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Abstract

Accompanied by steps towards market liberalisation, dairy farmers in the Euro-
pean Union have been confronted with increased price risk in recent years, which
might affect their innovation behaviour. We examine technological change and
technical efficiency of specialised dairy farms in West Germany before and during
a phase of volatile milk prices. Additionally, we compare the results with mixed
dairy farms, which might have an advantage by diffusing price risk through diversi-
fication. Our results indicate a slowdown in technological change in specialised as
well as in mixed dairy farming coinciding with the start of a volatile market phase.

Keywords: Dairy farms; European dairy sector; milk price; price risk; technical
change; technological change.

JEL classifications: Q12, Q18, O30.

1. Introduction

Dairy farmers in the European Union have faced several changes in the production
environment in recent decades. The implementation of labour-saving technologies has
allowed herd sizes to grow continuously while the overall number of dairy farms has
declined, resulting in considerable structural changes. Under the quota regime, total
milk production has remained fairly stable, but from 2000 to 2013, the number of
dairy farms in the three largest milk-producing countries declined by approximately
36%, 39% and 53% in Germany, France and the United Kingdom, respectively.
Accordingly, average herd sizes increased in these countries by approximately 64%,
46% and 58% (Eurostat, 2018). This development was accompanied by efforts of the
European Commission to lead the dairy sector towards deregulation by lowering
intervention price levels, eliminating export subsidies, liberalising milk quota trans-
fers, gradually increasing quota volumes and, finally, abolishing the milk quota in
2015. Even before this date, dairy farmers in Europe were confronted with increased
volatility of milk prices. While for a long period milk price levels had been dominated
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by seasonal variation, a disruptive pattern began in 2007 (Figure 1). Strong domestic
and worldwide demand led to a price high in 2007 that was followed by a sharp
decrease due to lower demand and a rebound in supply, which resulted in the dairy
sector crisis in 2009 (USDA, 2007, 2008).

Farm family income and a farm’s financial resources for maintaining and expand-
ing business activities are directly dependent on output prices. Increased price volatil-
ity therefore translates into increased risk for the financial well-being of farms.
Although it is debatable to what degree the volatility of agricultural commodity prices
has indeed increased when viewed in a historic context (Huchet-Bourdon, 2011), the
financial distress of dairy farmers due to recent price movements is well documented
by financial aids granted by the European Commission in 2009 (European Commis-
sion, 2009).

Technological change as well as the average level of technical efficiency within an
industry depend on producers’ willingness and ability to invest in new equipment and
production techniques (Sauer and Latacz-Lohmann, 2015). If farmers are risk-averse
in their investment decisions and abstain from or postpone investments because of the
fear of not being able to meet future credit obligations, increased output price volatil-
ity can have negative implications for innovation adoption in the dairy sector.
Although a link between price risk and innovation behaviour has been established by
other authors (e.g., Sauer and Zilberman, 2012), we are not aware of any empirical
studies directly examining technological change in view of the recent price turbulences
in the European dairy sector.

We examine how technological change in the sector has been affected by increased
price uncertainty. Studying the causal relationship between the two variables using
microdata covering a limited time span is impeded by the fact that the period of vola-
tile agricultural commodity prices coincided with profound changes in the regulatory
environment and because milk price volatility varies over time but shows little vari-
ance across farms. Although our approach does not establish explicit causal links, it
offers valuable insights into technological change during recent uncertain market
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Figure 1. Development of milk prices and intervention price levels in the EU and Germany.

Sourceof data: EU Milk Market Observatory (2019)
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phases. To this end, we examine the rate of technological change and technical effi-
ciency change in West German dairy farming before and during a period of volatile
milk prices. Additionally, we compare the results for specialised farms with the results
for dairy production on mixed farms. As long as output prices are not perfectly corre-
lated, diversification in output activities is a means of countering output price risk.
Therefore, mixed dairy farms might behave differently from their more specialised
peers.

In the next section, we review some of the related literature. We then examine aver-
age levels of net investment as an indicator for innovation activity in the sector during
our study period. In the following two sections, we turn to the methodological frame-
work and dataset used, before presenting the results separately by farm type and con-
cluding in the last section.

2. Related Literature

Although the discussion of technology adoption was originally built on profitability
as a determinant of the rate of technology diffusion (Griliches, 1957), it became appar-
ent that education, learning, scale effects, credit constraints, and risk also play impor-
tant roles (Foster and Rosenzweig, 2010). Risk is expected to influence the investment
decisions of farmers. If farmers are risk-averse they would be expected to react cau-
tiously to the risk inherent in new and unfamiliar technology by postponing adoption
and gathering further information (Jensen, 1982; Just and Zilberman, 1983). Similar
consequences are predicted by the real options framework, where increasing uncer-
tainty generally increases the value of waiting and delays investment decisions even
for risk-neutral decision-makers (Floridi et al., 2013).

Dairy farmers face price risk not only on the demand side but also on the supply
side. The largest portion of production cost in European dairy farming is purchased
feedstuff (European Commission, 2018), making dairy farmers’ profitability suscepti-
ble to feed price changes (Wolf, 2010). Like milk prices, crop and feed prices have
been characterised by increased volatility after 2006 (Merener and Steglich, 2018).
However, positive correlation between feed and milk prices could be observed in
recent years (Schulte et al., 2018; Merener and Steglich, 2018). This correlation can
mitigate risk by partly offsetting revenue variability caused by fluctuating milk prices.
On the other hand, Wolf (2010) remarks that for US dairy farms the milk-to-feed
price ratio has been a weak proxy for farm profitability during volatile market phases,
indicating that the relationship between the two might have lost its risk-mitigating
effect during latest disruptive market phases.

Reflecting its dominant effect on overall farm profitability, existing studies mainly
focus on the effect of output price volatility on the investment behaviour of dairy
farms. For dairy farmers, low milk prices can critically diminish the liquidity of the
farm, leading to constrained access to credit markets. If a farm has sufficient funds of
its own or might be able to provide the necessary assets as collateral (e.g., by owned
land), it might still refrain from investment if a combination of additional loan pay-
ments and increased price volatility puts the future liquidity of the farm at risk.
Schulte et al. (2018) showed that increased milk price volatility can considerably affect
the profitability of investment decisions if farmers are risk-averse. A negative effect of
milk price volatility on the investment propensity of dairy farms was confirmed by
Zimmermann and Heckelei (2012) for a dataset on European farms. For Pennsylva-
nian dairy farms, Stokes (2006) found that as output price volatility increased, the
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number of farm exits increased, the number of farm entries decreased, and farm size
growth rates decreased. Especially relevant to our study is Sauer and Zilberman
(2012), who investigated, among other factors, the role of profit risk in the decision to
adopt automated milking systems amongst Danish dairy farms. They showed that
both decreasing mean profit and increasing profit variability were negatively associ-
ated with the probability of adoption.

Alternatively, investing in more advanced technology could be a strategy to counter
output price risk by increasing overall farm productivity. For example, Kim and Cha-
vas (2003) found indications that technological change decreases risk exposure in corn
production. For Louisianan dairy farming Rahelizatovo and Gillespie (2004) found a
positive effect of risk aversion on the probability of adoption of several best manage-
ment practices.

Along with risk, frequently discussed determinants for technology adoption include
financial constraints such as access to credit and the level of liquidity, since the adop-
tion of new technologies or inputs depends on a farmer’s ability to provide the neces-
sary funds, either from their own assets or by borrowing (Foster and Rosenzweig,
2010). Although there is no indication that the average European farmer faces capital
market constraints (Petrick and Kloss, 2012), individual farmer behaviour can be
expected to be significantly influenced by credit constraints. Hüttel et al. (2010) identi-
fied capital market frictions and irreversibility of investments as determinants of the
investment behaviour of German farmers. Läpple et al. (2015) found a positive effect
of credit access on the degree of innovation for a sample of Irish farms. El-Osta and
Morehart (1999) found that credit reserves are positively related to technology adop-
tion decisions in US dairy farms.

On the other hand, the period of volatile milk prices started in 2007 and coincided
with the financial crisis beginning in 2008. Although the farming sector was less
affected than other sectors, the crisis marked the beginning of a period of low interest
rates that has lasted until today. The effect of interest rates on investment can be two-
fold. On the one hand, decreasing interest rates decrease the cost of technology adop-
tion and thereby increase the probability of adoption. On the other hand, in a
dynamic setting, interest rates discount future risk, which leads to a negative effect of
decreasing interest rates on the probability of adoption (Tsur et al., 1990).

In summary, we identify three macroeconomic factors potentially influencing recent
investment behaviour in the dairy sector: milk price volatility, plunging interest rates,
and a significant decline in government intervention. At the same time, reduced gov-
ernment intervention is a possible cause of milk price volatility, since decreases in
intervention price levels lowered the price floor that acts as a safety net to farmers.
Additionally, increases in the quota volumes opened room for supply growth, leading
to downward price pressure due to stagnating demand (Bouamra-Mechemache et al.,
2008). Our main conjecture is that increased output price risk had significant implica-
tions for the innovation behaviour of European dairy farmers, affecting the rate of
technological change as well as the level of technical efficiency in the sector. Compar-
ison of specialised and mixed dairy farms is motivated by the proposition that spe-
cialised skill and scale effects (Foster and Rosenzweig, 2010) may advantage more
specialised dairy farms. However, more diversified dairy farms are less vulnerable to
milk price changes, which could prove dairy production in mixed farms advantageous
during volatile market phases.
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3. Exploratory Indicators

In this section, we focus on net investment as an indicator for innovation activity dur-
ing recent market events. We calculate net investment as gross investment less depreci-
ation in machinery and equipment as well as in buildings.1 Figure 2 presents mean net
investment per worker (annual work unit, AWU) by farm type and in comparison to
the average farm-gate milk price. It is evident that both specialised and mixed dairy
farms adjusted net investment according to the level of milk prices. The milk price
high in 2007 was accompanied by spikes in net investment in machinery in both farm
types. Net investment with respect to both machinery and buildings dropped in 2009
when milk prices plunged to a low.

The strong positive relationship between average net investments and milk prices is
confirmed by strong and positive correlation between these two variables (see
Table 1). Table 1 additionally incorporates the rolling standard deviation of the mean
milk price over t – 2, t – 1, and t as a measure of price volatility. Positive correlation
of volatility with average net investment for specialised dairy farms reflect the high
levels of net investment after 2007 already observed in Figure 2.

Farmers evidently adjusted investment activity according to milk prices and, con-
trary to our initial expectations, high levels of net investment could be observed espe-
cially in the period of high price volatility after 2007, for both specialised and mixed
dairy farms. However, while farmers may well have followed a strategy of new invest-
ment to counter increased output price risk, there were also the confounding factors
(lower support prices, quota elimination, and low interest rates) over this period.

Nevertheless, it is not guaranteed that the relatively high levels of net investment
resulted in positive technological change or an increase in technical efficiency. It could
be that the investments were used for expansion of farm activities or for replacing
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Figure 2. Development of net investment in machinery and buildings (per annual work unit,
AWU, real values) and average farm gate milk price by farm type. Source:Authors’ calculations

based on FADN data.

1Because depreciation can be influenced to some extent by accounting practices and might be
adjusted according to farm profits in single years, we compared gross to net investment but

found small differences between their yearly changes.
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equipment and not necessarily investment in innovative technology. In the following
section, we therefore turn to the analysis of the production technology in a distance
function framework to measure technical progress and technical inefficiency.

4. Methodology

4.1. Distance function framework

To account for multiple outputs and multiple inputs in both specialised and mixed
dairy farms, we adopt a distance function framework. The output distance function is
defined by the maximum possible amount by which a farmer can increase outputs
with given production inputs while still remaining in the production possibility set
(Färe and Primont, 1995).2 Formally, DO X,Y,T,Zð Þ¼min Θ : Y=Θð ÞεP X,T,Zð Þf g,
where X and Y are input and output vectors, respectively, T represents technological
change as one external shift factor, and Z denotes changes in environmental condi-
tions. The distance function can be implemented in translog form. Imposition of lin-
ear homogeneity with respect to outputs and defining lnDO ¼�u results in the
estimable equation:

�lny1it ¼ α0þ ∑
M

m¼2

αmlny∗mitþ
1

2
∑
M

m¼2

∑
M

n¼2

αmnlny
∗
mitlny

∗
nitþ ∑

K

k¼1

βklnxkit

þ1

2
∑
K

k¼1

∑
K

l¼1

βkllnxkitlnxlitþ
1

2
∑
K

k¼1

∑
M

m¼2

γkmlnxkitlny
∗
mitþ lnT

þuitþ ∑
2

p¼1

ηpzpitþμiþ vit:

(1)

Table 1
Spearman correlation coefficients of yearly averages of net investment (NI), milk price level,

and standard deviation (SD) of past average milk prices

Specialised farms Mixed farms

NI
machinery

NI
buildings

Milk
price SD

NI
machinery

NI
buildings Milk price SD

NI machinery 1.00 1.00
NI buildings 0.40* 1.00 0.54** 1.00

Milk price 0.70*** 0.41* 1.00 0.67*** 0.24 1.00
SD 0.33 0.20 0.25 1.00 0.12 −0.05 0.24 1.00
Observations 19 19

Note: SD is the rolling standard deviation of the average milk prices in the sample over t−2,
t−1, and t over the period 1995–2013. Significance levels are ***0.01, **0.05, and *0.10.

2Although milk production was restricted by quotas at the national level, farmers were still able
to adjust output by purchasing or renting additional quota rights. Therefore, the output orien-

tation is adequate, especially considering that inputs like land and labour are likewise not fully
flexible (Newman and Matthews, 2007; Emvalomatis et al., 2011). If returns to scale approach
unity, as is the case in our study, efficiency estimates will not differ between the input and output

orientation (Orea et al., 2004).
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νit is a normally distributed random error and with Zpit we introduce additional
variables accounting for environmental conditions. Firm-specific inefficiency is quan-
tified by uit. μi denotes time-invariant firm effects that act as frontier shifters and are
not considered part of technical inefficiency (e.g., soil quality). ln T denotes the tech-
nological change component and will be discussed below. We impose linear homo-
geneity in outputs by dividing other outputs by the farm’s milk output, that is,
y∗mit ¼ ymit=y1it. The symmetry conditions are imposed by αmn ¼ αnmðm,n¼ 2, . . .,MÞ
and βkl ¼ βlkðk, l¼ 1, . . .,KÞ:3

Useful measures can be derived from the distance function in the form
of derivatives. Distance elasticities with respect to inputs
ð∂lnD0=∂lnxk ¼ ∂ð�lny1Þ=∂lnxk ¼�ɛy1xkÞ represent the percentage change in y1 by a
1% change in xk while holding the output ratios y∗m constant, that is, a change in total
output, and are therefore equivalent to output elasticities with respect to inputs in a
production function framework. In contrast, derivatives with respect to the nor-
malised outputs ð∂lnD0=∂lny∗m ¼ ∂ð�lny1Þ=∂lny∗mÞ are output m’s share in total pro-
duction and indicate its relative importance in production (Morrison Paul and
Nehring, 2005).

4.2. Formulation of technological change

We aim to evaluate the rate of technological change for milk production by spe-
cialised and mixed dairy farms. For specialised farms, which only realise a minor
share of their output in the form of non-milk products, we rely on the standard time
trend approach to measure technological change. That is, in equation (1) we let:

lnT¼ δttþ1

2
δttt

2þ ∑
M

m¼2

αmttlny
∗
mitþ ∑

5

k¼1

βkttlnxkit: (2)

where the first two terms account for neutral technological change and the last two
terms for output and input biases in technological change. The rate of technological
change can then be evaluated as:4

_Tt≡�∂ �lny1ð Þ
∂t

¼�∂lnT

∂t
¼� δtþδtttþ ∑

M

m¼2

αmtlny
∗
mitþ ∑

5

k¼1

βktlnxkit

� �
: (3)

Since equation (2) includes a term quadratic in t, _Tt depends on t and is sufficiently
flexible to detect a possible slowdown (or speedup) in (neutral) technological change.

To allow for a more erratic pattern of technological change we additionally com-
pare this specification to a time dummy variable specification; that is, we let
lnT¼∑2013

t¼1996λtDt in equation (1). This specification allows a more flexible inspection
of technological change (Sauer and Park, 2009) and corresponds to the general

3A concern that has been raised with regard to the estimation of distance functions is the possi-

ble endogeneity of transformed outputs appearing on the right-hand side of the estimation
equation. Until now, there is no consensus on how to treat this issue. Some attempts have been
made to treat this possible source of endogeneity (e.g. Plastina and Lence, 2018). Others have
argued that due to the ratio form of the output terms, no severe endogeneity problem arises

(Brümmer et al., 2002).
4Because ∂lnT=∂t is negated in our definition, positive values of _Tt are interpreted as technologi-

cal progress.
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technological change index formulation by Baltagi and Griffin (1988) with the
assumption of Hicks-neutral technological change.5

For mixed farms, which generate a considerable share of their output from non-
milk outputs, an evaluation of technological change in this manner would yield an
imprecise measure (in the context of our study) since this technological change mea-
sure shows frontier shifts in the aggregate output mix of the farm. Moreover, we want
to evaluate product-specific technological change. One possibility to achieve this
would be to estimate separate, product-specific production functions by allocating
production inputs across production outputs according to, for example, observed rev-
enue shares (Foster et al., 2008) or by using estimates from single-product firms
(Loecker et al., 2016). Examples for product-specific analyses of productivity and
technological change with observed input allocations include Cherchye et al. (2013)
and Walheer (2019). Because revenue shares fluctuate with output prices and we do
not observe input allocations, we instead rely on measures that can be derived from
an enhanced formulation of technological change based on the distance function.
More specifically, we focus on measures of technological change biases. In general,
technological change biases with respect to an input contain information about
whether technological change is relatively input-saving or input-using, meaning that
new technology allows to use less or requires more of one specific input in relation to
the other inputs in order to produce the same amount of output. Transferring this
idea to outputs, a bias towards one output implies that with the same amount of
inputs, a relatively greater amount of this output can be produced. This, in turn, can
be interpreted as relatively stronger technological advances realised in the production
of this output.

In our formulation of technological change, we follow Stevenson (1980), who intro-
duces additional third-order interaction terms (a truncated third-order Taylor-series
expansion) into a cost function. While Stevenson (1980) uses terms of time multiplied
with interactions across the other regressors (i.e. t�∑ j∑kXjXk), we use terms of
quadratic time interacted with linear terms of inputs and outputs (i.e. t2�∑ jXj); that
is, we specify:

lnT¼ δttþ1

2
δttt

2þ ∑
M

m¼2

αmttlny
∗
mitþ ∑

5

k¼1

βkttlnxkitþ
1

2
∑
M

m¼2

αmttt
2lny∗mitþ

1

2
∑
5

k¼1

βkttt
2lnxkit:

(4)

The rate of technological change is then:

_Tt≡�∂lnT

∂t
¼� δtþδtttþ ∑

M

m¼2

αmtlny
∗
mitþ ∑

5

k¼1

βktlnxkitþ ∑
M

m¼2

αmtttlny
∗
mitþ ∑

5

k¼1

βktttlnxkit

� �
:

(5)

In contrast to equation (3), the technological change biases are now measured with
two additional terms that are dependent on t. That is, whereas the usual formulation
only allows for technological change biases in constant rates, we allow for changing
rates in technological change biases. The relative importance of an output in the pro-
duction process is then given by:

5We restrict technological change in this specification to be Hicks-neutral since the full specifica-
tion by Baltagi and Griffin (1988) interrelates the neutral and biased technological change com-

ponents, which is unsuitable for our analysis of mixed farms.
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∂ �lny1itð Þ
∂lny∗mit

¼ αmþαmmlny
∗
mitþ

1

2
αmnlny

∗
nitþ ∑

5

k¼1

γkmlnxkitþαmttþ1

2
αmttt

2: (6)

and this measure’s change over time by:

∂

∂t

∂ �lny1itð Þ
∂lny∗mit

� �
¼ αmtþαmttt, (7)

where αmt>0ð<0Þ indicates increasing (decreasing) significance of output m in the
production process, that is, output-m-favouring (discriminating) technological
change, at an increasing (αmtt>0) or decreasing (αmtt<0) rate. In this way, we can eval-
uate whether technological change in milk production by mixed farms decelerated or
accelerated relative to other outputs during volatile market phases. A deceleration of
technological change in milk production would correspondingly indicate a shift in
innovation efforts towards other outputs.

4.3. Generalised Malmquist index

After the estimation of technological change, we explore possible reasons for the
observed pattern of technological change. Because farmers’ primary interest lies in
profitability (that is, productivity with given input and output prices), this entails
examination of the components of productivity other than technological change and
technical efficiency. An approach that lends itself to this purpose is proposed by Orea
(2002). From discrete changes in the output distance function from one period to the
next, a Malmquist productivity index can be calculated that separates total factor pro-
ductivity into technical efficiency change (TEC), scale efficiency change (SEC), and
technological change (TC). Starting from an output distance function as defined by
equation (1), the index can be defined as:

lnGO
it ≡

1

2
∑
M

m¼1

∂lnDO
it

∂lnyimt

þ ∂lnDO
is

∂lnyims

� �
lnymit� lnymisð Þ

�1

2
∑
K

k¼1

∂lnDO
it =∂lnxkit

∑K
k¼1∂lnD

O
it =∂lnxkit

þ ∂lnDO
is=∂lnxkis

∑K
k¼1∂lnD

O
is=∂lnxkis

 !
lnxkit� lnxkisð Þ

¼ 1

2
∑
K

k¼1

� ∑
K

k¼1

∂lnDO
it

∂lnxkit
�1

� ��
∂lnDO

it =∂lnxkit
∑K

k¼1∂lnD
O
it =∂lnxkit

þ � ∑
K

k¼1

∂lnDO
is

∂lnxkis
�1

� �
∂lnDO

is=∂lnxkis
∑K

k¼1∂lnD
O
is=∂lnxkis

#
lnxkit� lnxkisð Þ

þ lnTs� lnTtð Þþ us�utð Þ

þ1

2
∑
2

p¼1

∂lnDO
it

∂zipt
þ ∂lnDO

is

∂zips

� �
zips� zipt
� �þ vs� vtð Þ

¼SECþTCþTECþZCþVC:

(8)

The terms to the right of the identity sign represent a total factor productivity
(TFP) index with normalised output elasticities as weights for the aggregation of input
changes. This corresponds to the generalised Malmquist index by Orea (2002) with
the difference that we formulate technological change in a general form (where
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technical progress is observed when lnTt<lnTs), and we add changes in environmental
variables (ZC) and idiosyncratic errors (VC).

As an extension and for the purpose of exploring changes in inputs and outputs
underlying technological change, we restate the index equation as:

TC ¼½1
2
∑
M

m¼1

∂lnDO
it

∂lnyimt

þ ∂lnDO
is

∂lnyims

� �
lnymit� lnymisð Þ

�1

2
∑K

k¼1

∂lnDO
it =∂lnxkit

∑K
k¼1∂lnD

O
it =∂lnxkit

þ ∂lnDO
is=∂lnxkis

∑K
k¼1∂lnD

O
is=∂lnxkis

 !

lnxkit� lnxkisð Þ��SEC�TEC�ZC�VC: (9)

In a way similar to a growth accounting approach, technological change can be ‘de-
composed’ into separate (weighted) growth rates of inputs and outputs, while still
considering scale and technical efficiency effects. This allows us to track movements in
outputs and inputs that are intermediately responsible for the observed technological
change patterns. That is, although we do not observe changes in production tech-
niques originally responsible for technological change, comparing growth rates of
inputs and outputs allows us to gain some further insight into the symptoms of tech-
nological change.

4.4. Data and estimation

We use unbalanced panel data from the EU’s Farm Accountancy Data Network
(FADN) on West German farms for the period 1995–2013. We exclude East German
farms from the analysis because of structural differences in the form of the presence of
very large mixed farms in the East German dataset, which would impair the compar-
ison between specialised and mixed farms. We distinguish between specialised and
mixed dairy farms according to the FADN ‘TF8’ classification, which is based on
shares of standard output. The pooled sample of specialised and mixed dairy farms
contains information from 7,612 farms, with an average of 5.4 observations per farm.
For specialised dairy farms, we distinguish two farm outputs: ‘milk’ and ‘other out-
put’ (i.e., M = 2 in equation (1)) and five production inputs ‘dairy cows’, ‘intermedi-
ates’, ‘labour’, ‘land’, and ‘other capital’. Milk output (y1) is defined as the physical
quantity of milk produced on-farm.6 By using the physical quantity, we use an output
measure free of any price biases possibly not fully accounted for by deflating revenues
with a national price index. ‘Other output’ consists of all other goods produced on the
farm, aggregated by summing up the deflated value of production (less the value of
products consumed on-farm) in various categories. To account for animals that are
reared but not sold during the same accounting period, we add the deflated value of
animal stock changes to farm output. For mixed farms, we disaggregate this output
category into two outputs (M¼ 3Þ: ‘plant production’ and ‘other animal production’.
Inputs are defined in the same way for specialised and mixed farms. Input ‘cows’ (x1)

6The value of milk consumed on-farm is not subtracted from this variable because of missing
values in one year. As the share of milk used on-farm (e.g., for feeding calves) is only a minor
share in the total value of milk output (2.5% on average), we do not expect this to introduce

any bias into the output variable.

� 2020 The Authors. Journal of Agricultural Economics published by John Wiley & Sons Ltd
on behalf of Agricultural Economics Society

Technological Change in Dairy Farming 573



is measured by the average number of dairy cows, and ‘intermediates’ (x2) are defined
by expenditures for feed, animal purchases, other livestock specific inputs, energy,
and crop specific inputs, each deflated by suitable price indices from Eurostat’s online
database. Input ‘labour’ (x3) is the farm’s annual work units (AWU), ‘land’ (x4) is the
amount of land used in production, and ‘capital’ (x5) is measured by deflated depreci-
ation for farm buildings and machinery. For both samples, we removed observations
where the farm did not produce milk anymore or has not yet produced any milk.

We further control for environmental conditions by including weather data from 22
weather stations, where each observation is assigned the data of the likely nearest
weather station.7 That heat stress indicators are important control variables in dairy
farming is shown, for example, by Finger et al. (2018). We include two proxies for
weather shocks: the number of days per year with a maximum air temperature above
30°C to account for heat stress of dairy cows (z1), and the log of the cumulative rain-
fall per year to account for growing conditions (z2).

Descriptive statistics of the two samples are given in Table 2. Specialised and mixed
farms are on average of similar size in terms of labour and capital endowments.

Inspecting output value shares reveals that the output of specialised farms mainly
consists of milk and cattle sales, while mixed farms source, on average, significant

Table 2
Descriptive statistics

Variable Unit

Specialised dairy
farms Mixed farms

Mean Std. Dev. Mean Std. Dev.

Inputs
Cows Number 50.3 36.4 28.5 19.6
Labour Annual work units 1.8 0.8 1.8 0.9

Intermediates Euros 50,794 45,970 72,801 74,007
Land Hectares 60.2 39.9 70.7 54.1
Capital (depreciation) Euros 19,304 13,889 19,250 13,621

Outputs
Milk kg 349,993 317,019 188,504 165,591
Other output Euros 33,831 33,629

Other animal output Euros 63,891 89,473
Plant output Euros 28,628 43,300

Output value shares
Milk % 74.9 12.4 41.2 18.0

Other animal production % 20.4 11.0 36.4 25.0
hereof: cattle sales % 93.8 16.4 58.7 37.8
hereof: pig sales % 4.3 14.6 37.5 38.0

Plant production % 4.7 7.8 22.4 17.7
Number of observations 30,818 10,458

Note: Output value shares are based on the value of total production (less farm use) and shown
for descriptive purposes only and not used for estimation. Monetary values are in constant

1995 prices. Annual work units are full-time equivalents.

7The data are publicly available from the German meteorological service DWD (www.dwd.de).
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shares of their output from milk, other animal production, as well as plant
production.

The number of observations per year is reported in Table S1 in the Online Appen-
dix, which shows gradual changes in the compositions of the two samples. The sample
of mixed farms shows a rather steady and slow decline in the number of observations.
For specialised farms, the number of observations increases distinctively after 2008,
which might have implications for our results if farm entry and exit are systematic.
However, we reran the frontier estimation for specialised farms excluding the farms
entering the sample after 2008 and obtained almost identical results.

As additional regressors we include 27 region dummy variables (government
regions at the NUTS 2 level). For estimation of the distance functions, we rely on the
stochastic frontier estimation routine suggested by Kumbhakar et al. (2014). The
model has the general advantage of separating random noise, firm heterogeneity,
time-invariant and time-varying inefficiency. The model can be estimated in a stepwise
procedure.8 The first step consists of the consistent estimation of the frontier coeffi-
cients in a random or fixed effects panel data regression. We opted for a fixed effects
approach, which is robust to endogeneity by correlation of unobserved time-invariant
farm heterogeneity (e.g., soil quality or climatic conditions) with the frontier regres-
sors. In the following steps, total inefficiency.

uit can be calculated as the sum of time-invariant and time-varying inefficiency,
which are obtained from two separate frontier estimations that regress the predicted
firm effects and predicted residuals on a constant. We assume that both time-invariant
and time-varying inefficiency follow an exponential distribution, which yielded the
highest log-likelihood value in the frontier estimations. All calculations were per-
formed in Stata 15.

5. Results and Discussion

After the fixed effects estimations, both the predicted fixed effect and the time-varying
error showed statistically significant positive skew, justifying our stochastic frontier
formulation. The full model estimation results are given in the Online Appendix in
Table S2. Overall, the model fit of the distance functions for both the specialised and
the mixed farm sample was satisfactory with 43% (specialised farms) and 42% (mixed
farms) of the coefficients showing statistical significance at the 10% level or lower.
This rather high share of insignificant parameters is commonly observed in distance
function estimations due to the large number of parameters and resulting multi-
collinearity (Brümmer et al., 2002; Morrison Paul and Nehring 2005; Pieralli et al.,
2017). A Wald test on the coefficients related to technological change showed high
joint significance in both models. As shown in the following sections, first derivatives
with respect to all inputs at the sample mean show the expected signs, fulfilling the
monotonicity criterion of theoretical consistency (Sauer et al., 2006). Additionally, we
checked monotonicity and curvature for each observation in our dataset. The results
are listed in Table S4 in the Online Appendix. The extent to which the regularity con-
ditions should be fulfilled or imposed ex ante in empirical studies is still an open ques-
tion. While some studies emphasise that unreliable efficiency estimates can arise when
the theoretical properties are not fulfilled (O’Donnell and Coelli, 2005; Feng and

8For all details we refer to ‘model 6’ in Kumbhakar et al. (2014).
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Serletis, 2010), others find very similar results with respect to efficiency estimates (Bal-
combe et al., 2006) or predictive power (Parmeter et al., 2014) when estimation tech-
niques with and without imposed regularity conditions are compared. Other authors
abstain from curvature checks given the limited chance of fulfilling the conditions
with a large number of inputs and outputs (Zhu and Lansink, 2010). In our estima-
tions, for specialised farms the conditions are fulfilled for most observations except
for convexity of the distance function in outputs. We consider this to be less of a prob-
lem for our results since the main application of the curvature conditions is the proof
of duality (Feng and Serletis, 2010; Färe and Grosskopf, 1994). Some more violations
occur for mixed farms. Therefore, these results must be interpreted with greater cau-
tion, but still serve well as a comparison to the results obtained for specialised farms.

5.1. Specialised farms

Average estimated distance elasticities for the sample of specialised farms are given in
Table 3. Because of the distance function formulation with negative output as the
dependent variable, elasticities with respect to outputs are expected to have a positive
sign and elasticities with respect to inputs a negative sign. As expected from output
value shares, the distance elasticity with respect to other output amounts to 13.5%,
signifying that specialised milk farms generate most of their output from milk produc-
tion. All elasticities with respect to inputs show the expected negative sign with milk
cows being the most important production input. The sum of the elasticities with
respect to inputs suggests that specialised farms on average operate at slightly increas-
ing but close to (not significantly different from) constant returns to scale.

Our main interest lies in the estimates of technological change. On average for the
whole sample period, specialised farms realised technical progress at a rate of 1.0%
per year (Table 3), which is in line with the results of other studies (Emvalomatis,
2012; Cechura et al., 2017; Kellermann and Salhofer, 2014). However, when examin-
ing the estimated rate of technological change per year, we see a slowdown in techno-
logical change. The second column of Table 4 gives average predicted rates of
technological change by year. Technological change decelerated over time with
growth rates of 1.3% at the beginning and 0.9% at the end of the study period. We

Table 3
Average estimated marginal effects in specialised farming

Average marginal effect S.E.

Other output 0.135*** 0.009
Cows −0.623*** 0.013
Intermediates −0.269*** 0.008

Labour −0.025*** 0.006
Land −0.083*** 0.010
Capital −0.020*** 0.003

Returns to scale −1.021 0.013
Time −0.010*** 0.000

Note: Standard errors are calculated using the delta method. Stars indicate a statistically signifi-
cant difference from zero (from one for returns to scale).
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illustrate this in Figure 3, which plots the results of the distance function estimation
with year dummies in place of the continuous year variable.

The graph plots the year dummy coefficients λt alongside the predicted frontier
from the baseline model (equations (1) and (2), with inputs and outputs held constant
at the sample mean and normalised to 1995 = 0). Although both specifications cap-
ture the same long-term trend, the dummy variable specification shows a plateau in
the technology level after 2008. This pattern is further confirmed by allowing for dif-
fering rates of neutral technological change starting from 2009. We incorporate this
by interacting the neutral technological change terms with a dummy variable, assum-
ing the value of 1 for the years 2009 to 2013, that is, we add δDtDt≥2009tþδDttDt≥2009t

2

in equation (2). The two additional coefficients are both statistically significant. The
predicted technological change rates are given in the third column of Table 4 and sug-
gest that yearly technical progress remained at a stable level of around 1.1% per year
until 2008, whereas the rates were close to zero for the period after 2008.

The estimates for technical inefficiency (last column of Table 4, calculated on the
basis of a common TC trend for the two periods) reveal that the level of inefficiency

Table 4
Average rates of technological change and predicted inefficiency by year for specialised farms

Year

_Tt

Inefficiency (u)

Baseline model:
common TC trend for
all years

Allowing for break in
neutral TC in 2009

1995 0.013*** (0.001) 0.008*** (0.001) 0.187
1996 0.012*** (0.001) 0.009*** (0.001) 0.182

1997 0.012*** (0.001) 0.009*** (0.001) 0.183
1998 0.012*** (0.001) 0.009*** (0.001) 0.177
1999 0.012*** (0.001) 0.010*** (0.001) 0.171

2000 0.011*** (0.001) 0.010*** (0.001) 0.164
2001 0.011*** (0.000) 0.011*** (0.000) 0.174
2002 0.011*** (0.000) 0.011*** (0.000) 0.181

2003 0.011*** (0.000) 0.012*** (0.000) 0.177
2004 0.010*** (0.000) 0.011*** (0.000) 0.178
2005 0.010*** (0.000) 0.012*** (0.001) 0.178
2006 0.010*** (0.000) 0.012*** (0.001) 0.175

2007 0.009*** (0.000) 0.012*** (0.001) 0.180
2008 0.009*** (0.000) 0.013*** (0.001) 0.171
2009 0.009*** (0.000) 0.003*** (0.001) 0.172

2010 0.009*** (0.001) 0.002*** (0.001) 0.169
2011 0.009*** (0.001) 0.001 (0.001) 0.172
2012 0.008*** (0.001) 0.000 (0.001) 0.167

2013 0.009*** (0.001) 0.000 (0.001) 0.167
Total 0.010*** (0.000) 0.011*** (0.000) 0.175

Note: The numbers in the second and third columns show predicted marginal effects averaged
by year and across all years (‘total’). Estimates in the second column are based on a common

TC trend for all years; in the third column the estimation allows for a structural break in 2009
by incorporating dummy variable interactions with neutral technological change. Standard
errors in parentheses and significance levels were calculated using the delta method.
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averaged 17.5% for the whole sample period. This level of inefficiency seems relatively
high compared to other studies on similar data (Brümmer et al., 2002; Cechura et al.,
2017). However, relatively high inefficiency estimates from this type of frontier model
can be expected when compared to more conventional frontier models (Kumbhakar
et al., 2014). In our case, the inefficiency estimates were driven by a relatively large
proportion of the time-invariant component of inefficiency, with a mean of approxi-
mately 13% across all observations. While time-varying technical inefficiency was
fairly stable, the average time-invariant inefficiency decreased by 2.4 percentage points
on average, being the main driver of the decrease in total technical efficiency of 2.0
percentage points from 1995 to 2013 as indicated by the last column of Table 4. The
likely explanation for this is that farms that did not achieve a reduction in their high
level of time-invariant inefficiency were more likely to exit the sector.

The largest decrease in inefficiency occurred in 2008, when mean inefficiency is esti-
mated to be reduced by 0.9 percentage points. The frontier shift visible in the time
dummy specification and the drop in inefficiency in the time trend formulation in 2008
were preceded by a spike in milk prices in 2007 (see Figure 2). Recalling the spike in
farm machinery and equipment observed in Figure 2, this suggests that farmers used
additional revenue to update their equipment, which translated into productivity
growth either ascribed to increased technological change (in the time dummy specifi-
cation) or reduced inefficiency (in the time trend specification). However, the continu-
ing stagnation in technological change and technical inefficiency after 2008 is not in
line with increasing levels of net investment observed after 2009. In general, one would
expect farmers to need some time to adjust to newly implemented techniques. For
example, the construction of new farm buildings requires additional attention from
the farmer, and herd management must be adjusted to the new conditions. Therefore,
some latency until major investments manifest themselves in increased productivity is
plausible. Yet the peculiarity of our observation lies in the endurance of the techno-
logical change stagnation. That is, the high levels of net investment from 2009 onward
did not result in technical progress during the following 4 years. This contrasts with
results from earlier studies that established shorter time lags between investment
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Figure 3. Predicted frontier levels per year estimated by models with a time trend (solid line)

and a time dummy formulation (dashed line).
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activity and productivity effects (Sauer and Latacz-Lohmann, 2015). To gain addi-
tional insights, we explore possible reasons for the observed pattern in the next
subsection.

5.1.1. Exploring the technological change stagnation
Several explanations for the pattern of technological change we observe come to
mind. First, during uncertain market phases, farmers might shift their focus towards
implementing already established techniques by imitating peers but neglect new (un-
known and therefore riskier) techniques that are able to push the frontier outward.
This behaviour would explain technological change stagnation and would be observ-
able in increased technical efficiency. Second, especially towards the end of the milk
quota system, farmers might have tried to position themselves for a prospective
increase in market share by shifting to growth strategies and using scale effects, for
which a consequence would be increased scale efficiency. Third, high feed prices that
were observed starting in 2007 might have dampened cow productivity. Lastly, one
might wonder whether specialised dairy farms showed no technical progress although
or because they showed high levels of net investment after 2008 – that is, positive out-
put growth could have been outweighed by extraordinarily high capital input growth.

To explore the plausibility of these explanations, we show in Table 5 results for the
Malmquist index decomposition as described by equation (9) and based on the time
dummy specification. While we report the average changes for each year in Table S5
in the Online Appendix, we show in Table 5 averages for the two periods before and
starting from 2009. Overall, the numbers indicate technological change to be the most
important driver of productivity, leading to synchronous progressions of technologi-
cal change and total factor productivity change. For calculation of the Malmquist
index, only changes in time-varying technical efficiency are relevant. Time-varying
technical efficiency change is estimated as close to zero, suggesting that the average
dairy farmer did not move closer to the frontier after 2009, which was already indi-
cated by the stable levels of time-varying technical inefficiency as described above for
the time trend formulation. This contradicts the presumption that farmers shifted
their attention to the adoption of established technologies.

Table 6
Average estimated marginal effects in mixed farming

Average marginal effect S.E.

Animal output 0.261*** 0.009
Plant output 0.079*** 0.005
Cows −0.592*** 0.017

Intermediates −0.377*** 0.016
Labour −0.022* 0.012
Land −0.070*** 0.021

Capital −0.016** 0.007
Returns to scale −1.078*** 0.026
Time −0.006*** 0.001

Note: Standard errors calculated with the delta method. Stars indicate a statistically significant

difference from zero (from one for returns to scale).
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In addition, the influences of weather effects (ZC) and unobserved factors (VC)
seem to be of minor importance. Similarly, scale efficiency gains are close to zero. The
likely explanation is given by the estimates of returns to scale, which indicated con-
stant returns to scale on average (Table 3); 36% of the observations show returns to
scale statistically significantly (at the 5% level) below − 1 (i.e. increasing returns to
scale). However, 90% of the observations lie in the range of − 1.07 to − 1.01. This
leaves little room for productivity improvement by a growth strategy. Nevertheless,
positive growth rates of milk output show that farms consistently grew in size
throughout the two periods. Especially after 2009, this was likely facilitated by the
increases in quota volumes. Additionally, after 2009, farm milk output grew faster
than average herd size, which means that average cow productivity still increased dur-
ing the period of technological change stagnation (if at slightly smaller rates). This
contradicts a potential negative effect of high feed prices or a possible stagnation in
improvements in cow genetics on technological change. Looking at growth rates of
capital input reveals that capital is accredited only a minor share in production (as
can be seen by low average distance elasticities in Table 3), and hence the observed

Table 7
Average rates of technological change and predicted inefficiency by year for mixed farms

Year

_Tt

Inefficiency (u)
Common TC trend for
all years

Allowing for break in
neutral TC in 2009

1995 0.003 (0.002) 0.001 (0.002) 0.179
1996 0.003* (0.002) 0.002 (0.002) 0.171
1997 0.004** (0.002) 0.003 (0.002) 0.170

1998 0.004*** (0.001) 0.004*** (0.001) 0.174
1999 0.005*** (0.001) 0.005*** (0.001) 0.171
2000 0.006*** (0.001) 0.006*** (0.001) 0.165

2001 0.006*** (0.001) 0.006*** (0.001) 0.172
2002 0.006*** (0.001) 0.006*** (0.001) 0.172
2003 0.006*** (0.001) 0.007*** (0.001) 0.170

2004 0.006*** (0.001) 0.007*** (0.001) 0.165
2005 0.006*** (0.001) 0.007*** (0.001) 0.166
2006 0.006*** (0.001) 0.007*** (0.001) 0.167
2007 0.007*** (0.001) 0.008*** (0.002) 0.173

2008 0.007*** (0.001) 0.008*** (0.002) 0.160
2009 0.007*** (0.001) 0.002 (0.002) 0.166
2010 0.007*** (0.001) 0.002 (0.002) 0.170

2011 0.007*** (0.001) 0.001 (0.002) 0.153
2012 0.008*** (0.001) 0.001 (0.003) 0.175
2013 0.008*** (0.002) 0.000 (0.003) 0.170

Total 0.006*** (0.001) 0.004*** (0.001) 0.170

Note: The numbers in the second and third columns show predicted marginal effects averaged
by year and across all years (‘total’). Estimations in the second column are based on a common
TC trend for all years; in the third column the estimation allows for a structural break in 2009

by incorporating dummy variable interactions with neutral technological change. Standard
errors in parentheses and significance levels were calculated by the delta method.
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high levels of investment (in capital goods other than cows) can be ruled out as a
cause of the low technological change rates.

Apparently, the technological change stagnation after 2008 was associated with
high growth rates in cow and material inputs. Dairy farms still achieved output
growth rates at least similar in magnitude to those before 2009, but this output growth
was consumed almost completely by growth in cow and material inputs. In general,
growth in milk output and materials input seems more interrelated after 2008: growth
in milk output was accompanied by synchronous growth in materials input (see Table
S5 in the Online Appendix). From the yearly growth rates in cow input, it can also be
seen that, coinciding with a milk price spike, average herd size growth was especially
high in 2007, close to zero at the price low in 2009, and higher with recovering milk
prices starting in 2010.
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These results suggest that dairy farmers reacted to changing output prices and
increased price volatility and entered an adjustment phase starting in 2007, which was
characterised by an overall increasing scale of operations. The stagnation in technical
progress during this phase indicates that many of the net investments were aimed at
an expansion of operations and not necessarily at improving production techniques.
Additionally, the potential for improvements in productivity by increases in scale effi-
ciency were limited by returns to scale close to unity.

5.2. Mixed farms

Average estimated distance elasticities for mixed farms are given in Table 6. As for
specialised farms, all elasticities show the expected sign. Animal and plant output are
estimated to represent approximately 34% of total production, which is slightly less
than their calculated revenue shares (Table 2). Over the whole sample period, mixed
farms showed technical progress of 0.6% per year, which is less than the 1.0% esti-
mated for specialised farms.

We explore the shape of technological change in the same way as for specialised
farms in Table 7. The numbers show that in general, technology progressed more
slowly over the whole study period for these farms as compared to specialised farms,
supporting the assumption that specialised farms have a greater ability to acquire
state-of-the-art technology. Allowing for a structural break in technological change in
2009 shows that, contrary to our expectation, we observe the same pattern of stagnat-
ing technological change after 2008: While growth rates hover between 0.3% and
0.8% in most years before 2009, no significant technical progress is realised during the
years 2009–2013.

Compared to specialised farms, mixed farms show a similar level of average techni-
cal inefficiency of 17.0%. As in specialised farms, mean inefficiency decreased in 2008;
however, this change is not too different in magnitude from the changes observed in
other years. The more fluctuating nature of technical inefficiency might be due to the
greater influence of weather conditions on plant production not controlled for by the
weather proxies in our model.

To further explore the technical progress realised in specific outputs, we evaluate
the coefficients of the technological change bias terms with respect to the outputs (αmt

and αmtt). The individual coefficients are estimated to be close to zero and not statisti-
cally significantly different from zero for both animal and plant production (see Table
S2 in the Online Appendix). However, they show joint statistical significance. With
α2t>0, the average share of animal output shows a linear increase by approximately 7
percentage points over time. This is illustrated in Figure 4. With a constant share of
plant output, this suggests that mixed farms achieved faster technological change in
animal production at the expense of technological advances in milk production. This
is in line with average dairy herd size growth rates that can be observed in our dataset
(not shown for brevity). While specialised farms grew in herd size in almost all years,
mixed dairy farms consistently showed shrinking herd sizes, on average. Hence, it is
plausible that mixed farms invested a greater amount of resources into the growing
farming activities. However, no change in the pace of this development can be
observed (α2tt≈0Þ. Therefore, there is no indication that mixed farmers shifted their
innovation efforts as a reaction to the price developments in the last years of our study
period. The low growth rates in overall technological change observed in mixed farms
after 2008, however, suggest that like specialised farms, mixed farms did not realise
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substantial technological progress overall. An explanation for this might possibly be
found by scrutinising output prices of the different agricultural outputs in recent
years.

As can be seen in Figure 5, not only did milk show increased volatility since 2007
but the prices for cash crops did so as well. Moreover, the prices moved in a more con-
certed pattern.9 With increased positive correlation between prices of different out-
puts, diversified farms lose their risk-spreading advantage over specialised farms
(Merener and Steglich, 2018).

Inspecting further the series for pig prices in Figure 5 raises the question of whether
farms with pig production had an advantage over farms without pig production, since
pig prices seemed more stable after 2007. For brevity, we do not report separate esti-
mation results, but note that further analyses showed that this was not the case. The
distance function for mixed farms active in pig production also showed no shifts sig-
nificantly different from zero when estimated for the period after 2008. This shows
that also farms with a high degree of diversification showed no different innovation
behaviour.

6. Conclusions

When estimating distance functions for dairy farms, we observe a slowdown in tech-
nological change during a phase of volatile milk prices. Our analysis also shows that
mixed dairy farms did not exhibit different innovation behaviour from specialised
dairy farms. We suspect that the reason for this can be found in the correlation
between prices of different agricultural commodities during recent years by which
diversification partly lost its risk-spreading advantage.

While the recent changes in the regulatory environment are a likely determinant of
milk price volatility – for example, by lowering intervention price levels – they might
have also had a direct effect on dairy farmers’ investment behaviour by influencing
their confidence in future business opportunities following quota expansion and elimi-
nation. Because of the simultaneity of the regulatory changes and milk price volatility,
and since variation in prices happens across time rather than across farms, the two
effects are hard to separate. Hence, asserting a causal effect of price volatility on tech-
nological change is difficult. Further analyses in our study and the attempt of incorpo-
rating output price risk in the frontier estimation with the help of milk price standard
deviations generated ambiguous results and no conclusive findings. However, milk
price volatility was one – if not the most – important determinant of dairy farmers’
financial well-being in recent years and several empirical studies have confirmed that
price volatility affects famer’s investment decisions. Therefore, it is plausible to
assume that price volatility played at least a partial role in the technological stagna-
tion we observe.

Further, our results indicate that the stagnation in technological change happened
despite comparatively high average levels of net investment, which questions our orig-
inal expectation of a direct negative effect of price volatility on technological change.
More likely, a combined effect of price volatility and phasing-out of the quota led

9This can be illustrated by looking at correlation of the price series: For the monthly prices
shown in Figure 5, correlation coefficients before/after January 2007 amounted to 0.10/0.71,

0.02/0.30, and 0.19/0.40 for milk and cereals, milk and pigs, and cereals and pigs, respectively.
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farmers into a turbulent adjustment period, where – as indicated by the high growth
in average herd size and milk output – dairy farmers positioned themselves for a mar-
ket free of quota limitations and an alignment to world market prices. Considering
the rather steep increase in the technology level in 2008 following a year of high milk
prices, it remains unclear whether the slowdown we observe is enduring or just a tem-
porary rest – a question that should be addressed in future analyses. If the stagnation
we observe turns out to be an adjustment period, improvements in technological
change as a consequence of the previous high levels of net investment are likely for the
following years.

Another conclusion is that if we do not observe the effect of a lack of willingness to
invest, we might observe a lack of technological opportunities that were able to push
the state of technology in the sector. Implemented technologies might put greater
emphasis on progress we do not observe in the data, for example, on advances in pro-
duct quality, such as in animal welfare. Further research should also focus in more
detail on this missing link between farm net investments and technological change.

Supporting Information

Additional supporting information may be found online in the Supporting Informa-
tion section at the end of the article.

Table S1 Number of observations per year.
Table S2 Estimation results.
Table S3 Estimation results (Continued).
Table S4 Evaluation of fulfilment of regularity conditions.
Table S5 Detailed results for yearly TFP components of specialized dairy farms.
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