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Abstract

Automatic speech recognition (ASR) is becoming increasingly more integral in our day-to-
day lives, enabling more applications to adopt speech-based human-machine interaction,
e.g., Siri, Cortana, Amazon Echo, and many more. While recent breakthroughs have
tremendously improved ASR performance, these models still suffer considerable degrada-
tion from ambient noise. With the increasing use of ASR systems in everyday life, ASR
robustness under adverse conditions becomes more important than ever. According to
the processing stages of an ASR system, approaches for increasing ASR robustness can
be classified into three groups: (i) Back-end techniques, i.e., model adaptation and multi-
condition training; (ii) Front-end techniques, like noise mask estimation, model denoising,
and robust acoustic feature extraction; (iii) Joint training of front- and back-ends. In
this respect, this thesis follows these three axes of research.

Along the first axis, this thesis discusses an approach to optimize the Hidden Markov
Model (HMM) structure, namely Deep Neural Fenonic Baseform Growing. This method,
which is data-driven, concisely designed, and computationally cheap, customizes the
HMM structure for each phone precisely without external assumptions concerning the
state number or the transition pattern. Experimental results on both TIMIT and
TEDliumv2 corpora indicate that the proposed HMM structure improves both the
monophone and the triphone systems substantially and increases system robustness in
noisy environments. Besides, Deep Neural Fenonic Baseform Growing further improves
state-of-the-art speech recognition systems with remarkably reduced parameters.

The second axis presents two optimized architectures of speech enhancement gen-
erative adversarial networks (GANs). For one thing, this study investigates speech
enhancement GANs equipped with the self-attention mechanism in three manners. For
another, this thesis usefully merges the Sinc convolution and the speech enhancement
GAN, resulting in a customizable, lightweight, and interpretable system. Moreover, a
set of data augmentation techniques in the time domain is also employed to further
improve system performance and generalization abilities. Experimental results show that
the proposed system outperforms a set of competitive models, especially on higher-level
perceptual quality and speech intelligibility.

The third axis introduces a self-attention based joint training framework, concatenat-
ing a speech enhancement front-end and a downstream ASR module to be jointly trained
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as an extensive network to boost the noise robustness of the ASR system. Moreover,
a discriminant component plays the role of the global guide in the adversarial joint
training, which guides the enhancement front-end to output more desirable features for
the subsequent ASR module and thereby offsets the limitation of the separate train-
ing and handcrafted loss functions. Systematic experiments reveal that the proposed
framework significantly outperforms other competitive solutions, especially in challenging
environments.
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Zusammenfassung

Automatische Spracherkennung (Automatic Speech Recognition, ASR) wird immer mehr
zu einem integralen Bestandteil unseres täglichen Lebens und ermöglicht nutzerspezifische
Anwendungen zur sprachbasierten Mensch-Maschine-Kommunikation, z.B. Siri, Cortana,
Amazon Echo und viele mehr. Während die letzten Durchbrüche die ASR-Leistung
enorm verbessert haben, sind diese Modelle immer noch anfällig für Umgebungsgeräusche.
Mit dem zunehmenden Einsatz von ASR-Systemen im Alltag wird die Robustheit der
ASR wichtiger denn je. Anhand der Verarbeitungsstufen eines ASR-Systems lassen sich
die Ansätze zur Erhöhung der ASR-Robustheit in drei Gruppen einteilen: (i) Back-End-
Techniken, d.h. Anpassung der Netzwerkarchitektur und Multi-Condition-Training; (ii)
Front-End-Techniken, wie z.B. die Schätzung von Rauschmasken, Rauschentfernung und
Extraktion robuster akustischer Merkmale; (iii) Gemeinsames Training von Front- und
Back-End. Diese Arbeit folgt dementsprechend diesen drei Forschungsschwerpunkten.

Im ersten Teil dieser Arbeit wird ein Ansatz zur Optimierung von Hidden Markov
Modell (HMM)-Strukturen diskutiert, der als Deep Neural Fenonic Baseform Growing
bezeichnet wird. Dieses Verfahren mit geringer Rechenkomplexität optimiert die HMM-
Struktur für jedes Phone ohne externe Annahmen über die Anzahl der Zustände und
mögliche Übergänge. Experimentelle Ergebnisse mit den Sprachkorpora TIMIT und
TEDliumv2 zeigen, dass sich die Genauigkeit bei sowohl Monophon- als auch Triphon-
basierten HMM-Strukturen erheblich verbessert. Zusätzlich erhöht sich die Robustheit
in verrauschten Umgebungen. Darüber hinaus lassen sich durch die Anwendung der
vorgestellten HMM-Strukturen modernste Spracherkennungssysteme verbessern, bei
gleichzeitiger Reduzierung der Parameteranzahl.

Der zweite Teil präsentiert zwei optimierte Architekturen von Generativen Neuronalen
Netzwerken (Generative Adversarial Networks, GANs) zur Sprachverbesserung. Zunächst
werden in dieser Arbeit GANs mit drei verschiedenen Selbstaufmerksamkeitsmechanis-
men untersucht. Die vorgeschlagenen Systeme verbessern konsistent die Genauigkeit.
Außerdem werden in dieser Studie die Sinc-Faltung und die Sprachverbesserungs-GANs
sinnvoll miteinander kombiniert, was zu einem anpassbaren und interpretierbaren System
mit einer kleinen Anzahl von Gewichten führt. Darüber hinaus werden eine Reihe
von Techniken zur Datenerweiterung im Zeitbereich eingesetzt, um die Leistung des
Systems und seine Generalisierungsfähigkeiten weiter zu verbessern. Die experimentellen

v



Ergebnisse zeigen, dass das vorgeschlagene System verschiedene konkurrierende Modelle
übertrifft, insbesondere bei der Wahrnehmungsqualität und der Sprachverständlichkeit.

Der dritte Teil konzentriert sich auf einen auf Selbstaufmerksamkeit basierenden
gemeinsamen Trainingsansatz. Dieser verknüpft ein Sprachverbesserung Front-End und
ein ASR Back-End miteinander, welche dann zusammen als Netzwerk trainiert werden,
um die Störgeräuschrobustheit des ASR-Systems zu erhöhen. Darüber hinaus übernimmt
ein diskriminatives Netzwerk die globale Steuerung des gegnerischen gemeinsamen Train-
ings, was zur Erzeugung geeigneterer Merkmale für die Spracherkennungskomponente
führt und die Einschränkungen des getrennten Trainings der Front-End und Back-End
Komponenten kompensiert. Mithilfe systematischer Experimente wird demonstriert,
dass die vorgeschlagene Lösung andere konkurrierende Lösungen deutlich übertrifft,
insbesondere in anspruchsvollen Umgebungen.
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û the normalized log FBank features

h the head numbers

pos the position of the input

Ne the number of encoder blocks of Transformer

Nd the number of decoder blocks of Transformer

Lasr the loss of the ASR module

Lenh the loss of the generator of SEGAN

Lgan the loss of the discriminator of SEGAN

ζ, ρ two hyper-parameters weighting the magni-
tude of the enhancement loss and adversarial
loss

lr the learning rate

τ the step number of Adam optimizer

$ a tunable scalar of Adam optimizer

η the length penalty

xix





List of Figures

2.1 General framework of an ASR system [186]. . . . . . . . . . . . . . . . . 9
2.2 The diagram of Mel Frequency Cepstral Coefficient (MFCC) and Percep-

tual Linear Prediction Cepstral Coefficient (PLP) feature extraction [186].
|DFT| denotes the magnitude of the discrete Fourier transform, |DCT|
denotes the magnitude of the discrete cosine transform, AR modeling
stands for auto-regressive modeling, and ∆ and ∆∆ denote the first and
second order derivatives across time, respectively. . . . . . . . . . . . . . 10

2.3 An example of the left-to-right HMM with 3 emitting states. . . . . . . 14
2.4 An example of state clustering within a three-HMM system. Before state

clustering, each state has a unique state output distribution. Afterwards,
grouped states share the same distribution. . . . . . . . . . . . . . . . . 15

2.5 Flowchart of the Viterbi EM algorithm [186]. . . . . . . . . . . . . . . . 17
2.6 An example of DNN architecture with three hidden layers. . . . . . . . . 20
2.7 An example of one CNN layer comprising a pair of convolution operations

and a pooling operation in succession. . . . . . . . . . . . . . . . . . . . 21
2.8 An example of the Bi-directional RNN. xt and yt represent the input and

output at the time instance t, respectively.
−→
h t and

←−
h t denote the forward

hidden sequence and the backward hidden sequence, respectively. [80] . 22
2.9 An example of the LSTM cell. xt represents the input sequence at time

instance t. ht denotes the corresponding hidden sequence. [80] . . . . . 23
2.10 The structure of a typical end-to-end model. xt, ot, and yt represent the

input sequence, the feature sequence, and the output sequence at time
instance t, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 (a) Possible paths for label sequence sun. (b) Lattice examples in CTC. 29
2.12 Illustration of the structure of the RNN-transducer [206]. . . . . . . . . . 31
2.13 Overview of an attention-based end-to-end model. . . . . . . . . . . . . 33
2.14 Illustration of the hybrid attention mechanism [43]. gi is the so-called

glimpse [165] in the terminology. . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Diagram of DNNVQ training. . . . . . . . . . . . . . . . . . . . . . . . . 41

xxi



List of Figures

3.2 Histograms of the segment length distribution of phones (a) [SIL] and (b)
[EY]. Every frame lasts for 25 ms. . . . . . . . . . . . . . . . . . . . . . 42

3.3 Illustration of the NFBG process of phone [AW]. The upper half is the
padding process, where the segment lengths of phone [AW] vary from 3
to 20, and the pink frames are the duplicates of the blue original frame
before. The lower half is the process of NFBG, which starts with the 1st -
20th frames being fed into DNNVQ in turn and ends up with compacting
the 20-frame fenone sequence into the fenonic baseform. . . . . . . . . . 45

3.4 Examples of Markov models for fenones. (a) ergodic, (b) Bakis-type [15],
(c) Vintsyuk-type [284]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Evolution of WER[%] along the number of DNNVQ prototypes on TEDli-
umv2 and TIMIT, respectively. . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Training accuracy and converge speed on both TEDliumv2 and TIMIT. 57

3.7 2D t-SNE visualisation from the baseline model and the proposed model.
Horizontal axis: the 1st dimension of t-SNE; vertical axis: the 2nd dimen-
sion of t-SNE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Illustration of the GAN training process. Firstly, the discriminator (D) is
trained by a batch of real examples and classifies them as true. Next, the
discriminator updates according to a batch of fake examples generated by
the generator (G), and classifies them as false. Lastly, the discriminator’s
parameters are frozen and the generator adjusts to make the discriminator
misclassify [193]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Illustration of the stand-alone self-attention layer with L = 9, C = 6,
p = 3, and b = 2. The max pooling layers in the red frame are discarded for
matrix K and V when modeling locality of the stand-alone self-attention
layers [202]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Illustration of (a) vanilla self-attention layer; (b) locality modeling with
the window size = 3. Semi-transparent colors represent masked tokens
that are invisible to the self-attention layer [310] . . . . . . . . . . . . . . 69

4.4 Illustration of the architecture of speech enhancement GAN (SEGAN)
[193]. (a) The generator component. (b) The discriminator component. 71

4.5 Illustration of the architecture of SEGAN with stand-alone self-attention
layers. (a) The generator component. (b) The discriminator component. 72

4.6 Illustration of the attention augmented convolutional SEGAN architecture
[202]. (a) The generator component. (b) The discriminator component. . 74

4.7 Effects of the window size on the self-attention layers. . . . . . . . . . . . 77

4.8 Illustration of the addition architecture of (a) the generator and (b) the
discriminator, where the Sinc convolution is located before the first layer
of the encoder and the discriminator, and behind the last layer of the
decoder. Skip connections with learnable ϑl̄ are depicted in pink boxes,
which are summed to each intermediate activation of the decoder. . . . . 83

xxii



List of Figures

4.9 Illustration of the substitution architecture of (a) the generator and (b)
the discriminator, where the Sinc convolution acts as the substitute of the
first standard convolutional layers of the encoder and the discriminator,
and the last standard convolutional layer of the decoder. Skip connections
with learnable ϑl̄ are depicted in pink boxes, which are summed to each
intermediate activation of the decoder. . . . . . . . . . . . . . . . . . . . 84

4.10 Visualization of the learnt upper and lower bounds per Sinc-convolution
filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.11 Examples of the learnt filters of the Sinc convolution. The upper row
reports the frequency response of the filters, while the lower row reports
their impulse response. The orange dashed line depicts the corresponding
Mel-scale filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.12 Spectrograms of an example utterance enhanced by (c) SEGAN [193],
(d) DSEGAN [201], (e) SASEGAN-all [202], and the proposed (f) Sinc-
SEGAN-add. The (a) clean and (b) noisy spectrograms are also exhibited
for reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Overview of the SE-ASR joint training framework. . . . . . . . . . . . . 96
5.2 Illustration of the SASEGAN architecture [202]. (a) the generator compo-

nent. (b) the discriminator component. . . . . . . . . . . . . . . . . . . 97
5.3 Model architecture of the Transformer. (a) Encoder (b) Decoder [54] . . 100
5.4 Illustration of the Conformer encoder model architecture. (i) Conformer

encoder architecture. (ii) Conformer block architecture. (ii-a) Convolution
module of the Conformer block. (ii-b) Multi-headed self-attention module
of the Conformer block. (ii-c) Feed forward module of the Conformer block. 101

5.5 The performance comparison of the enhancement model trained indepen-
dently and the enhancement models trained jointly with the baseline ASR
model without and with GAN. . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 The performance comparison of the enhancement model trained indepen-
dently and the enhancement models trained jointly with Transformer ASR
model without and with GAN. . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 The performance comparison of the enhancement model trained indepen-
dently and the enhancement models trained jointly with Conformer ASR
model without and with GAN. . . . . . . . . . . . . . . . . . . . . . . . 111

xxiii





List of Tables

3.1 Fenonic baseforms for every monophone in Tedliumv2 corpus. . . . . . . 49
3.2 Fenonic baseforms for every monophone in TIMIT corpus. . . . . . . . . 49
3.3 WER[%] on TIMIT and TEDliumv2 for different elementary HMM topolo-

gies in monophone systems. . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Impacts of the NFBG-based HMM structure in monophone systems.

Results are in WER[%]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Impacts of the NFBG-based HMM structure with context-dependent

inputs in monophone systems. Results are in WER[%]. . . . . . . . . . . 54
3.6 Impacts of the NFBG-based HMM structure in triphone systems. Results

are in WER[%]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.7 Impact of the NFBG-based HMM structure in adverse environments.

Results (WER[%]) are reported in triphone DNN-HMM systems on TIMIT.
Nspl = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 The impact of the NFBG-based HMM structures in different advanced
models. Results are in WER[%]. . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Effects of the stand-alone self-attention layer(s) on speech enhancement
GANs (SEGANs). This study denotes the proposed architecture with the
stand-alone self-attention layer(s) at the l̄th (de)convolutional layer(s) as
standalone-l̄. Values that overtake all baseline systems are in bold. Values
with an asterisk are the best ones achieved for each metric. . . . . . . . . 76

4.2 Effects of the locality modeling on the stand-alone self-attention layer.
The layer numbers with curly braces represent the employment of locality
modeling on the current layer. Values that overtake all baseline systems are
in bold. Values with an † are the ones that overtake their best counterparts
on the same metric in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Performance of the attention augmented convolutional SEGAN. The pro-
posed architecture where the self-attention couples the l̄th (de)convolutional
layer(s) is denoted as augmentation-l̄. Values that overtake all baseline
systems are in bold. Values with an ‡ are the ones that overtake their
best counterparts on the same metric in Table 4.1 and Table 4.2. . . . . 78

xxv



List of Tables

4.4 The demonstration of different configurations of five ablation tests. sub-
stitution is shorten to sub, and addition is shorten to add. . . . . . . . . 85

4.5 Ablation test results over different configurations of Sinc convolution:
system architecture, input length, number of Sinc filters, and kernel size
of Sinc convolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Results on objective metrics of the proposed systems (Sinc-SEGANs)
against previous SEGAN variants using the Valentini benchmark [272].
The unit of the number of parameters (Params) is million (M). . . . . . . 87

4.7 Ablation study over different data augmentation methods: ReMix, Band
Mask (BM), and the time shift (shift). . . . . . . . . . . . . . . . . . . . 87

5.1 The demonstration of categories of intrusions utilized in “match” and
“unmatch” cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 CER[%] results of ASR system trained by clean data and multi-condition
training (MCT) without the enhancement. . . . . . . . . . . . . . . . . 108

5.3 The impacts of the enhancement front-end on ASR systems trained by
clean data and MCT strategy. Results are in CER[%]. . . . . . . . . . . 108

5.4 CER[%] results of the SE-ASR system retraining with and without noisy
features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 The impacts of the joint training with and without GAN on SE-ASR
pipeline. Results are in CER[%]. . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Evolution of performance in unmatched test dataset of Conformer along
the value of ζ and ρ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xxvi





“We must have perseverance and above all confidence in ourselves. We must believe that
we are gifted for something and that this thing must be attained.”

− Marie Salomea Sk lodowska Curie



1

Introduction

1.1 Motivation

Over the past decades, the debut of Deep Neural Networks (DNNs) [49] triggers a
breakthrough in the field of automatic speech recognition (ASR). Various hybrid systems,
e.g., DNN-Hidden Markov Model (HMM) systems [99], Convolution Neural Network
(CNN)-HMM systems [238], and Recurrent Neural Network (RNN)-HMM systems [80],
occupy the predominant status and even achieve human parity performance [243, 305].
Hybrid systems consist of two main components: the acoustic model (AM) and the
language model (LM), which are built and trained separately. Albeit hybrid systems
achieve satisfactory performance, their process on speech signals is complex. In this light,
another round of revolution in deep learning triggers ASR architectures’ diversification
into a completely new approach, specifically end-to-end models, where AMs and LMs are
jointly optimized. Currently, two prominent modeling techniques are widely applied to
the end-to-end speech recognition systems: connectionist temporal classification (CTC)
technique [78] and attention mechanism [12, 38]. Both techniques map speech feature
sequences to text label sequences directly, namely sequence-to-sequence tasks. So far,
end-to-end models have achieved competitive performance [79, 43, 278, 42].

Hybrid systems have been demonstrated to process remarkable robustness to envi-
ronment distortions. Seltzer et al. [253] investigate the noise robustness of DNN-based
AMs and find that they can match state-of-the-art (SOTA) performance on the Aurora-4
[313] task without any explicit noise compensation or model adaption. Weng et al. [299]
investigate the RNNs with deep architecture in hybrid systems for robust ASR and
obtain the SOTA performance on the second CHiME challenge [281] without front-end
preprocessing, speaker adaptive training or multiple decoding passes. Geiger et al. [70]
utilize long short-term memory (LSTM) [239] as an AM for a robust speech recognition
system and experimental results show that the bidirection-LSTM (BLSTM) in the hybrid
module outperforms the best entry to the original CHiME challenge. In addition, a
further improvement is obtained by combining different LSTM AMs. Consequently,
hybrid systems still draw considerable attention [91, 203, 146, 130, 330, 292].

End-to-end modeling techniques significantly simplify the model building procedure
and have made considerable breakthroughs in speech recognition tasks, and thus embrace
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the bright prospect and the fast development. However, they still suffer drastic perfor-
mance degradation in adverse environments. Since end-to-end models learn the acoustic
and linguistic information simultaneously, the perturbation in the acoustic module could
be easily transmitted to the linguistic module. Furthermore, the self-attention system pre-
dicts the next output symbol conditioned on the full sequence of the previous predictions.
Once a mistake occurs in one estimation step due to the noise interference, all the subse-
quent steps will be disturbed. From these perspectives, end-to-end frameworks are more
vulnerable to ambient noises, and thus improving the robustness of end-to-end systems
remains to be a big challenge for their broader application in realistic situations. So far, a
lot of research efforts have been made in this field [120, 157, 135, 115, 102, 263, 63, 325].

1.2 Related Work

According to the addressed number of channels, robust speech recognition can be
categorized into single-channel [6] and multiple-channel [97, 271] techniques. They adopt
different approaches to suppress ambient noises. For single-channel techniques, the
widely adopted method is adding the speech enhancement component at the front-end
of ASR, including spectral subtraction [28], Wiener filtering [245], and deep learning
based speech enhancement methods [283, 173, 293, 193, 62, 65, 314]. Pascual et al.
[193] apply generative adversarial networks into speech enhancement for the first time.
Enhanced samples that are evaluated on both objective and subjective metrics confirm
the viability and effectiveness of the innovative application. Yin et al. [314] propose a
phase-and-harmonics-aware DNN. Unlike previous methods which directly use a complex
ideal ratio mask to supervise the DNN learning, they design a two-stream network,
where amplitude stream and phase stream are dedicated to the amplitude and phase
prediction. In addition, they propose frequency transformation blocks to catch long-range
correlations in the frequency field. Their proposed system outperforms previous methods
substantially on four metrics on Voice Bank + DEMAND dataset [273]. For multiple-
channel techniques, acoustical beamforming is the main approach, which transfers the
outputs of microphone arrays to a single-channel signal. Thereafter, the converted
outputs can be operated by back-end techniques for the single-channel speech. During
converting, the speech from the target direction is accentuated and the audio signals from
other arrays are attenuated. Moreover, the amplified target speech is futher enhanced
by a microphone array post-filter [154]. Medennikov et al. [156] present the Speech
Technology Center systems for the CHiME-6 challenge aimed at multi-microphone multi-
speaker speech recognition and diarization in a dinner party scenario. They utilize data
augmentation approaches, multi-stream/multi-stride self-attention layers in AM, and a
novel Target-Speaker Voice Activity Detection approach to achieve state-of-the-art results
in the complex multi-channel dinner party scenario. Arora et al. [7] explore multi-array
processing techniques at each stage of the pipeline, such as multi-array-guided source
separation for enhancement and AM training data, posterior fusion for speech activity
detection, probabilistic linear discriminant analysis (PLDA) score fusion for diarization,
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and lattice combination for ASR. As the result, they achieve an improvement of 10.8 %
and 10.4 % absolute, over the challenge baselines for the respective tracks.

According to the spectral distribution, the noises can be basically classified as
stationary noises (constant with respect to time, i.e., the white noise and the Sinusoid
noise) and non-stationary noises (inconstant with time, i.e., transient sound events,
babble, and music). Comparatively speaking, detecting and tackling non-stationary
noises are more challenging in practice [17, 16, 123, 282, 311, 315], sparkling plenty of
research efforts, as showcased in various challenges themed on robust speech recognition
(e.g., REVERB [123] and CHiME [18, 297]).

According to the processing stage of the whole ASR framework, previous techniques
aiming at robust ASR can be grouped into front-end, back-end, or joint-training (joint
front- and back-ends training) approaches.

Typical application scenarios of the front-end techniques can be speech enhancement,
source separation, and feature enhancement. Based on the output of the network, front-
end techniques can be further categorised into (i) mapping-based methods [184, 228, 324],
where network outputs are the representation, straightforwardly extracted from clean
speech, or (ii) masking-based methods [46], where outputs are a mask calculated between
clean and noisy speech. Rethage et al. [228] propose an end-to-end learning method
for speech denoising based on Wavenet [184]. The proposed model adaptation retains
Wavenet’s powerful acoustic modeling capabilities, while significantly reducing its time-
complexity by eliminating its auto-regressive nature. Specifically, the model makes use
of non-causal, dilated convolutions and predicts target fields instead of a single target
sample. The discriminative adaptation of the their proposed model learns in a supervised
fashion via minimizing a regression loss. These modifications make the model highly
parallelizable during both training and inference. Both quantitative and qualitative
evaluations indicate that the proposed method is preferable to Wiener filtering. Cui and
Bao [46] propose a novel weighted mean square error to improve the DNN-based mask
approximation method for speech enhancement, in which the weighting is closely related
to the power exponent about noisy spectrum amplitude base. Also, the experimental
results show that the outstanding weighting is the noisy spectrum base with the power
exponent 1 for the phase-unaware masking and results in better harmonic structure
restoration. The objective function with the weighted mean square error on the noisy
spectrum amplitude can averagely improve 0.1 on the test of perceptual evaluation of
speech quality (PESQ) and 1.7 % on the test of short-time objective intelligibility (STOI)
compared with the mean square error based mask approximation methods.

The back-end techniques let the neural networks autonomously detect the relationship
between the noisy observations and the phonetic targets, in stead of operating on the
observed noisy speech. Typical algorithms of back-end techniques include multi-condition
training [150], model adaptation [267], noise-aware training [161], and multi-task training
[224]. Malek and Zdansky [150] aim for careful selection of a limited number of acoustic
conditions that are highly relevant to the target environment. In this manner, they
keep the computational requirements feasible, while retaining the improved accuracy of
the augmented models. For the experiment, they analyze two augmentation scenarios
and draw conclusions regarding suitable setup choices. Tan et al. [267] propose a more
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advanced model referred to as the very deep convolutional residual network. To alleviate
the mismatch between the training and testing conditions, model adaptation and adaptive
training are developed. Their proposed network achieves a new milestone of 5.67 %
word error rate (WER) on Aurora-4 [313]. Mirsamadi and Hansen [161] propose a novel
strategy for training neural network AMs based on adversarial training which makes
use of environment labels during training. By adjusting the parameters of the initial
layers of the network adversarially with respect to a domain classifier trained to recognize
the recording environments, they enforce better invariance to the diversity of recording
conditions. The proposed multi-domain adversarial training achieves a relative character
error rate (CER) reduction of 25.4 % with respect to a clean-trained baseline. Ravanelli
et al. [224] design a problem-agnostic speech encoder for robust speech recognition
in noisy and reverberant environments, which contains a convolutional encoder and
subsequent multiple neural networks. Shortly after, an optimised encoder equipped with
an efficient combination of recurrent and convolutional networks are proposed, for better
learning short- and long-term speech dynamics. Experimental results indicate that the
proposed system learns transferable representations efficiently, and thus suitable for
highly mismatched acoustic conditions.

The key idea of joint training techniques is integrating a speech enhancement front-
end and an acoustic model into a larger neural network, and jointly adjusting the weights
of each module. Wang and Wang [295] design a joint training framework for speech
separation and recognition. To further improve the robustness, they add more noise-
and reverberation-robust features for acoustic modeling. The resultant jointly-trained
multi-stream represents the best performance on the test set of the reverberant and noisy
CHiME-2 dataset (task-2) and a 22.75 % error reduction over the best existing method.
Gao et al. [67] contribute to this line by employing a hybrid DNN architecture to jointly
train DNNs for both feature mapping and acoustic modeling. The input of the hybrid
DNN is the original noisy speech feature vectors. The proposed system reports the best
published result on the Aurora-4 task without using any adaptation techniques. Ravanelli
et al. [223] present an joint-training approach, containing a speech enhancement and a
speech recognition DNN, coupled with batch normalization in order to make the whole
framework less sensitive to exterior changes. With batch normalization, the proposed
joint architecture can be effectively trained independently of any pre-training steps.

1.3 Contributions

Since multi-channel robust speech recognition falls down to single-channel problems
eventually (as described in Section 1.2), this thesis concentrates on the single-channel
robust speech recognition. It takes stationary and non-stationary noises into its research
scope as both are ubiquitous in our daily life. Furthermore, this thesis targets the
aforementioned three processing techniques (front-end, back-end, and joint-training
techniques) of the whole ASR framework by trying to achieve the following objectives:

1. HMM structure construction with deep neural fenonic baseform growing [13†, 9†, 7†].
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This thesis proposes an innovative, concise, data-driven, and deep-learning-based
method to customize the HMM topology for every phone. The proposed algorithm
allows the data to reveal their dynamic structure according to the training data
without external assumptions and with a low computational cost. Different from
previous studies, the proposed method discovers the potential information of
the data and contains the model complexity simultaneously, avoiding excessive
growth of the number of states. The derived data-driven state tying leads to
optimized robustness of the HMM structure in adverse environments, and improved
recognition rates for existing SOTA systems and their parameter scales are shrunk
considerably.

2. Lightweight speech enhancement GANs with self-attention mechanism and Sinc
convolution [6†, 8†].

This thesis presents two optimized architectures of speech enhancement GANs
(SEGANs) as the front-end of ASR systems. Firstly, this study integrates the
self-attention mechanism with SEGAN to improve its flexibility of both long-
range and local dependency modeling for speech enhancement in three methods,
namely applying the stand-alone self-attention layer, modeling locality on the
stand-alone self-attention layer, and coupling the self-attention layer with the
(de)convolutional layer. Systematic experiment results reveal that equipped with
self-attention mechanism, the proposed systems deliver consistent performance
improvements. Sinc convolution for speech enhancement is still an under-explored
research direction. Therefore, this study proposes to bridge this gap by usefully
merging the Sinc convolution and SEGAN. In this light, this study transfers
the success achieved by the Sinc convolution in the field of speech and speaker
recognition to the field of end-to-end speech enhancement. In addition, it optimizes
the SEGAN architecture and enhance the original Sinc convolution layer to fit
the advanced SEGAN architecture. Besides, this study applies a series of data
augmentation techniques on raw speech waveforms directly to further improve the
system performance, and the learnt filters of the Sinc convolution layer is also
analyzed.

3. Adversarial joint training with self-attention mechanism [4†, 5†].

This thesis presents an adversarial joint training framework with the self-attention
mechanism to boost the noise robustness of the ASR system. Generally, it consists
of a self-attention speech enhancement generative adversarial networks and a self-
attention end-to-end ASR model. To the best of the author’s knowledge, this
is the first joint training scheme that benefits from the advantages of both the
self-attention mechanism and adversarial training. There are two advantages which
are worth noting in this proposed framework. One is that it benefits from the
advancement of both self-attention mechanism and GANs; while the other is that
the discriminator of GAN plays the role of the global discriminant network for
the adversarial joint training, which guides the enhancement front-end to capture
more compatible structures for the subsequent ASR module and thereby offsets
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the limitation of the separate training and handcrafted loss functions. With the
adversarial joint optimization, the proposed framework is expected to learn more
robust representations suitable for the ASR task. As achievement, remarkable
results have been obtained.

1.4 Structure of the Thesis

The rest of this thesis is organised as follows: An overview of the general framework of
automatic speech recognition is given in Chapter 2. Thereafter, Chapter 3 elaborates on
the optimization on the ASR back-end, Chapter 4 presents two novel architectures of the
speech enhancement front-end, and Chapter 5 discusses techniques of jointly training
the whole framework. Eventually, Chapter 6 gives a summary of the current work and
an outlook for the future work.

Chapter 2 presents a review of the general framework of automatic speech recogni-
tion. It starts with the front-end processing, followed by HMM-based and NN-based
acoustic modeling. Afterwards, the lexicon, the language modeling, decoding, and the
evaluation criteria are introduced. In the end, the structure of end-to-end models are
discussed, including CTC-based end-to-end models, RNN-transducer end-to-end models,
and attention-based end-to-end models.

Chapter 3 proposes a novel approach for constructing HMM structure for robust
speech recognition, named deep neural fenonic baseform growing. To begin with, the
deep neural network vector quantizer is introduced. Next, steps of deep neural fenonic
baseform growing are introduced, containing segment lengths padding, dynamic baseform
generation, and elementary Markov model for fenones. In the end, systematic experiments
are exerted to validate the efficacy of the proposed approach in monophone systems,
systems with context-dependent inputs, triphone systems, and in adverse environments.
Additionally, the performance comparison between the proposed approach and other
advanced models is also presented.

Chapter 4 presents two lightweight architectures of the speech enhancement front-end.
One is the speech enhancement GAN augmented with self-attention mechanism; and the
other is the speech enhancement GAN using Sinc convolution. Detailed implementations
of these two proposed architectures are demonstrated in Section 4.1 and Section 4.2,
separately. A brief summary is also provided at the end of each application.

Chapter 5 discusses the joint training strategy of the whole ASR scheme. At the
beginning, it presents an overview of the whole joint training framework, including a
self-attention based speech enhancement front-end, a self-attention based ASR back-end
(realized by Transformer [54] or Conformer [82] architecture), and the joint training
strategy. Then it emphasizes the role of the discriminant component of the framework,
which acts as the local guide of the speech enhancement front-end, and the global guide
of the joint training, simultaneously. Lastly, methodically designed experiments validate
the superiority of the proposed joint training strategy over other competitive baselines.

Chapter 6 summarizes all works introduced in this thesis followed by various potential
directions for future research.
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2

General Framework of Automatic
Speech Recognition

This chapter will introduce the general framework of ASR systems, including hybrid sys-
tems and end-to-end systems. Various speech signal processing techniques are discussed,
including speech signal pre-processing, feature extraction, acoustic modeling, language
modeling, and decoding approaches.

2.1 Overview

Speech 

Waveforms Front-end 

Processing
Word 

Sequence

Figure 2.1: General framework of an ASR system [186].

The goal of an ASR system is to output the word sequence with the highest probability
given the input audio signal [321]. To achieve this goal, a general speech recognition
framework usually involves three steps: front-end processing, acoustic modeling and
sequence decoding [186], as illustrated in Fig. 2.1. Front-end processing usually starts
with feature extraction, where acoustic feature observations, or vectors, are extracted from
incoming speech waveforms. Extracted features should be representative and compact,
conveying sufficient information to the subsequent recognition module. Thereafter, AMs
model a statistical relationship, i.e., the acoustic likelihood, between the feature vector
sequence and the linguistic units, e.g., phonemes or phones. Lastly, the sequence modeling
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2. General Framework of Automatic Speech Recognition

takes the acoustic likelihood as inputs and outputs the most likely word sequence, where
lexicons and language models are used. The lexicon, namely the dictionary, is commonly
employed in large vocabulary continuous speech recognition (LVCSR) systems to bridge
the sub-word units and the words existed in the LM. LMs include the prior knowledge
about the syntactic and semantic information of the output word sequences. Broadly,
sequence modeling can be expressed as:

Ŵ = arg max
W

P (W|O), (2.1)

where W represents all probable word sequences given the observation sequence O =
{o1, · · · ,oT}, and Ŵ denotes the most probable word sequence. Following Bayes’
theorem, the posterior probability in Eq. 2.1 can be expressed as a conditional probability
of the acoustic observations given the word sequence p(O|W), multiplied by a prior
probability of the word sequence P (W), and normalized by the marginal likelihood of
observation sequences p(O) as

Ŵ = arg max
W

p(O|W)P (W)

p(O)

= arg max
W

p(O|W)P (W).
(2.2)

p(O|W) is calculated by the acoustic model and P (W) is modeled by the language model.
It is worth noting that the marginal probability p(O) (the denominator) can be neglected
for being an constant.

2.2 Front-End Processing

Speech 

Segments
Critical Bands 

Filtering

Non-linear 

Operation

AR 

Modeling

|DCT|

Figure 2.2: The diagram of Mel Frequency Cepstral Coefficient (MFCC) and Perceptual
Linear Prediction Cepstral Coefficient (PLP) feature extraction [186]. |DFT| denotes
the magnitude of the discrete Fourier transform, |DCT| denotes the magnitude of the
discrete cosine transform, AR modeling stands for auto-regressive modeling, and ∆ and
∆∆ denote the first and second order derivatives across time, respectively.

Front-end processing is always the first operation on incoming waveforms in a common
speech recognition system. This stage mainly consists of two steps: pre-processing (e.g.,
detecting the target speech waveforms, pre-emphasis, and framing) and feature extraction.
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Speech signals are generally non-stationary signals as the statistical characteristics of
speech signals vary over time for a series of reasons such as the individual difference of
the vocal tract, different emotional state of even the same speaker, the homophony, etc.
Speech coding techniques in telephony have shown that speech can be processed as short
segments, where speech waveforms can be considered as short-term stationary signals.
One explanation for this hypothesis is that studies have shown that short-term speech
signals can be considered as output of a linear time-invariant vocal tract filter excited
by periodic or aperiodic vibration of vocal cords [216]. Moreover, the short-term speech
can be transformed and transmitted in the channel, and reconstructed at the end of
the receiver while keeping the intelligibility or message intact [216]. Particularly, speech
intelligibility can be preserved by preserving the envelope structure of the short-term
spectrum of speech signals, which characterizes the vocal tract system [247]. Based
on these aspects, extracting a representative and compact feature, which differentiates
the speech sounds, for the short-term speech signal is the next step. In this light, Mel
Frequency Cepstral Coefficient (MFCC) [51] and Perceptual Linear Prediction Cepstral
Coefficient (PLP) [95] are designed.

For the feature extraction of both MFCC and PLP, the first stage is frame division. A
window function, which is usually 25-30 ms long, is applied to the incoming audio stream
with a typical 10 ms frame rate. As the result, each frame usually lasts for 25-30 ms with
a 10 ms frame shift. Framed speech can be considered as stationary signals as the vocal
tract is assumed to be relatively constant in such short terms. The high frequencies of
the windowed speech is amplified by a first-order high-pass filter in the formant structure.
And the magnitude spectrum is obtained by applying the short time Fourier transform
on the overlapping speech frames. A perceptional evidence indicates that human listeners
tend to judge larger intervals to produce equal pitch increments [51] at a higher frequency,
so the normal frequency needs to be warped to a perceptually motivated frequency scale.
In this light, the Mel-frequency scale is designed. In the Mel-frequency scale, the normal
frequency scale fHz is warped to a perceived pitch fmel by:

fmel = 1127 log(1 +
fHz

700
). (2.3)

After warping, a series of triangular band-passed filters, which are spaced in the Mel-
frequency scale linearly, are deployed to convolve the linear spectrum. Resultantly, a set of
linear filter bank coefficients are obtained. Then the dynamic range of these coefficients are
compressed by a logarithmic transform, and thus log Mel-spectral filterbank coefficients
are acquired. However, these filterbank coefficients are highly correlated. As the
commonly-used ASR model, Gaussian Mixture Model (GMM)-HMM systems contain
diagonal covariance matrices, which cannot be well represented by highly-correlated
coefficients. To solve this problem, a truncated Discrete Cosine Transform (DCT) is
applied to decorrelate the feature, and produce the cepstral coefficients. Importantly, the
high-order cepstral coefficients are normally discarded, and the 0th cepstral coefficient is
replaced by a normalized log energy.

PLP is another popular feature representation based on the short-time spectrum
analysis. Different from MFCC, the linear frequency of the power or magnitude spectrum
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of PLP is wrapped into another perceptually motivated scale, the Bark frequency scale,
via

fbark = 6 log([
fHz

600
+ 1]0.5 +

fHz

600
). (2.4)

In the Bark frequency field, the power or magnitude spectrum is filtered out by equally-
deployed band filters. Following the equal-loudness and intensity-loudness power law,
the output of these band filters are nonlinearly transformed. Linear prediction (LP)
analysis is applied to the transformed outputs and the resultant LP coefficients are
further converted to cepstral coefficients. Woodland et al. [303] shows a modified form
of PLP features, where an equal-loudness curve is applied on the Mel filterbank outputs
and then a cubic root is utilized to further compress the scaled spectrum. Likewise, the
LP analysis is applied to the compressed spectrum, and the resultant LP coefficients are
further converted to cepstral coefficients. Eventually, the MF-PLP features are obtained.
Woodland et al. [303] indicates that the MF-PLP features is superior to the standard
PLP features.

Fig. 2.2 illustrates the diagram of MFCC or PLP feature extraction, including (i)
discrete Fourier transform; (ii) filtering the magnitude spectrum based on the speech
perception knowledge via critical bands analysis; (iii) a nonlinear operation; and (iiii)
decorrelating features via DCT. These first four steps only model the frame-level spectrum
information, but speech signals possess intrinsic temporal characteristics. Therefore,
the first- and second-order derivatives of the static features are employed to model the
dynamic information in the speech waveforms eventually [66].

2.3 Hidden Markov Model based Acoustic Modeling

Section 2.2 concentrates on the feature extraction of speech waveforms. This section will
emphasize the acoustic modeling for the speech recognition task, where AMs are utilized
to calculate the acoustic likelihood of a sequence of feature observations. HMMs are the
most classic AM in the field of ASR [212]. This section will introduce basic concepts of
HMMs and their applications to ASR.

It is assumed that in the HMM-based AMs, the feature observation of each acoustic
unit (e.g., phones, sub-phones, or words) is generated by a finite state machine. There is
a hidden state for each time t, and following a certain transition probability, the current
hidden state can jump to another state at time t + 1. Furthermore, according to a
state-dependent output distribution, the current state also emits an observation vector
at time t. When employing the finite state machine, two fundamental assumptions are
adhered to:

• Quasi-stationary. This assumes that after segmenting the non-stationary observa-
tion vectors within certain acoustic units into frames, the frame-level vectors can
be deemed as stationary observations.
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• Conditional independence. This assumes that the generated feature vectors only
depend on the current hidden state, where it is derived from, and is conditionally
independent of the other states or feature vectors.

It is worth noting that for realistic speech signals, neither of these foregoing assump-
tions is true. However, HMMs have been demonstrated to be suitable for speech signal
processing and have achieved a great success [243, 91, 203, 130, 330, 146, 125, 198, 40, 244].

2.3.1 Left-to-Right HMMs

The main parameters of an N-state HMM are:

• State transition probability matrix A
Each element aij of matrix A represents the transition probability jumping from
state i at time t to state j at time t+ 1 as

(A)ji = aij = P (st+1 = j|st = i). (2.5)

Note that the transition probability aij is independent of the time index t. To be
a valid probability distribution, the sum of each column of the state transition
probability matrix A must satisfy

Nj∑
j=1

aij = 1 ∀i = 1, · · · , Ni. (2.6)

• State output probability distribution B
Each element bj(o) denotes the emitting probability given state j:

bj(o) = p(o|s = j). (2.7)

Since speech signals possess natural temporality, left-to-right HMMs are the most
suitable topology for modeling this characteristic. Fig. 2.3 shows an example of a left-
to-right HMM with 3 emitting states. Let O = (o1, · · · ,ot, · · · ,oT ) be an observation
sequence generated by this 3-state left-to-right HMM. ot denotes the observation vector
at time t and T is the length of the vector sequence. Note that only emitting states (e.g.,
state 2-4 in Fig. 2.3) generate observation vectors. The entry state (state 1) and exit
state (state 5) are non-emitting, and the utility of non-emitting states is to facilitate
the construction of composite HMMs. At each time t, the state can jump to the next
state or stay at the current state by the transition probability aij. Once an emitting
state is reached, the observation vector is generated complying with the probability
density bj(o). For each observation vector sequence o with the length T , there is a state
sequence s = (s1, · · · , st, · · · , sT ) with the same length, where st is the state at time t.
However, only ot can be observed, while st is hidden and needs to be inferred from the
observations.
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1 5

Figure 2.3: An example of the left-to-right HMM with 3 emitting states.

2.3.2 Acoustic Units

For some speech recognition tasks, e.g., the isolated word recognition, or keyword spotting,
the amount of words in the vocabulary is normally less than 1 K. In this case, HMMs can
be built for each word. However, for LVCSR, it is impossible to model every word with
an individual HMM as the amount of words is usually over 10 K. Then HMMs are built
upon sub-words. For example, the sub-word unit [th] affiliates with the word thin. When
the recognition stage finishes, all sub-words are composed to words according to the
mapping rules specified by a dictionary. The reason why words have to be decomposed
to sub-words initially is that the quantity of sub-words is considerably less than that of
the words. Let English be an example. In English, phones are often basic acoustic units
for HMM modeling. There are around 40 to 60 phones compared to 20 K to 64 K words
in typical state-of-the-art speech recognition systems.

Basically, there are two sorts of phone systems. One is the monophone system, where
HMMs are built on context-independent phones. The other is the triphone system.
Triphones are the most popular context-dependent acoustic units, which combine the left-
and right-adjacent phones with the center phone. For instance, the triphone f-iy+l is
[iy]-centric, where “-” stands for the left context and “+” denotes the right one. Since the
pronunciation of the center phone is highly influenced by the adjacent phones, acoustic
units based on context-dependent phones are normally employed in LVCSR [134].

However, employing context-dependent triphones in LVCSR brings back the quantity
problem. For instance, a monophone system containing 40 phones can derive up to 100 K
triphones. It is impossible to collect adequate training data for each individual triphone.
Moreover, some triphones may occur rarely or even never exist in the training data. In
this light, parameter tying techniques are necessary. The most popular parameter tying
technique is state clustering [317], where all states are classified into different clusters
and the state output distributions of the same cluster are shared. Fig. 2.4 demonstrates
the state clustering of three HMMs. The upper part of Fig. 2.4 is the untied system,
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each state possesses an individual output distribution, resulting in 9 output distributions
to be estimated. The state clustering technique [317, 109] groups these 9 distributions
into 4 clusters. As the result, the amount of model needed to build is reduced to be 4,
which averts the problem of insufficient data for each state.

State Clustering

Figure 2.4: An example of state clustering within a three-HMM system. Before state
clustering, each state has a unique state output distribution. Afterwards, grouped states
share the same distribution.

Generally, there are two approaches that can be used for state clustering: bottom-up
and top-down. The bottom-up approach merges the most similar distributions, and as
the result, a new distribution emerges. The number of final clusters can be set previously,
so when the amount of new distributions reach the set number, the state clustering
stops. The main demerit of this approach is that it neglects unseen contexts with no
occurrence in the training data. This issue can be solved by the top-down approach, e.g.,
the phonetic decision tree clustering approach. The top-down approach groups states
into root nodes, and at each node, a phonetic question about contexts is inquired to
split states affiliated to the current root into two subsidiary roots. Likewise, this process
repeats until a certain number of nodes is reached. When an unseen triphone appears,
the top-down approach can always find a proper leaf node for each state of this new
triphone by selected phonetic questions. Resultantly, a new HMM is synthesized for this
triphone. The top-down approach is the most widely-used state clustering approach in
most SOTA ASR systems [107].
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2.3.3 Acoustic Likelihood Estimation

Formally, Eq. 2.2 separates the sequence modeling into two independent models: the
acoustic likelihood probability p(O|W) and a prior probability of the word sequence
P (W). In the HMM framework, the acoustic likelihood p(O|W) is estimated by

p(O|W ) =
∑
S∈S

p(O, S|W )

=
∑
S∈S

p(O|S,W )P (S|W )

=
∑
S∈S

p(O|S)P (S|W ) .

≈max
S∈S

p(O|S)P (S|W )

≈max
S∈S

T∏
t=1

bj(ot)aij

(2.8)

Each element of the feature sequence O = {o1, · · · ,ot, · · · ,oT} is assumed to be emitted
by a state of the hidden state sequence s = {s1, · · · , st, · · · , sT} ∈ S. Each hidden state
emits an observation following the state output probability distribution bj(o) = p(o|s = j)
(Eq. 2.7). After applying Bayes’ theorem as described in Eq. 2.2, Viterbi approximation
is implemented in the forth step, where the sum over all possible state sequence is
replaced by the state sequence with the highest probability. The fifth step arises from
the HMM assumption (as described at the beginning of Section 2.3), which is that the
acoustic observation ot at time t depends only on the current state st, and the first order
Markovian assumption, which is that the current state st depends only on the previous
state st−1. aij is the transition probability from state i to state j.

The emission probabilities bj(o) are usually estimated by GMMs or Artificial Neural
Networks (ANNs) [186].

In the GMM-HMM system, emission probabilities are estimated by a mixture of
Gaussian distributions as

bj(o) =

NGMM∑
n=1

cijN (o;µ,
∑∑∑

), (2.9)

where NGMM denotes the number of Gaussians, cij denotes the weight of a Gaussian
distribution, which is

N (o;µ,
∑∑∑

) =
1

(2π)do/2|
∑∑∑
|1/2

exp(−1

2
(o− µ)T

∑∑∑−1
(o− µ)). (2.10)

do denotes the dimension of o. µ and
∑∑∑

represent the mean vector and the covariance
matrix, respectively.

In hybrid ANN-HMM systems [32], emission probabilities are estimated by ANNs,
which will be discussed later in Section 2.4. ANNs estimate the class condition prob-
abilities P (st = j|ot) of each acoustic unit cluster j ∈ {1, · · · , N} given the feature
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ot. Emission probabilities bj(o) of HMM states are obtained through Bayes’ theorem:
dividing ANN outputs by the state prior probability P (st = j). The mathematical
description is

bj(o) ∝ p(ot|st = j)

p(ot)
=
P (st = j|ot)
P (st = j)

∀j ∈ {1, · · · , N}. (2.11)

The state prior probability P (st = j) is usually estimated by counting the occurrence of
the state in the training data.

In both GMM-HMM systems and ANN-HMM systems, parameters are learnt by
optimizing the expectation-maximization (EM) algorithm [215, 212], which is a maximum
likelihood-based cost function. The parameters of HMMs are often estimated by Baum-
Welch algorithm [20] (also termed as the forward-backward algorithm [215]) or the Viterbi
EM algorithm [114]. In most cases, Viterbi EM is utilized to train ANNs. Viterbi EM
algorithem maily comprises two iterative steps:

• Expectation (E-step): Search for the state sequence with the highest probability
given the current parameters.

• Maximization (M-step): Based on the current classification error, train a new ANN
according to the cost function.

Linear 

Segmentation

End

Figure 2.5: Flowchart of the Viterbi EM algorithm [186].
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Fig. 2.5 illustrates the flowchart of the Vertibi EM algorithm. As we can see, a new
ANN is trained at each M-step. A GMM-HMM system is trained to obtain segmentations
and alignments for the subsequent ANN.

2.4 Neural Network based Acoustic Modeling

2.4.1 Overview

This section will formally discuss ANNs and then present popular ANN-based acoustic
models in speech recognition.

ANNs are non-linear adaptive models that model the relation between an input vector
x of dimension dx and the corresponding output vector y of dimension dy. ANNs are
inspired by biological brain systems [155] and the first attempt was the perceptron, a
linear model for information storage and organization [232]. The perceptron was then
extended to the non-linear classifier as an universal approximator [47, 104].

An ANN comprises several layers. A typical ANN layer contains a linear transforma-
tion, a weight matrix, and a non-linear activation function:

y = f(xW + b). (2.12)

W ∈ Rdx×dy is the weight matrix, b is the bias vector of dimension dx. f(·) is an
activation function, e.g., the sigmoid [87] function or the rectified linear unit (ReLU)
[172].

A typical ANN architecture consists of several hidden layers, which is also referred to
as multilayer perceptron (MLP). The learnt parameters of ANNs are the weight matrix
and bias vector of each hidden layer, which are updated during training. The number of
units of each layer is set empirically.

ANNs can be used for both classification (e.g., speech recognition task [49]) and
regression tasks (e.g., speech enhancement task [308]). In speech recognition, a typical
classification task, ANNs model the relation between the label of the input x and its
hypothesized class. The network outputs a score for each class in the form of the posterior
probability. To compute the posterior probability, the softmax non-linearity is employed
[34]. The posterior probability of label i 1 ≤ i ≤ NK is calculated as

P (i|x) =
efi(x)∑
i e
fi(x)

, (2.13)

where fi(x) is the score of a class.

Cross-entropy has been demonstrated to be effective for training ANNs [229, 171].
The cross-entropy criterion is a proximity measure between the network outputs and its
target. The target is usually an one hot representation of class i 1 ≤ i ≤ NK , i.e., a
vector of size NK with 1 for the ith component and 0 elsewhere, indicating that class i is
the target of the current input. Given a training set of NK labels (xn, in)1 ≤ n ≤ NK,
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the cost function L can be calculated by

L(θ) =
N∑
n=1

log(P (in)|xn, θ), (2.14)

where the logarithm is calculated as

log(P (in)|xn, θ) = fi(x, θ)− logaddj(fj(x, θ)), (2.15)

and the logadd(·) function is calculated as

loggaddj(zj) = log(
∑
j

ezj). (2.16)

Normally, the model parameters are initialized randomly, and updated by back-
propagation algorithm [234, 132] following the chain derivative rule:

θ ←− θ + λ
∂log(P (i|x, θ))

∂θ
, (2.17)

where θ denotes the model parameters and the λ is the learning rate. The back-
propagation algorithm propagates the error backward either by accumulating the cost
gradient from several examples within a batch, or by stochastic gradient descent technique
[29], which randomly iterates over the training set and chooses one example for the
likelihood gradient calculation. Alternatively, a compromise is accumulating the cost
gradient from examples within a mini-batch. The main issue when training ANNs is
overfitting. Overfitting is a phenomenon that the model performance on the training set
keeps increasing while it decreases on the test set, namely its generalization capabilities
decreasing. To avoid this problem, a validation set is often separated from the training
dataset and utilized for evaluating the model performance at each iteration. The training
stops automatically when classification accuracy on the validation set starts decline,
which is referred to as early stopping [170]. Normally the model that performs best on
the validation dataset is selected as the best model.

ANN-based AMs have drawn a great amount of research efforts since mid 1980s
in speech recognition. The first successful attempts have been obtained in phoneme
recognition [129, 286]. Thereafter, it was extended to isolated word recognition [30].
For continuous speech recognition, successful applications were first obtained on small
vocabularies [85]. Meanwhile, the hybrid ANN-HMM acoustic modeling was developed
[171, 31, 22, 227]. In this section, several popular ANN architectures will be presented.

2.4.2 Deep Neural Networks

The increment of computational power encourages the development from MLPs to DNNs.
Different from MLPs, DNNs possess more hidden layers (usually more than two hidden
layers). Therefore, Eq. 2.12 should be extended to be

y = f(f(f(xW1 + b1) · · ·Wn−1 + bn−1)Wn + bn). (2.18)
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Wn and bn represent the weight matrix and the bias of the nth layer, respectively. f(·)
denotes the activation function. Fig. 2.6 exhibits an example of DNN architecture with
three hidden layers.

Input Output

Figure 2.6: An example of DNN architecture with three hidden layers.

DNNs have achieved lots of performance improvements compared to MLPs. However,
DNNs are difficult to be trained, especially when the training data is limited, because
of its large scale of parameters. To tackle this problem, pre-training techniques are
introduced to initialize the DNN parameters. Deep Belief Networks is a popular pre-
training approach, which is based on the restricted Boltzmann machines [100]. The goal
of Deep Belief Networks is to maximize the likelihood of the joint probability of data and
their corresponding labels. Besides, regularization techniques are also proposed, such
as dropout. Dropout is a technique for improving the network generalization. During
training, dropout sets a certain amount of weights of each hidden layer to zero randomly
to reduce the mutual dependency of the neurons [260].

There are different inputs for hybrid DNN-HMM systems. One is the cepstral-based
feature for phone recognition or continuous speech recognition [49, 166, 250, 168]. Besides,
bottleneck features have been investigated for continuous speech recognition [320, 237, 48].
Afterwards, there has been a growing interest in utilizing intermediate representations (
between raw waveforms and cepstral-based features) as inputs. Another classification is
Spectral-based features [133, 167, 27, 326], and self-learnt features from spectrum have
also been proposed in [236]. More recently, using raw speech signals as inputs is drawing
more and more attention [61, 183].
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2.4.3 Convolutional Neural Networks

Input Feature Maps Convolution Feature Maps Pooling Feature Maps

Input Layer Convolution Layer Pooling Layer

Convolution Pooling

Figure 2.7: An example of one CNN layer comprising a pair of convolution operations
and a pooling operation in succession.

Inspired by studies on computer vision, CNNs possess a natural priority of dealing
with sequential data [131]. Fig. 2.7 shows the basic architecture of a CNN layer. Different
from DNNs, CNNs take a sequence of vectors as the input and a convolution operation
is applied to the input by a kernel. Lower layers extract low-level representations, and
the higher the layer, the more abstract the representation it extracts. CNNs suit for
speech signal processing as adjacent frames of the center frame (the context) always
carry important information.

Time-Delay Neural Networks (TDNNs) are inspired by one-dimensional CNNs. They
were initially studied on phoneme recognition [286] and isolated word recognition [30],
and are implemented on LVCSR recently. [198] presents the performance of TDNN on
several LVCSR tasks with training data ranging from 3 to 1800 hours, and TDNNs are
demonstrated to be efficient in learning wider temporal dependencies in both small and
large data scenarios. [203] improves TDNNs to a factored form which is structurally the
same as a TDNN whose layers have been compressed via singular value decomposition,
and two factors of each matrix are constrained to be semi-orthogonal. Factored TDNNs
give substantial improvements over TDNNs.

2.4.4 Recurrent Neural Networks

RNNs [57] are a class of neural networks, which access the predictions of the earlier
examples to classify the current example at a time instance. Connections between
neurons of the RNN form a directed graph. Bi-directional RNNs [248] consist of two
RNNs in different directions. Hence, the prediction at time t is based on predictions in
both directions. Fig. 2.8 shows an example of a Bi-directional RNN.

There are a series of RNN-based variants. The alpha-net [33] is a RNN-based neural
network utilized in the HMM framework. Robinson [231] proposes a recurrent nets for
phone probability estimation, where the current output of the network is predicted by the
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Inputs

Forward Layer

Backward Layer

Outputs

Figure 2.8: An example of the Bi-directional RNN. xt and yt represent the input and

output at the time instance t, respectively.
−→
h t and

←−
h t denote the forward hidden

sequence and the backward hidden sequence, respectively. [80]

current input and a hidden state variable. In the mean while, this hidden state is related
to all previous inputs. However, there is a common problem of these RNNs, which is the
gradient vanishment. This problem constrains their ability to access long-range contexts.
In this light, the Long Short Term Memory network (LSTM) [101] is proposed.

LSTM [101] is a particular type of RNNs, which comprises LSTM gates. An LSTM
gate can choose to store or delete the input information, and it can replace the RNN
neuron units or be deployed as an auxiliary module. Therefore, LSTM gates allow
the network to handle very long contexts at a given time. Fig. 2.9 shows the interior
architecture of an LSTM gate. The Bi-directional LSTM (BLSTM) approach contains
bi-directional RNNs, enabling the network to access to contexts of the input in both
directions. BLSTM is originally proposed for framewise phoneme classification [81]. A
preliminary study on continuous speech recognition is presented in [79]. LSTM layers
can also be integrated to other types of ANNs for tackling speech signals, e.g., CNNs
[36] and DNNs [94].

2.5 Lexicon

The lexicon factorizes each word into a sequence of acoustic units according to its
pronunciation. The most popular acoustic unit is the phone [185], and as mentioned
earlier, phones can be monophones or triphones. Each monophone or triphone can be
considered as an independent acoustic unit. For example, the word able can be factorized
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Forget Gate

Input Gate Output Gate

Cell

Figure 2.9: An example of the LSTM cell. xt represents the input sequence at time
instance t. ht denotes the corresponding hidden sequence. [80]

as {[ey] [b] [l]} in the case of monophones, and as {[ey-b] [ey-b+l] [b+l]} in the case of
triphones. However, there always exist unseen acoustic units during training, and this
problem is usually addressed by utilizing top-down state clustering techniques [249] (as
described in Section 2.3.2).

2.6 Language Modeling

Let W = {w1, · · · ,wi, · · · ,wNw} 1 ≤ i ≤ Nw, and the probability of W can be
factorized into a product of conditional probabilities:

P (W) =
Nw∏
i=1

P (Wi|Wi−1, · · · ,W1). (2.19)

Assuming the word sequences possess the n-order Markovian property [151], each condi-
tional probability of Eq. 2.19 can be approximated by

P (Wi|Wi−1, · · · ,W1) ≈ P (Wi|Wi−1, · · · ,Wi−n+1). (2.20)

As the result, the probability of W can be expressed as

P (W) =
Nw∏
i=1

P (Wi|Wi−1, · · · ,Wi−n+1), (2.21)
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which is referred to as n-gram LM.
The maximum-likelihood estimation of the word sequence Wi given its n-order

Markovian property is

P (Wi|Wi−1, · · · ,Wi−n+1) =
f(Wi,Wi−1, · · · ,Wi−n+1)∑
W f(Wi,Wi−1, · · · ,Wi−n+1)

. (2.22)

f(Wi,Wi−1, · · · ,Wi−n+1) represents the occurrence of the n-gram word sequence in the
training transcripts. Note that the premise of an precise estimation is that all possible
n-gram word sequences are well covered. However, this hypothesis is not always met
in the large vocabulary task as some rare word sequences probably never occur. Thus,
the smoothing method of the conditional probabilities is necessary. Generally, there are
three categories of smoothing schemes [321]:

• Discounting. If some n-gram word sequences never occur in the training data,
the conditional probabilities of those n-grams are 0 in the maximum-likelihood
estimation. To avert this problem, a certain amount of overall probability mass
is allocated to these unseen n-grams. The ratio of re-allocated probabilities to
the overall probabilities is controlled by a discounting scalar, e.g., Good-Turing
discounting [119], Kneser-Ney smoothing [124], and absolute discounting [177].

• Back-off. In the Back-off strategy, shorter histories are used instead of assigning
probability mass to the unseen n-grams in the above discounting approaches. The
back-off strategy can be applied recursively. For example, a tri-gram, bi-gram or
uni-gram distribution can serve as the back-off of a 4-gram distribution.

• Interpolation. To construct a more robust estimation, high-order n-gram LMs can
be interpolated with low-order n′-gram LMs. Besides, different LMs generated from
different text data can also be interpolated. Note that the interpolation weights
are often fine-tuned on a different dataset.

The foregoing LMs are generative LMs. There is another type of LMs, referred to
as discriminative LMs, which has drawn more attention, e.g., neural network LMs [23].
In a neural network LM, each word {wi−j : j = 1, · · · , n− 1} is mapped to a vector w′

in a continuous space. Given a sequence of word embedding vectors {w1, · · · ,wn−1}, a
feed-forward neural network is used to predict the posterior probability of wi. A special
example is RNN LM [160], where the input layer and the hidden layer are connected
recurrently. With the help of this recurrent connection, the RNN LM is able to model
long-term dependency.

2.7 Decoding

Decoding aims to search for the most probable path. As demonstrated in Fig. 2.1, the
decoding algorithm requires three inputs: the acoustic likelihood modelled by the AM,
the probability of a word sequence modelled by the LM, and the lexicon which specifies
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the composition of a word sequence by individual acoustic units (e.g., phones). However,
a word may have different phone compositions due to allophones, and thus, HMM phone
models may result in different state sequences. Therefore, Eq. 2.2 can be expanded to
be a multiple-level marginalization as

Ŵ = arg max
W
{P (W)

∑
φ∈W

P (φ|W)
∑
s∈φ

p(O, s|φ)}. (2.23)

φ denotes a possible phone sequence from the hypothesis set W, and s is one of the
possible state sequences of φ. P (φ|W) is the pronunciation probability provided by the
lexicon [86], and p(O, s|φ) and P (W) are the acoustic and language scores respectively.
The direct evaluation over all possible paths could result in prohibitive computational
cost, so the Viterbi algorithm [285] is applied. The Viterbi algorithm converts the
summation over possible phone and state sequences to a maximum:

Ŵ ≈ arg max
W
{P (W) max

φ∈W
P (φ|W) max

s∈φ
p(O, s|φ)}. (2.24)

To search for the best state sequence ŝ for an observation sequenceO = {o1, · · · ,ot, · · · ,oT},
a partial best-path score φj(t) is defined as

φj(t) = max
s1,··· ,st−1

p(o1, · · · ,ot, s1, · · · , st−1, st = j). (2.25)

The partial best-path score can be recursively calculated by

φj(t) = max
i
{φi(t− 1)aij}bj(ot) 1 < j < Ns, 1 ≤ t < T, (2.26)

and
ϕj(t) = arg max

i
{φi(t− 1)aij}, (2.27)

with the initialization
φ1(0) = 1 (2.28)

and
φj(1) = a1jbj(ot). (2.29)

Ns denotes the state number in the given HMM sequence. The best previous state in a
partial path, ending at time instance t and state j, is stored in ϕj(t). φNs(T ) gives the
likelihood of the best path, and the best state sequence {s1, · · · , sT} can be retrieved by
the recursion:

sT = Ns, (2.30)

and
st = ϕst+1(t+ 1), t = T − 1, · · · , 1. (2.31)

The Viterbi algorithm can be also applied in the decoding of the continuous speech
recognition [178, 316], where each state has one or more tokens at each time step. Each
token contains two elements: a word-end link and the value of the partial path it
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represents. At each time instance, only the token with the highest likelihood is proceeded.
When a token is transmitted through an arc connecting two words, the word-end link is
updated with the last word. In this way, the most likely sequence of words can be traced
back using the word-end link. There is another decoding method called n-best score or
word lattices [182], where at a time instance, n tokens with top scores are propagated
forward instead of only the best one. Since the starting time of each word is hypothesized
to be independent [257], the n-best score method cannot assure the exact n-best paths.
Nevertheless, it can be implemented efficiently and is proven to be feasible.

The decoding complexity increases considerably when a high-order n-gram LM is
used, because tokens can only be merged when its n− 1 previous words are identical.
To keep the decoding complexity in a certain range, token paths with the score below
a threshold need to be removed. This is referred to as pruning [178]. Note that the
beam-width needs to balance the computational cost and the search errors, since if it is
too wide, the decoding complexity cannot be contained; if it is too tight, the most likely
path may be pruned at an early step.

Another issue existing in the practical implementation is that the acoustic score and
the language score have different dynamic ranges [321]. The language score is often much
smaller than the acoustic score. To solve this problem, the language scores are often
scaled up by a scaling factor, which is often empirically set for a particular task. Similarly,
the pronunciation probability can be also scaled using a separate scalar. Another issue is
the use of the word insertion penalty to avoid recognition errors from a number of short
words. With these techniques, Eq. 2.24 can be rewritten as

Ŵ ≈ arg max
W
{αLMlogP (W)+βprolog max

φ∈W
P (φ|W)+log max

s∈φ
p(O, s|φ)+γin lW}, (2.32)

where αLM is the LM scaling factor, βpro is the pronunciation probability scalar, γin is
the insertion penalty, and lW is the length of the word sequence W .

2.8 Evaluation Criteria

The performance of an ASR system is mainly evaluated on WER by comparing the
hypothesised transcription and the reference transcription [153]. The deletions (Ed),
substitutions (Es), and insertions (Ei) are all considered as errors, and the WER stands
for the percentage of all errors to the total number of words (Nw), i.e.,

WER =
Ed + Es + Ei

Nw

× 100 %. (2.33)

Importantly, the calculated WER can be beyond 100 %.

Instead of WER, CER is employed in experiments utilizing Mandarin corpora, since
a single character often represents a word in the Mandarin writing system. CER follows
the same formula of WER, but characters are utilized as the computational unit instead
of words.
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2.9 End-to-End Models

In HMM-based framworks, different modules are trained independently. HMMs are
mainly for frame-level dynamic time warping, and GMMs or DNNs are employed to
estimate HMM hidden states’ emission probabilities [158]. This construction determines
that HMM-based models have intrinsic weaknesses:

• Local optimality. AMs and LMs are trained independently and differently with
their own optimization objective functions. Hence the optimality of each module
cannot ensure the global optimality [327, 79].

• Quasi-stationary and conditional independence assumptions. Although these two
assumptions simplify the model’s construction considerably, as described in Section
2.3, neither of these two assumptions is true for practical usage.

Due to the foregoing weaknesses of HMM-based models, end-to-end LVCSR has
attracted more and more research efforts. The end-to-end model directly maps the
input speech sequence to the word sequence or other graphemes. Basically, end-to-end
speech recognition models are composed of an encoder, an aligner, and a decoder. The
encoder maps the input audio sequence to the feature sequence, the aligner generates the
alignment between the feature sequence and the output labels, and the decoder decodes
the output word sequence. Fig. 2.10 illustrates the structure of a typical end-to-end
model.

Encoder

Decoder

Aligner

Input Sequence

Feature Sequence

Output Sequence

Figure 2.10: The structure of a typical end-to-end model. xt, ot, and yt represent
the input sequence, the feature sequence, and the output sequence at time instance t,
respectively.

Different from HMM-based models that consist of multiple independent modules,
end-to-end models possess a deep architecture [103]. Therefore, there is no need to
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execute posterior estimation on the output. However, alignments between the speech
data and the label sequence is still an inevitable problem for end-to-end models. Different
from the forced alignment, which HMM-based models utilize, end-to-end models adopt
the soft alignment, where each audio frame is aligned to all possible states with a certain
probability distribution. Based on the category of soft alignment approaches, end-to-
end models can be grouped into three classifications: CTC-based end-to-end models,
RNN-based transducers, and attention-based end-to-end models.

2.9.1 CTC based End-to-End Models

Before training HMM-based model, a necessary step is roughly estimating the forced
alignments of the training data. Without HMM, this estimation is accomplished by the
CTC algorithm [78]. The CTC algorithm make it possible to achieve the real end-to-end
framework. It solves the problem of forced alignment by acting as the loss function
essentially. And for the CTC algorithm, the output of the end-to-end model can be the
target transcription directly [289].

2.9.1.1 Path Searching

Given an input signal sequence x = {x1, · · · , xt, · · · , xT}, where T is the length of the
input sequence. Firstly, it is encoded into a feature sequence o = {o1, · · · , ot, · · · , oT}
by the encoder. Then CTC performs on the feature sequence o = {o1, · · · , ot, · · · , oT},
and converts it into a probability distribution sequence q = {q1, · · · , qt, · · · , qT}. Please
note that for CTC-based models, their vocabularies always include a special token blank
“-”. Through the distribution sequence, every frame xt ∈ x is mapped to a meaningful
label in the vocabulary or blank “-”, and as the result, the input sequence xt is mapped
to a path also with the length T . From this respect, CTC process can be considered as a
forced alignment process.

Please note that in the path searching process, there is an implicit independence
assumption on the output sequence. Namely, the selected label at a time instance is totally
independent on labels of other time steps. By contrast, context information is included
in the encoding process. In other words, CTC postulates conditional independence in
LMs solely, not in AMs. Therefore, the CTC-trained encoder is essentially an AM, not
being able to model languages.

2.9.1.2 Path Aggregation

From the path searching process, the length of the output sequence is equal to that of the
input sequence, which does not match the practical situation. To aggregate output labels
to be readable utterances, two operations are mainly included: merging the contiguous
labels, and then deleting the blank label “-” in the path. Let the word sun be an example.
sun is a label sequence of length 3, but it could contain 7 different output paths of length
5-7, as shown in Fig. 2.11(a). Fig. 2.11(b) shows the lattice example of CTC, where 1,
2, 3, 4 represent time steps and s, u, n, and - denote the labels in the vocabulary. In the
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lattice, each passable path starting at time step 1 and ending at time step 4 stands for a
possible path of sun.

{ -, s, s, u, n }

{ -, s, u, u, n, - }

{ -, s, -, u, n, - }

{ -, s, u, n, - }

{ -, s, s, -, u, n, - }

{ -, s, s, u, u, n, - }

{ s, s, u, u, n, - }{ s, u, n }

-

s

-

u

-

n

-

1 2 3 4

(a) (b)

Figure 2.11: (a) Possible paths for label sequence sun. (b) Lattice examples in CTC.

During path searching and path aggregation, probabilities of label sequences are also
calculated. Let VT be the set of all T-length sequences defined on the vocabulary V and
V ′T be the subset of VT of the label sequence x′. ν ∈ VT denotes a single path in the set
VT . Then the conditional probability of the label sequence x′ given the input sequence
x can be calculated as

p(x′|x) =
∑
ν∈V ′T

p(ν|x),

p(ν|x) =
T∏
t=1

qνtt , ∀ν ∈ V ′T .
(2.34)

νt represents the label at time instance t of sequence ν. Obviously p(x′|x) is differentiable.
Hence the model can be trained with the gradient back propagation method. Nevertheless,
since the number of paths in V ′T is unknown, it is still difficult to follow Eq. 2.34.
Therefore, the calculation method that is utilized in the practical situation is the forward-
backward algorithm [78].

Although, CTC method can achieve the frame-to-frame forced alignment, it does not
require the output sequence to be the same length as the input sequence. Therefore, CTC
adopts the soft alignment eventually, which is an essential difference from HMM-based
systems [79].

With the advent of the CTC algorithm, the construction of LVCSR models eliminates
the need of the forced alignment, and is thus considerably simplified. Besides, CTC
also makes it feasible to build an real end-to-end model, which is able to map audio
waveforms to texts [60] directly.
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2.9.1.3 CTC Language Model

Eq. 2.34 indicates that the CTC algorithm hypothesizes all output labels are independent
of each other, which determines that CTC is incapable of modeling languages properly.
Therefore, many CTC-based works [137, 90, 147, 108, 294, 5] employ an auxiliary LM to
CTC. Their results show that the auxiliary LM improves the performance of CTC-based
end-to-end systems substantially.

Basically, there are two sorts of LMs in CTC-based ASR systems. One is the re-
score method (as know as re-ranking method). The re-score method starts with CTC
calculating the probability distribution, based on which the beam-search algorithm
screens the first path candidates. Then these paths are re-scored by an auxiliary LM.
Finally, both scores are taken into consideration to determine the optimal decoding path
[79]. The other sort of LM is often called first-pass method. As the term implies, the
optimal decoding path is gained in one scoring process, where the score of the auxiliary
LM is combined with the CTC calculation at each extending node during beam-searching.
Since the first-pass method integrates the LM into the beam-search process, it generally
achieves better results and is more widespread.

However, introducing LM diverts CTC-based systems from the end-to-end principle,
and the original goal of joint training an individual framework is also destroyed. Besides,
LM can be very complex. The parameter scale of the LM used in [147] is up to 21 GB,
which causes great real-time delay.

2.9.2 RNN-Transducer End-to-End Models

As mentioned above, two restrictions limit the effectiveness of CTC. One is the inde-
pendence hypothesis, and the other is the premise that the output sequence can only
be shorter than its corresponding input sequence. To overcome these limitations, the
RNN-transducer is proposed in [76]. Similar to the CTC algorithm, RNN-transducer
also aims to solve the forced alignment problem in end-to-end speech recognition, and
it also introduces the blank label. However, their path possibility calculation and path
aggregation methods are completely different. As the result, the RNN-transducer can
map an input to any finite output sequence, and the interdependency within output
elements is also jointly modeled. Many works on the RNN-transducer show improvements
compared to CTC-based algorithms [80, 240, 55].

As shown in Fig. 2.12, a RNN-transducer consists of three modules:

• The transcription module. The transcription module is an encoder as well as an AM.
For an acoustic input sequence x = {x1, · · · ,xT} of length T, the transcription
module maps it to a feature sequence o = {o1, · · · ,oT}.

• The prediction module. The prediction network is acting as the LM in the decoder.
It models the interdependencies among the output labels. Namely, to determine
the output at time t, outputs at first t− 1 time instances are considered.

• The joint module. It generates the alignment between the input and the output
sequences based on the outputs of the transcription module and the prediction
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module. The joint module plays the role of calculating the label distribution
p(yn|y1:n−1,xt) at the output location n, given the history output sequence y1:n−1

and the input xt at time t. The label distribution information is required by the
decoding process.

SoftmaxSoftmax

Joint ModuleJoint Module

Prediction ModulePrediction Module Transcription ModuleTranscription Module

Figure 2.12: Illustration of the structure of the RNN-transducer [206].

The RNN-transducer adopts the forward-backward algorithm to calculate the probabil-
ity of a given label sequence. Becasue of the path aggregation process, the RNN-transducer
also produces soft alignments.

For the decoding process, the RNN-transducer reads an input xt, and keeps outputting
labels until a blank appears. Then RNN-transducer reads in the next input xt+1 and
repeats the decoding procedure until the whole input sequence has been processed. Since
an input xt may be mapped to an output of any length, the RNN-transducer can deal
with situations where the length of the output sequence is longer than that of the input.

To sum up, there are three main characteristics of the design of the RNN-transducer
[289]:

• Theoretically, the RNN-transducer allows the output sequence to be an arbitrary
length.

• Each state is determined by the current input, previous states, and previous outputs.
In this way, the RNN-transducer models the interdependence within the output
sequence.

• The joint module models the relation between the acoustic model and the language
model.
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2.9.3 Attention based End-to-End Models

2.9.3.1 Overview

In 2014, Bahdanau et al. [11] propose to extend the using of a fixed-length vector by
allowing a model to automatically (soft-)search for positions of a source sentence that
are relevant to predicting the current label, without having to form these positions as
a hard segment explicitly. The most distinguishing feature of this proposed approach
is that the encoder does not attempt to encode a whole input sentence into a single
fixed-length vector. Instead, it encodes the input sentence into a sequence of vectors and
assigns a weight to each vector adaptively while decoding the translation. This feature
frees a neural translation model from having to squash all the information of a source
sentence, regardless of its length, into a fixed-length vector. This method enhances the
model’s ability to tackle long input sequences, and it also improves the speech recognition
performance substantially, because it fits well with some natural characters of the speech
recognition task:

• Similar to the machine translation task, speech recognition is also a sequence-
to-sequence process that converts the input audio waveforms to the output text
sentences.

• The encoder–decoder structure based on the attention mechanism does not require
the alignment information between the input audio and the transcript, since the
attention mechanism adopts the soft alignment instead of the forced alignment.

• As the encoder encodes the input into a vector sequence, the model is able to
handle inputs of various lengths, which is in line with the realistic situations.

Fig. 2.13 illustrates an overview of the attention-based end-to-end model. The
encoder maps the input sequence to a high-level representation, then the attention-based
decoder decodes the current input based on all previous predictions. Given the input
sequence xt at time instance t, the network predicts the posterior probabilities of the
current input yn ∈ V as follows:

P (yn|xt) =
∏
n

P (yn|xt,y1:n−1), (2.35)

ht = Encoder(xt), (2.36)

cn = Attention(an−1, sn,ht), (2.37)

yn = Decoder(cn,y1:n−1). (2.38)

y1:n−1 is a label sequence from y1 to yn−1. The encoder transforms the input sequence
xt to the l-length representation ht = {h1, · · · ,hl}. Next the attention-based aligner
calculates the l-dimensional attention weight vector an ∈ [0, 1]l to integrate all encoding
outputs ht into a context vector cn ∈ RDh . sn is the state vector at output step n. Then
the decoder estimates the posteriori for output label yn at output step n conditioned on
the previous predictions y1:n−1 and the context vector cn.
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According to the utilized information in attention calculation, the attention mechanism
can be classified into three categories: content-based, location-based, and hybrid [289].
Eq. 2.39 shows the calculation of their attention weights an at the output position n,
respectively:

an =


Attention(sn−1,ht) content-based

Attention(sn−1,an−1) location-based .

Attention(sn−1,an−1,ht) hybrid

(2.39)

DecoderDecoder

AttentionAttention

EncoderEncoder

Figure 2.13: Overview of an attention-based end-to-end model.

Figure 2.14: Illustration of the hybrid attention mechanism [43]. gi is the so-called
glimpse [165] in the terminology.

• Context-based [11, 306]. The context-based attention mechanism takes only the
encoding representation ht and previous hidden state sn−1 for the attention weight
calculation at each position. However, the lack of the position information results
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in the problem that the attention mechanism yields the same weights for the
feature’s occurrences in different sequences, leading to the so-called “similarity
speech fragment problem”.

• Location-based [77]. In the location-based attention mechanism, each previous
attention weight an−1 is employed as the location information at that step to
calculate the current weight an. However, it still lacks the output of the encoder.

• Hybrid [43]. As the name suggests, the hybrid attention mechanism calculates the
current attention weight based on the encoding representation ht, the previous
attention weight an−1, and the previous hidden state sn−1, which enables the
system to take advantages of both context-based and location-based attention
systems. Fig. 2.14 illustrates the hybrid attention mechanism graphically.

2.9.3.2 Self-Attention Mechanism

An attention function maps a query and a set of key-value pairs to an output. The
relation among the query, keys, values, and the output can be described as: One query’s
output is computed as a weighted sum of the values, where each weight of the value is
computed by a designated function of the query with the homologous key. Self-attention
[278] relates the information over different positions of the entire input sequence. The
attention distribution is computed using scaled dot-product attention:

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V . (2.40)

Q ∈ Rtq×dq , K ∈ Rtk×dk , and V ∈ Rtv×dv are three inputs of the self-attention layer:
queries, keys, and values, where tq, tk, and tv are the element numbers in different
inputs and dq, dk, and dv denote the corresponding element dimensions. A softmax
function is applied to obtain the weights on the values. Vaswani et al. [278] indicate
that the two most popular attention functions are the additive attention [11], and the
multiplicative (dot-product) attention. The dot-product attention is identical to the
foregoing algorithm, except for the scaling factor of 1√

dk
. The additive attention adopts

a feed-forward network with a single hidden layer to compute the compatibility function.
Although the dot-product attention and the additive attention are similar in terms of
complexity theoretically, the former is much faster and more space-efficient than the
later in practice because of its implementation by highly-optimized matrix multiplication
functions. As similarly these two mechanisms perform for small values of dk, the dot
products grow large in magnitude for large values of dk. Therefore, the scalar 1√

dk
is

applied to prevent the softmax function from falling into regions with tiny gradients.
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3

Back-End Techniques for Robust
Automatic Speech Recognition

3.1 Overview

As described in Section 1.2, according to the processing stage of the whole ASR framework,
previous techniques aiming at robust ASR can be basically grouped into three types:
front-end, back-end, and joint-training techniques. This chapter focuses on the back-end
technique. The back-end techniques are known as model-based techniques, which process
the ASR model directly instead of the noisy inputs. The goal of back-end techniques
is to let the ASR model learn the relationship between the observed noisy speech and
the phonetic targets by itself. This chapter studies the HMM structure adaption for two
reasons. One is that HMM-based systems have been occupying a significant position in
the field of ASR for decades and are still drawing substantial attention. The other is
that HMMs possess innate robustness against noise interference.

HMMs [19] are a stochastic process for modeling time-series data. Since speech
signals possess intrinsic temporality, GMM-HMMs are the most classic acoustic model
of the ASR system for decades. With the advent of DNNs, hybrid systems occupy
the predominant position, including DNN-HMM systems [99, 49], CNN-HMM systems
[238], and RNN-HMM systems [80], etc. In recent years, another round of revolution
in machine learning triggers ASR architectures’ diversification into a completely new
approach, specifically end-to-end models, where HMM is abandoned [78, 38, 79, 43, 278].
However, the straightforward and challenging problems derived from end-to-end models
are the tremendous growth of the model size, the increasing computational complexity,
and the weak robustness to the input variations [26]. This drawback is proved by Lüscher
et al. in [146], where on the LibriSpeech 960h task [188], the hybrid DNN-HMM system
outperforms the attention-based system by 15 % relative on the clean and 40 % relative on
the other test sets in terms of WER. Moreover, experiments on a reduced 100h-subset of
the LibriSpeech training corpus show a more pronounced margin between the hybrid and
attention-based architectures. Another argument is [292], where Wang et al. demonstrate
that their transformer-based hybrid system outperforms the attention-based system by
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16.4 % relative. Consequently, statistical approaches remain to be essential and still draw
considerable attention [243, 91, 203, 146, 130, 330, 292, 125, 198, 40, 244].

The commonly-employed HMM structure is the left-to-right structure, with three
states which model the beginning, the middle, and the end of a phone. Nevertheless,
there is no vindicated evidence for its suitability and superiority. Since the structure
affects the modeling capability considerably, there are multiple studies on optimizing the
HMM structure.

Bakis-type HMMs [15] are word-based models, which are derived from sample utter-
ances of the word. The number of states in the model is equal to the average duration of
the word in frames. The frame size in Bakis’s system is 10 milliseconds, and the average
number of states for a word is about 30. Rabiner and Levinson [213] describe another
word-based model in which the number of states is reduced to approximately 5. This
model results in a substantial reduction in the number of parameters without much
deteriorating the accuracy. This is because neighboring states in the Bakis model tend
to be quite similar, and reducing several similar consecutive states into a single state
does not degrade the model very much. Biem et al. [25] replace Bayesian Information
Criterion with Discriminative Information Criterion, where discriminative power among
models is maximized together with the likelihood. It achieves a slightly higher recognition
rate at the expense of more complicated models. Geiger et al. [69] present a method to
determine the number of states in HMMs. They propose a modification to the Bakis
method [15] and a technique to improve the topology with few iterations.

However, there are three general disadvantages existing in the previous works [15,
213, 25, 69, 331, 246, 113, 3, 44]. Firstly, as they are all based on statistical methods,
HMM topologies are constructed from limited data. Secondly, the statistical methods
adopted in these works are computationally-expensive heuristic algorithms (e.g., the tree
search algorithms), and not easy to employ. Thirdly, they balance between the state
length and the model complexity poorly, leading to either high model complexity or
limited performance improvements.

To address these problems, this study proposes a novel approach to optimize the
HMM structure, leveraging deep learning, specifically, a Deep Neural Network Vector
Quantizer (DNNVQ). First, this study introduces the concept fenone for representing
sub-phones as the basic acoustic unit [169] (as described in Section 2.3). Fenone is
the building block of phones and is modeled as one state of the HMM, which can be
obtained automatically through a vector quantizer [14]. Next, all data are classified
against different phones and then the vector quantization is applied on each phone’s
data. Finally, DNNVQ generates the fenonic baseforms for every phone, and accordingly,
the HMM structure is decided. This algorithm is referred to as Neural Fenonic Baseform
Growing (NFBG).

3.2 Related Work

The notion of fenone is inspired by [13] and [14], where the authors describe a new
technique for constructing HMMs for the acoustic representation of words. They create
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the notion of fenone to represent sub-word units, and it is derived automatically from
one or more utterances of that word. Then the word model is constructed from fenonic
forms. Since the word models are all composed of a small inventory of sub-word models,
training for large-vocabulary speech recognition systems can be accomplished with a small
training script by this technique. A method for combining phonetic and fenonic models is
also presented in [14], and impressive improvements are achieved with speaker-dependent
and speaker-independent models on several isolated-word recognition tasks.

The Neural Network Vector Quantizer was first proposed by Rigoll and Neukirchen
in [230], which is a shallow neural network and is trained with the mutual information
criterion. The index of the neuron in the output layer with the highest activation returns
the label for the training sample, and thereby, the network performs the quantization
to assign the input feature to a specific cluster. This model outperforms a K-means
system and nearly matches the performance of a system with continuous (non-quantized)
models in terms of word recognition accuracy rate.

Watzel et al. [298] extend the neural network vector quantizer to a deep neural
network quantizer and introduce a novel approach, a mapping function, to train it in a
supervised fashion with an arbitrary output layer size even though suitable target values
are not available. The experiments demonstrate that the deep neural network quantizer
reduces the WER by 17.6 % on monophones and by 2.2 % on triphones, respectively,
compared to a continuous GMM-HMM system. Inspired by the success in [298], the
deep neural network vector quantizer is taken over as the vector quantizer for this study.

Furthermore, this study extends the concept from word to phone, substitutes the
sophisticated tree search algorithm in [14] with a concise neural network, and confirms
its viability on the task of large vocabulary automatic speech recognition.

Besides, there also have been previous attempts of HMM adaption for increasing the
ASR system robustness. Li et al. [136] present a new approach to HMM adaptation
that jointly compensates for additive and convolutive acoustic distortion in environment-
robust speech recognition. The hallmark of their new approach is the usage of a nonlinear,
phase-sensitive model of acoustic distortion that captures phase asynchronous between
clean speech and the mixing noise. Seltzer et al. [252] propose an algorithm to perform
HMM adaptation to noisy environments called Linear Spline Interpolation, where the
nonlinear relationship between clean and noisy speech features is modeled using linear
spline regression. Linear spline parameters that minimize the error between the predicted
noisy features and the actual noisy features are learned from training data. A variance
associated with each spline segment captures the uncertainty in the assumed model.

3.3 Deep Neural Network Vector Quantizer

Let D = {(xi, y∗i )}Ni=1 be a dataset comprising feature vectors xi ∈ RD and their
corresponding ground-truth labels y∗i ∈ N. The goal of the training is to find a function
f : xi → y∗i . In [298], this goal is converted to approximate gθ : xi → m̂i, where θ
represents the parameters of the network and m̂i ∈ N defines the index of the maximum
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value in the DNNVQ output layer mi ∈ RNclu by

m̂i = arg max
1≤j≤Nclu

mj
i . (3.1)

Nclu is the dimension of the output layer, and j describes the jth neuron in the layer.
In contrast, the ground-truth label y∗i is in the range [1, NK] = {y∗i ∈ N|1 ≤ y∗i ≤ NK},
where NK denotes the dimension of the ground-truth label space.

Watzel et al. [298] employ maximum mutual information (MMI) as the criterion of
the training. The mutual information I(Y ;M) is defined as

I(Y ;M) = H(Y )−H(Y |M). (3.2)

Y denotes a ground-truth label sequence, and M is a firing neuron sequence. H(Y )
defines the entropy of Y , and H(Y |M) denotes the entropy of Y conditioned on M .
Their probability mass functions are

P (M = m̂j) =
1

N

N∑
i=1

δ(m̂i, j) ∀1 ≤ j ≤ Nclu (3.3)

and

P (Y = y∗k) =
1

N

N∑
i=1

δ(y∗i , k) ∀1 ≤ k ≤ NK. (3.4)

The probability mass functions are created by counting occurrence numbers of m̂j and
y∗k based on all samples m̂i and y∗i , where the index k denotes the kth label in the
ground truth label space and δ(·) refers to Kronecker delta.

As the entropy H(Y ) is independent of the DNNVQ’s parameters, H(Y |M) needs to
be minimized in order to maximize I(Y ;M). For this purpose, increasing the dimension of
emitted labels m̂i could be a straightforward solution. However, it causes a new problem
for training, where the dimension of the output layer and that of the ground-truth label
space are unequal, i.e., Nclu 6= NK. To tackle this problem, Watzel et al. [298] introduce
the conditional probability Pb(Y |M) of the ground-truth labels y∗i conditioned on the
DNNVQ outputs mi as

Pb(Y |M) = P (y∗b,k|mb,j)

≈ ε+
∑Nb

i=1 δ(y
∗
i , k)mj

i

εNclu +
∑Nb

i=1m
j
i

,

∀1 ≤ k ≤ NK, 1 ≤ j ≤ Nclu

(3.5)

where ε is a small constant and the conditional probability Pb(Y |M) ∈ RNK×Nclu . This
study takes minibatches with a sufficient batch size Nb to approximate Pb(y|m) ≈
P (Y |M). Then, the output mi is mapped from dimension Nclu to dimension NK with
Pb(Y |M) as

mtra,i = Pb(Y |M)mi ∀1 ≤ i ≤ Nb, (3.6)
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Figure 3.1: Diagram of DNNVQ training.

with mtra,i denoting the transformed outputs of mi. In this way, the prototype size of
the vector quantizer can be arbitrary even though the dimension of the ground-truth
labels y∗i is determinate. During training, the mutual information I(Y ;M) is implicitly
maximized by minimizing the loss function LCE(mtra,i; y

∗
i ) [280], where

LCE = − 1

Nb

Nb∑
i=1

NK∑
k=1

δ(y∗i , k) log(mk
tra,i). (3.7)

The diagram of DNNVQ training is depicted in Fig. 3.1.

3.4 Neural Fenonic Baseform Growing

3.4.1 Overview

The motivation for introducing fenonic baseform growing supported by a DNN is as
follows: If a hybrid system is created in the usual way, a GMM-HMM system is initially
employed to generate ground-truth targets, which are the HMM states assigned from
Viterbi alignments, for the subsequent DNN training. If the mutual information between
the phoneme sequence and the corresponding Viterbi-state sequence is computed, it
will have the “perfect maximum value”, as each state will only occur for one specific
phoneme. Likewise, in this approach, the feature vectors of the training data are
processed by the DNNVQ described in Section 3.3. DNNVQ will attempt to maximize
the mutual information between the phoneme sequence and the vector quantization
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labels. Consequently, the vector quantization labels will converge to the corresponding
“virtual states”, which can then be considered as “fenones” as introduced in [14]. However,
in this case, they should have even higher quality, due to the MMI principle fulfilled.
The construction of the new fenonic baseforms using these “neural fenones” is in the
following way:

• Step 1: Train a vanilla GMM-HMM model from flat-start and obtain forced
alignments as the ground truth for the subsequent DNNVQ training.

• Step 2: Train a DNNVQ, as described in Section 3.3, using the forced alignments
obtained from Step 1 to maximize the mutual information between the ground
truth labels and the output units. For each training, the number of the prototypes,
namely the dimension of the output layer, is specified and fixed.

• Step 3: Extract segments that contains feature vector sequences corresponding to
each of the monophone in the system. Exclude extreme cases in the segment set of
each monophone.

• Step 4: Pad the remained segments to the same length.

• Step 5: For the same frames of each phone’s segments, calculate the products of
all posteriors on the same output unit, namely the same prototype. The prototype
with the highest product value is the fenone of the current frame. Consequently,
the fenone sequence of this phone is acquired.

• Step 6: Compact the fenone sequence to the fenonic baseform by eliminating all
successive duplicated fenones.

(b)  [EY](a)  [SIL]
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Figure 3.2: Histograms of the segment length distribution of phones (a) [SIL] and (b)
[EY]. Every frame lasts for 25 ms.
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3.4.2 Segment Lengths Padding

Intuitively, utilizing all training data must deliver the most accurate result. However,
for one thing, computation complexity increases exponentially with the increment of
training data; for another, the extreme cases, e.g., the longest ones or the shortest ones,
which occur quite rare in the realistic scene, mislead the final decision. For this purpose,
histograms for each phone are plotted, exhibiting the distribution range of lengths of all
segments affiliated to a phone. Fig. 3.2 demonstrates the histograms of phones [SIL]
and [EY]. As shown in Fig. 3.2, lengths of phone [SIL] differ in the range [0, 1750],
while that of phone [EY] is [0, 100]. According to these histograms, the extreme cases
of every monophone are discarded, but keep at least 80 % data for each monophone
eventually. For instance, this study keeps segments ranging in [4, 120] for [SIL] and that
for phone [EY] is [4, 30]. This study also conducted experiments with 70 % or 90 % data
for each phone, but results indicated no difference, which also proves the robustness of
the proposed approach to noise. Afterwards, all segments affiliated to one phone need
to be justified to the identical length for the purpose that all frames representing for
the beginning, the middle, or the end of the phoneme are aligned together, i.e., this
study needs to justify all lengths of the segments to the maximum one. Instead of zero
padding, a simple division is used as the alternative. Assume lmax ÷ ln = lq · · · lr, where
lmax is the maximum length of all segments, ln represents the length of any segment in
the same set, lq denotes the quotient, and lr refers to the remainder. Then each frame of
the current segment is duplicated lq times and the last frame lr times more. Taking the
shortest and the longest segments of phone [EY] as the example, since 30÷ 4 = 7 · · · 2,
each frame of the 4-frame segment should be duplicated 7 times, while the last frame 2
times more. As the result, the 4-frame segment is padded to be the maximum length.

3.4.3 Dynamic Baseform Generation

Fenones represent short speech events and are obtained automatically through the
employment of a vector quantizer. Different from [14], where fenones represent sub-word
units, this study extends its application to sub-phone units, a finer level of details.
DNNVQ is deployed for generating the fenone sequence for each phone. Since the
fenone sequence of a phone is derived from its utterances, this study realigns all training
utterances against 40 monophones on TEDliumv2 [233] and 48 monophones on TIMIT
[68], respectively. In order to distinguish from utterances, the sub-units of utterances
are henceforth named as segments. Let F = {f1, f2, · · · , fNF

} 1 ≤ NF ≤ Nclu be
the alphabet of fenones and F∗ be the set of all finite length strings constructed by
concatenating elements of F , namely fenone sequence. G = {g1, g2, · · · , gNg} is the set
of Ng monophones while Ki ∈ K∗ = {K1,K2, · · · ,KNg} denotes the set of all segments
affiliated to the corresponding phone gi 1 ≤ i ≤ Ng. The goal here is to generate a fenone
sequence for phone gi based on its segments set Ki. The generated fenone sequence
f1→lgi = {f1, f2, · · · , flgi} ∈ F∗ is spanned up on f ∈ F , leveraging DNNVQ.

Initially, all segments affiliated to one phone gi need to be padded to the identical
length. For instance, this study extracts n segments for phone [AW] from all utterances
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and their lengths vary from lmin to lmax because of different pronunciation habits or
allophones. lmin is the minimum length, while lmax is the maximum. Consequently,
Ki = {k(1)

1→l1 ,k
(2)
1→l2 , · · · ,k

(n)
1→ln} is converted to K′i = {k′(1)

1→lmax
,k
′(2)
1→lmax

, · · · ,k′(n)
1→lmax

}.
Afterwards, the tth first frame of k′(t) ∈ K′i1 ≤ t ≤ n is fed into the DNNVQ in turn
(There are n first frames from n padded segments in total.). As the output, the output
vector mt1 ≤ t ≤ n is obtained in turn

mt = [ p(m1
1|k′1(1))p(m2

1|k′1(1))· · ·p(mNclu
1 |k′1(1)) ]. (3.8)

After getting all the outputs of the first frames of k′(t) ∈ K′i1 ≤ t ≤ n, An×Nclu is acquired
as

A = [m1 m2 · · · mn]T

=


p(m1

1|k′1(1)) p(m2
1|k′1(1)) · · · p(mNclu

1 |k′1(1))

p(m1
2|k′1(2)) p(m2

2|k′1(2)) · · · p(mNclu
2 |k′1(2))

...
...

. . .
...

p(m1
n|k′1(n)) p(m2

n|k′1(n)) · · · p(mNclu
n |k′1(n))


= [q1 q2 · · · qN clu]

, (3.9)

where
qj = [q1j q2j · · · qnj]

T , 1 ≤ j ≤ Nclu. (3.10)

mt1 ≤ t ≤ n is the row vector of matrix An×Nclu and it denotes the output vector of
the first frame of the tth segment. qj is the column vector of matrix An×Nclu , and it
represents the posterior probabilities of all first frames on fenone j. By the element-wise
product of qj, the product of the jth column Pqj is obtained as

Pqj =
n∏
t=1

p(m
(j)
t |k′1(t)) ∀1 ≤ j ≤ Nclu. (3.11)

Let ĵ be the index of the maximum value of Pqj , i.e.,

ĵ = arg max
1≤j≤Nclu

Pqj , (3.12)

then the first frame of k′(t)1 ≤ t ≤ n is quantized to the ĵth neuron and the corresponding
fenone is fĵ. Due to the risk of underflow, the logarithm is employed, then

ĵ = arg max
1≤j≤Nclu

n∑
t=1

log(p(mj
t |k′1(t))). (3.13)

Similarly, this study repeats the same steps for the remaining lmax − 1 frames
chronologically, and the whole fenone sequence {fĵ1 fĵ2 ... fĵlmax

} for phone gi1 ≤ i ≤ Ng

is acquired. Importantly, the fenone sequence {fĵ1 fĵ2 ... fĵlmax
} could contain several
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identical fenones. Subsequently, this study eliminates all successive duplicated fenones in
the obtained fenone sequence to generate the final fenonic baseform for a phone. Hence
the fenonic baseform is refined from the corresponding fenone sequence, without any
duplicated fenone. The whole procedure of NFBG is illustrated in Alg. 1. Taking phone
[AW] as an example, the length of padded segments of the phone [AW] is 20 and the
generated fenone sequence is {27 27 27 27 27 27 27 27 27 27 27 27 92 92 92 92 92 5 5
5}. Thereby, this study merges these adjacent identical fenones, and in consequence, the
fenonic baseform of phone [AW] appears to be {27 92 5}. Fig. 3.3 demonstrates the
NFBG process of phone [AW].
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Figure 3.3: Illustration of the NFBG process of phone [AW]. The upper half is the
padding process, where the segment lengths of phone [AW] vary from 3 to 20, and the
pink frames are the duplicates of the blue original frame before. The lower half is the
process of NFBG, which starts with the 1st - 20th frames being fed into DNNVQ in turn
and ends up with compacting the 20-frame fenone sequence into the fenonic baseform.
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Algorithm 1: Pseudo-code for dynamic baseform growing.
1.25
Input: padded segments K′i = {k′(1)

1→lmax
,k
′(2)
1→lmax

, · · · ,k′(n)
1→lmax

}
of phone gi1 ≤ i ≤ Ng ;
Output: the corresponding fenone of frame l;
Training DNNVQ with D = {(xi, y∗i )}Ni=1;
while 1 ≤ i ≤ lmax do

for t = 1; t ≤ n; t+ + do
the output mt:
mt = [ p1

tp
2
t · · · p

Nclu
t ]

end
the score of the tth frame on Nclu clusters:

Pqj =
n∏
t=1

pjt 1 ≤ j ≤ Nclu;

if ĵ = arg max
1≤j≤Nclu

Pqj then

the tth frame of gi
fenone←−−−−fĵ

end
i = i+ 1;

end
the fenone sequence of gi:
{fĵ1 , fĵ2 , · · · , fĵlmax

};
merge the successive duplicated fenones;
the fenonic baseform of gi:

{f
ĵ1
′ , f

ĵ2
′ , · · · , f

ĵl
′}1 ≤ ĵl

′ ≤ Nclu;
return fenonic baseform

46



3. Back-End Techniques for Robust Automatic Speech Recognition

3.4.4 Elementary Markov Model for Fenones

The HMM of a phone is constructed by concatenating the elementary Markov model of
the fenones in its fenonic baseform. The fenonic baseform merely indicates the number
of states of an HMM, but the topology remains undetermined. This study investigates
three sorts of topology for the elementary Markov model: ergodic, Bakis-type [15], and
Vintsyuk-type [284], as depicted (a), (b), and (c) in Fig. 3.4. Each state in the ergodic
topology can transit to every other state in a single step. Thus the ergodic topology
possesses the highest flexibility as well as the highest complexity. By contrast, every
state in the Bakis-type [15] topology can only transit to itself or the next one, but the
Bakis-type topology possesses the advantage of simplicity. The Vintsyuk-type [284]
topology is a compromise of the former two, as it allows a maximum shortening by
a factor of two. It contains model parameters and preserves the flexibility by a skip
arc simultaneously. This study executes ablation experiments on the efficacy of each
topology.

Figure 3.4: Examples of Markov models for fenones. (a) ergodic, (b) Bakis-type [15], (c)
Vintsyuk-type [284].

3.5 Experimental Setups

3.5.1 Corpora and Features

The proposed approach is tested on TIMIT [68] and TEDliumv2 [233]. TIMIT contains
a total of 6300 sentences (5.4 hours), consisting of 10 sentences spoken by each of 630
speakers from 8 major dialect regions of the United States. The 462-speaker training
set is used. All SA records (i.e., identical sentences for all speakers in the database) are
removed as they could bias the results. After realigning the training utterances against 48
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monophones, 220535 segments are obtained as the training dataset. Results are reported
using the 24-speaker core test set. All of experiments apply a bigram language model
over phones, estimated from the training set.

TEDliumv2 contains 207-hour training data from TED talks, consisting of male and
female speakers, native and non-native speakers, and speakers from all age ranges. The
contents of the data cover various fields. After the realignment of training utterances
against 40 monophones, 8439059 segments are obtained as the training dataset. All
recognition results are reported on the heavily pruned 4-gram language model and the
dictionary with roughly 152 K words and 160 K pronunciations released by [233].

As for features, this study utilizes 12-dim MFCC along with the additional energy
feature and their first and second temporal derivatives, hence 39-dim MFCC feature
vectors in total. Cepstral mean normalization is employed.

3.5.2 DNNVQ Setups

The DNNVQ system is trained on the Tensorflow library [1]. The network is composed
of four fully-connected hidden layers with 512 neurons and the ReLU activation function
followed by a batch-normalization [110] layer, respectively. The dropout [261] layer
is discarded due to worse results. A subsequent fully-connected layer with the ReLU
activation function is deployed as the output layer. This study optimizes the DNNVQ
with Adam optimizer [121]. An exponentially decaying schedule starts with an initial
learning rate of 0.01 and halves the rate when the improvement of the frame accuracy
between two successive epochs on a cross-validation set stops.

3.5.3 Baseline

The training of the GMM-HMM and the DNN-HMM baseline systems is pursuant to the
Kaldi example recipe [204]. They are trained on the MFCC features described in Section
3.5.1. The HMM structure adopted on TEDliumv2 is 3-state left-to-right structure for
vocal phones while 5-state structure for “silence” and “noise”, leading to 127 Probability
Density Functions (PDFs). In contrast, the HMM structure of all 48 monophones is the
identical 3-state left-to-right structure on TIMIT, resulting in 144 PDFs. GMM-HMM
system is trained from scratch, and 1 K Gaussian models are deployed in total; in the
DNN-HMM system, the DNN has four hidden layers, each of which has 512 neurons.
The number of nodes of the final layer is determined by the number of PDFs, which is
also the number of states of the original HMMs. The DNN is initialized randomly with
weights drawn from N (0, 0.01) and the uniform bias drawn randomly from µ(−4.1,−3.9).
Stochastic gradient descent is utilized to minimize the cross-entropy, with the minibatch
size of 512 frames. The learning rate is set at 0.0015 initially and decays to 0.00015
progressively. All baseline systems are implemented in the Kaldi toolkit [204].

Primary structures are chosen for baseline systems to force focus on the impact of
HMM structures. Besides, the effectiveness of the proposed method in advanced systems
will also be presented later.
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Table 3.1: Fenonic baseforms for every monophone in Tedliumv2 corpus.
Phone Fenonic baseform Phone Fenonic baseform Phone Fenonic baseform Phone Fenonic baseform

SIL 17 124 13 17 AW 27 92 5 DH 43 79 28 G 97 52

AA 57 102 24 AY 20 47 EH 111 12 105 HH 86 49

AE 27 82 23 B 125 45 79 ER 84 80 48 IH 4 18 44

AH 6 107 2 CH 38 94 1 40 28 EY 3 64 39 81 IY 16 67 32

AO 87 93 24 D 51 97 42 F 88 0 21 JH 94 40

Phone Fenonic baseform Phone Fenonic baseform Phone Fenonic baseform Phone Fenonic baseform

K 69 108 OW 114 112 46 SH 29 1 40 V 25 68 36

L 106 7 34 OY 87 93 46 81 T 38 121 53 W 122 26 33

M 72 90 104 P 65 115 49 TH 76 0 21 40 Y 101 75

N 77 31 8 R 91 80 63 UH 6 107 2 21 Z 83 60 55

NG 10 56 89 S 73 59 70 11 UW 99 71 ZH 29 1 40

Table 3.2: Fenonic baseforms for every monophone in TIMIT corpus.
Phone Fenonic baseform Phone Fenonic baseform Phone Fenonic baseform Phone Fenonic baseform

AA 108 26 44 86 AY 100 10 112 DX 36 67 EY 42 50 126 66

AE 136 23 77 B 62 3 EH 109 90 101 32 F 89 11 87 122

AH 142 113 80 CH 37 127 133 25 EL 2 124 G 56 95

AO 103 93 69 CL 28 107 EN 17 96 88 HH 76 46

AW 136 6 116 D 105 56 EPI 79 60 12 ICH 92 35 106

AX 141 58 1 DH 128 18 51 ER 50 5 49 IX 135 57 73

Phone Fenonic baseform Phone Fenonic baseform Phone Fenonic baseform Phone Fenonic baseform

IY 114 24 65 NG 102 83 95 SH 16 133 25 V 98 72

JH 94 25 143 OW 137 97 20 SIL 13 104 110 13 VCL 68 117 70

K 138 46 OY 103 22 112 T 8 123 W 38 3

L 4 140 P 132 60 9 TH 34 53 87 55 Y 19 48

M 115 118 R 7 5 UH 142 113 80 139 Z 29 75

N 82 88 S 33 91 71 UW 120 39 74 ZH 16 133 25

3.6 Fenonic Baseform Results

This section exhibits the obtained fenonic baseforms for phones included in Tedliumv2
(Table 3.1) and TIMIT (Table 3.2) corpora when there are 127 VQ prototypes in the case
of Tedliumv2 while 144 VQ prototypes in the case of TIMIT, respectively. There are 40
phones in Tedliumv2 corpus and 48 phones included in TIMIT corpus. In TEDliumv2
corpus, 1 phone gains five states, 6 phones gain four states, 7 phones gain two states,
and the remained phones gain three states. In contrast, 8 phones gain four states, 17
phones gain two states, and the rest gain three states, in TIMIT corpus. Consequently,
there are 94/127 active fenones in Tedliumve, while 104/144 active fenones in TIMIT.
Hence the average numbers of states are 3.025 in Tedliumv2, while 2.8125 in TIMIT.
Then it is safe to draw the conclusion that even if the average number of states does not
change much, the state sharing relations among phones reduce parameters.

After analysing the fenonic baseform results, two conclusions can be drawn. First, the
shared states tend to appear in the same or similar location of phones. For instance, in
TEDliumv2, state /40/ is shared by phones [CH], [JH], [SH], [TH], and [ZH]. It appears
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as the last state in cases of [JH], [SH], [TH], and [ZH], while as the penultimate state in
the case of [CH]. The same phenomenon also appears in TIMIT, where [CH], [JH], [SH],
and [ZH] share the last state /25/, and [CH], [SH], and [ZH] even share the last two
states, /133/ and /25/. This pattern reveals that a specific state always tends to express
a specific part of the phone (the beginning, the middle, or the end). Second, phones with
the same suffix tend to share the state in the ending, while phones with the same prefix
tend to share the state at the beginning or in the middle. For instance, in TEDliumv2,
[EY] and [OY] share the last state /81/, while in TIMIT, [AE] and [AW] share the first
state /136/. Nevertheless, the latter half of the pattern is not as common as the former
half, and thus the suffix is more decisive than the prefix for the pronunciation of a specific
phone.

Besides, there are some interesting phenomenons in the resultant fenonic baseforms
which are worth highlighting here for any possible inspiration to the readers. Firstly,
some phones seemingly irrelative share states. For example, [TH] and [F] share two
states (/0/ and /21/) in TEDliumv2, and they share one state (/87/) in TIMIT; [B]
and [DH] share the state /79/ in Tedliumv2; and [K] and [HH] share the state of /46/
in TIMIT. Secondly, some phones possess a high similarity between them in terms of
the state. For instance, it surprised the author that the states of [SH] are identical to
those of [ZH]. This phenomenon appears in both corpora, so the author believes that it
is not a coincidence. A similar pattern also falls on the case of [AH] and [UH], which
share three states in both corpora. For these counter-intuitive sharing relationships, the
author believes that it reveals a sort of interior relevance between those phones.

Additionally, there are two phenomenons emerging in the process of compacting the
fenonic sequence to the fenonic baseform which are worth noting. For one thing, [SIL]
processes the repetitive fenone in its fenonic baseform. For example, the fenonic baseform
of [SIL] in TEDliumv2 is derived from its original fenone sequence {17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 124, 124, 124, 124, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17}. The author
tried to simplify its fenonic baseform as {17, 124, 13} and added a skipping-back arc
from state 13 to state 17. However, the result turned to be slightly worse than keeping it
as {17, 124, 13, 17} with the uniform Bakis-type topology for every state. For another,
some phones process a singleton state occurrence. For instance, the fenonic sequence of
phone [ZH] in TEDliumv2 is {29, 29, 29, 29, 29, 29, 29, 29, 1, 40, 40, 40, 40, 40, 40, 40,
40, 40, 40, 40}. The author recognized the single occurrence of state 1 as a fortuity and
believed that it should have been 29 or 40 in that location. However, the comparison
experiments between setting the fenonic baseform of [ZH] as {29, 40} and {29, 1, 40}
indicate that every remained state should be respected even though it is a singleton.
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3.7 Experimental Results

For the experiments, this study first conducts ablation tests on different elementary
HMM topologies for the fenones and the dimension of DNNVQ prototypes. Thereafter,
this study validates the proposed NFBG-based HMM structure in both monophone
and triphone systems, with context-independent and context-dependent inputs, and in
already advanced systems.

3.7.1 Effects of the Elementary HMM Topology of the Fenones

To execute the test in a fair comparison, this study controls the nodes of the output layer
to stay the same as their respective Kaldi recipe (i.e., 127 nodes for Tedliumv2 while
144 nodes for TIMIT). This rules out the possibility that any performance improvement
would come from different dimensions of the output layer. Table 3.3 shows the effect of
different HMM topologies for the fenone. Three sorts of HMM topologies in the table
correspond to three HMM model examples in Fig. 3.4. It is apparently shown that the
basic left-to-right topology outperforms the ergodic topology considerably, consistent
with the observation in [2]. The full ergodic model tends to overfit the training data since
it has large amounts of parameters and the resultant high model complexity, resulting in a
poor generalization. The margin between the Bakis topology [15] and Vintsyuk topology
[284] is more pronounced on TIMIT than that on TEDlium. The author believes that it
is owing to less training data on TIMIT. As the Bakis-type topology outperforms both
the ergodic topology and the Vintsyuk topology, all the subsequent results in this paper
are obtained using it as fenone topology.

Table 3.3: WER[%] on TIMIT and TEDliumv2 for different elementary HMM topologies
in monophone systems.

Corpus HMM topology GMM-HMM DNN-HMM

TEDliumv2

ergodic 59.6 45.9

Bakis [15] 54.5 36.9

Vintsyuk [284] 54.7 37.2

TIMIT

ergodic 35.6 31.1

Bakis [15] 30.8 23.1

Vintsyuk [284] 31.3 24.3

3.7.2 Effects of the Number of DNNVQ Prototypes

As NFBG introduces state tying, different numbers of DNNVQ prototypes lead to
a different number of HMM states in the NFBG-based model. Accordingly, the
model complexity and model strength vary. Fig. 3.5 highlights the effect of set-
ting different numbers of DNNVQ prototypes. The emerging HMM states of Nclu ∈
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{127, 250, 350, 450, 700, 1000} are {94, 110, 116, 120, 132, 199} on Tedlium, while the HMM
states of Nclu ∈ {144, 250, 350, 450, 700, 1000} are {110, 121, 134, 139, 144, 220} on TIMIT.
The recognition performance is gradually improved before Nclu = 250 on both TEDliumv2
and TIMIT; thereafter, it exposes a downward trend on both corpora. Especially on
TIMIT, the curve soars from Nclu = 450, where the model underfits due to large amounts
of parameters and insufficient data. Therefore, Nclu = 250 is the default number of
DNNVQ prototypes for the subsequent experiments.

3.7.3 NFBG Validation in Monophone Systems

NFBG introduces a natural state tying in the monophone system. Consequently, the
NFBG-based HMM structure reduces the number of PDFs from 127 to 110 on TEDliumv2
while 144 to 121 on TIMIT, leading to ∼15 % fewer HMM structure’s parameters
compared to the baseline. Additionally, fewer parameters also make the HMM topology
more resistant to overfitting. After constructing the NFBG-based HMM, the GMM-
HMM system is trained from scratch using linear alignments. For the training of the
DNN-HMM system, the Viterbi algorithm is applied upon the outputs of the DNNVQ
and the transition probabilities are calculated manually. Then the realigned outputs
of DNNVQ are used as the gold-standard labels for the subsequent DNN training. In
addition, the weights of DNNVQ are transferred as initialized weights for the DNN.
As presented in Table 3.4, on TEDliumv2, NFBG-based HMM delivers 2.5 % relative
improvements in the GMM-HMM system, while 13.8 % in the DNN-HMM system with a
15 % smaller parameter scale. Comparatively, improvements are more distinct on TIMIT,
which are 5.8 % and 14.8 % relative in the GMM-HMM system and DNN-HMM system,
respectively, with more than 15 % fewer parameters.

Table 3.4: Impacts of the NFBG-based HMM structure in monophone systems. Results
are in WER[%].

Corpus HMM structure GMM-HMM DNN-HMM

TEDliumv2
baseline 55.9 42.8

this study 54.5 36.9

TIMIT
baseline 32.7 27.1

this study 30.8 23.1

3.7.4 NFBG Validation with Context-Dependent Inputs

This study also examines the effectiveness of NFBG-based HMM in the system with
context-dependent inputs. By setting Nspl = m, inputs are spliced over (2m+ 1) frames.
It is worth noting that the setups of the context-dependent system stay in accordance
with the monophone system (Section 3.7.3) except for the inputs. This study only
displays results in the DNN-HMM system. Table 3.5 displays that the NFBG-based
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Figure 3.5: Evolution of WER[%] along the number of DNNVQ prototypes on TEDliumv2
and TIMIT, respectively.
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HMM outperforms the corresponding baseline system in all Nspl ∈ {0, 1, 2, 3, 4} settings
on both corpora. Especially on TEDliumv2, the NFBG-based HMM yields 17.1 % relative
improvements when Nspl = 1. However, constant improvements cannot be obtained by
increasing the input dimension. When Nspl > 2, there is no further improvement.

Table 3.5: Impacts of the NFBG-based HMM structure with context-dependent inputs
in monophone systems. Results are in WER[%].

Corpus HMM structure
Nspl

0 1 2 3 4

TEDliumv2
baseline 42.8 36.3 35.3 35.1 35.1

this study 36.9 30.1 29.3 29.3 29.3

TIMIT
baseline 27.1 23.6 23.2 23.1 23.0

this study 23.1 21.7 21.1 21.1 21.2

3.7.5 NFBG Validation in Triphone Systems

The triphone generation leverages the Kaldi recipe1. Table 3.6 shows that on Tedliumv2,
the relative improvement attained by the NFBG-based HMM is 1.8 % in the GMM-HMM
system. Similarly, in the DNN-HMM system, the NFBG-based HMM improves WERs
in all splice conditions while the most significant improvement appears in the Nspl = 1
case, which is 3.3 %. As for TIMIT, overall improvements are more distinct compared to
TEDliumv2, and the most predominant improvement also appears in Nspl = 1, which is
4.5 %. Similar to Section 3.7.4, there is no further improvement when Nspl > 2.

3.7.6 NFBG Validation in Adverse Environments

An intrinsic advantage of HMM-based hybrid systems is their robustness in noisy
environments, and thus, this study also empirically investigates whether NFBG-based
HMMs perform better than standard HMMs from this respect. This study executes
experiments in the triphone DNN-HMM system, and since the overall improvements
on TIMIT are more distinct than TEDliumv2 in triphone systems, this study chooses
TIMIT as the corpus for clean utterances. For the context-dependent information, Nspl

is set to 2, because there is no further improvement when Nspl > 2. For the noisy
data, this study artificially mixes clean utterances in TIMIT with intrusions from the
NOISEX-92 dataset [276] to generate noisy training, validation, and test datasets in
the same manner. This study starts with training both the baseline system and the
proposed system with the clean training set of TIMIT. Thereafter, both systems are

1https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5/steps
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trained with the generated noisy training set. Table 3.7 displays the performance of
the standard HMM and NFBG-based HMM when interfered with experimental noises.
Generally speaking, the performances of clean-trained systems plunge in the noisy test
set, and noise training enhances the system robustness to a great degree. Nevertheless,
it is worth noting that NFBG-based HMM performs always better than the standard
HMM when being trained either with clean or noisy utterances, and the performance
improvement is higher in adverse environments. For instance, when trained with noisy
utterances, the performance improvement is 2.5 % in clean test set and 7.1 % in noisy
test set. This phenomenon corroborates that the NFBG-based HMM possesses stronger
robustness.

Table 3.6: Impacts of the NFBG-based HMM structure in triphone systems. Results are
in WER[%].

TEDliumv2

GMM-HMM DNN-HMM

Nspl 0 0 1 2 3 4

baseline 27.3 22.1 21.5 20.2 20.0 19.9

this study 26.8 21.6 20.8 19.7 19.7 19.7

TIMIT

GMM-HMM DNN-HMM

Nspl 0 0 1 2 3 4

baseline 25.6 20.4 20.2 19.7 19.6 19.6

this study 24.9 19.8 19.3 19.2 19.2 19.3

3.7.7 Comparisons with Advanced Models

This section configures the best HMM structure for published state-of-the-art systems
on both TEDliumv2 and TIMIT. This study chooses three representative systems for
Tedliumv2: the time delay neural network (TDNN) [198], SincNet architecture [222], and
the improved RWTH ASR system with SpecAugment [330]. The TDNN [198] models long
term temporal dependencies with training times comparable to standard feed-forward
DNNs. The network uses sub-sampling to reduce computation during training. It shows a

55



3. Back-End Techniques for Robust Automatic Speech Recognition

Table 3.7: Impact of the NFBG-based HMM structure in adverse environments. Results
(WER[%]) are reported in triphone DNN-HMM systems on TIMIT. Nspl = 2.

ASR Training
WER

clean noisy

baseline
clean 19.7 72.1

noisy 19.8 25.5

this study
clean 19.2 69.2

noisy 19.3 23.7

Table 3.8: The impact of the NFBG-based HMM structures in different advanced models.
Results are in WER[%].

Model Corpus Model Structure Baseline This Study

TDNN [198] TEDliumv2 HMM-TDNN+iVectors+4-gram LM 17.9 17.6

SincNet [222] TEDliumv2 CNN+layer Norm+Dropout+DNN+4-gram LM 21.8 21.5

RWTHv[330] TEDliumv2 HMM-BLSTM+iVectors+SpecAugment+sMBR+Transformer LM 5.6 5.5

Regularization [275] TIMIT DNN-HMM with last layer regularization 18.3 17.6

IF feature [175] TIMIT DNN-HMM with MFCC + IF features 17.7 17.2

relative WER improvement of 6 % on both Switchboard and TEDlumv2 corpora. SincNet
[222] is a novel CNN architecture that encourages the first convolutional layer to discover
more meaningful filters. In contrast to standard CNNs, which learn all elements of each
filter, only low and high cutoff frequencies are directly learned from data with SincNet.
Experimental results show that SincNet converges faster and performs better than a
standard CNN on raw waveforms. The improved RWTH ASR system with SpecAugment
[330] is a complete training pipeline to build a state-of-the-art hybrid HMM-based ASR
system on the TEDliumv2 corpus. Data augmentation using SpecAugment [191] is
successfully applied therein. Their best system achieves a 5.6 % WER on the test set,
which outperforms the previous state-of-the-art by 27 % relative.

Besides, this study also chooses two systems on TIMIT: DNN with a regularization
post-layer [275] and DNN with instantaneous frequency features [175]. Vaněk et al. [275]
propose a regularization post-layer that can be combined with prior techniques, and it
brings additional robustness to the DNN. On the TIMIT benchmark task, the adoption
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of the regularization post layer gives better results than DNNs with DBN pre-training.
Nayak et al. [175] extract features from its time derivative, referred to as instantaneous
frequency (IF), to solve the inevitable phase wrapping problem. The combination of
IF and MFCC features based systems, using minimum Bayes risk decoding, provides a
relative improvement of 8.7 % over the baseline system.

Table 3.8 presents the effectiveness of the NFBG-based HMM in the aforementioned
state-of-the-art models. As we observe, these advanced systems are hard to be further
improved since they are already exceedingly-optimized. On TEDliumv2, the NFBG-based
HMM achieves a 0.3 % absolute improvement in both the SincNet system and TDNN.
Furthermore, the absolute improvement in the improved RWTH ASR system is 0.1 %.
In comparison, on TIMIT, the NFBG-based HMM performs better. It delivers 3.8 %
and 2.8 % relative improvements in the regularization post-layer and IF feature systems,
respectively.

Figure 3.6: Training accuracy and converge speed on both TEDliumv2 and TIMIT.

3.8 Discussion

From the above results, it is seemingly that the NFBG-generated HMM structure yields
improvements in both monophone and triphone systems on both TEDliumv2 and TIMIT.
Overall, the improvement on TIMIT is more predominant than that on TEDliumv2.
For instance, in the monophone hybrid system, the NFBG-based HMM achieves 13.8 %
relative improvement on TEDliumv2 while the counterpart of TIMIT is 14.8 %. Besides,
in the triphone hybrid system, the NFBG-based HMM outperforms the baseline by
3.3 % on TEDliumv2 while that is 4.5 % on TIMIT. The author assumes that since the
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amount of training data of TIMIT is fewer than that of TEDliumv2, TIMIT benefits
more from the reduction of parameters. This section provides evidence from the aspect
of the convergence speed and the classification performance of the network with and
without NFBG-based HMM.

As displayed in Fig. 3.6, introducing NFBG for the HMM construction leads to the
accuracy increment on both TEDliumv2 and TIMIT. Additionally, the effectiveness is
more distinctive on TIMIT. Besides, the system with the proposed HMM converges
faster on both corpora. Moreover, TEDliumv2 is even faster than TIMIT, since there
are 110 HMM states on TEDliumv2 while 121 HMM states on TIMIT.

Besides, this study also chooses t-distributed stochastic neighbor embedding (t-SNE)
[149] to visualize the classification ability of the network with and without the proposed
HMM structure. To begin with, this study extracts one utterance from the test sets
of both TEDliumv2 and TIMIT corpora. Furthermore, a comparison on more test
utterances from both corpora is also made. This study sets the number of prototypes of
the DNNVQ the same as the number of PDFs in the baseline model. The perplexity is
set to be 30. From every pair of comparisons as depicted in Fig. 3.7, it is apparent that
the employment of NFBG-based HMM reinforces networks’ classification ability.

3.9 Summary

This chapter presents a concise and data-driven model adaption approach for HMM-based
ASR systems. The proposed algorithm allows the data to reveal its dynamic structure
without external assumptions and with a low computational cost. This study conducts
ablation tests on different HMM topologies and the number of DNNVQ prototypes.
Besides, this study validates the proposed algorithm on TEDliumv2 and TIMIT in both
monophone and triphone systems. Importantly, its robustness in adverse environments
is also studied. Empirical results indicate that the proposed approach improves both the
monophone system’s and the triphone system’s performances. The margin on TIMIT, a
corpus with a small amount of training data, is more remarkable. Furthermore, it not
only improves the ASR performance of the model, but also enforces the model robustness
when interfered by ambient noises. Despite the limited improvements in the already
highly-optimized systems, it reduces the parameters of those systems by 15 %. It is
safe to conclude that this robust and lightweight HMM structure possesses considerable
potentials in various realistic situations, e.g., the keyword spotting task in the always-on
and battery-powered application scenarios for smart devices, with severe constraints on
hardware resources and power consumption; the task of low-resource speech recognition;
the classification task on portable devices.

Besides the model adaption, as the back-end technique, front-end techniques also
play an important role in robust ASR, which will be discussed in the next chapter.
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(a) 2D t-SNE visualisation of one utterance
of TIMIT from the baseline model.
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(b) 2D t-SNE visualisation of one utterance
of TIMIT from this study.
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(c) 2D t-SNE visualisation of one utterance
of TEDliumv2 from the baseline model.
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(d) 2D t-SNE visualisation of one utterance
of TEDliumv2 from this study.
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(e) 2D t-SNE visualisation of five utterances
of TEDliumv2 from the baseline model.
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(f) 2D t-SNE visualisation of five utterances
of TEDliumv2 from this study.
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(g) 2D t-SNE visualisation of fifteen utter-
ances of TIMIT from the baseline model.
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(h) 2D t-SNE visualisation of fifteen utter-
ances of TIMIT from this study.

Figure 3.7: 2D t-SNE visualisation from the baseline model and the proposed model.
Horizontal axis: the 1st dimension of t-SNE; vertical axis: the 2nd dimension of t-SNE.

59



“Humanity needs practical men, who get the most out of their work, and, without
forgetting the general good, safeguard their own interests. But humanity also needs

dreamers, for whom the disinterested development of an enterprise is so captivating that
it becomes impossible for them to devote their care to their own material profit.”

− Marie Salomea Sk lodowska Curie



4

Front-End Techniques for Robust
Automatic Speech Recognition

This chapter will discuss the front-end techniques of robust ASR systems. Common front-
end techniques include speech enhancement, speech separation, robust feature extraction,
etc. This thesis focuses on the speech enhancement approaches. Speech enhancement
aims to improve speech intelligibility and quality in adverse environments by transforming
the interfered speech to its original clean version [142]. Speech enhancement can serve as
a front-end for downstream speech-related tasks, e.g., robust speech recognition [300],
speaker identification [266], speech emotion recognition [8], etc. In addition, it is also
applied successfully in communication systems, e.g., speech coding [329], hearing aids
[226, 128] and cochlear implants [73, 287]. Classic speech enhancement methods are the
Wiener filter [140], time-frequency masking [173, 293, 180], signal approximation [302, 59],
spectral mapping [179], etc. Recently, significant improvements in speech enhancement
performance have been reported for discriminative deep learning algorithms, e.g., DNNs
[308], CNNs [192], and RNNs [300].

A proper speech enhancement front-end should first be lightweight; otherwise, its
real-life application is limited. For instance, it cannot be applied on portable devices.
Furthermore, it could result in unacceptable delay for the downstream task. Besides
being lightweight, the front-end should also be efficient; otherwise, it is not conducive
to the downstream task and could introduce unseen distortion to speech signals. This
thesis principally discusses two front-end approaches, and both of them are based on the
seminal work [193], speech enhancement GAN (SEGAN). One delves into the optimized
combination of SEGAN and self-attention mechanism, and the other aims to further
ameliorate SEGAN performance by the popular Sinc convolution.
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4.1 Lightweight Self-Attention Augmented Genera-

tive Adversarial Networks for Speech Enhance-

ment

4.1.1 Overview

GANs [74] have been demonstrated to be efficient for speech enhancement [193, 196, 256,
159, 138, 98], where the generative training results in fewer artifacts than discriminative
models. Conforming to GAN’s principles, the generator is designated for learning an
enhancement mapping that can imitate the clean data distribution to generate enhanced
samples. In contrast, the discriminator plays the role of a classifier that distinguishes
real samples, coming from the dataset that the generator is imitating, from fake samples
made up by the generator. Simultaneously, the discriminator guides the parameter
updating of the generator towards the distribution of clean speech signals. Most previous
attempts utilize convolutional layers as the backbone, limiting the network’s ability
in capturing long-range dependencies due to the convolution operator’s local receptive
field. To alleviate this issue, one popular solution is substituting RNNs for CNNs, but
RNNs are computationally inefficient, caused by the unparallelization of their temporal
iterations.

In 2017, Vaswani et al. [278] proposed the self-attention mechanism, dispensing
with RNNs and CNNs entirely. Compared to discriminative deep learning models,
self-attention is computationally efficient. Compared to DNNs, it possesses much fewer
parameters. Compared to CNNs, it is flexible in modeling both long-range and local
dependencies. Compared to RNNs, it is based on matrix multiplication, which is highly
parallelizable and easily accelerated. The self-attention mechanism has been successfully
used for different human–machine communication tasks [54, 200, 258, 116, 118, 117],
including the speech enhancement tasks [41, 126]. Nevertheless, there are still two
problems in the previous works. Firstly, some of them [126, 189] did not adopt adversarial
training, which suffers from unseen distortion derived from handcrafted loss functions.
Secondly, some works used discriminative models as the architecture backbone (e.g.,
DNN [256], CNN [202] or LSTM [98]). However, DNNs are computationally inefficient
due to the huge parameter scale. CNNs command the extraordinary ability to model
local information, but they experience difficulties in capturing long-range dependencies.
RNNs are computationally inefficient, caused by the unparallelization of its temporal
iterations.

To combine the adversarial training and the self-attention mechanism, Zhang et
al. [323] propose the self-attention generative adversarial network for image synthesis,
which introduces the self-attention mechanism into convolutional GANs. In their work,
the self-attention module is complementary to convolutional layers and helps with
modeling long-range and multi-level dependencies across image regions. In the same
year, Ramachandran et al. [219] provide the theoretical basis for substituting the self-
attention mechanism for discriminative models. They verify that self-attention layers
can completely replace convolutional layers and achieve state-of-the-art performance on
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vision tasks. Afterwards, Cordonnier et al. [45] present evidence that self-attention layers
can perform convolution and attend to pixel-grid patterns similarly to convolutional
layers.

Nonetheless, Yang et al. [310] suggest that the self-attention mechanism might fully
attend to all elements, dispersing the attention distribution, and thus overlook the
relation of neighboring elements and phrasal patterns. Guo et al. [84] indicate that the
generalization ability of the self-attention mechanism is weaker than CNNs or RNNs,
especially on moderate-sized datasets, and the reason can be attributed to its unsuitable
inductive bias of the self-attention structure. To this end, Yang et al. [310] propose
a parameter-free convolutional self-attention model to enhance the feature extraction
of neighboring elements and validate its effectiveness and universality. Guo et al. [84]
regard self-attention as a matrix decomposition problem and propose an improved self-
attention module by introducing locality linguistic constraints. Xu et al. [307] propose a
hybrid attention mechanism via a gating scalar for leveraging both the local and global
information and verified that these two types of contexts are complementary to each
other.

Inspired by prior works, this section presents a series of SEGANs equipped with
a self-attention mechanism in three ways: first, this study deploys the stand-alone
self-attention layer in a SEGAN. Next, this work employs locality modeling on the
stand-alone self-attention layer. Finally, this study investigates the functionality of
the self-attention augmented convolutional SEGAN. This section aims to probe the
performance of a SEGAN equipped (i) with stand-alone standard self-attention layers,
(ii) with stand-alone hybrid (global and local) self-attention layers, and (iii) with self-
attention augmented convolutional layers. In addition, the parameter scales of these
proposed models are also calculated.

Please note that there are four highlights of these works. Firstly, the adversarial
training is deployed to alleviate the distortion introduced by handcrafted loss functions,
and hence the enhancement module is supposed to capture more underlying structural
characteristics. Secondly, self-attention layers are employed to obtain a more flexible
ability to capture both long-range or local interactions. Thirdly, the locality modeling
of the self-attention layer is a parameter-free method. Lastly, raw speech waveforms
are utilized as inputs of the system to avoid any distortion introduced by handcrafted
features.

The proposed systems are evaluated in terms of various objective evaluation criteria.
Systematic experiment results reveal that equipped with the stand-alone self-attention
layer, the proposed system outperforms baseline systems in terms of various objective
evaluation criteria with up to 95 % fewer parameters. In addition, the locality modeling
on the stand-alone self-attention layer delivers further performance improvements without
increasing any parameters. Moreover, the self-attention augmented SEGAN outperforms
all baseline systems and achieves the best results on SSNR and STOI of this work with
acceptable increased parameters.
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4.1.2 Related Work

Pascual et al. [193] open the exploration of generative architectures for speech enhance-
ment, leveraging the ability of deep learning to learn complex functions from large
example sets. The enhancement mapping is accomplished by the generator, whereas the
discriminator, by discriminating between real and fake signals, transmits information to
the generator so that the generator can learn to produce outputs that resemble the realis-
tic distribution of the clean signals. The proposed system learns from different speakers
and noise types, and incorporates them together into the same shared parametrization,
which makes the system simple and generalizable in those dimensions.

On the basis of [193], Phan et al. [201] indicate that all existing SEGAN systems
execute the enhancement mapping via a single stage by a single generator, which may
not be optimal. In this light, they hypothesize that it would be better to carry out
multi-stage enhancement mapping rather than a single-stage one. To this end, they divide
the enhancement process into multiple stages, with each stage containing an enhancement
mapping. Each mapping is conducted by a generator, and each generator is tasked to
further correct the output produced by its predecessor. All these generators are cascaded
to enhance a noisy input signal gradually to yield a refined enhanced signal. They
propose two improved SEGAN frameworks, namely iterated SEGAN (ISEGAN) and
deep SEGAN (DSEGAN). In the ISEGAN system, parameters of its generator are fixed,
constraining ISEGAN’s generators to apply the same mapping iteratively, as its name
implies. DSEGAN’s generators have their own independent parameters, allowing them
to learn different mappings flexibly. However, the parameters of DSEGAN’s generators
are NG times more numerous than ISEGAN’s generators, where NG is the number of
generators.

Afterwards, Phan et al. [202] reveal that the existing class of GANs for speech
enhancement solely relies on the convolution operation, which may obscure temporal
dependencies across the sequence input. To remedy this issue, they propose a self-
attention layer adapted from non-local attention, coupled with the convolutional and
deconvolutional layers of the SEGAN, referred to as SASEGAN. Furthermore, they
empirically study the effect of placing the self-attention layer at the (de)convolutional
layers with varying layer indices, including all layers as long as memory allows.

As Pascual et al. [193] state, they open the exploration of generative architectures for
speech enhancement to progressively incorporate further speech-centric design choices
for performance improvement. This study aims to further optimize SEGAN, especially
its variant with a self-attention mechanism. Unlike [201], this work preserves the
single generator architecture to maintain the lightweight parameter scale. Phan et al.
[202] focus on coupling only one self-attention layer to one convolutional layer in the
encoder. Namely, maximum three layers of SEGAN are equipped with the self-attention
mechanism each time: one convolutional layer of the encoder, one deconvolutional layer
of the decoder, and one convolutional layer of the discriminator. Although they also
experiment with the performance of SASEGAN-all, i.e., simply coupling self-attention
layers to all (de)convolutional layers, this work queries whether there are more optimized
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and efficient coupling combinations 1. For example, can coupling the self-attention
mechanism to the 10th and 11th (de)convolutional layers outperform SASEGAN-all with
even less parameters? In addition, inspired by [219] and [45], this study explores the
feasibility of substituting self-attention layers with (de)convolutional layers completely,
namely SEGAN with stand-alone self-attention layers. Moreover, to take full advantage of
the self-attention layer’s flexibility of modeling of both long-range and local dependencies,
this study introduces the parameter-free locality modeling [310] of the self-attention
mechanism in SEGAN. To the best knowledge of the author, these three following
explorations: stand-alone self-attention layers, the locality modeling on self-attention
layers, and optimized combination of coupling self-attention layers with (de)convolutional
layers, were never executed by previous works in the SEGAN class.

G

D

0

D

1

Fe
ed

 F
or

w
ar

d
Back-propagation

Fe
ed

 F
or

w
ar

d

Back-propagation
G

1

Fe
ed

 F
or

w
ar

d

Back-propagation

D
Freeze

Figure 4.1: Illustration of the GAN training process. Firstly, the discriminator (D) is
trained by a batch of real examples and classifies them as true. Next, the discriminator
updates according to a batch of fake examples generated by the generator (G), and
classifies them as false. Lastly, the discriminator’s parameters are frozen and the generator
adjusts to make the discriminator misclassify [193].

4.1.3 Self-Attention Speech Enhancement GANs

4.1.3.1 Generative Adversarial Networks

GANs [74] are generative networks that learn to map samples x̃ (e.g., images, audio,
etc.) from the original distribution X̃ to samples x∗ from a different distribution X ∗.
The mapping component within the GAN structure is called the generator, and it is
designated to learn an effective mapping that can imitate the real data distribution to
generate novel samples similar to the training set. Notably, the generator accomplishes
the task by mapping the data distribution characteristics to the manifold defined by X ∗

1Actually, [202] only couples the self-attention layer to the 3rd–11th layers in the encoder, decoder,
and the discriminator because of the memory limitation, although they refer it to SASEGAN-all.
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instead of memorizing input-output pairs [193]. Therefore, the generated samples are
new and unseen samples, not the selected data from the training set.

The way that the generator learns the mapping is by means of an adversarial training,
where a discriminator component also participates. The discriminator is basically a
binary classifier, and its inputs are either real samples, coming from the dataset X ∗,
or fake samples, made up by the generator. Then the task of the discriminator is to
classify the samples coming from X ∗ as real, whereas classify the samples made up by the
generator as fake. Namely, the generator needs to learn to fool the discriminator. To this
end, the generator adapts its parameters when the discriminator classifies the generator’s
output as real. As the result, the discriminator appears to be better and better at
distinguishing between real and fake samples and, in turn, the generator adjusts its
parameters to move towards the manifold defined by the real samples. Fig. 4.1 illustrates
the progress of the adversarial training, and it can be mathematically formulated as a
minimax game between the generator (G) and the discriminator (D), with the objective

min
G

max
D
L(D,G) =Ex∗∼pdata(x∗)[log D(x∗)]+

Ex̃∼px̃(x̃)[log(1−D(G(x̃)))].
(4.1)

There is also a conditioned version of GANs, where an extra input xc can be added
as the extra information in the generator and the discriminator to perform mapping and
classification [111]. In this case, the objective function is changed to

min
G

max
D
L(D,G) =Ex∗,xc∼pdata(x∗,xc)[log D(x∗,xc)]+

Ex̃∼px̃(x̃),xc∼pdata(xc)[log(1−D(G(x̃,xc),xc))].
(4.2)

4.1.3.2 Speech Enhancement GANs (SEGANs)

Given a dataset X = {(x∗1, x̃1), (x
∗
2, x̃2), · · · , (x∗N , x̃N)} consisting of N pairs of raw

signals: clean speech signal x∗ and noisy speech signal x̃. Speech enhancement aims
to find a mapping fθ(x̃) : x̃→ x̂ to transform the raw noisy signal x̃ to the enhanced
signal x̂. θ contains the parameters of the enhancement network.

Conforming to GAN’s principle (cf. Section 4.1.3.1), the generator learns an effective
mapping that can imitate the real data distribution to generate novel samples related
to those of the training set. Hence the generator acts as the enhancement function. In
contrast, the discriminator plays the role of a classifier which distinguishes the real sample,
coming from the dataset that the generator is imitating, from the fake samples, made up
by the generator. The discriminator guides θ towards the distribution of clean speech
signals. To sum up, SEGAN designates the generator for the enhancement mapping, i.e.,
x̂ = G(x̃), while designates the discriminator to guide the training of the generator by
classifying (x∗, x̃) as real and (x̂, x̃) as fake. Eventually, the generator learns to produce
enhanced signals x̂ good enough to fool the discriminator such that the discriminator
classifies (x̂, x̃) as real.
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Various loss functions have been proposed to improve the training of GANs, e.g.,
Wasserstein loss [328], relativistic loss [10], metric loss [328], and least-squares loss [152].
In this study, the least-squares loss [152] with binary coding is utilized instead of the
cross-entropy loss. Due to the effectiveness of the L1 norm in the image manipulation
domain [111], it is deployed to encourage the generator to gain more fine-grained and
realistic results. The scalar λ controls the magnitude of the L1 norm. Consequently, the
loss functions of the generator (G) and the discriminator (D) are

min
D
L(D) =

1

2
Ex∗,x̃∼pdata(x∗,x̃)[D(x∗, x̃)− 1]2+

1

2
Ez∼pz(z),x̃∼pdata(x̃)[D(G(z, x̃), x̃)]2,

(4.3)

min
G
L(G) =

1

2
Ez∼pz(z),x̃∼pdata(x̃)[D(G(z, x̃), x̃)− 1]2

+ λ ‖ G(z, x̃)− x∗ ‖1 .
(4.4)

D(·) is the discriminator module, G(·) is the generator module, and z denotes a latent
variable.

4.1.3.3 Stand-Alone Self-Attention Speech Enhancement GANs

This section demonstrates the self-attention layer adapted in GANs [323], which enables
both the generator and the discriminator to efficiently model relations between widely
separated spatial regions. Given the feature map F ∈ RL×C as the input of the self-
attention layer, where L is the time dimension and C is the number of channels, the query
matrix Q, the key matrix K, and the value matrix V are obtained via transformations:

Q = FWQ,K = FWK ,V = FW V , (4.5)

where WQ ∈ RC×C
b , WK ∈ RC×C

b , and W V ∈ RC×C
b denote the learnt weight matrices

of the 1×1 convolutional layer of C
b

filters. b is a factor for reducing the channel numbers.
Additionally, a max pooling layer with filter width and stride size of p is deployed to
reduce the number of keys and values for memory efficiency. Therefore, the dimensions

of the matrices are Q ∈ RL×C
b , K ∈ R

L
p
×C

b , and V ∈ R
L
p
×C

b . The attention map Ā is
then computed as

Ā = softmax(QKT ), Ā ∈ RL×L
p , (4.6)

āj,i =
exp(s̄ij)∑L
i=1 exp(s̄ij)

, where s̄ij = Q(q̄i)K(k̄j)
T . (4.7)

Each element āij ∈ Ā indicates the extent to which the model attends to the jth column
vj of V when producing the ith output ōi of Ō. The output of the attention layer Ō is
then computed as

Ō = (ĀV )W Ō, W Ō ∈ R
C
b
×C . (4.8)
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With the weight matrix W Ō realized by a 1 × 1 convolution layer of C filters, the
shape of Ō is restored to the original shape L× C. Eventually, SASEGAN contains a
shortcut connection to facilitate information propagation, and a learnable parameter β is
employed to balance the weight between the output Ō and the input feature map F as

F ′ = βŌ + F . (4.9)
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Figure 4.2: Illustration of the stand-alone self-attention layer with L = 9, C = 6, p = 3,
and b = 2. The max pooling layers in the red frame are discarded for matrix K and V
when modeling locality of the stand-alone self-attention layers [202].

Fig. 4.2 illustrates the diagram of a simplified self-attention layer with L = 9, C = 6,
p = 3, and b = 2.

4.1.3.4 Locality Modeling for Stand-Alone Self-Attention Layers

As illustrated in Fig. 4.3, for the query Q, this study restricts its attention region
(e.g., K = {k̄1, · · · , k̄i, · · · , k̄L}, 1 ≤ i ≤ L) to a local scope with a fixed window size
Mwin + 1 (Mwin ≤ L) centered at the position i as

K̂ = {k̄
i−Mwin

2

, · · · , k̄i, · · · , k̄i+Mwin
2

}, K̂ ∈ R(Mwin+1)×C
b , (4.10)

V̂ = {v̄
i−Mwin

2

, · · · , v̄i, · · · , v̄i+Mwin
2

}, V̂ ∈ R(Mwin+1)×C
b . (4.11)

When applying the locality modeling to the self-attention layer, the factor p should
be discarded to help preserve the original neighborhood for the centered position (as

68



4. Front-End Techniques for Robust Automatic Speech Recognition

red-framed in Fig. 4.2). Accordingly, the local attention map and the output of the
attention layer are modified as

Â = softmax(QK̂T ), Â ∈ RL×(M+1), (4.12)

Ô = (ÂV̂ )W Ō, W Ō ∈ R
C
b
×C . (4.13)

(a) Vanilla self-attention layer (b) Locality modeling with the window size = 3

Figure 4.3: Illustration of (a) vanilla self-attention layer; (b) locality modeling with the
window size = 3. Semi-transparent colors represent masked tokens that are invisible to
the self-attention layer [310]

.

4.1.3.5 Attention Augmented Convolutional SEGAN

This study implements an attention augmented convolutional SEGAN by coupling the
self-attention layer with the (de)convolutional layer(s). This proposed architecture
possesses an advantage, where the distance-aware information from the convolutional
layer and the distance-agnostic dependencies modeled by the self-attention layer are
supplementary and complementary to each other.

To this end, this study introduces two learnable parameters, κ and γ, to weigh
the input feature map F and the output feature map Ō of the coupled layer (with
self-attention mechanism and convolution) in the augmented output F ′ as

F ′ = κŌ + γF . (4.14)

4.1.4 Experimental Setups

This study systematically evaluates the effectiveness of (i) the stand-alone self-attention
layer on SEGAN, (ii) the locality modeling on the stand-alone self-attention layer, and
(iii) the attention augmented convolutional SEGAN.
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4.1.4.1 Dataset

All experiments are exerted on the publicly available dataset introduced in [273]. This
publicly available dataset is originated from the Voice Bank corpus [279], which contains
30 speakers, of which 28 speakers are included in the training set while the remaining
2 are included in the test set. For the noisy training set, 40 different noisy conditions
are considered by combining 10 sorts of intrusions (2 artificially generated and 8 derived
from the Demand database [268]) with 4 different signal-to-noise ratios (SNRs) each (15,
10, 5, 0 dB). For the test set, 20 different noisy conditions are considered by combining
5 sorts of intrusions (all originated from Demand database) with 4 SNRs (17.5, 12.5,
7.5, and 2.5 dB) each. There are 10 different utterances in each adverse condition per
training speaker, while 20 utterances in each condition per test speaker. Notably, the test
set is entirely unseen by the training set, namely no overlap existing in either speakers
or adverse conditions. All utterances are downsampled to 16 kHz.

4.1.4.2 Evaluation Criteria

All the proposed architectures are evaluated with the following classic objective criteria
for speech enhancement (the higher the better):

• SSNR: Segmental SNR [211] (in the range of [0 , +∞));

• STOI: Short-time objective intelligibility [265] (in the range of [0 , 100]);

• CBAK: Mean opinion score (MOS) prediction of the intrusiveness of background
noises [106] (in the range of [1 , 5]);

• CSIG: MOS prediction of the signal distortion attending only to the speech signal
[106] (in the range of [1 , 5]);

• COVL: MOS prediction of the overall effect [106] (in the range of [1 , 5]);

• PESQ: Perceptual evaluation of speech quality, using the wide-band version recom-
mended in ITU-T P.862.2 [225] (in the range of [-0.5 , 4.5]).

All results have been computed using the implementation demonstrated in [142], and is
available on the publisher’s website.2

4.1.4.3 Network Architecture

This section first introduces the architecture of SEGAN, as all three variants, namely (i)
SEGAN with stand-alone self-attention layers, (ii) stand-alone self-attention layers with
locality modeling, and (iii) attention augmented convolutional SEGAN, are based on it.

The classic enhancement systems are based on the short-time Fourier analysis/synthe-
sis framework [142]. They assume that the short-time phase is not important for speech

2https://www.crcpress.com/downloads/K14513/K14513_CD_Files.zip
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Figure 4.4: Illustration of the architecture of speech enhancement GAN (SEGAN) [193].
(a) The generator component. (b) The discriminator component.

enhancement [288], and they only process the spectrum magnitude. However, further
studies [187] show the intensive relation between the clean phase spectrum and the speech
quality. Therefore, this study utilizes raw inputs for all experiments. Approximately
one-second waveform chunks are extracted (∼16,384 samples) with a sliding window
every 500 ms. The generator makes use of an encoder–decoder structure. The encoder
is composed of 11 1-dim strided convolutional layers of filter width 31 and stride 2,
followed by parametric rectified linear units (PReLUs) [92]. Along with the depth, the
number of filters per layer increases while the signal duration shrinks. To compensate for
the smaller and smaller convolutional output, the number of filters increases along the
encoder’s depth {16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 1024}, resulting in dimensions
per layer of {8192×16, 4096×32, 2048×32, 1024×64, 512×64, 256×128, 128×128, 64×
256, 32× 256, 16× 512, 8× 1024}. At the 11th layer of the encoder, the encoding vector
c ∈ R8×1024 is stacked with the noise z ∈ R8×1024, sampled from the distribution N (0, I),
and presented to the decoder. The decoder mirrors the encoder architecture entirely
to reverse the encoding process by means of the transposed convolution, termed as
deconvolution. There are skip connections connecting each convolutional layer to its
homologous deconvolutional layer. They bypass the compression performed in the middle
of the model and allow the fine-grained details (e.g., phase, alignment) of speech signals
to flow into the decoding stage directly. This is done because if all information is forced
to flow through bottleneck structures, much useful low-level information could be lost
through the compression. In addition, skip connections offer a better training behavior,
as the gradients can flow more deeply through the whole structure [93]. Notably, skip
connections and the addition of the latent vector double the number of feature maps in
every layer.
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The discriminator resembles the encoder’s structure with the following differences: (i)
it receives a pair of raw audio chunks as the input, i.e., (x∗, x̃) or (x̂, x̃); (ii) it utilizes
virtual batch-norm before LeakyReLU [148] activation with α = 0.3; (iii) in the last
activation layer, there is a 1× 1 convolution layer to reduce the feature required for the
final classification neuron from 8× 1024 to 8. The architecture of SEGAN is illustrated
in Fig. 4.4.

4.1.4.4 SEGAN with Stand-Alone Self-Attention Layers

This study substitutes the self-attention layer, illustrated in Section 4.1.3.3, with the
(de)convolutional layers of both the generator and the discriminator. Fig. 4.5 (a)
and (b) demonstrate an example of substituting the self-attention layer with the l̄th
(de)convolutional layers.
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Figure 4.5: Illustration of the architecture of SEGAN with stand-alone self-attention
layers. (a) The generator component. (b) The discriminator component.

When the stand-alone self-attention layer is deployed on the l̄th convolutional layer
of the encoder, the mirroring l̄th deconvolutional layer of the decoder and the l̄th
convolutional layer in the discriminator are also replaced with it. To keep the dimension
of the feature map per layer in accordance with that of SEGAN, a max pooling layer
with a kernel size of 2 and a stride length of 2 follows every stand-alone self-attention
layer in the encoder. Accordingly, the upsampling needs to be deployed before the 11th
deconvolutional layer in the decoder to ensure the same feature dimensions flowing in
the skip connections. This study experiments with two interpolation methods: nearest
and bilinear. The results suggest that the bilinear interpolation outperforms the nearest
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one, so this study utilizes the bilinear interpolation for upsampling in all experiments.
Theoretically, the stand-alone self-attention layer can be placed in any number, even all,
of the (de)convolutional layers. This study empirically explores the effect of placing the
stand-alone self-attention layer at (de)convolutional layers with lower or higher layer
indices as well as layer combinations, provided that memory allows.

Similarly, the discriminator component follows the same structure as the generator’s
encoder stage. This study sets b = 8, p = 4 for the self-attention layer. λ is set to be
100, and β is initialized as 0 for the self-attention layer.

4.1.4.5 Stand-Alone Self-Attention Layer with Locality Modeling

The general architecture remains the same as the case of Section 4.1.4.4. However, the
factor p is eliminated to help preserve the original neighborhood for the centered position.
Namely, the max pooling layers in Fig. 4.2 are discarded for matrix K and V . The
factor b remains as 8. Ablation tests are exerted on the impacts of the window size
(Mwin + 1) and the placement of the window on the system performance.

Peters et al. [199] and Raganato and Tiedemann [218] indicate that higher layers of
the system tend to learn semantic information while lower layers capture more surface
and lexical information. Therefore, this study centrally applies locality modeling to the
lower layers, in line with the configuration in [319, 309]. Then, it is expected that the
representations are learnt in a hierarchical fashion. Namely, the distance-aware and local
information extracted by the lower layers can be complementary to the distance-agnostic
and global information captured by the higher layers.

4.1.4.6 Attention Augmented Convolutional SEGAN

Instead of replacing (de)convolutional layers with stand-alone self-attention layers (Section
4.1.4.4), this section couples stand-alone self-attention layers with (de)convolutional layers
of both the generator and discriminator. As illustrated in Fig. 4.6, when the stand-
alone self-attention layer is coupled with the l̄th convolutional layer of the encoder,
the mirror l̄th deconvolutional layer of the decoder, and the l̄th convolutional layer
in the discriminator are also coupled with it. Spectral normalization is applied to all
the (de)convolutional layers. For scalars γ and κ, this study experiments with three
initialization pairs: γ = 0 and κ = 0, γ = 0.75 and κ = 0.25 (inspired by the results
provided by [21]), and γ = 0.25 and κ = 0.25, finding that best results are acquired
when both γ and κ are initialized as 0.25. Empirical study is exerted for the effect of
coupling the self-attention layer with lower and higher layer indices as well as different
layer combinations. Two introduced factors (introduced in Section 4.1.3.3) are set to be
p = 4 and b = 8.

Since coupling the self-attention layer with a single convolutional layer has already
been studied by [202] in detail, this study focuses on more optimized couple combinations
for this topic.
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Figure 4.6: Illustration of the attention augmented convolutional SEGAN architecture
[202]. (a) The generator component. (b) The discriminator component.

4.1.4.7 Baseline Systems

For comparison, this study takes the seminal work [193], and other SEGAN variants
[201, 202] that are introduced in Section 4.1.2 as baseline systems. From [201], this
study chooses the results of ISEGAN with two shared generators and DSEGAN with
two independent generators as baseline results (the situation of NG = 2) for two reasons.
On one hand, the number of generators leads to exponential parameter incrementation.
On the other hand, Phan et al. [201] indicate marginal impacts of ISEGAN’s number
of iterations and DSEGAN’s depth larger than NG = 2 for no significant performance
improvements are seen. Phan et al. [202] present detailed results of the influence of the
self-attention layer placement in the generator and the discriminator. This study chooses
the average result of coupling the self-attention layer with a single (de)convolutional
layer (referred to as SASEGAN-avg), and the result of coupling self-attention layers with
all (de)concolutional layers (referred to as SASEGAN-all) to ensure a fair comparison.
It is worth noting that it is stated in [202] that compared to SASEGAN-avg, results of
SASEGAN-all are slightly further boosted, but these gains are achieved at the cost of
increased computation time and memory requirements.

4.1.4.8 Configurations

Networks are trained with RMSprop [270] for 100 epochs with a minibatch size of 50. A
high-frequency preemphasis filter of coefficient 0.95 is applied to both training and test
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samples. In the test stage, the window is slid through the whole duration of every test
utterance without overlap, and the enhanced outputs are deemphasized and concatenated
at the end of the stream.

4.1.5 Results

This study systematically evaluates the effectiveness of (i) the stand-alone self-attention
layer on SEGAN, (ii) the locality modeling on the stand-alone self-attention layer, and
(iii) attention augmented convolutional SEGAN. Table 4.1 exhibits the performance of
SEGAN equipped with the stand-alone self-attention layer. The upper part displays the
results of baseline systems, while the lower part displays the results of this work.

As shown in Table 4.1, when the 6th and 10th (de)convolutional layers are replaced
with stand-alone self-attention layers, the system overtakes all baselines across all metrics
and achieves the best SSNR result, with 47 % fewer (compared to DSEGAN) or 12 %
fewer (compared to SASEGAN-all) parameters. Furthermore, when the stand-alone
self-attention layer is adopted at the 9th to 11th (de)convolutional layers, it still yields
comparable or even better (STOI) results, with parameters plunging drastically to merely
5 % (95 % fewer) of DESEGAN or 9 % (91 % fewer) of SASEGAN-all. When l̄ = 4,
the parameter scale of the proposed system is closest to that of the baseline systems.
Under such circumstances, it outperforms baseline systems in PESQ, CBAK, COVL, and
STOI, and achieves the best results in PESQ, CBAK, and COVL. When this experiment
substitutes the self-attention layer with l̄th (6 ≤ l̄ ≤ 11) (de)concolutional layers, the
system performance plummets as the parameters of the whole system are only 1 % of
SASEGAN-all [202] and 0.6 % of DSEGAN [201]. The results reveal that the stand-alone
layer can be a powerful and lightweight primitive for speech enhancement.

Next, this study investigates the effects of locality modeling and its window size.
Prior studies [319, 255] indicate that lower layers usually extract lower-level features, so
they should attend to the local field more. Additionally, they [319, 255] prove empirically
that modeling locality on lower layers achieves better performances. Therefore, this study
only applies the locality modeling on layers not deeper than the 6th one. As plotted in
Fig. 4.7, the tiny window size limits the receptive field too much, and hence exacerbates
the performance due to the deprivation of the ability of modeling long-range and multi-
level dependencies. It appears that a window size of 14 is superior to other settings,
approximately consistent with [310] on machine translation tasks. When the window size
continues to increase, the performance tends to be the same without windows, which is
self-explanatory. Completed results on six criteria are exhibited in Table 4.2. Compared
to Table 4.1, employing locality modeling on the 4th layer yields the most significant
improvement, in accordance with the conclusion in [319, 255]. It also achieves the best
or comparable results across all criteria, which demonstrates the functionality of the
locality modeling without further computational cost. An explanation of the undesirable
SSNR is that the suboptimal upsampling method introduces speech distortion, which is
also manifested on CSIG. Importantly, a fixed-size window is not the state-of-the-art
approach in the field of locality modeling of the self-attention mechanism. This study
chooses it as it is parameter free, corresponding to the goal of a lightweight system. It is
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worth noting that the proposed SEGAN with stand-alone self-attention layers is general
enough to combine other more advanced locality modeling approaches [318, 277] in cases
where the computation complexity is secondary.

Lastly, this study investigates the functionality of the attention augmented convo-
lutional networks according to Eq. 4.14. This study chooses the combination from
lower-to-middle layers (augmentation-4,6 ), middle-to-higher layers (augmentation-6,10 ),
and all layer ranges (augmentation-4,10 and augmentation-4,6,10 ). As displayed in Table
4.3, coupling the self-attention layer on the 4th and 6th layers is more competitive on
CSIG, COVL, and STOI, and it achieves the best STOI performance. In contrast, adding
the self-attention layer on the 6th and 10th layers overtakes all baseline systems across
all metrics, and it gives the best result on SSNR. The combination of the 4th and 10th
layers still outperforms baseline systems, except for SSNR. However, the combination of
the 4th, 6th, and 10th layers only outperforms baseline systems on PESQ and STOI,
although it still yields decent results on other metrics. These results demonstrate the
efficiency of the attention augmentation for the convolutional SEGAN. Nevertheless, it is
worth noting that system parameters inevitably increase when coupling the self-attention
layer to (de)convolutional layers.

Table 4.1: Effects of the stand-alone self-attention layer(s) on speech enhancement
GANs (SEGANs). This study denotes the proposed architecture with the stand-alone
self-attention layer(s) at the l̄th (de)convolutional layer(s) as standalone-l̄. Values that
overtake all baseline systems are in bold. Values with an asterisk are the best ones
achieved for each metric.

Architecture Params (M)
Metric

PESQ CSIG CBAK COVL SSNR STOI

Noisy - 1.97 3.35 2.43 2.63 1.69 92.10

SEGAN [193] 294 2.16 3.48 2.94 2.79 7.66 93.12

ISEGAN [201] 294 2.24 3.23 2.93 2.68 8.19 93.29

DSEGAN [201] 513 2.35 3.56 3.10 2.94 8.70 93.25

SASEGAN-avg [202] 295 2.33 3.52 3.05 2.90 8.08 93.33

SASEGAN-all [202] 310 2.35 3.55 3.10 2.91 8.30 93.49

standalone-4 293 2.49∗ 3.54 3.62∗ 3.11∗ 7.70 93.72

standalone-6 292 2.41 3.54 3.07 2.96 8.10 93.63

standalone-11 103 2.43 3.74∗ 3.01 3.07 7.11 93.55

standalone-6,10 274 2.39 3.59 3.12 2.98 8.71∗ 93.66

standalone-10,11 51 2.37 3.57 3.00 2.95 7.71 93.54

standalone-4,6,10 275 2.45 3.61 3.10 3.01 8.30 93.73

standalone-9,10,11 28 2.43 3.50 2.97 2.88 8.51 93.90∗

standalone-6∼11 3 2.01 3.36 2.62 2.64 6.98 93.32
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Figure 4.7: Effects of the window size on the self-attention layers.

Table 4.2: Effects of the locality modeling on the stand-alone self-attention layer. The
layer numbers with curly braces represent the employment of locality modeling on the
current layer. Values that overtake all baseline systems are in bold. Values with an † are
the ones that overtake their best counterparts on the same metric in Table 4.1.

Architecture Params (M)
Metric

PESQ CSIG CBAK COVL SSNR STOI

standalone-{4} 293 2.50† 3.55 3.64† 3.13† 8.10 93.83

standalone-{6} 292 2.41 3.54 3.08 2.96 7.90 93.68

standalone-{6},10 274 2.40 3.59 3.12 2.99 8.70 93.76

standalone-{4},{6},10 275 2.45 3.58 3.11 3.03 8.30 93.88
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Table 4.3: Performance of the attention augmented convolutional SEGAN. The proposed
architecture where the self-attention couples the l̄th (de)convolutional layer(s) is denoted
as augmentation-l̄. Values that overtake all baseline systems are in bold. Values with an
‡ are the ones that overtake their best counterparts on the same metric in Table 4.1 and
Table 4.2.

Architecture Params (M)
Metric

PESQ CSIG CBAK COVL SSNR STOI

augmentation-4,6 293 2.43 3.64 3.11 3.02 8.20 93.99‡

augmentation-6,10 299 2.47 3.58 3.15 3.01 8.87‡ 93.61

augmentation-4,10 298 2.45 3.58 3.10 3.00 7.86 93.61

augmentation-4,6,10 299 2.39 3.50 3.08 2.92 8.41 93.68

4.1.6 Discussion

In general, the biggest advantage of applying the stand-alone self-attention layer in
SEGAN is that it simultaneously outperforms baseline systems, and decreases the model
complexity drastically. In particular, when applying the stand-alone self-attention layer as
the 6th and 10th layers of the system, the resultant system overtakes all baselines across
all metrics and achieves the best SSNR result with only ∼ 50 % parameters (compared
to DSEGAN [201]). In addition, locality modeling can be an effective auxiliary to
stand-alone self-attention layers, which further improves their performance without any
extra parameter increment. Notably, locality modeling on a lower self-attention layer
delivers more perceptible performance improvements, consistent with [310, 319, 309]. For
the self-attention augmented SEGAN, it performs modestly better. Although it is less
lightweight than those two approaches, it still decreases parameters by 42 % compared
to DSEGAN.

However, different placements of the stand-alone self-attention layer or the coupled
self-attention layer lead to different performance improvements, and the compromise
between system performance and system complexity is always ineluctable. This study only
presents the achieved performance and the homologous model complexity of representative
placements, which readers can take for reference according to the desired application.

4.1.7 Summary

This study integrates the self-attention mechanism with SEGAN to improve its flex-
ibility of both long-range and local dependency modeling for speech enhancement in
three methods, namely, applying the stand-alone self-attention layer, modeling locality
on the stand-alone self-attention layer, and coupling the self-attention layer with the
(de)convolutional layer. The proposed systems deliver consistent performance improve-
ments. The main merit of the stand-alone self-attention layer is its low model complexity,
and it can perform even better when equipped with the locality modeling. In contrast,
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the self-attention augmented convolutional SEGAN delivers more stable improvements,
whereas it increases the model complexity.

Importantly, the locality modeling method utilized in this study is basic. This study
chooses it to achieve the goal of light weight, but more advanced locality modeling
approaches can be applied simply. Moreover, all proposed approaches described in this
study are generic enough to be applied to existing SEGAN models for further performance
improvements, which can be left for future studies.

The next section will present another lightweight architecture for speech enhancement,
Sinc-SEGAN. It usefully merges two powerful paradigms: Sinc convolution and SEGAN.
Moreover, a set of data augmentation techniques in the time domain are empirically
studied and substantiated to be efficient for further performance improvements.

4.2 Lightweight End-to-End Speech Enhancement

Generative Adversarial Network Using Sinc Con-

volutions

4.2.1 Overview

In the last few years, supervised methods for speech enhancement leveraging deep learning
methods have become the mainstream. Well-known models include deep denoising
autoencoders [143], CNNs [64], RNNs [301, 262].

There exists a class of generative methods relying on GANs [74], which have CNNs
as the backbone and have been verified to be efficient for speech enhancement [193,
196, 98, 208, 139, 53]. GANs designate the generator for enhancement mapping and
the discriminator for distinguishing real signals from fake ones. With the transmitted
information from the discriminator, the generator learns to produce outputs that resemble
the realistic distribution of clean signals. Most past attempts deal with magnitude
spectrum inputs as it is often claimed that short-time phase is unimportant for speech
enhancement [288]. However, further studies [187] demonstrate that a clean phase
spectrum can deliver significant improvements of speech quality.

CNNs are the most popular deep learning architecture for processing raw speech
inputs due to weight sharing, local filters, and pooling, extracting robust and invariant
representations. The first convolutional layer is a critical part of waveform-based CNNs
[221], since it processes high-dimensional inputs and extracts low-level speech repre-
sentations for deeper layers. However, it is susceptible to vanishing gradient problems.
To alleviate this issue, Ravanelli et al. [221] propose the Sinc convolution to learn
more meaningful filters in the input layer. Different from a standard CNN, the Sinc-
convolution layer convolves the waveform with a set of parametrized Sinc functions that
implement band-pass filters, and only need to learn the low and high cutoff frequencies.
Consequently, the Sinc convolution is faster-converging and lightweight. It performs
extraordinarily in capturing selective speech clues, e.g., the pitch region, the first formant,
and the second formant, which are essential for resembling clean speech signals, and
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has achieved remarkable success in some fields of speech signal processing, e.g., speech
recognition [220, 190], speaker identification [221], keyword spotting [162], etc.

Unfortunately, Sinc convolution for speech enhancement is still an under-explored
research direction. There is no available model fusing these two powerful paradigms: the
Sinc convolution operating over raw speech waveforms and the generative adversarial
models for speech enhancement. Therefore, this study proposes to bridge this gap
by usefully merging the Sinc convolution and SEGAN, resulting in a customizable,
lightweight, and interpretable system, termed Sinc-SEGAN. Sinc-SEGAN first optimizes
the SEGAN architecture from the seminal work [193], and enhances the original Sinc
convolution layer to fit the optimized SEGAN. Besides, this study also analyzes the
learnt filters of the Sinc convolution layer. Furthermore, a set of data augmentation
techniques are applied on raw speech waveforms directly to further improve the system
performance.

Experimental results show that the proposed Sinc-SEGAN overtakes a set of competi-
tive baseline models, especially on higher-level perceptual quality and speech intelligibility.
Additionally, the system parameters reduce drastically up to merely 17.7 % of the baseline
system. In addition, data augmentation techniques further boost the system performance
across all classic objective evaluation metrics of speech enhancement. Analysis of the
Sinc filters discloses that the learnt filters are tuned precisely to capture critical speech
clues. Notably, the proposed Sinc-SEGAN system is generic enough to be applied to
existing GAN models of speech enhancement for further performance improvement.

4.2.2 Related Work

The seminal work of SEGAN [193] and two variants [201, 202] based on it have been
introduced in Section 4.1.2. As Pascual et al. [193] state, they open the exploration
of generative architectures for speech enhancement to progressively incorporate further
speech-centric design choices for performance improvement. This study aims to further
optimize SEGAN by fusing the powerful diagram: Sinc convolution. To the best
knowledge of the author, although Sinc convolution has achieved great success and
been widely utilized in some fields of speech signal processing, e.g., speech recognition
[220] and speaker verification [221], its implementation on the speech enhancement task
remains unexplored.

4.2.3 Sinc Convolution

For details of the SEGAN implementation, please refer to Section 4.1.3.2. This section
will introduce the implementation of Sinc convolution.

Different from a standard convolutional layer that performs a set of time-domain
convolutions between the input waveform and some Finite Impulse Response filters, Sinc
convolution conducts the convolutional operation with a predefined function ḡ, depending
on few learnable parameters θ as

y[n] = x[n] ∗ ḡ[n, θ], (4.15)
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where x[n] is a chunk of speech waveforms, and y[n] is the filtered output. Inspired
by standard filtering in digital signal processing, Ravanelli et al. [221] define ḡ as a
filter-bank consisting of rectangular bandpass filters. In the frequency domain, the
magnitude of a generic bandpass filter can be written as

Ḡ[f̄ , f̄1, f̄2] = rect(
f̄

2f̄2

)− rect( f̄

2f̄1

), (4.16)

where f̄1 and f̄2 are the learnable low and high cutoff frequencies, and rect(·) is the
rectangular function in the magnitude frequency domain. In the time domain, the
reference function ḡ transforms to

ḡ[n, f̄1, f̄2] = 2f̄2sinc(2πf̄2n)− 2f̄1sinc(2πf̄1n). (4.17)

The Sinc function here is the unnormalized Sinc function, i.e., sinc(x) = sin(x)
x

. Ravanelli
et al. [221] initialize filters with cutoff frequencies of the Mel-scale filterbank, which
processes the advantage of directly allocating more filters in the lower part of the spectrum.
Fainberg et al. [61] execute experiments over different initialisation schemes but no
benefit for the downstream task is observed. Please note that there are two constraints
in Eq. 4.17 that need to be satisfied: f̄1 > 0 and f̄2 > f1. In addition, the de facto
frequencies that are calculated in Eq. 4.17 are f̄ ′1 and f̄ ′2, where

f̄ ′1 = |f̄1|,
f̄ ′2 = |f̄1|+ |f̄2 − f̄1|.

(4.18)

To smooth out the abrupt discontinuities at the end of ḡ, Hamming window z[n] [214]
of length L is deployed by

ḡz[n, f̄ ′1, f̄
′
2] = ḡ[n, f̄ ′1, f̄

′
2] ·z[n], (4.19)

where

z[n] = 0.54− 0.46 · cos(2πn

L
). (4.20)

It is also suggested that no significant performance difference appears when adopting
other window functions [221]. As the filters ḡ are symmetric, the filters can be computed
efficiently by considering one side of the filter and inheriting the results for the other half.
Moreover, the symmetry does not introduce any phase distortion, keeping the essence of
processing raw inputs for speech enhancement.

Another remarkable property of the Sinc convolution is its small parameter scale.
Unlike a standard convolutional layer, only two parameters are employed for each Sinc
filter, regardless of its length. Taking a layer composed of Nf filters of length Lf as an
example, a standard convolutional layer employs Nf · Lf parameters, against 2Nf in
the case of the Sinc convolution. If Nf = 50 and Lf = 100, there are 5 K parameters
in the case of the standard convolutional layer, while only 100 parameters for the Sinc
convolution. This property offers the possibility to obtain selective filters with many
taps, with negligible parameter increment.
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4.2.4 Sinc-SEGAN Architecture

This study investigates into two different deployments of the Sinc convolution illustrated
in Section 4.2.3: (i) being deployed before the first layer of the generator’s encoder and
the discriminator, and behind the last layer of the generator’s decoder, referred to as the
addition architecture. (ii) acting as the substitute of the first standard convolutional layers
of the generator’s encoder and the discriminator, and the last standard convolutional
layer of the generator’s decoder, referred to as the substitution architecture.

In the case of the addition architecture, the generator makes use of an encoder-decoder
architecture [194]. The first layer of the encoder is Sinc convolution, using 64 filters of
length 251 and stride = 1, followed by a max pooling layer (stride = 2). Thereafter, there
are 5 1-dim strided convolutional layers with a common filter width of 31 and a stride of
4, each followed by PReLUs [92]. At the 6th layer of the encoder, the encoding vector
c ∈ R8×1024 is stacked with the noise sample z ∈ R8×1024, sampled from the distribution
N (0, I), and presented to the decoder.

The decoder component mirrors the encoder architecture, with the same number of
filters and filter width, to reverse the encoding process through deconvolutions, namely
fractional-strided transposed convolution. The last layer of the decoder is also a Sinc
convolution (filter number = 64, kernel size = 251, and stride = 1), and there is an
un-maxpooling layer (stride = 2) before it for upsampling. Learnable skip connections
are deployed to connect the encoding layer with its corresponding decoding layer to allow
the information to be summed to the decoder feature maps. The learnable vectors ϑl̄
multiply every channel of its corresponding shuttle layer l̄ by a scalar factor. Hence, for
the input of the l̄th decoder layer h̄l̄, the corresponding l̄th encoder layer response is
added, following

h̄l̄ = h̄l̄−1 + ϑl̄ � h̄l̄e, (4.21)

where � is an element-wise product along channels.
The discriminator is constructed of an architecture similar to the encoder of the

generator. However, it receives a two-channel input, i.e., (x∗, x̃) or (x̂, x̃), and utilizes
virtual batch-norm [242] before LeakyReLU [148] activation with α = 0.3. Moreover, the
discriminator is topped up with a 1× 1 convolutional layer to reduce the dimension of
the output of the last convolutional layer for the subsequent classification task by the
softmax layer. To sum up, in the addition architecture, the generator consists of 12 layers
and the discriminator consists of 6 layers. The addition architecture of Sinc-SEGAN is
illustrated in Fig. 4.8.

The substitution architecture is similar to the first case, but the original first layer of
the encoder is substituted as Sinc convolution, using 64 filters of length 251. Its stride is
4, in line with the standard convolutional layer, and the max pooling layer is removed.
Thereafter, there are 4 1-dim strided convolutional layers with a common filter width
of 31 and a stride of 4, each followed by PReLUs [92]. At the 6th layer of the encoder,
the encoding vector c ∈ R16×1024 is stacked with the noise sample z ∈ R16×1024, sampled
from the distribution N (0, I), and presented to the decoder.

The decoder component still processes the mirror architecture to reverse the encoding
process through deconvolutions. The last deconvolutional layer of the decoder is also
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Figure 4.8: Illustration of the addition architecture of (a) the generator and (b) the
discriminator, where the Sinc convolution is located before the first layer of the encoder
and the discriminator, and behind the last layer of the decoder. Skip connections with
learnable ϑl̄ are depicted in pink boxes, which are summed to each intermediate activation
of the decoder.

replaced with a Sinc convolution (filter number = 64, kernel size = 251, and stride = 4),
and the upsampling layer is not needed anymore.

The first layer of the discriminator is also substituted with the Sinc convolution layer
with 64 filters of length 251 and stride = 1. In summary, in the substitution architecture,
the generator consists of 10 layers and the discriminator consists of 5 layers, as illustrated
in Fig. 4.9.

4.2.5 Experimental Setups

To assess the performance of proposed Sinc-SEGANs, this study reports objective
measures on the Valentini [272] benchmarks. The details of the employed corpus,
evaluation metrics, and baseline systems have been illustrated in Section 4.1.4.1, Section
4.1.4.2, and Section 4.1.4.7, respectively.

4.2.5.1 Implementation Details

The networks are trained for 100 epochs with the batchsize 100. Different from previous
works [193, 201, 202], this study utilizes Adam optimizer [121] (β1 = 0 and β2 = 0.9),
with the two-timescale update rule (TTUR) [96]. According to the recent successful
approach to training GANs quickly and stably [323], this study sets the learning rate of
the discriminator to 0.0004 while that of the generator to 0.0001, i.e., the discriminator
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Figure 4.9: Illustration of the substitution architecture of (a) the generator and (b) the
discriminator, where the Sinc convolution acts as the substitute of the first standard
convolutional layers of the encoder and the discriminator, and the last standard convo-
lutional layer of the decoder. Skip connections with learnable ϑl̄ are depicted in pink
boxes, which are summed to each intermediate activation of the decoder.

has a four times faster learning rate to virtually emulate numerous iterations in the
discriminator prior to updating the generator. This study extracts raw speech chunk
of length L = 16, 384 (approximately 1 s) over 50 % overlap as the input, to avoid any
speech distortion caused by handcrafted features. A high-frequency preemphasis filter of
coefficient 0.95 is applied to each waveform chunk before presenting to the networks as it
is proved to help cope with some high-frequency artifacts in the denoising setup. During
testing, raw speech chunks are extracted from testing utterances without overlap, and
outputs are correspondingly deemphasized and concatenated as the enhanced waveforms.
The number of filters varies along with the depth. In the situation of the addition
architecture, they are {64, 64, 128, 256, 512, 1024}, resulting in the output size of the
feature map {8092×64, 2048×64, 512×128, 128×256, 32×512, 8×1024}. In contrast, in
the instance of the substitution architecture, they are {64, 128, 256, 512, 1024}, resulting
in the output size of the feature map {4096×64, 1024×128, 256×256, 64×512, 16×1024}.
This study also conducts ablation tests on the influence of the input length, the filter
number and the kernel size.

4.2.5.2 Data Augmentation

Three data augmentation methods are employed on the dataset. First, this study applies
a random shift between 0 and 4 seconds. Second, the noises with one batch are shuffled
to form new noisy mixtures, termed ReMix. Third, this study deploys a band-stop filter
with a stop-band between f̄ ′1 and f̄ ′2 (termed Band Mask), sampled to remove 20 % of
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the frequencies uniformly in the Mel scale, which is equivalent to the SpecAugment [191]
used for the automatic speech recognition task in the time domain.

4.2.6 Results

4.2.6.1 Ablation Tests on the Configuration of Sinc Convolution

This work empirically studies the impacts of the placement of Sinc convolution layer, the
input length, the number of Sinc filter, the kernel size of Sinc convolution. Table 4.4
demonstrates the configuration of five ablation tests, and Table 4.5 shows their results
across criteria introduced in Section 4.1.4.2. After making the comparison among these
experiments, the following conclusions can be drawn:

• Increasing the number of Sinc filters degrades the system performance, since more
filters introduce more system complexity, and the training becomes more difficult
accordingly.

• Decreasing the kernel size of the Sinc convolution deteriorates the performance as
smaller kernel size limits its ability to extract representative speech clues.

• Systems benefit from longer input length due to more context information being
included.

• The addition architecture outperforms the substitution architecture as the former
is deeper.

These experimental results explain why this study chooses the length of input signals as
1 s, the number of Sinc filters as 64, and the kernel size of Sinc convolution as 251.

Table 4.4: The demonstration of different configurations of five ablation tests. substitution
is shorten to sub, and addition is shorten to add.

Experiment A B C D E

Architecture sub sub sub sub add

Input length 1 s 1 s 1 s 250 ms 1 s

Number of Sinc filters 64 80 64 64 64

Kernel size of Sinc convolution 251 251 101 251 251

4.2.6.2 Performance and Parameter Comparisons with Baseline Systems

Table 4.6 demonstrates the performance and parameter comparisons between the pro-
posed Sinc-SEGANs (+augment) and the previous SEGAN variants [193, 201, 202]
on the Valentini [272] benchmark. Results indicate that the substitution architecture
outperforms baseline systems on PESQ, CBAK, and COVL. Considering the designs of

85



4. Front-End Techniques for Robust Automatic Speech Recognition

Table 4.5: Ablation test results over different configurations of Sinc convolution: system
architecture, input length, number of Sinc filters, and kernel size of Sinc convolution.

Experiment PESQ CSIG CBAK COVL SSNR STOI

A 2.37 3.55 3.13 2.97 8.68 93.40

B 2.32 3.49 2.84 2.91 5.51 92.99

C 2.40 3.46 3.07 2.89 8.66 93.39

D 2.36 3.57 3.07 2.94 8.70 93.37

E 2.39 3.69 3.23 3.00 8.71 93.53

these criteria, the result suggests that for speech signals enhanced by Sinc-SEGAN-sub
(substitution is shorten to sub), the general perceptive quality is higher, and they are
reasonably comprehensive for users. Comparable results are achieved on CSIG, SSNR
and STOI. Please note that although Sinc-SEGAN-sub underperforms DSEGAN [201]
on CSIG and SSNR or SASEGAN-all [202] on STOI, it ourperforms SEGAN [193],
ISEGAN [201], and SASEGAN-avg [202] across all criteria. Additionally, the number
of Sinc-SEGAN-sub parameters is merely 31.0 % compared to SEGAN, ISEGAN, or
SASEGAN-avg, 29.4 % compared to SASEGAN-all, 17.7 % compared to DSEGAN. In
contrast, Sinc-SEGAN-add (addition is shorten to add) outperforms all baseline systems,
with the parameter scale that is 71 % compared to SEGAN, ISEGAN, or SASEGAN-avg,
67 % compared to SASEGAN-all, and 41 % compared to DSEGAN. Moreover, data
augmentation methods deliver further improvements, leading to the best performance
across all evaluation metrics, without additional parameters. These results validate the
efficacy of the Sinc convolution on the speech enhancement task.

4.2.6.3 Ablation Tests on Augmentation Methods

In order to better understand the influence of different data augmentation methods on the
overall performance, ablation tests are executed. This study reports system performance
on all evaluation criteria for each of the methods in Table 4.7. Results suggest that each
of these data augmentation methods contributes to overall performance, with the time
shift augmentation producing the most significant performance increment, followed by
the Band Mask. Surprisingly, ReMix augmentation only shows limited contribution to
the overall performance.

4.2.6.4 Interpretation of Sinc Convolution

Inspecting the learnt filters is a valuable practice that provides insights into what the
network is actually learning. To this end, this study visualizes the learnt low and high
cutoff frequencies of Sinc-convolution filters in Fig. 4.10, and plots four examples of
the learnt Sinc filters of the proposed system in Fig. 4.11. Besides, this study exhibits
examples of spectrograms of the speech signal enhanced by SEGAN [193], DSEGAN
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Table 4.6: Results on objective metrics of the proposed systems (Sinc-SEGANs) against
previous SEGAN variants using the Valentini benchmark [272]. The unit of the number
of parameters (Params) is million (M).

Architecture Params (M)
Metric

PESQ CSIG CBAK COVL SSNR STOI

Noisy — 1.97 3.35 2.44 2.63 1.69 92.10

SEGAN [193] 294 2.16 3.48 2.94 2.79 7.66 93.12

ISEGAN [201] 294 2.24 3.23 2.93 2.68 8.19 93.29

DSEGAN [201] 513 2.35 3.56 3.10 2.94 8.70 93.25

SASEGAN-avg [202] 295 2.33 3.52 3.05 2.90 8.08 93.33

SASEGAN-all [202] 310 2.35 3.55 3.10 2.91 8.30 93.49

Sinc-SEGAN-sub 91 2.37 3.55 3.13 2.97 8.68 93.40

Sinc-SEGAN-add 210 2.39 3.69 3.23 3.00 8.71 93.53

Sinc-SEGAN-add

+augment
210 2.86 3.87 3.66 3.15 8.87 94.96

[201], SASEGAN-all [202], and the proposed Sinc-SEGAN-add, respectively in Fig. 4.12.
As observed in Fig. 4.10, the Sinc convolution learns a filter-bank containing more
filters with high cut-frequencies. In addition, a tendency towards a higher amplitude
is noticeable, indicating an inclination of the Sinc convolution to directly process raw
speech waveforms. As we can see from Fig. 4.11 and Fig. 4.12, Sinc convolution is
specifically designed to implement rectangular band-pass filters. Considering the speech
waveform distribution in the time domain, the specific design makes Sinc convolution
suitable for extracting narrow-band speech clues, e.g., the pitch region, the first formant,
and the second formant, in accordance with the results of the seminal work [221].

Table 4.7: Ablation study over different data augmentation methods: ReMix, Band Mask
(BM), and the time shift (shift).

Sinc-SEGAN-add PESQ CSIG CBAK COVL SSNR STOI

+ BM 2.44 3.55 3.37 3.05 8.79 93.75

+ BM, + ReMix 2.45 3.57 3.40 3.07 8.81 93.80

+ BM, + ReMix, + shift 2.86 3.87 3.66 3.15 8.87 94.96
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Figure 4.10: Visualization of the learnt upper and lower bounds per Sinc-convolution
filter.
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Figure 4.11: Examples of the learnt filters of the Sinc convolution. The upper row reports
the frequency response of the filters, while the lower row reports their impulse response.
The orange dashed line depicts the corresponding Mel-scale filter.
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(a) clean (b) noisy

(c) SEGAN (d) DSEGAN

(e) SASEGAN-all (f) Sinc-SEGAN-add

Figure 4.12: Spectrograms of an example utterance enhanced by (c) SEGAN [193], (d)
DSEGAN [201], (e) SASEGAN-all [202], and the proposed (f) Sinc-SEGAN-add. The
(a) clean and (b) noisy spectrograms are also exhibited for reference.
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4.2.7 Summary

This study proposes Sinc-SEGAN, a system that merges the Sinc convolution layer with
the optimized SEGAN to capture more underlying representative speech characteristics.
Sinc-SEGAN processes raw speech waveforms directly to prevent distortion caused by
imperfect phase estimation. This study investigates into two different deployments of
the Sinc convolution: (i) being deployed before the first layer of the encoder and the
discriminator, and behind the last layer of the decoder, referred to as Sinc-SEGAN-add.
(ii) acting as the substitute of the first standard convolutional layers of the encoder and
the discriminator, and the last standard convolutional layer of the decoder, referred to
as Sinc-SEGAN-sub. Ablation tests are conducted for the influence of the input length,
number of Sinc filters, and kernel size of Sinc convolution. To train the proposed system
more efficiently, this study also employs three data augmentation methods in the time
domain.

Experimental results show that Sinc-SEGAN-sub yields enhanced signals with higher-
level perceptual quality and speech intelligibility, even with drastically reduced system
parameters. By contrast, the proposed Sinc-SEGAN-add overtakes all baseline systems
across all classic objective evaluation criteria, with up to ∼50 % fewer parameters
compared to the baseline system. Regarding to data augmentation methods, it is
worth nothing that without them, there is no distinct difference between the SEGAN
variants from Section 4.1 and the Sinc-SEGAN from Section 4.2 in terms of the system
performance or the parameter scale. However, data augmentation methods further boost
the system performance and give the Sinc-SEGAN a clear advantage over the SEGAN
variants.

Analyses of the Sinc filters reveal that the learnt filter-bank is tuned precisely to
select narrow-band speech clues and hence suitable for the speech enhancement task in
the time domain.
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5

Joint Training Techniques for
Robust Automatic Speech

Recognition

5.1 Overview

After discussing the back- and front-end techniques in Chapter 3 and Chapter 4, respec-
tively, this chapter focuses on the fusion of these two parts, namely the joint training
technique. Joint training is a advantageous integration of various components. The core
idea is to pipeline a speech enhancement (SE) and a speech recognition network as if
they were within a single bigger network to avoid the weak matching and communication
between them. The network that will be discussed in this chapter holds two highlights.
One is that it benefits from the advancement of both self-attention mechanism and GANs;
while the other is that it is an adversarial joint training with a global discriminant guide.

In recent years, attention-based end-to-end neural networks, which subsume the
acoustic and language models into a single neural network, have triggered a revolution
in the field of ASR [43, 39] and are challenging the dominance of HMM-based hybrid
systems [99]. Furthermore, the self-attention mechanism has made another breakthrough
in the innovation of the attention architecture, which considers the whole sequence at
once to model feature interactions that are arbitrarily distant in time, leading to faster
convergence and state-of-the-art results in ASR [42, 205, 269, 241, 88, 89, 200, 312, 145].
The self-attention system predicts the next output symbol conditioned on the full sequence
of the previous predictions. Once a mistake occurs in one estimation step due to noise
interference, all the subsequent steps will be disturbed. As speech signals are inevitably
interfered by various background noises in realistic environments, it is crucial to improve
the robustness of the self-attention mechanism for the practical application.

The mainstream solution to the noise robustness problem is adding an independent
speech enhancement module as the front-end of ASR. Speech enhancement aims to
transform the interfered speech to its original clean version, which is achieved by various
approaches, i.e., statistical methods such as Wiener filter [140], time-frequency masking
[173, 293, 180], signal approximation [302, 59], spectral mapping [308, 179], etc. No
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matter what approach the speech enhancement module adopts to achieve the goal, it is
trained separately from the ASR model on different loss functions (i.e., mean squared
error [58]) and evaluated by different objective criteria (i.e., CBAK [106], Segmental
SNR [211]). This mismatch between the enhancement training and the final ASR task
leads to a sub-optimum easily [251]. Moreover, the handcrafted loss functions tend to
generate over-smoothed spectra or introduce unseen distortions, which sometimes even
degrade the downstream ASR performance [295]. To obtain the optimum and circumvent
introducing unnecessary distortion, the idea of a joint training framework is proposed
for robust speech recognition [295, 26, 210, 181]. The fundamental concept of the joint
training is concatenating the speech enhancement front-end and a downstream ASR
model to build an entire neural network and jointly adjust the parameters in each module.
The goal here is that the enhancement front-end tends to produce enhanced features
desired by the ASR component, and the ASR module can guide the enhancement module
to a more discriminative direction. In this way, the joint framework is optimized on the
final ASR objectives, i.e., W/CER.

GANs aim at mapping samples x̃ from the distribution X̃ to samples x∗ from another
distribution X ∗. There are two components within GANs. One is the generator, which
performs the mapping; and the other is the discriminator, which guides the training of
the generator. GANs have been applied to various speech signal processing tasks, such
as speech enhancement [193, 256], robust speaker verification [159], spoken language
identification [254], speech emotion recognition [235], data augmentation [105], and
robust speech recognition [53].

Inspired by the advancement of self-attention mechanism and various applications of
GAN in speech-related tasks, this study proposes an adversarial joint training framework
with self-attention mechanism to boost the robustness of the self-attention ASR systems,
which consists of a self-attention speech enhancement GAN (SASEGAN) and a self-
attention end-to-end ASR model (SA ASR), which are implemented with Transformer
[54] and Conformer [82]. The discriminant component of SASEGAN is first utilized
to distinguish the enhanced features from the original clean features, instructing the
enhancement module to output the clean distribution. When it comes to the stage of
the joint training, the discriminator acts as the global training guide, and it will shift
the direction for the generator to produce more congruous features for the ASR task. As
the global guide, the discriminator is expected to remedy the limitation of the separate
training and handcrafted loss functions, alleviate the distortion, and lead the speech
enhancement component to the global optimum. Meanwhile, the enhancement module is
supposed to capture more underlying structural characteristics. With this global guide,
the whole framework is expected to learn more robust representations compatible with
the ASR task automatically. As the result, the proposed framework yields remarkable
results, which achieves relative improvements up to 66 % compared to the ASR model
trained by clean data solely, 35.1 % compared to the scheme without joint training, and
5.3 % compared to multi-condition training.
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5.2 Related Work

GANs have been applied in speech enhancement tasks without attention [193, 201,
9] and with attention [202, 126]. These works validate the functionality of GAN in
the enhancement task on diverse objective criteria; however, they lack proofs of the
effectiveness of their work for the downstream ASR task.

GANs have also been employed to improve the robustness of the ASR model [53, 259,
290, 141]. A potential limitation lies in the weak matching and communication between
the integrated modules. For instance, speech enhancement and speech recognition are
often designed independently, and the enhancement system is tuned according to metrics
that are not straightly relative to the final ASR performance.

To address this concern, joint training is a promising approach. An early attempt
was proposed in [56], where a feature extraction front-end and a GMM-HMM back-end
are jointly trained on maximum mutual information. Afterwards, other interesting works
are published in this field [295, 67, 223, 210, 207]. Nevertheless, an effective integration
between various systems has been difficult for many years, mainly due to the different
nature of the technologies involved at different steps. For example, in [295, 67], the
joint training is actually performed as a fine-tuning procedure. To tackle this problem,
this chapter deploys the discriminant component of GAN as a global guide, leading the
enhancement module to match the downstream ASR module.

5.3 Self-Attention based SE-ASR Scheme

5.3.1 Overview

Fig. 5.1 illustrates an overview of the proposed joint training framework for robust end-
to-end speech recognition pictorially. The system consists of a self-attention enhancement
front-end and a self-attention ASR model. Given the raw noisy speech input x̃ and the
raw clean input x∗, the entire procedure of the joint training pipeline can be illustrated
in the following forms:

x̂ = Generator(x̃), (5.1)

û = FBank(x̂), (5.2)

P (y|û) = SA ASR(û), (5.3)

P (D|x̂,x∗) = Discriminator(x̂,x∗). (5.4)

Here, Generator(·) acts as a speech enhancement front-end realized by the generator
component of SASEGAN [202], which transforms the noisy raw input x̃ to the enhanced
x̂. FBank(·) is a function for extracting the normalized log FBank features û from
the enhancement outputs x̂. Subsequently, SA ASR(·) is an ASR system based on
self-attention layers realized by Transformer [54] or Conformer [82] architecture. y is the
output of the whole scheme. Discriminator(·) is realized by the discriminator component
of SASEGAN [202], which distinguishes enhanced outputs from clean data.
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Generator

Fbank

ASR

Discriminator

+

Least Square 
Loss

Enhancement module

Figure 5.1: Overview of the SE-ASR joint training framework.

5.3.2 Self-Attention Speech Enhancement GANs

The concept of the self-attention mechanism, the training process of GANs, the archi-
tecture of SEGAN, and the implementation of the self-attention mechanism in SEGAN
have been introduced in Section 2.9.3.2, Section 4.1.3.1, Section 4.1.3.2, and Section
4.1.3.3, respectively. Therefore, this section only clarifies the architecture of SASEGAN
[202] in this study.

The architectures of the generator and the discriminator are depicted in Fig. 5.2 (a)
and (b). The generator makes use of an encoder-decoder architecture with fully-
convolutional layers [217]. The generator’s encoder comprises 11 1-dim stridden convo-
lutional layers with a common filter width of 31 and a stride length of 2, followed by
PReLUs [92]. The encoder receives a one-second segment of the raw signal sampled at
16 kHz, approximately 16,384 samples as the input. To compensate for the smaller and
smaller convolutional output, the number of filters increases along the encoder’s depth
{16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 1024} , resulting in output size of the feature
map {8192 × 16, 4096 × 32, 2048 × 32, 1024 × 64, 512 × 64, 256 × 128, 128 × 128, 64 ×
256, 32× 256, 16× 512, 8× 1024}. At the 11th layer of the encoder, the encoding vector
c ∈ R8×1024 is stacked with the noise sample z ∈ R8×1024, sampled from the distribution
N (0, I), and presented to the decoder.

The decoder component mirrors the encoder architecture with the same number of
filters and the filter width to reverse the encoding process through deconvolutions. The
same as the encoder, each deconvolutional layer is again followed by PReLUs. The skip
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Figure 5.2: Illustration of the SASEGAN architecture [202]. (a) the generator component.
(b) the discriminator component.
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connections are deployed to connect the encoding layer with its corresponding decoding
layer to allow the information to flow between the encoding stage and the decoding stage.

The discriminator is constructed of an architecture similar to the encoder component
of the generator. However, it receives the two-channel input and utilizes virtual batch-
norm [242] before LeakyReLU [148] activation with α = 0.3. Moreover, the discriminator
is topped up with a 1× 1 convolutional layer to reduce the dimension of the output of
the last convolutional layer from 8× 1024 to 8 for the subsequent classification task with
the softmax layer.

The self-attention layer illustrated in Section 4.1.3.3 couples with the (de)convolutional
layer of both the generator and the discriminator. Fig. 5.2 (a) and (b) demonstrate
an example of the self-attention layer coupling with the l̄th (de)convolutional layers.
As we can see, if the self-attention layer is added to the l̄th convolutional layer of the
encoder, the mirror l̄th deconvolutional layer of the decoder and the l̄th layer in the
discriminator are also coupled a self-attention layer. Theoretically, the self-attention
layer can be placed in any number, even all, of the (de)convolutional layers.

5.3.3 FBank Extraction Network

This study extracts the normalized log FBank feature û as the input of the subsequent
ASR model, which is computed from the enhanced signal x̂:

û = FBank(x̂) = Norm(log(Mel(STFT(x̂)))), (5.5)

where STFT(·) is the operation of short-time Fourier transform (STFT), Mel(·) is the
operation of Mel matrix multiplication, and Norm(·) is for normalizing the mean and
variance to 0 and 1, respectively. Consequently, the FBank feature extraction layer is
differentiable.

5.3.4 Transformer

5.3.4.1 Multi-Head Attention Mechanism

Multi-head attention mechanism [278], as the terminology implies, contains more than
one self-attention module (cf. Section 2.9.3.2). As the core module of the Transformer
[54], it leverages different attending representations jointly. Before performing each
attention, three linear projections transform the queries, keys, and values to more
discriminated representations, respectively. Afterwards, each dot-product attention is
calculated independently, and their outputs are concatenated and fed into another linear
projection to obtain the final dmodel-dimensional outputs:

MultiHead(Q,K,V ) = Concat(head1, head2, · · · , headh)WOUT, (5.6)

where
headi = Attention(QWQ

i ,KW
K
i ,VW

V
i ), 1 ≤ i ≤ h. (5.7)

h refers to the head numbers, and Q, K, V have the same dimensions of dmodel.
Four projection matrices WQ

i ∈ Rdmodel×dq , WK
i ∈ Rdmodel×dk , W V

i ∈ Rdmodel×dv , and
WOUT ∈ Rhdv×dmodel . Additionally, dq = dk = dv = dmodel/h.
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5.3.4.2 Positional Encoding

One obvious limitation of the Transformer model is that the output is invariant to the
input order permutation, i.e., the Transformer does not model the order of the input
sequence. Vaswani et al. [278] solve this problem by injecting information about absolute
positions into the input sequence via sinusoid positional embeddings:

PE(pos,dpos) =

{
sin(pos/10000dpos/dmodel)) if dpos is even

cos(pos/10000dpos/dmodel)) if dpos is odd
, (5.8)

where pos refers to the position and dpos is the dimension. The sinusoidal function allows
the model to extrapolate from long sequence lengths.

5.3.4.3 Feed-Forward Network

The feed-forward network (FFN) is another core module of the Transformer [54]. It
is composed of two linear transformations with a ReLU activation in between. The
dimensionality of the input and output is dmodel, and the inner layer has the dimensionality
dff . Specifically,

FFN(x) = max(0,xW1 + b1)W2 + b2, (5.9)

where the weights W1 ∈ Rdmodel×dff , W2 ∈ Rdff×dmodel and the biases b1 ∈ Rdff , b2 ∈
Rdmodel . The linear transformations are the same across different positions.

5.3.4.4 Network Architecture

The detailed model architecture of the ASR-Transformer [54] is as follows:
The encoder is shown in Fig. 5.3 (a). The input-embedding is for extracting expressive

representations of dimension dmodel. Thereafter, to enable the model to attend on the
auxiliary position information, the dmodel-dim positional encoding (Section 5.3.4.2) is
added to the input encoding. Then the sum of encoded outputs is fed into a stack of
Ne encoder blocks, each of which has two sub-blocks: one is the multi-head attention
(Section 5.3.4.1), receiving queries, keys, and values from the previous block; the other is
the feed-forward networks (Section 5.3.4.3). In the meanwhile, layer normalization and
residual connection are introduced to each sub-block for effective training. Thus, the
pipeline of the sub-block is:

x+ SubBlock(Layer Norm(x)). (5.10)

The decoder is shown in Fig. 5.3 (b). The output-embedding converts the character
sequence to dimension dmodel. Added with the positional encoding, the sum of them is
fed into a stack of Nd decoder blocks, which consists of three sub-blocks: The first is a
masked multi-head attention, which ensures that the predictions for position j depends
only on the known outputs at positions less than j. The second is a multi-head attention
whose keys and values come from the encoder outputs while queries come from the
previous sub-block outputs. The third is also feed-forward networks. Similar to the
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Figure 5.3: Model architecture of the Transformer. (a) Encoder (b) Decoder [54]

encoder, layer normalization and residual connection are also employed to each sub-block
of the decoder. Eventually, the output probabilities are acquired by a linear projection
and a subsequent softmax function.

5.3.5 Conformer

Conformer [82, 83] is a state-of-the-art ASR encoder architecture. Different from the
Transformer block (as described in Section 5.3.4), it is equipped with a convolution
layer to increase the local information modeling capability of the Transformer encoder
model [278] and a pair of FFN modules sandwiching the multi-head self-attention module
and the integrated convolution module. The Conformer model consists of a Conformer
encoder proposed in [82] and a Transformer decoder [54]. The encoder first processes the
input with a convolution subsampling layer and then with Conformer blocks, as illustrated
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Figure 5.4: Illustration of the Conformer encoder model architecture. (i) Conformer
encoder architecture. (ii) Conformer block architecture. (ii-a) Convolution module of
the Conformer block. (ii-b) Multi-headed self-attention module of the Conformer block.
(ii-c) Feed forward module of the Conformer block.

in Fig. 5.4 (i). The Conformer block (Fig. 5.4 (ii)) consists of a multi-head self-attention
module (MHSA), a convolution module, sandwiched by a pair of Macaron-feedforward
module [144]. The layer normalization is applied before each module and the dropout is
followed by a residual connection afterwards (pre-norm) [322, 291]. Mathematically, let
xi be the input to the ith Conformer block, the output yi of this block is:

x′i = xi +
1

2
FFN(xi), (5.11)

x′′i = x′i + MHSA(x′i), (5.12)

x′′′i = x′′i + Conv(x′′i ), (5.13)

yi = Layer Norm(x′′′i +
1

2
FFN(x′′′i )). (5.14)

FFN(·), MHSA(·), Conv(·), and Layer Norm(·) denote the Macaron-feedforward module,
the multi-head self-attention module, the convolution module, and the layer normalization
module, respectively. The multi-head self-attention module is the same as in Section
5.3.4.1 and is demonstrated in Fig. 5.4 (ii-b). Sections 5.3.5.1 and 5.3.5.2 will introduce
the convolution module and the Macaron-feedforward module, respectively.

5.3.5.1 Convolution Module

Fig. 5.4 (ii-a) demonstrates the details of the convolution module. The convolution
module starts with a 1-dim pointwise convolution layer and a gated linear units (GLU)
activation [50]. The 1-dim pointwise convolution layer doubles the input channels,
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and the GLU activation splits the input along the channel dimension and executes an
element-wise product. What follows are a 1-dim depthwise convolution layer, a batch
normalization layer, a Swish activation, and another 1-dim pointwise convolution layer.
As mentioned before, the layer normalization is applied before each module and the
dropout is followed by a residual connection afterwards (pre-norm).

5.3.5.2 Macaron-Feedforward Module

Unlike the FFN module in Transformer encoder [54], which comprises two linear trans-
formations with a ReLU activation in between (Eq. 5.9), the Conformer encoder [82]
introduces another FFN module and substitutes the ReLU activation with the Swish
activation. Furthermore, inspired by Macaron-Net [144], this pair of FFN modules are
following a half-step scheme and sandwiching the MHSA and the convolution modules.
The detail of the FFN is illustrated in Fig. 5.4 (ii-c).

5.4 Adversarial Joint Training

GANs map samples x̃ from the distribution X̃ to samples x∗ from another distribution
X ∗. The generator is tasked to learn an effective mapping that can imitate the real
data distribution to generate novel samples from the manifold defined in X ∗, by means
of an adversarial training exerted by the discriminator. During back-propagation, the
discriminator classifies real samples from the fake samples more accurately; in return,
the generator updates its parameters towards the real data manifold, till the mixed Nash
equilibria are reached [74]. For more details of the adversarial training, please refer to
Section 4.1.3.1 and references therein.

In the proposed robust end-to-end speech recognition scheme, the discriminant
network first acts as the local guide for the enhancement module, where the discriminator
shifts the training of the generator towards the distribution of clean data; thereafter, it
is deployed as the global guide for the whole scheme, where the discriminator instructs
the generator to output pertinent enhanced data for the subsequent ASR task.

This work first trains the enhancement module, which contains both the generator
and the discriminator. To solve the problem of vanishing gradients caused by sigmoid
cross-entropy loss for training, the least-squares GAN (LSGAN) with binary coding (1
for real, 0 for fake) is utilized instead of the cross-entropy loss. Consequently, the loss
function of the discriminator component changes to

min
D
L(D) =

1

2
Ex∗,x̃∼pdata(x∗,x̃)[D(x∗, x̃)− 1]2+

1

2
Ez∼pz(z),x̃∼pdata(x̃)[D(G(z, x̃), x̃)]2,

(5.15)

where z is a latent variable. To minimize the distance between its generations and the
clean examples, it is beneficial to add a secondary component to the loss of the generator.
Inspired by the effectiveness of L1 norm in the image manipulation domain [111, 197],
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this study deploys it in the generator to gain more fine-grained and realistic results. The
magnitude of the L1 norm is controlled by a new hyper-parameter λ. Hence, the loss
function of the generator component becomes

min
G
L(G) =

1

2
Ez∼pz(z),x̃∼pdata(x̃)[D(G(z, x̃), x̃)− 1]2

+ λ ‖ G(z, x̃)− x∗ ‖1 .
(5.16)

In the joint training, the enhancement module is initialized from the trained generator
component, while the global discriminant module is initialized from the trained discrim-
inator component. The training of the ASR component is based on the cross-entropy
criterion, namely

Lasr = −lnP (y∗|u) = −
∑
n

lnP (y∗n|u,y∗1:n−1), (5.17)

where y∗ is the ground truth of a whole sequence of output labels and y∗1:n−1 is the
ground truth from output step 1 to n − 1. u is the extracted normalized log FBank
features by Eq. 5.2. In the proposed framework, the parameters of all procedures, e.g.,
enhancement, feature extraction, ASR, and the discriminant network, are updated by
stochastic gradient descent calculated by the loss function of the whole scheme. It is
composed of three losses: Lasr, Lenh, and Lgan, which correspond to Eqs. 5.17, 5.16, and
5.15, i.e.,

L = Lasr + ζLenh + ρLgan, (5.18)

where ζ and ρ are two hyper-parameters weighting the magnitude of the enhancement
loss and adversarial loss. Notably, the scheme targets the recognition performance, and
the loss function of the discriminant network adapts the enhancement module implicitly.
As a result, the discriminant network guides the enhancement module to serve the
subsequent ASR task more properly. Accordingly, the unnecessary speech distortion
caused by the enhancement process is alleviated.

5.5 Experimental Setups

This study systematically evaluates the robustness of the adversarial joint training
framework, and ablation tests are conducted to validate the effects of (i) the enhancement
front-end on the ASR task, (ii) the joint training on the whole scheme, and (iii) the
GAN on the joint training.

5.5.1 Corpus

All experiments are executed on the open source Mandarin speech corpus, AISHELL-1
[35]. This corpus is 178 h long, and its utterances contain 11 domains, e.g., smart home,
autonomous driving, industrial production, etc. 400 speakers from different accent areas
in China participate in the recording. The corpus is divided into training, development,
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and test sets. The training dataset contains 120,098 utterances from 340 speakers, the
development dataset contains 14,326 utterances from 40 speakers, and the test dataset
contains 7,176 utterances from 20 speakers.

For the noisy data, this study contaminates clean utterances in AISHELL-1 with
9 sorts of intrusions from the NOISEX-92 dataset [276] artificially as noisy utterances.
The noisy training, development, and test sets are created in the same manner. Note
that besides the “matched” noisy test set, which is contaminated by the same intrusions
as the training dataset, this study also corrupts the test set with the rest 5 sorts of
intrusions in the NOISEX-92 dataset as “unmatched” test materials. Table 5.1 exhibits
the sorts the intrusions mixed in “match” and “unmatch” cases. All utterances are
mixed with the intrusions at SNRs randomly sampled between [0dB, 20dB]. To sum up,
there are two sorts of datasets for training:

• Clean: Clean utterances from the training dataset of AISHELL-1.

• Match: Contaminated clean utterances (training dataset) with “matched” noises
of Table 5.1.

For test datasets, there are:

• Clean: Clean utterances from the test dataset of AISHELL-1.

• Match: Contaminated clean utterances of the test set with the same intrusions
(“matched” noises of Table 5.1) as “matched” training set.

• Unmatch: Contaminated clean utterances of the test set with different intrusions
(“unmatched” noises of Table 5.1) from “matched” training set.

5.5.2 Baseline

For the comparison purpose, the competitive work from [26] is taken as the baseline
model.

The mask-based enhancement network is deployed as the front-end. It estimates a
masking function to multiply the frequency-domain feature of the noisy speech to form
an estimate of the clean speech. For the ASR task, the ESPnet model [296] is employed.
It consists of an encoder network that maps the input feature sequence into a higher-level
representation. Then a location-based attention layer integrates the representation into
a context vector with the attention weight vector. In the end, the decoder predicts the
next output conditioned on the full sequence of previous predictions. Besides, there is
an extra discriminant network, whose loss is weighted in the loss function of the whole
scheme to optimize the joint training.

Importantly, the baseline model does not contain any self-attention layer. Furthermore,
the discriminant work in the baseline model is an extra auxiliary module, which does
not participate in the enhancement training directly. By contrast, this work benefits
from self-attention mechanism and the discriminant module exits innately, which is a
component of the enhancement front-end. It acts as the local guide for the enhancement
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training, leading the enhancement network to output towards the distribution of the
clean samples. Simultaneously, it also plays the role of the global guide, instructing the
enhancement module and the ASR module to be better matched.

Table 5.1: The demonstration of categories of intrusions utilized in “match” and “un-
match” cases.

match

Intrusion Description

White Noise Analog noise generator

Factory Floor Noise 1 Plate-cutting and electrical welding

Cockpit Noise 1 Buccaneer jet traveling at 190 knots

Cockpit Noise 3 F-16

Engine Room Noise Destroyer

Military Vehicle Noise Leopard 1 vehicle

Machine Gun Noise Gun

Vehicle Interior Noise Volvo 340

HF Channel Noise HF radio channel

unmatch

Intrusion Description

Pink Noise Analog noise generator

Factory Floor Noise 2 Car production hall

Cockpit Noise 2 Buccaneer jet traveling at 450 knots

Operations Room Background Noise Destroyer

Military Vehicle Noise M109

5.5.3 Configurations

5.5.3.1 Baseline

For the enhancement front-end, the input is the 257-dim logarithmic STFT features,
and all input vectors are normalized to have the zero mean and the unit variance. The
network is composed of 3-layer LSTM with 128 nodes, followed by a linear layer with the
sigmoid activation function. The network outputs the masking estimate, whose size is
equal to the input size, multiplying by the STFT feature of the noisy speech to estimate
the clean speech.

For the ASR network, the input is the 80-dim normalized log FBank features trans-
formed from the enhanced STFT features. The encoder is composed of 4-layer BLSTM
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with 320 cells, while the decoder is composed of 1-layer unidirectional LSTM with 320
cells. After each BLSTM layer, a linear projection layer with 320 nodes is used to combine
the forward and backward LSTM outputs. The location-based attention mechanism
comprises 10 centered convolution filters of width 100. Besides, this study also adopts a
joint CTC-attention multitask loss function [120] with the CTC loss weight as 0.1.

The discriminant network consists of a 4-layer convolution network, each of which is
followed by the ReLU activation function [172].

For decoding, this work [26] uses a beam search algorithm with the beam size 12.
CTC rescores the hypotheses with 0.1 weight [120]. Besides, an external RNN language
model is also adopted with 0.2 weight during decoding.

5.5.3.2 The Proposed Joint Training Scheme

SASEGAN SASEGAN [202] is trained for 86 epochs with RMSprop [270] and a
learning rate of 0.0002. The batch size is 50. During training, this study extracts
1-second chunks of raw waveforms (L = 16, 384 samples) with a 50 % overlap. During the
test, the window is slid without overlapping through the whole duration of test utterances
and the outputs are concatenated at the end of the stream. During both training and
test, a high-frequency preemphasis filter is employed with a coefficient of 0.95 to all
inputs. For the self-attention layer in SASEGAN, this work sets b = 8 and p = 4 for
memory reduction. Phan et al. [202] suggest that the placement of the self-attention
layer does not show a clear difference on the performance, which indicates that applying
the self-attention to the higher-level (de)convolutional layer is expected to be as good as
to a lower layer. Compromising between the computation time and memory requirement
and the performance, the self-attention layer is placed in the 10th layer (l̄=10).

FBank extraction network The FBank feature extraction network is a linear layer
to transform the raw outputs from the upstream SASEGAN to the downstream ASR
procedure. 80-dim filterbanks are extracted with the window size of 25 ms and the
window shift of 10 ms, extended with the temporal first- and second-order differences.
Thereafter, the logarithmic calculation and the global mean and variance normalization
are performed according to Eq. 5.5.

Transformer For training the Transformer [54], the Adam optimizer is adopted [121]
with β1 = 0.9, β2 = 0.98, ε = 10−9, and vary the learning rate over the course of training
according to the formula:

lr = $ · d−0.5
model ·min(τ−0.5, τ × warmup−1.5

τ ), (5.19)

where τ denotes the step number. $ is a tunable scalar, which is set to be 10 initially and
is declined to 1 when the model converges. The learning rate increases linearly during
the first warmupτ = 25000 steps, and afterwards, it decreases proportionally to the
inverse square root of the step number. The residual dropout is applied to each sub-block
before adding the residual information, while the attention dropout is performed on
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the softmax activation in each attention. Both of these aforementioned dropouts are
set to be 0.1. Additionally, this work guides the system to be more attentive on closer
positions by punishing the attention weights of more distant position-pairs. Similar to
the baseline model, a joint CTC-attention multi-task loss function is also adopted [120],
with the CTC loss weight as 0.3. In the decoding, the beam size is set to be 12 and
length penalty η to be 1.0 [304]. Besides, an external RNN language model with 0.3
weight is also integrated. The training procedure is stopped after 30 epochs.

Conformer The model hyper-parameters of the Conformer [83] are: Ne=12, Nd=6,
h=4, dk=256 and dff=2048. The convolution subsampling layer possesses a 2-layer
CNN with 256 channels, stride with 2, and kernel size with 3. The kernel size of the
convolution module is 31. The dropout is applied in each residual unit of the Conformer
with the weight 0.1. The same as Transformer, the Conformer is trained with the Adam
optimizer [121] with β1 = 0.9, β2 = 0.98, ε = 10−9 and a Transformer learning rate
schedule [278] with 10000 warm-up steps. The learning rate is peaked at 0.05/

√
dc,

where dc is the model dimension in the Conformer encoder. Please note that neither the
speed perturbation [125] nor SpecAugment [191] for the data augmentation is included to
exclude extra tricks that could cause performance improvements. The training procedure
is stopped after 30 epochs.

5.6 Results

CER is utilized to quantify the system performance in all experiments. This study
reports CER of the AISHELL-1 test set on three conditions: “clean” refers to the original
clean test dataset of the corpus, “match” denotes the noisy test dataset contaminated
by “matched” sorts of intrusions in Table 5.1, and “unmatch” means the noisy test
set corrupted by the rest of “unmatched” sorts of intrusions in Table 5.1. To validate
the efficacy of the enhancement front-end, this study also introduces multi-condition
training (MCT), a popular training strategy for robust speech recognition, for comparison.
Different from the training data generation of the speech enhancement front-end, the
training data of MCT contains 10 % clean utterances that are chosen randomly from the
training set of AISHELL-1. Except for the 10 % partition, the remaining 90 % of the
training data is generated in the same manner as that of the enhancement front-end,
namely being corrupted by the “matched” intrusions from Table 5.1 at an SNR in the
range [0dB, 20dB].

Firstly, this study trains the ASR network with the original clean utterance and MCT
strategy. The results are shown in Table 5.2.

Ranking these three models from the aspect of ASR performance, the first is Con-
former, then Transformer, and the last is the baseline model, consistent with observations
in [54, 82]. However, their performance deteriorates rapidly in the noisy test set, demon-
strating the necessity of the robustness investigation. The MCT training considerably
improves the system’s robustness. Its performance on the “matched” test set outperforms
the clean training by 63.2 % and 62.9 % relative, in cases of Transformer and Conformer
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Table 5.2: CER[%] results of ASR system trained by clean data and multi-condition
training (MCT) without the enhancement.

ASR Training
CER[%]

clean match unmatch

baseline
clean 14.0 60.0 61.6

MCT 14.6 20.8 27.3

Transformer
clean 8.0 35.6 37.1

MCT 7.8 13.1 16.2

Conformer
clean 6.5 32.6 31.7

MCT 6.9 12.1 13.7

model, respectively; while on the “unmatched” dataset, it outperforms the clean training
by 56.3 % and 56.8 % relative, in cases of Transformer and Conformer model, respectively.

Table 5.3: The impacts of the enhancement front-end on ASR systems trained by clean
data and MCT strategy. Results are in CER[%].

ASR Training
CER[%]

clean match unmatch

baseline
clean 13.9 25.8 53.8

MCT 14.9 23.5 34.3

Transformer
clean 8.1 19.1 33.7

MCT 7.9 14.9 20.7

Conformer
clean 6.5 17.6 28.8

MCT 7.0 14.2 17.9

Secondly, this study trains SASEGAN with the training data contaminated by
“matched” intrusions in Table 5.1 to enhance the noisy speech. Then the enhanced features
are used for the downstream ASR task. Importantly, the ASR models are taken over
from the same well-trained model as in Table 5.2, which means that the enhancement
front-end and the ASR back-end are trained separately by different objectives. As
exhibited in Table 5.3, the enhancement module tremendously improves the performance
of the ASR component that is trained by the clean data merely. Compared to Table
5.2, it outperforms all of the three ASR modules (baseline, Transformer, Conformer)
without the enhancement front-end. The improvement achieved in the “matched” dataset
is more remarkable than that achieved in the “unmatched” test set. For instance, it
outperforms the Conformer without the enhancement module by 46.0 % in the “matched”
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test set while 9.1 % in the “unmatched” test set. This difference is due to the fact
that SASEGAN is trained with the “matched” intrusions and can enhance the data
contaminated by the same intrusions better during the test. All these improvements
confirm the efficacy of the enhancement module for improving the robustness of the
ASR system. Nevertheless, improving the robustness of the framework in unseen noisy
environments still remains to be a challenge. Additionally, the speech enhancement
module deteriorates the performance of ASR MCT networks, which stays in accordance
with the observations in [53] and [174]. Donahue et al. [53] and Narayanan and Wang
[174] hypothesize that the enhancement front-end might be introducing hitherto-unseen
distortions that compromise performance. Furthermore, the author believes that this
latent distortion is derived from the independent training of the enhancement module,
demonstrating the necessity of the joint training strategy.

Table 5.4: CER[%] results of the SE-ASR system retraining with and without noisy
features.

ASR Retraining
CER[%]

clean match unmatch

Transformer MCT

no 7.8 13.1 16.2

enhanced 7.8 12.9 15.8

enhanced+noisy 7.8 12.9 15.6

Conformer MCT

no 6.9 12.1 13.7

enhanced 6.7 12.0 13.5

enhanced+noisy 6.7 11.8 13.3

To remedy the deterioration of the performance of the ASR MCT, this study retrains
the network with the enhanced features. Assuming that the network may also benefit
from the knowledge of the noisy features, this study also experiments with ingesting
both enhanced and noisy features. Results are displayed in Table 5.4. Either the
Transformer MCT model or the Conformer MCT model is initialized from their existing
well-trained MCT checkpoints respectively, setting the additional parameters to zero
to ensure the fair training start. As presented in Table 5.4, the retraining with the
enhanced features improves the performance in both “matched” and “unmatched” cases,
and the retraining with both enhanced and noisy features improves the performance
slightly further.

Lastly, this study jointly trains the whole scheme with and without adversarial training
according to Eq. 5.18. In the framework, the enhancement front-end is initialized
from the generator (G component) of SASEGAN, the ASR back-end is initialized
from the corresponding ASR MCT checkpoint (without retraining), and the adversarial
module is initialized from the discriminator (D component) of SASEGAN. When the
adversarial module does not participate in the training, the magnitude of the loss
function are set as ζ=6.0 and ρ=0; by contrast, when it participates in the training, this
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Table 5.5: The impacts of the joint training with and without GAN on SE-ASR pipeline.
Results are in CER[%].

SE ASR joint training with GANs
CER[%]

clean match unmatch

SASEGAN

baseline
no 12.8 18.7 25.3

yes 12.8 18.7 24.8

Transformer
no 7.0 12.4 15.6

yes 7.2 12.4 15.5

Conformer
no 6.8 11.9 13.3

yes 6.9 11.8 13.0

work sets ζ=6.0 and ρ=3.0. Results are presented in Table 5.5. Compared to Table
5.2, the joint training mitigates the distortion problem existing in the MCT strategy.
Additionally, the adversarial joint training improves the performance further; and exceeds
the performance of retraining with both enhanced and noisy features in either Transformer
or Conformer case. Taking Conformer for example, compared to Conformer trained with
clean data merely, the adversarial joint training yields 63.8 % relative and 59.0 % relative
improvements on “matched” and “unmatched” datasets, respectively; meanwhile, the
adversarial joint training outperforms the MCT strategy by 2.5 % relative and 5.2 %
relative on “matched” and “unmatched” datasets, separately. These results indicate the
efficacy of the adversarial joint training in improving the robustness of the end-to-end
ASR scheme.
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Figure 5.5: The performance comparison of the enhancement model trained independently
and the enhancement models trained jointly with the baseline ASR model without and
with GAN.
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Figure 5.6: The performance comparison of the enhancement model trained independently
and the enhancement models trained jointly with Transformer ASR model without and
with GAN.
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Figure 5.7: The performance comparison of the enhancement model trained independently
and the enhancement models trained jointly with Conformer ASR model without and
with GAN.

5.7 Discussion

To analyse the difference between these enhancement modules that are trained inde-
pendently, jointly without GANs, and jointly with GANs, this study quantifies their
performance on the five classic objective criteria of speech enhancement: SSNR [211],
CBAK [106], CSIG [106], COVL [106], and PESQ [225] (For more details, please refer to
Section 4.1.4.2).

All criteria are computed based on the implementation in [142], available at the
publisher website1. This study quantifies the performance of the enhancement front-end

1https://www.crcpress.com/downloads/K14513/K14513 CD Files.zip
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that is trained independently, trained jointly with and without GANs in cases of baseline,
Transformer, and Conformer schemes. As exhibited in Figs. 5.5, 5.6, and 5.7, the joint
training slightly degrades the enhancement module’s performance on SSNR, CBAK,
COVL, CSIG, and PESQ generally. These results suggest that these objective criteria
cannot indicate the suitability of the enhanced data for ASR task, which vindicates
that it is hard for independent training to lead the enhancement module to the global
optimum. Another phenomenon which is worth noting is that the discrepancies on CBAK
and SSNR suggest that there are conflicts between erasing the noise contamination and
averting the speech distortion. Therefore, an equilibrium between these two goals should
be sought. The experimental results in Section 5.6 validate the efficacy of the adversarial
joint training with a global discriminant guide for reaching the equilibrium point.

Table 5.6: Evolution of performance in unmatched test dataset of Conformer along the
value of ζ and ρ.

ζ (ρ = 0) 4 5 6 7

CER[%] 15.7 13.9 13.3 13.8

ρ(ζ = 6) 1 2 3 4

CER[%] 14.5 14.9 13.0 13.9

Besides, this study also conducts ablation tests for the values of ζ and ρ and the
results are shown in Table 5.6. The results explain why this work sets the magnitude of
the loss function to ζ=6.0 and ρ=0 for the joint training without GAN; and sets ζ=6.0
and ρ=3.0 for the adversarial joint training experiments.

5.8 Summary

This chapter concentrates on the joint training technique, and presents an adversarial
joint training framework with the self-attention mechanism to boost the noise robustness
of the end-to-end ASR system. The jointly compositional scheme is a fusion of the
back- and front-end techniques, and in this chapter, it consists of an enhancement
front-end, an ASR back-end, and the discriminant network. A highlight of this proposed
framework is that the discriminant component first acts as the guide of the enhancement
front-end training; afterwards, it participates in the adversarial joint training as the
global instructor, which leads the enhancement front-end to output appropriate enhanced
features for the downstream ASR task. Experimental results validate the efficacy of the
proposed adversarial joint training strategy.
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6

Conclusion and Outlook

Following years of research, ASR has made significant breakthrough and achieved
even human-comparable performance. However, existing ASR systems still suffer from
performance degradation in adverse environments, limiting their performance in everyday
situations. Therefore, improving robustness of ASR systems is a crucial step towards
flexible human-machine interfaces. Techniques of robust ASR can be categorized into
three clusters: back-end, front-end, and joint front- and back-end techniques, according
to the processing stages of an ASR pipeline. This thesis has contributed to each stage by:
(i) proposing the deep neural fenonic baseform growing, a novel approach to optimize
HMM-based back-end for robust speech recognition; (ii) proposing two novel lightweight
GAN-based architectures to optimize the speech enhancement front-end; (iii) proposing
adversarial joint training framework for robust end-to-end speech recognition. Each
contribution has been fully introduced and discussed in a separate chapter.

In this chapter, Section 6.1 summarizes the aforementioned contributions of this
thesis, and potential directions for future work will be discussed in Section 6.2.

6.1 Summary and Discussions

After an introduction of the general research background, challenges, and related works
in Chapter 1, the general framework of automatic speech recognition is introduced
in Chapter 2. Chapters 3, 4, and 5 introduce back-end, front-end, and joint-training
techniques, respectively. The main contributions of this thesis can be summarized as
follows:

Proposing the deep Neural Fenonic Baseform Growing (NFBG) approach.

NFBG is an approach to optimize the HMM structure, leveraging deep learning. This
study introduces the concept fenone for representing sub-phones as the basic acoustic
unit. Fenones are the building block of phones and each fenone is modeled as one state
of HMMs, which can be obtained automatically through the deep neural network vector
quantizer (DNNVQ) (cf. Section 3.3). NFBG starts with aligning all data against
different phones (cf. Section 3.4.2) and then applies DNNVQ on each phone’s data.
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Next, a DNNVQ generates the fenone labels for every phone, and accordingly, the fenone
sequence of every HMM model is obtained. After compacting the fenone sequence to
the fenonic baseform by eliminating all successive duplicated fenones, the customized
HMM topology of the phone is gained (cf. Section 3.4.3). The comparison among
elementary Markov models is also given (cf. Section 3.4.4). Experiments are exerted
on Tedlium and TIMIT to evaluate the proposed approach. Firstly, fenonic baseform
results of each monophone in Tedlium and TIMIT are given and analyzed in Section
3.6. Next, ablation tests are conducted on the effects of the elementary HMM topology
of the fenone (cf. Section 3.7.1) and the number of DNNVQ prototypes (cf. Section
3.7.2). Thereafter, experimental results show that NFBG-based HMMs improve ASR
performance in monophone systems (cf. Section 3.7.3), systems with context-dependent
inputs (cf. Section 3.7.4), and triphone systems (cf. Section 3.7.5). Last but not least,
the efficacy of NFBG for improving robustness of ASR systems is validated (cf. Section
3.7.6).

Proposing the lightweight self-attention augmented GANs for speech en-
hancement.

Inspired by previous works on speech enhancement GANs (SEGANs), and recent studies
on the relation between convolutional layers and self-attention mechanism, this thesis
presents a series of SEGANs equipped with the self-attention mechanism in three
manners: first, this thesis deploys the stand-alone self-attention layer in SEGAN (cf.
Section 4.1.3.3). Next, the study employs locality modeling on the stand-alone self-
attention layer (cf. Section 4.1.3.4). Finally, the thesis investigates the functionality
of the self-attention augmented convolutional SEGAN (cf. Section 4.1.3.5). The goal
here is to probe the performance of the SEGAN equipped (i) with stand-alone standard
self-attention layers, (ii) with stand-alone hybrid (global and local) self-attention layers,
and (iii) with self-attention augmented convolutional layers. In addition, the parameter
scales of these proposed models are also calculated. Systematic experimental results
reveal that equipped with the stand-alone self-attention layer, the proposed system
outperforms baseline systems in terms of various objective evaluation criteria with
up to 95 % fewer parameters. In addition, the locality modeling on the stand-alone
self-attention layer delivers further performance improvements without any parameter
incrementation. Moreover, the self-attention augmented SEGAN outperforms all baseline
systems and achieves the best results on SSNR and STOI of this work, with acceptably
increased parameters (cf. Section 4.1.5).

Proposing the lightweight end-to-end GANs using Sinc-convolution for speech
enhancement.

Sinc convolution [221] is proposed to learn more meaningful filters in the input layer.
However, the implementation of Sinc convolution on speech enhancement tasks is still
under-explored. This study aims to transfer the success achieved by the Sinc convolution
in the field of speech and speaker recognition to the field of end-to-end speech enhancement.
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To achieve this goal, this thesis first optimizes the SEGAN architecture from the seminal
work [193], and then enhances the original Sinc convolution layer to fit the advanced
SEGAN (cf. Section 4.2.4). Ablation tests are exerted on the configuration of Sinc
convolution, including the number of Sinc filters, the kernel size, the input length, and
the placement of Sinc convolution layers (cf. Section 4.2.6.1). Experimental results show
that the proposed Sinc-SEGAN overtakes a set of competitive baseline models, especially
on higher-level perceptual quality and speech intelligibility. Additionally, the system
parameters reduce drastically up to merely 17.7 % of the baseline system (cf. Section
4.2.6.2). Moreover, data augmentation methods further boost the system performance
(cf. Section 4.2.6.3). Analysis of the learnt Sinc filters reveals that the learnt filter-bank
is tuned precisely to select narrow-band speech clues, and hence suitable for the speech
enhancement task in the time domain (cf. Section 4.2.6.4).

Proposing self-attention based adversarial joint training framework for ro-
bust end-to-end speech recognition.

To obtain the global optimum and circumvent unnecessary distortion introduced by
independent training of the front- and back-ends, this study proposes an adversarial
joint training framework with self-attention mechanism to boost the robustness of the
end-to-end ASR systems, which consists of a self-attention speech enhancement GAN
(SASEGAN) (cf. Section 5.3.2) and a self-attention end-to-end ASR model (SA ASR)
(cf. Section 5.3.4 and Section 5.3.5 ). There are two advantages which are worth noting
in this proposed framework. For one thing, it benefits from the advancement of both
self-attention mechanism and GANs for the first time. For another, the discriminant
component does not concentrate on the enhancement front-end exclusively, but also
plays the role of the global discriminant network in the stage of the adversarial joint
training, which guides the enhancement front-end to capture more compatible structures
for the subsequent ASR module and thereby offsets the limitation of the separate training
and handcrafted loss functions (cf. Section 5.4). Experimental results show that on
the artificial noisy test set, the proposed framework achieves the relative improvements
of up to 66 % compared to the ASR model trained by clean data solely, up to 35.1 %
compared to the speech enhancement & ASR scheme without joint training, and up
to 5.3 % compared to multi-condition training (cf. 5.5). Moreover, the impacts of the
joint training on the speech enhancement training are also analyzed (cf. Section 5.7).
Based on all the results, it is safe to draw the conclusion that with the adversarial joint
optimization, the proposed framework learns more robust representations suitable for
the ASR task.

6.2 Directions for Future Works

Robust speech recognition has always been a challenge for flexible human-machine
communication. This thesis aims to address this issue by optimizing the ASR system
itself, the auxiliary speech-enhancement front-end, and the training strategy of the whole
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scheme. However, the accomplished work reaches only the tip of the iceberg of the robust
ASR study, and here are several promising future directions where the further research
can proceed.

To begin with, microphone arrays and multi-channel processing techniques also
play a significant role in the development of robust ASR. The primary approach of
microphone-array techniques is acoustic beamforming. Namely, spatio-temporal filters
operate on the outputs of microphone arrays and convert them to single-channel signals
while amplifying the waveform from the desired direction and attenuating the noise from
other directions. The beamformer outputs are often further enhanced by a microphone
array post-filter, and thereafter, the back-end techniques for single-channel speech can
be applied to this enhanced data for speech recognition. For future studies, it would be
interesting to consider microphone-array approaches and extend the proposed techniques
to integrate them, e.g., the Direction-of-Arrival (DOA) estimator and the Delay-and-Sum
(DS) beamforming approach [274].

Another special research direction, adversarial examples, has been drawing more
and more attention. Adversarial samples were first proposed by Szegedy et al. [264]
in image classification. The authors find that a formerly correctly classified example
could be misclassified easily by a neural network if the image pixels are only slightly
skewed from the original ones, even unnoticeable to humans. This kind of perturbation
is called adversarial perturbation. Experimental results show that many state-of-the-art
deep learning models are vulnerable to such adversarial examples [164, 127, 163, 4, 37].
The existence of adversarial examples indicates that there are blind spots in the input
space. In other words, the models are unsmooth because a tiny perturbation in input
space could trigger a drastic change in the output space. Plenty of attempts have
been executed on improving the robustness of ASR system against adversarial test
samples [75, 112, 209, 176]. Therefore, one direction in this line can be generating and
implementing adversarial samples in the training of proposed systems to make them
invariant to adversarial perturbation. As the result, the overall robustness of ASR
systems will be improved accordingly.

Last but not least, unsupervised learning is a natural way to mitigate the performance
degradation of ASR systems due to substantial mismatches existing between training and
test conditions. Unsupervised learning attempts to extract knowledge from unlabeled
data, and can potentially discover representations that capture the underlying structure
of such data. Several approaches have been proposed for unsupervised learning in the last
decade. Notable examples are deep autoencoders [24], restricted Boltzmann machines
[100], variational autoencoders [122], and generative adversarial networks [74]. A related
sub-field of unsupervised learning is self-supervised learning, where targets are computed
from the signal itself [52, 72]. Pascual et al. [195] propose to jointly tackle multiple
self-supervised tasks using an ensemble of neural networks that cooperate to discover
good speech representations, named the problem-agnostic speech encoder (PASE). Since
the proposed approach imposes several constraints into the learnt representations, it is
more likely to learn general, robust, and transferable features, and less likely to focus
on superficial features of the signal which may be sufficient for the given training data
but are insufficient when considering broader types of data. Another related sub-field
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is domain adaption. Ghorbani et al. [71] study several domain expansion techniques
which exploit only the data of the new domain to build a stronger model for all domains.
These techniques are aimed at learning the new domain with a minimal forgetting effect
(i.e., they maintain original model performance). One direction of future work can be
leveraging problem-agnostic speech representations and domain expansion to make ASR
systems more robust across all acoustic conditions.

This thesis has investigated techniques of the back-end, front-end, and the joint
training of the whole ASR framework for robust speech recognition. Hopefully, the
community can benefit from this work. Although combining human and machine
intelligence to improve the ASR system robustness in every acoustic condition is still a
long way off, the proposed algorithms may inspire future works.
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