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Abstract
Performing inference of Convolutional Neural Networks (CNNs) on Internet of

Things (IoT) edge devices ensures both privacy of input data and possible run time

reductions when compared to a cloud solution. As most edge devices are memory-

and compute-constrained, they cannot store and execute complex CNNs. Parti-

tioning and distributing layer information across multiple edge devices to reduce

the amount of computation and data on each device presents a solution to this

problem. In this article, we propose DeeperThings, an approach that supports a full

distribution of CNN inference tasks by partitioning fully-connected as well as both

feature- and weight-intensive convolutional layers. Additionally, we jointly opti-

mize memory, computation and communication demands. This is achieved using

techniques to combine both feature and weight partitioning with a communication-

aware layer fusion method, enabling holistic optimization across layers. For a given

number of edge devices, the schemes are applied jointly using Integer Linear

Programming (ILP) formulations to minimize data exchanged between devices, to

optimize run times and to find the entire model’s minimal memory footprint.

Experimental results from a real-world hardware setup running four different CNN

models confirm that the scheme is able to evenly balance the memory footprint

between devices. For six devices on 100 Mbit/s connections the integration of layer

fusion additionally leads to a reduction of communication demands by up to 28.8%.

This results in run time speed-up of the inference task by up to 1.52x compared to

layer partitioning without fusing.
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1 Introduction

In the context of the Internet of Things (IoT), deep learning has emerged as a

valuable tool. Being fed large, complex and noisy sensory input data sets, a deep

learning model is trained offline with high computational effort to produce a set of

cascading mathematical manipulations that transform new input data into an output

classification result. The task of providing new input data to a pre-trained deep

learning model, producing as output a classification, is called inference and is the

focus of this article.

For image classification, Convolutional Neural Networks (CNNs) are a widely

used deep learning architecture, given their ability to extract many complex high-

level features needed for object classification. CNN inference is a very resource-

intensive task given the large amount of input, model and intermediate data that

must be stored and processed. IoT edge devices are components that operate at the

edge between an IoT application and the physical world. Considering their

constrained resources, it is often not possible to perform CNN inference on a single

edge device such as a smart camera. While this could be solved by deploying more

powerful edge devices, the cost of such a solution is prohibitive and may not be

appropriate for the target application. For many applications the overall system’s

performance can be greatly improved by distributing more computation to other IoT

edge devices [7]. An orthogonal solution is therefore the utilization of multiple

cooperative edge devices to carry out the CNN inference task in a distributed and

cooperative fashion. In many existing IoT applications, a large number of edge

devices are available and connected with each other via some local network, for

example, a cluster of surveillance cameras. This means that many existing IoT

installations already have the required system architecture for performing

distributed inference. Another advantage of distributed inference is that when

inputs arrive, most devices are idle, given the low duty cycles of common IoT-

enabled sensors. Thus, a low-cost but efficient solution can be established by

utilizing the idle time of other edge devices.

We base our work on the prior DeepThings approach described in [29], which

introduced an approach for memory- and communication-aware partitioning and

fusing of feature-dominated convolutional layers. In [25], we previously extended

DeepThings with methods to partition and fuse convolutional and fully-connected

layers whose weight data size dominates their input and output data size. However,

we only evaluated our approach in simulation for weight-dominated layers and did

not account for all joint optimization opportunities. In this article, we describe

DeeperThings, a comprehensive approach for the distributed execution of complete

CNNs considering all layer-types while simultaneously optimizing for computation,

memory and communication demands. The computation and memory footprint of

processing and storing feature and weight data is evenly distributed over all devices,

such that the CNN inference task can be scaled down for resource-constrained IoT

edge devices. Additionally, the communication demand is minimized by Deep-

erThings by finding an optimized partitioning of the CNN. This article makes the

following new contributions to enable the DeeperThings approach:
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1. An improved description of the memory- and communication-aware partition-

ing and layer fusing scheme for fully-connected and weight-intensive convo-

lutional layers. When combined with DeepThings’ prior schemes on feature-

intensive convolutional layer partitioning, DeeperThings enables complete

distribution of arbitrary state-of-the-art CNNs.

2. A new Integer Linear Programming (ILP) approach to minimize the memory

footprint of a full CNN model by finding the optimal point to switch from

feature partitioning to weight partitioning.

3. An improved ILP approach to minimize the communication overhead by finding

the Optimized Weight Partitioning (OWP) for all weight-partitioned CNN

layers. A similar ILP approach was outlined in [25], but it did not consider the

full potential to save communication overhead, which we now exploit with

DeeperThings in this article.

4. We deploy and evaluate DeeperThings on a real-world IoT edge setup

performing CNN inference. We only evaluated our prior approach from [25] in

simulation on a single model. In this article, we perform a case study using four

CNN models on a Raspberry Pi cluster to explore the trade-offs between run

time, memory requirements and communication overhead for different network

bandwidths and device counts. The new models were also used for extended

evaluation of the two partitioning optimization methods.

Experimental results for DeeperThings show that the memory footprint scales down

proportionally to the number of available edge devices. Optimizing the partitioning

schemes with layer fusion leads to an up to 28.8% reduced communication demand,

while executing the inference task on six edge devices with 100 Mbit/s connections

for four evaluated CNNs: YOLOv2, AlexNet, VGG-16 and a GoogLeNet

derivative. This results in a run time speed-up by up to 1.52x compared to a

straight-forward layer partitioning. In the evaluation we additionally varied the

available bandwidth and number of devices. The ILP optimization methods were

evaluated using the same models. Compared to the hand-picked configuration of

YOLOv2 in [29], the per-device memory footprint could be further reduced by 25%.

2 Related Work

Fully distributed inference is also tackled by the approach of MoDNN [16].

MoDNN distributes a CNN across multiple mobile phones connected via a wireless

network. The approach also distributes both the layers’ input and output data as well

as the weight data across devices. While the approach is able to partition weights, it

focuses mainly on sparse fully-connected layers (i.e., fully-connected structures,

where some weights are zero). The approach does not take the communication

between fully-connected layers into account, and weight-intensive convolutional

layers are not addressed. Furthermore, the approach proposes to process networks in

a layer-by-layer fashion, requiring all devices to synchronize by exchanging data

after each layer. It would be possible to combine their method with the layer fusion

and optimization methods proposed in this work. With additional constraints, the
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communication overhead could be reduced further by the approaches presented in

this work. Another full distribution is achieved with layer pipelining [18]. However,

this method is not able to evenly distribute the memory demand for typical models.

Other works have addressed the execution of inference on edge devices with

respect to pruning and quantizing the model, e.g., [3, 4, 17, 28]. Another approach is

to design a new model architecture specifically for constrained devices [9]. A

common solution is to offload inference to powerful servers in the cloud. However,

this approach introduces other issues, such as input data privacy concerns and the

requirement for a high bandwidth connection to the cloud [11, 23]. A load-aware

approach presented in [27] focuses on partitioning and distributing parts of a model

across different tiers of processing power. During inference, the model can stop at

an intermediate layer if it has high confidence of a result. Therefore, for certain

inputs, such a model would execute edge-only. Both of these works are orthogonal

methods to the one proposed in this article. There exist various device-local

methods to optimize performance and memory usage on a single device such as

shrinking and pruning the CNN. Applying these methods can reduce output

accuracy, thus no longer making the model a viable solution. As such there will

always be models that are just too complex for a single device [4, 8, 14, 17].

With model distribution being an actively researched field, [1] presented work

applicable to the distribution of CNN models targeting hardware accelerators. The

central idea is that the fusion of the first few layers in the network reduces the total

data transfer to and from the chip. Contrasting our work, the fusion method in [1]

targets memory-constrained accelerators instead of similarly-constrained IoT edge

devices. Fusing optimization for the accelerator is only investigated for the feature-

intensive layers while the fusing approach presented in this article additionally

targets the weight-intensive layers. Other works on accelerators have been focused

on aggressive parallelization [2].

Other works focus on methods how the tasks within a network of collaborative

edge devices should be distributed [6, 22]. However, these works handle general

tasks and in contrast to our work focus on the network parameters. Our work deals

with internals of fully-connected and convolutional operations to remove depen-

dencies between such tasks which would have to be respected by more general

approaches. Using larger scale edge devices for sharing work was explored in [12],

but this has the disadvantage that a more powerful device is added to the network

along with its additional power requirements.

The work in this article builds upon the previous DeepThings approach from

[29], which addressed adaptive, distributed deep learning inference for systems with

a dynamic availability of edge nodes. A fusing approach for multiple layers, which

focuses on data partitioning in the feature-intensive layers, was the main

contribution of this work. However, it did not consider weight partitioning. This

is an important consideration because, given a sufficiently deep CNN, it is no longer

possible for the presented approach to store the large volume of weight data on a

single resource-constrained device after a certain layer-depth. DeepThings requires

that weight-intensive network layers are evaluated on a central powerful gateway

edge device that has sufficient memory. This constraint is removed by the

DeeperThings approach presented in this work, enabling fully distributed inference
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on a set of memory-constrained edge devices. Additionally, DeeperThings includes

an ILP approach to minimize the communication demand by finding an optimized

partitioning and fusing decision based on the CNN layer structure. The memory

footprint per device is also optimized over the whole model by optimizing the layer

at which to start weight partitioning.

3 Background on CNNs

The input of an image classification CNN, such as YOLOv2 [21], is an image where

each color-channel of each pixel is represented by a neuron. The CNN input is

therefore a three-dimensional structure, also called tensor, where the third

dimension is a color intensity vector comprised of the three channels: red, green

and blue. Input images are processed by a number of convolutional layers that apply

multiple filter functions to their layer input to produce a set of feature maps. Feature

maps give representations of how distinguishable certain features are within a given

image. The sought-after features’ characteristics are represented within the given

filter functions. Thus, feature maps give accurate representations of the different

characteristics of an image. With a high number of filters in each layer, the number

of feature maps typically grows with each convolutional layer. Aside from

convolutional layers there are also pooling layers, which shrink the width and height

of feature maps in order to reduce the total size of the stored data, allowing a higher

number of features to be extracted given a fixed data size. Thus, as the number of

intermediate feature maps, and the respective number of characterizable features

increases, each feature map loses resolution because of pooling. Because of this

process, the input and output data dominate the memory usage for the first layers of

a CNN, while in the later layers the weights dominate. The demands of weight data

in later layers have made such layers the focus of this work, especially as

distribution strategies for early layers were described in [29].

If a CNN is given the task of classifying what it sees, the last few layers typically

consist of fully-connected layers, as seen in AlexNet [13] and VGGNet [24]. If

instead the CNN’s task is object localization within an image or classification of

multiple objects, the later layers will also be convolutional. Such network

architectures are known as Fully Convolutional Networks (FCNs) [15]. YOLOv2

is an FCN used in the evaluation of our proposed layer fusion method and is

following the typical data size distribution structure outlined above.

3.1 Fully-Connected Layers

Before introducing our notation for CNNs, we start with fully-connected layers,

which are a simpler layer type that is the main building block of artificial neural

networks. A fully-connected layer has the distinctive property that all input neurons

are connected to all output neurons. The fully-connected layer operation can be

expressed as:
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bl;k ¼ f
�XMl

m¼1

al;m � wl;m;k

�
; k 2 f1; . . .;Klg ð1Þ

where for the l-th layer, al;m is the m-th element of the input neurons vector

al 2 RMl , bl;k is the k-th element of the output neurons vector bl 2 RKl , wl;m;k is the

m, k-th element of the weight matrix Wl 2 RMl�Kl and f is the nonlinear activation

function.

For fully-connected layers, the number of weights, Ql, that have to be stored is

the dominating factor in determining the memory demand of the inference task.

Biases can also be considered weights, but since they are comparably negligible in

size, they are not included in the notation of this work. The computation time is

dominated by the number of multiplication operations Rl. The multiplications are

the ones seen in Eq. (1). Thus, for a fully-connected layer l with the dimensions Kl

and Ml, we obtain: Ql ¼ Rl ¼ Kl �Ml.

We use a special way to illustrate the layers in this article, which is shown in the

example in Fig. 1. The given fully-connected layer has four input neurons, which

are represented by the white nodes a1;m. The gray nodes am represent the internal

temporary nodes used for the fully-connected operation represented by the box. The

arrow between the white and gray nodes show the flow of data. If the white input

neurons are available on the device that is executing the operation, then this arrow

requires no computational effort as the buffer of input neurons can be directly used

by the operation. If the operation is executed on another device, the buffer needs to

be communicated (later shown as dashed line). The w above many crossing arrows

followed by summation boxes signifies the use of a dot product across an input

vector and corresponding weight vectors. A box labelled with an f represents the

application of an activation function. The gray nodes bk represent the output

neurons from the operation that become the input neurons a2;m for the next layer.

Fig. 1 Fully-connected layer
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3.2 Convolutional Layers

A convolutional layer takes multiple two-dimensional feature maps as input, where

each feature map captures one channel of the input tensor. For example, an RGB

input image is represented as three feature maps, one map for each color channel.

Taking all input feature maps into consideration, classical image filtering is applied

on each input channel using a two-dimensional kernel. The results of this filtering

are summed to create a single output feature map for all channels. As a

convolutional layer usually applies multiple filters, the output of a convolutional

layer respectively outputs multiple feature maps.

As such, the layer’s operation can be expressed as:

Bo;l ¼ f
�XCl

c¼1

corrðAc;l;Wc;o;lÞ
�
; o 2 f1; . . .;Olg ð2Þ

where the matrix Ac;l is the c-th feature map of the input tensor Al 2 RXl�Yl�Cl , the

matrix Bo;l is the o-th feature map of the output tensor Bl 2 RXl�Yl�Ol and the matrix

Wc;o;l is the kernel connecting the c-th feature map of the input with the o-th feature

map of the output. The kernels are contained in the four-dimensional weight tensor

Wl 2 RUl�Vl�Cl�Ol , where Ul and Vl are the kernels’ width and height, respectively.

The activation function is again f. The function corrðA;WÞ computes the two-

dimensional cross-correlation, for which the x, y-th element is computed with:

corrðA;WÞx;y ¼
XbU2c

ðu¼�bU
2
cÞ

XbV2c

ðv¼�bV
2
cÞ
axþu;yþvwu;v ð3Þ

Note that these formulas assume a stride of one and an input padding according to

the kernel size. However, the methods described in this article still apply for strides

larger than one. For convolutional layers the input size Ml, the output size Kl,

number of weights to be stored Ql and the number of multiplication operations Rl

are computed as:

Ml ¼ Xl � Yl � Cl; Kl ¼ Xl � Yl � Ol

Ql ¼ Ul � Vl � Cl � Ol; Rl ¼ Xl � Yl � Ul � Vl � Cl � Ol

ð4Þ

Due to their high dimensionality, convolutional layers of CNNs are thus compu-

tationally and memory intensive. Given resource-constrained edge devices, such

layers must be distributed to make the CNN’s execution possible.

3.3 Distributed Inference

As was already pointed out, for fully-connected layers and later convolutional

layers, the number of weights stored in the weight matrix and weight tensor

dominate the memory requirements. Hence, we approximate the required memory

footprint Fn as the number of weights to be stored on the n-th device. The
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computational load results predominately from the multiplications performed using

these weights. When distributing inference across multiple devices, these multipli-

cations can be parallelized. The longest execution path, given by the number of

parallelized multiplications, is denoted as T.
By parallelizing the workload, a synchronizing communication load is created.

This load, denoted C with the unit number of neurons, is the result of exchanging

input and output data between the devices. The value of C of course is only an

estimation for the exact communication impact on a real CNN inference

implementation. Nonetheless, our experimental results show that C is highly

correlated to the run time of the inference task. As such, the communication

overhead and the parallelization factor impact the overall run time in opposite

fashions as most edge devices are bandwidth-constrained. Therefore, utilizing a

larger number of devices leads to a lower per-device memory footprint Fn in

exchange for larger communication overheads C.
Thus, considering a network with L layers mapped to a single device, we would

obtain the following:

FðNÞ
n ¼

XL
l¼1

Ql; T ðNÞ ¼
XL
l¼1

Rl; CðNÞ ¼ 0 ð5Þ

This is illustrated in Fig. 2 for a fully-connected four-layer example. Edges are

annotated with the input/output sizes of the respective layers. Thus from Fig. 2

follows: F
ðNÞ
1 ¼ 4 � 8þ 8 � 16þ 16 � 4þ 4 � 4 ¼ 240, T ðNÞ ¼ 240, CðNÞ ¼ 0.

Layer pipelining as in [18] can be applied to the same example to distribute the

layers across two devices, reducing Fn. We can map layers 1 and 2 to Device 1 and

layers 3 and 4 to Device 2, as shown in Fig. 3. Intuitively, we obtain:

F
ðDLÞ
1 ¼ 4 � 8þ 8 � 16 ¼ 160, F

ðDLÞ
2 ¼ 16 � 4þ 4 � 4 ¼ 80, T ðDLÞ ¼ 240 and

CðDLÞ ¼ 16. The operational memory footprint is determined by the larger set of

layers, in this case F
ðDLÞ
1 . This is because the weights are not distributed evenly

across the two devices. Moreover, this method does not utilize any parallelism for a

single input, leading to the same high run time as for running on a single device,

now with additional communication overhead. This mapping can be improved by

using layer partitioning, which will be the focus of the remainder of the article.

4 Layer Partitioning Methods

Depending on the size of input/output data (features) or weights, the layer data

should be partitioned by either features or weights to achieve a reduced memory

footprint per device. The following two sections describe these methods in more

detail.

Fig. 2 4-Layer example on a single device
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4.1 Partitioning of Feature-dominated Layers

Partitioning the features of CNN layers is useful when their size dominates a layer’s

memory usage. In typical CNN model structures, this is the case for early layers,

because their feature resolution is large and there are fewer convolutional filters. To

support our holistic partitioning of CNNs, feature partitioning must also be

supported. The state-of-the-art method presented in [29] is included in our solution

for this purpose. In that work, an approach called Fused Tile Partitioning (FTP) is

presented that first partitions the input and output feature maps of multiple layers

into sets of tiles in an NxN grid. It then fuses corresponding tiles across layers to

exploit inherent locality in convolutions. This results in partitions with a set of

NxN fused tile stacks that can be executed independently. Since the computation of

each consecutive layer only depends on the previous layer’s respective tile, this

connection (or fusion) does not require synchronization between devices. The

method achieves reduced memory footprint from the feature map division and

reduced communication overhead because synchronization is not required. FTP is

only applicable to convolutional layers and not fully-connected ones, because it

exploits the structure of the convolution operation. Due to the nature of fully-

connected layers, they are however always weight-dominated.

4.2 Partitioning of Weight-dominated Layers

The core mechanism of our approach is the application of partitioning to weight-

dominated layers of a CNN such that weight data and computational load is evenly

distributed across all available devices, whilst minimizing the inference run time. In

the following, we first discuss partitioning schemes with respect to fully-connected

layers. In [25], we presented a novel approach for communication-aware

partitioning of such weight-dominated fully-connected layers. A weight partitioning

scheme can be achieved by partitioning weights such that either inputs or outputs of

a layer are split and mapping one partition of each layer to a respective device.

Weight partitioning by splitting input and output data is simple and very effective

when distributing weight data whilst minimizing communication overhead. In [25]

we also discussed how partitioning schemes for fully-connected layers can be

further improved in terms of communication overhead by applying a newly

proposed layer fusing scheme. Finally, we extended all partitioning and fusing

schemes to weight-intensive convolutional layers. In this article, we present a more

precise description of the layer communication demands, which considers that the

schemes can be used jointly such that they are able to reuse layer data maximally.

Fig. 3 4-Layer example with sequential layer mapping
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4.2.1 Layer Output Partitioning (LOP)

Layer Output Partitioning (LOP), as illustrated in Fig. 4a, uses all of the inputs al
and a partition of Wl to calculate a subset of the output neurons bl. The output

subset can then be finalized by applying the activation function f. The final

partitioned output values must then only be concatenated (Concat/L1C) to obtain the
full output vector bl, thus synchronizing the layer’s output across all devices.

Partition 1 and partition 2 can be executed in parallel by different devices. The

dashed arrows in the figure represent data flow that is subject to inter-device

communication.

Assuming LOP is used for all L layers, given N devices, we obtain the memory

footprint F
ðLOPÞ
n , the execution time TðLOPÞ and the communication demand CðLOPÞ

as follows:

FðLOPÞ
n ¼

XL
l¼1

Ql �
1

N
; T ðLOPÞ ¼

XL
l¼1

Rl �
1

N
; CðLOPÞ ¼

XL
l¼1

C
ðLOPÞ
l ð6Þ

Independent of the remaining network structure, for any layer using LOP, we

obtain:

C
ðLOPÞ
l ¼ð1� rl�1ÞMlðN � 1Þ þ rlKlðN � 1Þ þ ð1� rlÞKl

N � 1

N
ð7Þ

The Boolean variable rl is 1 if data reuse between layers l and lþ 1 is possible. This

is the case when an LOP layer is followed by another LOP layer. This partial

communication intuitively means that part of the output is already ready in memory

for the next layer, thus part of the output’s data can be reused without the need for

additional synchronization. This is seen in Fig. 5 through the communication arrows

that do not cross the inter-device boundary. The first summand in Eq. (7) counts the

input distribution to other ðN � 1Þ devices, only if there is data reuse between the

current and previous layer. This can be seen in Fig. 5 where the first LOP operation

requires the distribution of the 4 inputs, but all following operations can reuse the

(a) (b)

Fig. 4 Layer partitioning methods
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data out of the Concat blocks. The second and third summands in Eq. (7) describe

the output distribution to the Concat blocks. If there is no reuse between the current

and next layer, the partial data only needs to be sent back to the initiating device for

concatenation as seen for the last LOP operation. Otherwise, the partial data needs

to be shared with all other devices, such that they can concatenate locally. The

communication arrows that do not cross the inter-device boundary mean that the

data is already ready in memory and there is no need for additional synchronization.

Compared to the description in [25] that only refers to a partitioning that uses

LOP on all layers, Eq. (7) is now applicable for the layer partitioning type

optimization presented in Section 5.2, because it describes reuse of previous layer

data more generally instead of only for LOP.

Applying LOP to all layers of our example as shown in Fig. 5, we obtain:

F
ðLOPÞ
1 ¼ F

ðLOPÞ
2 ¼ TðLOPÞ ¼ 240

2
¼ 120 and CðLOPÞ ¼ 4þ 4þ 4þ 8þ 8þ 2þ 2þ

2 ¼ 34 (arrows crossing between devices). It also shows how previous data can be

reused. The memory footprint is thus evenly balanced allowing for full utilization of

parallelism, whilst requiring some inter-device communication.

4.2.2 Layer Input Partitioning (LIP)

The second method, shown in Fig. 4b, is Layer Input Partitioning (LIP). LIP takes a

partitioned subset of al to calculate a respective partial output of bl. While we are

now using a different subset of weights, the number of weights required per device

remains unchanged compared to LOP. As the output values are only an incomplete

part of the complete output nodes, they must be summed before being passed to the

activation function f. As such, f can not be executed within the partition and a merge

operation is required that sums the output values before activating the layer.

If LIP was used on all l layers for all N devices, the same memory footprint,

F
ðLIPÞ
n ¼ F

ðLOPÞ
n , would be obtained. The same execution time, T ðLIPÞ ¼ T ðLOPÞ, is

obtained as when applying LOP. The respective communication demand using LIP

is:

CðLIPÞ ¼
XL
l¼1

C
ðLIPÞ
l C

ðLIPÞ
l ¼ Ml �

N � 1

N
þ Kl � ðN � 1Þ ð8Þ

Using LIP, the complete set of outputs for each device must be communicated to the

device performing the merging, while the inputs into the LIP operation only have to

be partly communicated, providing no opportunity for data reuse. This results in

large communication overhead when only LIP is used. Applying LIP to the

aforementioned example would result in a communication overhead of CðLIPÞ ¼ 48.

However, when the number of inputs to a layer is significantly larger than the

Fig. 5 4-Layer example with Layer Output Partitioning
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number of outputs, applying LIP to that particular layer selectively can still reduce

the overall communication demand over other layer partitioning types like LOP.

While other weight partitioning schemes are possible, they cannot have a lower

total input or output size compared to strict LOP or LIP partitioning, because they

can only be less or equally balanced. The methods are compatible with sparse

weight data, since for those, only the non-zero weight data have to be distributed

evenly.

4.2.3 Fused Layer Partitioning (FUSE)

As Concat and Merge operations require input from all partitioned data subsets,

they are considered synchronization operations. Synchronization operations carry a

large communication overhead. As such, optimizations to overall execution time

can be made by performing more optimal synchronization placement. When

combining both LOP and LIP, we are able to fuse layers in a way that one such

synchronization point is eliminated, as seen in Fig. 6. The intermediate layer

neurons stay local to the devices and do not contribute to any communication

demands.

By applying LOP to the input of the combined operation’s first layer, the interim

data now has the appropriate shape to be passed as the input to a LIP operation,

applied to the following network layer. The resulting output of the combined

operation has the correct shape for synchronization. Synchronization is inevitable at

this point, because the output only represents partial values of the distributed layer’s

output, a property inherent of LIP operations. As such, these partial output values

Fig. 6 Fused Layer Partitioning (FUSE)
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must be merged for summation and activation. This implies that only two

consecutive layers can be fused using this method before requiring synchronization.

Given the benefits of fusing layers, it should be noted that not all layers of the

network need to be fused. LOP and LIP operations can still be applied individually

to reduce the size of required memory, naturally at the expense of communication

overhead. For example, networks with odd layer counts cannot have all network

layers fused. For fused operations we obtain the same memory footprint and

execution time.

FðFUSEÞ
n ¼ FðLOPÞ

n ¼ FðLIPÞ
n ; TðFUSEÞ ¼ T ðLOPÞ ð9Þ

While the execution time does not increase, the overall run time of using fused

operations, similarly to using individual LIP and LOP operations, is increased due to

the incurred communication overhead.

Even though a fusion on two layers could be described as a single new layer, they

will still be described in terms of the two original layer indices, to more easily

compare different fusing configurations. The communication demands C for the first

and second part of the fused layers are described as:

C
ðFUSE1Þ
l ¼ð1� rl�1ÞMlðN � 1Þ; C

ðFUSE2Þ
l ¼ KlðN � 1Þ ð10Þ

The first fused layer is equivalent to LOP without the outputs and the second fused

layer is equivalent to LIP without the inputs as these do not need to be commu-

nicated due to fusing. When multiple devices are executing their fused partition,

they work in parallel on their share of the first and second part of the fused layers.

Note that if data reuse is possible between the first fused layer and the previous one,

there is no communication required for the first fused layer. As outlined before, this

description of C
ðFUSE1Þ
l is improved over [25], because it now considers data reuse

from a possible previous LOP layer.

When applying Fused Layer Partitioning with two fusions to our example as

shown in Fig. 7, we observe: C ¼ 4þ 16þ 16þ 4 ¼ 40 while F and T remain

unchanged compared to LOP. The observed result is worse than applying LOP

operations to every layer. This is because two fusions are not a good solution for the

given example. This demonstrates that fusion decisions need to be taken judiciously

in order to achieve improvements in execution, as will be further discussed in

Section 5.

Fig. 7 4-Layer example with Fused Layer Partitioning
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4.2.4 Partitioning of Convolutional Layers

The proposed layer partitioning and fusing schemes can also be applied to

convolutional layers as illustrated in Fig. 8. In that figure, the weights have been

partitioned into two equal partitions highlighted in two different colors. Compared

to fully-connected layers, the output feature maps of the first layer are partitioned

instead of the output neurons.

A convolutional layer extracts n feature maps from n filters with each filter being

comprised of a number of kernels. The number of kernels required in every filter is

(a)

(b)

Fig. 8 Weight partitioning for two convolutional layers
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determined by the number of channels of the input to the convolutional layer. For

example, an RGB image is comprised of three channels with each pixel being the

combination of the three. An RGB image would require filters with three kernels,

one per channel. The application of a kernel then generates an interim per-channel

output that is then summed to produce the output of the filter. As such, a

convolution on an RGB image would apply a filter, comprised of three kernels, to

produce a single-channeled output that is the superposition of each kernel’s output

from its respective channel.

Partitioning of two convolutional layers means that the filters of the first layer are

partitioned between devices. The first layer on each device thus outputs a single

channel of the input to the second layer, as can be seen in Fig. 8b. The second layer

is partitioned such that the kernels within the filters are partitioned across devices.

Therefore, each device does not need to contain all kernels for each filter.

Partitioning the first layer only applies a subset of the network’s filters, in turn

producing a subset of the intermediate feature maps (channels) used as input into the

second convolutional layer. Mathematically, this is equivalent to implementing

Eq. (2) only for a subset of the o indices assigned to the device, meaning the device

only needs to store its own filter weights. In the second layer, all of the filters, with a

subset of kernels, are applied to each of the input feature maps, such that each

device calculates its portion of the to-be-merged output. As such, only the kernels

(filter channels) corresponding to those partial inputs are required. The partially

known input feature maps are correlated and summed up, resulting in partial outputs

for all output feature maps. This implements Eq. (2), but now only for a subset of

the c indices.

Similarly to layer fusion for fully-connected layers, non-linear activation

functions cannot be performed before the complete output set is complied, as c is

only a subset of the output. Thus, a merge step is again required to sum up the

partial results, allowing for the application of the activation function, thus

completing the layer. Characterizing the fusion of two convolutional layers is done

using the same formulations for Fn, T and C, given in Equations (9) and (10), where

the layer properties Ml, Kl, Ql and Rl must be taken from Eq. (4) for convolutional

layers. Similarly to fully-connected layers, the number of weights per device Fn and

the number of multiplications T can be divided evenly by the number of devices

when using distributed inference. This is especially useful as the memory footprint

required to store the weight tensors for later convolutional layers of CNNs is often

very high.

5 ILP-based Optimization of Partitioning Decisions

There exist several degrees of freedom to partition each CNN for fully distributed

inference. We propose a two-step process solving two ILPs. The first ILP optimizes

the memory footprint per device by deciding when to use feature partitioning versus

weight partitioning. The second ILP optimizes the communication demand in the

weight partitioned CNN layers by selecting which method of weight partitioning to

use.
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5.1 ILP-based Memory Footprint Minimization

For standard CNNs, the earlier layers are input/output dominated and should run on

FTP presented in [29], while the later layers are usually weight dominated layers,

which should use weight partitioning. To reach an optimal memory footprint per

device, we use the following ILP optimization to identify the point at which to

switch from FTP to weight partitioning:

mina;b;c F
ðFULLÞ
n ¼cþ

XL
l¼1

bl
Ql

N
þ ð1� blÞQl

� �
ð11Þ

s:t: 8l¼1:::L al ¼blðMl þ KlÞ þ ð1� blÞ
Ml þ Kl

N
ð12Þ

8l¼2:::L bl � bl�1 bl 2 f0; 1g ð13Þ

8l¼1:::L c� al c; al 2 N; ð14Þ

where al, described by (12), are integer variables that hold the memory footprint

attributed to the inputs and outputs of layer l. bl are Boolean variables that are true

when layer l is using weight partitioning and false if it is using feature partitioning.

In weight-partitioned layers (bl ¼ 1), all input/output data has to be duplicated on

each device, whereas in feature-partitioned layers (bl ¼ 0) it is partitioned by the

number of devices. This formulation includes some small simplifications, since FTP

has a ‘‘slightly larger (3%)’’ [29] memory footprint due to overlapped data.

Moreover, LOP or LIP layers do not require the full input or output. Our experi-

mental results will evaluate the actual methods without these simplifications, which

are only present in this ILP formulation. (13) ensures that the layer partitioning can

only switch once from feature partitioning to weight partitioning. c is an integer

variable that represents the maximum of al, because only the highest input/output

pair counts towards the total memory footprint. Since the objective function is

minimized, it is sufficient to specify the constraint (14) to achieve the desired

equivalency c ¼ maxlðalÞ. The total memory footprint per device is described in

(11) as the the sum of the maximum input/output data footprint and the sum of all

layers’ weight data footprint. In weight-partitioned layers (bl ¼ 1), the weight data

is divided by the number of devices, whereas in feature-partitioned layers (bl ¼ 0)

all weights have to be duplicated on each device.

5.2 ILP-Based Communication Optimization for Weight Partitioned Layers

In the later weight-dominated layers, fusing at every possible opportunity, as done

in Fig. 7, can possibly be an inferior solution to the careful selection between LIP,

LOP and fusing per layer. This is because communication is dependent on the

output and input layer sizes, which can vary greatly between layers, and given that

layers can only be fused pairwise. Fusion should be performed such that

communication sizes between fused layer pairs are minimized. If a layer’s output
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or input is fused, its input or output can in turn no longer be fused and must be

communicated. Additionally, a non-fused layer may favor either LOP or LIP

partitioning schemes. Given a network of L layers, we define ol ¼ 1 if layer l is
using LOP, similarly il ¼ 1 if it is using LIP, fl ¼ 1 for the first part of a fused layer

and sl ¼ 1 for the second part of a fused layer, otherwise all variables are zero. With

this we can formulate the communication demand C for the OWP as:

CðOWPÞ ¼
XL
l¼1

�
olC

ðLOPÞ
l þ ilC

ðLIPÞ
l þ flC

ðFUSE1Þ
l þ slC

ðFUSE2Þ
l

�
ð15Þ

We propose that partitioning and fusion decisions need to be made such that the

communication demand C is minimized. This is done with the following ILP

optimization:

mino;i;f;s;r C
ðOWPÞ ð16Þ

s:t: 8l¼1:::L ol þ il þ fl þ sl ¼ 1 ol; il; fl; sl 2 f0; 1g ð17Þ

8l¼1:::L�1 slþ1 ¼ fl ð18Þ

8l¼1:::L�1 rl ¼ olðolþ1 þ flþ1Þ rl 2 f0; 1g ð19Þ

fL ¼ 0 s1 ¼ 0 rL ¼ 0 ð20Þ

Here, (17) assures that only one partitioning scheme is chosen per layer, (18) as-

sures that the second fused layer is performed directly after the first fused layer and

(20) prohibit illegal fusing pairs on the boundaries and disallow data reuse from the

last layer. (19) defines that data reuse happens when the current layer is LOP and

the one after that is either LOP or a first fused layer. (19) and some summands of

Eq. 15 contain products of variables, but since they are binary variables, they can be

linearized with a helper variable and additional constraints as follows [5]:

c ¼ab a; b; c 2 f0; 1g ð21Þ

c� a c� b c� aþ b� 1 ð22Þ

Optimizing the partitioning and fusion decisions for our running example leads to

the optimized solution shown in Fig. 9. Layers 1 and 4 both employ LOP, while

layers 2 and 3 are fused. The calculated communication overhead of CðOWPÞ ¼ 22

shows a significant reduction given the partitioning and fusion optimizations. The

Fig. 9 4-Layer example with Optimized Weight Partitioning
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previously most significant communication demand was present between layers 2

and 3, as seen in Fig. 7. This demand could be eliminated through the fusion

decisions seen in Fig. 9. Summarizing, the ILP optimization considers the input and

output sizes of all layers to decide on the best partitioning scheme of each layer.

6 Experimental Evaluation

We evaluated DeeperThings using the popular CNN models YOLOv2 [21]1,

AlexNet [13]2, VGG-16 [24]2 and a GoogLeNet derivative (called ‘‘Extraction’’)

[26]2. Our optimization methods are applied to these models to find their optimal

partitioning configuration. Then, the models are deployed on a Raspberry Pi 4 edge

cluster for measurements of run time and memory usage.

6.1 Evaluation of the ILP-based Optimization Methods

The optimization methods to solve the ILPs in Eq. 11 and Eq. 16 were implemented

using the ‘‘Coin-or branch and cut’’ ILP solver included in OR-Tools [10, 19]. Using

an Intel Core i5-7500 machine running at 3.4 GHz, all evaluations completed in less

than a second.

6.1.1 Evaluation of ILP-based Memory Footprint Minimization

Table 1 shows the different models with their number of layers L and the

optimized layer at which to switch from feature to weight partitioning. It lists the

memory footprint per device F
ðFULLÞ
n using a cluster of ten devices compared to a

single device performing the full network inference with footprint F
ðSINGLEÞ
n . The

layer that was manually picked in [29] to switch away from feature-intensive

partitioning was layer 17 for the YOLOv2 model. The choice was made manually

based on analysis of the memory usage per layer. When evaluating Eq. (11), this

results in F
ðFULLÞ
n ¼ 37:9 MB which is 33% higher than the automatically optimized

solution that switches at layer 13 (which is equivalent to a 25% reduction). Using

sequential layer mapping we can only reduce the memory footprint per device down

to the largest memory requirement of a single layer, which is the best-case scenario.

Additional layers possibly have to be mapped onto the device with the largest layer

to limit communication demand. For our example networks this memory demand is

shown in the last column as F
ðSEQÞ
n . Compared to sequential layer mapping we can

arbitrarily increase the number of devices to reduce the memory footprint per

device.

1 https://pjreddie.com/darknet/yolov2 - YOLOv2 608x608
2 https://pjreddie.com/darknet/imagenet/#pretrained - AlexNet, VGG-16, Extraction

123

International Journal of Parallel Programming (2021) 49:600–624 617



6.1.2 Evaluation of ILP-based Communication Optimization

To evaluate the ILP optimization for finding an optimal weight partitioning (OWP),

different CNN models were deployed to a system architecture with six edge devices.

The evaluation of the ILP on the different models is shown in Fig. 10. The

number above the arrow is the layer index starting at the first weight-partitioned

layer, the volumes represent layer input/output sizes. Below the arrows, the layer

weight partitioning type chosen by the ILP optimization is shown or NCONV if the

layer is not convolutional. Whenever a volume lies between FUSE1 and FUSE2
types, it does not contribute to the total communication demand because neurons do

not have to be communicated between fused layers.

Table 2 contains the different models and compares the communication demand

resulting from applying LOP at every layer (CðLOPÞ) to the demand of OWP

(CðOWPÞ). Savings between about 6 to 29% indicate that the ILP can provide good

decisions for the weight partitioning selection for CNNs. For comparison, the last

column shows the solutions picked by the optimization in [25]. We updated the

optimization to use improved estimate of C as evaluated by the formula in this

article, which also considers data reuse. The new ILP presented in this article finds a

better solution for the YOLOv2 and VGG-16 models because it additionally

incorporates the LIP method.

6.2 Evaluation on Raspberry Pi Edge Cluster

In [25], we evaluated our approach for weight partitioning on a Docker-based

virtual device cluster emulated on an x86_64 desktop machine. In this article, we

validated our complete DeeperThings approach on a physical edge cluster

consisting of six Raspberry Pi 4 devices. They have a quad-core ARM Cortex-

A72 processor, 2 GB of RAM and a gigabit Ethernet interface. Their operating

system is Raspberry Pi OS (32-bit) 2020-02-13 which includes the Linux Kernel

4.19.97. We implemented our DeeperThings framework for fully distributed

inference on top of the framework from [29], which incorporates the Fused Tile

Partitioning for the earlier layers, by adding the presented OWP method for the later

layers. The Deep(er)Things framework is based on the DarkNet neural network

framework [20] with an added patch for use of the NNPACK acceleration library

tuned for the ARM Neon SIMD instruction set extension. Along with the compiler

Table 1 Memory footprint reduction for ten devices

Model L First OWP layer FðSINGLEÞ
n [MB] FðFULLÞ

n [MB] Fn reduction FðSEQÞ
n [MB]

YOLOv2 32 13 256 28.4 9.0x 51.8

AlexNet 14 3 16.8 2.65 6.3x 5.82

VGG-16 25 8 84.5 13.2 6.4x 25.8

GoogLeNet 27 5 97.5 12.2 8.0x 20.1
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optimization flag -Ofast this ensures competitive inference performance. Edge

devices fulfill two different roles during the inference process. Either they provide

the input data as the source device, or they assist with the inference as worker

devices. This differs from the work in [29], where all processing of the weight-

dominated later layers of the CNN is delegated to a single powerful central gateway

device. We adapted the framework such that the source device collects the initial

results from the earlier CNN layers preparing them for further distribution. The

central gateway device is kept in our implementation for device discovery and

coordination, but there is no technical limitation that would prevent such a network

(a)

(b)

(c)

(d)

Fig. 10 Optimized Weight Partitioning for different CNNs

Table 2 Communication savings of OWP over LOP for six devices

Model CðLOPÞ [MB] CðOWPÞ [MB] CðOWPÞ Saving [%] C([25]) [MB]

YOLOv2 84.0 59.8 28.8 61.0

AlexNet 9.69 9.11 5.96 9.11

VGG-16 202 182 10.1 186

Extraction GoogLeNet 47.0 41.8 11.1 41.8
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to run purely on peer-to-peer technology. The prior existing communication pattern

did not require long-running connections between devices for back and forth

communication. However, with fusion of weight partitioned layers, all output data

has to be synchronized at least every two layers between worker devices. As a

result, a large number of messages must be exchanged between the source and

worker devices. For the overall run time, it is therefore essential that the connections

between the source device and all worker devices remain open, this has been

enabled in our extended framework. The two partial convolution operations that

implement LOP and LIP were implemented with the same linear algebra functions

as the baseline convolution. To implement layer fusion, these operations were

combined into a single operation, for which all communication and memory copies

were stripped. These steps extended the existing framework to enable a fully

distributed deep learning inference with support for layer fusion. The run time is

measured from start of inference until the final inference result has been calculated.

The cluster consisted of six devices connected by a gigabit network switch. A

seventh Raspberry Pi device acts as a gateway device, responsible for the

coordination of intra-cluster communication. For each configuration, ten measure-

ments were taken and the results were averaged to take run time variability into

account. The memory measurements had negligible variation of one or two pages

(4-8 kB), so only one measurement is reported. The Linux tool tc was used to

impose software-based bandwidth throttles on the device’s Ethernet interfaces, thus

allowing for the simulation of bandwidth reductions. By being able to control the

bandwidth linking the devices, we were able to magnify the communication

overhead effects on inference partitioning, as will be seen when dealing with low

bandwidths, such as 10 Mbit/s. Peak memory usage was measured with the Linux /
proc/pid/status file, which includes a value VmPeak to measure ‘‘Peak virtual

memory size’’.

Fig. 11 shows measurements of DeeperThings peak memory usage savings over

a single device. Due to limited development time, all weights are loaded before

being pruned. Therefore, absolute memory usage is not shown since it had to be

artificially increased to accurately measure peak usage. Measurements were taken

before inference, because inefficient use of runtime queues skewed the peak usage

after inference. However, a memory baseline can be taken from F
ðSINGLEÞ
n in

Table 1. Current state-of-the-art edge inference frameworks such as TensorFlow
Lite for Microcontrollers can achieve memory overheads below 50 kB3. When

increasing the number of devices, we observe the expected proportional decrease of

the memory footprint per device according to Eq. (11). This enables balanced

inference scaling across the available memory resources of the edge devices equally

for both LOP and OWP.

Fig. 12 shows the total inference run time speedup over a single device for

different edge device and network parameters while using DeeperThings with all

weight partitioned layers using LOP vs. OWP. The baseline run time values for one

device are 13.4s ± 0.40s for YOLOv2, 0.98s ± 0.022s for AlexNet, 6.80s ± 0.25s

for VGG-16 and 2.22s ± 0.022s for GoogLeNet. The results from the previous

3 https://www.tensorflow.org/lite/microcontrollers
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section were applied to decide at which point to switch from feature to weight

partitioning and for finding the OWP. Note that the switching point was optimized

for ten devices and kept the same for one to six devices, because this will keep the

share of feature- and weight-partitioned layers constant to focus on the scaling of

multiple devices. The measurements on the Raspberry Pi Cluster follow the pattern

of the Docker setup used in [25], but showed lower variance. This is likely because

on the Docker setup, all applications are competing for the same Linux scheduler

and virtualized network, causing more interference. The CPU utilization limitation

also adds additional variance, compared to non-throttled hardware. Existing work

does not partition weight-dominated convolutional layers. Hence, we can only

compare to a baseline being executed on a single node. When using idle nodes to

distribute the inference task, a run time speed-up was observed. Note that for

AlexNet the 1 Gbit/s results slow a general slowdown when using OWP. This is

possible through measurement inaccuracies, because AlexNet has the lowest

theoretical savings as shown in 2, and the high bandwidth makes the communication

savings matter even less. There are several factors that influence the inference task’s

final run time when compared to the theoretical values for T and C given varying

numbers of edge devices. Firstly, the effects of communication latency have to be

(a) YOLOv2 (b) AlexNet

(c) VGG-16 (d) GoogLeNet derivative

Fig. 11 Memory savings results
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considered for each message between devices. Secondly, communication and

parallelism have opposing impacts on run time. As such, when increasing the cluster

size from three devices to six devices, no clear run time trend was observed. When

comparing layer fusion to applying stand-alone LOP, a clear benefit can be seen in

terms of run time speed-up. The benefit is less significant with very high available

bandwidth (1 Gbit/s) as the Fusing only improves communication demand, which

does not act as a bottleneck given such network speeds. The speed-up of OWP is

generally higher the more devices are involved, because there is more communi-

cation happening which can positively be affected by layer fusion. However, as the

cluster size increases, the total run time may also increase again, depending on

bandwidth. Nonetheless, a significant speed-up was observed when using layer-

fusion, which does not impose additional run time or memory costs.

7 Summary and Conclusions

In this article, an approach targeting memory-constrained edge devices was

presented for partitioning and fusing of both feature- and weight-intensive fully-

connected and convolutional CNN layers. The proposed method allows for

(a) YOLOv2 (b) AlexNet

(c) VGG-16 (d) GoogLeNet derivative

Fig. 12 Run time speedup of DeeperThings FTP?LOP vs. FTP?OWP
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complete distributed execution of a CNN application across a cluster of resource-

constrained edge-devices. As a result, communication overhead is reduced, resulting

in run time speed-up. Additionally, ILP optimization methods are given, allowing

for optimal partitioning and fusing decisions to be made given a preexisting CNN.
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