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Abstract
This note is concerned with the problem of crossing a target set between
sample instants under the influence of bounded unknown disturbances. The
proposed solution employs mixed-integer linear programming and is less con-
servative compared with the standard approach of imposing pointwise-in-time
constraints at the sample instants.
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1 INTRODUCTION

Autonomous vehicles are often expected to go through target sets in the course of their missions. Typical examples involve
the crossing of a door in a two-dimensional (2D) environment1 and fly-over missions for drones. For this purpose, model
predictive control (MPC) with mixed-integer linear programming (MILP) encoding can be used to carry out vehicle
maneuvering tasks to visit polytopic target sets in finite time.2 This approach makes use of pointwise-in-time constraints
on the position of the vehicle at the sample instants. However, this may lead to infeasibility of the optimization problem
when robustness to unknown disturbances is considered by a tightening constraint approach,2 as it may be impossible
to ensure that a target set will be visited. Moreover, this approach may introduce undue conservatism, imposing that the
vehicle is within the target set at a sample instant when simply crossing it would be enough to cope with the objectives
of the continuous-time resulting trajectory.

In the MPC–MILP literature, the converse problem of preventing intersample crossing has been addressed in the con-
text of collision avoidance. Maia and Galvão (2009)3 proposed additional inequalities so that consecutive positions were

Abbreviations: MILP, mixed-integer linear programming; MPC, model predictive control.
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constrained to occupy the same half-planes regarding each polytopic obstacle, avoiding the intersample crossing. Later,
Richards and Turnbull (2015)4 improved the formulation in Maia and Galvão (2009),3 reducing the number of additional
constraints from exponential to linear in the number of sides of the obstacles. Subsequently, Afonso et al. (2016)5 com-
plemented the work in Richards and Turnbull (2015)4 by employing an equivalent formulation which uses less binary
variables to encode the problem, as proposed in Prodan et al. (2012).6 In a related topic, Stoican et al. (2015)7 proposed
the so-called “shadow regions” approach to reduce the number of half-planes to be considered when multiple obstacles
are present. However, the usage of the shadow regions required the solution of a more complex nonlinear optimization
problem, thus the authors considered a more conservative approximation to obtain a MILP formulation. Later, Stoican
et al. (2018)8 detailed this formulation and also compared the solution of the more restrictive MILP formulation with
the exact mixed-integer nonlinear program (MILNP), obtaining a much (two orders of magnitude) greater computa-
tional effort for the latter. This field of research has become known as intersample collision avoidance or “corner cutting”
avoidance.

In a complementary sense, an encoding for imposing intersample crossing of a target set is proposed herein. Numerical
examples are presented to highlight the advantages of the proposed method with respect to the use of pointwise-in-time
constraints, in terms of feasibility and conservatism of the solution.

The remainder of this note is divided as follows: the vehicle maneuvering problem in two dimensions is stated in
Section 2; constraints that ensure crossing of a segment are proposed in Section 3, then the MILP problem including
them is formulated and an illustrative example is presented; the setting developed for crossing a segment is extended to
cross a general convex set in Section 4, with a proposed reformulation of the MILP and again illustrative examples are
presented; concluding remarks are given in Section 5. An extension to the three-dimensional case is presented in the
Appendix.

1.1 Notation

•T transpose of a vector or matrix •.⟨•, ◦⟩ inner product between two column vectors in R♭, numerically equal to •T◦.|| • || two-norm of a column vector in R♭, numerically equal to
√
•T•.

𝜁 (•) ball centered at • ∈ R♭ with radius 𝜁 , that is, 𝜁 (•) =
{
◦ ∈ R♭|||||◦ − •|| ≤ 𝜁

}
.

2 VEHICLE MANEUVERING PROBLEM

The vehicle is modeled as a particle moving in a plane with position coordinates x and y, inputs ax and ay (accel-
erations along each axis), and corresponding velocities vx and vy. The discrete-time model is given by the state
difference equation x(k+ 1)=Ax(k)+Bu(k)+w(k) and the output algebraic equation s(k)=Cx(k), with the state, con-
trol, and output vectors xT = [x vx y vy], uT = [ax ay], and sT = [x y], respectively, and disturbances w ∈  ⊂ R4

acting on the state, with  a (bounded) polytope. The model matrices for a sample period normalized to
one are:8

A =

⎡⎢⎢⎢⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

0.5 0
1 0
0 0.5
0 1

⎤⎥⎥⎥⎥⎥⎦
, C =

[
1 0 0 0
0 0 1 0

]
. (1)

The problem of maneuvering such a vehicle from an initial state x(0) so that the output reaches a polyg-
onal target set  while minimizing a weighted time-fuel cost function was addressed in Richards and How
(2006).2 Additional constraints are that the state and control belong to polytopic sets  and  , respectively,
with 0 ∈  . In order to account for the unknown disturbances, Richards and How (2006)2 employed the
constraint-tightening approach originally proposed in Chisci et al. (2002).9 As a consequence, the sets ,  , and 

become time-dependent over the prediction horizon. The ensuing optimization problem to be solved at each time k can be
stated as
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Problem 1.

min
xi+1,ui,N(k)

N(k) + 𝛾
N(k)∑
i=0

||ui||1 (2)

subject to

x0 = x(k), (3a)

sN(k)+1 ∈ N(k)+1. (3f)

Remark 1. The problem addressed in Richards and How (2006)2 involves avoiding polygonal obstacles as well. As the
inclusion of obstacles within the scheme proposed herein is straightforward and does not result in any major changes,
this issue will not be considered in the present note.

In this problem, xi and ui represent predictions of the state and control i steps ahead of the current instant. It is
emphasized that the state and control predictions xi and ui are also dependent on the time instant k through Equation (3a),
but this is not explicitly included in the notation throughout this note for brevity.

The weight 𝛾 ∈ R+ expresses a compromise between the time and fuel components of the cost. Richards and How
(2006)2 show how to obtain the time-variant sets i, i, and i from offline calculations and rewrite Problem 1 as a MILP
problem with a fixed time horizon, which is denoted by T + 1. By applying the optimal control in a receding horizon
manner, the recursive feasibility of the optimization problem and finite-time arrival at the target set are ensured.2 In the
present note, this formulation is used as the basis for the proposed intersample crossing method.

3 INTERSAMPLE CROSSING CONSTRAINTS

In Section 2 the problem of maneuvering a vehicle with the dynamic given by the matrices in (1) was stated as a motiva-
tion for the crossing constraints, and this dynamic will be used in the examples within the present article. However, the
intersample crossing constraints formulated herein are independent of the specific values of the matrices in (1).

Definition 1. A segment ab with extreme points a ∈ R2 and b ∈ R2 is the set

ab =
{

p ∈ R
2|||p = 𝜅a + (1 − 𝜅)b, ∀𝜅 ∈ [0, 1]

}
. (4)

Definition 2. A segment clcu is crossed by another segment sisi+1 if and only if both segments have a point d in common,
that is, ∃d | d ∈ clcu, d ∈ sisi+1. Alternatively, one may express that as clcu ∩ sisi+1 ≠ Ø.

Criterion 1. It follows directly from Definitions 1 and 2 that a segment given in terms of the two extreme points cu =
[xu yu]T and cl = [xl yl]T, is crossed between samples i and i+ 1 if and only if:

∃𝛼, 𝛽 ∈ [0, 1]||| 𝛼cu + (1 − 𝛼)cl = 𝛽si + (1 − 𝛽)si+1, (5)

where si = [xi yi]T and si+ 1 = [xi+ 1 yi+ 1]T are the positions of the vehicle at time steps i and i+ 1, respectively.

Remark 2. Equation (5) cannot be incorporated as a constraint in a convex programming framework because 𝛽, si, and
si+ 1 are optimization variables within the trajectory planning problem. Therefore, the equality constraint in Equation (5)
becomes quadratic in the decision variables, thus leading to a nonconvex problem.

In view of Remark 2, alternative constraints will be now proposed to enforce crossing without involving the product
of optimization variables.
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(A) (B)

F I G U R E 1 Illustration of the application of the constraints (10a)–(10f). The gray region indicates the feasible region of constraints
(10a)–(10d) (cropped to fit a rectangular bounding box as it would be infinitely long). (A) Valid crossing generated by enforcing constraints
(10a)–(10f) and (B) valid crossing rendered infeasible by constraints (10a)–(10f) [Colour figure can be viewed at wileyonlinelibrary.com]

Proposition 1. Assume that cl ≠ cu and let v be the unit vector in the direction from cl to cu:

v = cu − cl||cu − cl|| , (6)

and v⟂ a vector orthogonal to v, that is, ⟨v, v⟂⟩ = 0. (7)

Given a point q ∉ clcu, define the unit vector z as

z =
q − cl||q − cl|| , (8)

and an orthogonal vector z⟂ as
z⟂ = v − ⟨v, z⟩z. (9)

If ⟨z⟂, si − cl⟩ ≥ 0, (10a)

⟨−z⟂, si − cu⟩ ≥ 0, (10b)

⟨z⟂, si+1 − cl⟩ ≥ 0, (10c)

⟨−z⟂, si+1 − cu⟩ ≥ 0, (10d)

⟨v⟂, si − cl⟩ ⪋ 0, (10e)

⟨v⟂, si+1 − cl⟩ ⪌ 0, (10f)

then clcu is crossed by sisi+1. The symbols ⪋ and ⪌ in (10e) and (10f ) in this context mean that when (10e) imposes ≤ then
(10f ) imposes ≥ and vice-versa.

Proof. The proof is given in Appendix A1.

Remark 3. Constraints (10a)–(10f) are linear in the optimization variables (the positions si and si+ 1) as opposed to the
direct application of Criterion 1. The trade-off to achieve these linear constraints is the choice of the point q in Propo-
sition 1, which ultimately determines the vector z. Figure 1 illustrates that, for a particular choice of q, enforcement
of constraints (10a)–(10f) ensures crossing, but also renders other candidate solutions infeasible. One possibility to cir-
cumvent this issue is to define several qj, j= 1, 2, … , Nc such that the feasible region associated to each qj and vj covers
different subsets of the plane. For example, the yellow and green regions in Figure 2 cover areas that are not included in
the red one.

http://wileyonlinelibrary.com
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F I G U R E 2 Proposed method involving three possible choices of q and
associated vectors in constraints (10a)-(10f) [Colour figure can be viewed at
wileyonlinelibrary.com]

Remark 4. Proposition 1 deals with a 2D case and, in particular, with a single choice of q. In principle, it would be possible
to choose distinct ql and qu associated with cl and cu, respectively, resulting in distinct associated vectors zl and lz⟂ or zu

and uz⟂. This might be explored to give more flexibility to the regions the positions si and si+ 1 may occupy. Proposition 1
is adapted to the more general three-dimensional (3D) scenario with each vertex c𝜃 , 𝜃 = 1, 2, … Nv, having an associated
q𝜃 , z𝜃 and 𝜃z⟂ in Appendix B1.

Remark 5. The point q may also be chosen by solving a preliminary optimization problem so as to ensure feasibility of
the crossing constraints. For this purpose, the right-hand sides of the ≥ constraints in (10a)–(10f) may be augmented
with positive slacks, which are to be maximized by manipulating q. However, we remark that the ensuing optimization
problem would be nonlinear.

3.1 Proposed MILP formulation with robustness

The constraints in Problem 1 impose that the position reaches a target set N(k)+1 and binary variables can be used as
prescribed in Richards and How (2006)2 in conjunction with the big-M approach10 to rewrite it as a MILP. In the present
note the intersample crossing of the target sets defines the end of the maneuver, thus constraints (10a)–(10f) involving
a binary variable and the big-M approach are imposed over consecutive positions of the agent, si and si+ 1, when the
associated binary variable is equal to one.

Binary variables and the big-M method are also employed to implement the choice between the Nc possible regions
in Remark 3 to cross the segment, thus covering a larger area of the plane. It is important to remark that additional
binary variables are required by each region, so there is a compromise between size of the feasibility region and of the
optimization problem.

In order to impose the constraints over a horizon of at most T + 1 time steps, T + 1 binary variables are necessary. The
following constraints must be added to the classical maneuvering optimization Problem 1:

T∑
i=0

btarget
i = 1, (11i)

Nc∑
j=1

bc
j = 1. (11j)

http://wileyonlinelibrary.com
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The binary variables btarget
i are associated with the time instant when the crossing occurs: btarget

i = 1 implies that the
positions si and si+ 1 are on opposite sides of the target set; bc

j is related to the active region: bc
j = 1 implies that the positions

si and si+ 1 are constrained to remain within region j; bs is related to the sense in which the target is crossed, implementing
the alternatives⪋ and⪌ in (10e) and (10f). For example, in Figure 2 the target could be crossed from left to right—as shown
in the figure—or from right to left—as would be the case if the labels si and si+ 1 were interchanged. M is a constant which
is large enough to render the constraints inactive for all admissible values of si and si+ 1. It is interesting to remark that the
number of binary variables bc

j involving the choice of the active region may be reduced by using the encoding proposed in
Prodan et al. (2012)6 to implement the big-M approach. Therefore, instead of Nc binary variables, only ⌈log2 Nc⌉ would be
necessary, where ⌈•⌉ yields the smallest integer Θ such that Θ ≥ ⌈•⌉. It has been proved elsewhere11 that this procedure
can be done by adding a single additional constraint.

Inequalities (11a) and (11b) impose that the position at instant i is within region j, which is composed of two con-
straints representing the parallel lines that define this region, that is, they are an implementation of (10a) and (10b).
Similarly, (11c) and (11d) impose that the position at instant i+ 1 is within the same region, implementing (10c) and (10d).
The margins mi,j and mi,j are constant values subtracted from the right-hand side of the inequalities (11a) and (11b) as a
means to tighten the constraints so that they are not violated for all possible disturbance values, following the approach
in Richards and How (2006)2 for robust constraint enforcement. The presence of mi+1,j and mi+1,j in (11c) and (11d) is due
to the time-dependence of the margins in the constraint tightening approach, that is, the constraint tightening approach
considers the accumulated effect of the disturbances at the instant of their imposition. Since (11c) and (11d) are inequali-
ties involving the prediction si+ 1 at instant i+ 1, the margins must encompass this additional sample time. These margins
are calculated according to the following expressions, where w is the disturbance acting on the state:

m0,j = 0, (12a)

mi+1,j = mi,j + max
w∈

(
z⟂j

)T
CĀiw, i ≥ 0. (12b)

Similarly,
m0,j = 0, (13a)

mi+1,j = mi,j + max
w∈

(
−z⟂j

)T
CĀiw, i ≥ 0. (13b)

In (12b) and (13b), Ā is the closed-loop matrix of the system, Ā = A − BK, when a linear state feedback controller
with gain K is assumed, employing the closed-loop paradigm2,9 to obtain less conservative margins. The eigenvalues of
this matrix are all placed inside the unit circle by means of the choice of K (notice that this can be done because the pair
(A, B) in (1) is controllable).

As for the remaining inequalities, (11e)–(11h) impose that the positions si and si+ 1 lie on opposite sides of the segment
to be crossed. They implement (10e) and (10f), with the variable bs implementing the choice of the pairs of inequality
signs ⪋ and ⪌. These constraints too are tightened to ensure robustness to the disturbance with margins mi and mi. Again,
mi+1 and mi+1 are considered in (11g) and (11h) to account for the fact that the prediction of si+ 1 at instant i+ 1 is subject
to one more element of the disturbance sequence than si in (11e) and (11f). These margins are calculated according to
the following expressions:

m0 = 0, (14a)

mi+1 = mi + max
w∈

(v⟂)TCĀiw, i ≥ 0. (14b)

Similarly,
m0 = 0, (15a)

mi+1 = mi + max
w∈

(−v⟂)TCĀiw, i ≥ 0. (15b)

Finally, (11i) imposes that the crossing occurs at least once and (11j) allows only one region to be chosen.
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T A B L E 1 Simulation parameters
for the crossing of a segment

Parameter name Symbol Values

Maximal horizon T + 1 10

Fuel weight 𝛾 1

Big-M M 100

Initial state x(0) [0 0 1 0]T

State bounds xmax [5 5 5 5]T

xmin −[5 5 5 5]T

Control bounds umax [3 3]T

umin −[3 3]T

Disturbances wmax [0.025 0.025 0.025 0.025]T

wmin −[0.025 0.025 0.025 0.025]T

Target set vertices cu (1.5, 0.8)

cl (1.0, 0.3)

Region-defining vector z1 [− 0.2425 0.9701]T

Closed-loop gain employed in Ā K
⎡⎢⎢⎣
0.4345 1.0285 0 0

0 0 0.4345 1.0285

⎤⎥⎥⎦
Remark 6. If  is symmetric about the axes, one can save the calculations of (13a)–(13b) as well as (15a)–(15b), as they
yield the same results as (12a)–(12b) and (14a)–(14b), respectively, with a change in sign.

3.2 Illustrative example

A simulation is presented to illustrate the crossing of a segment. The simulation was run in closed-loop, that is, the
receding horizon paradigm was employed.12 The adopted conditions are described in Table 1, with the model matrices
given in (1). A single region is used in the example, that is, Nc = 1, and the point q1 was chosen so that the vector z1
was orthogonal to v. Moreover, the state  , control  , and disturbance  sets were all assumed to be boxes, with upper
and lower limits specified in Table 1. The disturbances at each sample time were samples from an uniform distribution
between the wmin and wmax values presented in Table 1.

Figure 3 depicts the positions at the sample times for 100 realizations of the disturbance sequence as black crosses.
To avoid cluttering the figure, only one trajectory is depicted using black line segments. It can be seen that s2 and s3
satisfy constraints (10a)–(10f), thus ensuring the crossing according to Proposition 1 despite the disturbances, due to
their robust implementation in (11a)–(11h). It is interesting to remark that the standard target set imposition used in the
current literature displayed in (3f) cannot find a feasible solution, as the robustification process eliminates the target as
long as  ≠ {0}. Considering all 100 realizations, the mean and standard deviation of the computation time (in seconds)
at each time step of the trajectory were 0.034± 0.006 (k= 1), 0.018± 0.009 (k= 2), and 0.015± 0.006 (k= 3). The CPLEX
12.6 solver13 and a computer with a 2.30 GHz processor were employed.

For comparison, the nonlinear crossing constraints in (5) were implemented, yielding a mixed-integer nonlinear pro-
gram (MINLP). It is important to emphasize that the nature of the equality constraints (5) renders them unsuitable for
application of the constraint tightening method, therefore they were not robustified. Thus, the implemented MINLP con-
sidered only the nominal case, that is,  = 0. For this case, the optimal solution used only two time steps to cross the
target set and the mean and standard deviation of the computation time (in seconds) at each time step of the trajectory
were 1.00± 0.06 (k= 1) and 0.05± 0.01 (k= 2), for 100 simulations. As can be seen, even with less stringent constraints the
computation time of the MINLP solution was 30 times larger in the first step. The solver used for the MINLP was SCIP,14

with the package OPTI15 in the same computer mentioned above. Since there were no disturbances in this case, the same
trajectory (depicted in gray color in Figure 3) was obtained in all 100 simulations. In this case the fluctuations in com-
putation time (±0.06 at k= 1 and ±0.01 at k= 2) are associated to run-to-run variability in the computational processes,
rather than changes in the trajectory features.
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F I G U R E 3 One illustrative trajectory (black line segments)
obtained in closed-loop for crossing a segment (blue) with the
proposed method. The black crosses indicate the positions at the
sample instants for 100 realizations of the disturbances and the
region in red corresponds to constraints (10a)–(10d) in this
particular example. The trajectory obtained with the MINLP
formulation without disturbances is depicted with gray line
segments [Colour figure can be viewed at wileyonlinelibrary.com]

4 CROSSING TARGET SETS OTHER THAN A SEGMENT

Aiming at further developing the crossing capabilities to deal with more general target sets , we present a proposal to
perform crossing of any convex set in this section. The aim of the proposal within the present section is to ensure that the
trajectory of the vehicle in continuous time intersects , in which case we consider that a “crossing” of  happened.

We now formalize the conditions over the target set stated above.

Assumption 1. The target set  is convex.

Assumption 2. The interior of the set  is not empty, that is, ∃𝛿 > 0, g ∈  |  ⊃ 𝛿(g).

Following a similar development as the one in Section 3, a definition of crossing is presented for the target set .

Definition 3.  is crossed by a segment sisi+1 if and only if both have a point d in common, that is, ∃d | d ∈ , d ∈ sisi+1.

The following proposition characterizes the crossing of  in terms of the crossing of segments.

Proposition 2. A convex set  is crossed by a segment sisi+1 if and only if there exists a segment clcu contained in  that is
crossed, that is, ∃clcu ⊂  | clcu ∩ sisi+1 ≠ Ø.

Proof. (Sufficiency) if clcu ∩ sisi+1 ≠ Ø, then there exists d such that d ∈ clcu, d ∈ sisi+1. On the other hand, in view of
Assumption 1, clcu ⊂  ⇒ d ∈ , which shows that  is crossed by sisi+1 due to Definition 3.

(Necessity): ∃d | d ∈ , d ∈ sisi+1. Take cl =d and cu ∈  any other point cu ≠ cl (such a point exists due to
Assumption 2). Clearly, d ∈ clcu and, by Assumption 1, clcu ⊂ . Since ∃d ∈ clcu, d ∈ sisi+1, then clcu ∩ sisi+1 ≠ Ø.

By Proposition 2, the existence of a segment clcu ⊂  that is crossed is necessary and sufficient to ensure crossing
of . The following corollary allows one to derive sufficient linear constraints to ensure crossing of .

Corollary 1. Consider a segment clcu ⊂  with cu ≠ cl, whose existence is ensured by Assumptions 1 and 2, a unit vector v
in the direction from cl to cu as in (6), a vector v⟂ orthogonal to v as in (7), a point q ∉ clcu, the unit vector z as in (8), and
a vector z⟂ orthogonal to it as in (9). If constraints (10a)–(10f ) are enforced, then  is crossed by sisi+1.

Proof. Crossing of clcu is ensured by Proposition 1, which in turn ensures crossing of  by means of Proposition 2. ▪

4.1 Formulation of the constraints

The constraints to cross a general convex set  are formulated based on (11a)–(11j) by allowing the choice of more than
one segment out of Ns to be crossed, with the nth segment having extreme points cu, n and cl, n, n= 1, 2, … , Ns.

http://wileyonlinelibrary.com
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T∑
i=0

btarget
i = 1, (16i)

Ns∑
n=1

Nc∑
j=1

bc
j,n = 1. (16j)

The summation in (16j) allows the choice of only one of the Nc possible regions associated to one of the Ns possible seg-
ments, therefore imposing (16a)–(16d) only for the jth region of the nth segment corresponding to bc

j,n = 1. The calculation
of the robustness margins is performed exactly as in (12a)–(12b), (13a)–(13b), (14a)–(14b), and (15a)–(15b), considering
that it must be carried out Ns times for each n ∈ {1, 2, … ,Ns}.

4.1.1 Formulation of the constraints for multiple crossings

The proposed formulation can be easily extended to impose the crossing of multiple targets sequentially. This is achieved
by a simple reformulation of (16a)–(16j) to include Ntarget target sets, each with Ns segments, to which Nc regions are
associated.
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Parameter name Symbol Values

Maximal horizon T + 1 20

Fuel weight 𝛾 0.1

Big-M M 100

Initial state x(0) [2 0 2 0]T

State bounds xmax [10 4 10 4]T

xmin −[10 4 10 4]T

Control bounds umax [5 5]T

umin −[5 5]T

Disturbances wmax [0.05 0.05 0.05 0.05]T

wmin −[0.05 0.05 0.05 0.05]T

Closed-loop gain employed in Ā K
⎡⎢⎢⎣
0.4345 1.0285 0 0

0 0 0.4345 1.0285

⎤⎥⎥⎦

T A B L E 2 Simulation parameters
for both convex target set examples

T∑
i=0

ibtarget
i,𝓁 ≤

T∑
i=0

ibtarget
i,𝓁+1 , 𝓁 = 1, 2, … ,Ntarget − 1. (17k)

The more relevant changes as compared with (16a)–(16j) are the dependence on 𝓁 of the binary variables btarget
i,𝓁 and bs,𝓁 ,

which indicate the interval of the crossing of the 𝓁th target and its sense, respectively, and inequalities (17k), that impose
the order of crossing of the target sets from 𝓁 = 1 increasing until 𝓁 =Ntarget. One small change to the cost function would
be to use the term

∑T
i=1(i + 1)btarget

i,Ntarget
as the cost to end the maneuver, as this indicates the crossing of the last target set.

4.2 Simulation results with multiple crossings

Two closed-loop simulations will be presented to illustrate the crossing of general convex sets using the proposed method.
A comparison with the use of pointwise-in-time target set constraints at the sample instants will also be shown. The
adopted conditions that are common for both examples can be found in Table 2, with the model matrices given in (1).
The target sets were three ellipses and seven segments were chosen within each ellipse for application of the crossing
constraints in Section 4.1.1. For each segment n of the target set 𝓁, only one point q1, n,𝓁 was chosen with the vector z1, n,𝓁
was orthogonal to vn,𝓁 . As for the pointwise-in-time constraints at the sample instants, the ellipses were approximated by
10-sided polygons with vertices at the boundary of each 𝓁 starting at the direction of the semimajor axis with positive
x coordinate and placing the vertices with equal angles between neighboring vertices, that is, one vertex at each step of
360◦/10= 36◦.

Figure 4 presents the resulting positions obtained from 100 realizations with disturbances at each sample time sampled
from an uniform distribution between the wmin and wmax values presented in Table 2. The positions at the sample times
are depicted as black crosses and to avoid cluttering the figure only one trajectory is depicted using black line segments.
For the crossing constraints proposed in this note, it took the vehicle three time steps to cross all three ellipses for all
the 100 realizations, as 2 and 3 are both crossed between s2 and s3, as depicted in Figure 4(A). The associated value
of the optimal cost at x(0) was 4.01. On the other hand, with the imposition of pointwise-in-time target set constraints
at the sample instants, the crossing of all three ellipses took four time samples in all 100 realizations, as can be seen in
Figure 4(B), leading to an associated higher optimal value of the cost at x(0) of 5.08. For comparison, 100 realizations were
also run with different number of segments Ns = 3 and Ns = 1. With less segments, the cost increased slightly to 4.09, but
the maneuver was still concluded within three time steps. The computation time data are presented in Table 3. It is possible
to see that, with Ns = 1 segment, the computation times are very similar with those obtained for the pointwise-in-time
constraints. The CPLEX 12.6 solver13 and the same computer mentioned in Section 3.2 were used.
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F I G U R E 4 One illustrative trajectory (black line
segments) obtained in closed-loop for: (A) crossing ellipses
(red) using the segments (blue) with the proposed method and
(B) visiting an inner approximation of the ellipses (red). The
black crosses indicate the positions at the sample instants for
100 realizations of the disturbances in both figures and the
shades of different colors in (A) represent the constraints
(10a)–(10d) for each segment [Colour figure can be viewed at
wileyonlinelibrary.com]
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T A B L E 3 Mean ± standard
deviation (seconds) of the
computation time at each time step of
the trajectory, considering 100
realizations with (i) the proposed
method and (ii) the pointwise-in-time
target set constraints

Time step k

1 2 3 4

(i) Seven segments 2.90± 0.06 1.3± 0.1 0.42± 0.02 –

(i) Three segments 0.72± 0.05 0.40± 0.06 0.20± 0.01 –

(i) One segment 0.14± 0.06 0.14± 0.01 0.05± 0.01 –

(ii) 0.14± 0.01 0.11± 0.01 0.051± 0.008 0.037± 0.008

5 CONCLUSION

The problem of crossing a target set was shown to be challenging to the current MILP-MPC approaches, since
depending on the dimensions of the set it may be infeasible to impose visiting it in the presence of distur-
bances. Moreover, by imposing that the vehicle must visit the target set at a sample instant, the current formu-
lations may entail a larger cost. In this context, the proposed method of using crossing constraints circumvents
both difficulties by introducing segments to be crossed. The number can be chosen by the user to tune a com-
promise between the number of additional variables associated to the segments and the improvements to the
trajectories.

http://wileyonlinelibrary.com


2422 AFONSO and GALVÃO

ACKNOWLEDGMENTS
Rubens Afonso acknowledges the support of CAPES (fellowship proc. #88881.145490/2017-01) and the Federal Min-
istry for Education and Research of Germany through the Alexander von Humboldt Foundation. Roberto Galvão
acknowledges the support of CNPq (research fellowship #303393/2018-1). Open Access funding enabled and organized
by ProjektDEAL. WOA Institution: Technische Universitat Munchen Blended DEAL : ProjektDEAL

CONFLICT OF INTEREST
The authors report no conflict of interest.

ORCID
Rubens J. M. Afonso https://orcid.org/0000-0001-9209-2253
Roberto K. H. Galvão https://orcid.org/0000-0001-9794-8815

REFERENCES
1. Banerjee N, Long X, Du R, et al. Human-supervised control of the ATLAS humanoid robot for traversing doors. Paper presented at: Pro-

ceedings of the IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids); 2015:722-729; Seoul, South Korea. https://
doi.org/10.1109/HUMANOIDS.2015.7363442

2. Richards A, How JP. Robust variable horizon model predictive control for vehicle maneuvering. Int J Robust Nonlinear Control.
2006;16(7):333-351. https://doi.org/10.1002/rnc.1059.

3. Maia MH, Galvão RKH. On the use of mixed-integer linear programming for predictive control with avoidance constraints. Int J Robust
Nonlinear Control. 2009;19(7):822-828. https://doi.org/10.1002/rnc.1341.

4. Richards A, Turnbull O. Inter-sample avoidance in trajectory optimizers using mixed-integer linear programming. Int J Robust Nonlinear
Control. 2015;25(4):521-526. https://doi.org/10.1002/rnc.3101.

5. Afonso RJM, Galvão RKH, Kienitz KH. Reduction in the number of binary variables for inter-sample avoidance in trajectory optimizers
using mixed-integer linear programming. Int J Robust Nonlinear Control. 2016;26:3662-3669. https://doi.org/10.1002/rnc.3529.

6. Prodan I, Stoican F, Olaru S, Niculescu SI. Enhancements on the hyperplanes arrangements in mixed-integer programming techniques.
J Optim Theory Appl. 2012;154(2):549-572. https://doi.org/10.1007/s10957-012-0022-9.
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Then,

⟨v⟂, f(𝛽) − cl⟩ = ⟨v⟂, 𝛽si + (1 − 𝛽)si+1 − (1 − 𝛽 + 𝛽)cl⟩
= 𝛽⟨v⟂, si − cl⟩ + (1 − 𝛽)⟨v⟂, si+1 − cl⟩. (A2)

Solving for the root of (A2) makes f(𝛽) evaluate to a point within the support line of the segment clcu. The trivial cases
happen when there are equalities in (10e) and (10f) and are three: (i) only ⟨v⟂, si − cl⟩ = 0, in which case the solution is
𝛽 = 1 and si is at the support line of the segment clcu; (ii) only ⟨v⟂, si+1 − cl⟩ = 0, resulting in 𝛽 = 0 and the point si+ 1 is
at the support line of the segment clcu; (iii) both ⟨v⟂, si − cl⟩ = ⟨v⟂, si+1 − cl⟩ = 0, then both si and si+ 1 are at the support
line of the segment clcu as well as all points in the straight line that passes through them, thus all 𝛽 ∈ [0, 1] are solutions.
These three trivial cases cover the equalities in (10e) and (10f), thus, for all other situations (10e) and (10f) reduce to strict
inequalities and one can asseverate that:

⟨v⟂, si − cl⟩∕⟨v⟂, si+1 − cl⟩ < 0 ⇒ 1 − ⟨v⟂, si − cl⟩∕⟨v⟂, si+1 − cl⟩ > 1, (A3)

as the numerator and denominator have different signs due to (10e) and (10f).
With exception of these trivial cases, the solution for 𝛽 is:

𝛽 =
⟨v⟂, si+1 − cl⟩⟨v⟂, si+1 − cl⟩ − ⟨v⟂, si − cl⟩ = 1

1 − ⟨v⟂, si − cl⟩∕⟨v⟂, si+1 − cl⟩ , (A4)

which is ensured to have a nonnull denominator in view of (A3).
Therefore, applying the inequality in (A3) to (A4):

0 < 𝛽 = 1
1 − ⟨v⟂, si − cl⟩∕⟨v⟂, si+1 − cl⟩ < 1. (A5)

From (A5) and the analysis of the trivial cases, it can be concluded that a solution 𝛽 ∈ [0, 1] always exists when (10e) and
(10f) are enforced.

Second part: Consider the solution 𝛽 ∈ [0, 1] for the first part, then, one can multiply (10a) by 𝛽 and (10c) by 1 − 𝛽

and sum the results to get:

𝛽⟨z⟂, si − cl⟩ + (1 − 𝛽)⟨z⟂, si+1 − cl⟩ ≥ 0. (A6)

On the other hand,

0 ≤ 𝛽⟨z⟂, si − cl⟩ + (1 − 𝛽)⟨z⟂, si+1 − cl⟩ = ⟨z⟂, 𝛽(si − cl)⟩ + ⟨z⟂, (1 − 𝛽)(si+1 − cl)⟩
= ⟨z⟂, 𝛽(si − cl) + (1 − 𝛽)(si+1 − cl)⟩
= ⟨z⟂, f(𝛽) − cl⟩
= ⟨v − ⟨v, z⟩z, f(𝛽) − cl⟩
= ⟨v, f(𝛽) − cl⟩ − ⟨v, z⟩⟨z, f(𝛽) − cl⟩. (A7)

Recalling that the vectors v and f(𝛽) − cl are collinear, since in the first part of the proof it was shown that f(𝛽) is at the
support line of clcu, one can write:

f(𝛽) = cl + 𝜇v. (A8)

Replacing (A8) for f(𝛽) in (A7) it follows that

0 ≤ ⟨v, 𝜇v⟩ − ⟨v, z⟩⟨z, 𝜇v⟩ = 𝜇(1 − ⟨v, z⟩2). (A9)

By recalling that both v and z have unitnon norms and applying the Cauchy–Schwarz inequality, it can be shown that⟨v, z⟩2 ≤ 1 and thus
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1 − ⟨v, z⟩2 ≥ 0. (A10)

Since q ∉ clcu, the equality in (A10) never holds and thus

1 − ⟨v, z⟩2 > 0. (A11)

From (A9) and (A11), it follows that

𝜇 ≥ 0. (A12)

By a similar process, one can multiply (10b) by 𝛽 and (10d) by 1 − 𝛽 and sum the results to get:

𝛽⟨−z⟂, si − cu⟩ + (1 − 𝛽)⟨−z⟂, si+1 − cu⟩ ≥ 0. (A13)

Moreover

0 ≤ 𝛽⟨−z⟂, si − cu⟩ + (1 − 𝛽)⟨−z⟂, si+1 − cu⟩ = ⟨−z⟂, 𝛽(si − cu)⟩ + ⟨−z⟂, (1 − 𝛽)(si+1 − cu)⟩
= ⟨−z⟂, 𝛽(si − cu) + (1 − 𝛽)(si+1 − cu)⟩
= ⟨−z⟂, f(𝛽) − cu⟩
= ⟨−v + ⟨v, z⟩z, f(𝛽) − cu⟩
= ⟨−v, f(𝛽) − cu⟩ + ⟨v, z⟩⟨z, f(𝛽) − cu⟩. (A14)

Similarly to (A8), one can write

f(𝛽) = cu − 𝜆v. (A15)

Replacing (A15) for f(𝛽) in (A14) it follows that

0 ≤ ⟨v, 𝜆v⟩ − ⟨v, z⟩⟨z, 𝜆v⟩ = 𝜆(1 − ⟨v, z⟩2). (A16)

From (A11) and (A16), it follows that

𝜆 ≥ 0. (A17)

Subtracting (A8) from (A15) yields

0 = cu − 𝜆v − cl − 𝜇v = cu − cl − (𝜆 + 𝜇)v. (A18)

Replacing (6) for v in (A18) it follows that

0 = cu − cl − (𝜆 + 𝜇) cu − cl||cu − cl|| =
(

1 − 𝜆 + 𝜇||cu − cl||
)
(cu − cl). (A19)

Since cu − cl ≠ 0, the only solution to (A19) is

𝜆 + 𝜇||cu − cl|| = 1. (A20)

Using (6) one can rewrite (A8) as

f(𝛽) = cl + 𝜇
cu − cl||cu − cl|| =

(
1 − 𝜇||cu − cl||

)
cl +

𝜇||cu − cl||cu. (A21)
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Now, let 𝛼 be defined as

𝛼 = 𝜇||cu − cl|| . (A22)

Then, from (A12) and (A22):

𝛼 ≥ 0. (A23)

On the other hand, from (A17), (A20), and (A22)

𝛼 ≤ 1. (A24)

Finally, replacing (A22) for 𝛼 in (A21) it follows that

f(𝛽) = 𝛼cu + (1 − 𝛼)cl, 0 ≤ 𝛼 ≤ 1. (A25)

It was shown that if si and si+ 1 satisfy all constraints (10a)–(10f), then

∃𝛼, 𝛽 ∈ [0, 1] ||| 𝛼cu + (1 − 𝛼)cl = 𝛽si + (1 − 𝛽)si+1, (A26)

which, in turn, allows to conclude by Criterion 1 that a crossing of clcu by sisi+1 is ensured. ▪

APPENDIX B. EXTENSION TO A THREE-DIMENSIONAL SCENARIO

The extension to a three-dimensional scenario is easily performed by changing the crossing of a segment in R2 to that of
a polygon with Nv ≥ 3 coplanar, noncollinear vertices c𝜃 ∈ R3, 𝜃 ∈ {1, 2, … ,Nv}. It is assumed that the pairs of vertices
c𝜃 and c𝜃+1 for 𝜃 = 1, 2, … ,Nv − 1, as well as the pair c1 and cNv are neighbors, that is, a plane containing each pair and
no other vertices divides the space in two regions, one of which contains the entire polygon. For simplicity, it is assumed
that these vertices do not lie in a plane containing the origin. However, this assumption can be relaxed, as discussed in
Remark 7 at the end of this Appendix.

Criterion 1 is extended by changing the left-hand side in (5) as follows:

Criterion 2. A polygon with Nv coplanar, noncollinear vertices c𝜃 ∈ R3, is crossed between time steps i and i+ 1 if and only
if:

∃𝛼𝜃, 𝛽 ∈ [0, 1] ||| Nv∑
𝜃=1

𝛼𝜃c𝜃 = 𝛽si + (1 − 𝛽)si+1,

Nv∑
𝜃=1

𝛼𝜃 = 1, (B1)

where si ∈ R3 and si+1 ∈ R3 are the positions of the vehicle at time steps i and i+ 1, respectively.

Moreover, Proposition 1 is extended by defining Nv unit vectors v𝜃 as follows.

Proposition 3. Let v𝜃 be the unit vectors defined as:

v𝜃 = c𝜃+1 − c𝜃||c𝜃+1 − c𝜃|| , 𝜃 = 1, 2, … , (Nv − 1), (B2a)

vNv =
c1 − cNv||c1 − cNv || . (B2b)

Define the vector v⟂ orthogonal to the plane of c𝜃 , that is,

⟨v⟂, c𝜃 − c𝜎⟩ = 0, ∀𝜃 ∈ {1, 2, … ,Nv}, ∀𝜎 ∈ {1, 2, … ,Nv}. (B3)
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Given Nv points q𝜃 outside the plane containing all c𝜃 , define unit vectors z𝜃 as

z𝜃 =
q𝜃 − c𝜃||q𝜃 − c𝜃|| , (B4)

and vectors 𝜃z⟂ orthogonal to both z𝜃 and v𝜃 as

⟨𝜃z⟂, z𝜃⟩ = 0, ∀𝜃 ∈ {1, 2, … ,Nv}, (B5a)

⟨𝜃z⟂, v𝜃⟩ = 0, ∀𝜃 ∈ {1, 2, … ,Nv}, (B5b)

and such that

⟨𝜃z⟂, c𝜎 − c𝜃⟩ ≥ 0, ∀𝜎, 𝜃 ∈ {1, 2, … ,Nv} (B6)

If

⟨𝜃z⟂, si − c𝜃⟩ ≥ 0, (B7a)

⟨𝜃z⟂, si+1 − c𝜃⟩ ≥ 0, (B7b)

for all 𝜃 ∈ {1, 2, … ,Nv} and

⟨v⟂, si − c𝜃⟩ ⪋ 0, (B8a)

⟨v⟂, si+1 − c𝜃⟩ ⪌ 0, (B8b)

for some 𝜃 ∈ {1, 2, … ,Nv}, then the convex hull of the points c𝜃 , 𝜃 = 1, 2, … ,Nv, is crossed by sisi+1.

Proof. As in Proposition 1, the proof is divided into two parts.
First part: Identically to Proposition 1, replacing cl with c𝜃 , it is possible to conclude by (B8a) and (B8b) that∃𝛽 ∈ [0, 1]

such that the function

f(𝛽) = 𝛽si + (1 − 𝛽)si+1, (B9)

satisfies

⟨v⟂, f(𝛽) − c𝜃⟩ = 0. (B10)

On the other hand,

⟨v⟂, f(𝛽) − c𝜎 + c𝜎 − c𝜃⟩ = ⟨v⟂, f(𝛽) − c𝜎⟩ + ⟨v⟂, c𝜎 − c𝜃⟩. (B11)

The second term in the summation in the right-hand side of (B11) vanishes for any 𝜎 ∈ {1, 2, … ,Nv} in view of (B3),
thus from (B10) and (B11)

⟨v⟂, f(𝛽) − c𝜎⟩ = 0, 𝜎 = 1, 2, … ,Nv. (B12)

Second part: Under the hypothesis that c𝜃, 𝜃 = 1, 2, … ,Nv, do not lie in a plane containing the origin, one can state that

⟨v⟂, c𝜃⟩ ≠ 0, 𝜃 = 1, 2, … ,Nv. (B13)

Moreover, since the vertices c𝜃 are not collinear, any point f(𝛽) ∈ R3 can be written as:
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f(𝛽) =
Nv∑
𝜔=1

𝜆𝜔c𝜔, (B14)

for some scalars 𝜆𝜔.
On the other hand, replacing (B14) for f(𝛽) in (B12) it follows for all 𝜎 = 1, 2, … ,Nv that

0 =

⟨
v⟂,

Nv∑
𝜔=1

𝜆𝜔c𝜔 − c𝜎

⟩
=

⟨
v⟂,

Nv∑
𝜔=1

𝜆𝜔(c𝜔 − c𝜎) +

(
−1 +

Nv∑
𝜔=1

𝜆𝜔

)
c𝜎

⟩

=
Nv∑
𝜔=1

𝜆𝜔⟨v⟂, c𝜔 − c𝜎⟩ +(
−1 +

Nv∑
𝜔=1

𝜆𝜔

)⟨v⟂, c𝜎⟩. (B15)

From (B3) and (B15), it follows that (
−1 +

Nv∑
𝜔=1

𝜆𝜔

)⟨v⟂, c𝜎⟩ = 0. (B16)

From (B13), for the equality (B16) to hold one must have:

−1 +
Nv∑
𝜔=1

𝜆𝜔 = 0. (B17)

On the other hand, multiplying (B7a) by 𝛽 ∈ [0, 1] and (B7b) by 1 − 𝛽 and summing the results leads to:

0 ≤ 𝛽⟨𝜃z⟂, si − c𝜃⟩ + (1 − 𝛽)⟨𝜃z⟂, si+1 − c𝜃⟩ = ⟨𝜃z⟂, 𝛽(si − c𝜃) + (1 − 𝛽)(si+1 − c𝜃)⟩ = ⟨𝜃z⟂, f(𝛽) − c𝜃⟩, 𝜃 = 1, 2, … ,Nv.

(B18)
Replacing (B14) for f(𝛽) in (B18) it follows that

0 ≤

⟨
𝜃z⟂,

( Nv∑
𝜔=1

𝜆𝜔c𝜔

)
− c𝜃

⟩
=

⟨
𝜃z⟂,

Nv∑
𝜔=1

𝜆𝜔(c𝜔 − c𝜃) +

(
−1 +

Nv∑
𝜔=1

𝜆𝜔

)
c𝜃

⟩
, 𝜃 = 1, 2, … ,Nv. (B19)

From (B17) and (B19), it follows that

Nv∑
𝜔=1

𝜆𝜔⟨𝜃z⟂, c𝜔 − c𝜃⟩ ≥ 0, 𝜃 = 1, 2, … ,Nv. (B20)

Consider the convex set Nv ⊂ R3 given by:

Nv =
{

s ∈ R
3|||⟨𝜃z⟂, s − c𝜃⟩ ≥ 0, 𝜃 = 1, 2, … ,Nv, ⟨v⟂, s − c𝜃⟩ = 0, for some 𝜃 ∈ {1, 2, … ,Nv}

}
. (B21)

Then, in view of (B12) and (B18), constraints (B7a)–(B8b) ensure that:

f(𝛽) ∈ Nv . (B22)

The aim is to prove that (B22) implies that there exist 𝜆𝜔 ≥ 0, ∀𝜔 ∈ {1, 2, … ,Nv} such that
∑Nv

𝜔=1 𝜆𝜔 = 1 and f(𝛽) =∑Nv
𝜔=1 𝜆𝜔c𝜔. The remainder of the proof will be done by induction. For the base case Nv = 3, constraints (B20) can be

explicitly written as:

⟨1z⟂, c1 − c1⟩𝜆1 + ⟨1z⟂, c2 − c1⟩𝜆2 + ⟨1z⟂, c3 − c1⟩𝜆3 ≥ 0, (B23a)
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⟨2z⟂, c1 − c2⟩𝜆1 + ⟨2z⟂, c2 − c2⟩𝜆2 + ⟨2z⟂, c3 − c2⟩𝜆3 ≥ 0, (B23b)

⟨3z⟂, c1 − c3⟩𝜆1 + ⟨3z⟂, c2 − c3⟩𝜆2 + ⟨3z⟂, c3 − c3⟩𝜆3 ≥ 0. (B23c)

The coefficients of 𝜆1, 𝜆2 and 𝜆3 in (B23a)–(B23c) vanish in three cases: (i) when𝜔 = 𝜃, then the inner product involves
a null vector, (ii) when 𝜔 = 𝜃 + 1, for 𝜃 = 1, 2, … , (Nv − 1), in view of (B2a) and (B5b), and (iii) when 𝜔 = 1 and 𝜃 = Nv,
in view of (B2b) and (B5b). Therefore, after eliminating the null terms in the sums in (B23a)–(B23c), one has:

⟨1z⟂, c3 − c1⟩𝜆3 ≥ 0, (B24a)

⟨2z⟂, c1 − c2⟩𝜆1 ≥ 0, (B24b)

⟨3z⟂, c2 − c3⟩𝜆2 ≥ 0. (B24c)

In view of (B6), each inner product in (B24a)–(B24c) is nonnegative, therefore implying:

𝜆1, 𝜆2, 𝜆3 ≥ 0, (B25)

whereas (B17) directly implies

𝜆1 + 𝜆2 + 𝜆3 = 1. (B26)

Thus, enforcing (B22) with Nv = 3, that is, f(𝛽) ∈ 3, ensures that there exist 𝜆1, 𝜆2, 𝜆3 ≥ 0 such that 𝜆1 + 𝜆2 + 𝜆3 = 1 and
f(𝛽) =

∑3
𝜃=1 𝜆𝜃c𝜃 .

Assume as the induction hypothesis that, for a general number of vertices Nv ≥ 3,

f(𝛽) =
Nv∑
𝜃=1

𝜆𝜃c𝜃 ∈ Nv (B27)

for some 𝜆𝜃 such that

𝜆𝜃 ≥ 0, 𝜃 = 1, 2, … ,Nv, (B28a)

Nv∑
𝜃=1

𝜆𝜃 = 1. (B28b)

Consider now:

Nv+1 =
{

s ∈ R
3|||⟨𝜃z⟂, s − c𝜃⟩ ≥ 0, 𝜃 = 1, 2, … ,Nv + 1, ⟨v⟂

, s − c𝜃⟩ = 0, for some 𝜃 ∈ {1, 2, … ,Nv + 1}
}
, (B29)

with 𝜃z⟂ and v⟂ obtained by applying (B2b)–(B6) with c𝜃 in place of c𝜃 .
Define the following half-planes:

+
𝜃
=
{

s ∈ R
3|||⟨𝜃z⟂, s − c𝜃⟩ ≥ 0

}
, 𝜃 = 1, 2, … ,Nv + 1, (B30)

and the plane

𝜃 =
{

s ∈ R
3|||⟨v⟂

, s − c𝜃⟩ = 0
}
, for some 𝜃 ∈ {1, 2, … ,Nv + 1}. (B31)

Notice that in light of (B3)

𝜃 =
{

s ∈ R
3|||⟨v⟂

, s − c𝜎 + c𝜎 − c𝜃⟩ = 0
}
= {s ∈ R

3|||⟨v⟂
, s − c𝜎⟩ = 0} = 𝜎, (B32)
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for any 𝜎 ∈ {1, 2, … ,Nv + 1}. Therefore, from now on we will use the symbol  to denote any set 𝜃 , 𝜃 = 1, 2, … ,Nv + 1.
Thus, one can rewrite (B29) as

Nv+1 =  ∩
(Nv+1⋂

𝜃=1
+

𝜃

)
. (B33)

One can define a unit vector w as

w =
c1 − cNv||c1 − cNv || . (B34)

Moreover, one can choose a point o outside the plane containing all c𝜃 , 𝜃 = 1, 2, … ,Nv + 1, and define the unit vector
h as

h =
o − cNv||o − cNv || , (B35)

and the vector h⟂ such that

⟨h⟂,h⟩ = 0, (B36a)

⟨h⟂,w⟩ = 0, (B36b)

⟨−h⟂, cNv+1 − cNv⟩ > 0, (B36c)

⟨h⟂, c𝜃 − cNv⟩ > 0, 𝜃 = 2, … ,Nv − 1. (B36d)

Define the following half-planes:

+ =
{

s ∈ R
3|||⟨h⟂, s − c1⟩ ≥ 0

}
, (B37a)

− =
{

s ∈ R
3|||⟨−h⟂, s − c1⟩ ≥ 0

}
, (B37b)

It is useful to remark that, in light of (B34) and (B36b):

+ =
{

s ∈ R
3|||⟨h⟂, s − cNv⟩ ≥ 0

}
. (B38)

Next consider the set

△ =
{

s ∈ R
3|||⟨Nv z⟂, s − cNv⟩ ≥ 0, ⟨Nv+1z⟂, s − cNv+1⟩ ≥ 0, ⟨−h⟂, s − c1⟩ ≥ 0, ⟨v⟂

, s − cNv+1⟩ = 0
}

=  ∩+
Nv

∩+
Nv+1 ∩−. (B39)

From (B33) and (B39),

△ ⊃ (Nv+1 ∩−). (B40)

On the other hand, by considering the following correspondences

cNv ↔ c1, 0 (B41a)

cNv+1 ↔ c2, 0 (B41b)

c1 ↔ c3, 0 (B41c)
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vNv ↔ v1, 0 (B41d)

vNv+1
↔ v2, 0 (B41e)

w ↔ v3, 0 (B41f)

v⟂
↔ v, 0 (B41g)

zNv ↔ z1, 0 (B41h)

zNv+1
↔ z2, 0 (B41i)

h ↔ z3, 0 (B41j)

Nv z⟂ ↔ 1z⟂, 0 (B41k)

Nv+1z⟂ ↔ 2z⟂, 0 (B41l)

−h⟂ ↔ 3z⟂, 0 (B41m)

s ↔ f(𝛽), 0 (B41n)

then s∈△ implies that s satisfies constraints (B18) for Nv = 3 and also constraint (B10), as ⟨v⟂
, s − cNv+1⟩ = 0 in the

definition of △ in (B39) implies ⟨v⟂
, s − c𝜃⟩ = 0 for all 𝜃 = 1, 2, … ,Nv + 1, as demonstrated in (B12). Thus, the whole

deduction leading to (B25) and (B26) applies and any point s∈△ can be written as

s = 𝜆△1 cNv + 𝜆△2 cNv+1 + 𝜆△3 c1, 𝜆△1 + 𝜆△2 + 𝜆△3 = 1, 𝜆△1 , 𝜆△2 , 𝜆△3 ≥ 0. (B42)

Using s from (B42) one can write:

⟨𝜃z⟂, s − c𝜃⟩ = 𝜆△1 ⟨𝜃z⟂, cNv − c𝜃⟩ + 𝜆△2 ⟨𝜃z⟂, cNv+1 − c𝜃⟩ + 𝜆△3 ⟨𝜃z⟂, c1 − c𝜃⟩, 𝜃 = 1, 2, … ,Nv + 1. (B43)

The inner products on the right-hand side of (B43) are all nonnegative in view of (B6). On the other hand, in light of the
nonnegativity of 𝜆△1 , 𝜆△2 , 𝜆△3 in (B42) applied in (B43), it can be concluded that:

⟨𝜃z⟂, s − c𝜃⟩ ≥ 0, 𝜃 = 1, 2, … ,Nv + 1. (B44)

Therefore, in view of (B30) and (B44)

s ∈ +
𝜃
, 𝜃 = 1, 2, … ,Nv + 1. (B45)

By (B39):

s ∈  ∩−. (B46)

In view of (B45) and (B46):

s ∈  ∩
(Nv+1⋂

𝜃=1
+

𝜃

)
∩− = Nv+1 ∩−. (B47)

From (B47)

△ ⊂ (Nv+1 ∩−). (B48)
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Thus, in light of (B40) and (B48):

△ = Nv+1 ∩−. (B49)

Now, let

Nv =
{

s ∈ R
3|⟨𝜃z⟂, s − c𝜃⟩ ≥ 0, 𝜃 = 1, 2, … ,Nv − 1, ⟨h⟂, s − cNv⟩ ≥ 0,

⟨v⟂
, s − c𝜃⟩ = 0, for some 𝜃 ∈ {1, 2, … ,Nv}

}
=  ∩

(Nv−1⋂
𝜃=1

+
𝜃

)
∩+. (B50)

From (B33) and (B50),

Nv ⊃ (Nv+1 ∩+). (B51)

Now consider the correspondences

c𝜃 ↔ c𝜃, 𝜃 = 1, 2, … ,Nv, (B52a)

v𝜃
↔ v𝜃, 𝜃 = 1, 2, … ,Nv − 1, (B52b)

w ↔ vNv , (B52c)

v⟂
↔ v, (B52d)

z𝜃 ↔ z𝜃, 𝜃 = 1, 2, … ,Nv − 1, (B52e)

h ↔ zNv , (B52f)

𝜃z⟂ ↔ 𝜃z⟂, 𝜃 = 1, 2, … ,Nv − 1, (B52g)

h⟂ ↔ Nv z⟂, (B52h)

s ↔ f(𝛽). (B52i)

In light of the induction hypothesis, that is, (B27), (B28a), and (B28b), one can write:

⟨𝜃z⟂, s − c𝜃⟩ = Nv∑
𝜎=1

𝜆𝜎⟨𝜃z⟂, c𝜎 − c𝜃⟩, 𝜃 = 1, 2, … ,Nv + 1, with 𝜆𝜎 ≥ 0 and
Nv∑
𝜎=1

𝜆𝜎 = 1. (B53)

On the other hand, in view of (B6) and the nonnegativity of 𝜆𝜎 , 𝜎 = 1, 2, … ,Nv, in (B28a) applied in
(B53):

⟨𝜃z⟂, c̃ − c𝜃⟩ ≥ 0, 𝜃 = 1, 2, … ,Nv + 1. (B54)

Therefore, in light of (B30) and (B54)

c̃ ∈ +
𝜃
, 𝜃 = 1, 2, … ,Nv + 1, (B55)

By (B50):

c̃ ∈  ∩+. (B56)

In view of (B55) and (B56):
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c̃ ∈  ∩
(Nv+1⋂

𝜃=1
+

𝜃

)
∩+ = Nv+1 ∩+. (B57)

From (B57)

Nv ⊂ (Nv+1 ∩+). (B58)

Thus, in light of (B51) and (B58):

Nv = Nv+1 ∩+. (B59)

In view of (B59) and (B49), the union of the sets Nv and △ is

Nv ∪△ = (Nv+1 ∩+) ∪ (Nv+1 ∩−)
= [(Nv+1 ∩+) ∪ Nv+1]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Nv+1

∩ [(Nv+1 ∩+) ∪−]

= Nv+1 ∩ [(Nv+1 ∪−) ∩ (+ ∪−)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

R3

]

= Nv+1 ∩ (Nv+1 ∪−) = Nv+1. (B60)

Let s ∈ Nv+1, then by (B60)

s ∈ △, (B61)

or

s ∈ Nv . (B62)

If (B61) holds, then f(𝛽) = s can be written as in (B42). One can associate

𝛼Nv = 𝜆△1 , (B63a)

𝛼Nv+1 = 𝜆△2 , (B63b)

𝛼1 = 𝜆△3 , (B63c)

𝛼𝜏 = 0, 𝜏 = 2, 3, … ,Nv − 1, (B63d)

so that

f(𝛽) = s =
Nv+1∑
𝜃=1

𝛼𝜃c𝜃, (B64)

with

𝛼𝜃 ≥ 0, 𝜃 = 1, 2, … ,Nv + 1, (B65)

and

Nv+1∑
𝜃=1

𝛼𝜃 = 1. (B66)
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On the other hand, if (B62) holds, then f(𝛽) = s, with f(𝛽) as in (B27), (B28a), and (B28b) with the associations in
(B52a)–(B52i). Moreover, one can associate

𝛼𝜃 = 𝜆𝜃, 𝜃 = 1, 2, … ,Nv, (B67a)

𝛼Nv+1 = 0, (B67b)

so that

f(𝛽) = s =
Nv+1∑
𝜃=1

𝛼𝜃c𝜃, (B68)

with

𝛼𝜃 ≥ 0, 𝜃 = 1, 2, … ,Nv + 1, (B69)

and

Nv+1∑
𝜃=1

𝛼𝜃 = 1, (B70)

which concludes the induction proof.

Remark 7. The assumption that c𝜃 , 𝜃 = 1, 2, … ,Nv, do not lie in a plane that contains the origin is not lim-
iting, as a translation of the origin may always be performed to fulfill this condition, as demonstrated in the
following.

In case the points c𝜃 are in a subspace of R3 such that

⟨v⟂, c𝜃⟩ = 0, 𝜃 = 1, 2, … ,Nv, (B71)

the polygon formed by all c𝜃 is in a plane that contains the origin. The vectors v𝜃 , v⟂, z𝜃 , and 𝜃v⟂ are invariant to a trans-
lation of the origin, in view of their definitions in (B2a) and (B2b), (B3), (B4), and (B5a) and (B5b), respectively. Moreover,
the constraints (B7a), (B7b), (B8a), and (B8b) are also invariant regarding the translation of the origin. Therefore, a trans-
lation can always be performed without compromising the definitions and constraints within Proposition 3. Considering
a translation in the direction of v⟂, it can be written that

c𝜃 = c̃𝜃 − 𝜈v⟂, 𝜈 ≠ 0. (B72)

Replacing (B72) for c𝜃 in (B71) yields

⟨v⟂, c̃𝜃 − 𝜈v⟂⟩ = 0, 𝜃 = 1, 2, … ,Nv. (B73)

In view of (B73) and since 𝜈 ≠ 0 by the assumption in (B72) and v⟂ ≠ 0, it follows that:

⟨v⟂, c̃𝜃⟩ = 𝜈||v⟂||2 ≠ 0, 𝜃 = 1, 2, … ,Nv, (B74)

that is, a translation in the direction of v⟂ can be made to shift the plane of the points c̃𝜃 without compromising the
implications of Proposition 3.


