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Abstract

Many research efforts in the fields of Scan-to-BIM and Scan-to-Floorplan have been focusing on automating the solutions in a
stepwise manner. These limited approaches lead to improving the quantitative results of a single step, not the overall process. The
challenge of covering a large variety of use-cases with a vast diversity of building element classes requires robust, modular, and
configurable techniques. This paper proposes an end-to-end method covering all the steps from raw input scan data to two different
output formats: A smart 2D instance floor plan and a 3D model. As a use case, the floorplan and the 3D model of typical office
space are reconstructed and all the various, yet modular techniques along the way are presented. The results of the paper are
demonstrated as metrics for a publicly available benchmark dataset, along with a discussion and an outlook for possible further
development of each component.
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1 Motivation

As-is BIM as a step towards full Digital twins can provide the digital
replica of existing assets in which all the gathered data from the
construction site can be imported. These models also facilitate the
operation and management process of existing structures. Despite |
these advantages, digitalization still requires spending plenty of time. -

This is mainly due to the long lifecycle of the existing assets and the point label predictions
challenges of the manual digital twinning process. La.selj scanning apd Method 1 ‘ Method 2
photogrammetry are methods that can capture the building assets with ;== v A :
high accuracy in little time [1, 2, 3]. However, using scans and : - ] i :
transferring the resultant point cloud data to useful digital content is : line detection 2D A 4
tedious and labor-intensive. The research field of Scan-to-BIM aims to ~ : -
investigate potentials of automating different parts of this process. In
some cases, the technical limitations of either the processing toolchain  :| room separation 2D
or the input data might let the stakeholders favor a smart 2D '~ T & | =
representation rather than a 3D BIM format. PDF or SVG floor plans R

where each building element instance is denoted and callable over a
unique identifier can, in this case, offer a good alternative to a full 3D
BIM model. In other cases, the 3D as-is BIM models can provide a better
basis for digitalization and visualization. With the dataset of the
CV4AEC challenge! recently made available, we make use of one of the
most extensive publicly available datasets. The variety of input data in
its sheer extent made it possible for us to combine diverse approaches.
Figure 1 shows the guiding thread of this paper and summarizes the
end-to-end workflow.
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Figure 1: High-level workflow overview

! https://cv4aec.github.io/
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2 Overview

Thanks to the variety of input data available in the dataset, we were able to test a diverse selection of approaches for every single
step in the toolchain. We introduce the choices we made in this project and include possible alternatives and potentials for
improvement for each one in the discussion section. This project was conducted in the framework of an official workshop on the
topic of Scan-to-BIM and Scan-to-Floorplan, therefore we limited our data usage to the data provided by the hosts and formulated
our targets in accordance to the given rules, which are introduced in short in the paragraph below.

Data input & requirements

Table 1: Overview of the utilized training dataset

building area | MedOffice F3 MedOffice F2 | OfficeLab Facility MedOffice B | MedOffice F1 | total
area m2 2284 3’804 2’082 7’198 5963 4080 25411
no. of points | 101x10° 112x10° 98x10° 116x10° 123x10° 137x10° 571x106

The training set comprises 6 areas of laser scanned, unlabeled point clouds (see Table 1), 3D CAD models in DXF format! and JSON
floorplans. Models and point clouds for these building areas are aligned in the same coordinate systems, all point clouds include
RGB information. Beyond the mere geometric information, the provided models contain semantic information via their layered
structure. Two separate requirements were set in this project. For the 2D floor plan reconstruction, the final result is a JSON file
that contains the outlines of all objects in the floorplan as start and end coordinate points in 2D. Since the methods of this article
allow us to, we go one step further and can output not only lines, but callable instances. This feature is of particular relevance
when speaking about a Scan-to-Floorplan process, was however not demanded by the workshop. For the 3D model reconstruction,
the submission must be in OBJ or DXF files, representing the full 3D geometries of the scanned facilities, including semantics.

3 Implementation

3.1 Preprocessing, training data

To ensure good predictions for this specific dataset, instead of working with one of the well-established benchmark datasets (such
as the S3DIS dataset [4] the 3D models of the provided data sets were leveraged to create a tailor-made ground truth dataset. The
approach used in this is similar to the ones used in the DURAARK project? and [5]. In this work, all geometries belonging to the
same semantic layers in the provided 3D models were first exported as single 3D models. To transfer the semantic information
from model to point cloud, the distance to the closest surface is calculated per point and stored with the semantic label of the
according 3D object. Then, each point is automatically annotated with the class label that it was found closest to. To minimize
mislabeled points, a threshold of 10 cm is enforced. Thus, all points that do not lie within the defined threshold proximity to the
next model surface are labeled with the ‘rest’ class. As the models are imperfect both regarding content and alignment, and, as
standard architecture models, do not contain any furniture or other equipment, the resulting distribution across all classes (depicted
in Fehler! Verweisquelle konnte nicht gefunden werden. and Table 2) is biased toward the ‘rest’ class. Furthermore, to reduce
overall file size and improve homogeneous data quality, all point clouds were down sampled using a voxel grid filter with a voxel
size of 5cm.

Table 2: Overall class split of the model-based ground truth point clouds

class wall ceiling floor door window column rest
overall % 23.9 17.1 16.0 1.1 1.4 1.0 39.4
! AutoCAD Drawing Interchange Format, https://www.loc.gov/preservation/digital/formats/fdd/fdd000446.shtml
2 https://github.com/DURAARK/IFCPointCloud
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3.2 Point cloud segmentation

In this step, based on the results of our automatically annotated data, we decide to implement point cloud segmentation by deep
learning. The point cloud we want to validate on is mainly representing indoor spaces of buildings. In large-scale point cloud
segmentation, the S3DIS dataset [4] is widely used and evaluated on. In Semantic Segmentation on S3DIS [6], the performance
of different neural networks on S3DIS dataset is listed and evaluated.

We chose the KPConv, one of the best performing architectures [7] to train our data on and later to perform inference. The
performance comparison of KPConv and PointNet [8] for different categories in the S3DIS dataset, is listed in Table 3 and justifies
our choice. The performance of KPConv is significantly better but quite different across categories. For ceilings, floors, and walls,
the prediction is more precise than those categories of furniture. As the mean IoU (intersection over union) for ceilings, floors, and
doors is more than 80%, we think the semantic information performed by KPConv could be usable in the further reconstruction
process.

Table 3: Semantic segmentation loU scores on S3DIS k-fold

mloU | ceiling | floor | wall | beam | column | window | door | chair | table | book | sofa | board | clutter

KPConv | 70.6 | 93.6 92.4 | 83.1 | 63.9 | 54.3 66.1 76.6 | 57.8 | 64.0 | 69.3 | 74.9 | 61.3 60.3

PointNet | 47.6 | 88.0 88.7 169.3 |42.4 | 23.1 47.5 51.6 [ 42.0 | 54.1 [38.2 | 9.6 |294 35.2

We project all points of the point cloud into the X-Y plane, assuming that the walls' locations will show a high point density. Figure
3a illustrates the high point density areas (using a filter for visualizing purposes only), thereby showing that they coincide mainly
with the proper wall locations. Figure 3b on the other hand shows the projection of only the points predicted as walls by our trained
KPConv algorithm. Figure 3 as a whole shows the comparison between the two described point cloud versions. The result in Figure
3b is much cleaner and less noisy when using only the predicted wall points, especially when there is lots of furniture present in
the indoor spaces. The furniture surfaces make it hard to extract geometric information from the unprocessed point cloud for
geometric reconstruction. The downstream algorithms will only use the predicted wall points and in the projection in Figure 3b.

(@ (b)
Figure 2: Comparison between projected wall points into the X-Y plane. (a) all points (with the applied point density filter for visualization),
(b) only predicted wall points
3.3 Method 1: Wall and room detection with line processing
Line detection and space separation in 2D
The predicted wall points are used to fit optimal lines using random sampling and a voting scheme. This method commonly known
as RANSAC relies on defining a threshold to set inliers and outliers before extracting a final set of lines. We use the MLESAC

algorithm [9], one variant of RANSAC provided by the Point Cloud Library [10] to detect lines in 2D plane. The lines span the
underlying 2D space into an oversegmented irregular grid structure.

Then a ray-tracing method [11] is used to determine if adjacent grid elements are separated by point groups (walls). Same labels
are assigned to the grid elements for which the ray was not intersected by predicted wall points. The grid elements are then merged
based on the assigned label and assembled to polygons. This process is illustrated in Figure 3. The merged polygons can either
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coincide with the underlying rooms or represent the void space between two wall surfaces. As can be see, the result of merging
polygons for room spaces looks good. However, it is hard to merge the small polygons correctly. There are two main reasons here:
1) not all wall points are captured when laser-scanning because of occlusion; 2) the prediction of wall points is not perfect. The
wall points in 2D are still noisy and this makes it difficult to fit proper lines. Therefore, our results would need further refinement
in future works to get more precise room and wall polygons. Following the aim we set out to attain, we nevertheless use the results
for the next steps.

We notice that in Figure 3g the lines resulting from wall polygons are a part of a single uniquely identified wall instance (smart
wall lines). The additional lines (from the room polygons) are however not part of any wall instance. The process could be enhanced
in future to convert the room outer bounds to smart wall instances too. As shown in Figure 3h the midlines are only generated for
the wall instance polygons. Due to this the outer walls are missing in the majority of the cases. Further algorithm tuning in upstream
components is needed to extend these results.

(@] (d
LS
(e) (g)
(h)

Figure 3: Line detection and space separation in 2D. (a) input point cloud of walls in 2D; (b) oversegmented plane; (c) polygon merging by
ray-tracing; (d) polygon result (e) filtered and merged wall polygons based on a threshold of 5m? (f) Filtered and merged room polygons (g)
resulting floor plan from wall and room polygons bounds (h) wall polygon midlines for 3D reconstruction

The technique of separating walls from rooms relies on the hypothesis that polygons in/between and around walls are considerably
smaller than polygons spanning rooms. A threshold value is set to separate the two polygon classes based on their area. A visual
optimization for the threshold value was performed and yielded best classification results for a 5 m? threshold (see Figure 3 e and

f.
Floorplan generation and polygon midline extraction

The polygons from both walls and rooms (see Figure 3 e and f) are used in different ways for 1. a smart instance floor plan
generation and 2. an output usable for the 3D reconstruction (midlines with start and end point). For the first task the outer bounds
of the polygons are of interest to give an instance view of the walls and their thicknesses. For that, the wall polygons are merged
based on adjacency and alignment along the principal component direction and then their outer boundaries are printed as instances
into a vector format. SVG or PDF formats offer the attachment of limited semantics thereby offering a reasonable smart format for
information transfer in 2D. Since not all walls are perfectly detected/merged the outer bounds of the room polygons are printed as
well (see Figure 3 g). These additional lines serve as an improved visualization only and are not smart wall instances.
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The 3D reconstruction used in this article relies on knowing the midline path of the wall instances. Similarly, to the 2D process, the
adjacency and alignment along the principal component direction, serve as criteria for extracting the major midlines for the
polygons. The midline computation is limited to rectangular and triangular polygons only. Considering more complex polygon
shapes would require more intensive computing. The midlines are encoded as start and end points.

3.4 Method 2: Wall detection with image processing

Point cloud rotation

Alternatively, to method 1 the wall midlines serving a subsequent 3D reconstruction can be extracted not via line processing but
via image processing. The resultant predicted walls from KPConv, should be segmented into single surfaces. This step is conducted
by projecting points on the horizontal plane (XY), creating the binary image of the points, and applying a kernel to detect the
vertical and horizontal lines (walls). Since these kernels have been specified for detecting horizontal and vertical lines, the
corresponding walls of the point cloud should be also aligned in this direction. Hence, a pre-processing step is required to make
the point cloud align coordinate axes. Note that in the point cloud of buildings, the variance of points in all directions are close,
and principal component analysis (PCA) cannot be simply used. To address this issue, an optimization problem is defined to
determine the minimal axis-aligned bounding box. As the first step, the point cloud is de-noised by the k-d tree and k-nearest
neighbor search to ensure that the bounding box is calculated correctly.

Figure 4 a and Figure 2 b show the point cloud of walls after projection on the XY plane and their corresponding axis-aligned
bounding box (AABB). As can be seen, the AABB has the minimum area only if the point cloud within its bounding box is aligned
with coordinate axes. Based on this observation, the rotation angle for which the area of the AABB is minimized is the angle that
makes the point cloud align coordinate axes. The objective (loss) function of this optimization problem can be defined as below:

To minimize: A(8) = 1+ w 0<0<m/2 (D

where [ and w are the length and width of the AABB after a rotation of 8.

Since the parameter 6 cannot be directly seen in the objective function, derivative-based optimization algorithms cannot solve this
problem. Hence, particle swarm optimization (PSO) [12], as a metaheuristic and derivative-free algorithm, is used.

Figure 4: The projected point cloud of walls: (a) the point cloud is not aligned with the coordinate axes (larger AABB); (b) the point cloud is
aligned with the coordinate axes (smaller AABB)

Image processing step

Once the point cloud is rotated a binary image is generated with a grid side length of 5 mm by simply projecting the points of the
predicted walls in the horizontal plane, as illustrated in Fehler! Verweisquelle konnte nicht gefunden werdenia.

Subsequently, and similar as done by [13], several iterations of a morphological dilation with a structural element (S) with a
rectangular shape of size 10 x 10 are applied to join small blobs that are close to each other and which conform larger objects. This
step leads to the results shown in Fehler! Verweisquelle konnte nicht gefunden werden. b, in which the two sides of the walls
are now connected in a single element. Thereafter, and as the point cloud is already aligned with the XY axis, horizontal and vertical
blobs are extracted applying a convolution with a vertical and horizontal kernel over the binary image. The resulted blobs, presented
in Fehler! Verweisquelle konnte nicht gefunden werden. c, can be used as a mask to filter the separated instances of walls in
the original point cloud, as shown in Fehler! Verweisquelle konnte nicht gefunden werden. d.
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Figure 5: Separating wall blobs: (a) Binary image result of the projection of the point cloud in the horizontal plane; (b) same image after
dilation operation with the rectangular kernel; (c) separated horizontal (left) and vertical (right) blobs after linear kernel; (d) separated wall
instances in different colors with their corresponding AABBs

This method assumes Manhattan World and disregards possible diagonal walls. However, after detecting the horizontal and vertical
aligned walls, the rest of the walls can be filtered out and treated independently. A further improvement would also allow the
method to distinguish the correct width of each wall, separate wall sections if they have different widths, and deal with walls that
are only scanned by one side.

Line merging

The segmented walls from both the line and image processing step might have overlaps and not be completely connected as well.
Therefore, a post-processing step is required to merge the walls on the same alignment and connect the neighboring walls. To this
end, the AABB of each wall (line segment) is calculated and extended as much as a value of esm; using these bounding boxes, the
collision of walls can be checked. If two walls have a collision, their normal vectors are almost in the same direction and have a
distance lower than a value of threshold tq4, those walls are selected for merging. The merging process is conducted by calculating
a new AABB. The new wall will be the diameter of this bounding box which normal is in the same direction as the original walls.
To connect walls, the collision of walls is checked again, however, the walls that have a collision and are not almost parallel are
considered. Next, the intersection point of the walls is calculated and new walls are created. As the last step, these lines are merged
again to form single lines. This process can be briefly seen in Figure 6.

(a) (b) ©

Figure 6: Post-processing: (a) merging walls; (b) connecting walls; (c) merging walls after connecting

3.5 Door and window detection

During the process of laser-scanning facilities, doors are usually open. This and the fact that the glass window surfaces do not
reflect the laser beam, leads to special characteristics in the point cloud; windows and doors are void point areas in walls and their
detection must rely on alternative processing steps than what was considered up until now in this paper. The door and window
detection in this approach starts by using the wall coordinate from the previous step for prior knowledge. In the original point
cloud, we find the points whose distance to the wall candidate is smaller than a threshold. In our experiment, we use the threshold
0.5m, assuming there is not any wall that is thicker than 0.5m in these facilities. Then we project the found points to the vertical
plane of the wall. In the plane, doors and windows should identifiable by a human eye as holes. Apart from doors and windows, if
the wall is occluded by some furniture, there would also be some furniture holes. But usually, these holes have different shapes
than windows and doors. In our experiment, we consider all the windows and doors in the facility to be rectangular. The next step
involves the calculation of a negative space on this plane. Then we cluster the points on this plane and fit rectangles to these point
clusters. By filtering the non-rectangular point cluster out, we can get the window and door on the plane. We can also use more
prior knowledge to filter more rectangles out, like doors should be higher than 2m, doors are connected to the floor, etc. The whole
process is illustrated in Figure 7.
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Figure 7: Window and door detection: (a) find wall in original point cloud; (b) calculate void space of the plane; (c) find point clusters of the
void space; (d) remove outliers of each cluster and find the rectangles of window and door void space, in this case three doors are found

3.6 3D Reconstruction in Revit

To finally create the 3D model the modelling capabilities of Revit are used. With the 2D coordinates of the midline start and end
points of the walls, doors, and windows, a program written with the Revit API allows the creation of a 3D model. Among the
different possibilities for creating a 3D model (such as IfcOpenShell and xBIMtoolkit), Revit was chosen due to the possibility it
offers to insert customizable family types, automatic wall joins (at intersections) and automatic DXF and IFC export. In Revit,
warnings caused by overlap during wall creation are automatically disabled. To create the doors and windows, the method takes
the middle point of the element and finds the closest wall element to it, assuring that the element has the same normal vector as
the wall. Moreover, the doors and windows are not created if their position is close to a wall border. After the resulted model is
automatically exported in DXF and IFC from Revit, IfcConvert is used to convert the IFC file to OBJ format with materials. Figure
8 gives an overview of the proposed 3D reconstruction pipeline.

(a) (b) (@]

Figure 8: 3D Reconstruction Overview: (a) Original point cloud (top), point cloud after wall prediction and automatic rotation; (b) Wall
instances after image processing (top), result after line merging (bottom); (d) Final 3D model after adding detected doors (in brown) and
windows (in blue) with custom family type in Revit and exporting to DXF format

4 Conclusion

This paper presents a hands-on end-to-end workflow from raw point clouds to a usable format such as callable SVG instance floor
plans and 3D IFC models for building engineers and architects. Despite being limited by accuracy and class diversity, results of the
paper resemble manual reconstruction outcomes, thereby hinting at the numerous potentials full automatic Scan-to-BIM/Scan-to-
floorplan can bring to the AEC community. A quantitative assessment of the usability of the results by the community is out of
scope for this work.
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Nevertheless, the necessity of articles such as ours becomes apparent when scrutinizing the limitations of the numerous technical
components and their direct down-stream implications in the whole work chain. The final result of a 2D or 3D reconstruction is
highly dependent on the accuracy and coverage of class diversity of each upstream component. End-to-end approaches without
enough focus on either accuracy or class diversity are likely to be rejected by the AEC community for practical reasons. Despite the
considerable attention Al methods have gained in the past years for point cloud semantic segmentation, the AEC community relies
on the further development of domain-based algorithms to complete the work chain. Concluding this work, the authors would
recommend developing additional end-to-end methods to prove the efficacy of automation in the AEC community.
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