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Abstract
The simulation of subtractive manufacturing processes has a long history in engineering. Corresponding predictions are
utilized for planning, validation and optimization, e.g., of CNC-machining processes. With the up-rise of flexible robotic
machining and the advancements of computational and algorithmic capability, the simulation of the coupled machine-
process behaviour for complex machining processes and large workpieces is within reach. These simulations require fast
material removal predictions and analysis with high spatial resolution for multi-axis operations. Within this contribution,
we propose to leverage voxel-based concepts introduced in the computer graphics industry to accelerate material removal
simulations. Corresponding schemes are well suited for massive parallelization. By leveraging the computational power
offered by modern graphics hardware, the computational performance of high spatial accuracy volumetric voxel-based
algorithms is further improved. They now allow for very fast and accurate volume removal simulation and analysis of
machining processes. Within this paper, a detailed description of the data structures and algorithms is provided along a
detailed benchmark for common machining operations.

Keywords Virtual machining · GPU · Voxel · Milling · Robot

1 Introduction

Simulation of material removal processes is a well-
established practice in industry. It is mostly used in the
context of manufacturing planning, machining process
simulation and optimization, e.g. for the selection of the
right tools for a given design and material or the definition
of the tool path including appropriate process parameters,
like feed rate, spindle speed or depth of cut. Furthermore,
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recently novel concepts for the combination of material
removal simulation and dynamic machine tool simulation
have shown significant improvements for the compensation
of deflections and process stability prediction [31]. In
particular, a compensation of tool centre point deflections
caused by process forces allows to increase the quality of
produced parts, and therefore enable the utilization of low
stiffness robotic milling systems for the machining under
high process force loads. However, for a broad industrial
application, fast and accurate physical machining process
simulation is required to make robotic machining to become
a reality [8, 22, 40].

Within this contribution, we demonstrate a novel concept
for geometric material removal simulation and analysis,
which allows for a fast and accurate prediction of the tool
engagement and the process forces as a key enabler for
industrialization of robotic machining, especially for large
workpieces. The concept leverages recent advancements of
voxel-based modelling on Graphic Processing Units (GPUs)
[28] for the simulation of the material removal and the
prediction of the engagement between the tool and the
workpiece. Based on the geometric predictions, process
forces can be calculated accurately using mechanistic
process force models. By adopting the technology for
machine tool design, milling operation planning, and feed
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forward displacement compensation, a paradigm shift from
rigidly designed machines to intelligent machine tools that
adapt to expected process forces and performance criteria
could be achieved.

Besides the use case of process force prediction, highly
efficient and modifiable volumetric models with a high
spatial resolution, a low memory footprint, efficient data
structures, and data modification algorithms can be utilized
in other areas like simulated surgery, process simulation
for additive manufacturing, and simulation of modifiable
environments.

1.1 Material removal simulation

In the past years, a number of methods have been proposed
for material removal simulation, e.g. [21, 37]. An overview
of existing volumetric models is shown in Fig. 1. These
range from explicit geometry representation via simple
faceted [30] or complex parameterized direct geometry
representations [17] to spatially hierarchical structured
descriptions.

The most prominent today are probably dexel-based
methods, which are widely adopted by industry (e.g. [25]).
These offer a good compromise between versatility as
well as computational complexity, albeit having an-isotropic
spatial resolution and potentially showing defects for sharp
geometric features like corners and edges [1].

Most concepts for geometric representations originate
from the field of computer graphics. In the recent years,
computational geometry representation via voxels has found
quite some interest in the computer graphics community,
e.g. powerful and complex open-source libraries are
available [26, 28]. In particular, voxel-based methods allow,
due to their simple data structures, very efficient massive
parallelization on GPUs [28]. Thus, extremely complex
simulations can be performed on desktop computers where
otherwise small clusters would be needed.

Leveraging GPUs allows an unbeaten performance per
energy, costs, or even spatial requirements. Therefore, in the
last years, one could observe how corresponding methods
are being more and more adopted in industrial use.1 For
example, corresponding methods, used for early design
simulation and optimization [16], also found their way into
machining simulation [13, 37].

1.2 Tri-dexel and voxel models

Recent publications in the field of high performance [7], or
high accuracy [19] simulation of material removal processes
typically choose a tri-dexel representation of the mutable

1beyond machine learning applications which is probably the most
common industrial use today

in-process geometry of the workpiece. Within the field
of material removal simulation, the voxel representation
is a less popular choice due to the perceived drawbacks
in computational and memory efficiency of the voxelized
workpiece.

While tri-dexel models being widely adopted and utilized
in both industry and research, certain limitations apply
to tri-dexel models. The number of the required dexels
for the tri-dexel representation of a convex solid is
proportional to the axis aligned projection of the surface
area for an orthogonally arranged dexel grid [1]. Thus,
the memory consumption and computational complexity
is O(n2), where n represents the number of dexels in
each dimension [1]. This leads to a practical limit of the
dexel grid resolution. 400 dexel subdivisions per dimension
are stated as unsuitable for real-time applications [27].
The simulation of the manufacturing of a submodel of
a blade of an impeller, with 1024 dexel subdivisions per
dimension, lead to simulation times beyond 1 h [23]. While
the achievable subdivisions per dimension are sufficient
for the simulation of macroscopic material removal for
typical workpiece sizes, the limitations are evident for the
simulation of the uncut chip geometry for large workpieces.

The number of required voxels for the representation
of a solid is proportional to the volume of the axis
aligned bounding box of the solid, if the voxels are
arranged in a regular grid [1]. By spatial compression
mechanisms, the memory consumption and computation
efficiency of the naive dense voxel representation can
be improved [7]. Octree data structures and the model
presented in [31] are examples for the compression of
homogeneous sub-volumes. Under the assumption of a
perfect surface voxelization with implicit voxel position
encoding and neglecting the memory consumption of the
spatially compressed inner volume and necessary data
structures, the voxel representation memory consumption
would be proportional to the surface area of the solid.
While these assumptions cannot be realized in actual
implementations, the model presented in [31] comes close,
by increasing the subdivision rate in the spatial voxel
structure and balancing the memory consumption of tree
structure and actual voxel data.

Thus, the two volumetric representations, exhibiting a
memory consumption approximately proportional to the
surface area of the solid, are competing in this scenario.
Therefore, let us take a more quantitative comparison.While
a voxel encodes one surface point of the solid, the dexel
encodes an entrance and an exit point on the surface of the
solid. For the encoding of the volumetric data of a voxel,
ideally one bit is required. This bit indicates if the voxel is
within or outside of the solid. The encoding of one dexel
segment minimally includes the start and end point. For
single precision data types, this results in 64 bits of data, if
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Fig. 1 Different methods for
material removal simulation.
Within this contribution we will
focus on dexel and voxel
representations

typical additional information like surface normals and data
pointers to the next dexel segment are neglected.

A cuboid with a size of 170 × 120 × 25mm3, a volume
of 510,000mm3, and a surface area of 55,300mm2 shall
be represented by three hypothetical models. A spatial
voxel grid resolution of 0.1mm and a dexel grid resolution
of 0.566mm is assumed. The memory consumption of
the hypothetical models is stated in Table 1. Despite the
assumptions for both the voxel and the dexel representation
of a simple solid, the simplified thought experiment shows,
that optimized voxel data structures can compete with dexel
representations in terms of memory size per grid resolution.
Both, the hypothetical perfect voxel shell and the dexel
model require the same amount of memory, while the voxel
grid resolution is 5.66 times higher.

The actual implementations of voxel and dexel models
include additional data, which is, e.g., used to represent
the tree structure of the hierarchical voxel data, multi-
layer voxel shells, the surface normals of the dexel
segments, and the structure of the dexel data. Furthermore,
typical workpieces of interest have far more complex
geometries, e.g. have varying sizes and complex features
such as undercuts, sharp edges, sharp corners, and curved
surfaces. Still our quantitative comparison should hold
roughly. Within this contribution, state-of-the-art spatially
compressed voxel model implementations on a CPU and
a GPU will be compared to a widely adopted commercial
dexel model implementation for the representation of a
variety of in-process workpieces for machining simulations.
The results will be evaluated in terms of computation time
and model accuracy.

1.3 Our contribution

We focus on the highly parallel implementation of voxel-
based volumetric models with high performance and low
memory footprint. The approach is inspired by [28] and
described in detail in Section 2. The provided technology

can be used for various applications, which require large
volumetric models with mutable geometry, high spatial
resolution and high mutation performance. The feasibility
of the developed model is demonstrated for the use case
of machining simulation. By leveraging the decoupling
of material removal simulation and force prediction, the
performance of the virtual machining simulation described
in [31] can be improved, while maintaining the benefits
of a highly accurate and inherently consistent volume
representation.

Based on a set of benchmark workpieces, the perfor-
mance of the concept is compared with a sequential CPU
implementation. Furthermore, the quality of the results of
our voxel model is compared with a state-of-the-art dexel
model available in NX CAM [34].

Finally, we show how this technology will allow large-
scale robotic machining along a range of selected examples
in Section 4.

The article closes with a discussion (Section 5) of the
use cases and potentials of the presented voxel model
and the underlying parallelization strategy. By leveraging
emerging cloud infrastructures, formerly highly demanding
volumetric simulations can become accessible for cost
optimized local control systems and therefore provide novel
simulation-based optimization and control strategies.

2 Process force andmaterial removal
simulation

This section introduces the concepts of the highly parallel
implementation of voxel models for the representation
of finite volumes intended for the usage in machining
simulations.

In general, the changes of the engagement of a milling
tool and the work piece are slow compared to the changes
of the instantaneous cutting edge position and orientation,
i.e. the rotation of the tool. Thus, we can decouple

Table 1 Comparison of the required memory size for three hypothetical volumetric models

Model Grid resolution Number of primitives Size of primitive Memory size

Naive voxel 0.1mm 510,000mm3/0.001mm−3 = 510,000,000 1 bit 60.8 MB

Perfect voxel shell 0.1mm 55,300mm2/0.01mm−2 = 5,530,000 1 bit 0.659 MB

Dexel 0.566mm 0.5 · 55,300mm2/0.32mm−2 = 86,406 64 bit 0.659 MB
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the simulation of material removal from the process
force simulation for machining operations. By separating
the required high spatial resolution for the engagement
simulation from the required high temporal resolution for
the simulation of dynamic cutting forces, the overall process
is optimized (see Fig. 2).

For the simulation of process forces (Section 2.4), the
time-dependent tool engagement and instantaneous uncut
chip thicknesses have to be simulated. The necessary
information for these simulations is the changing work piece
geometry (Section 2.2), the tool geometry (Section 2.3)
and the tool path. Based on this information, engagement
histograms are generated. In a subsequent step, the process
forces are simulated based on a mechanistic cutting
force model [31] (Section 2.5). The overall computational
efficiency depends on the computational demanding volume
removal simulation. The accuracy of the engagement
generated histograms defines the accuracy of the process
force predictions. The second step, the calculation of
process forces, is computationally much less expensive and
could, e.g., be performed on an edge device while the first
one typically requires a powerful computer.

Within this paper, we will focus on the geometric
material removal simulation based on voxels. For more
details on the complete setup, we would like to refer to [31,
43].

2.1 Basic idea of material removal simulation

For the simulation of the process forces, an accurate and
detailed description of the tool engagement, instantaneous
chip thicknesses, and kinematic cutting conditions have to
be determined. For this type of simulation, an in-process
description of the changing work piece geometry due to the
subtractive machining process is needed. The volumetric
model of the work piece has to be able to represent work
pieces with large volumes with a high spatial accuracy,
while enabling efficient modifications of the work piece
geometry. The requirements for such a volumetric model
are:

– Representation of large work piece volumes (≥ 10m3)
– High spatial resolution (≤ 0.001mm3)
– Isotropic model and resolution properties
– Efficient geometry modifications (≥ 106 mods/s)
– Low memory footprint (≤ 1GB/m2 surface area)
– Integrity of the volumetric description by design

State-of-the-art tools mostly rely on dexel-based models.
However, dexel simulations have a strong anisotropy in
the description of the work piece volume. The dexels have
a high resolution along the represented dexel, but a low
resolution in between dexels. The number of dexels are
also typically limited to a few thousand dexels in each

dimension, which can be insufficient for the description of
large work pieces with high spatial resolution.

An alternative to dexel models is voxel models. In
particular, hierarchical voxel models have the potential to
fulfill all the requirements addressed above. Voxel models
have nearly isotropic properties and provide an inherently
correct volumetric description of the work piece volume.
By introducing an hierarchical structure with on demand
resolution refinement, large work pieces can be represented
with a high spatial resolution, while maintaining a low
memory footprint. In comparison to dexel models, the
computational effort for the modification of the geometry
is larger due to the amount of individual voxel interactions.
This disadvantage can be overcome by designing the
data structures and modification algorithms for parallel
execution on GPUs.

2.2 Representation of the work piece

Due to the specific requirements for machining simulation,
we will be using a modified octree approach.2 In order
to balance the memory consumption between the actual
volumetric information and the inter-layer references
between parent and child nodes, the subdivision rate
is increased in comparison to the octree structure. Our
implementation is inspired by the CPU implementation
of the voxel model [31] and the GVDB-library [28] (see
Fig. 3). In particular, the dynamic subdivision of the
volumetric model and potential modification of the tree
structure address efficiently dynamic volumetric structures,
as required by the dynamically changing geometry of the
work piece.

The smallest spatial unit is a Voxel, which represents
a cubic section of material with a lateral length of 100μm
and is represented by a single bit—a 1 indicates existing
volume, whereas 0 denotes removed material. Voxels are
organized in containers called Bricks as illustrated in blue
in Fig. 3. Each Brick has a unique id and contains 83, 163,
or 323 Voxel, addressable by a three dimensional index
that directly corresponds to its position in three dimensional
space. Voxels are either stored in 32- or 64-bit primitive
types that allow for atomic operations on the GPU and are
laid out linearly within a Brick. All Bricks are on the
lowest level within the hierarchy of the voxel tree and are
contained in a structure called Atlas.

If we go higher up the hierarchy of the voxel-tree
the data-structure is organized by Nodes. Each Node
represents a cube of material equally subdivided by 83

children which are either Nodes on a lower level or Bricks

2The octree data structure splits each cube into 8 smaller ones with
1/2 edge length compared to the original one. The octree data structure
is well suited for static objects or slowly/locally changing object
structures with memory intensive leaf nodes.
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Fig. 2 Workflow of the process
force simulation

on the lowest level, stored as references within a child list.
The position of a Node is derived from its index in the
child list of the parent Node. Nodes are denoted as active
if at least one of their children is active. A Node is set as
deleted as soon as all of its children are deleted. All Nodes
of the same hierarchy within the voxel tree have an unique
id and are part of the same Level as depicted in Fig. 3.
Several of these Levels can be stacked, with its Nodes
being children of the Nodes within the next higher level and
parents to the nodes of the child-Level. In particular, the
children of the lowest level are Bricks and the parent of

the highest level is called Root-Node. The Root-Node
is a single Node that spans the entire available space and
serves as entry point for tree traversal. The entirety of all
Levels, the Root-Node, and Atlas together is called
the Topology and resides completely on GPU memory.

The inherent nature of the application implies a constant
change of the work piece and thus, Nodes/Bricks have
to be allocated dynamically. This is particularly challenging
on the GPU and therefore, the total available number of
Nodes/Bricks within each Level and the Atlas is
predefined and allocated upon initialization. Moreover, a

Fig. 3 Data structure of the
voxel tree organized in
hierachical levels
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queuing system was implemented to dynamically reassign
removed Nodes/Bricks within each Level. All indices
of unassigned Nodes reside in a queue and are assigned if
needed. In case a Node is deleted, its id is pushed to the
queue. This way a fast and memory efficient way was used
to discretize new regions of the work piece.

2.3 Representation of the tool

The geometry of the tool is discretized by equidistant
points along the revolute profile of the tool surface. These
discrete points interact with the volumetric work piece
model and correspond to one entry within one timestep of
the engagement histogram. Additional points are located
within a surface shell of the tool to ensure the complete
removal of coinciding material (see Fig. 4). The coordinates
of each point reside on GPU memory with respect to the
coordinate system of the tool. The minimum distance dmin

between two voxels is given by the orthogonal spatial
voxel resolution rspatial. The maximum distance is given
by dmax = √

3 · rspatial. In order to ensure gapless voxel
removal and addition, the maximum spatial distance of the
discretized tool points dtool must not exceed the orthogonal
spatial voxel resolution rspatial.

2.4Workflow of the simulation

Initially, a Topology is created that is sufficiently large to
cover the dimensions of the work piece, which is governed
by the number of Levels. Each additional Level extends
the lateral length by a factor of 8. The initial volume of
the work piece is then voxelized. Nodes, that intersect the
surface volume of the work piece, are set active. Those,
that entirely reside within the work piece, are set to fully
occupied leaf nodes called Volume Nodes, whereas those
that lie outside are deleted.

Subsequently, the voxel removal simulation is performed
according to the toolpath. The tool path is interpolated with
a predefined resolution of 0.07mm and the engagement
between the tool and the work piece is simulated for each

step with a given tool transformation matrix as an input and
the engagement histogram as an output. The engagement of
the tool with the work piece cannot be calculated at once for
each tool point individually on the GPU, since this would
lead to race conditions. Instead, the engagement process is
split up into six consecutive steps (see Fig. 4) in order to
allow for parallelization and high performance:

1. Transformation of the discretized tool
2. Mapping the discretized tool points to the topology
3. Updating of the work piece topology
4. Collision detection between tool and work piece
5. Deletion of the engaged voxels
6. Cleanup of the work piece topology

The first step includes the transformation of the
discretized tool according to the current transformation
along the toolpath and the mapping of the transformed
coordinated of the discretized tool points to the according
voxel coordinates. This process is performed on the GPU
in parallel. The mapped tool coordinates are returned (see
Fig. 4).

The second step is called topology mapping and is
performed to identify undiscretized regions that are being
engaged by the tool. A tree traversal is performed for each
tool point and the positions of unassigned Nodes are written
to a level specific buffer. These buffers mostly contain
duplicates since many tool points coincide with the same
unassigned Node. Unique positions are identified using
a sorting and consecutive selection step. As a result all
positions of unassigned Nodes and Bricks that are going
to be engaged by the tool are identified for each Level and
the Atlas.

Subsequently, the Topology is updated by configuring
all Nodes and Bricks identified in the former step.
Starting from the Root-Node, all Nodes are subdivided
by allocating child nodes according to the identified
engagement positions. At last, new Bricks are configured.

In the following step, the Topology is engaged with
the discretized tool points to determine the engagement
histogram. A tree traversal is performed for each tool

Fig. 4 Workflow of the
simulation: Tool transformation;
Mapping of points to the
topology; Updating the
topology; Engaging the work
piece; Removing engaged voxel;
Cleaning the topology from
empty nodes
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point. If the position of a tool point coincides with an
existing Voxel, the corresponding entry in the engagement
histogram is set to one.

Consecutively, every Voxel that has interacted with the
tool has to be deleted, which is achieved in a separate
computation step using atomic and-operations to make sure
that only one bit is changed at the same time.

The Topology is then cleaned to free unnecessary
occupied memory by empty Nodes and Atlases. This
procedure is executed starting from the Atlas level and
all the way up to the Root-Node. This is initially done
by summing up the Voxels within each active Brick.
If the respective sum equals to zero, the brick id is
appended to the Atlas’s id queue and its entry within
its parent’s Node child list is deleted. A similar process
is performed for each additional Level. The number of
deleted children is summed up for each active Node and it is
appended to the respective id queue if all of its children are
deleted. The described cleanup procedure is executed once
for every 1000 engagement operations in order to increase
the performance of the overall material removal simulation.

After all the described steps are performed the engage-
ment histogram (Fig. 5), i.e. which points of the tool geom-
etry (Section 2.3) interacted with the material (Section 2.2),
is copied to the CPU to prepare for the process force
calculation.

2.5 Process force simulation

In the first step, the resulting engagement histograms
of the volume removal simulation step are temporally
interpolated for the determination of the engagement status
of a discretized cutting edge point of the tool with the work
piece. The intersecting finite cutting edge segments are

given by the subset C ∈ F , whereF represent all discretized
cutting edge points. Each discretized cutting edge point is
represented by a cutting edge aligned coordinate system
Ki . The local coordinate system Ki is defined by the
position of the discretized cutting edge point r i , a tangential
component t i along the local cutting edge tangent, a distal
component d i pointing in outwards direction and a normal
component ni perpendicular to the tangential and distal
component pointing towards the cutting velocity direction.
The discretized tool geometry is shown in Fig. 6.

The local uncut chip thickness hi is calculated based
on the spindle speed n, the number of flutes z and the
translational and rotational velocity vtrans and vrot of the
tool centre point (see Fig. 6). The velocities include the
ideal tool movements and the tool movements resulting
from dynamic oscillations of the machine structure. The
temporal dependency of the required values involved in the
simulation of the cutting forces is omitted in the description
of the mathematical notation for better readability.

flute segment length: sl = |r i+1 − r i | (1)

tangential component: t i = (r i+1 − r i )/sl (2)

cutting direction: vc,i = (r i × z)/|r i × z| (3)

distal component: d i = (ri × z)/|r i × z| (4)

normal component: ni = (t i × vc,i)/|t i × vc,i | (5)

periodic flute time: dt = 1.0/(n · z) (6)

chip thickness: hi = d i · (vtrans+vrot×r i ) · dt (7)

The instantaneous chip thickness hi is used for the
mechanistic computation of the instantaneous cutting forces
F . The cutting force parameters for the tangential, distal and
normal friction and cutting components are stated by kte,

Fig. 5 Schematic representation
of the generation of engagement
histograms
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Fig. 6 Spatial representation of the discretized tool geometry and the simulated chip thickness [31]

ktc, kde, kdc, kne and knc.

F =
∑

i∈C

[
t i d i ni

]
⎡

⎣
kte + ktc · hi

kde + kdc · hi

kne + knc · hi

⎤

⎦ (8)

A detailed description of the process force simulation,
a schematic visualization of the tool geometry and a
validation of the process force model are provided in [31].

3 Performance and accuracy evaluation

Within this section, we will benchmark the proposed
approach along six benchmark work pieces of different size,
shape, and machining operations (Section 3.1). To do so,
we compare the time required to simulate material removal

for a CPU and a GPU implementation of the voxel model
on different computers (Section 3.2) as well as compare the
quality of a voxel model with a dexel model (Section 3.3).

3.1 Test parts and computational resources

The considered benchmark work pieces are shown in Fig. 7.
The features of the work pieces are described in more detail
below. The simulation of the milling process covers three
different tools with varying numbers of discretization points
along the tool profile and constant angular discretization
steps for the generation of the revolute shell. The tool length,
the tool diameter, the number of discretized shell points for
the determination of the tool engagement and the number of
discretized interior tool geometry points for gapless volume
removal are given in Table 2.

Fig. 7 Test cases/benchmark
parts: a simple test part; b
complex test part; c freeform
part; d radiator part; e roughing
part; f lightweight part

(a) (b) (c)

(d) (e) (f)
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Table 2 Different tools used for the milling simulation process

D12 CR0 L7 HA45 D12 CR0 L10 HA45 D12 CR0 L27 HA45 D30 CR0 L16 HA45

Length 7.0 mm 10.0 mm 27.0 mm 16.0 mm

Diameter 12.0 mm 12.0 mm 12.0 mm 30.0 mm

Shell points 46,800 57,600 118,800 111,600

vol. points 265,856 345,936 798,388 1,569,374

Three different computational resources are used to
validate the different algorithms on different hardware
setups (see Table 3) and also to compare their performance
with respect to different GPUs.

Example (a)—Simple Test Part As the basic validation we
have chosen a simple linear cut with increasing depth of cut
along the tool path. Despite the simple geometry of the part,
the engagement of the tool and the simulated process forces
change within and in between the steps.

Example (b)—Complex Test Part To increase the complex-
ity we have chosen a more complex part with different
features as they appear in typical machining tasks. The com-
plex test part includes full engagement cuts with changing
directions, outer profiles and pockets. This part is also used
for validation in real experiments (see Section 4).

Example (c)—Freeform Part To further increase complex-
ity, we consider a test part including free form surfaces,
where the tool angle (z-axis) is changing. This results in 5-
axis machining processes. This part is also referenced in the
comparison of the geometric accuracy of the dexel and voxel
models (see Section 3.3).

Example (d)—Radiator Part To investigate the behaviour of
the methods for parts with a large surface to volume ratio,
we have selected a radiator like structure with additional
complexity added. Furthermore, the example addresses
intersections of already removed material areas. A crucial
test for correct allocation of memory.

Example (e)—Roughing Part All features of the part are
machined with a large diameter tool resulting in tool

Table 3 Hardware setups used in the computational studies; GPU2 is
an Amazon EC2 P3.2x large instance

Computer CPU1 Computer GPU1 Computer GPU2

Core i7-6700k Core i7-8750H 8 Core CPU

32GB RAM 4GB VRAM 16GB VRAM

GTX 1070 Quadro P1000 Tesla V100

selections and tool path comparable to roughing operations.
Furthermore, we simulate the same part with a smaller tool
to compare the effect of tool sizes on the performance of the
presented voxel model.

Example (f)—Aerospace Part Last but not least, we bench-
mark the part along a large and complex part as it might
occur in the aerospace industry. Aerospace parts are often
characterized by thin-walled parts with large outer dimen-
sions and a buy to fly ratio of over 95%. The simulation
of the material removal process for these parts typically
leads to trade-offs between memory consumption, simu-
lation time and spatial resolution, which can impact the
simulation accuracy. Being one of applications with high
potential for robotic milling, the proposed voxel model has
to be able to accurately simulate the material removal pro-
cess without compromises in simulation speed and spatial
accuracy.

3.2 Computational experiments

Table 4 shows a performance comparison of the voxel model
for the geometries shown in Fig. 7 on different computer
architectures. The initial stock sizes are determined by the
axis aligned bounding boxes of the part geometries and
range from 17 to 13, 200 cm3. 25–43% of the material is
removed during the simulated manufacturing process.

Based on the presented voxel model, the simulated
material removal process was successfully executed for all
part geometries shown in Fig. 7, where the freeform part
was used to test 5-axis simultaneous machining processes
and the lightweight part was used to test the memory
consumption. On the high performance GPU2, the largest
part with a volume of 13,200 cm3 and a 43% material
removal rate takes less than 60 s to compute. Compared
to the estimated manufacturing time of 2 h 20 min, the
simulation speed exceeds the manufacturing speed by a
factor of 140. The GPU utilization during the material
removal simulation was typically larger than 70%. In many
of the test cases, a GPU load of over 90% was achieved,
indicating a good parallelization and a high efficiency of the
simulation process. While not being directly comparable,
the simulation of the manufacturing of a partial impeller
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Table 4 Comparison of paths (mm/segments), timings (s), computational efficiency (% of GPU utilization, i.e. percentage of time the GPU is
actively used) for different parts, tools, and computers

Simple part Complex part Freeform part Radiator part Lightweight part

Length 75mm 120mm 80mm 120mm 1100mm

Width 50mm 170mm 20mm 120mm 300mm

Height 19mm 25mm 120mm 35mm 40mm

Tool D12 CR0 L10 HA45 D12 CR0 L10 HA45 D12 CR0 L7 HA45 D12 CR0 L27 HA45 D12 CR0 L27 HA45

Path 1676 mm 13,914 mm 13,053 mm 2911 mm 74,340 mm

22,500 seg 149,748 seg 174,674 seg 45,732 seg 846,111 seg

Removed volume 18.8 cm3 127.0 cm3 50.7 cm3 218.5 cm3 5548.2 cm3

Voxel CPU1 0.40 s 86.41 s 5.87 s 35.72 s 1583.5 s

Voxel GPU1 8.02 s 55.5 s 41.57 s 39.91 s 675.60 s

70.01% 89.9% 89.2% 73.8% 76.2%

Voxel GPU2 0.61 s 4.41 s 3.11 s 2.90 s 59.94 s

80.7% 75.3% 67.7% 93.7% 91.7%

with 1024 dexel subdivisions, which would result in a
spatial dexel grid resolution of approximately 1mm for the
lightweight part, requires 78min [23].

For the smaller parts, e.g. the Simple Test Part, the
GPU implementation performs slower than the CPU
implementation of the voxel model. Additional overheads
for the initiation and execution of the memory transfer
limit the simulation speed for small tools and parts. The
overall simulation time for small parts lies within the range
of seconds and does not pose a problem for the typical
user. Comparing the performance of the GPU1 and GPU2
we can observe for all cases a speedup factor of 10–13,
which corresponds roughly to the difference in floating
point performance of the two GPUs (1894 gflops for GPU1
vs 14,131 gflops for GPU2).

Last but not least, we have compared the effect of the
machining tool (Table 5) on computing times. To do so, we

Table 5 Comparison of timings for the roughing part using two
different tools

Big tool Small tool

Length 100mm 100mm

Width 100mm 100mm

Height 64mm 64mm

Tool D30 CR0 L16 HA45 D12 CR0 L10 HA45

Path 2028 mm 2794 mm

21,346 seg 31,913 seg

Removed volume 179.6 cm3 179.6 cm3

Voxel CPU1 62.54 s 34.61 s

Voxel GPU1 33.99 s 18.80 s

81.6% 81.3%

Voxel GPU2 2.55 s 1.82 s

96.5% 93.2%

have simulated the roughing part (Fig. 7e) with two different
tool geometries as shown in Fig. 5. For both, CPU and GPU,
the run time is about half time with small tool than with
big tool. Nevertheless the speed-up factor for big tool from
CPU to GPU is around 25, for small tool around 18. This is
due to the better capacity utilization of GPU with increasing
number of tool-points.

The benchmark tests have shown significant performance
increases of the parallel GPU implementation and a good
scaling of the performance with the number of available
computational units, the work piece and the tool size.

3.3 Accuracy of voxel and dexel models

Due to the closed source solution of commercial state-
of-the-art dexel simulation environments (e.g. [34]), the
simulation time cannot be analysed in detail. The resulting
geometry of the reconstructed finished part on the other
hand can be exported and compared to the reconstructed part
geometry of the proposed voxel model.

Due to the an-isotropic properties of dexel models, the
reconstruction of the work piece geometry can suffer from
aliasing, artefacts and inaccuracies [1]. These effects reduce
the accuracy of the tool engagement and chip thickness
reconstruction. Since the process force calculation is based
on the simulated uncut chip geometry, the prediction of
process forces is affected.

While axis aligned and flat surfaces are typically
reconstructed with high precision, curved and twofold
surfaces, small features and sharp edges pose challenges to
the reconstruction of the work piece volume using dexel
based approaches. The reconstruction accuracy of the work
piece surface relies on the direction of the dexels and is
thus highly an-isotropic. While voxel models still exhibiting
an-isotropic properties, these effects are limited by the
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Fig. 8 Comparison of the form
error of a commercial
implementation of a dexel
model for CAM machining
simulation (a) and the presented
voxel model implementation
(b). Error histogram and fitted
normal error distribution for the
dexel and voxel models (c)

(a) (b)

(c)

geometry of the voxel. Thereby, the spatial resolution of
the voxel model varies between the length of the edge
of one voxel cube and the length of the diagonal of one
voxel cube depending on the sampling direction. For the
volumetric sampling being executed at the centre of the
voxel, the expected surface error lies within half of the edge
and diagonal length.

The spatial accuracy of the proposed voxel model
is benchmarked against a commercial implementation of
a dexel work piece model [34] as typically found in
machining simulation environments. For the comparison,
the machining of the freeform part (see Fig. 7c) is simulated.
The resulting surface representation is exported for both the
dexel and the voxel models and compared to the ideal CAD

geometry. Figure 8 shows the color coded surface geometry
error of the dexel and voxel models.

Table 6 shows the statistical analysis of the surface
geometry error of the dexel and the voxel models.

The color coded comparison (see Fig. 8) and the
statistical analysis (see Table 6) both show a higher
accuracy of the voxel model compared to the dexel model,
while the characteristics of the form error differ. The
form errors of the reconstructed dexel model show form
errors due to local approximation by flat surfaces, while
the voxel model shows spatial aliasing. Both models
show a directional dependency of the surface error, while
being more prominent for the dexel model. Commercial
dexel model implementations typically subdivide the outer

Table 6 Comparison of the form error of a commercial dexel model and the proposed voxel model

Model error in mm MIN MAX MEAN RMS STD

Dexel − 0.2435 0.2297 0.043 0.0721 0.0579

Voxel − 0.134 0.0431 − 0.0241 0.0448 0.0377
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Fig. 9 Influences on the path accuracy of milling robots, based on [33] (p. 1403)

dimensions of the work piece with a predefined fixed or
limited number of individual dexels. Therefore, the error
of the commercially implemented dexel models typically
depends on the outer dimensions of the part. The spatial
resolution of the presented voxel model is invariant to
the size of the work piece. The presented reconstruction
errors for the Freeform part with small outer dimensions are
therefore in favor for the dexel model. The reconstruction
errors of the dexel models can be significantly larger for
parts with larger outer dimensions.

4 Robot milling

Robot-based machining systems have the potential to offer a
cost-effective alternative to conventional machine tools. The
combination of a large available workspace and a dexterous
kinematic configuration facilitates the machining of large
work pieces with complex geometry and undercuts. In
comparison to conventional machine tools, robotic systems
are optimized for rapid movements, repetitive position
accuracy and light-weight of the structural components.
Therefore, robots have lower eigenmodes, static stiffness
and path accuracy. The dominant influences on the path
accuracy of machining robots are listed in Fig. 9.

Milling combines challenging demands on the system
behaviour of the robot with additional external process
forces. While standard pick-and-place robot tasks can be
programmed without the consideration of the process,
the planning of machining operations for milling robots
have to take coupled machine-process-interaction into
consideration. The presented volumetric work piece model
is the core component of the coupled simulation of the
system behaviour.

While the inherent static and dynamic forces of the
robot system can be calculated and measured based on
the robot movement and the joint torques, unknown
external forces pose a challenge to the robot controller
and cannot be compensated without additional sensors.
The external forces cause an elastic deformation of the
gears and bearings, which cannot be measured by the
encoders mounted on the motor side. By simulating
the process forces and taking them into account when

generating and executing the part programs, the resulting
path deviations can be compensated. A detailed description
of the simulation of the process forces and the generation of
the part programs can be found in [43].

For the validation of the simulation-enhanced robot-
based machining process, the manufacturing of the complex
cam work piece (see Fig. 7b) was planned, simulated and
machined utilizing the presented method. For the simulation
of the machining of aluminium EN AW-2007 the process
force parameters are given in Table 7 [31]. Figure 10 shows
a comparison between the measured and simulated process
forces for two exemplary sections during the manufacturing
process.

By coupling the process force simulation and the
dynamic flexible model of the robotic system, the force-
induced deflections during the machining process can
be simulated and compensated. A feed-forward controller
converts the simulated forces to expected path deviations
and superimposes the mirrored path errors to the original
tool path. Figure 11 shows the resulting geometry errors
without and with activated compensation mechanism.

The voxel-based process force simulation and compensa-
tion have shown a reduction of the remaining RMS contour
error by 64%. Thereby, 99% of the remaining errors have
been smaller than 0.25mm, which enables the utilization
of milling robots for roughing operations. Furthermore, the
presented voxel-based approach allows for the represen-
tation of large work pieces without impairing the spatial
accuracy of the in-process work piece. This property allows
for the simulation of the machining of large work pieces
typically manufactured by robotic machining systems.

5 Discussion

In this article, we have introduced a novel concept for fast
and accurate process force prediction of machining. The

Table 7 Examplary process force parameters for EN AW-2007

kte = 4.63 N
mm

ktc = 57.5 N

mm2

kde =- 11.8 N
mm

kdc =- 76.5 N

mm2

kne =- 11.0 N
mm

knc =- 672 N

mm2
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Fig. 10 Comparison of the simulated and measured process forces for the machining of a slot with full tool engagement and changing directions
of cut (a) and the machining of a pocket (b)

approach is based on the concept introduced by [31], which
splits the force calculation in two parts: a geometric material
removal simulation (Sections 2.2–2.4) and a mechanistic
process force simulation (Section 2.5). This allows, e.g.,
to perform the material removal simulation upfront on a
standard desktop computer and the force evaluation can be
realized on an edge device online to the process itself.

Within this article, we focused on the acceleration on
the computationally demanding geometry material removal
simulation. While many state-of-the-art approaches rely on
dexel realizations we rely on hierarchical voxel models.
This does not only allow for efficient GPU implementations
as shown in Section 3.2 but also lead to more accurate shape
representations as shown in Section 3.3.

Fig. 11 Visualization of the
contour error without (top left)
and with (top right) static
process force compensation and
a histogram of the remaining
contour errors (bottom)

287Int J Adv Manuf Technol (2021) 115:275–289



By utilizing the presented voxel model for the improve-
ment of robot milling applications, the achievable roughing
accuracy was improved from the range of 1.0 mm to the
range of 0.1–0.2 mm. Besides this use case, the presented
model could be beneficial for a large number of other
applications:

– Increased accuracy for low stiffness machine tools
– Process parameter optimization in machining
– Simulated feedback during the CAM-planning
– Machine tool and spindle selection
– Estimation of manufacturing costs
– Machine tool monitoring, diagnostics and predictive

maintenance

The presented voxel-based approach is able to represent
large mutable volumes with high mutation performance,
nearly isotropic properties, inherent model integrity and
high spatial resolution. These properties of the presented
model are achieved by a combination of a voxelization
approach, hierarchical dynamic data structures, and the
parallel implementation of query and mutation operations
on the GPU. Fulfilling the requirements for various
simulation applications in the area of virtual machining,
additive manufacturing, surgical simulations, or excavation
simulation, we expect to see the base technology to be
employed by other researchers and developers.
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