencies, but the time constraints did not allow pursuing this approach. Therefore,
BPDN is out of the scope of this thesis. Nevertheless, a preliminary study of the laminar flame
response to low-frequency excitations was performed by the present author and published in
Report COOREFLEX-Turbo 2.1.2c [6]. The latter two publications have only limited relevance
for the topic of the present thesis, so they are not reproduced in the following.
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Abstract 

In this paper, the dynamics and thermoacoustic stability of a laminar premixed flame are analyzed using a 
linearized reactive flow (LRF) solver. The LRF solver is based on linearized compressible Navier-Stokes and 

reacting species transport equations and thereby includes a model for the dynamic response of the flame to 

flow perturbations in an inherent manner. The equations are discretized using the discontinuous Galerkin 

finite element method. By way of example, thermoacoustic characteristics of attached and lifted laminar 
premixed flames are investigated. First, the respective flame transfer functions (FTFs) are computed in the 
frequency domain with the LRF solver. The results are in agreement with reference FTFs identified from 

CFD time-series. Secondly, the LRF solver is employed for thermoacoustic stability analysis, i.e. computation 

of shape, frequency, and growth rate of eigenmodes. Results are compared to established hybrid methods 
that couple FTFs with a low-order thermoacoustic network-model or a linearized Navier-Stokes equations 
solver. All solvers capture the dominant thermoacoustic mode, but only the LRF resolves local flow-flame 
interaction, revealing e.g. the onset of the flame movement and the propagation of distortions along the 
flame. 
© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

Keywords: Thermoacoustics; Combustion dynamics; Discontinuous Galerkin finite element method; Linearized reacting 
flow; Linearized Arrhenius equation 

1. Introduction 

Modern, low-emission gas turbines are prone to 

thermoacoustic instabilities, which originate from a 
feedback between unsteady heat release and acous- 
tics. It is essential to study thermoacoustic coupling 

∗ Corresponding author. 
E-mail address: avdonin@tfd.mw.tum.de 

(A. Avdonin). 

mechanisms and to develop reliable tools for ther- 
moacoustic analysis. 

Prediction of thermoacoustic instabilities by 
means of high-fidelity simulations of the com- 
pressible reacting flow requires very considerable 
computational resources. Large-Eddy Simulation 

(LES) of a gas turbine combustor, say, may be 
unaffordable for industrial purposes. To reduce 
the problem size, a variety of modeling assump- 
tions may be invoked to formulate hybrid ap- 
proaches , which typically couple a model for the 

https://doi.org/10.1016/j.proci.2018.06.142 
1540-7489 © 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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propagation and dissipation of acoustic waves with 

a flame transfer function (FTF). The FTF describes 
a flow-flame interaction and relates fluctuations of 
the global heat release rate to velocity fluctuations 
at a reference point upstream of the flame. Flame 
transfer functions can be derived analytically or ob- 
tained from experiments or CFD simulations, see 
for instance [1–3] . 

Thermoacoustic network-models (TNMs) repre- 
sent a very popular, low-order hybrid approach. 
A TNM represents a combustor as a conjunc- 
tion of elements, such as ducts and area jumps. 
Acoustic waves propagate through the resulting 
network of elements. The heat release fluctuations 
are modeled using an FTF and produce acoustic 
perturbations according to the linearized Rankine–
Hugoniot jump conditions [4] . 

Due to increasing computing power and im- 
proved numerical algorithms, it has become possi- 
ble to resolve the acoustic field in a combustor in 

two or three dimensions with the Helmholtz [5] , the 
linearized Euler [6] or the linearized Navier–Stokes 
equations (LNSE) [7,8] . The spatial resolution of 
the mean and fluctuating flow field variables allows 
to investigate complex geometries and can yield an 

accurate prediction of dissipative effects. These ap- 
proaches should also be categorized as hybrid mod- 
els, as the flow-flame interaction is represented by 
an FTF. 

Despite increased efforts to scrutinize non- 
linear aspects of combustion dynamics [9] , linear 
analysis remains extremely useful and important 
for fundamental studies of flow-flame-interaction 

mechanisms, for sensitivity or uncertainty analy- 
sis, for optimization, and for industrial application. 
This motivates the quest for more efficient, more 
accurate and more widely applicable methods for 
linear thermoacoustic stability analysis. 

In this paper, we suggest an approach with an 

inherent description of the flame dynamics. Specif- 
ically, we analytically linearize the Navier-Stokes 
and reacting species transport equations to obtain 

linearized reactive flow (LRF) equations. With such 

a monolithic formulation, the linear flame dynam- 
ics is by design inherited from the governing equa- 
tions; an external FTF is not required. The LRF 

equations are discretized using the discontinuous 
Galerkin finite element method. The LRF solver 
requires a CFD simulation to obtain mean fields, 
but no additional unsteady CFD simulations are 
needed to identify the FTF. 

The works by van Kampen et al. [10] on the 
response of a premixed flame to fluctuations of 
equivalence ratio and by Blanchard et al. [11] on the 
effects of flow disturbances on the flame (and vice 
versa) may be regarded as precursors of the LRF 

approach. Those studies employ a numerical lin- 
earization of the governing equations and compute 
the flame transfer functions by simulating the step 

response in the time domain. In contrast, the LRF 

equations are derived analytically and the solver 
operates in the frequency domain, which allows to 

compute the FTF as well as thermoacoustic eigen- 
modes with high accuracy and efficiency. 

The present paper introduces the LRF solver 
and verifies results by comparison with established 

hybrid approaches. By way of example, we study 
the flame dynamics and the dominant thermoa- 
coustic eigenmodes of attached as well as lifted, 
compact, laminar, premixed flames. The full poten- 
tial of the method - e.g. for non-compact flames - 
shall be exploited in further studies. 

The paper is structured as follows: in the next 
section, we introduce the LRF and the two hy- 
brid approaches, TNM and LNSE. Afterwards, we 
compare the FTFs computed by the LRF solver 
and deduced from CFD simulations, respectively, 
for two flame configurations. Then we compute 
and compare the dominant thermoacoustic eigen- 
modes. The paper closes with conclusions and an 

outlook for further investigations. 

2. Linearized reacting flow 

2.1. Nonlinear governing equations 

Both the OpenFOAM solver , which computes 
the mean flow fields and the reference FTF, and the 
LRF solver are based on the nonlinear reactive flow 

equations: 
∂ρ

∂t 
+ 

∂ρu j 
∂x j 

= 0 , (1) 

∂ρu i 
∂t 

+ 

∂ρu i u j 
∂x j 

= − ∂ p 
∂x i 

+ 

∂τi j 

∂x j 
, (2) 

∂ 

∂t 
( ρh − p ) + 

∂ρu j h 
∂x j 

= 

∂ 

∂x j 

(
α

∂h 
∂x j 

)
+ ˙ ω T , (3) 

∂ρY k 

∂t 
+ 

∂ρu j Y k 

∂x j 
= 

∂ 

∂x j 

(
D 

∂Y k 

∂x j 

)
+ ˙ ω i . (4) 

Variables ρ, u i , and Y k denote density, velocity 
component in the i -direction, and mass fraction of 
the species k . The viscous term is neglected in the 
conservation equation (3) for the sensible enthalpy 
h . The heat flux is approximated by −α

(
∂ h/∂ x j 

)
in- 

stead of Fourier’s law 

1 , which is commonly done 
when the energy equation is written in terms of 
the sensible enthalpy. The sensible enthalpy for the 
species k is calculated from JANAF polynomials 
with coefficients a j : 

h k (T ) = 

∫ T 

T re f 

c p,k d ˜ T = R k 

5 ∑ 

j=1 

a j 
T 

j − T 

j 
ref 

j 
, (5) 

1 In this study we follow the OpenFOAM definitions of 
the thermal and mass diffusivities, α and D , with SI units 
kg/(ms). 
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with the specific gas constant R k for the species k . 
The sensible enthalpy of the mixture is computed 

using the species mass fractions: h = 

∑ 

k h k Y k . The 
viscous stress tensor τ ij reads: 

τi j = μ

(
∂u i 
∂x j 

+ 

∂u j 
∂x i 

)
− 2 

3 
μ

∂u l 
∂x l 

δi j , (6) 

where δij is the Kronecker delta. The pressure p , the 
density ρ, and the temperature T are linked by the 
ideal gas law: p = ρRT . The dynamic viscosity μ is 
given by Sutherland’s law: μ = A s T 

1 / 2 / ( 1 + T S /T ) 
with A s = 1 . 67212 · 10 −6 kg / (msK 

1 / 2 ) and T S = 

170 . 672 K . To deter mine ther mal diffusivity α a 
constant Prandtl number Pr = μ/α = 0 . 71 is as- 
sumed. Similarly, with unity Lewis number for all 
species, Schmidt number Sc and mass diffusivity D 

2 

obey Sc = μ/D = 0 . 71 . 
We model the methane-air combustion using 

a one-step Westbrook and Dryer [12] chemistry 
mechanism with a progress rate Q : 

Q = Aρa + b Y 

a 
O 2 

Y 

b 
CH 4 

W 

a 
O 2 

W 

b 
CH 4 

exp 

(
− E a 

T R univ 

)
, (7) 

with A = 6 . 7 × 10 12 cgs units, E a = 48 . 4 kcal / mol , 
R univ = 1 . 987 × 10 3 kcal / (molK) , a = 1 . 3 and b = 

0 . 2 . 
The methane consumption rate is ˙ ω CH 4 = 

−W CH 4 Q and the heat release rate is ˙ ω T = �h ◦Q , 
where W CH 4 is the molar mass of methane and �h °
is the standard enthalpy of reaction. 

2.2. Linearized governing equations 

We split field variables into time-averaged and 

fluctuating parts, indicated by the overline and the 
prime, respectively. Linearization of equations (1) –
(4) yields: 

∂ρ ′ 

∂t 
+ 

∂ 

∂x j 

(
ρu ′ j + ρ ′ u j 

) = 0 , (8) 

∂ 

∂t 

(
ρu ′ i + ρ ′ u i 

) + 

∂ 

∂x j 

(
ρu i u ′ j + ρu ′ i u j + ρ ′ u i u j 

) = 

− ∂ p ′ 

∂x i 
+ 

∂τ ′ 
i j 

∂x j 
, (9) 

∂ 

∂t 

(
ρh ′ +ρ ′ h − p ′ 

)
+ 

∂ 

∂x j 

(
ρu j h ′ + ρu ′ j h +ρ ′ u j h 

)
= 

∂ 

∂x j 

( 

α
∂h ′ 

∂x j 
+ α′ ∂ h 

∂x j 

) 

+ ˙ ω 

′ 
T , (10) 

∂ 

∂t 

(
ρY 

′ 
k +ρ ′ Y k 

)+ 

∂ 

∂x j 

(
ρu j Y 

′ 
k + ρu ′ j Y k + ρ ′ u j Y k 

)= 

∂ 

∂x j 

( 

D 

∂Y 

′ 
k 

∂x j 
+ D 

′ ∂ Y k 

∂x j 

) 

+ ˙ ω 

′ 
k . (11) 

Note that the enthalpy equation cannot be reduced 

to the pressure equation because c p is not constant, 
see Eq. (5) . Furthermore, 

τ ′ 
i j = −2 

3 
δi j 

(
μ

∂u ′ l 
∂x l 

+ μ′ ∂ u l 
∂x l 

)

+ μ

(
∂u ′ i 
∂x j 

+ 

∂u ′ j 
∂x i 

)
+ μ′ 

(
∂ u i 
∂x j 

+ 

∂ u j 
∂x i 

)
, 

μ′ = μ
T + 3 T S 

2( T + T S ) 

T 

′ 

T 

, h ′ = c p T 

′ + 

∑ 

k 

h k Y 

′ 
k , 

T 

′ 

T 

= 

p ′ 

p 
− ρ ′ 

ρ
, 

˙ ω 

′ 
k = ˙ ω k 

( 

( a + b ) 
ρ ′ 

ρ
+ 

T a T 

′ 

T 

2 + a 
Y 

′ 
O 2 

Y O 2 

+ b 
Y 

′ 
CH 4 

Y CH 4 

) 

, 

D 

′ , α′ and ˙ ω 

′ 
T are computed in an analogous man- 

ner. Fuel mass fraction Y CH 4 appears in the de- 
nominator of the equation for ˙ ω 

′ 
k , which can lead 

to numerical problems. Its value is thus limited to 

Y CH 4 ≥ max ( Y CH 4 ) × 10 −4 . 
In this study, we consider premixed flames with 

the global one-step reaction. Thus, it suffices to 

transport a single species or a single progress 
variable. We choose to transport Y 

′ 
CH 4 

; hence the 
mass-fraction of oxygen required for the compu- 
tation of the reaction progress is given by Y 

′ 
O 2 

= 

(2 W O 2 /W CH 4 ) Y 

′ 
CH 4 

. The remaining linearized field 

variables are p ′ , ρ ′ , and u ′ i . For the sake of com- 
pactness, we avoid rewriting the linearized Eqs. (8) –
(11) in terms of the selected linearized variables, it 
can be done without essential difficulty using the 
expressions provided above. 

In closing this section we point out that in or- 
der to make the linearized equations fully consis- 
tent with the original nonlinear problem, first-order 
fluctuations of flow variables as well as material 
properties are retained. Note that the latter was cru- 
cial to achieve quantitative agreement with estab- 
lished methods (see below). Somewhat surprisingly, 
no sophisticated treatment of the strongly nonlin- 
ear Arrhenius term was required. 

2.3. Discretization 

The linearized reacting flow equations are dis- 
cretized using the discontinuous Galerkin finite el- 
ement method with a local Lax-Friedrichs flux for- 
mulation [13] . This method, which has proven to be 
robust for convectively-dominated problems, is an 

established method in CFD [14] and was adopted 

only recently for a hybrid thermoacoustic solver 
[8] . The discretization with linear ansatz functions 
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Fig. 1. Computational domain (top), mean heat release 
rate of the attached flame (middle) and of the lifted flame 
(bottom). 

for all linearized variables is implemented in the 
commercial software COMSOL Multiphysics. The 
mean fields are provided by OpenFOAM simula- 
tions. The derivatives of the mean fields, such as 
∂ u i /∂ x j , ∂ Y CH 4 /∂ x j , and ∂ h /∂x j , are computed by 
the LRF solver internally. 

In this study, the LRF solver computes the flame 
response in the frequency domain: 

ˆ ˙ Q = C ( iωE − A ) −1 B ̂  u ref , (12) 

where A, B, C and E are the system, input, out- 
put and mass matrices. Alternatively, the flame re- 
sponse may be deduced from a step response or 
broadband excitation in the time domain [3,15] . We 
solve for eigenvalues with an implicitly restarted 

Arnoldi algorithm [16] . All computations are per- 
formed with the direct parallel solver MUMPS [17] . 

3. Hybrid thermoacoustic models 

The FTFs predicted by the LRF approach shall 
be verified by comparison with FTFs identified 

from CFD time-series, see Section 4.1 and [3,15] . 
Moreover, frequency and growth rate of the dom- 
inant thermoacoustic mode predicted by the LRF 

approach shall be compared to established hybrid 

approaches, which couple a model for the propa- 
gation and dissipation of acoustic waves with an 

FTF. In this section, the acoustic models are briefly 
described. 

3.1. Thermoacoustic network-model 

To represent the configurations under investiga- 
tion (see Fig. 1 ), thermoacoustic network-models 
are built from simple elements such as ducts and 

sudden changes in cross-sectional area. The flame 
is assumed to be acoustically compact, so fluctua- 
tions of the global heat release rate ˙ Q 

′ fully describe 
the flame dynamics and are related to the velocity 

fluctuations u ′ ref at a reference point upstream of the 
flame through an FTF: 

ˆ ˙ Q 

˙ Q 

= F ( ω ) 
ˆ u ref 

u ref 
, (13) 

where the circumflex denotes the complex fluc- 
tuation amplitude at frequency ω. The FTF is 
then coupled to the TNMs via linearized Rankine–
Hugoniot jump conditions [4] . The network mod- 
els are set up with the open source tool taX [18,19] , 
which is based on a state-space formulation. The 
TNMs comprise no more than one thousand de- 
grees of freedom; hence eigenvalues are computed 

within seconds. In the configuration investigated, 
the ducts are very short, so the corresponding 
viscous losses are negligible. Furthermore, loss 
coefficients at area jumps are not applied since 
semi-empirical approximations for the acoustic 
losses involve a high degree of uncertainty. There- 
fore, the reader should keep in mind that growth 

rates computed with the TNMs represent a worst- 
case result. 

3.2. Linearized Navier–Stokes coupled with FTF 

The hybrid model based on the linearized 

Navier-Stokes equations employs the same equa- 
tions and discretization as the LRF, but without the 
transport equation for the fuel mass-fraction and 

the corresponding linearized reaction rate in the en- 
thalpy equation. Instead, the unsteady heat release 
is represented by an FTF. The LNSE uses the same 
FTF as the TNM but additionally resolves the spa- 
tial extent of the flame. Thus, the fluctuating heat 
release rate results in a spatially distributed source 
term ˙ ω 

′ 
T . Following [5,8] , we assume a distribution 

proportional to the local mean heat release rate: 

ˆ ˙ ω T ( � x ) = ˙ ω T ( � x ) F ( ω ) 
ˆ u ref 

u ref 
. (14) 

Using this formulation, the local fluctuations of 
the heat release rate are synchronized throughout 
the entire domain. This should be adequate for an 

acoustically compact flame, although it ignores any 
phase lag between the flame response at the root 
and the tip, say, and the consequential possibility 
of destructive interference. 

Both the TNM and the LNSE models employed 

in this study employ a state-space formulation. The 
FTF is also converted to the state space representa- 
tion and coupled with the acoustic system matrices, 
which yields a linear eigenvalue problem [8,19] . 

Note that the LNSE solver requires roughly 
10% to 30% less computational resources than the 
LRF solver on the same mesh due to the reduced 

number of variables. 
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4. Investigation of a laminar premixed flame 

4.1. Numerical setup 

By way of example, we investigate a generic, 
laminar premixed flame that is stabilized on a slit 
as shown in Fig. 1 (top). Exploiting the symmetry 
along and across the slits reduces the simulation do- 
main to one-half of the flame in two dimensions. If 
the burner plate is adiabatic, then the flame attaches 
to it, see Fig. 1 (middle). Setting a constant sur- 
face temperature T W 

= 375 K at the burner plate 
results in a lifted flame as shown in Fig. 1 (bot- 
tom). The remaining flow parameters are identical 
for both configurations: the inlet velocity is 0.3 m/s, 
the equivalence ratio equals 0.8, the inlet tempera- 
ture is 293 K, and the outlet pressure is 101325 Pa. 

The CFD solver employs standard boundary 
conditions: isothermal inlet with fixed velocity and 

mixture, outlet with fixed static pressure, non-slip 

walls at the burner plate, symmetry at the top and 

bottom of the computational domain. A struc- 
tured mesh with 53600 square cells of size of �x = 

25 μm resolves the flame with 16 cells. 
The LRF and LNSE solvers use corresponding 

linearized boundary conditions. Two meshes are 
used: a fine mesh that is identical to the CFD mesh, 
and a coarser mesh with �x = 40 μm and 21100 
cells (10 cells across the flame). 

A flame transfer function as required for hy- 
brid models is identified as a finite impulse response 
from time-series data generated by OpenFOAM 

simulations. A broadband velocity excitation with 

an amplitude of 0 . 05 u inlet is imposed at the inlet. 
To ensure a robust simulation and reduce noise, a 
weakly compressible version of the reactive Open- 
FOAM solver is employed [20] . The CFL number 
is 0.1, and the simulation time is 0.15 s, which is suf- 
ficient for the accurate identification of the FTF in 

this study. The identification methodology is dis- 
cussed in detail by Tay-Wo-Chong et al. [3] and Po- 
lifke [15] . The computation of the FTF is quite time 
consuming, since it requires a long time series for 
the identification process – typically 0.15 s to 0.3 s, 
which entails compute times of several days. 

OpenFOAM simulations without excitation 

provide the flow parameters of the burnt and un- 
burnt gas for the TNM as well as the mean fields for 
the LNSE and LRF. In these simulations, the CFL 

number was decreased to 0.01 to better resolve the 
chemical time scale and thus obtain a better flame- 
front resolution. 

4.2. Flame transfer function 

We use the inlet velocity of the computational 
domain as the reference velocity for the flame trans- 
fer functions, see Eq. (13) . 

The FTFs of the attached (left) and lifted (right) 
flames were identified from the OpenFOAM time- 
series with more than 95% accuracy, see Fig. 2 . Due 

to a very high identification accuracy, the confi- 
dence intervals are negligibly small and therefore 
omitted. Both flames show a low-pass behavior. 
The lifted flame exhibits an excess gain at around 

65 Hz, followed by a very rapid decline, such that 
its response is close to zero for frequencies above 
200 Hz. 

Figure 2 also shows the flame frequency re- 
sponses computed by the LRF solver with two dif- 
ferent meshes. For both the attached and lifted 

flames, the LRF solver yields similar results for 
mesh sizes �x = 40 μm and 25 μm , indicating dis- 
cretization independence. Further reduction of the 
mesh size preserving the FTF quality is possible by 
coarsening the regions further away from the flame 
and the corners of the burner plate. In the follow- 
ing, we focus on results obtained on the fine mesh 

( �x = 25 μm ), which corresponds to the CFD 

mesh. 
The LRF solver predicts the phase of the fre- 

quency response well. The gain of the frequency re- 
sponse is perfectly predicted for the attached flame 
and overestimated by up to 10% for the lifted flame. 
These results are achieved at significantly lower 
computational cost than running a transient CFD 

simulation for the FTF identification: 6 CPUh and 

22 GB RAM for the computation of 16 frequency 
responses vs. 300 CPUh and 2Gb RAM for the 
CFD simulation on the same mesh. To reduce the 
RAM requirements, an iterative solver may be used 

– typically at the cost of longer computational time. 

4.3. Thermoacoustic eigenmodes 

In this section, we investigate the thermoacous- 
tic eigenmodes and eigenvalues – i.e. frequencies 
and growth rates – of the two flame configurations. 
The simulation domain is very small (14 mm), such 

that acoustic cavity-modes can be found only at 
very high frequencies in the kHz range. Thus, we set 
the inlet and outlet boundaries to be nonreflecting 
and concentrate on intrinsic thermoacoustic (ITA) 
eigenmodes, which may be unstable for nonreflect- 
ing boundaries provided that the flame response is 
sufficiently strong [21,22] . Alternatively, impedance 
boundary conditions formulated as state space sys- 
tems could be used, as suggested by Jaensch et al. 
[23] . The frequencies of ITA modes in an anechoic 
environment can be approximately determined by 
the “π criterion” [21] : ITA modes may occur when- 
ever the phase of the FTF is close to an odd multiple 
of π . Inspecting Fig. 2 , we see that ITA frequencies 
should be around 170 Hz for the attached flame and 

100 Hz for the lifted flame. 
Now, we compare predictions of the LRF 

solver with the two hybrid approaches described in 

Section 3 . The TNM ( ◦) and LNSE ( 
� 

) share the 
same FTF identified from CFD time-series as de- 
scribed in the previous subsection. All models pre- 
dict the unstable thermoacoustic modes and yield 
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Fig. 2. Frequency response of the attached flame (left) and the lifted flame (right) identified using CFD time-series ( ) 
and computed using the LRF solver with mesh sizes �x = 40 μm ( ) and 25 μm ( ). Thin black lines ( ) visualize the 
π criterion for ITA modes. 

Fig. 3. Dominant thermoacoustic eigenvalues of the at- 
tached flame ( ≈ 170 Hz) and the lifted flame ( ≈ 100 Hz) 
predicted with LRF ( + ), LNSE with FTF LRF ( � ), LNSE 

( 
� 

) and TNM ( ◦) with FTF identified from CFD time- 
series. 

eigenfrequencies similar to the ones suggested by 
the π criterion. 

The LRF solver requires most computa- 
tional resources for the eigenvalue computation 

(0.4 CPUh and 22 GB RAM). The LNSE solver 
requires slightly less computational resources 
(0.4 CPUh and 18 GB RAM). The TNM solver 
computes eigenvalues within seconds due to the 
small number of degrees of freedom. Keep in 

mind, however, that even though the hybrid solvers 
are less costly than the LRF solver, they require 
to determine or measure an external FTF with 

considerable effort. 
The LNSE as well as the LRF account for mean 

flow effects and allow for a linear energy trans- 
fer between acoustics, vorticity, and entropy waves. 

Fig. 4. Unstable eigenmode of the attached flame at 
170 Hz: positive real part of the fluctuating heat release 
rate in black and negative in white at the top, its stream- 
wise distribution at the bottom. 

That results in a more accurate prediction of acous- 
tic dissipation than using TNM and, typically, in 

smaller growth rates. The TNM ( ◦) provides higher 
growth rates than the LNSE ( 

� 

), since the TNM 

neglects acoustic losses other than those associated 

with the nonreflecting in- and outlets. 
The growth rates computed by the LRF ( + ) 

differ from those computed by the LNSE ( 
� 

). We 
offer two reasons for this discrepancy. Firstly, LRF 

slightly over-predicts the FTF gain of the lifted 

flame at its eigenfrequency, which should translate 
into an increase in growth rate [21] . 

Secondly, there are important differences in 

the modeling of flow-flame interactions by the 
LRF and LNSE. The LRF locally resolves the 
flow-flame interaction. This is demonstrated, for 
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Fig. 5. Unstable eigenmode of the attached flame at 170 Hz: magnitude (left) and phase (right) of the fluctuating stream- 
wise velocity normalized at the inlet for the LRF (top) and LNSE (bottom) models. Black lines indicate the mean flame 
position. 

instance, for the attached flame 2 in Fig. 4 . The fig- 
ure shows the unstable mode at 170 Hz in terms 
of the real part of the fluctuating heat release rate. 
Only the flame tip yields a significant contribution 

to the global fluctuation of the heat release rate, 
since the local fluctuations upstream of the flame 
tip cancel out. The local fluctuations in heat release 
rate change from negative (white color) to posi- 
tive (black) across the flame indicating the onset of 
the flame movement towards the burnt mixture (or 
vice versa). Furthermore, the LRF captures a dis- 
tortion, initiated at the flame root and propagated 

downstream along the flame, changing the direc- 
tion of the flame movement 3 

In contrast, the LNSE does not explicitly resolve 
the spatio-temporal evolution of flame movement 
and distortion along the length of the flame. In- 
stead, the heat release rate fluctuation is synchro- 
nized along the length of the flame and is propor- 
tional to the mean heat release rate. Consequently, 
the fluctuating velocity fields that result from un- 
steady heat release differ for the LRF and LNSE 

formulations (see Fig. 5 ), which should contribute 
to the differences in predicted growth rates. 

To facilitate further analysis, we introduce one 
additional model. We couple the LNSE with the 
flame transfer function that is computed using the 
linearized reactive flow solver 4 This new model is 
abbreviated as LNSE LRF . The LRF and LNSE LRF 
share the same FTF, so these two models cannot 
show any discrepancies in their growth-rate predic- 
tions related to the gain of the FTF, but only related 

to the differences in the flow-flame modeling. 
For the lifted flame, the growth rates provided by 

the LRF ( + ) and LNSE LRF ( � ) are in a much bet- 
ter agreement than those provided by the LRF ( + ) 
and LNSE ( 

� 

). Hence, the discrepancy between the 
LRF and LNSE originates mostly from the gain 

2 The detached flame shows a similar onset of move- 
ment. 

3 An animation of the propagating flame distortion is 
provided in supplementary materials. 

4 The FTF LRF is fitted as a rational polynomial to a 
sampled frequency response and is valid over the entire 
frequency range. 

of the FTF at the eigenfrequency, which was over- 
predicted by the LRF. 

For the attached flame, the gain of the FTF is 
perfectly captured by the LRF. Hence, the differ- 
ence between the growth rates computed by the 
LRF ( + ) and LNSE ( 

� 

) is attributed solely to the 
differences in the flow-flame modeling. 

5. Conclusion and outlook 

This paper introduces a linearized reactive flow 

solver to analyze the flame dynamics of attached 

and lifted laminar premixed flames as well as their 
thermoacoustic stability. The LRF captures the dy- 
namics of both flames quite well: the phase of the 
flame frequency response is accurately predicted, 
while its gain is very well predicted for the at- 
tached flame and only slightly overestimated for 
the lifted flame. The LRF solver also correctly pre- 
dicts the dominant thermoacoustic modes and re- 
solves the spatio-temporal evolution of the mode 
shapes, making explicit the local fluctuations of 
heat release, the onset of the flame movement, 
and the convective propagation of flame distor- 
tion. For the simplistic test cases considered here 
with compact, velocity-sensitive, premixed flames, 
established thermoacoustic models such as TNM 

and LNSE also capture the eigenmodes in terms of 
frequency and growth rate quite well, but they do 

not resolve local flow-flame interaction due to their 
coupling with a global FTF. 

The LRF is a very promising approach be- 
cause of its monolithic formulation with an inher- 
ent flow-flame-acoustic interaction. Admittedly, it 
is computationally more expensive than the LNSE 

approach due to one additional variable and pos- 
sibly higher resolution in the flame region. On the 
other hand, the LRF approach does not require 
an external FTF, so an unsteady CFD simula- 
tion for the identification of the FTF is not re- 
quired. The local flow-flame interaction resolved 

by the LRF is particularly important for the inves- 
tigation of non-compact flames and/or non-plane 
acoustics, i.e. at higher frequencies, where a stan- 
dard FTF that relates upstream velocity to over- 
all heat release is inadequate [24–26] . Moreover, 
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configurations where fluctuations in equivalence 
ratio, pressure or temperature perturb the heat 
release require corresponding MISO or MIMO 

(multiple-input, single/multiple-output) formula- 
tions of hybrid models. In such cases, it is strictly 
speaking necessary to identify several flame trans- 
fer functions and couple them to an acoustic model, 
which can quickly become expensive and cumber- 
some. Conversely, LRF makes possible increased 

flexibility in the analysis of such systems: any 
combination of fluctuating variables may be cho- 
sen as “input” or “output”, the respective trans- 
fer behavior or sensitivities may be studied in a 
MIMO framework with very favorable computa- 
tional costs. 

Future studies should extend the approach to 

turbulent, technically premixed flames at high fre- 
quencies and exploit advantages or identify limita- 
tions of the method. 
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a b s t r a c t 

In this paper, non-intrusive polynomial chaos expansion (NIPCE) is used for forward uncertainty quantifi- 

cation and sensitivity analysis of thermoacoustic stability of two premixed flame configurations. The first 

configuration is a turbulent swirl combustor, modeled by the Helmholtz equation with an n − τ flame 

model. Uncertain input parameters are the gain and the time delay of the flame, as well as the mag- 

nitude and the phase of the outlet reflection coefficient. NIPCE is successfully validated against Monte 

Carlo simulation. It is observed that the first order expansion suffices to yield accurate results. The sec- 

ond configuration under investigation is a low order network model of a laminar slit burner, with the 

flame transfer function identified from weakly compressible CFD simulations of laminar reacting flow. 

Firstly the uncertainty and sensitivity of the growth rate due to three uncertain input parameters of the 

CFD model – i.e., flow velocity, burner plate temperature and equivalence ratio – are analyzed. A Monte 

Carlo simulation is no longer possible due to the computational cost of the CFD simulations. Secondly, 

two additional uncertain parameters are taken into account, i.e., the respective magnitudes of inlet and 

outlet reflection coefficients. This extension of the analysis does not entail a considerable increase in 

computational cost, since the additional parameters are included only in the low order network model. 

In both cases, the second order expansion is sufficient to model the uncertainties in growth rate. 

© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Thermoacoustics deals with a coupling between acoustics and 

heat release. This coupling may lead to a self-induced instabil- 

ity with excessive fluctuations in pressure, velocity, and tempera- 

ture. Such instabilities occur, e.g., in gas turbines or rocket engines, 

where they can lead to a catastrophic system failure. To guarantee 

safety margins and normal operating conditions, the thermoacous- 

tic behavior of a combustor should be studied. Indeed, a compre- 

hensive thermoacoustic stability analysis is an important part of 

combustor design. 

In computational analysis, boundary and operating conditions 

as well as model parameters of a system model are in general not 

known exactly, but instead are uncertain. Uncertainties propagate 

through the system model and affect the prediction of quantities 

of interest, making them uncertain. Forward uncertainty quantifica- 

tion (UQ) strives to characterize in a quantitative manner the im- 

pact of uncertain input or model parameters on the reliability of 

model predictions. An important aspect of the study of uncertain- 

∗ Corresponding author. 

E-mail address: avdonin@tfd.mw.tum.de (A. Avdonin). 

ties is sensitivity analysis , which investigates the influence of each 

uncertain parameter on a quantity of interest. Sensitivity analysis 

helps to identify the most important uncertain parameters, which 

should be accounted for. Due to the fast development of data- 

driven methodologies in recent years, UQ and sensitivity analysis 

are becoming important topics in all engineering fields [1–5] . 

The main task of UQ in linear thermoacoustics stability analy- 

sis is to investigate how uncertainties in geometry, operating and 

boundary conditions as well as modeling parameters affect the 

growth rates of the thermoacoustics eigenmodes. Despite the fact 

that thermoacoustic systems are in general very sensitive to such 

uncertainties, until now only a small number of studies have been 

devoted to this topic, which shall be reviewed briefly in the fol- 

lowing. 

The most common and straightforward UQ method is Monte 

Carlo simulation [6] . The method numerically generates random 

samples of uncertain input parameters. For each sample, the quan- 

tity of interest is computed. The ensemble of obtained results is 

assumed to faithfully represent the variability of the quantity of in- 

terest. Monte Carlo simulation requires a large number of samples 

and is feasible only for system models with fast evaluation. If a sin- 

gle evaluation is computationally expensive, more sophisticated UQ 

methods are required. Fundamentally, there are two strategies to 

https://doi.org/10.1016/j.combustflame.2017.11.001 
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overcome a high computational cost: (1) simplify the original sys- 

tem model to reduce the evaluation time, or (2) lower the number 

of samples required to achieve converged statistics. An example of 

the latter approach are smart sampling techniques, such as Latin 

hypercube sampling [7] . 

Bauerheim et al. [8] investigated a simplistic model of an annu- 

lar combustor with 19 burners using a Helmholtz equation coupled 

with n − τ flame models. The uncertain input parameters were 

gain n and time lag τ of each single flame, resulting in a total of 

38 uncertain parameters. The authors applied an active subspace 

approach [9] that reduced the 38 input parameters to three active 

variables. Fifty samples, i.e., model evaluations, were required to 

identify the active variables. Linear, quadratic and cubic reduced 

order algebraic models were fitted, using a few dozen samples. 

Finally, a Monte Carlo simulation was performed on the reduced 

order models to quantify the risk factor, i.e., the probability of 

an unstable state. The quadratic and cubic models showed accu- 

rate results in comparison to the original model. The active sub- 

space approach is well suited for problems with a large number of 

uncertain parameters, since it eliminates the curse of dimension- 

ality. However, in order to firstly identify active variables, and sec- 

ondly fit a surrogate model, the method requires several tens or 

even hundreds of system evaluations. 

Ndiaye et al. [10] also coupled a Helmholtz equation solver 

with an n − τ flame model in order to assess the thermoacous- 

tic stability of a single premixed swirled burner. Again gain n and 

time lag τ were considered as uncertain parameters. Relying on a 

multiple linear regression technique, a bilinear algebraic surrogate 

model was tuned to reproduce growth rates of the dominant ther- 

moacoustic mode, as predicted by the full model under variation 

of the uncertain parameters. Then the surrogate model was used to 

compute the risk factor with a Monte Carlo approach. The authors 

carefully assessed the number of full model evaluations required to 

tune the surrogate model and conclude that ten full model evalu- 

ations suffice to accurately estimate the risk factor. 

Silva et al. [11,12] investigated the same swirled burner as Ndi- 

aye et al. [10] , considering four uncertain parameters, i.e., gain n 

and time lag τ of the flame model as well as magnitude and phase 

of the outlet reflection coefficient. Direct and adjoint eigenvectors 

were used to construct a first and second order expansions of 

the nonlinear eigenvalue problem around a reference eigenvalue. 

Using these expansions, deviations from the reference eigenvalue 

were computed at reduced computational cost. The results of the 

second order expansion were in good agreement with the ones 

obtained by solving the nonlinear eigenvalue problem. Recently, 

the same burner was investigated by Mensah et al. [13] . The au- 

thors used a flame transfer function fitted from the experiment in- 

stead of a n –τ flame model. The uncertainty in the flame trans- 

fer function was modeled with two parameters, relative error in 

gain and absolute error in phase, which were assumed to be con- 

stant in the entire frequency range. Magri et al. [14] used the ad- 

joint approach in combination with the active subspace approach 

to compute the risk factor of the annular combustor investigated 

previously by Bauerheim et al. [8] . 

With the adjoint method one can easily build a reduced or- 

der model and compute sensitivities. One should keep in mind, 

however, that the accuracy of results will decrease with increas- 

ing variances in the input uncertainties, since the adjoint method 

constructs an expansion around a single reference point. Further- 

more, the commonly used matrix-based method requires access to 

the state matrices, which may require substantial effort, or may –

e.g., for a commercial CFD solvers – not be possible at all. In that 

case one could use matrix-free methods, as proposed by Waugh 

et al. [15] . 

In the present study, non-intrusive polynomial chaos expansion 

(NIPCE) is used for UQ in linear thermoacoustic stability analy- 

sis. The polynomial chaos expansion approximates uncertain out- 

put as a polynomial function of uncertain input parameters and 

provides statistical moments of the output. The advantage of the 

non-intrusive variant of the method is the treatment of an inves- 

tigated system as a “black box”, so the method can be applied to 

any system model without any special code modifications. Another 

advantage is that NIPCE provides a polynomial approximation of 

the output quantity, which can be used as a reduced order model, 

or for sensitivity analysis. 

NIPCE has hitherto not been used in thermoacoustics – except 

for the analysis of Nair et al. [16] , which is discussed below –

but it has been applied frequently in computational fluid dynam- 

ics [3] and also in simulations of reacting flows [17] . There are 

several possibilities for constructing the NIPCE: Hosder et al. [18–

20] used linear regression, Reagan et al. [1,21] used the Latin hy- 

percube sampling technique, Tritschler et al. [22] used the Gauss 

quadrature. We choose the Gauss quadrature, since it synchronizes 

the expansion order with the number of quadrature points. Hence, 

a large number of system evaluations leads to a higher expansion 

order. 

Nair et al. [16] explored the use of NIPCE to quantify the un- 

certainty of subcritical Hopf bifurcations predicted by a simplis- 

tic model of a Rijke tube. However, a subcritical bifurcation repre- 

sents a special challenge, since it exhibits a discontinuity, which 

with standard polynomials cannot represent well. Indeed, NIPCE 

was originally developed for continuous uncertainties, thus we use 

this method for continuous problems. Instead of NIPCE, Nair and 

co-workers eventually employed a sampling technique based on 

equal probabilities to compute the failure probability for several 

input parameter values. Then they reconstructed the response in 

the entire parameter space by an interpolation technique that cap- 

tures discontinuities. The UQ was then performed by a Monte Carlo 

simulation of the interpolated model. 

We have discussed briefly the use of active subspace and ad- 

joints for UQ in thermoacoustics. NIPCE should not be seen as a 

competitor to the above mentioned methods, but rather as a com- 

plementary tool to solve problems, where neither active subspace 

nor adjoints are feasible. For instance, if access to solver state ma- 

trices is not feasible, then the adjoint approach cannot be em- 

ployed, unless the matrix-free methods are used. On the contrary, 

NIPCE can easily be applied in that case, since it treats the solver 

as a “black box”. If a single system evaluation is so expensive that 

the random sampling required for identification of active variables 

is impractical, then NIPCE with Gauss quadrature may still solve 

the problem, since the method requires only a few quadrature 

points. On the other hand, the application of the NIPCE with stan- 

dard polynomials is constrained to continuous uncertainties, and 

the number of uncertain parameters should not exceed roughly 

ten. For discontinuous or steep functions one may try NIPCE with 

Haar polynomials [23] or the above-mentioned method proposed 

by Nair et al. [16] . 

In this study, we employ NIPCE to perform UQ and sensitiv- 

ity analysis for thermoacoustic systems. Moreover, it is shown that 

probability density functions of the sensitivities are suitable for 

analysis of systems with multiple uncertain input parameters. The 

paper is structured as follows: in the next section, the fundamen- 

tals of the NIPCE method are described briefly. Then the NIPCE is 

validated against a Monte Carlo simulation for a simplified com- 

bustor, which is modeled by the Helmholtz equation with the n –

τ flame model. The uncertain parameters are the gain n and the 

time delay τ , as well as the magnitude and phase of an outlet re- 

flection coefficient. Afterward, a thermoacoustic network model is 

investigated using NIPCE. The network model includes flame trans- 

fer functions identified from CFD simulations. In this case, valida- 

tion against the Monte Carlo simulation is no longer possible, since 

a single CFD simulation for the flame identification takes several 
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Table 1 

Most common probability distribution types and corresponding optimal 

polynomial types [24] . 

Distribution Probability 

density function 

Polynomial Support range 

Normal 1 √ 
2 π

e −ξ 2 / 2 Hermite [ −∞ , ∞ ] 

Uniform 1/2 Legendre [ −1 , 1] 

Beta (1 −ξ ) α (1+ ξ ) β

2 α+ β+1 B (α+1 ,β+1) 
Jacobi [ −1 , 1] 

Exponential e −ξ Laguerre [0, ∞ ] 

Gamma ξα e −ξ

�(α+1) 
Generalized 

Laguerre 

[0, ∞ ] 

hours. Therefore this is a typical application case for NIPCE. The 

uncertain input parameters are the flow velocity, the burner plate 

temperature, and the equivalence ratio. In the next part of this 

study, we show that the uncertainty analysis can be extended by 

additional uncertain parameters without significant computational 

effort, provided that these parameters are included only in the net- 

work model and independent of the other uncertain parameters, in 

particular the flame transfer function. In the present study, two ad- 

ditional uncertain parameters, i.e., the magnitude of the inlet and 

outlet reflection coefficients, are introduced. A summary of results 

concludes the paper. 

2. Uncertainty quantification methodology 

This section introduces the concept of non-intrusive polyno- 

mial chaos expansion (NIPCE). For detailed information about the 

method, the reader is referred to Adams et al. [24] or Eldred 

et al. [25] . NIPCE approximates an output quantity y as a truncated 

sum of multidimensional orthogonal polynomials � i of uncertain 

input parameters ξ = [ ξ1 , ξ2 , . . . , ξN ] : 

y ∼= 

P−1 ∑ 

i =0 

αi �i ( ξ) , (1) 

where αi are the weighting coefficients and P is the total number 

of expansion terms. The uncertain input parameters ξ1 , ξ2 , . . . , ξN 

are standardized and uncorrelated. If the original uncertain input 

parameters are correlated, then they should be transformed to in- 

dependent standard random variables. The multidimensional poly- 

nomials � i ( ξ) are constructed using a tensor-product expansion 

of one-dimensional polynomials ψ( ξ j ), i.e., the multidimensional 

polynomials are permutations of one-dimensional polynomials in 

all parameter dimensions. In this case, the total number of expan- 

sion terms P is constrained by one-dimensional polynomial order 

bounds p j for the j th uncertain input parameter 

P = 

N ∏ 

j=1 

(p j + 1) . (2) 

Note that the tensor-product expansion supports anisotropy. 

Hence, the polynomial order bounds p j can be chosen indepen- 

dently for each uncertain parameter ξ j . Nevertheless, in this paper 

we consider the same polynomial order bounds for all uncertain 

input parameters p = p 1 = p 2 = ... = p j . For brevity, we also define 

the NIPCE order equal to the one-dimensional polynomial order 

bound p , although the effective order of the NIPCE is Np due to 

the tensor-product expansion of the one-dimensional polynomials. 

The choice of the one-dimensional polynomial ψ( ξ j ) depends 

on the probability distribution of the uncertain input parameter ξ j . 

Note that each ξ j can follow a different distribution. Each probabil- 

ity distribution type has its own optimal polynomial type [24] . The 

most common one-dimensional orthogonal polynomials are listed 

in Table 1 . In this work the uncertain input parameters are as- 

sumed uniformly distributed, thus the Legendre polynomials are 

chosen for the NIPCE. The first three Legendre polynomials are: 

ψ 0 (ξ1 ) = 1 , (3) 

ψ 1 (ξ1 ) = ξ1 , (4) 

ψ 2 (ξ1 ) = 

1 

2 

(3 ξ 2 
1 − 1) . (5) 

Hence, the multidimensional Legendre polynomials for a two- 

dimensional case with p = 2 are: 

�0 (ξ1 , ξ2 ) = ψ 0 (ξ1 ) ψ 0 (ξ2 ) , (6) 

�1 (ξ1 , ξ2 ) = ψ 1 (ξ1 ) ψ 0 (ξ2 ) , (7) 

�2 (ξ1 , ξ2 ) = ψ 0 (ξ1 ) ψ 1 (ξ2 ) , (8) 

�3 (ξ1 , ξ2 ) = ψ 1 (ξ1 ) ψ 1 (ξ2 ) , (9) 

�4 (ξ1 , ξ2 ) = ψ 2 (ξ1 ) ψ 0 (ξ2 ) , (10) 

�5 (ξ1 , ξ2 ) = ψ 2 (ξ1 ) ψ 1 (ξ2 ) , (11) 

�6 (ξ1 , ξ2 ) = ψ 0 (ξ1 ) ψ 2 (ξ2 ) , (12) 

�7 (ξ1 , ξ2 ) = ψ 1 (ξ1 ) ψ 2 (ξ2 ) , (13) 

�8 (ξ1 , ξ2 ) = ψ 2 (ξ1 ) ψ 2 (ξ2 ) . (14) 

Note that the effective order of the NIPCE, constructed with the 

multidimensional polynomials from above, is four. But since p = 2 , 

the NIPCE is of the second order according to our definition. 

The polynomials � i are orthogonal, hence the weighting coeffi- 

cients αi of the expansion, defined in Eq. (1) , are computed using 

a spectral projection 

αi = 

〈 y, �i 〉 
〈 �2 

i 
〉 = 

∫ 



y �i ρ( ξ) d ξ

∫ 



�2 
i 
ρ( ξ) d ξ

, (15) 

where 〈 , 〉 denotes the inner product and 
 is the uncertain in- 

put parameter space. The joint probability density function ρ( ξ) 

is computed from one-dimensional probability density functions, 

since the uncertain input parameters are uncorrelated. The one- 

dimensional probability density functions for different distribution 

types are given in Table 1 . The inner products of multidimen- 

sional polynomials 〈 �2 
i 
〉 are computed analytically, and the inner 

products of the output quantity and the polynomial 〈 y, � i 〉 are 

computed by a Gauss quadrature, that is synchronized to the poly- 

nomial order. Gauss quadrature with k points integrates exactly all 

polynomials of degree 2 k − 1 or less. Since y and � i are multiplied 

in Eq. (15) , the highest order of the integrand is then 2 p j in j th pa- 

rameter dimension. This requires p j + 1 quadrature points for exact 

integration in each dimension. 

When the coefficients αi are determined, mean μ and variance 

σ 2 of the output quantity can be computed as follows: 

μ ∼= 

N−1 ∑ 

i =0 

αi 〈 �i ( ξ) 〉 = α0 , (16) 

σ 2 ∼= 

N−1 ∑ 

i =0 

α2 
i 〈 �i ( ξ) 2 〉 . (17) 
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Note that in addition to the statistical moments, the NIPCE 

provides a polynomial approximation for the output quantity (see 

Eq. (1) ), which can be used as a reduced order model or for sensi- 

tivity analysis with the derivatives of y given by 

∂y 

∂ξi 

= 

P ∑ 

j=0 

α j 

∂� j ( ξ) 

∂ξi 

. (18) 

Summarizing all the steps, the UQ analysis using the NIPCE is 

performed as follows: 

1. Specify a probability distribution for the uncertain input param- 

eters. 

2. Choose a suitable polynomial type according to the probability 

distribution of the uncertain input parameters. 

3. Choose the polynomial order bound p j for each uncertain input 

parameter ξ j . 

4. According to the quadrature rules, evaluate the system at the 

predefined uncertain parameter values. 

5. Compute the polynomial weighting coefficients αi , see Eq. (15) . 

6. Compute mean and variance of the uncertain output quantity, 

see ( Eqs. (16) , ( 17 )). 

7. Construct the NIPCE and compute the output for any set of in- 

put parameters, see Eq. (1) . 

8. Compute sensitivities, see Eq. (18) . 

3. Validation case 

In this section, NIPCE is validated against Monte Carlo simula- 

tion. For that purpose, a simplistic model problem is chosen, with 

a low evaluation time of several seconds for the full model. We 

consider four uncertain input parameters: the gain and the time 

delay of the flame transfer function, the magnitude and the phase 

of an outlet reflection coefficient. Then the growth rate of a ther- 

moacoustic system is computed using a Helmholtz solver. 

3.1. Setup 

The validation case is taken from the work of Silva et al. [12] . 

The authors numerically investigated the uncertainty of the growth 

rate of thermoacoustic instability in a turbulent swirled combustor 

EM2C laboratory [26–28] . The inhomogeneous Helmholtz equation 

is solved for eigenvalues with the ansatz function e st for the fluc- 

tuation: 

s 2 ˆ p − ∇ ·
(
c̄ 2 ∇ ̂  p 

)
= s ( ̄γ − 1) ̂  ˙ q, (19) 

where p , ˙ q , c and γ denote the pressure, local heat release rate, 

mean speed of sound and heat capacity ratio. Overline indicates 

the time averaged quantity and circumflex indicates a complex 

amplitude field. The Laplace variable s = ς + i 2 π f consists of the 

growth rate ς (s −1 ) and frequency f ( Hz ). The local heat release 

rate is modeled with a simple n − τ model [29,30] : 

ˆ ˙ q 

˙ q 
= ne −sτ ˆ u re f 

u re f 

, (20) 

where n is a gain of the flame transfer function, τ is a charac- 

teristic time delay and u ref is an acoustic velocity at a reference 

position. 

We investigate the swirled combustor in configuration C4 

( Fig. 1 ). Following Silva et al. [12] we consider four uncertain input 

parameters: the gain n and the time delay τ of the flame trans- 

fer function, the magnitude | R out | and the phase � R out of the out- 

let reflection coefficient. The uncertainty parameters are assumed 

to be uniformly distributed and are listed in Table 2 together with 

the operating conditions. The speed of sound is computed with the 

ideal gas assumption. 

Fig. 1. Turbulent swirled combustor in configuration C4 ( l 1 = 0 . 096 m , l 3 = 

0 . 4 m , α = 90 ◦) . Adapted from Palies et al. [26] . 

Table 2 

Uncertain input parameters and operating conditions. 

n 1.5 ± 10% 

τ 4.73 ± 10% ms 

| R out | 0.6 ± 10% 

� R out π ± 10% rad 

ū re f 4.16 m/s 

γ̄ 1.4 

Equivalence ratio 0.8 

Specific gas constant 287 J / (kgK) 

Temperature upstream of the flame 300 K 

Temperature downstream of the flame 1600 K 

Total heat release rate 3 . 03 kW 

Operating pressure 101 , 325 Pa 

Table 3 

Mean and standard deviation of the growth rate. MC denotes Monte 

Carlo simulation. 

NIPCE MC 

p 1 2 3 

μ ( s −1 ) 109.63 109.64 109.67 109.70 

σ ( s −1 ) 17.95 17.88 17.91 17.87 

Samples 16 81 256 10 5 

Due to the n − τ flame model, the eigenvalue problem is non- 

linear. Nevertheless, the Helmholtz solver is quite efficient, such 

that one simulation takes only a few seconds. Thus it is feasible 

for this test case to validate NIPCE results with Monte Carlo simu- 

lation. 

3.2. Results 

The NIPCEs with p = 1 , p = 2 , and p = 3 are computed, which 

require 16, 81 and 256 Helmholtz solver simulations, respectively. 

The validation data is generated by the Monte Carlo simulation 

with 10 5 random samples to guarantee stochastic convergence. The 

statistical moments of the growth rate are shown in Table 3 . All 

polynomial expansions yield results in good agreement with the 

Monte Carlo results. 

Additionally, the probability density function (PDF) of the 

growth rate is computed by a Monte Carlo simulation applied on 

the polynomial expansion. The results are compared to the Monte 

Carlo simulation of the Helmholtz solver in Fig. 2 . Note that a sin- 

gle evaluation of the NIPCE requires several scalar mathematical 

operations, while the Helmholtz solver performs several matrix in- 

versions to converge. Thus the PDF computation with the NIPCE is 

much faster than with the Helmholtz solver. Figure 2 suggests that 

the NIPCE with p = 1 already reproduces the PDF well. It should 
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Fig. 2. PDF of the growth rate with 10 5 samples, p is the NIPCE order, the bin size is 5 s −1 . The transparent bins with black edges are the NIPCE results, the grey bins are 

the results produced by the Helmholtz solver. 

be mentioned that in the work of Silva et al. only the second or- 

der expansion, computed with adjoints, was in quantitative agree- 

ment with the reference PDF (see Fig. 7(c) in [12] ). The reason why 

NIPCE with p = 1 performs better than a first order Taylor expan- 

sion of the Helmholtz solver using adjoints lies in the different 

modeling procedures. In general, Taylor expansion makes an ap- 

proximation around one reference point and it includes derivatives 

which are valid only for that reference point. Therefore it is a local 

approximation. NIPCE, in contrast, follows a more global modeling 

strategy, which takes information from several quadrature points 

to build a polynomial. Furthermore, NIPCE with p = 1 implies that 

the highest order for each parameter is one, while the highest or- 

der of the polynomial expansion is four due to a tensor product of 

one-dimensional polynomials (see Section 2 ). 

Given the PDF of the growth rate, we can compute the risk fac- 

tor [31] , i..e the probability that the system is unstable: 

RF = 

∫ ∞ 

0 

P DF (ς ) dς . (21) 

According to Silva et al. [12] the combustor in this configuration 

experiences the damping rate DR = 125 s −1 , which was not ac- 

counted for in the Helmholtz solver. 1 Thus the risk factor corrected 

by the damping rate is 

RF DR = 

∫ ∞ 

DR 

P DF ( ς ) dς . (22) 

The risk factor of the combustor is 21.10%, whereas the polynomial 

expansions yield 21.08%, 21.01% and 21.06% for p = 1 , p = 2 and 

p = 3 , respectively. Since the PDF is well reproduced by the poly- 

nomial expansions (see Fig. 2 ), the risk factor is also well approx- 

imated. The reader should be cautioned, however, that such good 

agreement may not be achievable if the risk factor is low, because 

in that case its value is governed by the tail of the PDF. 

The derivatives with respect to uncertain input parameters 

are computed according to Eq. (18) . The NIPCE sensitivities at 

the mean values of the uncertain input parameters are validated 

against the derivatives computed with finite differences in Table 4 . 

All expansion orders approximate the derivatives well. For this 

configuration, it is sufficient to use the first order NIPCE. 

4. UQ of intrinsic thermoacoustic instability 

In this section, the thermoacoustic stability of the Kornilov 

flame [32] is analyzed with NIPCE. For this configuration, instabil- 

ity may occur due to a positive feedback between fluctuations of 

heat release rate and flow velocity upstream of the flame, even 

1 In general, the damping rate is highly uncertain and could be also considered 

as an uncertain parameter. 

Table 4 

Sensitivities computed at the mean values of the uncertain input pa- 

rameters. FD denotes the finite difference method. 

NIPCE FD 

p 1 2 3 

∂ ς/∂ n ( s −1 ) 39.68 39.56 39.73 39.61 

∂ ς/∂ τ ( s −2 ) 75.69 75.21 75.47 74.83 

∂ ς/∂ | R out | ( s −1 ) 56.02 54.85 56.31 54.80 

∂ ς/∂ (∠ R out ) ( s −1 ) 38010 37925 38682 38127 

without significant reflection of acoustic waves from the up- or 

downstream boundaries [33,34] . The intrinsic thermoacoustic feed- 

back mechanism is extensively discussed in references [35–37] . 

Stability analysis is performed using a thermoacoustic network 

model with flame transfer functions identified from CFD simula- 

tions. We consider uncertainties in operating and thermal condi- 

tions in CFD simulations, which result in uncertainties in the flame 

transfer function and, consequently, in the growth rate. 

This test case, like the next one presented in Section 5 , is a typ- 

ical application case for NIPCE. Monte Carlo simulation cannot be 

applied due to expensive CFD simulations. Application of the ad- 

joint approach for the current CFD solver is not feasible. Applica- 

tion of the active subspace is not justified, since there are only 

three uncertain parameters. In addition, the active subspace re- 

quires random samples to identify active variables and to fit a low 

order model, but the sampling is again problematic, because of the 

computational cost of the CFD simulations. Therefore, NIPCE is the 

method of choice to solve this type of problem with reasonable 

computational effort. 

4.1. Setup 

The experimental and numerical setups are shown in Fig. 3 . The 

experiment represents a laminar slit burner fed by a methane/air 

mixture. For a CFD simulation, we take one-half of a single flame 

in two dimensions, as it is done in the most of the numerical 

works on a Kornilov flame [32,38,39] . 

The only one uncertainty, reported in the experiment, is the 

burner plate temperature, which is between 373 and 423 K , but 

with unknown distribution. Given the lack of detailed knowledge 

we decide for a rather generic study and add two other uncertain 

operating parameter to the burner plate temperature. For the UQ 

study we increase the uncertainty in the burner plate temperature 

by an additional 50 K , resulting in T = 398 ± 50 K . We also intro- 

duce uncertainties in the inlet velocity u = 0 . 4 ± 0 . 02 m / s and in 

the equivalence ratio φ = 0 . 8 ± 0 . 1 . We choose uniform distribu- 

tion for all three parameters, because it is the least biased estimate 

which maximizes the entropy for given uncertainty bounds [40] . 
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Fig. 3. Left: sketch of the experimental test rig. Right: truncated CFD domain. 

The inlet temperature and the outlet pressure are kept constant: 

T in = 293 K and p out = 101 , 325 Pa . The chemistry is modeled us- 

ing the two-step reaction mechanism 2S-CM2 [38] . A structured 

two-dimensional mesh consists of 65 , 700 cells with 18 cells across 

the reaction zone. To compute the flame transfer function, we use 

a weakly compressible low Mach number solver implemented in 

OpenFOAM [39] . This solver does not resolve acoustics, since den- 

sity depends only on temperature and not on pressure. Hence, the 

thermoacoustic feedback is suppressed, and the flame does not 

experience thermoacoustic instability in the CFD simulation. This 

property of the weakly compressible solver is beneficial for the 

computation of the flame transfer function. 

4.2. Identification of the flame transfer function 

The flame transfer function is obtained from CFD simulation 

data by estimating the finite impulse response of the global heat 

release rate ˙ Q 

′ to a velocity perturbation upstream of the flame 

u ′ 
re f 

. A broadband velocity excitation is applied at the inlet, there- 

fore a single simulation is sufficient to generate the time series 

data needed for the identification of flame dynamics. The Mat- 

lab system identification toolbox is used in the present study, for 

further details on the application of system identification to the 

study of flame dynamics, the reader is referred to Tay-Wo-Chong 

et al. [41] , or the review of Polifke [42] . The flow time is set to 

0 . 25 s , which is sufficient to identify the flame transfer function. 

One CFD run takes around 24 h on a 28-core Intel Xeon E5-2697 

machine running at 2 . 6 GHz . 

In Fig. 4 the flame frequency response identified from a weakly 

compressible OpenFOAM simulation is compared against experi- 

mental data as well as numerical studies carried out by other au- 

thors. It is evident that the OpenFOAM solver is able to capture 

the flame dynamics and reproduces well the frequency response. 

Furthermore, the figure shows the frequency responses of a set of 

flame transfer functions, which reflect the effect of the uncertain- 

ties in burner plate temperature, inflow velocity and equivalence 

ratio on the flame dynamics. Clearly, there is considerable sensitiv- 
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Fig. 4. Flame frequency response for u = 0 . 4 m / s , T = 373 K , and φ = 0 . 8 : 

weakly compressible OpenFOAM simulation (black line), experiment of Kornilov 

et al. [32] (dark grey line), DNS of Silva et al. with upstream excitation [37] (dotted 

line), DNS of Duchaine et al. [38] (triangles). The set of the flame transfer functions, 

used in the thermoacoustic network model, is shown in light grey. 

Fig. 5. Scheme of the network model. 

ity of gain and phase 2 to changes in these three model parameters. 

Nevertheless, all identified flame transfer functions are smooth 

without bifurcations. This set of transfer functions forms the ba- 

sis of thermoacoustic stability and uncertainty analysis, which will 

be presented below. 

4.3. Thermoacoustic network model 

The instability is studied with a thermoacoustic network model 

shown in Fig. 5 . The network model is built with the in-house tool 

taX [43,44] . The interconnections between the network elements 

are established by up- and downstream acoustic waves f and g : 

f = 

1 

2 

(
p ′ 
ρ̄ c̄ 

+ u 

′ 
)

, (23) 

g = 

1 

2 

(
p ′ 
ρ̄ c̄ 

− u 

′ 
)

. (24) 

2 The importance of the very large variations in phase at frequencies above 

300 Hz should not be overestimated. In this frequency range, the gain is very low 

and indeed approaches zero, such that the phase is ill-defined. If one plots the 

flame frequency response in terms of its real and imaginary parts, variations at high 

frequencies tend to zero (not shown). 
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Fig. 6. PDF of the growth rate with 10 5 samples, p is the NIPCE order, the bin size is 3 s −1 . 

Table 5 

Mean and standard deviation of the growth rate. The last column indi- 

cates the number of simulations needed to construct the NIPCE. 

p μ ( s −1 ) σ ( s −1 ) Samples 

1 181.65 14.70 8 

2 182.02 17.34 27 

3 182.02 17.09 64 

We consider a plenum with l p = 0 . 05 m , a burner plate and a 

combustion chamber with l c = 0 . 2 m . The burner plate is mod- 

eled by an area contraction of 0.4, a duct with h = 1 mm and an 

area expansion of 2.5. The flame is placed directly after the area 

expansion and is modeled with a linearized Rankine–Hugoniot 

jump conditions combined with the flame transfer function iden- 

tified from the CFD simulation. The temperatures upstream and 

downstream of the flame are also taken from the CFD simulation. 

The velocity reference point is located in the middle of the duct 

through the burner plate. The equations for the used network ele- 

ments are summarized in Appendix A . The inlet and outlet bound- 

ary conditions are set to fully non-reflecting: R in = R out = 0 . The 

network model computes the growth rate of the thermoacoustic 

system within a few seconds. But the CFD simulation, required to 

identify the flame transfer for one set of uncertain parameters, is 

expensive. The UQ analysis consists of the following steps: 

1. Run CFD simulations to identify the flame transfer functions for 

the uncertain input parameter values defined by the quadrature 

rule. 

2. Build a network model for each flame transfer function, com- 

pute the growth rates. 

3. Build the NIPCE. 

4.4. Convergence study 

Since a single CFD simulation is expensive, it is not feasi- 

ble to validate the NIPCE results with a Monte Carlo simulation. 

Therefore, we perform a convergence study using only NIPCE of 

different orders. The objective is to increase the order until the 

statistical moments do not change significantly, which we inter- 

pret as convergence of results. Table 5 shows the mean and stan- 

dard deviation of the growth rate for the NIPCE with p = 1 , p = 2 

and p = 3 . The second and third order expansions yield almost the 

same mean and standard deviation. 

We also study the PDFs of the growth rate in Fig. 6 , to bet- 

ter assess the convergence. The PDFs are computed with the 

Monte Carlo simulation of polynomial expansions with 10 5 sam- 

ples, which suffice to ensure convergence of the PDF. The Monte 

Carlo simulation of the NIPCE is affordable, since the computation 

time of a single polynomial evaluation is negligibly small. The PDFs 

for the first, second and third order NIPCEs are shown in Fig. 6 . The 

NIPCEs with p = 2 and p = 3 match. For the chosen uncertainty 

parameter space, the NIPCE needs at least a tensor product expan- 

sion of quadratic one-dimensional polynomials for the uncertainty 

propagation. Further increase of polynomial order does not signif- 

icantly improve the PDF of the growth rate. We assume that the 

results are converged, and we stop the study with the third order 

expansion. For the convergence study 8, 27 and 64 CFD simula- 

tions were performed for p = 1 , p = 2 and p = 3 , respectively. For 

the further analysis, we consider only the NIPCE with p = 3 . 

4.5. Results 

According to Fig. 6 the growth rate is always positive, which 

indicates that the intrinsic thermoacoustic mode is unstable in 

the entire uncertain input parameter space. For u = 0 . 4 m / s , T = 

373 K and φ = 0 . 8 Silva et al. [37] showed that the intrinsic ther- 

moacoustic mode is unstable in a thermoacoustic network model 

(growth rate 170 s −1 ) as well as in a compressible CFD simulation 

with non-reflecting boundary conditions. It is noticeable that the 

PDF is skewed to left, which was not the case for the swirled com- 

bustor (see Fig. 2 ). The reason for the skewness was not investi- 

gated further, since it is beyond the scope of the paper. 

The derivatives of the NIPCE are computed for sensitivity anal- 

ysis. We are not interested in a local sensitivity, but rather in the 

sensitivity PDF, which reflects the global system behavior. The sta- 

tistical moments and the PDFs of the sensitivities are built by 

means of the Monte Carlo simulation with 10 5 samples and are 

shown in Fig. 7 . To allow an easy comparison of the sensitiv- 

ities, they are normalized with the corresponding standard de- 

viations σ i of the corresponding input parameters ξ i : σ i ∂ ς / ∂ ξ i . 

Note that if the input parameter distribution or its bounds change, 

then the corresponding normalized sensitivity will also change. 

Fig. 7 shows that the velocity sensitivity σ u ∂ ς / ∂ u is positive in 

the entire parameter space, i.e., increasing velocity always desta- 

bilizes the system. The mean and the spread of the temperature 

sensitivity σ T ∂ ς / ∂ T are the smallest among the three parameters, 

thus the effect of temperature on the growth rate can be safely 

neglected for the given parameter bounds. The equivalence-ratio 

sensitivity σϕ∂ ς / ∂ ϕ does not show a clear trend: its mean is neg- 

ative, but its standard deviation is roughly four times larger than 

the magnitude of the mean. As a consequence, the equivalence- 

ratio sensitivity has negative and positive values almost with equal 

probabilities. It is not possible to identify the most important pa- 

rameter between velocity and equivalence ratio. The velocity sen- 

sitivity has a clear destabilizing trend and the largest mean value, 

but the equivalence-ratio sensitivity, on the other side, has the 

largest spread and a non-monotonous trend. 
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Fig. 8. Stability maps. Isolines correspond to the growth rate ( s −1 ). 

Since the NIPCE provides the polynomial for the output quan- 

tity, a two-dimensional stability map can be plotted. The stabil- 

ity maps cannot be used to draw a conclusion for the entire 

three-dimensional input parameter space. Nevertheless, the stabil- 

ity maps can support the sensitivity analysis by visualizing overall 

trends. Figure 8 shows isolines of the growth rate depending on 

two input parameters. The remaining input parameter is kept con- 

stant at its mean value. The stability maps show that the increas- 

ing velocity increases the growth rate. The temperature has indeed 

a minor effect on the growth rate. The equivalence ratio behaves 

non-monotonically: there is a local maximum in the growth rate 

around φ = 0 . 78 . 

5. UQ with additional uncertain input parameters 

The aim of this section is to show that the UQ study can be 

extended by additional uncertain input parameters without signif- 

icant computational effort, provided that these parameters are in- 

cluded only in the thermoacoustic model. We investigate the same 

thermoacoustic network model as in the previous Section – see 

Fig. 5 – but we introduce additional uncertainties in the inlet and 

outlet boundary conditions R in and R out . 

5.1. Setup 

The inlet and outlet reflection coefficients of the network 

model are assumed to be uniformly distributed over the ranges 

0 ≤ R in ≤ 0.4 and −0 . 4 ≤ R out ≤ 0 . These uncertainty bounds were 

chosen with the intent to operate the thermoacoustic system in 

a parameter range, where stable as well as unstable behavior may 

occur (see below). The reflection coefficients are elements of the 

thermoacoustic network model, thus repeated network simulations 

have to be performed for the new setup. Fortunately, the iden- 

tified flame transfer functions can be reused from the previous 

Table 6 

Mean and standard deviation of the growth rate. The last column indi- 

cates the number of simulations needed to construct the NIPCE. Values 

in parenthesis indicate the number of CFD simulations. 

p μ ( s −1 ) σ ( s −1 ) Samples 

1 16.28 86.23 32 (8) 

2 12.21 82.92 243 (27) 

3 11.99 82.51 1024 (64) 

case, since they were computed with the weakly compressible CFD 

solver, which does not resolve acoustics. This implies that there is 

no need to perform any additional CFD simulations if we rely on 

the first, second or third order NIPCEs. Hence, the study is compu- 

tationally inexpensive despite the curse of dimensionality. 

5.2. Convergence study 

We compute the first, second and third order NIPCEs. Table 6 

shows statistical moments of the growth rate. Figure 9 shows the 

growth rate PDFs computed with Monte Carlo simulation of the 

NIPCE with 10 6 samples. The statistical moments and the PDFs in- 

dicate almost no difference between the second and third order 

expansions. Hence, we assume convergence, and we use the NIPCE 

with p = 3 for further analysis. 

5.3. Results 

In the previous configuration with non-reflecting boundaries 

R in = R out = 0 , the system was thermoacoustically unstable over 

the entire range of parameters considered. In the new configura- 

tion with non-zero reflection coefficients, the system may be sta- 

ble or unstable, depending on the respective values of reflection 

coefficients (see Fig. 9 and Table 6 ). The observation that an in- 
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crease in acoustic reflection coefficients may stabilize a system 

appears counter-intuitive at first sight. However, it has been re- 

ported repeatedly that intrinsic thermoacoustic instability may be 

stabilized by increasing reflections at the boundaries, and satisfac- 

tory explanations of this paradoxical behavior have been developed 

[33,37,45] . 

Using Eq. (21) , the risk factors are computed to be 60.8%, 58.8% 

and 58.6% for p = 1 , p = 2 and p = 3 , respectively. The agreement 

between the last two risk factors correlates with the matching 

PDFs for p = 2 and p = 3 (see Fig. 9 ). 

Figure 10 shows PDFs and statistical moments of the sensitiv- 

ities. In this case the sensitivities with respect to the two reflec- 

tion coefficients are dominant, i.e., they have the largest mean ab- 

solute values. Stronger acoustic reflection at the boundaries (i.e., 

higher R in or lower R out ) decreases the growth rate. This obser- 

vation supports the above statement about the possibly stabiliz- 

ing effect of stronger reflections on intrinsic thermoacoustic in- 

stabilities. In comparison to the non-reflecting system, the uncer- 

tainty in reflection coefficients considerably increases the temper- 

ature and equivalence-ratio sensitivities. We argue that these in- 

creased sensitivities are a result of the stronger coupling between 

the flame dynamics and the acoustic environment that results from 

stronger acoustic reflections at the boundaries. With stronger cou- 

pling, the relative phase of the flame transfer function and the 

acoustic impedance becomes more important and can significantly 

modify the Rayleigh index and thus the growth rate of a thermoa- 

coustic instability. The increasing equivalence ratio shows a pre- 

dominantly stabilizing trend, distinct from the non-reflecting con- 

figuration (see Fig. 7 ). As before, compared to other uncertain in- 

put parameters, temperature has only a minor effect on the system 

stability. Finally, the velocity sensitivity is weakly coupled with 

the reflection coefficients and thus remains almost unchanged and 

shows the same destabilizing effect as previously. 

To support our statements from the previous paragraph, the 

stability maps for ( R in , R out ), ( u, φ) and ( φ, R out ) are shown in 

Fig. 11 . The stability maps exhibit stable and unstable zones. The 

reflection coefficients have the largest influence on the stability. 

The higher R out and u are, the higher the growth rate is, and vice 

versa for φ and R in . 

6. Conclusion 

This study successfully demonstrates the use of non-intrusive 

polynomial chaos expansion (NIPCE) for forward uncertainty quan- 

tification and sensitivity analysis in thermoacoustics. In particular, 

NIPCE was applied to investigate the linear thermoacoustic stabil- 

ity of two premixed flame configurations. The first test case al- 

lowed validation of the NIPCE against a Monte Carlo simulation 

and it was found that already the first order expansion yields ac- 

curate results. In the second test case, we considered a low order 

thermoacoustic network model coupled with a non-trivial flame 

transfer function, which was identified by CFD simulation. Three 

parameters of the CFD model were considered uncertain. With 

computationally expensive CFD simulations and a low number of 

uncertain parameters, this is a typical application case for NIPCE. 

The study was extended by introducing additional uncertain pa- 

rameters. This could be done without significant computational ef- 

fort, since the additional uncertain parameters were included only 

in the low order network model, but not in CFD simulations. In 

both cases, the second order polynomials suffice to model the un- 

certainties. Previous UQ studies on thermoacoustic stability with 

adjoint approach [11–14] also concluded that second order models 

are good enough to model the growth-rate uncertainties. However, 

we should not generalize this conclusion. The second order mod- 

els might not suffice for higher input uncertainties or other system 

configurations. 
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Fig. 11. Stability maps. Isolines correspond to the growth rate ( s −1 ). 

In conclusion, NIPCE is suitable for problems with a small num- 

ber of uncertain input parameters and with expensive single sys- 

tem evaluations, where a Monte Carlo simulation is unfeasible. 

NIPCE treats the system under investigation as a “black box”, thus 

it can be applied to a wider variety of system models, provided 

that the uncertainties are continuous and smooth. For UQ of CFD 

simulations, characterized by a computation time from tens to 

hundreds of hours, the number of uncertain input parameters is 

limited to five or six for second order polynomials. On the other 

hand, for UQ of a low order model, characterized by a computa- 

tion time of few minutes, the parameter number can be increased 

to ten. The NIPCE is also a powerful framework for sensitivity anal- 

ysis, since it provides a polynomial function for the uncertain out- 

put. Mean, standard deviation and especially probability density 

function of sensitivities have been proven to be very useful for sys- 

tem analysis. 
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Appendix A. Network element equations 

The scattering matrix of a duct of a length L is [
g u 
f d 

]
= 

[
0 e −ω L 

c̄ −ū 

e −ω L 
c̄ + ̄u 0 

]
= 

[
f u 
g d 

]
. (A.1) 

The subscripts u and d denote the upstream and downstream po- 

sitions, respectively. 

The transfer matrix of a sudden area jump without losses is 

taken from [46] [
p ′ 
ρ̄ c̄ 

u 

′ 

]
d 

= 

[
1 

(
1 − α2 

)
M u 

−M d α

]
= 

[
p ′ 
ρ̄ c̄ 

u 

′ 

]
u 

, (A.2) 

where α is the area jump ratio A u / A d and M is the Mach number. 

The scattering matrix representation of a flame transfer func- 

tion is taken from [36] , where it was derived using linearized 

Rankine–Hugoniot equations including Mach number effects 

[
p ′ 
ρ̄ c̄ 

u 

′ 

]
d 

= 

⎡ 

⎣ 

ρ̄u ̄c u 
ρ̄d ̄c d 

−
(

T d 
T u 

− 1 

)
M d 

−γ̄
(

T d 
T u 

− 1 

)
M u 1 

⎤ 

⎦ 

[
p ′ 
ρ̄ c̄ 

u 

′ 

]
u 

+ 

[
−M d 

1 

](
T d 

T u 
− 1 

)
ū u 

˙ Q 

′ 
¯̇
 Q 

, (A.3) 
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Quantification of the Impact
of Uncertainties in Operating
Conditions on the Flame
Transfer Function With
Nonintrusive Polynomial Chaos
Expansion
Nonintrusive polynomial chaos expansion (NIPCE) is used to quantify the impact of
uncertainties in operating conditions on the flame transfer function (FTF) of a premixed
laminar flame. NIPCE requires only a small number of system evaluations, so it can be
applied in cases where a Monte Carlo simulation is unfeasible. We consider three uncer-
tain operating parameters: inlet velocity, burner plate temperature, and equivalence
ratio. The FTF is identified in terms of the finite impulse response (FIR) from computa-
tional fluid dynamics (CFD) simulations with broadband velocity excitation. NIPCE
yields uncertainties in the FTF due to the uncertain operating conditions. For the chosen
uncertain operating bounds, a second-order expansion is found to be sufficient to repre-
sent the resulting uncertainties in the FTF with good accuracy. The effect of each operat-
ing parameter on the FTF is studied using Sobol indices, i.e., a variance-based measure
of sensitivity, which are computed from the NIPCE. It is observed that in the present
case, uncertainties in the FIR as well as in the phase of the FTF are dominated by the
equivalence-ratio uncertainty. For frequencies below 150 Hz, the uncertainty in the gain
of the FTF is also attributable to the uncertainty in equivalence-ratio, but for higher fre-
quencies, the uncertainties in velocity and temperature dominate. At last, we adopt the
polynomial approximation of the output quantity, provided by the NIPCE method, for fur-
ther uncertainty quantification (UQ) studies with modified input uncertainties.
[DOI: 10.1115/1.4040745]

Introduction

Thermoacoustic stability analysis should be an essential part of
the design process of low-emission gas turbines. Typically, stabil-
ity analysis is performed using low-order network models [1–5],
which require a reliable model for the flow–flame interaction.
Such a model can be provided in terms of the flame transfer func-
tion (FTF). The FTF can be obtained experimentally [6–8] or
numerically [9–12]. Unfortunately, a lack of exact knowledge of
operating conditions (such as inflow conditions or wall tempera-
tures) yields uncertainties in the FTF, which should be quantified.

In this work, we show how to account for uncertain operating
conditions in the identification of a flame transfer function from
numerical simulations. We use nonintrusive polynomial chaos
expansion (NIPCE) for that purpose. This method is particularly
appealing in the industrial design process, since it treats the inves-
tigated system as a black box, so no modifications of the computa-
tional fluid dynamics (CFD) solver are required. In contrast to
Monte Carlo simulations, NIPCE requires only a comparatively
small number of CFD simulations (27 simulations in the present
case), allowing uncertainty studies that would not be feasible oth-
erwise. The method is easy to use, but constrained to a small num-
ber of uncertain parameters—typically less than ten.

Recently, we applied NIPCE in order to compute the uncertain-
ties in the growth rate of thermoacoustic modes and validated the
results against Monte Carlo simulation [13]. The present study
focuses on uncertainty quantification (UQ) of a flame transfer

function that is modeled as a finite impulse response (FIR) with
uncertain coefficients. The uncertain FTF can be used to validate
combustion simulations against experiments, where the operating
conditions are not exactly known, or perform a more reliable sta-
bility analysis.

In the Flame Response Modeling section, we describe how we
model the flame dynamics. Afterwards, we briefly describe the
NIPCE methodology and explain how to use it for UQ of the
flame model. Then, we perform a UQ study on a laminar flame
with three uniformly distributed uncertain input parameters, i.e.,
inlet velocity, burner plate temperature, and equivalence ratio.
Finally, we show how one may re-use the constructed uncertain
flame model for a UQ study with input parameters that follow a
distribution that is narrower and/or of a different type. Such a sce-
nario could be relevant for an industrial development process,
where input parameter uncertainties are initially large, but then
reduce as the development evolves. A summary of results and an
outlook on further investigations concludes the paper.

Flame Response Modeling. For longitudinal low-frequency
instabilities, the flame can be considered as acoustically compact.
In this case, details of the spatial distribution of heat release rate _q
are irrelevant for system stability, and it is sufficient to consider
only the global heat release rate _Q. Typically, fluctuations of the
global heat release rate _Q

0
are related to velocity fluctuation u0ref at

a reference position upstream of the flame.
A simplistic flame response model is the n–s model introduced

by Crocco [14,15]: a flame responds with a certain gain n after a
constant time delay s to a perturbation u0ref . This relation can be
written in the time domain or the Laplace domain
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_Q
0

tð Þ
_Q
¼ n

u0ref t� sð Þ
uref

or
_̂Q

_Q
¼ ne�ss ûref

uref

(1)

Here, the overline indicates time-averaged quantities, and the cir-
cumflex indicates the Laplace transform of fluctuating quantities.
The Laplace variable s ¼ 1þ ix comprises the growth rate ð�1Þ,
the imaginary number i, and the angular frequency x.

In order to describe more realistic, nontrivial flame response
functions, it has been proposed to generalize the n–s model by
regarding n and s as functions of frequency. However, this idea
has no sound physical justification and indeed the concept of a
frequency-dependent time lag is ill-conceived. Instead, it is appropri-
ate to model flame dynamics as a superposition of several time-lagged
responses of varying strength with distributed time delays [16]. As a
discrete-time signal, this superposition corresponds to a FIR model
[17], which is used in this study for modeling the flame dynamics

_Q
0

l½ �
_Q
¼
XN�1

k¼0

bk
uref l� k½ �

uref

(2)

where ½l� indicates the lth discrete time-step, bk are the FIR coeffi-
cients. Given the sampling time Dt, the time delay between lth
and kth steps is ðl� kÞDt, and the length of FIR is NDt.

The finite impulse response can be z-transformed to a flame
transfer function FðsÞ

FðsÞ ¼
XN�1

k¼0

bke�skDt (3)

Note that this FTF is defined for a Laplace variable s, see for
instance [18]. Nevertheless, for graphical representation, the FTF
is typically evaluated for purely imaginary values s, which corre-
sponds to the angular frequency x. In this case, one speaks of the
flame frequency response (FFR) FðxÞ, since the response is eval-
uated only for frequencies with zero growth rate. The most com-
mon representation of the FFR is in terms of gain jjFðxÞjj and
phase /FðxÞ, which are evaluated for an FIR model as

jjFðxÞjj ¼
XN�1

k¼0

XN�1

l¼0

bkble
�ixðk�lÞDt

 !1=2

(4)

/FðxÞ ¼ atan2 �
XN�1

k¼0

bk sinðxkDtÞ;
XN�1

k¼0

bk cosðxkDtÞ
 !

(5)

If the flame response exceeds linearity limits, then it is typically
modeled by a flame describing function [19,20], which can be rep-
resented as an FIR model with coefficients depending on excita-
tion amplitude [21]. In this work, we focus on the linear regime,
but in principle, the NIPCE method can also be applied to flame
describing functions.

Nonintrusive Polynomial Chaos Expansion

Methodology

Nonintrusive polynomial chaos expansion is an established
method for UQ and is extensively documented and implemented
in several open source software packages [22–24]. In this paper,
we only briefly review the NIPCE methodology.

Uncertainty Quantification. Nonintrusive polynomial chaos
expansion approximates an output quantity y as a truncated sum
of multidimensional orthogonal polynomials Wi of a number N
uncertain input parameters n ¼ ½n1; n2;…; nN �

y ffi
XP�1

i¼0

aiWiðnÞ (6)

where ai are the weighting coefficients and P is the total number
of expansion terms. The uncertain input parameters n are uncorre-
lated and standardized. If the uncertain input parameters are corre-
lated, then they should be transformed into a reduced number of
independent variables. The multidimensional polynomials WiðnÞ
are constructed using a tensor-product expansion of one-
dimensional (1D) polynomials wðnjÞ, i.e., the multidimensional
polynomials are permutations of one-dimensional polynomials in
all parameter dimensions. In this case, the total number of expan-
sion terms P is constrained by one-dimensional polynomial-order
bounds pj for the jth uncertain input parameter

P ¼
YN
j¼1

ðpj þ 1Þ (7)

The above-mentioned tensor-product expansion supports ani-
sotropy. Hence, the polynomial-order bounds pj can be chosen
independently for each uncertain parameter nj. In this paper, we
consider the same polynomial-order bounds for all uncertain input
parameters p ¼ p1 ¼ p2 ¼… ¼ pN . For brevity, we also refer to
the NIPCE order as equal to the one-dimensional polynomial-
order bound p, although the effective order of the NIPCE is Np
due to the tensor-product expansion of the one-dimensional
polynomials.

The choice of the one-dimensional polynomial wðnjÞ depends
on the probability distribution of the uncertain input parameter nj.
Each probability distribution type has its own optimal polynomial
type, as listed in Ref. [23]. Note that each nj can follow its individ-
ual distribution.

In this study, we assume that all uncertain input parameters are
uniformly distributed. Hence, according to Ref. [23], we use
Legendre polynomials for the construction of the polynomial
expansion. The Legendre polynomial of the k-th order can be
computed using Rodrigues’ formula [25]

wk nj

� �
¼ 1

2kk!

d

dnj

n2
j � 1

� �k
� �

(8)

For instance, a three-dimensional polynomial W reads

Wðn1; n2; n3Þ ¼ wiðn1Þwjðn2Þwkðn3Þ (9)

The polynomials Wi are orthogonal. Hence, the weighting coef-
ficients ai of the expansion, defined in Eq. (6), are computed using
a spectral projection

ai ¼

ð
X

yWiq n
� �

dnð
X
W2

i q n
� �

dn

(10)

where X is the uncertain input parameter space. The joint proba-
bility density function (PDF) qðnÞ is computed from one-
dimensional probability density functions, since the uncertain
input parameters are uncorrelated. The integral in the denominator
of Eq. (10) is determined analytically, whereas the integral in the
nominator is computed by a Gauss quadrature, which requires
pj þ 1 quadrature points for exact integration in each dimension.
If we consider, for instance, a three-dimensional polynomial with
p¼ 3, then ð3þ 1Þ3 ¼ 64 integration points are required to deter-
mine all coefficients of the expansion. Note that the integration
points are strictly defined by the Gauss quadrature rules, and the
points do not coincide for different polynomial orders.

The mean l and variance r2 of the output quantity are defined
as

l ¼ EðyÞ ¼
ð

X
yqðnÞdn (11)
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r2 ¼ VarðyÞ ¼
ð

X
ðy� lÞ2qðnÞdn (12)

Due to the orthogonality condition, it can be shown that the mean
and variance are equal to the first two polynomial coefficients:
l ¼ a0 and r ¼ a1.

Sensitivity Analysis. The polynomial approximation of the
output quantity makes possible the (approximate) analytical com-
putation of sensitivities, i.e., derivatives of an output quantity with
respect to input parameters

@y

@ni

¼
XP�1

j¼0

aj

@Wj n
� �

@ni

(13)

These derivatives can be evaluated at the means of input parame-
ters, or one can compute the mean and standard deviation of the
derivatives. The latter approach was used for the growth-rate sen-
sitivity analysis of thermoacoustic systems in a prior study [13].

In this study, we perform a derivative-free sensitivity analysis
using variance-based sensitivity indices, also called Sobol indices
[26]. They are a very effective tool to determine most critical
uncertain parameters. Sobol indices Sni

and Sninj… quantify contri-
butions from each input parameter and from parameter interac-
tions to the output variance

Si ¼
Var E yjnið Þð Þ

Var yð Þ
(14)

Sij ¼
Var E yjni; nj

� �� �
Var yð Þ

� Si � Sj (15)

Sijk ¼
Var E yjni; nj; nk

� �� �
Var yð Þ

� Si � Sj � Sij � Sik � Sjk (16)

where Eðyj…Þ is the conditional expectation. Si is the individual
contribution of parameter ni, Sij, and Sijk are the contributions of
interactions between parameters (ni, nj) and (ni, nj, nk), respec-
tively. The sum of all Sobol indices yields unity

XN

i¼1

Si þ
XN

i¼1

XN

j>i

Sij þ � � � þ S1;2;…;N ¼ 1 (17)

We implemented NIPCE in MATLAB. Our implementation allows
for an easy access to the polynomials and their postprocessing
using the Symbolic Math Toolbox.

Application to Finite Impulse Response Model. Since the
flame is modeled by an FIR (see Eq. (2)), uncertainties in FIR
coefficients bk are under investigation. Each coefficient is a func-
tion of uncertain inputs. NIPCE yields the polynomial approxima-
tion bkðnÞ as well as the mean bk and standard deviation rbk

.
Sobol indices of the FIR are computed analytically by integration
of bkðnÞ according to Eqs. (14)–(16).

Uncertainty in the real part of the FFR may also be computed
analytically

EðReðFðxÞÞÞ ¼
XN�1

k¼0

bk cosð�xkDtÞ (18)

VarðReðFðxÞÞÞ ¼
XN�1

k¼0

XN�1

l¼0

covðbk; blÞcosðxkDtÞcosðxlDtÞ (19)

where bk ¼ EðbkÞ and the covariance matrix covðbk; blÞ
¼ EðbkblÞ � bkbl. For uncertainty in the imaginary part of the

FFR, cosðÞ should simply be replaced by sinðÞ in Eqs. (18) and
(19).

Unfortunately, we cannot propagate uncertainties in the FIR
coefficients to the gain and phase of the FTF in a compact analyti-
cal form without additional assumptions, see Eqs. (4) and (5).
Therefore, we apply a Monte Carlo simulation on the complex-
valued frequency response function to access the statistical
moments and Sobol indices for the gain and phase. Note that the
Monte Carlo simulation takes at most a couple of minutes, since a
single polynomial evaluation is very fast. The Global Sensitivity
Analysis Toolbox [27] for MATLAB is used to compute Sobol indi-
ces numerically.

Computational Fluid Dynamics Model and Numerical

Setup

We investigate the flame response of a laminar slit burner that
was experimentally studied by Kornilov et al. [28]. The burner is
fueled by the methane-air mixture. There are several numerical
studies of the Kornilov flame [28–31]. A prior UQ study of a
flame stability using NIPCE was also performed for the same
setup [13].

The setup is sketched in Fig. 1. We simulate only one-half of a
single flame in two-dimensional and use a truncated simulation
domain with 65,700 structured cells. The flame is resolved with
18 cells in the streamwise direction.

For the CFD simulations, we use a weakly compressible low
Mach number solver implemented in OpenFOAM [31]. This solver
does not resolve the acoustics and suppresses thermoacoustic
feedback, so no thermoacoustic instabilities can occur during sim-
ulations. The reaction is modeled by the two-step reaction mecha-
nism 2S-CM2 [29].

The operating pressure is 101,325 Pa and the inlet temperature
is 293 K. We consider uncertainty in three operating conditions:
inlet velocity u ¼ 0:460:02 m/s, burner plate temperature
T¼ 398 6 50 K, and equivalence ratio / ¼ 0:860:1. The uncer-
tainty bounds are chosen in a rather generic way.1 The uniform
distribution was chosen, since it requires the least knowledge
about the uncertain parameters: only the uncertainty bounds

Fig. 1 Left: Sketch of the experimental test rig. Right: trun-
cated CFD domain. Adapted from Ref. [13].

1No information about uncertainties in the experiment was reported except of the
burner plate temperature that was estimated to be between 373 K and 423 K.
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should be defined. The three parameters are assumed independent.
If the uncertain parameters are correlated, then they should be
transformed into independent parameters.

Identification of the Flame Response

To estimate one flame impulse response, we perform one single
CFD simulation with imposed broadband velocity excitation.
We use MATLAB system identification (SI) toolbox for the FIR
estimation. The identification process is well described by
Tay-Wo-Chong et al. [12] or in the review of Polifke [17]. The
length of a time series required for the identification is 0.25 s.
That corresponds to roughly 24 h computation time on a 28-core
Intel Xeon E5-2697 machine running at 2.6 GHz. The identified
FIR model has 30 coefficients with the sampling time Dt¼ 0.5 ms.

The frequency response of the Kornilov flame as computed
from the identified FIR was validated with good accuracy against
experimental data and other numerical simulations in Refs. [13]
and [30].

Results and Discussion

Due to high computational costs of CFD simulations, we cannot
validate the NIPCE results against Monte Carlo simulation.
Therefore, we use a sequence of increasing polynomial orders to
judge the convergence. For convenience, we keep the same poly-
nomial order for all uncertain inputs. We perform the NIPCE anal-
ysis with p¼ 1, p¼ 2, and p¼ 3 resulting in 8, 27, and 64 CFD
simulations, respectively.

Uniform Distribution. p¼ 1 ( ), p¼ 2 ( ), AND p¼ 3 ( )
Fig. 2 (top) shows the mean FIR and confidence intervals given
by 62:58r. These confidence intervals are often chosen, since
they correspond to 99% probability assuming normally distributed
output uncertainties. The NIPCE with p¼ 1 predicts well the
means of the FIR coefficients bk, but there are small differences in
standard deviation rbk

to the NIPCE with p¼ 2 and p¼ 3 starting
from the overshoot in the impulse response. The standard

deviation is better predicted by the NIPCE with p¼ 2 and p¼ 3.
In fact, the results do not significantly change from p¼ 2 to p¼ 3.
Thus, we conclude that p¼ 2 suffices to model the uncertainties in
the FIR for the given uncertainty bounds.

Figure 2 (top) shows a typical flame behavior: the flame
responses to the impulse velocity perturbation with the delayed
increase of the heat release rate, followed by a restoration process.
Both processes have time delays that are related to the convective
transport of disturbances along the flame [32].

Figure 2 (top) also shows all FIR models used to construct the
NIPCE. Some FIR coefficients are not symmetrically distributed
around their means, and few coefficients lie outside of the 62:58r
confidence region for t � 0:006 s. Figure 3 shows the PDFs for
six FIR coefficients that correspond to the impulse responses at
six time-instants. PDFs are computed using a Monte Carlo simula-
tion with 105 samples, which were enough to guarantee statistical
convergence. PDFs do not follow a uniform or normal distribu-
tion; they show a rather complex shape with strong skewness or
even two local maxima. Furthermore, the PDF shapes differ
between the FIR coefficients considerably.

Four Sobol indices Su, ST, S/, and ST/ are shown in Fig. 2
(bottom). SuT ; Su/; SuT , and SuT/ are not shown, since their contri-
butions are negligible. S/ has the highest value for all FIR coeffi-
cients indicating that the uncertainty in equivalence ratio
dominates other contributions. The second important contribution
comes from the coupling terms between T and / at the overshoot
and undershoot of the impulse response.

According to Eqs. (18) and (19), the uncertainty in complex-
valued FFR can be computed analytically from the uncertain FIR
coefficients. Figure 4 shows the complex-valued frequency
response function. All polynomials predict well the mean fre-
quency response, but the NIPCE with p¼ 2 and p¼ 3 are better in
the prediction of the standard deviation.

As mentioned in section NIPCE Methodology, we cannot ana-
lytically propagate the uncertainties from the complex-valued
FFR to gain and phase. Thus, we perform again a Monte Carlo
simulation with 105 samples to compute uncertainties in the gain
and phase, which are shown in Fig. 5. The flame frequency
response shows a typical behavior with an excess gain around
100 Hz. For higher frequencies, the gain decreases and roughly at
300 Hz the flame, practically does not respond to velocity fluctua-
tions. The phase is decaying with an almost constant slope deter-
mined by the characteristic time delays in the finite impulse
response.

The NIPCE with p¼ 1 reproduces well the mean of the gain
and phase, but overestimates the standard deviation in the gain by
roughly a factor of 2 between 100 Hz and 300 Hz in comparison to
the NIPCE with p¼ 2 and p¼ 3. Thus, to model the uncertainty in
the gain, we need at least a second-order polynomial. The phase
uncertainty grows with frequency and becomes very large for
high frequencies. For frequencies below 300 Hz, all three

Fig. 2 Top: All identified firs used for construction of the NIP-
CEs ( ); FIR represented by the mean coefficients and their
confidence intervals 62:58r for the NIPCE with p 5 1 ( , ),
p 5 2 ( , ), and p 5 3 ( , ). Bottom: sobol indices Su (1), ST

( ), S/ ( ), and ST/ ( ) for the NIPCE with p 5 3

Fig. 3 Probability density function (of FIR coefficients with the
mean (—) and confidence intervals 62:58r ( )
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polynomials yield almost the same standard deviation. Starting
from 300 Hz, the heat release rate is close to zero and might
change the sign, switching the phase by 180 deg. Therefore, the
phase uncertainty drastically increases where the gain is close to
zero. Such a problem does not exist in a complex-valued represen-
tation of the FFR, see Fig. 4.

Frequency responses of all identified FIRs used for the NIPCE
construction lie within the 62:58r confidence region. This obser-
vation is supported by Fig. 6, which shows PDFs of the gain for
six different frequencies. All PDFs fit well into the confidence
regions. Furthermore, the last four of them are even almost
symmetric.

The Sobol indices of the NIPCE with p¼ 3 are shown in Fig. 5
(bottom). We do not consider frequencies above 300 Hz, since the
gain is almost zero there. For frequencies below 150 Hz, the gain
uncertainty is mostly due to equivalence-ratio uncertainty. For
higher frequencies, the gain uncertainty is mainly governed by the
velocity and temperature. This result is remarkable, since the uncer-
tainty in all FIR coefficients is mostly due to the equivalence ratio
(see Fig. 2). Such a change in the Sobol indices occurs due to the
interaction of uncertainties in the FIR coefficients while propagat-
ing to the gain of the FTF. The Sobol indices for the phase are simi-
lar to these of the FIR coefficients: S/ and ST/ dominate.

The reader should keep in mind that Sobol indices always cor-
respond to a particular set of input uncertainties and their bounds.
Any modification of input-uncertainty bounds or distribution type
results in changes in Sobol indices.

Input-Uncertainty Modification. Since NIPCE yields a poly-
nomial approximation of the output quantity, it can be adopted for
further UQ studies with modified input uncertainties. This might
be beneficial during a design process, where details of the input
uncertainties are not known a priori and have to be redefined sev-
eral times. In a first iteration of the UQ study, the NIPCE should
be constructed assuming a uniform distribution with compara-
tively large uncertainty bounds for all input parameters, reflecting
the fact that at the beginning of a design process uncertainties are
typically high. The uniform distribution provides the best starting

point for this situation, since it aims for a polynomial that is
approximated with equal accuracy in the entire parameter space.
In subsequent studies, as more and refined information on input
parameter values becomes available, one would take a smaller
parameter space: reduce the number of parameters or decrease the
parameter bounds. One could even change the parameter distribu-
tion type. The mean and variance of the output quantity have to be
manually computed integrating the polynomial according to Eqs.
(11) and (12) with the corresponding joint probability density
function qðnÞ and parameter space X. Certainly, the approxima-
tion quality might reduce: small-scale features that are not cap-
tured on a larger domain might become important on a smaller
domain. Thus, several polynomials with increasing order should
be investigated to ensure converged results.

For proof of concept, we use the previously constructed NIP-
CEs to propagate reduced input uncertainties that are either nor-
mally or uniformly distributed. The normal input distribution is

Fig. 4 Complex-valued frequency response of all identified firs
used for construction of the NIPCES ( ). Mean FFR and its
confidence intervals 62:58r for the NIPCE with p 5 1 ( , ),
p 5 2 ( , ), p 5 2 ( , ) AND p 5 3 ( , ).

Fig. 5 Top: frequency response of all identified FIRS used for
construction of the NIPCES ( ); mean FFR and its confidence
intervals 62:58r for the NIPCE with p 5 1 ( , ), p 5 2 ( , ),
and p 5 3 ( , ). Bottom: Sobol indices Su (1), ST ( ), S/ ( ),
and ST/ ( ) for the NIPCE with p 5 3.
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defined such that its 99% confidence interval is equal to the
parameter space of the prior uniform input distribution:
2:58ru¼ 0.02 m/s, 2:58rT ¼ 50 K, and 2:58r/ ¼ 0:1. The new
uniform distribution has the same standard deviation as this nor-
mal distribution, resulting in u¼ 0.4 6 0.0134 m/s, T¼ 398 6 34
K, and / ¼ 0:860:067. Choosing the same standard deviations
for the two modified input uncertainties allows us to study the
effect of the distribution type.

Figure 7 shows uncertainty in the FIR coefficients for normally
(top) and uniformly distributed input parameters (bottom). For
both distributions, the NIPCE with p¼ 1 underestimates the stand-
ard deviation and shows slightly different mean values in compar-
ison to p¼ 2 and p¼ 3. The NIPCE with p¼ 2 and p¼ 3 perform
similarly and yields almost the same results. Therefore, we con-
clude that the NIPCE with p¼ 2, constructed originally for the
uniformly distributed inputs with larger uncertainties, can be used
in this case for both uniform and normal distributions with
reduced uncertainties.

The mean FIR coefficients as well as their standard deviations
are almost identical for uniformly and normally distributed inputs.

Hence, we conclude that exact knowledge of the input distribution
type is not crucial for the present UQ study. It is more important
to specify the correct standard deviation of the input uncertainties.

Joint Uncertainty From Operating Conditions and System
Identification. In general, SI estimates a model, i.e., the SI
results are inherently uncertain. Since we consider a laminar
flame in this study and carry on the CFD simulation for a signifi-
cant number of flame time scales, the FIRs are identified with a
very low uncertainty (fit to estimation data more than 97%). In
this case, the uncertainty due to the SI process is negligible in
comparison to the uncertainty coming from operating conditions:
rNIPCE=rSI � 10� 100.

However, the uncertainty of SI results is likely to become sig-
nificant for large eddy simulation of turbulent flames, due to noise
that results from resolved turbulent fluctuations, and due to the
fact that long time series entail very significant computational
costs [33]. In this case, one is advised to consider joint uncertain-
ties from operating conditions as well as system identification.
Unfortunately, it is not obvious how to do that. In a worst-case
scenario, which is the easiest case to consider, one may assume
that uncertainties are independent. Then, the joint uncertainty
results in r ¼ ðr2

NIPCE þ r2
SIÞ

1=2
. Since rSI might vary between the

FIR samples, which are required for the NIPCE construction, one
could average rSI over all the samples or take its maximum value.

Summary and Outlook

Most UQ studies in thermoacoustics have focused on Helm-
holtz equation [34–38] or on low-order network models. In both
cases, Monte Carlo simulation is feasible for UQ validation. In the
current work as in Ref. [13], we made a step further by studying
the uncertainty in the case for which Monte Carlo simulation is no
longer possible due to high computational costs. We used non-
intrusive polynomial chaos expansion for UQ because it con-
verges after a small number of CFD simulations and thus allows
for the investigation of computationally expensive problems.

We studied uncertainty in the flame transfer function due to
uncertainties in operating conditions. We considered three uni-
formly distributed uncertain input parameters: inlet velocity,
burner plate temperature, and equivalence ratio. Using the NIPCE
method, we modeled the flame by a finite impulse response with
uncertain coefficients. Then, we propagated uncertainties in the
FIR coefficients to a flame frequency response. The second-order
polynomial, constructed from 27 CFD simulations, was enough to
model the uncertainties.

To quantify uncertainty contributions of each single input
parameter and their combinations, we introduce Sobol indices.
For the chosen uncertain operating bounds, the uncertainty in the
finite impulse response as well as in the phase of the frequency
response was mostly attributed to the equivalence-ratio uncer-
tainty. At frequencies below 150 Hz, uncertainty in the gain of the
frequency response was also dominated by the equivalence ratio.
For higher frequencies uncertainties in velocity and temperature
were dominant. Note that these results cannot be generalized,
since they strictly belong to the distribution of the input uncertain-
ties assumed in this study.

We showed that a polynomial, constructed for a UQ study with
uniformly distributed input, can be used for other UQ studies with
smaller input uncertainties. For that purpose, we additionally con-
sidered normal and uniform input distributions with the same
standard deviations. The uncertainty in the finite impulse response
was affected by the standard deviation of the inputs, but not by
the input distribution type.

We briefly outlined a simple way to combine uncertainties
coming from operating conditions and from FIR identification, if
these uncertainties are assumed independent. In case of a laminar
flame, uncertainty due to identification process is negligible, so
the joint uncertainty can be safely neglected. The next step could
be to study turbulent flames. Turbulence increases the uncertainty

Fig. 6 Probability density function of frequency response with
the mean (—) and confidence intervals 62:58r ( )

Fig. 7 Mean FIR with confidence intervals 62:58r for reduced
input-parameter uncertainties with normal distribution (top)
and uniform distribution (bottom) cf. Fig. 2
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due to FIR identification procedure, thereby necessitating evalua-
tion of the joint uncertainty. Given that identification of the turbu-
lent flame response requires significant computational resources,
one could reduce the number of uncertain parameters to two in a
worst case scenario. In that case, only 9 instead of 27 CFD simula-
tions would be required to construct a second-order NIPCE.

Acknowledgment

The authors gratefully acknowledge Leibniz Supercomputing
Centre for providing access to HPC resources (Linux-Cluster).
We would also like to thank Armin Witte for a valuable discus-
sion about the uncertainty in the flame transfer function.

Nomenclature

b ¼ finite impulse response coefficient
cov ¼ covariance

E ¼ expected value
f ¼ frequency (Hz)

F ¼ flame frequency response (FFR)
F ¼ flame transfer function (FTF)
i ¼ imaginary number

i; j; k; l ¼ indices
Im ¼ imaginary part

n ¼ gain of the n–s model
N ¼ number of uncertain input parameters
p ¼ one-dimensional polynomial-order bound
P ¼ total number of expansion terms
_q ¼ local heat release rate (W/m3)
_Q ¼ global heat release rate (W)

Re ¼ real part
s ¼ Laplace variable
S ¼ Sobol index
t ¼ time (s)

T ¼ temperature (K)
u ¼ velocity (m/s)

Var ¼ variance
y ¼ output quantity
a ¼ polynomial weighting coefficient

Dt ¼ sampling time (s)
l ¼ mean
n ¼ uncertain input parameter
q ¼ probability density function
r ¼ standard deviation
�1 ¼ growth rate (rad / s)

s ¼ time delay of the n–s model (s)
/ ¼ equivalence ratio
W ¼ multidimensional orthogonal polynomial
w ¼ one-dimensional orthogonal polynomial
x ¼ angular frequency (rad/s)
X ¼ uncertain input parameter space
ðÞ ¼ mean or time-averaged quantity
ðÞ0 ¼ fluctuating quantity

^ðÞ ¼ Laplace transformed quantity
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