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Kurzfassung

Es wird eine modellprädiktive Regelung für den optimierten Betrieb von kleinen mechatro-
nischen Antriebssystemen mit magnetisch nichtlinearen permanentmagneterregten Synchron-
maschinen diskutiert. Die in dieser Arbeit behandelten Optimierungen zielen darauf ab, die
maximale Dynamik auszunutzen und gleichzeitig eine optimale Stromqualität mit minimalen
Schaltvorgängen im Wechselrichter zu erreichen, um die Gesamtverluste zu reduzieren.
Darüber hinaus wird eine verbesserte Bedienbarkeit hinsichtlich der Reglereinstellungen über
den gesamten Betriebsbereich angestrebt. Dies ist z.B. für elektrische Antriebe in Werkzeug-
maschinen von Vorteil, bei denen je nach Arbeitspunkt eine hohe Dynamik sowie eine geringe
Drehmomentwelligkeit wichtig sind.
Um dieses Ziel zu erreichen, steht der Nachweis der Anwendbarkeit und des Nutzens der
modellprädiktiven Regelung für elektrische Kleinantriebe im Vordergrund. Dazu wird eine Lö-
sung vorgestellt, die es erlaubt, die modellprädiktive Regelung trotz erhöhten Rechenaufwands
auch für Antriebe mit kleinen elektrischen Zeitkonstanten zu nutzen. Diese Arbeit leistet einen
Beitrag zum Forschungsgebiet der modellprädiktiven Regelung.

Abstract

Model predictive control for optimized operation of small mechatronic drive systems with mag-
netically nonlinear permanent magnet synchronous machines is discussed. The optimizations
addressed in this thesis aim to exploit the maximum dynamics while at the same time achieving
optimum current quality with minimum switching operations in the inverter to reduce overall
losses. Moreover, improved usability with regard to the controller settings is intended to be
achieved over the entire operating range. This is beneficial, e.g. for electric drives in machine
tools, in which, depending on the operating point, high dynamics and a low torque ripple are
important.
To achieve this goal, the main focus is to prove the applicability and benefits of model predictive
control for small electrical drives. To this end, a solution is presented that allows model predic-
tive control to be solved even for drives with small electrical time constants, despite increased
computational effort. This thesis contributes to the research field of model predictive control.
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1 Introduction

Small electrical drives—also called fractional horse power drives—are motors with a rated
power of less than 746 W. A market study conducted by Grand View Research estimates global
sales of electric motors in 2020 at USD 143 billion and predicts a compound annual growth rate
from 2021 to 2028 of 6.4 % [GVR21]. Here, the small drives segment dominates the electric
motors market, taking the largest revenue share of 87 % in 2020 [GVR21]. Consequently, their
importance in industrial automation and the automotive sector is increasing steadily. A con-
stantly growing part of fractional horse power drives are permanent magnet synchronous ma-
chines (PMSMs), which are mostly operated by block commutation. However, more and more
low-cost microcontrollers are appearing in combination with a field-oriented control [Bla72],
which enables a reduced torque ripple and an increased efficiency due to the field orientation.
The high market share of these small drives and the steadily increasing demands from indus-
try and the automotive sector will require not only cost reduction but also significantly more
improvements in energy efficiency and performance optimization in the future. Thus, for an
increasing number of applications, the state of the art control methods are not sufficient any-
more.

1.1 Research Issue

In recent decades, several control methods have been proposed for controlling converters and
drives. The most commonly used ones are shown in Fig. 1.1 [CKK+08, Lin10, RC12, KPR+15,
LKF+16, KLGK20]. Some of these methods, such as nonlinear hysteresis control, are very
well established and simple, while newer control methods, which allow an improved system
behavior, are generally more complex or require much more processing power from the control
platform. Field-oriented control (FOC) [Has69, Leo96, Bla72] and direct torque control (DTC)
[TN86] are particularly common and are used in a wide range of drive applications [GRS+14].
Here, a distinction is made between direct and indirect control methods [Hol94].

One common method of direct control is DTC—as a type of hysteresis control—that already
takes into account the nonlinear nature of the power inverter and thus directly manipulates the
switching states of the power semiconductors. The origin of this control scheme is in analog
electronics and thus requires a very high sampling frequency when implemented in a digital
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Control methods for converters

Predictive Linear control Hysteresis Sliding mode Artificial intelligence

Dead-beat
control (DB)

Trajectory
based

Model predictive
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Field-oriented
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Current
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Direct torque
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Current control

Voltage control

Fuzzy

Neural
networks

Neuro-fuzzy

Continuous control
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Finite control
set MPC (FCS-MPC)

Figure 1.1: The most common types of control schemes for power converters and drives.1

platform. One common indirect control method, utilizing a modulator stage for generating the
inverter switching signals, is FOC, which uses simple linear proportional–integral (PI) con-
trollers. FOC operates on the principle of single-input single-output (SISO) [Sch15, p. 134],
which requires decoupling the system states of the PMSM to obtain a stable control loop. More-
over, nonlinearities, once they occur, can be difficult to account for and can adversely affect the
control performance, especially in transients [Leu14, p. 1].
Consequently, alternating between FOC and DTC can be advantageous, since DTC is particu-
larly effective and dynamic in field weakening operation, while FOC with modulator is useful in
steady-state operation, e.g., due to lower harmonics [Sch15, p. 844]. However, power converter
systems are subject to several system constraints and technical requirements, such as maximum
current, maximum switching frequency and total harmonic distortion (THD), which cannot be
directly incorporated into a linear controller design.
To sum up, classical control theory has been constantly adapted to meet increasing requirements,
although new approaches may be better suited to modern, digitally controlled converters.

With the development of more powerful microprocessors, new control schemes have been pro-
posed. Among the most important are fuzzy logic control, neural networks, sliding mode control
and predictive control. Of these new methods, predictive control seems to be a very interesting
alternative for controlling power converters and drives. The predictive family comprises very
different approaches. The idea behind all predictive controllers is that they first of all use a
model of the controlled system to predict the future behavior of the controlled states, followed
by optimization criteria to select suitable control signals. When it comes to designing a con-
troller that enables the maximum possible dynamic range, predictive controllers seem to be one

1Specifically for MPC, a distinction between CCS- and FCS-MPC is made in this work, although a different
and much more fine-granular distinction can be found, e.g., in [KLGK20].
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of the most promising options [Sch15, p. 422]. One of the best known predictive controllers is
dead-beat control [CKK+08]. Here, a model of the controlled system is used to calculate the
control signal, i.e., the voltage, that brings the control error to zero in a single discrete sam-
pling step using a modulator stage. A different and very powerful predictive control strategy
that is now being applied in power electronics is model predictive control (MPC), which is the
subject of this thesis. The functional principle of MPC is not completely new; the structure is
based on optimal state control, i.e., linear quadratic regulator (LQR), where in the field of power
electronic systems aspects of hysteresis control are incorporated [DP04, Wan09, Lin10, Leu14].
MPC operates as a multiple-input multiple-output (MIMO) controller, and its model-based char-
acter means that it can consider complex correlations between measured and control signals.
Moreover, the predictive character of MPC enables a new control signal to be planned in ad-
vance for each control interval by optimizing a cost function online. This is in contrast to the
reacting character of FOC and DTC.

With MPC, a distinction can be made between continuous control set-MPC (CCS-MPC) and
finite control set-MPC (FCS-MPC).1 The former optimizes continuous and the latter discrete
control signals. In particular FCS-MPC, also known as direct model predictive control (DMPC),
has gained a large momentum, where the aim is to find the constrained optimal discrete voltage
space vector (SV) that minimizes a pre-defined cost function. This enables the control objec-
tives, such as output reference tracking, to be met, while the direct control nature of FCS-MPC
enables very fast transient responses to be achieved. Moreover, when long-horizon FCS-MPC
is considered, two features are prominent. First, an improved steady-state system performance
can be attained, as indicated by the reduced THD in the variables of concern for a given average
switching frequency fsw. Second, the stability of the system can be improved. In addition, MPC
can increase usability by automatically adjusting the controller by virtue of its model-based
character, eliminating the need for adjustments based on operating points.
Although research tends to concentrate on FCS-MPC for low voltage drives, in industry it is
usually applied to medium voltage drives [Gey17] due to the slow electrical time constants that
facilitate real-time MPC processing. Thus, it can be concluded that, although FCS-MPC is very
promising, the implementation of the algorithm for drives with small electrical time constants
is mostly inhibited by the limited computational power [Gey17, p. 19].

The optimizations addressed in this thesis aim at utilizing the maximum drive dynamics while
at the same time achieving optimum current quality with minimum switching operations in
the inverter. The latter tends to result in low losses. Moreover, improved usability with regard
to the controller settings is intended to be achieved over the entire operating range. This is
beneficial, e.g., for electrical drives in machine tools, where, depending on the operating point,
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fast dynamics as well as low torque ripple are important. The problem considered in this thesis
is therefore defined as follows. Determination of a control method for small electrical drives in
highly dynamic and high-precision industrial applications with

• the most dynamic current, torque and speed control taking into account a predefined volt-
age, current, torque and/or speed limit,

• the lowest possible overshoots in transients,

• the lowest possible current THD2, i.e., current ripple, at the lowest possible switching
frequency, which tends towards a high energy efficiency,

• a reduction of the mechanical natural oscillations.

Defining the problem leads to the question of which control approach is capable of achieving
all these goals, while also considering clarity and easy adaptation to new system topologies.
Assuming that MPC is a possible solution to this question, but has not been applicable so far
due to the high computational effort that needs to be solved in short computation intervals, the
research question of the dissertation is defined as:

Is MPC useful for small electrical drives, and if so, when and how?

1.2 Contributions

To answer the research question considering the previously mentioned arguments, the main
contributions of this thesis are as follows:

1. Improvement of the dynamic behavior of small electric drives by using FCS-MPC, where
system constraints for, e.g., current and speed, are directly considered during optimiza-
tion. The latter protects the system and avoids subsequent limits that would lead to a
suboptimal control signal.

2. Introduction of heterogeneous calculation platforms, i.e., system-on-a-chip field-program-
mable gate arrays (SoC FPGAs), that enable FCS-MPC with a long horizon even for
electrical drives with small time constants by being able to perform prediction steps with
control frequencies of up to several hundred kHz. The combination of processor and
FPGA with shared resources in a single chip enables the multidimensional execution of
the algorithms, i.e., parallel prediction and serial solution of the optimization problem.

3. Online adaptation and tracking of system parameters to enable an accurate and robust
prediction over the entire operating range, even for highly utilized synchronous machines.

2„While low harmonic current distortion ensures low torque ripple, achieving low torque ripple does not nec-
essarily entail low current distortion.“ [Hol16]
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4. Insertion of a variable switching point, such that FCS-MPC switches within the control
interval, thus reducing the current ripple without increasing the switching frequency and
losing the dynamic behavior of direct MPC.

5. Enabling the use of FCS-MPC even for highly utilized synchronous machines by pre-
venting prediction errors due to a nonlinear magnetic circuit, i.e., saturation and cross-
coupling effects. Since inductances can change significantly over the operating range—
one half is not uncommon—these effects are important for appropriate control perfor-
mance, even though a linear magnetic circuit is usually used to model FCS-MPC. For this
purpose, a prediction based on flux linkage is introduced, which results in significantly
improved control behavior, such as in transients and steady state.

6. Increasing steady-state accuracy by introducing a repetitive flux linkage correction term
that compensates for parameter and model inaccuracies with respect to the rotor position.

7. Combining CCS- and FCS-MPC in a cascaded structure to enable the prediction and opti-
mization of the mechanical and electrical system behavior without any loss in granularity.
The aim of this is to additionally damp mechanical natural oscillations in the drive train.

1.3 Restrictions and Specifications

With respect to the research question, the following restrictions and specifications apply to the
proposed case study:

1. A PMSM is typically chosen in applications that require electrical machines with highly
dynamic behavior and high power density. The study considers up to five different PMSM
types—with varying degrees of saturation, i.e., magnetic nonlinearity, and reluctance—
from up to five different production batches, in a power class below a nominal power of
200 W, see Table A.3 of Appendix A.3.1. Asynchronous machines are not considered.

2. Only three-phase systems are considered. All coils and thus inductances are symmetrical.

3. The skin and proximity effect are neglected.

4. A non-sinusoidal field distribution in the air gap field, e.g., due to an asymmetric air gap,
winding harmonics, slotting effects or rotor eccentricity, is not modeled, but nevertheless
compensated for by the controller, see Chapter 8.

5. Iron losses of the fundamental frequency are due to the machine design and cannot be
mitigated by the control or modulation approach. However, the switching frequency and
resulting harmonics cause current harmonics that can lead to significant inverter-based
iron losses, i.e., losses in the stator and rotor. Hence, their reduction is a potential criterion
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in the cost function. Nevertheless, as will be shown in Chapter 4, this effect is quite low
for the small drives under consideration. Consequently, iron losses are neither modeled
nor addressed in the optimization, but are still compensated for in the prediction stage,
see Chapter 8.

6. Although a fixed switching frequency of the semiconductors is required in some applica-
tions, e.g., grid applications, it is not necessary for motor drives.

7. A rotor position sensor is used. Therefore, no encoderless method is considered.

1.4 Outline

Taking into account the above restrictions, the contributions to answer the research question are
organized as follows. These include the author’s own publications and supervised theses.

Chapter 2 describes the electrical and mechanical controlled system. It contains an overview
and classification of MPC methods in comparison to the state of the art, i.e., FOC, DTC and
LQR, in terms of their suitability for small electrical drives.
To ensure real-time capability, Chapter 3 proposes a powerful real-time computing system and
computationally efficient execution of MPC by way of heterogeneous implementation. This
chapter is mainly based on [WDK17b, WDK17a, WGL+19]. Furthermore, the importance of
measurement accuracy is discussed on the basis of [Bri17].
Chapter 4 describes the determination and tracking of system parameters such as motor pa-
rameters, to significantly improve the control performance of MPC. This is based primarily on
[HWD17, Hoe17, Hoe18, Geb18, Geb19, Geb20, Huf21].
Chapter 5 describes how the computational effort can be reduced and Chapter 6 describes the
introduction of a variable switching point to improve the switching granularity in DMPC. Chap-
ter 7 further develops the variable switching approach to allow the approach to be extended to
PMSM with a nonlinear magnetic circuit. These chapters are based on [WKDK19, WKDK20,
WKG+21].
Even if an exact analytical description of the controlled system—see Chapter 4—significantly
increases the control quality of MPC, there will always be possible small deviations or nonlin-
earities that are either not describable at all or only with great effort. Thus, Chapter 8 introduces
a flux linkage correction, the aim of which is to enable steady-state accuracy to be achieved
over the entire operating rang.
Chapter 9 separates the control problem depending on the electrical and mechanical time con-
stants, thus enabling a predictive calculation with an acceptable granularity for the entire mecha-
tronic drive system. This chapter is based on [WHKDK18, WHKDK19, HK20, WHKD20].
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2 State of the Art and Performance Classification

The main focus in this work is to prove the applicability and advantages of MPC for small
mechatronic drive systems, distinguishing between FCS-MPC and CCS-MPC. For this purpose,
this chapter briefly explains the controlled system under consideration, i.e., the two-level voltage
source inverter, the permanent magnet synchronous machine and the mechanical drive train.
Afterwards, an overview of the common control and actuation methods for small electrical
drives is given. Although there are a variety of different control strategies, some of which are
shown in Fig. 1.1, only the most common ones are used for comparison. Since a mechatronic
drive system is considered, FOC, classical DTC and the algorithm of interest, i.e., MPC, are
explained for the electrical controlled system according to the state of the art. For the mechanical
controlled system, MPC competes with a PI controller and LQR1. Finally, the mentioned control
methods are compared in simulation and experiment using the specified controlled system as an
example. Thus, the potential for improvement and the open questions are clearly highlighted in
this chapter to illustrate the motivation and goals of the work.

2.1 Control of Electrical Drives

The basic structure of the controller and the controlled system is shown in Fig. 2.1, where a
power electronic system, i.e., inverter, with three-phase PMSM is directly assumed.
The system output, i.e., the controlled variable y(k), is controlled using the reference signal
y∗(k) and calculating a control signal u(k). The disturbance is labeled by z(k). The control
deviation ξ(k) may already be part of the controller, depending on the selected control method.
Moreover, some important preliminary considerations are necessary for the realization of the
controllers. First, the space vector notation is briefly explained. Second, some indirect control
methods, e.g., FOC, require a modulator, which is described in the following. Third, control
schemes are typically implemented on a control hardware such as a microcontroller, which
requires a discretization of the controlled system and is therefore discussed in the following. In
addition, the most important definitions are briefly explained for clarification:

1The LQR controller is based on [Lun17, p. 304].
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Controller
Sec. 2.3, 2.4, 2.5

u(k) Inverter
Sec. 2.2.1.1

Controlled system

Sec. 2.2

Drive train
Sec. 2.2.1.2 - 2.2.2

y(t)

Acquisition of
measurements Sec. 3.3

y(k)

y∗(k)

−
ξ(k)

z(t)

Figure 2.1: General scheme of the discrete control structure for a drive train with inverter.

1. Control frequency fc: is the frequency for the cyclic calculations of the controller. More
concretely, a distinction is made hereinafter between fcf for the control of electrical vari-
ables and fcc for the control of mechanical variables.

2. Sampling frequency fa: is the frequency for the cyclic acquisition of new measurements,
see Section 3.3.

3. Switching frequency fsw: is the average switching frequency which is defined by one
ON and one OFF transition per phase leg, see Section 2.2.1.1. Thus, the ON and OFF
transitions constitute one switching pulse.

2.1.1 Space Vector Representation

The mathematical treatment of the states in a stationary three-(multi-)axis stator system are
considerably simplified if the quantities are transformed into a two-axis orthogonal system (sta-
tionary or rotating). The word system refers to coordinate system, which is also called reference
system. In doing so, a generally valid three-phase system of balanced and sinusoidal quantities
can be described by a space vector

−→
ζ [KR59, p. 295]. The space vector representation can be

done by complex numbers when the spatial as well as the temporal assignment of the electro-
magnetic quantities are taken into account [Sch13, p. 301 ff.]. Separating the time dependency
in the space vector, the phasor describes just the complex time independent variable ζ , where
−→
ζ = ζejωt [VPdD16, p. 109]. Thus, a stationary or rotating phasor has a real and an imaginary
component [VPdD16, p. 35]. However, in this work the representation of the transformed states
does not use the complex description, since it is only valid if temporal and spatial quantities are
sinusoidal and geometrically related. As explained in [Lan14, p. 12], for highly dynamic non-
sinusoidal operation of the controlled system, e.g., during transients when using an inverter, a
distinction between temporal and spatial relations is recommended. [Gey17, p. 42] also rec-
ommends for the same reason an orthogonal system with lumped parameters instead of the
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(complex-valued) space vector representation. Therefore, the author uses the word space vector
for the real-valued vectorial notation, i.e., ζ = [<{

−→
ζ } ={

−→
ζ }]T , in an orthogonal system.

For both representation possibilities it is assumed that the sum of the signals of the individual
phases is zero (e.g., for the phase currents or phase voltages), i.e., in a three-phase system all

phases are shifted against each other by exactly
2π

3
rad and have identical amplitudes. The

previous assumption is valid since only the fundamental wave of the system is considered,
which leads to a fundamental wave model in the time domain.

The applied orthogonal theory allows using the Clarke (αβ) transformation [VPdD16, p. 98].
Here, the three-phase electromagnetic quantities are converted into an equivalent orthogonal
system with axes α and β, where the α-axis is usually aligned with the axis of the first phase,
see Fig. 2.2(a). The resulting space vector ζαβ rotates with the same fundamental frequency as
the phases in the stator coordinate system. Using the amplitude invariant Clarke transformation,

i.e., a=
2

3
, the matrices

Kαβ0 = a


1 −1

2
−1

2

0

√
3

2
−
√

3

2
1

2

1

2

1

2

 , K+
αβ0 =

1

a


2

3
0

2

3

−1

3

1√
3

2

3

−1

3
− 1√

3

2

3

 (2.1)

are used to transform any three-phase state ζabc = [ζa ζb ζc]
T into the space vector plane with

ζαβ0 = [ζα ζβ ζ0]T through the operation

ζαβ0 = Kαβ0ζabc (2.2)

and vice versa with the pseudo inverse of matrixKαβ0, i.e.,

ζabc = K+
αβ0ζαβ . (2.3)

Even if, for example, triple-order harmonics in delta-connected PMSMs generate a circulating
current i0 in the windings—which causes ohmic losses—this current is not accessible from
the terminal connection and therefore cannot be influenced by the controller [Min13, p. 42].
Consequently, the additional component ζ0 is only necessary if the system is unbalanced and
the neutral point of star-connected windings is not floating. However, since the neutral point is
floating for the case considered in this thesis,

0 = ζa + ζb + ζc (2.4)
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a

c

b

α

β

ζa

ζb

ζc
ζαβ

ζα

ζβ

(a) Superposition of the three phases to a two-axis
right-angled representation. Both are in the stator
coordinate system.

a

c

b

α

β

d

q

ωel

ϕ

ζa

ζb

ζc
ζdq

ζd

ζq

(b) Superposition of the three phases to a two-axis
right-angled representation in a rotating coordinate
system.

Figure 2.2: Transformation of phase-related quantities into a rotating space vector using the

amplitude invariant representation by the example of a rotor angle of ϕ =
π

12
rad.

holds. Thus, the last row ofKαβ0 and column ofK+
αβ0 can be neglected and a two-dimensional

vector ζαβ = [ζα ζβ]T results. Consequently, if symmetry is assumed, the measurement infor-
mation of two phases would actually be sufficient.
It has to be noted that any value can be chosen for the factor a in the Clarke transformation,
i.e., (2.2) and (2.3). Typically, a distinction is made between an amplitude invariant transforma-

tion (a=
2

3
) and a power invariant transformation (a=

√
2

3
) [Sch15, p. 1554]. Although some

authors chose the latter due to symmetry effects [Lan14, p. 12 ff.], in the following the ampli-
tude invariant transformation is chosen, because, first, the focus is on current rather than power
control and, second, for simplicity, i.e., parameter scaling is avoided.

Using the Park transformation, i.e., a complex rotation operator, the vectorial notation ζαβ can
be represented in a rotating rather than a stationary coordinate system. Here, the space vector
remains stationary while the coordinate system rotates with the rotor flux. For synchronous
machines, the rotor flux vector is synchronized with the rotor, so the coordinate system can
simply rotate with the rotor, i.e., at the electrical angular speed ωel, keeping the two resulting
d- and q-axis orthogonal to each other. In steady state this results in constant quantities for the
space vector ζdq and the respective components, see Fig. 2.2(b). The positive d-axis always
points towards the north pole of one pole pair on the rotor, i.e., towards the amplitude of the
rotor flux of this pole, and is hence aligned with the rotor flux vector. For more information,
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see, e.g., [Sch13, p. 301 ff.], [VPdD16, p. 83 ff.]. With the knowledge of the rotor flux angle ϕ

and a =
2

3
, the matrices

K(ϕ)=
2

3

[
cos(ϕ) cos

(
ϕ−2π

3

)
cos
(
ϕ+2π

3

)
− sin(ϕ) − sin

(
ϕ−2π

3

)
− sin

(
ϕ+2π

3

)] , K+(ϕ)=

 cos(ϕ) − sin(ϕ)

cos
(
ϕ−2π

3

)
− sin

(
ϕ−2π

3

)
cos
(
ϕ+2π

3

)
− sin

(
ϕ+2π

3

)


(2.5)
are used to transform any three-phase variable ζabc = [ζa ζb ζc]

T into a two-dimensional refer-
ence plane with the vector ζdq = [ζd ζq]

T through the operation

ζdq = K(ϕ)ζabc (2.6)

and vice versa by using the pseudo inverseK+(ϕ)

ζabc = K+(ϕ)ζdq . (2.7)

2.1.2 Modulation Methods

Indirect control methods, e.g., FOC, do not control the inverter directly, but instead control and
output continuous control signals. In doing so, several modulation techniques are able to convert
the continuous control signals into discrete switching signals. A good overview of modulation
techniques is given, e.g., in [HKL98, LKF+16]. Basically, a distinction is made between carrier-
based pulse width modulation (CB-PWM)—see the holistic overview in [HL03]—and space
vector modulation (SVM). A comparison is given, e.g., in [HL03, p. 265 ff.]. The two main
differences are that, first, the latter has gained popularity thanks to digital processors that allow
duty cycles from vector control to be applied directly in vector coordinates [Hol94, HKL98].
Second, SVM splits the inverter zero states equally and thus can utilize the dc-link more than
CB-PWM without additional common mode voltage injection.

More concretely, continuous modulation methods such as sinusoidal PWM (SPWM)—which is
CB-PWM without any modifications—, space-vector PWM (SVPWM), i.e., King’s method—
in common parlance simply named SVM—and third harmonic injection PWM (THIPWM)
[HKL98] can be distiguished, which are mainly used at low modulation indices. Furthermore,
discontinuous modulation methods (DPWM)—which can be applied with SVM and CB-PWM—
such as DPWM1, DPWM2, DPWM3, DPWMMIN and DPWMMAX [HKL98] can be used
at high modulation indices to increase the modulation linearity range and to reduce switching
losses. To improve flexibility, the pulse pattern can be changed depending on the operating point
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by varying between the methods mentioned. Even though the modulator is a very powerful tool
to apply the continuous control signals, it is not straightforward to define a suitable criterion
based on which the modulation method is chosen or switched, although a hysteresis band can
be implemented to avoid toggling [HKL98].
A further distinction can be made between synchronous and asynchronous PWM, whereby the
former can be particularly advantageous for low pulse numbers [Hol92, Hol16], i.e., low fsw/f1

ratio, where f1 is the fundamental frequency. For synchronous PWM, many methods exist for
optimizing the switching angles, such as optimized pulse patterns (OPP), selective harmonic
elimination (SHE) or selective harmonic mitigation (SHM). However, due to the high number
of pulses required in the case of small electric drives, asynchronous—as state of the art—is
chosen.
Finally, for digital controllers, a general distinction can be made between symmetrical and
asymmetrical regularly sampled modulation [HL03]. Although the latter may be better for low
pulse numbers [HL03, p. 241], the former is typically chosen for small drives, i.e., for high pulse
numbers, and is hence used hereinafter.2

Space vector modulation (SVM) As aforementioned, SVM allows the modulation of the
switching signals of an inverter—see Section 2.2.1.1—directly based on a continuous control
signal, i.e., a reference voltage space vector v∗dq. In doing so, the exemplarily shown v∗dq in
Fig. 2.3(b) is devised as summation of existing discrete voltage space vectors (SVs) (see Ta-
ble 2.1), which can be physically set by the inverter. Consequently, the four SVs that form a
sector—wherein v∗dq lies—in the VSI voltage hexagon of Fig. 2.3(b) are required.
As a result, the two active voltage space vectors (ASVs), i.e., the left vL and the right vR, as
well as the so-called zero voltage space vectors (ZSVs) must be determined. Using the specific
example of setting v∗dq in Fig. 2.3(b), vL = v2, vR = v1 and v0 as well as v7 correspond to
the zero space vectors. To reproduce the vector v∗dq with the discrete space vectors by vector
addition, it is necessary to calculate the required switching times based on [Sch15, p. 667 ff.]

tR =
√

3Tsw
|v∗dq|
Vdc

sin
(π

3
− γsvm

)
(2.8a)

tL =
√

3Tsw
|v∗dq|
Vdc

sin (γsvm) (2.8b)

t0 = Tsw − tR − tL , (2.8c)

where Tsw is the modulation interval and γsvm is the angle between v∗dq and vR of the cor-
responding sector. However, the implementation of trigonometric functions on an FPGA is

2It should be mentioned that the sampling frequency fa is equal to fsw if no oversampling is used and the
control frequency fc is equal to fsw in the considered case of symmetrical regular sampling.
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(b) Voltage space vector summation.

Figure 2.3: Schematic example of the space vector modulation method used.

usually very resource and computationally intensive, see Chapter 3. Therefore, the adaptions
shown in [QD15, p. 23 ff.] are used to implement a computationally more favorable method of
the described SVM, which avoids additional trigonometric functions, see Appendix A.2.1.

There are several variants to split and merge the determined SVs, i.e., vR, vL, v0, v7, in order
to generate v∗dq. However, the most common SVM variant is the symmetrical arrangement of
the pulse pattern, since the current harmonic distortion, i.e., ITHD, is particularly low and the
fundamental can be sampled, allowing the use of PI controllers. More concretely, within the
modulation interval Tsw one ZSV is applied at the beginning and end, the other ZSV is applied
in the middle, and the two ASVs are applied to the left and right of the middle, see Fig. 2.3(a).
This implies, that the calculated switching times, i.e., tR, tL, t0, are symmetrically split. For the
sequence of switching operations in odd sectors, i.e., I, III, V, tR is the first and tL the second
applied ASV. This is exemplified in Fig. 2.3(a). For the even sectors, i.e., II, IV, VI, it is the
other way round, i.e., tL first and tR second. This arrangement means that only one half-bridge
at a time performs a switching action between the individual space vectors, thus keeping the
number of switching transitions as low as possible.

For reasons of benchmarking, FOC with SVM, i.e., SVPWM, is used for all further consider-
ations. However, due to the aforementioned challenges when changing between various mod-
ulation schemes or pulse patterns over the operating range, as well as the potential increase
in dynamic response by eliminating the modulator stage, this thesis investigates the feasibility
of applying DMPC to small electrical drives. The latter is achieved by a more direct approach
between control target optimization and modification of inverter switches. Consequently, the
proposed DMPC and the compared DTC do not use a modulation method, i.e., no modulator is
present.



14 2 State of the Art and Performance Classification

2.1.3 Discretization

In general, the analytical model equations are initially formulated in the continuous-time do-
main. However, these models need to be implemented in the control structures of digitally oper-
ating real-time computing platforms once they are used in the real-world for their experimental
applications. Therefore, a discretization is necessary, e.g., according to Euler, Tustin or exact
discretization. More specifically, the forward Euler method—as the most simple approximation
method—and the exact discretization are used in the following.
Considering the general state space description, the exact discretization is specified by [MD17,
p. 46]

A = eAcTc =
∞∑
l=0

(AcTc)
l

l!
= I +AcTc +

(AcTc)
2

2
+

(AcTc)
3

6
+ ... (2.9a)

B =

∫ Tc

0

eAcτBcdτ =

∫ Tc

0

∞∑
l=0

(Acτ)l

l!
Bcdτ =

∣∣∣∣∣
∞∑
l=0

Al
cτ
l+1

l! (l + 1)
Bc

∣∣∣∣∣
τ=Tc

τ=0

=
∞∑
l=1

Al−1
c T lc
l!

Bc = TcBc +
AcT

2
c

2
Bc +

A2
cT

3
c

6
Bc + ... (2.9b)

where the procedure can be aborted after the l-th element. Tc is the discrete control interval.
As shown, e.g., in [Gey17, p. 13], [Gey17, p. 155], for short sampling intervals as well as pre-
diction horizons, forward Euler is sufficiently accurate. Forward Euler is described by

dx(t)

dt
≈ x(k + 1)− x(k)

Tc
⇒ s ≈ z − 1

Tc
(2.10)

where the right-hand side shows merely for illustration purposes forward Euler in the s-plane
using z-transform. This leads to the discretized system equations

A = I +AcTc (2.11a)

B = BcTc . (2.11b)

For both discretization methods, C = Cc applies to the output matrix.
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2.2 Controlled System

This section describes the controlled system. The restrictions in Section 1.3 have to be con-
sidered. Fig. 2.4 illustrates the controlled system under consideration, where the mechanical
rotor position ϕm is measured and used to compute the mechanical angular speed ωm. The latter
relates to the electrical angular speed with ωel = pωm, where p is the number of pole pairs.

cTMS

dTMS

Tm T`
LoadControl approach

dq

abc

i∗d
i∗q

id
iq

ϕm

d
dt

ωm

uabc VSI

Vdc

PMSM

iabc

Figure 2.4: Current reference tracking for a two-level VSI with a PMSM.

2.2.1 Electrical Controlled System

First of all, the considered inverter topology is presented. In the following, the nonlinear electri-
cal machine, i.e., PMSM, is first derived in a relatively general way. Subsequently, a simplified
model description is deduced, which forms the basis for state of the art MPC models.

2.2.1.1 Inverter

The drive system comprises a two-level voltage source inverter (VSI) with three phase legs that
receives the control signals—optimized by a control algorithm on a calculation platform—and
applies a corresponding voltage, see Fig. 2.5(a). Indirect control approaches use a modulator,
while direct approaches directly manipulate the switches of the VSI. Given that the single-phase
switch position assumes values uh ∈ {−1, 1}, with h ∈ {a, b, c}, the output of the inverter in
the dq-plane is

vdq,inv =
Vdc

2
K(ϕ)uabc (2.12)

where uabc ∈ {−1, 1}3 is the three-phase, i.e., nh = 3, switch position and Vdc the dc-link
voltage. uh results the position of the respective gate signals Sh ∈ {0, 1} and the antivalent Sh ∈
{0, 1}, where uh = 1 gives Sh = 1, Sh = 0 and uh =−1 gives Sh = 0, Sh = 1, see Fig. 2.5(a).
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(b) Voltage space vectors.

Figure 2.5: Structure of the three phase two-level voltage source inverter including the inverter
switching states.

Table 2.1: Equivalence between voltage SVs and switch positions.

v0 ≡ [−1−1−1]T, v1 ≡ [ 1−1−1]T, v2 ≡ [ 1 1−1]T, v3 ≡ [−1 1−1]T

v4 ≡ [−1 1 1]T, v5 ≡ [−1−1 1]T, v6 ≡ [ 1−1 1]T, v7 ≡ [ 1 1 1]T

Note that the 23 = 8 possible switch positions result in seven unique voltage space vectors
(SVs), see Table 2.1 and Fig. 2.5(b) [HL03, p. 31]. Specifically, two of the switch positions,
i.e., uabc = [1 1 1]T and uabc = [−1 −1 −1]T , short circuit the load, and thus they correspond
to two SVs, named zero SVs, that are redundant. The remaining combinations lead to unique
SVs called active SVs. In the special case that both switches of the half-bridges are open, i.e.,
Sh = 0, Sh = 0, this is described by uabc = [Z Z Z]T , which is required, e.g., during parameter
identification, see Section 4.1. As shown in Fig. 2.4, in a first approximation the VSI output
voltage (2.12) is equal to the stator voltage vdq = [vd vq]

T , i.e., vdq,inv≈vdq, where the contact
resistance and the on-resistance of the semiconductor, i.e.,RDS(on), are not considered separately.

For the following considerations a comparison between fixed and variable switching frequency
is necessary, which is why the average switching frequency is defined as [KG20]

fsw = lim
M→∞

1

mckMTc

M−1∑
`=0

||∆uabc(`)||1 (2.13)

where ∆uabc(`) =uabc(`)−uabc(` − 1). In addition, M is the number of samples taken into
account for the calculation, m is the number of the power semiconductor switches of the power
converter of interest, i.e., m= 6 in the proposed case, and ck is a converter topology dependent
correction factor, i.e., ck = 2 for a two-level VSI.
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2.2.1.2 Nonlinear Model of the Permanent Magnet Synchronous Machine

The sinusoidal currents of the three stator windings generate a rotating magnetic field which
couples the magnetic field of the rotor and leads to a mutual rotation. In contrast to asyn-
chronous machines, the stator currents, the rotor shaft and the rotor flux linkage rotate syn-
chronously in steady state. For the PMSM, a general distinction can be made between four
different rotor types. The first two are shown in Fig. 2.6 with (a) surface mounted magnets
(SPMSM), where the SM-PMSM has the magnets directly on the surface and the SI-PMSM
the magnets embedded in the surface, and (b) interior, i.e., buried magnets [WB05, Sah08]
(IPMSM), where the VI-PMSM has V-shaped buried magnets and the RI-PMSM has radial
buried magnets [FHH10]. These typically use neodymium iron boron (NdFeB) magnets due to
the high power density. The other two types are the permanent magnet assisted synchronous
reluctance machine (PMASynRM), which uses ferrites instead of NdFeB due to costs, and the
synchronous reluctance (SynRM), also called reluctance synchronous machine (RSM), which
avoids magnets completely.
The main difference from the control perspective is the magnetic saliency—resulting in mag-
netic anisotropy—and thus the effect for producing torque. On the one side, the SPMSM pro-
duces the torque only if the mutual inductance changes as a function of the position, which
results in a mutual (alignment) torque. On the other side, the SynRM produces the torque only
if the self inductance changes as a function of the position, which results in a reluctance torque.
The respective non-torque-forming effect is considered as a parasitic effect. This is similar to
the cogging torque. The IPMSM and PMASynRM generate the torque using both principles,
but with different intensity [Han12]. For small drives, however, the SynRM and PMASynRM
have so far been rather uncommon and are thus not considered further. Most widely used is the
SPMSM, where disadvantages like loosening of bonds for pasted magnets—which can block
the rotor—are under control. Nevertheless, the IPMSM is becoming increasingly popular due
to the lower costs, e.g., in manufacturing, since with buried magnets the automatic placement of
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(a) SPMSM with four pole pairs.
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(b) IPMSM with four pole pairs.

Figure 2.6: Comparison of different magnet arrangements in the rotor for the PMSM.
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Figure 2.7: Symmetrical three-phase system with ohmic-inductive load in star (Y) connection.
The star point voltage is assumed to be v0 ≈ 0.

the magnets in the rotor is much easier [WB05]. Further information on PMSM characteristics
can be found, e.g., in [Sch15, p. 1069 ff.]. In general, a three-phase PMSM can be described
in a simplified way as three star-connected stator windings with a resistance Rph and the flux
linkage ψ, see Fig. 2.7.3 The Y-connection of the motor windings results in

ia = iu , ib = iv , ic = iw (2.14)

for the phase currents and
va = vu , vb = vv , vc = vw (2.15)

for the phase voltages as well as

vab = va − vb , vbc = vb − vc , vca = vc − va (2.16)

for the terminal voltages. As illustrated in Fig. 2.7, if Ohm’s law, Maxwell’s law of induction
and Kirchhoff’s mesh rule are applied to the three motor phases, the phase voltages can be
described by

vabc(t) = Rphiabc(t) +
dψabc(t)

dt
, (2.17)

where vabc = [va vb vc]
T , iabc = [ia ib ic]

T and ψabc = [ψa ψb ψc]
T . Respecting the rotor angle

and by applying the coordinate transformation from Section 2.1.1, the general valid fundamental
frequency model of the PMSM can be described in the dq-coordinate system by

vdq(t) = Rphidq(t) +
dψdq(t)

dt
+ ωel(t)Pψdq(t) (2.18)

3In this thesis, only star-connected windings are considered. Even if it is possible that the windings are con-
nected in delta, this is not considered here, since so-called circular currents are generated.
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where vdq = [vd vq]
T and idq = [id iq]

T are the stator voltage and current, respectively, ψdq =

[ψd ψq]
T is the flux linkage. The flux linkage in the d-axis, in contrast to the q-axis, can be

further separated by ψd(t) = ψ~
d (t) + ψpm(t), where ψpm is the permanent magnet flux linkage.

Note that the last term of (2.18) comes by the chain rule in the derivation due to the space

vector representation in the rotating dq-system [Sch13, p. 367], with P =

[
0 −1

1 0

]
. Moreover,

the generally valid PMSM model is dependent on numerous nonlinearities, which must be taken
into account depending on their characteristics.

Saturation The magnetic saturation of the ferromagnetic rotor and stator steel sheets has
a high influence on the operating behavior of the machine. The saturation behavior of ferro-
magnetic materials can be described by the model presentation of elementary magnets within
a magnetic domain, also called Weiss domain [Ber98]. If an external magnetic field caused by
the stator currents penetrates the material, the elementary magnets align along the external field
and amplify it. Although the increase with current is initially linear, as more Weiss domains
are aligned, the material becomes more saturated and the increase becomes more nonlinear,
see Fig. 2.8(a). Within the electrical machine, the nonlinear saturation behavior of all coupled
phases is superimposed and can thus be described in both stator and rotor fixed coordinate
system. In order to consider the saturation in the introduced voltage equation (2.18), the flux
linkage must be taken into account as a function of the prevailing d- and q-currents. Considering
initially only self-saturation, the flux linkage in the d- and q-axis increases nonlinearly through
the respective current in the d- and q-axis.

Labs =ψ/i

Ldiff = dψ/di

i

ψ

(a) Nonlinear current-flux linkage characteristic.

Labs
Ldiff

i

L

(b) Relationship between absolute and differential
inductance.

Figure 2.8: Schematic representation of the nonlinear behavior of the magnetic circuit due to
saturation.

Cross-coupling Despite self-saturation, it is usually assumed that the currents in the d- and
q-axis each independently generate the d-and q-flux linkage components since the currents and
voltages in the d- and q-axis are orthogonal to each other. However, in reality this is incorrect,
since the magnetic circuits of the d- and q-axis cross and indirectly influence each other within
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d

q

−d
−q

Figure 2.9: Cross-coupling due to shared flux linkage paths of d- (red) and q-axis (blue) using
an IPMSM, i.e., motor M3 in Table A.3 of Appendix A.3.1, as an example.

the machine, see, e.g., [LL00, vvD+03, MTSL08]. For illustration, Fig. 2.9 shows that they
share the same path in the stator yoke. Depending on the machine segment, the magnetic circuits
run in the same or opposite directions and thus reinforce or weaken each other. Hence, due to the
nonlinear magnetic behavior of the stator iron, i.e., saturation, the effects of magnetization and
demagnetization do not cancel each other out. Depending on the machine design, the influence
of the cross-coupling can therefore vary considerably and is usually not negligible. In order
to reflect also the cross-coupling of the d- and q-flux linkage in the machine model, a two-
dimensional dependence on both current components, i.e., id and iq, must be considered for
ψd and ψq. The determination of the flux linkage—see Section 4.3—is an essential part of this
work for reasons explained in Chapter 7.

Spatial harmonics The standard modeling approaches assume sinusoidal flux linkage in
the air gap. However, as shown in Fig. 2.10, the experimentally measured behavior of the flux
linkage, considered over one mechanical turn of the rotor angle ϕm, is mostly not sinusoidal.
As can be seen, the 5th, 7th and 11th spatial harmonics are usually clearly visible. Since the
PMSM can also have a fractional slot winding, e.g., motor M4, the 2nd and 4th spatial harmonics
are also present. Consequently, the flux linkage has a high proportion of harmonics in addition
to the sinusoidal fundamental. As a consequence, this may result in current harmonics. Thus,
apart from possible mechanical rotor eccentricities, it can be assumed that the electromagnetic
conditions of the machine varies with the electrical rotor angle ϕ, as, e.g., also shown in [SA09,
Min13].
The origin of these harmonics can have several reasons based on the machine topology. First,
the permanent magnets can generate a non-sinusoidal magnetic field caused by their position on
the rotor surface or within the rotor steel sheets. Second, the magnetic field in the air gap will be
distorted by the transition between stator slots and stator teeth. Third, the winding concept has
a significant influence as explained in more detail, e.g., in [Bin17, p. 61 ff.]. If these rotor angle
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(b) Spatial harmonics averaged over all three phases.

Figure 2.10: Identified flux linkage over one turn of the mechanical rotor angle using an IPMSM
with fractional slot non-overlapping concentrated windings, i.e., motor M4 in Ta-
ble A.3 of Appendix A.3.1, as an example (experimental).

dependent flux linkage deviations are also taken into account for the machine model, the flux
linkage characteristics must be extended by one more dimension and the multi-dimensional
chain rule must be applied to the time derivative of the flux linkage. Consequently, the flux
linkage has a three-dimensional nonlinear dependency on id, iq and ϕ.

Temperature influence A further factor influencing the machine parameters and thus the
operating behavior of the machine is the temperature. This affects both the phase resistance
Rph and the permanent magnet flux linkage ψpm. In general, the stator currents flowing through
the (copper) windings—which are ohmic resistances—generate current heat losses, i.e., copper
losses. As electrical energy is converted into thermal energy, the copper windings heat up, which
changes the resistance due to the specific resistance of e.g. copper. Depending on the losses and
the cooling concept, this results in different heating and cooling periods, which cause a change
in the phase resistance during operation.
The same applies to ψpm, where it does not increase but decreases at higher temperatures. Here
the temperature fluctuation results from the heating of the magnets during operation. This is
caused by loss mechanisms, such as eddy currents within the magnets [GWB+11]. Since ψpm

is part of the d-axis flux linkage, ψd is also affected by the temperature dependency. Fig. 2.11
exemplarily shows the experimentally determined dependence of ψpm on the temperature. For
this purpose, the calculated inverter quantities, as described later in Section 4.1.2, were used.
It was ensured that the motor was at thermal steady state for all measurements, i.e., the wind-
ing temperature ϑ was equal to the magnet temperature ϑm. NdFeB magnets typically lose
10 % flux per 100 ◦C temperature increase [Spe14]. The trend line through the measuring points
shows in good approximation this typical decrease, i.e., 7.3 % per 100 ◦C in case of motor M1.
Consequently, ψpm varies during operation depending on the operating point and the associated
temperature. The influence of temperature on the control behavior is shown in Section 2.6.3.
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Figure 2.11: Influence of temperature on the flux linkage through the permanent magnets using
the example of motor M1, see Table A.3 of Appendix A.3.1 (experimental).

Iron losses In the previous model descriptions only electrical losses due to the ohmic phase
resistance are assumed. In a real machine, however, further losses occur. A part of the power
loss is always caused by losses in the magnetic circuit of the machine [Jor24, Ber98, JHH+09].
These include eddy current losses, which occur due to induced currents within the rotor and
stator lamination. In addition, magnetic hysteresis losses occur in the lamination packs, which
are due to the constant remagnetization during commutation. In most cases, a separation of these
loss mechanisms is unnecessary or not useful from the control perspective. Instead, they are
summarized under the term iron losses PFe. As shown in Fig. 2.12, this term can be represented
in a stationary equivalent circuit diagram by a resistance RFe connected in parallel. The latter
can be different in d- and q-axis and depends mainly on id, iq and the electrical frequency due to
the mentioned loss mechanisms. As can be seen, the iron losses reduce the flux-forming currents
id,m and iq,m, but still contribute to the losses over the resistance, i.e., copper losses. Using RFe

and after several rearrangements explained e.g. in [Kel12, p. 71 ff.], the voltage equation (2.18)
can be extended in steady state by an error voltage term ∆vdq,Fe = [∆vd,Fe ∆vq,Fe]

T , leading
to

vdq(t) = Rphidq(t) + ωel(t)Pψdq(t) + ∆vdq,Fe(t) . (2.19)

Thus, the iron losses as a function of the steady-state quantities id, iq and ωel can be represented
by four-dimensional maps of ∆vd,Fe and ∆vq,Fe, where each map value is valid only for a par-
ticular steady-state operating point. For a detailed analytical description the interested reader is

id Rph
id,m

id,Fe

Rd,Fe −ωelψqvd

iq Rph
iq,m

iq,Fe

Rq,Fe ωelψdvq

Figure 2.12: Stationary rotor fixed equivalent circuit diagram with iron loss resistance.
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referred to [Kel12, p. 63 ff.], [RDD14]. From the control perspective, iron losses are important
to consider since from the voltage that is applied, see (2.19), a part, i.e., ∆vdq,Fe, cannot be
used. This means that these error voltages do not contribute to the flux linkage and should thus
be known to the controller. Nevertheless, due to the aforementioned numerous dependencies,
the invalidity of RFe in transients and the marginal influence on small PMSMs—demonstrated
in Section 4.4.2—iron losses are not modeled in the following. Instead, they are taken into
account by a more generic compensation term in the controller, see Chapter 8.

Model description Considering the mentioned influences, i.e., saturation, cross-coupling,
rotor position and temperature dependency (i.e., the iron losses are not modeled), the voltage
equation of the nonlinear model (2.18) can be described in more detail—particularly in the case
of highly utilized synchronous machines—by

vdq(t) = Rph(ϑ)idq(t) +
dψdq(id, iq, ϕ, ϑm)

dt
+ ωel(t)Pψdq(id, iq, ϕ, ϑm) , (2.20)

where ψd(id, iq, ϕ, ϑm) = ψ~
d (id, iq, ϕ) + ψpm(ϕ, ϑm) and ψq(id, iq, ϕ).4 Note that the respective

flux linkages on the d- and q-axis depend on both currents and the rotor position ϕ, while ψpm

varies with ϕ and the magnet temperature ϑm. The resistance varies with the temperature ϑ.
More specifically, the flux linkage changes, i.e., the partial derivative of the flux linkage accord-
ing to the mentioned nonlinearities, are given by [BB98, vvD+03, Ric16]

dψd(t)
dt

=
∂ψ~

d (id, iq, ϕ)

∂id︸ ︷︷ ︸
Ldd

did(t)
dt

+
∂ψ~

d (id, iq, ϕ)

∂iq︸ ︷︷ ︸
Ldq

diq(t)
dt

+
∂ψd(id, iq, ϕ)

∂ϕ︸ ︷︷ ︸
Λd≈0

dϕ(t)

dt︸ ︷︷ ︸
ωel(t)

(2.21a)

dψq(t)
dt

=
∂ψq(id, iq, ϕ)

∂iq︸ ︷︷ ︸
Lqq

diq(t)
dt

+
∂ψq(id, iq, ϕ)

∂id︸ ︷︷ ︸
Lqd

did(t)
dt

+
∂ψq(id, iq, ϕ)

∂ϕ︸ ︷︷ ︸
Λq≈0

dϕ(t)

dt︸ ︷︷ ︸
ωel(t)

, (2.21b)

where the derivative by temperature only affects ψpm, which happens much slower and is thus
not represented. Here, the differential angular dependencies Λd and Λq can describe the change
in the flux linkage components during the rotation of the rotor, under otherwise constant con-
ditions. However, the influence of the rotor position can most often be neglected within a small
tolerance band [GT18], i.e., Λd ≈ 0, Λq ≈ 0. As explained in Section 4.3.4 and Chapter 7, iden-
tifying rotor position dependencies is quite challenging for real-time applications, so they are
better not to be modeled and instead accounted for by alternative possibilities, see, e.g., Chap-

4The described nonlinear model is realized in MATLAB/Simulink with the help of Simscape for the controlled
system. Note that in Simscape the flux linkage is realized by LUTs, which use linear extrapolation and smooth
interpolation. The latter is a modified Akima algorithm, which extends the Akima method by computing the mixed
derivatives at the grid points using a weighted average of the finite differences, as described in [Aki74].
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ter 8. Considering the remaining modeled nonlinearities in (2.21), the differential inductances
describe the saturation and cross-coupling effects, which are becoming increasingly pronounced
in highly utilized PMSMs. They correspond to the slope of the flux linkage characteristic for a
specific combination of id and iq and are thus represented by the tangent, see Fig. 2.8. Ldd and
Lqq are the direct and the quadrature axis self-inductances defined by

Ldd =
∂ψd(id, iq)

∂id
and Lqq =

∂ψq(iq, id)

∂iq
. (2.22)

Ldq and Lqd are the direct- and the quadrature-axis cross-coupling (mutual) inductances defined
by

Ldq =
∂ψd(id, iq)

∂iq
and Lqd =

∂ψq(iq, id)

∂id
. (2.23)

Since Ldd corresponds to the slope of the d-flux linkage in the direction of the d-axis and Lqq
corresponds to the slope of the q-flux linkage in the direction of the q-axis, a decrease of Ldd and
Lqq for higher currents indicates a self-saturation. Similarly, Ldq and Lqd represent the slopes
of the d-flux linkage in the direction of the q-axis and the q-flux linkage in the direction of
the d-axis, respectively. Their decrease at higher currents is an indicator for an existing cross-
saturation. In some operating points the respective cross-coupling inductance can even reach
20 % – 40 % of the self-inductance [vvD+03],[Ric16, p. 50]. Using (2.22) and (2.23), the voltage
equation (2.20) can be described by

vdq(t) = Rph(ϑ)idq(t) +LDdq
didq(t)

dt
+ ωel(t)Λdq + ωel(t)Pψdq(t) (2.24)

where LDdq =

[
Ldd Ldq

Lqd Lqq

]
and Λdq = [Λd Λq]

T represents the differential angular dependency

of the flux linkage.5 As a consequence of the law of energy conversion, inductance matrices are
symmetrical (i.e., Ldq = Lqd) [BB98] and positive semi-definite (e.g xTLDdqx ≥ 0, ∀x ∈ R2)
[Lan14, p. 22]. If saturation, cross-coupling and spatial harmonics are taken into account,

Tel(t) =
3

2
p
(
(ψd(t) + Λq(t))iq(t)− (ψq(t)− Λd(t))id(t)

)
(2.25)

describes the electromagnetic torque calculation.5 As mentioned before, spatial harmonics are
usually neglected, e.g., due to their low impact or due to lack of processing power to consider
them in real time. Consequently, the torque can be described sufficiently accurately by

Tel(t) ≈
3

2
p
(
ψd(t)iq(t)− ψq(t)id(t)

)
. (2.26)

5Although modeling of the rotor position dependence is omitted, it is included here for completeness.
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2.2.1.3 Linear Model of the Permanent Magnet Synchronous Machine

The description of the PMSM can be simplified considerably if the magnetic circuit is addi-
tionally linearized. Thus, saturation and cross-coupling effects are neglected and the absolute
inductances are introduced as a constant ratio between flux linkage and current in the respective
axis, i.e., ψd ≈ ψpm + Ldid and ψq ≈ Lqiq. As shown in Fig. 2.8(a), the absolute inductances,
i.e., Ld, Lq, each describe the gradient of an original straight line to any point of the flux linkage
characteristic. While Ld and Lq can theoretically represent self-saturation, a constant value over
the entire operating range—Ld =Lq for SPMSM and Ld 6=Lq for IPMSM—is usually assumed
in the linear magnetic model. The salience is also taken into account as a constant factor, which
is always aligned with the rotor position even under load. Although the comparison of absolute
and differential inductances (see Fig. 2.8(b)) clearly shows that the latter describe the magnetic
behavior more accurately [vvD+03], [Kel12, p. 21], [Min13, p. 35], absolute inductances are
used in the design of most control methods. With these linearizations and the transformations
of Section 2.1.1, (2.17) can be described in the rotating rotor coordinate system by

vdq(t) = Rphidq(t) +Ldq
didq(t)

dt
+ ωel(t)

(
PLdqidq(t) +

[
0

ψpm

])
(2.27)

where Ldq = diag(Ld, Lq). Consequently, (2.26) can be further simplified to

Tel(t) =
3

2
p
(
ψpmiq(t) + (Ld − Lq) id(t)iq(t)

)
. (2.28)

For representing the controlled system, i.e., (2.27) and (2.28), as a linear time-invariant (LTI)
system in the state space representation, an operating point linearization is necessary, e.g.,

did(t)

dt
diq(t)

dt
dωm(t)

dt


︸ ︷︷ ︸

dx(t)

dt

=


−
Rph

Ld

Lq
Ld
ωel,0 0

−Ld
Lq
ωel,0 −

Rph

Lq
−
ψpm

Lq

0
3p(ψpm+(Ld−Lq)id,0)

2J
−dfric

J


︸ ︷︷ ︸

Ac

 id(t)iq(t)

ωel(t)


︸ ︷︷ ︸

x(t)

+


1

Ld
0 0

0
1

Lq
0

0 0
1

J


︸ ︷︷ ︸

Bc

 vd(t)

vq(t)

−Tfric(t)−T`(t)


︸ ︷︷ ︸

u(t)

and

 id(t)iq(t)

ωel(t)


︸ ︷︷ ︸

y(t)

=

1 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

Cc(t)

x(t) ,

(2.29)
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where ωel,0 and id,0 depend on the linearization, e.g., ωel,0 = ωel,N and id,0 = 0 A. These system
linearizations, e.g., the speed term, is necessary due to the requirement of some control ap-
proaches to have the controlled system as an LTI system6. However, in the following the word
"linear" only refers to the magnetic circuit. T` is the load torque, Tfric the friction torque and
J the moment of inertia. In general u(t) is the input vector with the control signals, y(t) the
output vector,Ac the state matrix,Bc the input matrix and Cc the output matrix.
For estimations regarding the dynamics, the electrical time constant of the controlled system
can be defined by τel ≈ (Ld + Lq)/(2Rph) ≈ Lph/Rph.

2.2.2 Mechanical Controlled System

Applying the balance of torques, as a starting point from the motor perspective, the equation of
motion can be set up using Newton’s basic equation of mechanics for rotational motion7 by

J

p

dωel

dt
= J

dωm

dt
= Tel − Tfric − T` . (2.30)

2.2.2.1 Simplified Friction Model

There is a variety of friction models in the literature. A comprehensive overview is given, e.g.,
in [Rud12] and from a control perspective in [Hac12, p. 17 ff.]. To identify parameters of an
easily computable model for MPC, this work focuses on three compatible basic friction mod-
els: the coulomb friction, the viscous friction and the breakaway torque model. The mentioned
friction models are based on a simplified friction system as given in Fig. 2.13, containing the
moment of inertia J , which is supported by k arbitrary friction contacts, that each generate

J

ϕm, ωm,
dωm

dt
Motor

Tfric,1 Tfric,2 Tfric,k

T`Tel
Tm

Figure 2.13: Simplified friction system.
6The theoretical nonlinearity due to the dq-transformation is not considered here.
7Cogging torque is not considered further.
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dfric
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−Tbrk
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Figure 2.14: Simplified stick/slip friction model curve.

their own friction torque Tfric,1, Tfric,2,..., Tfric,k. The single friction torques can be summed up to
Tfric = Tfric,1 + Tfric,2 + ... + Tfric,k. Contrary to these, the electromagnetic inner driving torque
Tel is applied by exciting the motor windings. The breakaway torque Tbrk, which characterizes
the nonlinear start-up behavior, extends the coulomb (constant) Tcoul and the viscous (speed de-
pendent) model dfric by considering two different friction coefficients for sticking and slipping.
Hence, a simplified frictional torque model for MPC can be described in sufficient detail by

Tfric =

Tel if (Tel ≤ Tbrk) ∧ (ωm ≈ 0)

Tcoul + ωmdfric if (Tel > Tcoul) ∧ (ωm > 0)
. (2.31)

An illustration of the friction torque is given in Fig. 2.14—the rather nonlinear stribeck curve
is not considered, i.e., not modeled, see dashed line—where the characteristic points Tbrk, Tcoul

and the speed-dependent slope of the curve dfric can be determined in steady state. In this case,

the dynamic term J
dωm

dt
in (2.30) can be neglected and the motor torque can be considered

equivalent to the friction torque. Moreover, for transients the mechanical time constant is of
interest, which can be described by the coefficient of the derivation with the smallest order
using (2.30) and (2.31), i.e.,

τm =
J

dfric
. (2.32)

2.2.2.2 Drive Train Dynamics of a Two-Mass System

The elastically coupled drive train is usually described by a motor and load side, which are
coupled by an elastic element, e.g., a transmission belt, a motor shaft or a gearbox. This is
called two-mass system (TMS) or two-mass torsional oscillator, see Fig. 2.15. Although in some
cases the drive train can be described as a multi-mass system, in the following the description
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cTMS

dTMS
Jm J`

Tm T`

ϕm, ωm,
dωm

dt
ϕ`, ω`,

dω`
dt

Figure 2.15: Schematic representation of a two-mass system.

as TMS is sufficient, as will be shown later. More detailed descriptions can be found, e.g.,
in [Vil07, Zou17],[DH16, p. 233 ff.]. The differential equation of motion for the motor side is
given by

Jm
dωm

dt
+ dTMS(ωm − ω`) + cTMS(ϕm − ϕ`) = Tm (2.33)

and for the load side by

J`
dω`
dt

+ dTMS(ω` − ωm) + cTMS(ϕ` − ϕm) = −T` , (2.34)

which can be determined by establishing the balance of torques on the motor and load side,
respectively. The spring constant of the shaft, i.e., the torsional stiffness, cTMS is calculated
as the sum of the individual components involved. The viscous damping of the TMS can be
described by using [DH16, p. 47]

dTMS = D
2cTMS√

cTMS
J` + Jm

J`Jm︸ ︷︷ ︸
ω0

, (2.35)

where for steel shafts a damping ratio D of 0.02 − 0.08 [DH16, p. 56] can be assumed, i.e.,
D ≈ 0.02 in the following. Assuming that there is no additional torque acting on the load
apart from the motor torque (T` ≈ 0), (2.33) and (2.34) can be transferred to the frequency
domain. In doing so, the differential equations of motion are transferred by using the Laplace
transformation, where the rotation angle ϕm and ϕ` are the integral of the speeds ωm and ω` as

well as the angular acceleration
dωm

dt
and

dω`
dt

the time derivatives, i.e.,

Jmωm(s)s+ dTMS(ωm(s)− ω`(s)) +
cTMS

s
(ωm(s)− ω`(s)) = Tm(s) (2.36)

J`ω`(s)s+ dTMS(ω`(s)− ωm(s)) +
cTMS

s
(ω`(s)− ωm(s)) = 0 . (2.37)
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If only the time-invariant solution for steady state is of interest, the complex Laplace operator
s can be replaced by jω. The analytical transfer function Gana=ωm/Tm can be determined af-
terwards by eliminating ω`, which is based on inserting (2.37) into (2.36). Thus, Gana can be
described in dependence of the excitation frequency ω and the drive train parameters, i.e.,

Gana(jω) =
ωm(jω)

Tm(jω)
=

cTMS + dTMSjω + J`(jω)2

cTMSjω(Jm + J`) + dTMS(jω)2(Jm + J`) + JmJ`(jω)3
. (2.38)

If only small excitation frequencies are considered, the drive train can be assumed to be rigid,
since during the limit value analysis, i.e., ω→ 0, the transfer function approximates to the
asymptote described by

lim
ω→0

Gana(jω) =
1

(Jm + J`)jω
. (2.39)

For the subsequent considerations, the damper and resonance frequency in the amplitude re-
sponse must be distinguished. The damper frequency is the frequency at which the minimum
change in the speed of the motor side can be observed despite excitation by an oscillating mo-
tor torque. The entire excitation energy thus goes into the load side. This frequency can be
recognized as a local minimum in the amplitude response, since the amplitude ratio of ωm/Tm

becomes very small. The resonance frequency can be recognized as a local maximum in |Gana|,
i.e., the amplitude ratio of ωm/Tm becomes very large. Thus, when excited by the motor torque
at this frequency, the maximum speed change can be observed on the motor side (motor side
resonance is equal to load side damper frequency). In the case of resonance excitation, the re-
sulting speed amplitude can even become so large that the drive train can be damaged. Knowing
this frequency and its dependence on the drive train parameters is thus of great importance.

As an illustration, Fig. 2.16 shows the transfer function Gana—unchanged in black—of an ana-
lytically considered drive train. In order to get a better impression of the influence of the indi-
vidual system parameters on the dynamics of a drive train, these are shown by way of example
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Increased damping (10 dTMS)
Stiffness decreased (0.1 cTMS)
Motor inertia decreased (0.33 Jm)
Load inertia increased (3 J`)
Unchanged damper frequency

resonance frequency

Figure 2.16: Schematic representation of parameter influence on Gana with logarithmic scaling.
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using several schematic amplitude responses of the transfer function with different parameter
changes. If the load inertia changes, a shift in resonance and damper frequency can be seen (yel-
low). When the motor inertia changes, however, only the resonance frequency shifts (orange).
If the stiffness changes, a shift of the two extrema can be detected (light blue). An increasing
damping causes a reduction of the amplitude at resonance and damper frequency (dark blue).

2.3 Field-Oriented Control with PI Controller

Field-oriented control (FOC) is the most common control algorithm to control the previously
explained controlled system. Consequently, it is used as a reference for comparison with the
proposed MPC algorithms.
The principle of FOC aims at the separation of flux linkage and torque control in two sepa-
rate SISO-systems. PI controllers are used to track the reference of each branch. Therefore, the
transformation of Section 2.1.1 is applied to align the measured states to the rotor flux coordi-
nate system. The basic principle can be described by Fig. 2.17. FOC is typically implemented as
a cascaded control scheme. The inner loop implements the current and the outer loop the speed
and flux linkage control. In doing so, the inner loop typically samples two to ten times faster
than the outer loop. This comes from the fact, that the mechanical time constants are usually
slower than the electrical time constants. Since common control hardware (see Chapter 3) works
in the discrete-time domain, the current control can work quasi-continuous from the perspective
of the speed controller. Clamping is used as anti-windup for all PI-based controllers. SVM, as
described in Section 2.1.2, is used to apply the control signals.
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Figure 2.17: Block diagram of FOC with PI controllers and SVM. The current control, speed
control, decoupling network [Sch15, p. 1118], space vector limitation [QD15,
p. 183] and optional MTPA/MTPV [Sch15, p. 1095 ff.] are highlighted.
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The essence of a proper FOC is a decoupling network that is as accurate as possible, with the
PI controllers merely compensating for the remaining control deviation, see Fig. 2.17. The PI8

gains of the current controller, i.e., proportional gains kp,id, kp,iq and corresponding reset times
of the integrator Ti,id, Ti,iq, are tuned according to the modulus optimum (pole-zero cancellation)
criterion [Sch15, p. 50] [LW14, p. 515], where the controller can run up to the double of fsw.
The gains of the speed controller , i.e., proportional gain kp,ω and corresponding reset time of the
integrator Ti,ω, use the symmetrical optimum [Sch15, p. 62] [LW14, p. 527]. These procedures
represent adjustment rules for the continuous-time domain. However, since the smallest time
constants in the respective controlled systems, i.e., τel for current and τm for velocity/position
control, are usually at least a factor of 10 larger than the discrete control interval, a quasi-
continuous system can be assumed and the factors mentioned above can be used.

FOC can be negatively affected mainly by two effects. First, by uncompensated delay times
and second, by parameter changes as well as noisy measurements. Since parameter drifts and
nonlinear behavior of the magnetic circuit are unavoidable for highly utilized PMSMs (see
Section 2.2.1.2), specifically for one operating point calculated PI gains are valid only at this
particular point. Consequently, PI gains and decoupling network parameters must be adjusted
depending on the operating point to achieve acceptable performance over the entire operating
range. Thus, a set of model parameters is required. Several researchers such as [Min13, Kel12,
Gem15, Ric16] have successfully demonstrated how FOC can be adjusted to account for the
aforementioned effects as accurately as possible, allowing for high dynamics with low overshoot
during transient processes. Such an optimized FOC is compared in the following.

2.4 Direct Torque Control

Another well-known control strategy is direct torque control (DTC), which was invented by
Takahashi/Noguchi [NT84, TN86] at the same time when Depenbrock invented a quite similar
method [Dep84, Dep85]. As the name suggests, DTC is a direct control method, i.e., no mod-
ulator is required, instead the switching states of the power semiconductors are manipulated
directly. The latter are determined by the comparison of the measured state to its reference,
considering a given hysteresis band for the error. The hysteresis band and the nonlinearity of
the system inherently lead to a variable switching frequency and thus generate a spread current
spectrum. Although there are publications that introduce a modulator stage for DTC to achieve
a fixed switching frequency, e.g., [MM98], this is not common and thus not considered here.

8A serial PI structure is used with kp(1 + kiTc
1

z − 1
) in the discrete-time domain, where ki = 1/Ti = 1/τel.
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Using a given torque reference T ∗el, for a PMSM the flux linkage reference value can be calcu-
lated by using [Vas98, p. 230]

∣∣ψ∗dq∣∣ (T ∗el) =

√
ψ2

pm +

(
2Lq

3pψpm
T ∗el(t)

)2

. (2.40)

However, if a dominant reluctance effect is present, (2.40)—as described in [Vas98, p. 230]—
must be redefined. The present flux linkage can be observed based on the linearized PMSM
model, see (2.27), by using

ψ̂dq =

[
ψpm

0

]
+Ldqidq (2.41)

and the present torque based on (2.26) by using

T̂el =
3

2
p (ψdiq − ψqid) (2.42)

with the help of the measured currents, see Fig. 2.18. The disadvantage of the used current
model compared to a voltage model—see, e.g., [Vas98, p. 188]—is the necessary angle ϕ for
the dq-transformation. In addition, the inductances must be updated as soon as saturation arises
and ψpm must be tracked as soon as a temperature change occurs. The advantage of the current
model, however, is the significantly higher stability and the omission of a precise voltage mea-
surement. The former can be justified by the fact that by using the current model, compared to
the voltage model, no open integrator is required to estimate the flux linkage [Vas98, p. 226].9
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Figure 2.18: Block diagram of direct torque control.

9This open integrator can be stabilized by a first-order deceleration, but this leads to phase and amplitude errors
when the drive is operated near the cut-off frequency of the deceleration [Mey10, p. 112]. Additionally, the voltage
model uses Rph to determine the flux linkage. Without a tracking of Rph as a function of temperature, this leads to
errors in the flux linkage estimation [Mey10, p. 111].
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Table 2.2: Switching table for direct torque control (counterclockwise rotation of the flux is as-
sumed) [Vas98, p. 515]. Note that the DTC sectors are rotated by−π/6 rad compared
to the sectors in Fig. 2.5(b), see, e.g., [Vas98, p. 514].

dψ dTel Sector I Sector II Sector III Sector IV Sector V Sector VI
1 v2 v3 v4 v5 v6 v1

1 0 v7 v0 v7 v0 v7 v0

−1 v6 v1 v2 v3 v4 v5

1 v3 v4 v5 v6 v1 v2

−1 0 v0 v7 v0 v7 v0 v7

−1 v5 v6 v1 v2 v3 v4

Using the estimated system states, i.e., T̂el and ψ̂dq, the control deviations can be calculated.
The aim of DTC is to keep these deviations within adjustable hysteresis bands. Its common
practice to use a three-point controller for the torque and a two-point controller for the flux
linkage [Vas98, p. 225], [Gey17, p. 133]. In doing so, the torque control can use zero voltage
SVs in the switching table. Consequently, the THD can be reduced for small hysteresis bands
|∆Tel| without losing the dynamics in the control. The output of the torque controller, i.e., dTel,
is defined—counterclockwise rotation of the flux is assumed—by [Vas98, p. 515 ff.]

dTel =


1 if

∣∣∣T̂el

∣∣∣ ≤ |T ∗el| − |∆Tel|

−1 if
∣∣∣T̂el

∣∣∣ ≥ |T ∗el|+ |∆Tel|

0 else

. (2.43)

The output of the flux linkage hysteresis controller is defined by [Vas98, p. 515]

dψ =

 1 if
∣∣∣ψ̂dq

∣∣∣ ≤ ∣∣ψ∗dq∣∣− ∣∣∆ψdq

∣∣
−1 if

∣∣∣ψ̂dq

∣∣∣ ≥ ∣∣ψ∗dq∣∣+
∣∣∆ψdq

∣∣ . (2.44)

∆Tel and ∆ψdq are used to define the hysteresis bands. The smaller the band, the lower the
ripple of the flux linkage and torque, which also means that the switching frequency increases
[Mey10, p. 119].
The optimal switching signal for the VSI is selected afterwards on the basis of the switching
Table 2.2, whereby a voltage SV is applied over the entire control interval.
In the case that speed control is required, a PI-based controller is superimposed on DTC in
this thesis, similar to FOC. So far, there is no known closed-loop control description as an LTI
system when using DTC. For this reason, it is not possible to set the PI gains of the speed
controller according to a symmetrical optimum or absolute optimum. Consequently, the Ziegler
and Nichols method is applied. In doing so, the gain is increased until the stability limit is
reached, where the parameters of the controller can be set using the table in [LW14, p. 494].
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2.5 Model Predictive Control

Model predictive control is one of the most promising control algorithms for the increasing
demands on performance and efficiency of power converters and drives, taking into account
the real nature of these types of systems [Wan09, p. 43], [RC12, p. 3], [Gey17, p. 20]. Power
converters and drives are nonlinear systems of a hybrid nature, including linear and nonlinear
parts and a finite number of switching devices. The characteristics of the power converters and
drives, as well as the characteristics of the control platforms used to form the control, converge
in a natural way to the application of model predictive control, as summarized in Fig. 2.19.
The idea of MPC was born in the petrol-chemical industry 1979 by Cutler and Ramaker [CR79,
Mor09]. Based on Dynamic Matrix Control and Generalized Predictive Control, MPC combines
and extends the advantages of both methods. A distinction can be made between offline, i.e.,
explicit [TJB03, DP04, Leu14], MPC and online, i.e., implicit, MPC, whereby only online MPC
is considered in the following. In the latter, the entire model is calculated in real time. Model
predictive control, more specifically CCS-MPC and FCS-MPC, have become increasingly pop-
ular in recent years [CKK+08, KPR+15], with a good overview given in [CKK+08, KLGK20].
Even if both approaches have their reason for being, especially FCS-MPC has gained a large
momentum during the last years, as mentioned in Section 1.1. The direct optimization of the gate
signals with the characteristic dead-beat behavior during transients, the direct inclusion of sev-
eral hard and soft constraints as well as the optimization of the current performance, when using
a long-horizon, are just some of the reasons for utilizing FCS-MPC. Only the finite number of
possible switching states of the converter are considered during optimization, which respects
the discrete nature of power converters and avoids the need for modulation. CCS-MPC, on the
contrary, optimizes a continuous control signal, thus requiring a modulator (see Section 2.1.2)
and hence separating model optimization and switching signal generation.

In general, both MPC schemes measure the actual states of the controlled system at a discrete
time k, calculate an analytical model of the controlled system several steps into the future and,
taking all steps into account, optimize the control signal with respect to a user-defined cost
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Nonlinear
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Figure 2.19: Characteristics of power converters and drives that make predictive control a natu-
ral solution [RC12, p. 14].
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Figure 2.20: Block diagram of MPC.

function, i.e., optimization function, including different constraints. Consequently, in contrast
to the above-mentioned FOC and DTC, MPC offers a MIMO optimization, i.e., can control sev-
eral objectives at the same time, thus avoiding complex and probably suboptimal interactions
between multiple SISO controllers. In doing so, apart from the discrete-time interval, the cost
function10 is the only tuning possibility of this control method.
The basic principle can be described by Fig. 2.20. The optional modulator is usually only avail-
able with CCS-MPC.11 When talking about long horizon MPC, a prediction horizon Np > 1

is used. The flexibly adjustable discrete-time horizon can be visualized as demonstrated in
Fig. 2.21. With a longer time horizon a stronger predictive character of the controller appears.
In general, optimal controllers, e.g., MPC, with infinite horizon stabilize themselves, where a
suitable Lyapunov function for establishing stability is the value function associated with the
problem of optimal controllers with infinite horizon [MRRS00, p. 792]. Lyapunov is primar-
ily used for MPC, since most other stability criteria apply only to linear control methods. In
[AQ11, AQ13, AQ15] practical stability is proved with the Lyapunov theorem for linearized
models, i.e., LTI, with integer inputs, i.e., for FCS-MPC, which is also valid for short horizons.

y, u

t

HorizonPast

(k−2)Tcc (k−1)Tcc kTcc (k+1)Tcc (k+2)Tcc (k+3)Tcc (k+4)Tcc (k+5)Tcc
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y

Figure 2.21: CCS-MPC with receding horizon policy for a five-step prediction horizon (Np=5).
u is the continuous control signal, y is the controlled signal and y∗ is the reference.

10This includes the prediction horizon and the weighting factors in multi-criterion optimization.
11There are a few adaptations of FCS-MPC that also introduce a modulator. Some of them are mentioned in

Chapter 6.
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However, stability is inherently difficult to study and prove for FCS-MPC with nonlinear model,
although a longer horizon tends to increase stability [BM15], [Gey17, p. 19]. Hereinafter, sta-
bility will not be discussed further; instead, reference is made to the overview in [KLGK20].
In addition, the most important definitions in the field of MPC are briefly summarized for a
better understanding:

1. Moving horizon window: a time dependent window from an arbitrary discrete time step k
to k+Np. The length of the windowNp—measured by the number of time steps—remains
constant, but the window moves on by time.

2. Prediction horizon: corresponds to the length of the moving horizon window Np and
dictates how far the future states should be predicted.

3. Receding horizon policy: although the optimal trajectory of future control signals is cal-
culated completely for the moving horizon window, only the control signal for the next
discrete step is given out, while the remaining trajectory is neglected.

4. Control horizon: denoted by Nc and measured by the number of discrete steps, indicates
how long in CCS-MPC the control signal should take before it reaches steady state.

5. Constraints: The controller can directly consider various constraints during optimization.
Some of them are system-related, e.g., the maximum output voltage of the inverter, others
are imposed for safety reasons, e.g., a maximum current to protect the inverter or the load.
In general, any mathematically describable constraint can be considered, i.e., added in the
cost function.

6. Long-horizon or multistep MPC: Solving the associated optimal control problem using
a prediction horizon greater than one, i.e., Np > 1. The prediction for the delay time
compensation—caused by the real-time system—is not included in the number of steps.

For comparison, it is useful to clearly state the main differences between CCS-MPC and FCS-
MPC when considering the electrical controlled system (Section 2.2.1), see Table 2.3. The last
three criteria are only applicable if an inverter is controlled by the control signal. As will be
shown in Chapter 9, this is obviously needless as soon as CCS-MPC is used as a superimposed
controller.

Table 2.3: Comparison of CCS-MPC and FCS-MPC.

CCS-MPC FCS-MPC

Problem
quadratic programming (mixed) integer quadratic programming

(QP) ((M)IQP)
Constraints can be included can be included
Modulator requires a modulator no modulator

Switching frequency fixed usually variable
Direct influence on no, this is done

yes
the switching states by the modulator
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2.5.1 Continuous Control Set-MPC

CCS-MPC, as the name implies, optimizes a continuous control signal, i.e., a voltage in the
case considered first (although a torque is optimized in the later stage of the thesis, see Chap-
ter 9), taking into account the entire horizon. The basic principle is exemplified in Fig. 2.22. In
the majority of cases the use of CCS-MPC is based on two arguments. First, due to the usu-
ally reduced computational load, even if operating point-dependent linearizations must most
often be accepted for this. Second, a continuous control signal is optimized, which in case of an
optimized voltage requires a modulator for switching signal generation, resulting in a naturally
fixed switching frequency. In general, a distinction can be made between unconstrained and con-
strained solution. The need for constraints can be explained very simple by understanding that
the controlled signal, e.g., applied voltage, is limited by the maximum available dc-link voltage.
As descriptively shown in [Wan09, p. 43 ff.], instead of simply saturating the control signal after
optimization, i.e., truncate the signal, the performance is dramatically increased by considering
the boundary conditions already during optimization. Given this, first, Section 2.5.1.3 intro-
duces the unconstrained solution using an analytical solution. Second, Section 2.5.1.4 shows
the numerical calculation of the constrained solution based on an active-set method.

Linear or nonlinear CCS-MPC CCS-MPC depends strongly on whether a nonlinear con-
trolled system is considered or whether a limitation of the solution space, i.e., a linear controlled
system or an operating point linearization, is possible. In general, CCS-MPC approaches use a
linearized state space description since the approach is based on an LTI system. Furthermore,
almost all solvers are also based on an LTI system [KZPF15]. However, since there are also
nonlinear approaches, a distinction can be made between linear and nonlinear CCS-MPC in the
literature. CCS-MPC optimized for nonlinear control systems can be found, e.g., in [Rau03],
where a CCS-MPC with online learning state space models is presented to consider isolated
static nonlinearities, e.g., friction, during optimization. Alternatively, even if this is an explicit
approach, it is also possible to switch online between different linear models depending on the
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Figure 2.22: Block diagram of CCS-MPC.
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operating point [PPS+16]. In [Sae15] discrete voltage test vectors are applied iteratively, i.e., by
varying the angle and length, to approach a continuous position in the voltage hexagon and then
output this position as a continuous voltage vector. Another method is presented in [WAB16],
which uses particle swarm optimization where a first optimization routine scans fixed points in
the hexagon and then searches with further subroutines in smaller areas close to the ideal solu-
tion to optimize a continuous control signal. However, it must be said that the latter procedures
are usually quite complex and hardly intuitive. Although linear CCS-MPC is also used initially
in this thesis, the idea of [Rau03] for nonlinear CCS-MPC is taken up in Section 9.2.3.

2.5.1.1 Quadratic Programming Formulation

With regard to CCS-MPC, the cost function—including the control targets—is defined as a
quadratic optimization problem which is solved by using quadratic programming (QP). In gen-
eral the quadratic problem is defined by

minimize
η ∈Rn

Jc =
1

2
ηTHη + ηTΘ

subject to Mη ≤ γ
(2.45)

where η is a vector with n-elements in which the number of elements depends on the number
of control signals to be optimized, i.e., decision variables. H ∈ Rn×n is a symmetrical matrix
including the control targets and the vector Θ ∈ Rn determines the initial state of the system. As
mentioned before, constraints can be defined, where the matrixM defines the relation between
the control signals η and the boundaries of the optimization problem γ. M ∈ Rm×n, where m
is the number of constraints.

2.5.1.2 Linearization and Discretization of the Controlled System

The above-mentioned cost function requires an LTI system. Using e.g. the model of the con-
trolled system in Section 2.2.1.3, it can be described—operating point linearized—as LTI sys-
tem in the state-space representation as shown in (2.29).
To be able to use the LTI system in a discrete-time calculation platform, the state space descrip-
tion must be transferred by means of a Z-transform. For CCS-MPC—including its real-time
implementation described in Chapter 3—this is done by means of exact discretization, using
Tcc as sampling interval, see Section 2.1.3. Here, the procedure in (2.9) terminates after l= 10,
although l is flexible and usually a termination after l= 2 up to l= 3 elements is already suffi-
ciently accurate for the determination of the discrete-time matrices.
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2.5.1.3 Unconstrained Solution by using First Derivation

A solution space without side conditions, i.e, constraints, is considered first, see, e.g., [Wan09,
p. 1-42], [WDK17c, WLH+18], which is used as starting point for the constrained solution in
Section 2.5.1.4. Neglecting constraints, the solution can be easily determined analytically. More
in detail, to solve the quadratic optimization problem, the first derivative of the unconstrained
cost function Jc,unc is formed and set to zero. Therefore, the optimization problem must be de-
fined, for which the discrete-time matricesA,B,C are first extended by the respective control
targets—added in additional rows—to achieve an integral action for CCS-MPC [Wan09, p. 23],
resulting in an augmented state space model, i.e.,Ae,Be,Ce, with

xe(k+1)︷ ︸︸ ︷[
∆x (k + 1)

y (k + 1)

]
=

Ae︷ ︸︸ ︷[
A 0nx×ny

CA Iny

] xe(k)︷ ︸︸ ︷[
∆x (k)

y (k)

]
+

Be︷ ︸︸ ︷[
B

CB

]
∆uunc (k) (2.46a)

y (k) =
[

0Tnx×ny Iny

]
︸ ︷︷ ︸

Ce

[
∆x (k)

y (k)

]
(2.46b)

where Iny ∈ Nny×ny and 0nx×ny ∈ Nnx×ny with nx being the number of states, ny being the
number of states to be optimized (e.g., ny=2 when id and iq in (2.29) are optimized) and nu
being the number of control signals. Including these states, the augmented model can be used to
optimize the output of the system, i.e., y, based on the change of the states, i.e., ∆x, by varying
the system input, i.e., control signal, ∆uunc. ∆uunc is used instead of uunc, as the rate of change
can emulate integrator behavior that MPC normally lacks due to its proportional nature.
Using the extended state space model, the system behavior is calculated for several steps into
the future with [Wan09, p. 26]

xe(k + 1|k) = Aexe(k) +Be∆uunc(k)

...

xe(k +Np|k) = ANp
e xe(k) +ANp−1

e Be∆uunc(k) +ANp−2
e Be∆uunc(k + 1)

+ · · ·+ANp−Nc
e Be∆uunc(k +Nc − 1)

(2.47)

for the states and y(k) = Cexe(k), i.e.,

y(k + 1|k) = CeAexe(k) +CeBe∆uunc(k)

...

y(k +Np|k) = CeA
Np
e xe(k) +CeA

Np−1
e Be∆uunc(k) +CeA

Np−2
e Be∆uunc(k + 1)

+ · · ·+CeA
Np−Nc
e Be∆uunc(k +Nc − 1)

(2.48)
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for the output signals based on the control horizon Nc within the prediction horizon Np, sim-
ilar to the functionality of an auto-regressive-moving average model (ARMA model) [SB17,
p. 552 ff.]. Moreover, Nc ≤ Np applies when selecting the control horizon. Currently there is no
general rule for selecting the horizon or weighting factors [RKE+13]. Theoretically, however,
it would make sense to cover the entire transient process, i.e., the time window within which an
optimization should be performed, by choosing the prediction horizon.
The denoted future states xe(k + 1|k), xe(k + 2|k), · · · , in which xe(k + 2|k) is the predicted
state variable at k + 2 based on a current state variable xe(k), describe the predicted system
behavior at a certain point in time and are used to predict the system output with

Y (k) = Γcxe(k) + Υc∆U unc(k) , (2.49)

where Y (k) contains the predicted output signals, e.g., id, iq, and ∆U unc(k) contains the pre-
dicted change of the input signals, e.g., vd, vq. The predictive state matrices are described by

Γc =



CλAe

CλA
2
e

CλA
3
e

CλA
4
e

CλA
5
e

...
CλA

Np
e


, Υc =



CλBe 0ny×nu · · · 0ny×nu

CλAeBe CλBe
...

CλA
2
eBe CλAeBe

CλA
3
eBe CλA

2
eBe CλBe

CλA
4
eBe CλA

3
eBe CλAeBe

...
...

...
CλA

Np−1
e Be CλA

Np−2
e Be · · · CλA

Np−Nc
e Be


, (2.50)

where Υc is a Toeplitz-matrix. For the weighting of the individual states in the optimization,
the output matrix Ce is occupied by the weighting matrix Cλ. The latter allows a prioritization
between the different optimization criteria or balancing when the criteria have very different
magnitudes. As an illustration, Cλ for (2.29)—optimizing the two currents id and iq—might
look like

Cλ =

[
0 0 0 λid 0

0 0 0 0 λiq

]
. (2.51)

Moreover, Nc selects the number of steps used to determine the future control trajectory, i.e.,

∆U unc(k) = [∆uTunc(k) ∆uTunc(k + 1) . . . ∆uTunc(k +Nc − 1)]T ∈ RnuNc×1 . (2.52)

Here, based on xe(k), the future state variables, i.e.,

xTe (k + 1|k), xTe (k + 2|k), . . . , xTe (k +Np|k) , (2.53)



2.5 Model Predictive Control 41

are predicted for the length of the prediction horizonNp.Np is also the length of the optimization
window for the output signals, i.e.,

Y (k) = [yT (k + 1|k) yT (k + 2|k) . . . yT (k +Np|k)]T ∈ RnyNp×1 . (2.54)

The aforementioned steps, i.e., calculating the matrices Γc and Υc based on Ac, Bc and Cc,
can be performed once offline or, as will be shown in Section 9.2.3, online during operation.
By knowing a predicted trend of the model, the most suitable control signal trajectory ∆U unc

can be calculated in each control step by minimizing the quadratic cost function, which is de-
scribed by

Jc,unc(k) = (Y ∗(k)− Y (k))T (Y ∗(k)− Y (k))︸ ︷︷ ︸
reference tracking

+ ∆UT (k)Rv∆U unc(k)︸ ︷︷ ︸
change of control variable

= ||Y ∗(k)−Γcxe(k)−Υc∆U unc(k)︸ ︷︷ ︸
−Y (k)

||22 + ||∆U unc(k)||2Rv︸ ︷︷ ︸
change of control variable

(2.55)

whereY ∗ contains the output reference trajectory andRv represents the weighting factor for the
change of the input signal. Consequently, the second term enables to scale ∆U unc, i.e., adjust
the allowed change, by using the overall tuning factor rv, where Rv = rvINc×Nc with rv ∈ R−0 .
The larger rv is, the smaller the changes in ∆U unc are allowed to be and the slower a control
error is corrected. Inserting (2.49) into (2.55) yields

Jc,unc(k) = (Y ∗(k)− Γcxe(k))T (Y ∗(k)− Γcxe(k))− 2∆UT
unc(k)ΥT

c (Y ∗(k)− Γcxe(k))

+ ∆UT (k)(ΥT
c Υc +Rv)∆U unc(k) . (2.56)

The minimum of a convex QP (when positive semidefinite), i.e., the minimum of Jc,unc(k), is
reached when the derivation of the cost function by the change of the control signal ∆U , i.e.,

∂Jc,unc(k)

∂∆U unc(k)
= −2ΥT

c (Y ∗(k)− Γcxe(k)) + 2(ΥT
c Υc +Rv)∆U unc(k) , (2.57)

is equal to zero. For convex QP the local minimum is the global minimum. This leads to

∆U unc(k) = (ΥT
c Υc +Rv)

−1ΥT
c (Y ∗(k)− Γcxe(k)) , (2.58)

which is the unconstrained solution of the defined optimization problem. This procedure is
called CCSunc or CCSunc-MPC in the following. Due to the receding horizon policy, only the
first element of the input variable ∆U unc(k), i.e., ∆uunc(k), is integrated in each control cycle



42 2 State of the Art and Performance Classification

Tcc to determine the controller output, i.e., system input,

uunc(k) = u(k − 1) + ∆uunc(k) . (2.59)

2.5.1.4 Constrained Solution by using Hildreth's Programming

As aforementioned, constraints should not simply restrict the controlled signal after optimiza-
tion, but rather be taken into account already during the optimization process. Based on the
previous section, constraints for optimization are considered hereinafter. Consequently, the op-
timization of the QP problem requires a non-analytical solution, e.g., numerical, evolutionary. In
particular for numerical optimization methods there are numerous possibilities, although mostly
gradient, e.g., fast gradient method (FGM)—also called Nesterov method—[Nes83, RMM10,
RJM09, PBD13]), interior-point, e.g., [RWR98] or CVXGEN [MWB11], alternating direction
method of multipliers (ADMM), e.g., OSQP [SBGB20], and active-set methods can be found.
The latter is especially well suited and popular for drive control problems, since for embedded
real-time implementations at least a suboptimal solution can be found in the small and limited
control interval [CBLB20]. Moreover, the number of optimization variables and constraints to
be considered is rather low to medium, which also argues for active-set [MCK18].
There are numerous solvers based on active-set, e.g., quadprog [KJP11] handles a primal prob-
lem representation (but mostly not real-time capable), ODYS [CBLB20] handles a dual problem
representation or qpOASES [FKP+14, TGFB19] handles a primal and/or dual problem repre-
sentation. Another active-set solver using a dual problem representation, shown e.g., in [Hil57],
[Wan09, p. 63], [Lue69, p. 299], is based on Hildreth's quadratic programming procedure,
and is used in the following. In general, dual active-set solvers are preferable to primary ones
because they usually find the optimum with significantly fewer iterations [CBLB20]. A good
overview of the methods is given, e.g., in [MCK18] and the solvers, e.g., in [KZPF15, Bem].

To determine the constrained solution of the QP problem, i.e., the decision variables ∆U con, the
constraints γ and the matrix M , which interconnects ∆U con(k) to γ, must be described, see
(2.45). Here, two types of input and one type of output constraints are most often defined:

1. Restrict the change of the input signal, i.e., ∆u(k), to a range of ∆umin ≤ ∆u(k) ≤ ∆umax

with the constraint

M =

[
−InuNc

InuNc

]
and γ =

[
−∆Umin

∆Umax

]
, (2.60)

where the identity matrix InuNc ∈ NnuNc×nuNc . ∆Umin and ∆Umax ∈ RnuNc×1 contain
the boundary ∆umin and ∆umax, respectively, for each decision variable.
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2. The limitation of the input signal, i.e., u(k), to a range of umin ≤ u(k) ≤ umax is described
by

M =

[
−M I

M I

]
and γ(k) =

[
−Umin + 1nuNcu(k − 1)

Umax − 1nuNcu(k − 1)

]
, (2.61)

whereM I, with Nc ×Nc elements, is a block lower triangular matrix filled with identity
matrices whose size corresponds to the number of inputs nu, i.e., Inu ∈ Nnu×nu , and
1nuNc ∈ RnuNc×1 is a vector filled with ones.

3. The restriction of the system output y(k) with a constraint of ymin ≤ y(k) ≤ ymax is
described by12

M =

[
−Υc

Υc

]
and γ(k) =

[
−Y min + Γcxe(k)

Y max − Γcxe(k)

]
. (2.62)

A combination of several of these constraints is achieved by stacking the rows of the matrices
on the top of each other. For example, for ∆u(k) and u(k) it looks like

M =


−InuNc

InuNc

−M I

M I

 and γ(k) =


−∆Umin

∆Umax

−Umin + 1nuNcu(k − 1)

Umax − 1nuNcu(k − 1)

 . (2.63)

After defining the constraints, Lagrange multipliers (also called dual variables), i.e., ρ, are in-
troduced for solving the equality constraints. An equality constraint means that ∆ucon attempts
to assume the value of the constraint γ through the optimization. Based on (2.45), the quadratic
optimization problem is reformulated—adding the constraints as an additional term—to the
Lagrange representation with

Jc,con(k) =
1

2
∆UT

con(k)Hc∆U con(k) + ∆UT
con(k)Θc(k)︸ ︷︷ ︸

Jc,unc(k)

+ ρT (k) (M∆U con(k)− γ(k)) ,

(2.64)

where the Hessian13 matrixHc = ΥT
c Υc+Rv —assumed to be positive definite—and Θc(k) =

ΥT
c (Y ∗(k)− Γcxe(k)), both of which can be previously determined using (2.58).

12Usually, soft rather than hard constraints should be used for the output, since the latter can theoretically lead
to feasibility problems, see, e.g., [RKCD20].

13Strictly speaking 2Hc is the Hessian matrix, see (2.57).
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To solve the optimization problem, the partial derivative to ∆U con and ρ is formed and set to
zero.

∂Jc,con

∂∆U con
= Hc∆U con(k) + Θc(k)︸ ︷︷ ︸

∂Jc,unc

∂∆U unc

+MTρ(k) = 0 (2.65a)

∂Jc,con

∂ρ
= M∆U con(k)− γ(k) = 0 (2.65b)

In doing so, the optimal ∆U con and ρ can be determined analytically for the constrained solution
by using

ρcon(k) = −
(
M cH

−1
c M

T
)−1

(γ(k) +MH−1
c Θc(k)︸ ︷︷ ︸
−∆Uunc(k)

) (2.66a)

∆U con(k) = −H−1
c Θc(k)︸ ︷︷ ︸

∆Uunc(k)

−H−1
c M

Tρ(k) , (2.66b)

where the first term represents the unconstrained solution. However, the described problem can
only be solved if equality constraints can be imposed.
In the case of equality constraints, their number must be less than or equal to the number of de-
cision variables ρ [Wan09, p. 57]. However, if the number of constraints is equal to the number
of optimization variables—which is another name for decision variables—there is only one so-
lution, the one that satisfies all constraints. Consequently, the original target of the cost function,
i.e., reference tracking, is ignored. If the number of equality constraints is even greater than the
number of optimization variables, the problem is infeasible. It becomes obvious that on the one
hand the constraints often cannot be described as equality constraints, i.e., using „ = “, and, on
the other hand, the number of constraints can be identical or even greater than the number of
optimization variables, see Section 9.2.2.
For this reason the restrictions are no longer described as equality but rather as inequality con-
straints, i.e., using „≤ “ and „≥ “. In the minimization with inequality constraints, the number
of constraints could be larger than the number of decision variables [Wan09, p. 58].

In doing so, the Kuhn-Tucker conditions, also called Karush–Kuhn–Tucker (KKT) conditions,
are introduced in the following. They define, which of the inequality constraints, i.e.,Mi∆ucon ≤
γi—which are summarized in several rows of M and γ where i is the number of rows—are
active and which are inactive [Wan09, p. 58]. Active means that the inequality constraint is
written as Mi∆ucon = γi with a non-negative Lagrange multiplier, i.e., ρi > 0. Inactive means
that the inequality constraint is written as Mi∆ucon < γi with a zero Lagrange multiplier, i.e.,
ρi = 0. In doing so, based on M∆U con ≤ γ, only the active constraints are summarized with
M act∆U con = γact.
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An active-set method decides at each step of the optimization which of the constraints are active,
i.e., must be fulfilled, and which are inactive, i.e., can be dropped. Consequently, at each step
an equality constraint problem is solved [Wan09, p. 60]. This allows the use of the previously
introduced Lagrange multipliers to solve the quadratic optimization problem. Using the active-
set method, the optimization problem defined in (2.66) can be redefined by

ρact(k) = −
(
M actH

−1
c M

T
act

)−1
(γact(k) +M actH

−1
c Θc(k)︸ ︷︷ ︸
−∆Uunc(k)

) (2.67a)

∆U con(k) = −H−1
c Θc(k)︸ ︷︷ ︸

∆Uunc(k)

−H−1
c M

T
actρact(k) . (2.67b)

However, since this is a primal representation, i.e., the active constraints (2.67a) need to be iter-
atively identified along with the optimal decision variables (2.67b), the occurrence of numerous
constraints can lead to a huge computational burden. Therefore, real-time optimization can be
quite time-consuming as an iterative solution process is required and inactive constraints can
become active constraints during optimization.

To overcome this issue, a dual problem can first be solved using Lagrange multipliers to identify
the inactive constraints with less computational effort. In doing so, assuming feasibility, i.e.,
there is an ρi such that Miρi < γi, the primal problem is described by

maximize
ρ≥0

minimize
∆U con

Jc,con (see (2.64)) , (2.68)

where the minimization regarding ∆U con, see (2.66b), is unconstrained. Inserting (2.66b) in
(2.68), the dual problem can be rewritten by [Wan09, p. 62]

minimize
ρ≥0

(
1

2
ρT (k)Eρ(k) + ρT (k)g(k) +

1

2
γT (k)H−1

c γ(k)) (2.69)

with

E = MH−1
c M

T (2.70a)

g(k) = γ(k) +MH−1
c Θc(k) . (2.70b)

Although it is still a QP problem on the dual variables, the constraints are much simplified
(ρ≥0) so a simple iterative procedure can be used to obtain the optimal solution of the La-
grange multipliers. Consequently, first—and quite fast—the active constraints ρact with M act

can be obtained by solving the dual problem (2.69)-(2.70b) to subsequently facilitate the solu-
tion of the primal problem.
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Hildreth's quadratic programming procedure A simple method to solve the mentioned
dual problem is Hildreth's quadratic programming algorithm [Hil57], [Lue69, p. 299 ff.], which
is based on an element-by-element search, i.e., is an iterative solution. Thus, it does not require
any matrix inversion. This has the important advantage that if the active constraints are linearly
independent and their number is less than or equal to the number of decision variables, then
the dual variables converge [Wan09, p. 63 ff.]. Moreover, the algorithm provides a near-optimal
solution even in the presence of conflicting constraints [Wan09, p. 64] without being numeri-
cally unstable [Wan09, p. 82], which makes it advantageous for real-time applications and is
the reason for the choice.

In doing so, the individual Lagrange multipliers are optimized element by element using14

ρk+1
i = max(0, wk+1

i ) with (2.71)

wk+1
i = − 1

eii

(
gi +

i−1∑
j=1

eijρ
k+1
j +

m∑
j=i+1

eijρ
k
j

)
, (2.72)

where eij is the element i, j in the matrix E of (2.70a) and gi the element i in the vector g of
(2.70b) [Hil57]. Here, m equals the length of γ.
If in the solution of the dual problem the Lagrange multipliers converge, i.e., ρ~ results with
either zero or positive values for the Lagrange multipliers, only the rows of ρ~ with nonzero
values can be chosen to determine ρact and M act. Consequently, the constrained solution of
the optimization problem, i.e., the primal problem in (2.67b), can be computed directly and
much more easily. Similar to (2.59), only the first element of the constraint decision variable
∆U con(k), i.e., ∆ucon(k), is applied afterwards. This procedure is called CCScon or CCScon-
MPC in the following.

Since it is an iterative algorithm, many active constraints may prevent the calculation from
being completed in the required time, i.e., the hard real time would be violated. Consequently, a
termination criterion is inserted, which terminates the optimization after 80 %15 of the available
processing time to ensure sufficient computing capacity for remaining tasks. This is especially
important for the real-time implementation of the algorithm16, see, e.g., Chapter 9.

14max returns for each i-th element the largest element taken from the first or second argument. Thus it results
for each specific constraint zero if the constraint is inactive or a positive value if the constraint is active.

15The value was determined heuristically based on empirical results and depends on the workload of the pro-
cessor.

16For manageable problems, as shown in Section 9.2, experimental evaluations have shown that the processing
time was not violated at any time
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2.5.2 Finite Control Set-MPC

FCS-MPC—also named DMPC—is a direct control strategy. The underlying optimization prob-
lem, which is most often formulated as a reference tracking problem, is solved by enumerating
the finite number of possible switch positions of the power electronic converter [CKK+08], i.e.,
for a two-level VSI eight discrete voltage SVs, see Fig. 2.5. This implies that the converter
switches are directly manipulated, thus the control and modulation problem are addressed in
one computational stage [Gey17, p. 18]. When using long-horizon FCS-MPC, two features are
prominent. First, an improved steady-state system performance can be achieved, as indicated
by a reduced THD of the variables of concern for a given average switching frequency fsw

[GKK14, GQ15, LKG+17]. Second, the stability of the system can be improved [KLGK20]. A
good overview of multistep FCS-MPC is given, e.g., in [ARB+19]. For a long horizon the cal-
culations expand like a tree, see Fig. 2.23. Respecting the number of available switching states,
see Table 2.1, an exponential increase with SVNp results.

With conventional FCS-MPC, switching can only take place at discrete time steps, i.e., at the
end of the control interval in which the optimization was performed, see Fig. 2.23. Here, the
algorithm can change the switch positions, but does not have to. In doing so, direct control
strategies such as FCS-MPC provide fast transient response, but also operate the converter with
a time-varying, i.e., variable, switching frequency—resulting in an average fsw—and, conse-
quently, a non-discrete harmonic spectrum [Gey11]. This suggests that for a three-phase system
significant harmonic components exist not only at non-triplen, odd integer multiples of the fun-
damental frequency, but also at even and inter-harmonics. For grid-side connected inverters,
this makes conventional FCS-MPC unsuitable since the relevant grid codes—such as IEEE 519
[IEE14] and IEC 61000-2-4 standard—impose tight limits on these harmonics. Hence, grid-

y, u

t

HorizonPast

(k−2)Tcf (k−1)Tcf kTcf (k+1)Tcf (k+2)Tcf (k+3)Tcf (k+4)Tcf (k+5)Tcf

y∗

upast

v4

ufuture

v6

v2

v0

y

Figure 2.23: FCS-MPC with receding horizon policy for a five-step prediction horizon, i.e.,
Np = 5, exemplary shown at kTcf for v0, v2, v4, v6 with not chosen options in light
color. u are the discrete control signals, y are the resulting controlled signals and y∗

is the reference signal. Even though the signals are mostly vectors, for simplicity
only the trend of a scalar is shown.
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side connected applications requiere modified DMPC approaches, as shown, e.g., in [NKG19].
However, for inverters connected on the motor side, a spread spectrum, resulting in reduced
amplitudes in certain harmonics, is acceptable or may even be advantageous [Hol94].

In the field of DMPC—see also [KLGK20]—two basic procedures are distinguished:

1. Conventional FCS-MPC, which allows only one switching state to be used for the entire
control interval. This basic principle, which is used in almost all DMPC publications, is
presented in this chapter.

2. DMPC strategies with implicit modulator that introduce a variable switching point (VSP),
i.e., a time (switching) instant, within the control interval at which a new switching state
is applied to the converter as shown, e.g., in [KSK+14, SKT+13, TZW+15, ZXLZ14,
WKDK19]. This variant is used and enhanced in Chapter 6.

Both are described by Fig. 2.24, where the latter may use an additional counter as shown by the
dashed lines.
When DMPC for PMSM-based drives is employed to control the stator current, the common
practice is to compute the evolution of the latter based on the (time-varying) absolute induc-
tances Ld and Lq [WDK17b]. Specifically, by applying forward Euler discretization—see Sec-
tion 2.1.3—to the rearranged (2.27), the predicted current idq(k + 1) is given by

idq(k+1) = TcfL
−1
dq

(
vdq(k)−Rphidq(k)−ωel(k)

(
PLdqidq(k)+

[
0

ψpm

]))
+idq(k) , (2.73)

where Tcf is the control interval. In the case of DMPC, its common practice to use forward Euler
discretization [Gey17, p. 155], [KG20]. Thus for all DMPC considerations in this thesis forward
Euler is used. It is also common to use constant absolute inductances for the prediction, although
(2.73) may lead to less accurate predictions and, consequently, to potential performance dete-
rioration when magnetic nonlinearities become dominant. Therefore, this issue is addressed in
Chapter 7.

DMPC approach
Prediction

Optimi-
zation Counter

dq

abc

ūabc

tz

i∗d
i∗q

id
iq

ϕm

d
dt

ωm

uabc VSI

Vdc

PMSM

iabc

Figure 2.24: DMPC with current reference tracking for a two-level VSI with a PMSM.
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2.5.2.1 Optimization Problem

Using the predicted current trends, a cost function can be defined with the reference signal(s)
to obtain the most appropriate discrete switching signals for the subsequent control step. A
common cost function can be described by [Gey17, p. 197]

Jf(k) =

k+Np−1∑
`=k

||y∗(`+ 1)− y(`+ 1)||2Q︸ ︷︷ ︸
reference tracking

+ λu||∆u(`)||22︸ ︷︷ ︸
switching penalization

=

k+Np−1∑
`=k

||y∗(`+ 1)− y(`+ 1)||2Q︸ ︷︷ ︸
Jf,1(k)

+

k+Np−1∑
`=k

λu||∆u(`)||22︸ ︷︷ ︸
Jf,2(k)

(2.74)

where, similar to (2.55), the first term is the reference tracking term and the second term is
the penalty for changing the control variable, i.e., a switching transition. More precisely, the
reference tracking term with the reference y∗ and the optimized output y can be weighted by the
matrix Q ∈ Rny×ny , where ny is the number of output variables. This can also be described by
the output tracking term ξ with ||y∗(`+1)−y(`+1)||2Q = ||ξ(`+1)||2Q = (ξ(`+1))TQξ(`+1)

and leads after summation to Jf,1 = [ξT (k+ 1)...ξT (k+Np)]Q̃[ξT (k+ 1)...ξT (k+Np)]
T with

the block diagonal matrix Q̃ = diag(Q, · · · ,Q). The penalty of the switching is described by
λu||∆u(`)||22 = λu(u(`)− u(`− 1))T (u(`)− u(`− 1)).

However, many different forms of the cost function can be found in the literature, see, e.g.,
[KLGK20]. Even if these forms of representation apply equally to CCS-MPC and DMPC, espe-
cially in the latter case many different variants can be found, mainly for computational reasons.
The main differences are first the norm, second the presence of weighting factors and third the
number of terms to be optimized and constraints to be respected. With regard to the former, a
squared `2-norm is usually used for all terms of the cost function, although an `1-norm is also
possible. As described in [KGK18], the `2-norm avoids any closed-loop stability issues and
provides a performance improvement (at least for the reference tracking term), although this in-
creases the computational effort. With regard to the second, by changing (online) the weighting
factors, the targets to be optimized, i.e., y∗, have a variable influence, i.e., more or less, on the
resulting control signal ∆u. With regard to the latter, a penalization of the switching action is
always recommended to avoid unnecessary current distortions [KG20] and to adjust fsw. More-
over, current or voltage restrictions are quite often included as additional constraints.
Based on the above, the cost function used in this thesis is composed of a `2-norm for ref-
erence tracking—due to stability reasons—, a `2-norm for the current constraints—since the
current vector length is calculated based on a quadratic form—and `1-norm for the switching
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penalization—in order to reduce the computational burden. The proposed cost function is de-
scribed by

Jf(k) =

k+Np−1∑
`=k

(
||y∗(`+1)−y(`+1)||22+f̂(idq(`+1))+λu||∆[uTabc(`−1) uTabc(`)]

T ||1
)

(2.75)

where

f̂(idq(`+ 1)) =

imax if ||idq(`+ 1)||2 > imax

0 if ||idq(`+ 1)||2 ≤ imax

(2.76)

with y∗ = i∗dq ∈ R2 being the reference vector and y = idq ∈ R2 the output vector. The
sequence of manipulated switch positions over a finite horizon ofNp ∈ N+ time steps is defined
as

U (k) = [uTabc(k) uTabc(k + 1) . . . uTabc(k +Np − 1)]T ∈ U (2.77)

with uabc and U = {−1, 1}nhNp . Moreover, ∆[uTabc(` − 1) uTabc(`)]
T with ∆ =

[
−Inh Inh

]
,

where Inh ∈ Nnh×nh and nh being the number of phase legs (here nh = 3, see Section 2.2.1.1),
denotes the penalization of the control action, and, consequently, of the switching frequency,
which is weighted by λu > 0. In this way, the average switching frequency can be reduced at
the expense of a higher current ripple. In this work, λu > 0 is adjusted for all conventional
FCS-MPC approaches so that a comparison—in terms of current THD and ripple—between the
methods at almost equal average fsw is possible. In contrast to the general form, i.e., (2.74), the
proposed form, i.e., (2.75), for simplicity’s sake avoids an unequal weighting of the reference
tracking terms, i.e., avoids Q. This is meaningful since the d- and q-axis are equivalent, which
also considerably facilitates the adjustment of the remaining weighting factor. Finally, (2.76)
represents a hard constraint on the stator current, implemented as a protection mechanism, with
imax being the maximum current in per-unit (pu).17

With the cost function (2.75), the DMPC problem is stated as

minimize
uabc ∈U

Jf (see (2.75))

subject to (2.73), (2.76) .
(2.78)

Solving (2.78) yields the optimal switch position(s) uabc,con(k) which is (are) to be applied at
the end of the control interval. Note that according to the receding horizon policy, only the
first element of the switching sequence U con is applied to the inverter. In doing so, feedback is
provided and a degree of robustness to system uncertainties is achieved [RM09].

17Theoretically, a soft constraint is to be preferred since it can avoid feasibility problems when solving (2.75).
The per-unit system is used as explained in [Gey17, p. 31 ff.].
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Algorithm 1 Inductance-based DMPC
1: function uABC,CON =L-DMPC(i∗dq, idq, ϕ,Np, ωel, Vdc)
2: idq(k−1)← read dq-transformation
3: idq(k)← predict using (2.73) . delay time compensation
4: for ` = 1, . . . , Np do
5: for j = 1, . . . , 8 do
6: idq,j(k+`)← predict using (2.73)
7: ||idq,j(k+`)|| ← idq,j(k+`) using (2.76) . current constraint
8: end for
9: uabc,con(k)← solve (2.78)

10: end for
11: end function

This leads to Algorithm 1. Here, the delay time of the current is compensated for only once
after sampling. However, for the rotor position, a compensation is required after sampling and
each horizon step `, i.e., 1, . . . , Np. Thus, in each step vdq in (2.73) is updated using (2.12) as
the rotor shaft continues to rotate and thus has another position. Moreover, exhaustive search
is used, i.e., all possible switching possibilities are considered to find the constrained solution.
Thus, an exponential growth of the computational effort with the horizon, i.e., SVNp , occurs. To
reduce this increase, e.g., the following two sections or alternatively Chapter 5 are required.

2.5.2.2 Integer Quadratic Programming Formulation

Contrary to CCS-MPC, see Section 2.5.1, FCS-MPC is a (mixed) integer problem. Therefore,
similar to CCS-MPC, a quadratic optimization problem can be defined, but is solved by means
of (mixed) integer quadratic programming ((M)IQP), since the solution space contains (mostly)
integer values. In doing so, similar to (2.49), the predicted output is defined by

Y (k) = Γfx(k) + ΥfU(k) (2.79)

with

Γf =



C

CA

CA2

...
CANp


, Υf =



CB 0ny×nh 0ny×nh · · · 0ny×nh
CAB CB 0ny×nh · · · 0ny×nh
CA2B CAB CB · · · 0ny×nh

...
...

...
...

...
CANp−1B CANp−2B CANp−3B · · · CB


(2.80)

using prediction horizonNp. Here, the state space description in (2.29) is discretized by forward

Euler—see Section 2.1.3—, where Bc =
Vdc

2

[
1/Ld 0 0

0 1/Lq 0

]T
K(ϕ) is redefined since in
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U discrete control signals, i.e., the discrete switch positions, are the decision variables rather
than the change of a continuous control signal as shown for CCS-MPC. Moreover, since the
switch positions are the decision variables, nu = nh. In contrast to the proposed CCS-MPC
approach, see Section 2.5.1, Υf provides only a prediction horizon, i.e., no control horizon Nc,
and a square format, where ny indicates the number of output variables in the vector y.
Based on (2.74), using the output tracking error over the whole horizon, i.e., Ξ, the first part of
the cost function can be described by Jf,1 = [ξT (k + 1)...ξT (k + Np)]Q̃[ξT (k + 1)...ξT (k +

Np)]
T = ΞT (k)Q̃Ξ(k) = ||ΞT (k)||2

Q̃
. Consequently, with the output reference trajectory

Y ∗(k), Ξ(k) = Y ∗(k)− Y (k) results and leads to

Jf(k) = ||Y ∗(k)−Γfx(k)−ΥfU(k)︸ ︷︷ ︸
−Y (k)

||2
Q̃︸ ︷︷ ︸

Jf,1

+λu||SU(k)−Eu(k − 1)||22︸ ︷︷ ︸
Jf,2

(2.81)

where Jf,2 = λu(SU(k)−Eu(k−1))T (SU(k)−Eu(k−1)) = λu||SU(k)−Eu(k−1)||22 with

E =



Inh
0nh×nh
0nh×nh

...
0nh×nh


and S =



Inh 0nh×nh 0nh×nh · · · 0nh×nh
−Inh Inh 0nh×nh · · · 0nh×nh
0nh×nh −Inh Inh · · · 0nh×nh

...
...

...
...

...
0nh×nh 0nh×nh 0nh×nh · · · Inh


. (2.82)

Afterwards several rearrangements are required—see, e.g., [Gey17, p. 215]—to separate the
time variant terms in (2.81). In doing so, the cost function can be simplified [Gey17, p. 201-
202], i.e.,

Jf(k) = (U(k) +H−1
f Θf(k)︸ ︷︷ ︸
−Uunc(k)

)TH f(U(k) +H−1
f Θf(k)︸ ︷︷ ︸
−Uunc(k)

) (2.83)

with

H f = ΥT
f Q̃Υf + λuS

TS (2.84a)

ΘT
f (k) = −(Y ∗(k)− Γfx(k))T Q̃Υf − λu(Eu(k − 1))TS , (2.84b)

where H f is the Hessian18 matrix as a function of A, B, C, Q̃, λu and S. Assuming that the
system parameters are time-invariant,H f is also time-invariant19. Similar to Section 2.5.1.4,H f

is symmetric and positive definite for λu > 0 [Gey17, p. 201]. Θf is a time-varying vector of
the system state vector at time k, the output reference trajectory Y ∗ and the previously selected

18Strictly speaking 2H f is the Hessian Matrix, see [Gey17, p. 201].
19As will be shown in the following and especially in Chapter 5, this can only be partially assumed for small

electrical drives due to the small electrical and mechanical time constants.
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switch position u(k− 1). Afterwards, it is possible to calculate the solution of the optimization
problem, i.e., the optimal discrete switching signals (integer solution) U con(k), by using

minimize
U(k)∈U

Jf (see (2.83))

subject to (2.76), ∀ ` = k, . . . , k +Np − 1 .
(2.85)

As shown in (2.83), the unique unconstrained solution U unc—since H f is positive definite—
can be calculated directly by neglecting the side conditions in (2.85), similar to the first term of
(2.66b). Since this solution does not consider any constraints, it cannot be output directly, but
can be used to simplify the constrained solution. Based on this, as explained in [Gey17, p. 202],
the optimization problem can be redefined as integer quadratic program [GQ14], i.e.,

Jf(k) = (V U(k)− Ū unc(k))T (V U(k)− Ū unc(k)) = ||V U(k)− Ū unc(k)||22 , (2.86)

with the lattice generator matrix V where

V −1V T = H−1
f (2.87a)

Ū unc(k) = V U unc(k) = −V H−1
f Θf(k) . (2.87b)

Thus, a problem similar to (2.85) can be formulated and solved as described in the following.

2.5.2.3 Branch and Bound by using Sphere Decoding

The definition of the optimization problem as an integer quadratic program aims at the use of
an IQP solver to find the constrained solution in a computationally efficient manner, i.e., to find
it faster. One of the most promising IQP solver, using a branch and bound (BnB) method, is
the sphere decoding algorithm (SDA) which narrows down the search space of FCS-MPC and
has become very popular in the recent years, see, e.g., [GQ14, GQ15, KGMK16, DMKG17,
LKG+17, ARB+19, BAA+20]. The idea is not to examine all discrete switch positions inU(k),
but to search only within a radius ρsph(k) (> 0) centered at Ū unc(k). This leads to

ρsph(k) ≥ ||V U(k))− Ū unc(k)||2 . (2.88)

Since V is a triangular matrix, it allows the SDA to find the minimum sphere relatively easily.
More precisely, V is a lower triangular matrix in our case, so (2.88) can be rewritten to

ρ2
sph(k) ≥ (v1,1u1(k)− ūunc,1(k))2 + (v2,1u1(k) + v2,2u2(k)− ūunc,2(k))2 + · · · . (2.89)

It holds, ūunc,i(k) is the i-th element of Ū unc(k), ui(k) is the i-th element of U (k) and vi,j(k) is
the (i, j)-th element of V . The solution is a sequential solution, similar to Gaussian elimination,
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in the sense that each step is only a one-dimensional problem, see, e.g., [Gey17, p. 205].
To calculate U con, an initial value of the radius ρsph is required for the first step. On the one
hand, the radius should be as small as possible to minimize the calculation time. On the other
hand, the radius should be as large as possible to find a solution at any time, i.e., at least one
switch option should be within the radius. More details regarding the choice of the initial radius
and the SDA in general can be found, e.g., in [KGK15], [Gey17, p. 204 ff.].

2.6 Summary and Performance Evaluation

A brief performance evaluation compares the control approaches considered with respect to
the requirements defined in Section 1.1, especially for the electrical controlled system. For this
purpose, the steady-state performance, i.e., a low THD and high steady-state accuracy, a highly
dynamic response to transients, the computational effort and the robustness with respect to
model, parameter and measurement inaccuracies are evaluated. For the steady-state operation
(in this and the following chapters), two operating points are highlighted, one for nominal op-
eration and one in the low partial load range. The used test bench is described in Chapter 3.
Here, some assumptions can already be made in advance. Comparing the two basic MPC con-
cepts, i.e., CCS-MPC and FCS-MPC, the latter generally allows for higher dynamics, i.e., the
best performance during transients when an inverter is present, due to its direct behavior. How-
ever, in steady state—at least in the partial load range of small electrical drives—, CCS-MPC
(similar to FOC) enables lower current ripple, i.e., lower THD, compared to conventional FCS-
MPC due to the modulator. Since from the modulator’s point of view, both CCS-MPC and FOC
use the same SVM to apply the controller output to the gate signals, the steady-state perfor-
mance will be similar. Further comparisons of the two MPC approaches—using an explicit, i.e.,
pre-computed, formulation—are shown, e.g., in [PB13a], where both methods show similar per-
formance, but also point out the lower computational effort when using CCS-MPC. However,
as explained in Section 2.5.1, CCS-MPC requires an operating point linearization. With FCS-
MPC, the latter is only required if a (M)IQP is used, see Section 2.5.2.2. Thus, in an implicit
CCS-MPC implementation, i.e., optimization is performed at runtime, high-frequency online
updating of the matrices used would be necessary to achieve acceptable control dynamics. Con-
sequently, the computational effort of CCS-MPC increases compared to [PB13a].
Considering these arguments, only direct control approaches, i.e., DTC and FCS-MPC, com-
pete with FOC as an exemplary procedure with modulator for the current control loop. Hence,
LQR and CCS-MPC are only compared for the speed control loop in Chapter 9. The following
evaluation serves to identify the challenges that prevent the requirements in Section 1.1 from
being achieved and finally as motivation for the subsequent Chapters 3-9. In these, the disclosed
challenges—see also Section 1.2—especially for DMPC, are successively addressed.
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2.6.1 Steady-State Performance

To compare FCS-MPC and DTC with modulator-based methods, similar conditions have to
be applied. This means that in steady state the same average switching frequency fsw must be
applied. Consequently, an increased control frequency is required for DTC and FCS-MPC com-
pared to FOC with SVM. However, this can be quite challenging for small electrical drives. In
the following use case, a control frequency of fcf = 100 kHz is considered for the direct ap-
proaches where for FCS-MPC switching is penalized by using λu and for DTC the switching
frequency is lowered by increasing |∆Tel|. Nevertheless, the switching granularity for both di-
rect approaches is 2Tcf = 20 µs, since in each control interval only one switching transition can
appear, i.e., ON or OFF, see also Section 2.1. Thus, FCS-MPC and DTC have a maximum
switching frequency of half the control frequency. Considering (2.13), it can be seen that this
only happens if each half-bridge switches in each control interval. Since this is rather unrealis-
tic, i.e., only one or two half-bridges switch per interval, fsw is always lower.
Fig. 2.25 shows the phase currents and spectrum at the nominal operating point for motor M1,
see Table A.3 of Appendix A.3.1. Fig. 2.26 shows operation in the partial load range, i.e., at low
modulation index. As can be seen, especially in the partial load range, the limited switching
granularity becomes a substantial problem and thus disadvantage compared to modulator-based
approaches. Phase currents and spectrum of DTC are shown in Fig. A.13 of Appendix A.5.
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(a) Three-phase stator current for conventional FCS-
MPC with λu = 0.45, fsw≈ 12.2 kHz.

(b) Stator current spectrum for conventional FCS-MPC
with ITHD = 4.41 %.
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(c) Three-phase stator current for FOC and SVM with
fsw = 12.0 kHz.

(d) Stator current spectrum for FOC and SVM with
ITHD = 4.34 %.

Figure 2.25: Motor M1: Three-phase stator current and spectrum for i∗d = 0 A, i∗q = 12.16 A,
nm = 3000 rpm with fsw≈ 12.0 kHz (experimental).
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(a) Three-phase stator current for conventional FCS-
MPC with λu = 0.253, fsw≈ 10.0 kHz.

(b) Stator current spectrum for conventional FCS-MPC
with ITHD = 8.77 %.
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(c) Three-phase stator current for FOC and SVM with
fsw = 10.0 kHz.

(d) Stator current spectrum for FOC and SVM with
ITHD = 2.65 %.

Figure 2.26: Motor M1: Three-phase stator current and spectrum for i∗d = 0 A, i∗q = 5.0 A,
nm = 200 rpm with fsw≈ 10.0 kHz (experimental).

Fig. 2.27 illustrates the problem with the switching granularity, in a close-up view of the phase
current. It becomes apparent that with both direct approaches the granularity is too low to
achieve an acceptable current ripple, e.g., compared to FOC with SVM. Here, SVM has a
switching granularity corresponding to the processor or FPGA clock. This is also claimed, for
example, in [Hol16], where, despite high control frequencies, conventional FCS-MPC is thus
recommended only for drives with low switching frequencies, e.g., less than 500 Hz.
In summary, when using conventional FCS-MPC, a very high ratio between control and (aver-
age) switching frequency must be maintained to obtain an acceptable current ripple. In [KG20],
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Figure 2.27: Motor M1: Single-phase stator current as close-up view from Fig. 2.26 and
Fig. A.13 to show the switching resolution in comparison for operation using
FOC with SVM, the conventional FCS-MPC and DTC in steady state for i∗d = 0 A,
i∗q = 5.0 A, nm = 200 rpm with fsw≈ 10 kHz (experimental).
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for example, the factor 100 is recommended. However, considering small electrical drives—
with time constants of just a few ms or even µs—and state of the art calculation platforms,
this ratio is quite challenging. Therefore, more advanced methods are required for FCS-MPC
to increase the switching granularity, which can reduce the current ripple while maintaining the
switching frequency. Hence, this will be addressed in the following of this work.
In case of DTC, a modulator stage is usually added for ripple reduction—see, e.g., [MM98]—
but since it does not allow for additional optimization criteria such as current constraints, among
other disadvantages compared to FCS-MPC, this will not be considered further.

2.6.2 Transient Performance

At a constant speed, a current reference step is applied to compare the transient performance of
FOC, DTC and FCS-MPC. Fig. 2.28 clearly shows the advantageous dynamics of both direct
control approaches, which avoid the operating point-dependent adjustment of the PI controller
gains. The PI controllers were tuned according to the modulus optimum as described in Sec-
tion 2.3, with the second FOC measurement showing a slightly increased kp at the expense of
minimal overshoot. In contrast, with FCS-MPC, assuming correct machine parameters, over-
shoots do not occur at any operating point, which is quite advantageous. In addition, FCS-MPC
takes current constraints directly into account in the cost function, so that limit violations are
avoided before they even occur. In contrast, controllers such as FOC require a control signal
limitation in the form of clamping or back-calculation, which reacts as soon as the limitation
has already been reached. In summary it can be concluded that when using FCS-MPC—similar
to DTC—the maximum dynamic range can be achieved as claimed in Section 1.1.
In the following chapters, the ITAE criterion (integral of time multiplied by absolute value of
error) [LW14, p. 461] is applied to the measured step responses to compare the dynamic control
performance of the considered control methods. Here, the control error ξ is integrated over time,
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Figure 2.28: Motor M1: Single-phase stator current during transient operation using FOC with
SVM, FCS-MPC with Np = 2 and DTC for a reference step from i∗q = 0 A to
i∗q = 18.24 A with i∗d = 0 A, nm = 200 rpm, fsw≈ 10 kHz (experimental).
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with a control deviation being weighted more heavily as time progresses.

QITAE =

∫ ∞
0

|ξ(t)− ξ(∞)|tdt (2.90)

2.6.3 Influence of Model, Parameter and Measurement Inaccuracies

A model-based control algorithm is highly dependent on the accuracy of the model (see Sec-
tion 2.2.1.2) and used parameters. The model requires a compromise between model accuracy,
i.e., which effects of the controlled system are modeled and which are not, and computational
load. Thus, as detailed as possible, but no more detailed than necessary. The parameter accu-
racy should generally be as accurate as possible. However, since not all parameters have the
same influence on the quality of the control, a detailed evaluation is useful to determine which
parameters need to be determined with particular accuracy. Focusing on FCS-MPC, Fig. 2.29
shows the stator current ITHD as a function of the average switching frequency fsw for differ-
ent parameter mismatches20 at different operating points compared to the classical approaches.
Once for a low modulation index, i.e., Fig. 2.29(a), and once for the nominal operating point,
i.e., Fig. 2.29(b). Figs. 2.30-2.31 show the steady-state deviation for the two operating points
respectively. Finally, Fig. 2.32 shows the transient behavior for a parameter mismatch.

Resistance In case of 0.5R the resistance in the machine has halved, e.g., due to a cold en-
vironment or insufficient determination. In case of 2.0R the resistance in the machine has dou-
bled, e.g., due to the heating of the machine during operation, as explained in Section 2.2.1.2.
The influence of the resistance on the quality of control is small, even if a noticeable steady-
state deviation becomes visible as soon as a high current is present, see Fig. 2.31. In transients,
however, no influence is recognizable, see Fig. 2.32(b).

Inductance In case of 0.5L the inductance in the machine has halved, e.g., due to saturation,
as explained in Section 2.2.1.2. In the case of 2.0L the inductance in the machine is twice the
value assumed for the prediction model. This can happen, e.g., due to an insufficient parameter
assumption. In the first case, i.e., 0.5L, the current ripple increases, as can be clearly seen
in Figs. 2.30-2.32(a). Since the current increase per interval, i.e., the gradient, is steeper than
expected by the model, switching appears too late. Consequently, the current ripple increases
while the controller tries to counteract by additional switching operations. Due to the inaccurate
prediction, however, without success. As a result, the THD increases for a defined switching
frequency, see Fig. 2.29. In the second case, i.e., 2.0L, the current ripple may even decrease for

20For the study, the parameters in the model were changed while those of the machine remained the same.
However, to be closer to the physical behavior under real conditions, the labeling in the following figures shows a
change in the machine parameters.
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(a) Trade-off for i∗d=0 A, i∗q=5.0 A, nm=200 rpm.
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Figure 2.29: Motor M1: Trade-off between stator current ITHD and fsw with different parameter
mismatches for Np = 2 (experimental).
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Figure 2.30: Motor M1: Steady-state deviation for i∗d = 0 A, i∗q = 5.0 A, nm = 200 rpm with
different parameter mismatches using Np = 2 and a constant λu = 0.045
(fsw = 4.6 kHz without parameter variations) (simulation).
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Figure 2.31: Motor M1: Steady-state deviation for i∗d = 0 A, i∗q = 12.16 A, nm = 3000 rpm
with different parameter mismatches using Np = 2 and a constant λu = 0.112
(fsw = 16.1 kHz without parameter variations) (simulation).
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Figure 2.32: Motor M1: Single-phase stator current during transient operation using the conven-
tional FCS-MPC with Np = 2 and different parameter mismatches for a reference
step from i∗q = 0 A to i∗q = 18.24 A with i∗d = 0 A at nm = 200 rpm and fsw≈ 10 kHz
(experimental).

certain switching frequencies, as shown in Fig. 2.29(b). This, however, happens at the expense
of a steady-state deviation, as shown in Figs. 2.30-2.31. Moreover, in the case of 2.0L at low
speeds it is not possible to switch at all at the desired frequencies and is therefore not shown in
Fig. 2.29(a). The transient behavior is nevertheless relatively robust, even though Fig. 2.32 also
shows the steady-state deviation for 2.0L and the increased ripple for 0.5L.

Flux linkage constant In case of 0.8ψpm, the flux linkage caused by the magnets has re-
duced, e.g., due to the heating of the machine during operation, as explained in Section 2.2.1.2.
In case of 1.2ψpm the flux caused by the magnets has increased, e.g., due to a colder ambient
temperature or insufficient parameter determination. Similar to the resistance, the influence on
the control performance is small. However, at higher speeds, see Fig. 2.31, a steady-state devi-
ation occurs. In steady state, at high speeds, it is more critical to have an inaccuracy in the flux
linkage constant ψpm than in the resistance and the other way around at high currents and low
speeds. No influence was observed for the transient behavior.

Moreover, the correctness of the measured quantities, i.e., iabc, ϕm and ωm, is of great impor-
tance for the control performance21. Since all control methods considered are performed in
the dq-system, rotor angle accuracy is equally important. However, current measurement has
a bigger effect on the performance of MPC since it is the starting point for prediction. Both
are addressed in Section 3.3, where the impact of an inaccurate alignment is illustrated in Sec-
tion 4.4.2. The influence of an inaccurate speed is quite similar to the influence of an inaccurate
ψpm, i.e., small and mainly affects the steady-state accuracy, see Figs. 2.29-2.31. For this reason,
speed accuracy is of lower priority compared to the other two measured quantities.

21Although a voltage measurement can be used for optional parameter identification in Chapter 4, it is not
necessary for the control and is thus not considered here. However, it is discussed in Section 3.3 and Section 4.4.2.
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In summary It becomes obvious that especially the accuracy of the parameters has a decisive
influence on the results of model-based control algorithms, i.e., DMPC, while it is expected that
CCS-MPC behaves in the same way. Here, the inductance has the highest influence and is there-
fore the most crucial parameter, which can be explained by the fact that it defines the change
of the current, i.e., the slope. Identical observations are shown, e.g., in [OKZ20] with simula-
tion results. It is also shown there that longer prediction horizons tend to amplify the impact of
inaccurate model parameters. Especially a mismatch for ψpm leads to a significantly increasing
steady-state deviation for longer horizons. The summary of all results leads to the conclusion
that an underestimated parameter is to be preferred, since the consequences are less critical, i.e.,
the THD is less influenced and mainly a steady-state deviation occurs. Unfortunately, both the
saturation for the inductance and the temperature for ψpm have exactly the opposite tendency,
i.e., they lead to overestimated parameters.
Moreover, experimental measurements have shown that motor parameters specified in the data
sheet can deviate from the real values by up to 100 %. This may be caused by inaccurate manu-
facturer’s specifications, manufacturing inaccuracies or parameter changes during operation.
In case of conventional DMPC, there are several approaches that address the adverse impact
of inaccurate parameters on the controller performance, see, e.g., [SKR17, LZW+20, ZZZ19,
CTBZ19, YZZ20]. For instance, a cost function is proposed in [LZW+20] where an integral
term of the current tracking error is added to equip the control scheme with an element of in-
tegrating nature. The associated control gains, however, are tuned heuristically, implying that
optimal performance for the whole operating range is not ensured. [ZZZ19] superimposes an
observer, but due to the convergence of the algorithm—which requires several fundamental
periods—it is not suitable for dynamic processes. In [CTBZ19] and [YZZ20], model-free—
also called non-parametric—MPC is used to tackle potential model mismatches. In principle,
these model-free approaches are based on the difference between the last measured and pre-
viously predicted current. Moreover, they have to be averaged over several samples to avoid a
negative influence of measurement outliers. Thus, parameters that are initially determined in-
accurately or are slowly varying, e.g., due to temperature drifts, can be compensated for very
well. However, in case of, e.g., an increasing current reference, a significant degree of magnetic
saturation can be reached within a few control steps. If this event is to be covered, i.e., predicted
over the horizon, the knowledge of previous control steps does not provide any valuable infor-
mation. Hence, it can be claimed that a different approach needs to be devised that will enable
accurate predictions both during transients and in steady state, shortly after a transient.
Furthermore, using a non-parametric approach, it is not possible to distinguish between different
parameter influences, i.e., it cannot be decided whether it is an influence of, e.g., the resistance,
the inductance or a rotor position-dependent and thus cyclic effect. As can be imagined, for
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optimal predictive control over the entire operating range, it is necessary to separate the crucial
parameter changes. To address that, this thesis aims to increase modeling and parameter accu-
racy rather than correcting simple models by adding averaged model deviations from the past.
Consequently, it seems reasonable to automatically determine the parameters of each drive un-
der real conditions offline—and some of them even online—to provide an ideal basis for MPC.
This is addressed in Chapter 4. Subsequently, the increased prediction accuracy can be used to
achieve improved control performance, as will be demonstrated, e.g., in Chapter 7.

2.6.4 Resource and Timing Evaluation

One of the main obstacles to the use of MPC is the implementation, i.e., real-time calculation.
Especially since, as shown in the previous sections for small drives, the average switching fre-
quency should be at least twice to ten times as high as 1/τel to avoid high current ripple.
Although not used for the measurements shown previously, a digital signal processor (DSP) is
typically used to execute the control algorithms. Once the control-independent functions, e.g.,
reading measurements and dq-transformation, have been subtracted from the total processing
time (see dashed lines), Fig. 2.33 shows the required calculation time for the considered control
methods. In case of MPC, the calculation effort is shown as a function of the horizon. For CCS-
MPC, Fig. 2.33 shows an explicit approach for the calculation of the unconstrained solution.
Here, the computational effort increases linearly with the horizon, while for a constrained solu-
tion it would increase significantly depending on the operating point, i.e., the active constraints.
For FCS-MPC, the calculation effort increases exponentially over the horizon with SVNp when
using exhaustive search. The exemplarily calculated FCS-MPC with Np = 1 allows a maximum
cyclic interrupt of 14 kHz. Even though the computational effort depends on the solver used,
it can be stated that the computational effort of MPC exceeds classical FOC by far. The ques-
tion thus arises as to how such promising, but also computationally intensive algorithms, can be
computed more efficiently. For this reason, the following Chapter 3, as the first contribution of
this thesis, presents some conceptual considerations for an improved implementation.
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3 Heterogeneous Real-Time Computing Platform for

Control Algorithms

Nowadays, almost all control algorithms in the field of power electronic systems are imple-
mented on digital platforms that run in discrete time steps. In the field of power electronics, two
main challenges can be highlighted. First, the development of new topologies, e.g., multilevel
and multi-phase converters, has increased rapidly in recent years. Their ever-increasing demand
for switching signals and the need to measure more states make it difficult to simultaneously
handle this large amount of I/Os as well as the resulting computational complexity in a sin-
gle processing system [MUC+19]. Second, new and more complex control strategies, such as
DMPC, are used for common topologies, allowing the consideration of new objectives that have
been considered secondary in the past. Depending on the control objective, this can lead to an
increase in efficiency, a more dynamic step response or the control of additional criteria with the
same time constant without cascading control loops [LKG+17]. This is usually accompanied by
a higher computational effort, since complex calculations have to be performed in time intervals
of a few microseconds, see Fig. 2.33. Therefore, in research and development, both academic
and industrial, a powerful and flexible control platform is essential.

For this purpose, several commercial and self-made solutions have been developed in the past.
A detailed evaluation of existing commercial and academic control platforms is provided in
[WGL+19]. In general, a distinction can be made between software-based controllers running
on a processor, e.g., DSP or ARM, and hardware-based controllers implemented on an FPGA.
A processor is usually cheaper to purchase, enables efficient floating-point calculations, is easy
to program with short compilation times, but is also usually relatively limited in computing
power for hard real-time control due to the serial execution of calculations. Thus, in software-
based implementation, even quite simple control algorithms, such as FOC, are limited to control
frequencies of tens of kHz, e.g., 30 kHz in Fig. 2.33 or 40 kHz with a DSP running at 200 MHz
in [Sto14, p. 42]. Higher frequencies, e.g., 100 kHz, require code optimization or even more
powerful processors. An FPGA enables enormous computing operations by simultaneous se-
rial as well as parallel execution, but in the past it was usually also more expensive and more
complex to program and debug. Despite more complex control algorithms, i.e., DMPC, FPGAs
allow an execution frequency of up to several hundred kHz [WDK17b], [Sto14, p. 27].
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However, all previous solutions focus either on an implementation, i.e., closing the MPC con-
trol loop, in the processor [Sto14, KJP11] or on the FPGA [LB13, LB14, SGG17, DMGK20].
In case of connected systems, i.e., processor and FPGA are used simultaneously, latency, jitter
and complexity are usually a major problem when interacting [WGL+19].

For overcoming these issues, thanks to Moore’s Law, new and powerful calculation platforms
such as system-on-a-chip FPGAs (SoC FPGAs) can be used, which have recently become avail-
able on the market and are becoming increasingly affordable as well as popular. The combina-
tion of processor and FPGA with shared resources in one chip enables heterogeneous com-
puting. This facilitates the multidimensional execution of the algorithms, e.g., parallel predic-
tion and serial solution of the optimization problem. Therefore, within the scope of this thesis,
a real-time control platform based on an SoC FPGA with high performance capabilities was
build from scratch. More concretely, two platforms were developed. The first system, based on
a Zynq-7000 (XA7Z020), was first published in [WDK17b, WDK17a] and is briefly explained
in the following. A second system, based on a Zynq Ultra-Scale+ MPSoC (XCZU9EG), is a
significant advancement and was first published in [WGL+19]. The latter is shown in Fig. A.2
of Appendix A.3, while further information can be found in [WGL+19]. Both systems are used
in the following. Within the context of the research work, however, it was a requirement to find
an affordable, industry-oriented solution, so that, unless explicitly stated otherwise, all experi-
mental measurements are performed on the first system. In the case that the performance was
not sufficient, i.e., for longer horizons, system two is used, which serves as a feasibility study
and is clearly marked in the respective measurement, see, e.g., Fig. 7.7(d) and Fig. 7.11(d).

Dedicated heterogeneous algorithms are developed hereafter to obtain a resource efficient cal-
culation of the control problems, which are implemented using rapid control prototyping (RCP),
see Section 3.2. The test bench and the used sensors are explained in Section 3.3.

3.1 Heterogeneous Computing on SoC FPGAs

The main advantage of heterogeneous computing in the context of control of power electronic
systems is the implementation of the time-uncritical—but yet complex—parts of an algorithm
on a processor, whereas the time-critical parts that can be parallelized are implemented on an
FPGA, see, e.g., [WDK17b, DMGK20], by using high clock frequencies with low jitter and
low latency. Splitting an algorithm into routines and procedures based on their best execution is
therefore recommended and also implemented in this work, see Fig. 3.1. More precisely, besides
other tasks, the parameter identification shown in the following Chapter 4 as well as the speed
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Figure 3.1: Schematic representation of the heterogeneous calculation platform with interaction
between BareMetal, FPGA and further hardware when using a Zynq-7000.

control in Chapter 9 are performed on a processor. In contrast, the current control loop discussed
in Section 2.6 and Chapters 6-8, an analog-to-digital converter (ADC) oversampling, the setting
of interlock times and other minor tasks are implemented on the FPGA, as explained in the
following. However, the current controller discussed in Chapter 7 is heterogeneous, i.e., the
processor and FPGA share the computational load. The corresponding timing diagram is shown
in Fig. 3.2, with the individual computational tasks discussed in more detail in the following
chapters.

The main changemaker when using the proposed SoC FPGA is the AXI4 interconnect [Inc],
which enables the interaction of the different computational units and thus a deterministic con-
trol with low latency and low jitter. Here, the proposed platform allows multiple channels for
data exchange. The challenge is to decide which channel is best for the particular purpose.
Consequently, it is decided to use the resource efficient AXI4-Lite for non-deterministic data
exchange, e.g., reference values, the AXI4-Full interface for deterministic and fast (low la-
tency) data exchange, e.g., the speed, and the AXI4-Stream for fast data copies to the memory.
Although the respective transmission times depend on the amount of overall data traffic and
the specific measurement case, a rough estimate can be made. On average, an AXI4-Lite read
operation, i.e., the processor reads from an FPGA register, requires about 220 ns and for a write
operation about 250 ns, both for 32 bits. An estimate for AXI4-Full yields 150 ns for the read
and 170 ns for the write operation. For AXI4-Stream it is 50 ns for writing to the memory, i.e.,
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Figure 3.2: Timing sequence of the proposed heterogeneous calculation, using the example of
the MPC algorithm in Chapter 9, where a factor of 10 is chosen between fcc and fcf.

on-chip memory (OCM), where the write transaction has 40 ns overhead and requires 10 ns for
each 32 bit value. 67 ns are measured for the processor to read 32 bits from the OCM. Hence,
AXI4-Stream becomes beneficial once large amounts of data are to be written to or read from
a contiguous memory area. A more detailed AXI4 timing evaluation is proposed for the second
control platform in [WGL+19]. Further information about AXI4 can be found, e.g., in [Inc].

3.1.1 Software-based Controller

As shown in Fig. 3.1, when using a Zynq-7000, there are two ARM A9 processors with differ-
ent tasks. One of the processors runs a FreeRTOS operating system for communication tasks,
including receiving reference values from the user and transmitting actual values to a remote
GUI for visualization. The other core runs BareMetal with a main routine interrupted by a cyclic
interrupt service routine (ISR), where a frequency of fcc = 10 kHz is chosen for the considered
drive systems. The BareMetal main routine e.g. parameterizes the MPC algorithm implemented
on the FPGA by writing the references and parameters, i.e., λu, Rph, Ldq or flux linkage maps.
The BareMetal ISR reads all measurements from the FPGA and mainly performs the men-
tioned parameter identification and speed control. Both require a certain amount of processing
capacity, but are not that time-critical so that operation at several kHz is absolutely sufficient.
Consequently, rather complex out-of-the-box optimizers can be implemented quite easily man-
ually or by using any RCP tool for C code generation, see Section 3.2.

Explained in more detail using the example of parameter identification, an online adaptation of
the MPC parameters runs in parallel to the actual control task. Part of this is the adaptation of
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flux linkage maps. Thus, the ISR detects steady-state operation of the drive and calculates the
flux linkage changes as described in Section 4.3.4.1. In addition, flux linkage maps are subse-
quently adjusted in the main routine in a time-uncritical manner, where more sophisticated but
also more accurate interpolation and extrapolation methods can be used, see Section 4.3.4.2.

3.1.2 Hardware-based Controller

The current control algorithm, e.g., MPC, is implemented primarily on the FPGA with a sam-
pling and current control frequency of fcf = 100 kHz. This as well as even higher sampling and
control frequencies, which are possible even with long prediction horizons, are realized by high
clock frequencies in the FPGA, e.g., 100 MHz, and the possibility to parallelize the algorithm
while some parts are still executed serially. Thus, thanks to the use of an FPGA as hardware
accelerator, the computational burden of FCS-MPC discussed in Section 2.6.4 is enormously
reduced, leading to the computation times shown in Section 9.4.2. To fully utilize the resources
of the control platform as well as to implement the controller in a computationally efficient
manner, the following principles are applied.

First, a fixed-point arithmetic is chosen for the FPGA. While this requires careful selection of
value ranges, it has reduced the resource utilization by up to a factor of three—[RSF+22] shows
factor two—compared to a floating-point implementation. However, the fixed-point value range
is not a problem since it is chosen based on a normalized, i.e., pu, scaling.
Second, slow time-varying, i.e., time-uncritical, but yet complex calculations are outsourced to
the ISR—which runs on the processor—to save resources. More specifically, divisions are not
really efficient in real time and are a computationally intensive task, especially for the FPGA.
For example, the denominator in (7.4) of Chapter 7 indicates the need to perform a division.
However, since the denominator depends only on the speed, it can be assumed to be constant
within several control intervals Tcf. Hence, to avoid the division, the reciprocal value of the de-
nominator is calculated on the processor—see Fig. 3.2—and fed into the FPGA at the beginning
of the prediction and optimization procedure.
Third, for divisions that cannot be outsourced to the processor and therefore must be performed
on the FPGA, a carefully chosen bit size and fixed-point value range is used to keep the required
processing resources modest. This applies, e.g., to the division in (6.4) of Chapter 6.
Fourth, efficient resource streaming and sharing is implemented on the FPGA. Therefore, sub-
sequent prediction steps use the resources of the previous steps. This is illustrated in Fig. 3.3,
which shows all core components of the current control loop distributed between the processor
and the FPGA. The different control approaches are color-coded, where specific functionalities
encapsulated by the use of soft intellectual property (IP) cores.
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Some of these IP cores can be reused due to the natural calculation process. More precisely,
within the first prediction step all discrete switching possibilities are calculated in parallel, see,
e.g., line five of Algorithm 1. Subsequently, the used multipliers and adders, i.e., DSP slices of
the FPGA, from the first prediction step can be reused in the second and subsequent predictions.
A similar procedure is illustrated in Fig. 3.3 for the calculation of the switching penalization,
i.e., last term of (2.75), which is calculated parallel to the prediction.
Another example for resource streaming—and heterogeneous computing—is the use of flux
linkage maps. For reasons explained in more detail in Section 7.2, flux linkage maps for predic-
tion are entirely implemented on the FPGA, while they are updated by the processor at arbitrary
update rates using the previously identified flux linkage maps stored in the RAM, see Sec-
tion 4.3.4. Thus, each map exists in two copies, while the one in the RAM has a more precise
granularity. Since the use of such maps in the FPGA is more resource intensive compared to a
simple multiplication that an inductance-based prediction would require, resource streaming is
used. Thus both mapping tasks, i.e., fψ and f−1

ψ , are implemented only once, but can be reused
in each prediction step, see Fig. 3.3.
In addition, due to the possibility of bit shift operations, it is recommended to use a granularity
with the power of two for the map grid points of the x- and y-axis, e.g., 0.5, 1, 2. As will be
shown in Section 7.3, this enables extremely resource-efficient use of interpolation in the FPGA.
However, even though linear interpolation is used for the maps in the FPGA, only 40 ns—using
a 25 MHz clock—are required for each conversion. Therefore, the additional clock cycles, i.e.,
time, are manageable despite streaming.
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3.2 Generation and Optimization of C and HDL Code

While the basic software framework for the processors and the FPGA is written manually, the
control algorithms are automatically generated as C or HDL code from the MATLAB/Simulink
simulation environment using RCP, i.e., the MathWorks Embedded Coder and HDL Coder1.
For the latter, only VHDL2 generation is considered, as described in [WDK17b, WKDK19].
While the Embedded Coder is quite straightforward, the HDL Coder offers a number of op-
timization options for a resource and timing efficient FPGA implementation. Some of these
options have proven to be very useful. If RCP is not selected, the same optimizations or even
more can be chosen directly in Vivado, the development environment for the Xilinx SoC FP-
GAs. Here, the terminology resources comprises the basic hardware components of an FPGA,
i.e., flip-flops (FFs), look-up tables (LUTs), digital signal processing (DSP) slices and block
RAMs (BRAMs). The available and finally utilized resources are discussed in Section 9.4.2.

Regarding optimization, first, pipelining allows to split long calculation paths. In order to max-
imize the computing capacity of the FPGA, it is attempted to operate nearly all IP cores and
AXI4 interfaces with the maximum clock. In the context of this work, the clock is limited to
100 MHz, although theoretically up to 250 MHz (first system) or 1600 MHz (second system)
would be possible. Assuming a calculation path with multiple additions and multiplications,
this is not feasible in 10 ns since the signal and logic propagation delay for multiple operations
add up. Thus, it is useful to insert a register that splits the calculation path into several parts,
each running at the maximum clock, i.e., 100 MHz. It is therefore recommended to set at least
one input or output pipeline in Simulink for each IP core prior to HDL generation, although
additional pipeline stages can be set within the IP core as desired. However, each stage implies
an additional clock cycle.
Second, sharing and streaming DSP slices is recommended. While sharing reuses DSP slices
regardless of functionality, streaming is mainly useful for uniform and repetitive structures such
as for-loops. The latter is useful for MPC, as described in Section 3.1.2, since for each pre-
diction step the entire implemented model equation can be reused, i.e., streamed. This saves
valuable DSP slices.
Third, some multiplications with constant values, e.g., 2π, can be implemented in a more resource-
saving way in the FPGA by means of bit shift operations. In the terminology of the HDL Coder
this is called Constant multiplier optimization [Mat]. This saves valuable DSP slices.
Fourth, larger data structures, e.g., the flux linkage maps, can be stored to BRAMs, which saves
FFs and LUTs.

1Although Xilinx’s HLS is another promising HDL RCP tool, it will not be considered more closely.
2FPGAs are mostly described by using VHDL (very high speed integrated circuit hardware description lan-

guage) or Verilog. VHDL is more widely used in Europe and is therefore applied in the following.
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3.3 Test Bench

The corresponding experimental setup for Section 2.2, i.e., the Zynq SoC FPGA in combination
with the two-level VSI and the PMSM with TMS, is illustrated in Fig. 3.4. This setup is used for
experimental evaluation, where the first system, i.e., the Zynq-7000, is demonstrated. The alter-
natively used second system is shown in Appendix A.3. The evaluated PMSMs are presented
in Appendix A.3.1 and the TMS in Appendix A.3.2. Since small electrical drives are discussed
in this work, nominal voltages of ≤ 60 V are present. Therefore, metal-oxide-semiconductor
field-effect transistors (MOSFETs) are used for the VSI.
In addition, the thesis addresses—in the context of MPC—how to achieve the most accurate
and dynamic data acquisition and emphasizes the importance of correctness.

Current and voltage measurement The current measurement is performed in the path
of the current-carrying phase as shown in Figs. 2.4-2.5. For the selection of the measurement
a detailed evaluation of current sensors and ADCs in terms of accuracy, bandwidth and signal-
to-noise ratio was carried out in advance, see [Bri17]. As a result, a shunt measurement with
low-noise current sense amplifier is used.3 Even if there is no galvanic isolation, a shunt current
measurement is typical for small drives for reasons of space and costs. The current measurement
uses a first-order low-pass filter with a cut-off frequency of fg,i = 400 kHz.
Due to the lack of galvanic isolation, a voltage measurement can be realized at low cost. The
voltage measurement uses a first-order low-pass filter with a cut-off frequency of fg,v = 211 Hz.
The voltage filter, i.e., phase shift and damping, is compensated for in the processor.

1 2 3 4 5
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Figure 3.4: Test bench - (1) motor speed encoder, (2) test motor (PMSM), (3) torque measuring
shaft, (4) load speed encoder, (5) load machine, (6) HMI for the load machine, (7)
SoC FPGA platform, combined with the VSI.

3The fluxgate current sensors also shown in Fig. 3.4 are not used since they exhibit inherent oscillations at
high sampling frequencies.
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All phase currents and voltages as well as the dc-link voltage are sampled in parallel, i.e., no
ADC multiplexer is used, which allows quite high sampling rates. These are triggered directly
by the FPGA and read out with low latency and low jitter, while the circuit design also achieves
very high signal integrity. For both platforms, 16-bit ADCs are used, each operating according
to the successive approximation register (SAR) principle. The used components are listed in
Table A.2 of Appendix A.3.
The experimental determined repeat accuracy of the overall current measurement is approxi-
mately ± 0.04 %, i.e., ± 3σ= ± 11 mA for a current measurement range of [−28, 28] A. An
external sensor was also used to confirm the accuracy, i.e., proximity to the true value.
Moreover, a linear approximation of the over-sampled current, as described in [Lan14, p. 55 ff.],
is implemented, allowing an oversampling by a factor of eight at fcf = 100 kHz. In doing so,
first, the gradient of the current can be determined [Lan14, p. 73], which could be used for a
comparison with the predicted gradient, see Chapter 6. Second, a more accurate current value
for the center and the end of the sampling interval can be achieved based on all sampled mea-
surements. This can provide more robust behavior against signal noise, see [Lan14, p. 74 ff.].
However, the experimental comparison showed no noticeable improvement for the shunt mea-
surement and inverter under consideration by using oversampling that would justify the addi-
tional resources in the FPGA required for the implementation. This comes from the already
exceedingly good current measurement quality and the low dc-link voltage. For other appli-
cations, e.g., medium-voltage drives in combination with fast-switching semiconductors based
on silicon carbide (SiC) or gallium nitride (GaN), there may be an advantage as higher dc-link
voltages with higher dv/dt may negatively affect the current signal. Such a benefit by using
oversampling is demonstrated, e.g., in [DLS+18].

Position and speed measurement Since a rotating coordinate system was chosen for the
control, the measurement of the rotor position is very demanding and crucial. In particular, the
position, current and voltage values must be synchronous, i.e., their respective delay times must
be compensated for so that they subsequently have the same time stamp. The latter is manda-
tory to work in the dq-system. An incremental quadrature encoder is used, which is read via an
RS422 interface and evaluated by a corresponding IP core directly in the FPGA. Here the time
between two lines is measured (beneficial at low speed) as well as the number of lines within
a certain time window is counted (beneficial at high peed) with a smoothed transition between
both methods. This yields ωm, ϕm and ϕ. In Chapter 9 two incremental encoders are evaluated
synchronously and with an identical IP core in parallel, thus achieving an equal time stamp.
For the correct adjustment of the rotor position sensor, i.e., the alignment of the sensor to the
α-axis of the motor, a simple energization of the a-axis is not sufficient, since for the consid-
ered setup an angular inaccuracy of ∆ϕ∆ ≤ ± π/90 rad can arise on average due to cogging
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torque and friction. To achieve the smallest possible angular error, the procedure described in
[RDD14], [Ric16, p. 45] is applied. Here, the test machine is accelerated to different speeds by
the load machine and the voltages vd and vq are measured in steady state when the test ma-
chine has nearly zero current, i.e., i∗d≈ i∗q ≈ 0. The same amount must result for the voltage
components in both directions of rotation, while the sign also being identical in the d-axis, i.e.,
vq(nm)≈ -vq(-nm) and vd(nm)≈ vd(-nm). As can be seen in Fig. 2.12, vd can also be nonzero
due to the parallel iron loss resistance. The amount of vq increases with speed. The offset of
the electrical angle, i.e., ∆ϕ, is varied until the above conditions are satisfied. This results in an
experimentally determined precision and accuracy of ∆ϕ∆ ≤ ±π/3200 rad for the components
considered on the test bench shown.

Respecting interlock times With respect to the VSI, it should be noted that in order to
switch between the upper and lower semiconductor of a phase leg, a certain interlock time is
typically provided to avoid a short circuit of the dc-link. An interlock time of 200 ns is chosen
for the VSI used. This interlock time must be considered since it has a significant influence—at
least for high calculation frequencies—on the accuracy of the predictions. The proposed FCS-
MPC directly accounts for this due to its holistic approach by using a modified vdq—analog
to [ITF+12]—in the prediction equation, see, e.g., (2.73), as soon as a switch position other
than the last applied one is considered. For example, assuming that the control frequency is
fcf = 100 kHz, the last applied switch position can remain for 200 ns (i.e., the time that corre-
sponds to the interlock time), in the subsequent control interval, while the new discrete voltage
space vector is applied for the remaining time, i.e., 9.8 µs. However, due to the body diode of
the MOSFET (or freewheeling diode in case of an IGBT), the kind of modification depends
on the current direction, see [ITF+12]. Thus, there is also the case that a new discrete voltage
space vector is applied for the entire control interval, i.e., Tcf = 10 µs, despite the switch posi-
tion change. Such a compensation method is quite straightforward in the case of FPGA-based
FCS-MPC due to the cyclic vdq update in the prediction equation. In this way, a possibly re-
duced voltage time area can be recognized during the optimization and thus a possible change
of switching states, e.g., during transients, can be avoided.
This is in contrast to indirect control methods, i.e., when using a modulator. Here, the missing
voltage time area must be compensated for by a displacement of the switching times subsequent
to the calculation of the control signals. Consequently, the control stage and compensation are
separated from each other without knowledge, which means that valuable voltage time area
cannot be optimally utilized in transients.
Other nonlinearities such as diode effects are not considered, since no influence—within the
scope of measurement accuracy—on the control and identification behavior was observed for
the inverter under consideration.
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4 Offline and Online Parameter Identification

This chapter describes both a procedure and the identification methods necessary for this pur-
pose, which allow a reasonable determination of the parameters of the controlled system con-
sidered in this thesis. As demonstrated in Section 2.6.3, parameter accuracy has a significant
influence on the control behavior of MPC. Therefore, it is necessary to design appropriate and
robust identification methods.1 The entire identification (ID) procedure is implemented on an
ARM processor, which is part of the experimental hardware described in Chapter 3.

Overview of the identification methods In the field of parameter and system identifica-
tion, a fundamental distinction is made between offline and online ID. Offline ID is mostly used
for automated controller commissioning [Ric16, Vil07, Zou17, Bei00, Sch02, Gem15]. Here,
an identification sequence is applied before operation, which identifies the parameters required
for control. Online ID is a method for improving the control behavior during operation. For this
purpose, previously made parameter identifications or data sheet parameters are optimized it-
eratively to determine operating point-dependent parameters or their changes during operation.
Parameter changes can occur due to short-term effects such as temperature drifts or saturation
as well as long-term effects such as wear and tear.

Furthermore, a distinction is made between excitation-free ID methods and those methods that
rely on system excitation. The latter are particularly suitable for offline ID, since the controller
does not have to follow any reference value during the offline process and thus almost any oper-
ating point can be approached. Nevertheless, the use of additional excitation signals to support
online ID is also widespread. Here, as described for example in [Kel12], the additionally in-
jected signals are used for excitation by manipulating the reference values. However, particular
care must be taken to keep the influence of the applied injection signals as low as possible so
that the original function of the system is not unnecessarily impaired. Therefore, in most cases
the aim is to use the natural exitation during operation. This can be done, e.g., as described in
[DSL+19], by using the inverter switching or, as described in [BIFfMS14], by detecting param-
eter changes in transients when the system is sufficiently excited.

1The developed identification process was first simulated in MATLAB/Simulink and second used for RCP in
order to generate C code. The evaluation in Simulink is supported by the Simscape and the Stateflow toolbox.
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Depending on the evaluation of the measured data, a distinction is also made between steady-
state and dynamic parameter identification methods [Bei00, p. 18]. A steady-state parameter
identification assumes that during the estimation process, i.e., during a short period of time,
the parameter to be identified, other parameters that may influence the estimation, and the sys-
tem states, i.e., x(t), do not change or change only insignificantly. For example, assuming that
the thermal time constant is orders of magnitude larger than the duration of the measurement,
temperature-dependent parameters such as resistance, permanent magnet flux linkage or fric-
tion can be identified at steady state, see, e.g., [B1̈4, HWD17]. More complex identification
methods that measure a waveform or system response over a longer period of time during
operation are also part of steady-state methods. An example of the latter is the signal injec-
tion method used in Section 4.3.1 similar to that of [Kel12, Hoe18]. In this method, a square
wave signal is modulated onto the d-axis current and the change in voltage required for this is
used to infer the prevailing machine parameters. Similarly, the identification procedures from
[Vil07, Zou17, Bei00, Sch02], which rely on spectral analysis, are among the steady-state meth-
ods. They are the basis for the offline ID procedures described in Section 4.2.2. The advantage
of steady-state methods is that they are generally easier to implement than dynamic methods
since they are based on simplified system equations.
Moreover, they can be separated into a data acquisition and data processing part. This facilitates
the implementation and processing of the algorithms in real time. The data acquisition, which
is generally not computationally intensive, may run in real time on even less powerful control
platforms and the computationally intensive data processing can be performed externally or
in a time-uncritical task. Thus, for the latter, i.e., time-uncritical part, computationally inten-
sive least square procedures and recursive least square procedures over large amounts of data
[Vil07, Zou17, Bei00, Sch02] can be used for parameter ID or parameter correction [BAC+19].
A disadvantage of the steady-state parameter estimation can be the limited validity of the mostly
simplified models. Thus, influences that have not been taken into account, e.g., iron losses, or
changes in the boundary conditions can lead to measurement inaccuracies and thus parameter
drifts. Hence, such uncertain operating ranges must be avoided.
A dynamic parameter identification takes into account and even requires a parameter or state
change during the ID process, where several system states at different points in time are linked
by an iterative procedure. As a result, dynamic methods can track parameter changes during
runtime and immediately readjust the parameters in the event of transients or disturbances.
There are a variety of methods for dynamic parameter ID especially by using observer struc-
tures [Bei00, BIFfMS14, BLNMMT11, KBY18, Spe14]. The observer most commonly re-
ported in literature is the Kalman filter, which is suitable in its general form for linear models
and in its extended form for nonlinear models, both of which are used in time-domain prob-
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Figure 4.1: Overview and classification of commonly used methods for parameter identifica-
tion.

lems. Since transfer functions are frequently used in control engineering, there are similar ap-
proaches in the frequency domain where a Luenberger observer is used, see, e.g., [Bei00, p.
31]. Besides these established procedures, further recursive identification procedures, such as
recursive least squares (RLS) with forgetting factor, extensions of Kalman and Lueneberger ob-
server by means of basic function networks or recursive neural networks, are described, e.g., in
[Bei00, BNMMT08, Now16]. The disadvantage of these methods is the high computational ef-
fort, which, depending on the parameter under investigation, must also be performed in real time
due to the iterative structure of the algorithms. Here, the accuracy of the discretization method
also affects the result. In addition, inaccuracies of the model and noise parameters of the pro-
cessed measurement signals must be estimated, which is physically possible only with high
effort [Bei00]. Moreover, the dependence between several dynamically estimated parameters
can cause parameter drifts, which, as described in [LZC+11], are due to the ranking problem of
an under-determined system of equations. Another problem in dynamic parameter estimation,
discussed, e.g., in [BIFfMS14] and [Bei00, p. 21], is ensuring sufficient system excitation so
that a reliable parameter value can be estimated. Consequently, parameter changes by the ob-
server can only be allowed when sufficient excitation is provided.
Finally, a distinction can be made between linear and nonlinear methods, see, e.g., [Bei00,
p. 19], although this distinction is not done here.

For a better overview, Fig. 4.1 summarizes the different possibilities depending on the discussed
criteria. The superscript „e“ stands for electrical and „m“ for mechanical parameter ID.
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Selection of the used identification methods In order to select the identification meth-
ods to be used, an overview of the parameters of interest and the factors that affect them is
required. Table 4.1 summarizes these parameters. In this context, it must be analyzed whether
a parameter change is to be expected within the application dealt with in this thesis and thus an
online identification is required or whether an offline identification is sufficient.

Table 4.1: Assessment of parameter relevance for the identification process.

Parameter Influencing factors that cause a
change during operation

Change in application
probable?

Offline ID
chosen?

Online ID
chosen?

Linear machine model
Rph temperature, contacting yes yes yes
Ld, Lq saturation (leaving the validity range

of the linear machine model)
motor type specific yes no

ψpm temperature yes yes yes

Nonlinear machine model
ψd stator current, temperature yes no yes
ψq stator current yes no yes
Ldd, Lqq saturation motor type specific no yes
Ldq, Lqd cross-coupling motor type specific no yes
Λd, Λq rotor position yes no no
RFe stator current, speed yes no no

Mechanical system parameters
Jm none no yes no
J` gear ratio, load application specific yes no
cTMS loaded component length, aging application specific yes no
dTMS temperature, aging application specific yes no
Tcoul, dfric load condition, speed, temperature,

attrition
yes yes no

ϕ∆ none no yes no

The parameters Rph and ψpm must be identified online in any case, since they change with tem-
perature and have a noticeable influence on the control performance, i.e., steady-state accuracy,
of MPC, see Section 2.6.3. The absolute inductances Ld and Lq do not change their value over
time as long as the validity range of the linear machine model is not left. Therefore, an offline
ID is sufficient.
However, as explained in Section 2.2.1.2, the linear model of the magnetic circuit is not suf-
ficient for most operating points. As shown in Section 2.6.3, the inductances have the most
significant influence on the control performance, i.e., both in transients but especially in steady
state. Hence, the flux linkage ψd and ψq or alternatively the differential inductances Ldd, Lqq,
Ldq and Lqd are necessary. As the motor would have to be operated in the entire operating
range to determine these parameters offline, this would be very time-consuming and often also
impracticable. Thus, for reasons of usability, it is decided to perform the identification (adap-
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tion) of the nonlinear magnetic behavior—based on the previously offline determined absolute
inductances—online during operation as soon as an operating point is naturally reached. From
the perspective of the model, this can be seen as a learning process. Since both nonlinear repre-
sentations require current-dependent maps to be stored, it was decided to use the two ψd and ψq
maps instead of the four differential inductance maps, as explained in more detail in Chapter 7.
Moreover, rotor position dependencies are neglected for reasons explained in Section 4.3.4.
Thus, an identification method can be chosen that averages the measured values over several
rotor positions and rotor revolutions, thereby making the identified parameters more robust.

The iron loss effects are not modeled, as mentioned in Section 2.2.1.2. Two main reasons for
not modeling the iron loss are given there. First, if RFe is used, as shown in the equivalent
circuit diagram in Fig. 2.12, only steady-state operating points can be described mathematically,
making RFe invalid for dynamic situations (and dynamic control approaches). In addition, since
RFe depends on the d- and q-axis currents and the motor speed, a four-dimensional map would
be necessary to adequately describe the effect. Consequently, this can be quite computationally
intensive for real-time control. Second, the influence of iron losses on the investigated small
PMSMs is relatively low, see Section 4.4.2. Therefore, an alternative approach to account for
iron losses in the control loop is presented in Chapter 8.

Since a significant change of the mechanical parameters to be considered, i.e., Jm, J`, cTMS, dTMS

and ϕ∆, is unlikely during operation in the context of the present application, the mentioned
parameters are determined only offline. Merely for the friction, an online ID would be theoret-
ically useful, since it changes with temperature, see Section 2.2.2.1. To determine whether this
effect has a significant influence for small electric drives, it was determined using the example
of motor M5, see Table A.3 of Appendix A.3. For this purpose, the idle friction characteristic
was measured at ambient and at operating temperature using the offline ID described in Sec-
tion 4.2.1. The temperature was measured at the bearing housing with thermocouples. As shown
in Fig. 4.2, the temperature influence on friction is very small for the considered machines, i.e.,
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Figure 4.2: Temperature influence on the frictional torque, illustrated using the example of mo-
tor M5. Here, 8.7 % difference in the slope leads to 5.0 mNm deviation at nN.
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1.0 % of TN for the worst operating point of motor M5. This confirms the assumption that the
temperature influence on the friction can be neglected for the present application and thus the
frictional torque only has to be determined offline.2 Nevertheless, the offline ID can be exe-
cuted repeatedly, i.e., whenever a temperature change is likely after a longer period of time. In
addition, the speed controller, as described in Chapter 9, can compensate for possible friction
deviations, since these occur quite slowly, both of which have been verified experimentally.

In summary, Fig. 4.3 shows the chosen parameter ID concept and the dependencies. Four possi-
bilities must be distinguished. First (red), adopts a rigid system without elasticity. Second (dark
blue), adopts an elastic, i.e., non-rigid, two-mass system. Third (bright blue), the electrical pa-
rameters are known, only the mechanical parameters of the drive train are identified. Fourth, the
parameters are manually specified, i.e., are known.
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Figure 4.3: Structure of the parameter identification.

The identification procedures of the parameters to be determined are described in the follow-
ing. The only requirement is that the number of pole pairs of the motor under consideration
must be known at the beginning. The procedures were experimentally verified on up to five
different types of PMSM—with different degrees of saturation, i.e., magnetic nonlinearity, and
reluctance—from up to five different production batches in a power class below a nominal
power of 200 W, see Table A.3 of Appendix A.3.

2It should be noted, however, that this assumption only applies to the frictional torque caused by the motor
itself. For controlled systems with more complex load systems, e.g., with gearboxes, or extreme temperatures, e.g.,
−40 °C, it must be reconsidered [Rud12].
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4.1 Electrical Offline Parameter Identification

A general overview of the electrical offline procedure is given in Fig. 4.4. The flow chart of the
identification procedure shows the relevant identification steps for each parameter. The encoder
and machine axis are aligned as described in Section 3.3. The experimental setup in Section 3.3
is assumed. The concept was first published in [HWD17, Hoe17, Hoe18]. The methodology for
identifying the individual parameters is presented in detail in the following.
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Figure 4.4: Flow chart for the electrical offline parameter identification.

4.1.1 Stator Resistance and Absolute Inductances

The phase resistance Rph and the d-axis inductance Ld are identified while the rotor is at stand-
still. For this purpose, the rotor must first be aligned so that the d-axis lies on the α-axis by
actively energizing the α-axis using the inverter, i.e., uabc = [1 − 1 − 1]T . Assuming an ini-
tially unblocked rotor shaft, va is iteratively increased in each control cycle with a heuristically
chosen step size, i.e., vevastep = 0.0002Vdc, up to IN is reached to overcome the cogging torque.
After alignment, (2.27) can be simplified at standstill to

vd(t) = Rphid(t) + Ld
did(t)

dt
, (4.1)

which describes a linear first-order system often used as the basis for estimating the parameters
with RLS algorithms. However, RLS would require the numerical derivation of the measured
current id, whereby the measurement noise has a negative influence on the parameters to be
estimated. Therefore, a numerical minimization problem that avoids the derivation of measured
signals is preferred instead. Assuming the initial condition to be zero, solving (4.1) leads to

îd(t) =
vd

R̂ph

(
1− e−

R̂pht

L̂d

)
, (4.2)
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where the calculated current îd depends nonlinearly on the parameters to be estimated, i.e.,
determined.3 Consequently, the error between the measured and calculated current, i.e.,

ξ(t) = id(t)− îd(t) , (4.3)

must simply be minimized numerically to determine the parameters, i.e., R̂ph and L̂d. Using the
hardware in Chapter 3, after applying a voltage step in the d-axis, i.e., uabc = [1 − 1 − 1]T ,
the step response of the measured current id(k) is recorded and compared to the step response
of the calculated current îd(k) in each discrete time step, i.e., ξ(k) = id(k) − îd(k). Thus a
vector ξ(k) with a length of κ discrete steps—which covers the entire time range of interest,
i.e., at least the duration of the step response—using an interval of Tcc, results. Doing so, a cost
function with the sum of the squared errors over the entire recorded length is described by

JLM(k) = ||ξ(k)||22 =
k+κ−1∑
`=k

(
id(`)− îd(`)

)2

=
k+κ−1∑
`=k

(
id(`)−

vd

R̂ph

(
1− e−

R̂ph`Tcc

L̂d

))2

.

(4.4)
Through the numerical minimization of (4.4) it is possible to obtain the parameters R̂ph and
L̂d. It is important to note that if the motor has a noticeable saliency, the motor shaft must be
blocked to ensure both alignment in d-axis and standstill. Since it is often not known whether
the windings are delta or star connected, the motor is always considered to be star connected.4

Levenberg-Marquardt algorithm For the minimization of (4.4), the Levenberg-Marquardt
algorithm (LM) is used. In general the LM is a Newton method, which combines the Gauss-
Newton method with the gradient descent method via a weighting factor and is described in
detail, e.g., in [IM11, p. 524] or [SB17, p. 368]. Furthermore, in [Vil07, p. 52] an illustrative
flow chart of the LM is shown. The LM is given as a particularly suitable solution method for
nonlinear minimization problems due to its iterative adjustment of the weighting factor λLM.
Here, the Jacobian matrix J J ∈ Rκ×2 including all discrete time steps needs to be determined.
For the sake of simplicity the Jacobian matrix in the continuous-time domain is specified by

J J,c =
∂ξ

∂Θ̂LM
=

−vd(e−R̂pht

L̂d − 1)

R̂2
ph

− vdte
−R̂pht

L̂d

L̂dR̂ph

vdte
−R̂pht

L̂d

L̂2
d

 , (4.5)

3The measured or the inverter effect compensated applied voltage—for both the arithmetic mean over the
entire measurement interval—is used. Due to the existing voltage measurement, see Section 3.3, both can also be
performed and the difference formed. This difference can be used to approximately identify RDS(on) and Rsh since
the voltage measurement point is after the shunt.

4Although circulating currents may occur in a delta connection of the windings and cause additional losses
and saturation of the iron, these are not considered in the following.
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which is the partial derivative of (4.3) with respect to the parameters R̂ph and L̂d, where

Θ̂LM =

[
R̂ph

L̂d

]
. (4.6)

Afterwards, the LM iterates over several cycles, considering all discrete samples κ in each
iteration. Here, in each LM iteration a new parameter approximation Θ̂LM(k+ 1) based on the
previously estimated parameters Θ̂LM(k) and the correction vector is calculated, using5

Θ̂LM(k + 1) = Θ̂LM(k)− (JTJ J J + λLM(k)I)−1JTJ ξ(k)︸ ︷︷ ︸
correction vector ∆Θ̂LM

(4.7)

in order to minimize the costs JLM. I ∈ N2×2 is the identity matrix. To avoid the complex
calculation of the second derivative in the Hessian matrixHLM, it is approximated according to
[SB17, p. 368] using the Jacobian matrix, i.e.,HLM ≈ JTJ J J.
For approximation, the weighting factor λLM is adjusted iteratively. By adding λLMI to the
Hessian matrix, λLM adjusts how strongly the gradient or the curvature should be taken into
account. For large values of λLM, the search direction is based more on the gradient. For small
values of λLM, however, the curvature is increasingly taken into account. After each iteration
step of (4.7), the cost function (4.4) is evaluated. If JLM becomes smaller, i.e., the optimization
step was a success, λLM is adjusted by

λLM(k + 1) =
λLM(k)

θ
(4.8)

to a smaller value, where θ is the scaling factor. If JLM becomes larger, i.e., the optimization
step has not been successful, λLM is set to a larger value with

λLM(k + 1) = λLM(k)θ . (4.9)

The iteration process is repeated for 100 iterations, which are shown to be sufficient for all
considered motors, since the parameters are usually converged after at most 11 iterations.
For all considerations, θ = 10 and λLM,0 = 0.01 is set initially, as recommended, e.g., in [SB17,
p. 369]. Due to the necessary matrix inversion, the method is only suitable for simple system
models or, as in the present case, for time-uncritical optimizations. The identification process is
exemplified for motor M1, see Table A.3 of Appendix A.4.1.

The q-axis inductance Lq is identified in a similar way as Ld. In the standstill case, (2.27) can
be rewritten to

vq(t) = Rphiq(t) + Lq
diq(t)

dt
, (4.10)

5For the considered drives κ= 512 (at Tcc = 100µs) is chosen for the length of ξ and J J.
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where identical to (4.1), a first order system results. The identification of L̂q is performed by
evaluating a step response in the q-axis, i.e., uabc = [Z 1 − 1]T , by using the proposed
LM algorithm. The latter identifies the stator resistance a second time. Although this is not
necessary, it is still available and evaluated for statistical reasons in Section 4.4.1. Regardless
of saliency, the rotor must be aligned and locked in α-axis position to prevent the rotor from
rotating during the q-axis voltage step.

4.1.2 Permanent Magnet Flux Linkage

Robust FOC for identification Since at this stage of the identification process not all pa-
rameters are yet available for the correct adjustment of FOC (see Section 2.3), robust controller
settings are required to identify ψpm. No dynamic requirements are necessary, but the settings
should work in steady state for every motor. Thus, the desired bandwidth of the current con-
troller, i.e., BWi, is chosen to 270 Hz (≈ 1700 rad/s). Consequently, simple but also robust PI
controllers for d- and q-axis current and speed control are calculated according to [Ins19] by
using

kp,id = L̂dBWi , Ti,id =
L̂d

R̂ph
, kp,iq = L̂qBWi , Ti,iq =

L̂q

R̂ph
(4.11)

and

kp,ω =
kp,id

L̂d143p
2

300
, Ti,ω =

142L̂d
kp,id

. (4.12)

Afterwards the permanent magnet flux linkage, ψpm, is identified while the motor is controlled
to a certain speed by using the robust FOC settings. The number of pole pairs p must be known.
Assuming steady state, i.e., diq

dt ≈ 0, and that the current in the d-axis is controlled to zero, i.e.,
id ≈ 0 A, (2.27) can be simplified to

vq = Rphiq + ψpmωel . (4.13)

Assuming low speed6, thus neglecting iron-loss effects, see Section 2.2.1.2, only the ohmic
losses and the induced voltage remains. Using the previously identified stator resistance R̂ph, an
approximation for the flux constant ψ̂pm can be calculated by

ψ̂pm =
vq − R̂phiq

ωel
. (4.14)

6For the considered small drives a speed range of 200 - 1200 rpm, i.e., nm ∈ [5− 30] % of nN, is assumed.
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4.2 Mechanical Offline Parameter Identification

In addition to the electrical parameters, the mechanical parameters of the controlled system must
be identified if they are required for control, see, e.g., Chapter 9. The mechanical ID process
uses FOC, see Section 2.3, which is parameterized as described in the previous Section 4.1.2.

4.2.1 Frictional Behavior

The identification of the frictional behavior is based on the simplified friction model shown
in Section 2.2.2.1. Particular care is required when estimating the validity of the model given
in (2.31).7 The simplified description requires three parameters, i.e., the breakaway torque, the
coulomb and the viscous friction. However, since for the control approach presented in Chap-
ter 9 only the latter two are of interest, the identification of the breakaway torque can be found
in Appendix A.4.2.1. The results are based on [Geb18].

To identify the coulomb and viscous friction, the torque is recorded at no-load as a function
of the speed. Since (2.31) assumes that the viscous friction dfric is directly proportional to the
velocity, it can be described as a linear regression line through the measured values. Here a
positive offset in the torque axis can be considered as the coulomb friction Tcoul.
Therefore, a heuristically defined initial speed ωm,max is necessary, which should be in a speed
range where iron losses do not dominate, e.g., 10 % of the nominal motor speed. After the speed
controller reaches this speed reference ω∗m, the latter is reduced with a step size of ωm,max/Nvisco,
where Nvisco is the number of speed steps. The reference speed is kept constant at each step for
a certain time interval, which should be greater than 3τm to guarantee steady state for current
and speed. After a steady-state operating point is detected, the current and speed are sampled
over κ= 512 samples8, averaged, and stored in a measurement array. The reduction of the speed
reference stops as soon as the smallest speed value ωm,min that can be detected by the encoder
is reached. Although the recorded measurements are averaged over 512 samples, Nvisco should
be chosen large enough to ensure a high number of operating points to smooth out outliers. As
shown with the experimental results in Appendix A.4.2.3, records with 200 data values, i.e.,
Nvisco = 200, are well suited. A flowchart illustrating the ID process is shown in Fig. 4.5.

7The unconsidered iron loss resistance of the first harmonic adulterates the measured torque-generating current
measurements. Due to the nonlinear increase of the iron losses with the frequency, as well as nonlinear effects of
changing viscosity in the lubrication gap of the friction contact, higher speeds lead to a nonlinearity in the measured
friction torque-speed curve, see Fig. 2.14. Thus, after every ID procedure, the recorded friction curve should be
checked to see if the linear approximation in the recorded velocity range meets the requirements.

8The number of samples is chosen heuristically and depends on the available memory of the control platform.
Above κ= 512 samples, no improvement was noticeable.
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Figure 4.5: Coulomb and viscous friction torque ID flow chart.

By using the recorded measurement data, dfric and Tcoul can be calculated by solving a least
square minimization problem, i.e.,

minimize
dfric,Tcoul ∈R

k+Nvisco−1∑
`=k

(Tm(k)− (dfricωm(k) + Tcoul))
2 . (4.15)

To prevent the error influence of outliers, measured values exceeding a heuristically chosen
threshold of more than 30 % of their direct neighbors are excluded from the following regression
process. The solution of the problem starts by calculating the mean value over all measurements
of both states, i.e., speed and torque9, with

T̄m =
1

Nvisco

k+Nvisco−1∑
`=k

Tm(`) (4.16)

ω̄m =
1

Nvisco

k+Nvisco−1∑
`=k

ωm(`) , (4.17)

resulting in the two center coordinates T̄m and ω̄m respectively. Afterwards the average value of
the sum of torque and speed residuals product is calculated by

SωT =
1

Nvisco

k+Nvisco−1∑
`=k

(ωm(`)− ω̄m)(Tm(`)− T̄m) , (4.18)

9The torque is calculated from the measured iq , see (2.28), where id was controlled to zero.
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where the variance over all speed values, i.e., averaged squared residuals, is calculated by

S2
ω =

1

Nvisco

k+Nvisco−1∑
`=k

(ωm(`)− ω̄m)2 . (4.19)

The minimization problem (4.15) can be solved afterwards, where dfric is calculated by using

dfric = SωT/S
2
ω (4.20)

and Tcoul is calculated by using
Tcoul = T̄m − dfricω̄m (4.21)

based on the intersection of dfric with the y-axis with the help of ω̄m and T̄m.
Experimental measurements and a detailed evaluation of the friction identification procedure
can be found for two different PMSMs in Appendix A.4.2.3. Based on this evaluation, the
standard deviation of the ID procedure can be assessed with smaller than 4 % for the breakaway
torque (see Appendix A.4.2.2), with smaller than 3 % for coulomb friction and with smaller
than 5 % for the viscous friction. The simplification of a linear friction curve thus fits very well
in the investigated speed range to the accuracy required for control purposes.

4.2.2 Two-Mass System

For the identification of the parameters Jm, J`, cTMS and dTMS, the analytical transfer function
Gana from the motor torque Tm to the motor speed ωm of the elastically coupled drive train, as
described in Section 2.2.2.2, is used. The aim of the identification process is to compare the
analytical frequency response of the TMS, i.e., Gana, with a measured frequency response of the
real drive train, i.e., Gexp, over the widest possible range of excitation frequencies.
By means of a numerical optimization, i.e., using the LM algorithm, the requested parameters in
the analytical frequency response Gana are iteratively adapted until the two frequency responses
(the amplitude responses), i.e., Gana and Gexp, match. The proposed method is similar to [Vil07,
Zou17], but has a different solution procedure, i.e., using an undamped analytical solution for
fast convergence, adapted for small drives and was first published in [Geb19].

The designed procedure takes place in several sequential steps and can be summarized as fol-
lows.10 First, the drive train is excited in a frequency range that must be sufficiently high to

10An alternative, computationally more efficient identification possibility for J , applicable only for one-mass
systems and not pursued herein, is presented in [HWD17]. Here, only a single frequency is excited, which allows
to calculate the Fourier coefficients only at this particular excitation frequency and not for the whole spectrum. A
computational efficient way to calculate the parameters of interest is the Goertzel algorithm.
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Figure 4.6: Visualization of the signal flow.

excite the resonance frequency of the drive train by applying a noise signal to the reference
signal of the motor torque. Second, the phase currents and speed are measured, whereby the
currents are used to calculate the torque, based on the linear model (2.28). Third, the spectral
power densities of both signals, i.e., ωm and Tm, are determined. Fourth, the quotient of the spec-
tral power densities is used to generate the amplitude response of the transfer function. Fifth,
based on the assumption of an undamped system, the motor and load side inertias are deter-
mined analytically. Finally, the stiffness and damping of the damped system can be determined
numerically by using the LM. The exact procedure is described in the following and can be
visualized using Fig. 4.6.

4.2.2.1 System Excitation

In order to be able to reconstruct the transfer function from the measured signals in the later
steps, the drive train must be excited in the entire frequency range of interest, i.e., at least up
to the resonance frequency. For this purpose, [Zou17, Vil07, Bei00] use noise signals, which
can be generated with the help of a pseudorandom binary sequence (PRBS)11. These have an

11In the following the MATLAB PNSequence function is used in simulation and for code generation.
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almost uniform spectral power density within a parameterizable frequency range and thus en-
sure broadband excitation, where especially the latter is important for the proposed strategy.
The drive train can be excited in the open loop of the speed controller by feeding the PRBS into
the reference signal of the torque-generating current component, see Fig. 4.6.

The excitation signal is generated on the basis of the last bit of a shift register with nPRBS stages.
As shown in Fig. 4.7(a), using the example of a four-stage register, each stage has a bit that is
randomly assigned to the register during initialization. After a defined time interval, i.e., the hold
time TS, PRBS, each bit is shifted one stage to the left. The resulting free stage, at the right end of
the register, is filled by an exclusive OR (XOR). The choice of which bits are fed back to the
gate is of crucial importance for the period of the PRBS. Only if the whole period time TP,PRBS

is reached, the broadband excitation of all frequencies is guaranteed. Since the shift register
outputs a binary sequence, −0.5 must be added to the output and the modified sequence should
be multiplied by 2 so that PRBS ∈ {−1, 1}. The resulting output signal of the shift register is
shown schematically over time in Fig. 4.7(b). Moreover, a sufficient frequency range must be
ensured during excitation. To do this, the hold time TS, PRBS between the switching operations of
the shift register must be selected depending on the largest frequency of interest fID, max, i.e.,

TS, PRBS <=
1

2fID, max
. (4.22)

Otherwise, the spectral power density of the torque excitation can become so small—at a mul-
tiple of the PRBS clock frequency fS, PRBS = 1/TS, PRBS—that no sufficient excitation at this
frequency takes place. The factor two in (4.22) results from the fact that TS, PRBS represents only
a half-period of the highest frequency oscillation.

For the subsequent identification steps, it is necessary to be able to correctly transform the time
signals into the frequency range. In order to record all excited vibrations with their full-period,
the maximum period of the excitation sequence must be determined. To do this, the maximum
number of switching operations of the register NPRBS must be determined. This depends on the

0100

XOR

+

−0.5

2PRBS

(a) Schematic PRBS generator with shift register.

P
R
B
S

t

1

-1

TS,PRBS

TP,PRBS

(b) Time response of the schematic PRBS.

Figure 4.7: PRBS generation based on a shift register exemplified for nPRBS=4 steps.
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number of shift register levels nPRBS, i.e.,

NPRBS = 2nPRBS − 1 . (4.23)

A detailed parameter study on the choice of nPRBS and TS, PRBS is shown, e.g., in [Vil07, p. 117-
119]. Note that the shift register bits should be increased iteratively from small values, because
the higher their number, the longer the excitation time and the finer the frequency response. It
is particularly important to note that the resolution of the frequency response may reflect the
overshoot at the extremum of the damper and resonant frequency. Since the frequency response
has a high gradient before and after these extrema, a high level of granularity is necessary to
map the correct function value at these frequencies. A resolution that is too low could otherwise
lead to a damping value that may be identified as being too big, because the true extreme values
lie between the measured values. However, since every increase in the number of shift register
stages doubles the recording time and thus enormously increases the computing effort for the
spectral analysis, nPRBS should only be chosen as big as necessary. Finally,

TP,PRBS = TS,PRBSNPRBS (4.24)

shows that the previously determined hold time TS, PRBS can be used to determine the max-
imum period of the excitation sequence, i.e., TP,PRBS. In the following, e.g., nPRBS = 11 and
fID, max = 500 Hz are chosen, which results NPRBS = 2047 and TP,PRBS = 2.047 s.
To ensure sufficient excitation, the amplitude of the excitation signal must be scaled depending
on the drive, i.e., by using the nominal torque or nominal current. This is exemplified in Fig. 4.6
with i∗q , where i∗q = λPRBSINPRBS. Here, the scaling factor λPRBS is increased iteratively—
starting from zero—until the damper and resonance frequency can be identified sufficiently
well, see Section 4.2.2.3.

4.2.2.2 Preparation of Measurements

In order to be able to reconstruct the amplitude response from the recorded measurements of
speed and torque, the spectral power density of both signals must be estimated. As pointed out
in [Vil07, p. 33], the spectral analysis of the results of the stochastic excitation signal can be
affected by the leakage effect, which can lead to deviations in the spectral power densities. This
disruptive effect occurs when the recording duration does not correspond to an integer mul-
tiple of the period of the harmonic vibrations to be analyzed. Villwock therefore suggests to
determine the spectral power densities with Welch’s method [Vil07, p. 37 ff.], which reduces the
influence of the leakage effect by dividing the time signals into individual segments, so-called
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windows.12 Afterwards, the measured values of each signal window are compared and evaluated
using a window function. In [Vil07, p. 36 ff.], three different window functions based on cosine
functions are examined. Even though all results are quite similar, the Hanning window func-
tion is named as the preferred window function and is hence used in the following. The signal
sections evaluated by multiplication with the window function are converted into the frequency
range by Fourier transformation. Afterwards, the modified periodograms of the individual sig-
nal sections, resulting from the Fourier transformation, are added up and divided by the number
of signal sections in order to obtain the spectral power densities from the mean values. For
generating the measured amplitude response, the ratio of the magnitude of the spectral power
densities of motor speed and motor torque is finally formed.

4.2.2.3 Estimation of Parameters

A comparison of the amplitude response determined from the measurements with the amount
of the analytically determined transfer function from Section 2.2.2, allows the determination of
the mechanical parameters of interest. First,

(Jm + J`) =
1

lim
ω→0

(ω|Gexp(jω)|)
(4.25)

shows how the total inertia of the drive train can be determined based on the asymptote de-
scribed in (2.39) with measurements at low excitation frequencies.13 Furthermore, by compar-
ing analytical and measured extreme amplitude response values, the resonance and the damper
frequency of the drive train (DT) can be determined, see Fig. 4.8. The measured signals of the
transfer function, i.e., speed and torque are shown in Fig. A.12 of Appendix A.4.3. In the mea-
sured amplitude response, the resonance frequency ωres can be recognized as a local maximum
and the damper frequency ωdam as a local minimum. If, first of all, an undamped system, i.e.,
dTMS = 0, with the stiffness cTMS,0 is assumed, the extremes mentioned can be regarded as zero
points of the frequency response numerator and denominator. They can, as given by

cTMS,0 − J`ω2
dam = 0 (4.26)

cTMS,0ωres (Jm + J`)− JmJ`ω
3
res = 0 , (4.27)

12The spectral analysis with Welch’s method is offered within MATLAB/Simulink as part of the Spectrum
Estimator. For the example with fID, max = 500 Hz, fS, PRBS = 1kHz is chosen as sample rate in the estimator.

13This is also the simplest solution for J , i.e., assuming a one-mass system. This is the case when the DT cannot
be identified as a TMS since the DT is too stiff and thus the resonance frequency cannot be excited during the ID.
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Figure 4.8: Experimentally identified and analytically adapted transfer function.

be determined, where the denominator of (2.38) and the numerator of (2.38) are equated with
the value zero. Overall, a system based on the three equations (4.25) - (4.27), including three
unknowns Jm, J` and cTMS,0, is given. Hence, a unique analytical solution for the undamped
system, i.e., the two moments of inertia and the stiffness of the undamped system, can be deter-
mined. The latter can be used as an initial value to determine the stiffness and damping of the
damped system.
The parameters of the damped system require a numerical optimization that minimizes the sum
of the squared errors between the amount of the analytically determined transfer function (2.38)
and the measured transfer function. In doing so, the parameters of interest, i.e., ĉTMS and d̂TMS,
are iteratively adjusted until the two amplitude responses match while considering several ter-
mination criteria. For this purpose, a cost function including the discrete samples κ, i.e.,

JLM(k) = ||ξ(k)||22 =
k+κ−1∑
`=k

(|Gexp(jω`)| − |Gana(jω`, Θ̂LM)|)2 , (4.28)

where
Θ̂LM(k) =

[
ĉTMS

d̂TMS

]
(4.29)

is minimized across all examined discrete excitation frequencies.14 Considering the depen-
dency of the sum of squared errors on the relative deviations of the estimated parameters, i.e.,

∆cTMS,rel =
ĉTMS − cTMS,ideal

cTMS,ideal
and ∆dTMS,rel =

d̂TMS − dTMS,ideal

dTMS,ideal
, where cTMS,ideal and dTMS,ideal

are the respective ideal parameters, it is noticeable that their course show a strong nonlinear-
ity, as shown in Fig. 4.9. Near the solution parameters, the sum of squared errors has a high
gradient. However, this gradient becomes very small with high estimation errors and can even

14ωID, min = 2πfID, min and ωID, max = 2πfID, max are the limits of the analyzed frequency range. Since fdam and
fres were typically in the range of 20−500 Hz for the studied DTs, and to avoid outliers at the frequency range
boarders, the analyzed frequencies can be limited for, e.g., 0−512 Hz to fID, min = 5 Hz and fID, max = 500 Hz,
where the discrete step size is 1 Hz, i.e., κ= 495.
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Figure 4.9: Dependency of the sum of squared errors, i.e., JLM, on the relative parameter devi-
ations ∆cTMS,rel and ∆dTMS,rel.

point in the opposite direction of the solution parameters, see, e.g., left-hand side in Fig. 4.9,
where ĉTMS is initially too small. This nonlinearity can be circumvented, at least to some extent,
if the stiffness from the undamped system, i.e., cTMS,0, is used as starting value for ĉTMS and the
minimization thus begins near the solution parameters. In doing so, JLM is minimized using the
LM algorithm, similar as described in Section 4.1.1. Here, the Jacobian matrix is defined by

J J,c =

[
∂ξ

∂ĉTMS

∂ξ

∂d̂TMS

]
. (4.30)

Based on an empirical evaluation according to [Vil07, p. 50], the scaling factor is initialized with
λLM = 0.001. Consequently, the new parameter estimate is given by (4.7), see Section 4.1.1. In
contrast to Section 4.1.1, with respect to [Vil07, p. 52], λLM in (4.8) is decreased by using θ = 2

and λLM in (4.9) is increased by using θ = 10. Furthermore, in the former case Θ̂LM(k+ 1) and
in the latter case Θ̂LM(k) is used for the subsequent iteration step of the LM algorithm.
Note that in each iteration step three termination criteria are checked, which can terminate the
minimization algorithm (4.28). First, the minimization is stopped when a limit for the sum of
squared errors is reached, i.e., 500. Second, it is terminated when reaching a maximum number
of iterations, i.e., 50. Third, it is stopped when falling below a minimum in the correction vector
∆Θ̂LM, i.e., a correction step size of ∆ĉTMS = 10−4 Nm/rad for the stiffness and ∆d̂TMS =

10−7 Nms/rad for the damping. The latter termination criterion depends on the size of the used
data type and is intended to prevent a variable overflow. All three values of the termination
criteria are parameterized with iteratively determined empirical values.
The method has been experimentally verified for several drive trains, see Fig. 4.8, where the
identified parameters for the test bench in Fig. 3.4 are given in Table A.4 of Appendix A.3.
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4.3 Online Parameter Tracking

As described in Section 2.2.1.2, the linear machine model is only applicable in a certain oper-
ating range and is not valid for a nonlinear magnetic circuit. Furthermore, parameter drifts can
occur, e.g., due to temperature changes. Table 4.1 summarizes the significantly affected param-
eters. Therefore, an online ID is applied that adapts the relevant parameters to provide robust
MPC control, see Fig. 4.10. The chosen online ID methods belong to the family of steady-state
methods, see Fig. 4.1. Thus, the parameters can only be updated in steady state. If steady-state
operating points cannot be guaranteed, other methods must be used, see Fig. 4.1. The following
results include outcomes from [Geb20, Huf21].
The online ID is an independent state machine and is divided into two basic parts. First, a
low-computation part, but time-critical and hence requires hard real-time execution. Thus, it
is executed in an ISR as described in Section 3.1. Second, a computationally intensive part,
but which can be computed in a standard routine that is not time-critical, i.e., the main. The
online ID runs in parallel, i.e., in the background, next to the core control task. Thus, it can
be combined with any control algorithm, e.g., MPC or FOC, as long as sufficient steady-state
operating points can be guaranteed at certain time intervals (otherwise the parameters are not
updated). From the control algorithm point of view, the online ID can be seen as an optional
extension to optimize the parameters used during operation.15 As shown in Fig. 4.3, the initial
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Figure 4.10: Schematic representation of the state machine of the online identification process.

15Alternatively, by activating an optional automatic reference value generator, the control approach can be
forced to reach any operating point under constant measuring conditions by using reference sequences.
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parameters of the online ID can be provided manually or determined from the previous offline
ID. The online ID consists of eight functions that interact depending on the state, see Fig. 4.10.
On the one hand, there are six time-critical functions that must be executed in hard real time
and—depending on the state—require 14− 68 µs to be executed.

1. First, all necessary measured values are stored in shift registers.
2. If steady state is detected, a square wave signal i∗d,rec with a specified period duration

and amplitude, see Section 4.3.1, is provided to the control algorithm. The controller
then decides whether the signal should be injected at the current operating point or not.
For a constant torque, a corresponding compensation is performed in the q-axis. During
signal injection, the shift register for steady-state detection remains in its initial position.
Thus, the recorded system states are stored in a separate buffer, i.e., RAM area, during
the positive and negative quadratic half-period. If the steady-state condition is violated by
external transients during injection, the measurements are discarded.

3. Using the buffer, Rph, Ld, Lq and ψpm are identified, as explained in Section 4.3.1. The
determined parameters are filtered by a moving averaging with past values, e.g., in the
following three, so that outliers and erroneous measurements do not have much influence.

4. Using Rph, the flux linkage components ψd and ψq are calculated and stored in an array,
i.e., Ψ, coupled with the prevailing currents and temperature, see Section 4.3.4.1.

5. The winding temperature ϑ is calculated using the last resistance value identified online
and a reference resistance, see Section 4.3.2. Assuming that ϑm is close to ϑ, a temperature
dependency of the flux linkage, i.e., αψ is determined by means of a data field for the flux
linkage difference over temperature, i.e., ∆Ψd, see Section 4.3.3.

6. Before the state machine returns to its initial state, the current shift register is cleared so
that the re-evaluation of the steady state is based exclusively on new measured values.

On the other hand, the time-uncritical part of the online ID includes two functions.

7. A function merges neighboring measured values of the measurement array Ψ, since it
is filled irregularly by the time-critical part. Thereby, all measured values which do not
maintain a specified minimum distance ε for the d, q-current combinations are combined
to avoid unnecessary use of RAM. This results in Ψ̄, see Section 4.3.4.1.

8. Finally, the nominal current IN, the current winding temperature ϑ—which is assumed to
be close to the magnet temperature ϑm—with the resulting flux linkage difference ∆Ψd

and the scattered measurements in Ψ̄ are used to calculate the currently valid—in case
of ψd temperature compensated—flux linkage, see Section 4.3.4.2. The resulting charac-
terization of ψd and ψq is required for the proposed flux linkage-based MPC approach in
Chapter 7.
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4.3.1 Linear Model Parameters

The online identification of the linear model parameters is done by injecting a square wave test
signal i∗d,rec into the d-axis, resulting in a current id, as shown in Fig. 4.11 similar to [Kel12,
p. 153].

i∗d,rec, id

t

(1)

(2)

i∗d,rec
id

Figure 4.11: Schematic representation of the injected test signal.

The amplitude of the square wave signal is chosen to be small (e.g., 10 %) compared to the
nominal current in order to generate only a small reluctance torque in PMSMs with pronounced
magnetic saliency. Even if the magnetic saliency is small, the torque is compensated for by a
corresponding q-axis current component. The frequency of the square wave signal, i.e., frec, is
selected by

4Tel <
1

frec
<< τϑ , (4.31)

where τϑ is the thermal time constant of the motor using a duty cycle of 50 %.16 The frequency is
a compromise between reaching steady state after the current change and avoiding a significant
temperature change of the machine during a measurement interval. By adding the rectangular
amplitude to the reference value of the d-axis current in the first state (1) and then subtracting
it in state (2), the voltage change of the d-axis voltage required for the current change can be
used to determine the phase resistance. This is based on a simplification of the d-axis voltage
component in (2.27), where in steady state did

dt ≈ 0 holds, thus

v
(1)
d = Rphi

(1)
d − ω

(1)
el i

(1)
q Lq and v

(2)
d = Rphi

(2)
d − ω

(2)
el i

(2)
q Lq . (4.32)

By measuring ϕ, ωel and the phase values iabc, vabc, all quantities except Rph and Lq can be
determined by means of the transformations described in Section 2.1.1. To infer the resistance,
(4.32) is solved for each of the two states (1) and (2) according to the inductance of the q-axis,
i.e.,

Lq =
Rphi

(1)
d − v

(1)
d

ω
(1)
el i

(1)
q

and Lq =
Rphi

(2)
d − v

(2)
d

ω
(2)
el i

(2)
q

. (4.33)

16For the considered drives frec = 1.0 Hz is chosen.
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It is assumed that the q-axis inductance remains approximately constant due to the low rectan-
gular amplitude and due to only slightly pronounced cross-coupling effects.17 Thus, by equating
the two q-axis inductances in (4.33) and solving for Rph, the estimated phase resistance R̂ph can
be determined by18

R̂ph =
v

(2)
d ω

(1)
el i

(1)
q − v(1)

d ω
(2)
el i

(2)
q

i
(2)
d ω

(1)
el i

(1)
q − i(1)

d ω
(2)
el i

(2)
q

. (4.34)

The measurement states recorded during square wave signal injection are also used to identify
ψpm and the inductances in d- and q-axis. By substituting the previously determined resistance
R̂ph into (4.32), the q-axis inductance is first determined. To ensure low error influence, the two
resulting L̂q values of the two half square wave periods, i.e., (4.33), are averaged, which results
in

L̂q =
1

2

(
R̂phi

(1)
d − v

(1)
d

ω
(1)
el i

(1)
q

+
R̂phi

(2)
d − v

(2)
d

ω
(2)
el i

(2)
q

)
. (4.35)

If not only the d-axis voltage component but also the q-axis voltage component is recorded
during the injection of the d-axis rectangular current, ψpm and Ld can be determined. Thus,
using (2.27) where in steady state diq

dt ≈ 0 holds, the q-axis voltage of both half-periods can be
described by

v(1)
q = R̂phi

(1)
q + ω

(1)
el i

(1)
d Ld + ω

(1)
el ψpm and v(2)

q = R̂phi
(2)
q + ω

(2)
el i

(2)
d Ld + ω

(2)
el ψpm . (4.36)

Due to the mathematical dependencies, ψpm is identified first. Using the already identified R̂ph

and (4.36), the latter can be solved for ψpm. For this purpose, the same Ld is assumed in both
half-periods, so that (4.36) can be simply rearranged by equating the Ld of both terms, i.e.,

ψ̂pm =
(v
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q )i
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d )ω
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. (4.37)

Finally, from (4.36), state (1) is subtracted from state (2) and solved for Ld using ψ̂pm, i.e.,

L̂d =
(v

(2)
q − v(1)

q )− R̂ph(i
(2)
q − i(1)

q )− ψ̂pm(ω
(2)
el − ω

(1)
el )

ω
(2)
el i

(2)
d − ω

(1)
el i

(1)
d

. (4.38)

17To ensure that the online parameter tracking only takes place if a linear magnetic circuit can be assumed
and thus the absolute inductances are valid, a threshold value below half the nominal current is set. Moreover, a
second limit is implemented that allows the online resistance tracking after a specified time (e.g., three minutes),
even if the linear validity range of the model does not hold. In this case, a small error in resistance identification is
accepted, while Ld, Lq and ψpm are not tracked. Both limits, i.e., current and time, can be adjusted.

18By equating, possible sensor or measurement offsets cancel each other out.
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4.3.2 Winding Temperature

The actual winding temperature is estimated based on the online identified R̂ph, a reference
value Rph,ref and an offline identified relative temperature dependency coefficient αR,19 by us-
ing

ϑ̂(k) =
1

αR

R̂ph(k)−Rph,ref

Rph,ref
+ ϑref = ∆ϑ(k) + ϑref . (4.39)

The reference value Rph,ref can be determined using the offline ID in Section 4.1.1, i.e., Rph,ref =

R̂ph,ref. Where the latter must be measured at a known reference temperature ϑref for the motor
winding, i.e., at ambient temperature before operation or after sufficient rest periods.

4.3.3 Temperature Dependency of the Flux Linkage due to the Permanent
Magnets

To properly account for the effect of temperature on the flux linkage described in Section 2.2.1.2,
i.e., a temperature drift ∆ϑm on ψpm, two steps are necessary.

First, similar to the resistance, a temperature-dependent coefficient for the flux linkage, i.e.,
αψ, is necessary. αψ is determined by comparing the values of ψ̂pm over several measurements
at different temperatures using the online ID—see Section 4.3.1—with an offline identified
reference flux linkage ψ̂pm,ref, see Section 4.1.2.
More precisely, comparable to Rph, the offline identification of ψpm also allows the prevailing
magnet temperature ϑm,ref to be approximated by the ambient temperature, whereby a sufficient
rest period is assumed. If the offline identified ψ̂pm,ref is obtained at the same temperature at
which R̂ph,ref is determined, it can be assumed that ϑm,ref = ϑref. Furthermore, due to the low
mass and compact design of small electric drives, a good thermal conductivity is adopted due
to the low thermal resistance, which—in thermal steady state—allows to use the online tracked
winding temperature for the permanent magnets, i.e., ϑm ≈ ϑ.20 As soon as a temperature
change is detected (see Section 4.3.2), a ψ̂pm(k) measurement with the corresponding ϑ̂(k) is
used for calculating the present deviation with ∆ψpm,temp(k) = ψ̂pm(k)−ψ̂pm,ref and ∆ϑ(k) =

ϑ̂(k)−ϑref. Then the differences are iteratively stored in an array ∆Ψd (see Fig. 4.10) of the
RAM. Once a sufficient number of data pairs, i.e., m, is stored in ∆Ψd, thus averaged over

19Either the temperature dependency coefficient of the winding material, e.g., copper (αR = 0.00393 1/K)
can be used, or, as it is done in this work, αR is determined offline by measuring the resistance at two defined
temperatures.

20The assumption applies to the considered small drives due to their low thermal resistance and was experi-
mentally verified with acceptable accuracy in terms of measurements. If this is not valid for a drive to be used, an
independent estimation of the rotor temperature is necessary, see, e.g., [WHPB14, RFT+16, KWB21].
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several measurements where outliers are rejected, αψ can be determined by the slope of a linear
regression line, using

αψ =

∑k+m−1
`=k (∆ϑ(`)−∆ϑ̄)(∆ψpm,temp(`)−∆ψ̄pm,temp)∑k+m−1

`=k (∆ϑ(`)−∆ϑ̄)2
(4.40)

with ∆ψ̄pm and ∆ϑ̄ being the arithmetic mean. At the same time, the deviation between the
offline ψ̂pm,ref and the online identified ψ̂pm can be determined by the y-axis intercept of the
regression line, since the regression line represents a half-line starting from the origin in case
of an ideal match. With acceptable accuracy in terms of measurements, a linear slope fits the
nonlinear temperature increase sufficiently well, see, e.g., Fig. 2.11 or [Spe14, p. 19].
Second, based on αψ and ϑ̂ (see Section 4.3.2), the offset ∆ψpm is calculated during operation
using

∆ψpm = αψ∆ϑ . (4.41)

Since the slope αψ is used to determine ∆ψpm instead of using a single ∆ψpm,temp measurement,
the method is more robust to outliers and measurement inaccuracies as long as in (4.37) almost
the same Ld can be assumed in both half-periods. This adaptation of the permanent magnet flux
linkage increases the modeling accuracy and is required for Section 4.3.4.1.

4.3.4 Online Identification of Flux Linkage Maps

The online determination of the absolute inductances—see Section 4.3.1—is only useful if the
machine under investigation can be represented by the linear machine model. For nonlinear
machines, instead of Ld and Lq, the flux linkage or differential inductances must be determined.
This determination is based on the voltage (2.20), as described in Section 2.2.1.2. For reasons
which are explained in Chapter 7, the flux linkage is preferred to differential inductances.

The flux linkage can be described in two ways. First, analytically, by identifying a (high-order)
polynomial function. With such an approach self-saturation can be easily described, while bi-
variate polynomials can be used for the modeling of cross-saturation effects [KLK12]. However,
it is not trivial which polynomial order sufficiently describes the nonlinearity; a heuristic choice
is to use a 3rd to 5th-order polynomial [KLK12], which may be computationally intractable in
real time. Because of this as well as for implementation reasons (see Section 3), a second method
is preferred which uses flux linkage maps, also named flux linkage characteristic diagrams. The
identified three-dimensional flux linkage maps represent the value of the flux linkage compo-
nents ψd and ψq as a function of the motor current components id and iq. In this way the maps
provide information about linearity deviations including self- and cross-saturation.
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There are a variety of approaches for online identification of the flux linkage maps, e.g., [KK13],
[UH09]. However, the method proposed in this thesis uses an online flux linkage map ID, which
enables the adaptation of the maps in a time-uncritical task during operation. The advantage of
this method is its ease of implementation; it allows a simple and fast start-up by first using the
linear parameters, i.e., the absolute inductances, while nonlinear effects are taken into account
later in the process. Here, temperature effects are also taken into account, as explained in Sec-
tions 4.3.1 and 4.3.3 for the resistance and the magnets, respectively, although the temperature
caused only a maximum flux change of about 7.3 % at the maximum operating point for the
magnets of the examined PMSMs, see, e.g., Fig. 2.11.21

However, the presented online ID of the flux linkage maps has the following restrictions:

• The approach only works in steady state. Therefore, if no steady state is achieved occa-
sionally, no online adjustment of flux linkage maps can be performed.

• The rotor position dependencies of the flux linkage explained in Section 2.2.1.2, i.e.,
higher-order harmonics, are averaged and thus neglected, see the last term in (2.21). This
is done to avoid a fourth dimension in the generated maps and thus to keep the mem-
ory and computational load low. This is almost always acceptable since manufacturing
imperfections which can lead, e.g., to an unequal air gap—and thus an unequal air-gap
field—are negligible within a small tolerance band [GT18].

• Speed ranges that are too small are not applicable, since the necessary voltage measure-
ment would take place in a measuring range that is too small, i.e., too insufficient.22

• Iron loss effects, which can cause fault voltages and thus affect the flux linkage maps,
are neglected here.23 This is valid for the examined small PMSMs within the limits of
measurement accuracy, since the influence at the maximum operating point causes only a
maximum flux linkage change by a small percentage, see Table 4.4.24

• Since iron losses are not considered in the following, it is also not recommended to per-
form the identification at too high speeds, even if the impact is small.

• For all flux linkage and inductance maps a strict rule is important. The values must be
monotonically nondecreasing. This is also required for the vectors in x- and y-axis, i.e.,
id and iq. However, this is always a given for electric drives.

In summary, a speed range of 200 - 1200 rpm, i.e., nm ∈ [5− 30] % of nN, is recommended for
the online ID in case of the examined motors in order to keep the accuracy of flux linkage maps
as high as possible. A similar value of 1000 rpm is recommended, e.g., in [Ric16, p. 93].

21Similar, although lower, influences were found, e.g., with 6 % in [Ric16, p. 102].
22Monitoring is integrated to ensure that the process is aborted if the speed drops below a user defined minimum.
23In case no online ID is required and both generator and motor operation are possible, the flux linkage maps

can be identified in both operating modes. Since the iron losses have opposite signs in the two operating modes,
they can thus be mathematically truncated out (subtracted), see, e.g., [Kel12, RDD14, SP14, Ric16].

24Similar influences were found, e.g., with 4.2 % in [Ric16, p. 103].
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4.3.4.1 Data Acquisition

The identification algorithm is initially based on the linear machine parameters Rph, Ld, Lq
and ψpm, which describe the machine behavior sufficiently well for operation at low currents.
With these parameters—which can be predetermined either by using the offline ID process (see
Section 4.1) or merely the data sheet values—the initial flux linkage ψdq,init is found by

ψdq,init = Ldqidq +

[
ψpm

0

]
. (4.42)

Subsequently, during operation, the flux linkage maps are adapted step by step to cover the
nonlinear behavior of the magnetic circuit at higher currents. Taking into account the restrictions
mentioned above, the algorithm is able to calculate the present flux linkage after rearrangement
of (2.20), i.e.,

ψdq = P−1
vdq −Rphidq −

dψdq

dt
ωel

, (4.43)

by utilizing the voltage, current, and rotor position measurements and/or estimates. Neglecting
the rotor angular dependency of the flux linkage by averaging the measurements over several
complete rotor revolutions [Ric16, p. 25] and by assuming steady-state operation25, dψdq

dt ≈ 0

results. On this basis, (4.43) can be simplified to

ψdq = P−1vdq −Rphidq
ωel

. (4.44)

Using (4.44), the flux linkage combinations can be calculated and are subsequently stored in
the array Ψ, i.e., the RAM (see Chapter 3), together with the actual current idq, the winding
temperature ϑ and speed ωel.

Data processing Once Ψ has sufficient data points, the flux linkage maps can be reason-
ably adjusted. The number of these points should be large enough to sufficiently describe the
aforementioned relationship, but also relatively small to avoid increased memory requirements.
Hence, due to RAM limitations the identification algorithm must avoid storing congruent or
similar measurements. Since the online ID can only use the randomly prevailing conditions
during operation to gradually fill the maps, identical measurement points are obviously of-
ten measured several times. Therefore, the information of data pairs whose projected distance

25Detection of steady-state operation in real time is performed by specifying an acceptable degree of deviation
(e.g., ±0.4%) of the variables of concern, i.e., ωel, idq , from their nominal value.
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ε does not exceed a minimum distance threshold εmin
26, are merged by using averaging, i.e.,

Ψ̄(x, y, z) = 0.9Ψ̄(x, y, z) + 0.1Ψ(x, y, z), and are stored in Ψ̄. The projected distance ε (Eu-
clidean distance) between two arbitrary points in an arbitrary three-dimensional system, with
the arbitrary axes x, y and z, can be described by

εi =
√

(xi+1 − xi)2 + (yi+1 − yi)2 , (4.45)

where x and y can represent id and iq, respectively, while the z-axis can represent any of the flux
linkage components (ψd or ψq). This ensures that, due to the limited RAM, enough independent
measurement pairs are stored with a sufficient distance, i.e., εi, to each other to allow a reason-
able adaptation of the maps. Furthermore, the combination of several measurements increases
the significance of the map grid points, since outliers are averaged.

Data modification For a high identification accuracy, the time-varying and influencing pa-
rameters, i.e., Rph and ψpm, are tracked online in regular intervals, see Sections 4.3.1 and 4.3.3
respectively. The influences here are mainly due to temperature changes. Since ψd depends
mainly on ψpm, the flux linkage map on the d-axis is adapted for temperature drifts by using
(4.41). Consequently, the ψd flux linkage map stored in the RAM is corrected according to the
offset ∆ψpm, i.e., whenever the temperature is updated, the ψd map is shifted along the z-axis.
Finally, it should be mentioned that the offset is independent of the current combinations. This
ensures that the currently valid flux linkage map is always up-to-date and related to the current
winding temperature, assuming ϑm ≈ ϑ.

4.3.4.2 Interpolation and Extrapolation

For the generation of the flux linkage maps, data points are required that describe the (nonlin-
ear) relationship between the stator current and flux linkage over the whole operating range.
To obtain fully adapted flux linkage maps, a ψdq value would have to be stored for each con-
ceivable motor current combination of idq. Thus, it would have to be assumed that each current
combination of idq is reached at least once during operation and that consequently each initial
value ψdq,init is replaced by an identified value ψdq. However, the online ID can only use the
randomly prevailing conditions during operation to gradually fill the maps. Since the PMSM is
supposed to follow the reference values specified by the user, some operating points may never
be reached. Therefore, a procedure has to be developed to adapt parts of the map as soon as a
few measured values, e.g., four, are available.

26The distance depends on the array size Ψ̄ and thus the available RAM. Using the example of a 20x20 array,
εmin = 0.125IN seems adequate to cover a measuring range of 2.5IN.
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Figure 4.12: Schematic representation of the local effect of a detected linearity deviation during
iterative adaptation of the flux linkage maps. The red circles are considered known
measurement points. For simplicity, only the flux linkage of the d-axis is shown.

Furthermore, if a single pair of data were used to fit the flux linkage map, then once there is a
significant linearity deviation, the map would only be deformed locally at this particular point,
see, e.g., Fig. 4.12(a). The disadvantage of this procedure is obvious, because the information
about a possible linearity deviation is only used exactly at this point. However, it can be expected
with high probability that a linearity deviation of the flux linkage is also present for surrounding
current combinations, since the course of the stator inductance and thus also the flux linkage
change must be monotonic. Consequently, averaging with the surrounding grid points seems
reasonable to smooth the map, as shown, e.g., in Fig. 4.12(b).
However, it is still not possible with these methods to adapt the complete flux linkage map
up to the map borders based on a patchy measurement map Ψ̄. Moreover, as explained later
in Section 7.3, the control algorithm of interest requires reliable flux linkage maps that cover
the entire possible operating range with parameter combinations at specified, regular intervals.
Therefore, the recorded data pairs in Ψ̄ must be modified.
In the simplest case, this can be done by using linear interpolation. For example, it can be done
as shown in [Kel12, p.83], by setting up a simple plane equation with three measurement (grid)
points, see, e.g., Fig. 4.12(c). Following, based on the initial flux linkage calculated with (4.42),
the flux linkage maps are adapted iteratively using the stored data sets. If a minimum number of
measured values is stored in the RAM, the identification algorithm starts interpolating between
the individual measurements.
However, in order to include also the outer area towards the map border, an algorithm must
be developed that not only interpolates between known measured values, but also extrapolates
beyond them. The left-hand side of Fig. 4.13 visualizes the problem with the four given points
A to D. The points A, B and C can be regarded as initial values, which originate from the
linear machine model. Point D represents a measured value affected by a linearity deviation.
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Figure 4.13: Schematic interpolation and extrapolation ranges for identification of arbitrary
maps based on scattered data sets, including the triangle mesh (shown as red area)
on which the gradient calculation is based. Points A, B, C, and D are considered
known.

As can be seen from the figure, all characteristic values between point D and the start values
are affected by the linearity deviation. In doing so, the flux linkage maps cover a wide range of
current values, rendering the method useful over a broad span of operating points.

There is a variety of interpolation and extrapolation methods, e.g., spline [GT18], bicubic spline
[Kel12], Kriging [Eme05, KHK11], radial basis function [WSJ+13] and several triangle-based
methods [WP84]. However, most of them are quite complex and resource-intensive for real-time
implementations. For this purpose, the proposed identification approach uses an inverse distance
weighting (IDW) algorithm suitable for interpolation and extrapolation. A detailed description
can be found, e.g., in [Ach11, Rie]. Using the conventional IDW, the to-be-found z-values are
calculated at the pairs of the searched (x, y)-positions with

z(x, y) =

∑(
1
εi

)r
z(xi, yi)∑(
1
εi

)r (4.46)

using again the euclidean distance in (4.45). According to (4.46), the influence of the measured
values in the vicinity of the to-be-found points is inversely proportional to their distance, which
is weighted by the factor r.27 By applying conventional IDW, the solution to the described
problem of an unknown surface with four initial scattered values results in a map as shown
in Fig. 4.14(a). Although Fig. 4.14(a) has a continuously differentiable course, the calculated

27Commonly, the distance between the known and to-be-found points is quadratically penalized (i.e., r = 2) to
reduce the influence of points located further away.
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Figure 4.14: Schematic solution of the map identification problem using an IDW approach. The
red circles are measured points on which the IDW is based.

surface exhibits strong curvatures and is not monotonically nondecreasing. This behavior is im-
plausible within the scope of flux linkage maps. For this reason, the IDW method is adapted by
exploiting the knowledge of the flux linkage behavior. This is done by weighting and averaging
the gradient of the surface instead of the z-values themselves. This is reasonable from a physical
point of view, since the gradient of the flux linkage maps corresponds to the partial inductances.
The latter change only comparatively slightly and in a monotonic manner, even if the electrical
machine is characterized by strong saturation and cross-coupling effects.
Given the above, two steps are required to determine the local surface equations between the
scattered measurements. First, a local gradient is calculated at the position of each sample. This
procedure corresponds to the formation of a triangular plane defined by a sample and its neigh-
boring points. Considering the possibility of triangular meshing several triangular points may
result for a given number of samples. For example, as shown with the red area in Fig. 4.13, for

four sampled points, i.e., A, B, C, and D, four triangles (see
4

ABC and
4

BCD on the left-hand

side as well as
4

ACD and
4

ABD on the right-hand side of Fig. 4.13) and thus four local normal
vectors result. Note that the latter indicate the surface gradient. As a result, a normal vector
n and a known supporting point suffice to establish a plane equation. To this aim, the normal
vectors are determined based on the known points of each triangle. For example, the normal

vector of the triangle
4

ABC at point A, is given by

n = b× c (4.47)

based on the two vectors b = ~AB and c = ~AC. To ensure that the normal vector describes
the slope of the flux linkage map in the vicinity of the searched measurement point (i.e., A),
the points used (i.e., B and C) are selected according to the following criteria. For the first
vector the closest neighbor is selected and for the calculation of the second vector, according
to [Kle05, p.236], a point is selected which, according to the Delaunay Triangulation, avoids
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small angles in the spanned triangle. Second, a plausibility check is performed. Due to the fact
that the differential inductance cannot be negative, negative components of the gradient are
prevented along the main axis (id-axis for ψd-map, and iq-axis for ψq-map). In other words, if
the d-axis current increases, ψd must also increase. The same applies for iq and ψq. In doing so,
map errors resulting from corrupted measurements are avoided. Finally, after determining the
normal vectors for each grid point, the z values are calculated for all grid coordinates with

n(x, y) =

∑(
1
εi

)r
n(xi, yi)∑(
1
εi

)r . (4.48)

As can be seen in the above expression, all normal vectors are taken into account according
to their distance, i.e., inversely proportional to the distance from the searched grid point. Fur-
thermore, strong curvatures are avoided by averaging the normal vectors. Hence, thanks to the
proposed modifications, the adapted IDW approach results in monotonically nondecreasing z
values and a monotonic flux linkage map, as depicted in Fig. 4.14(b).

idiq

ψ
d

idiq

ψ
q

Figure 4.15: Schematic representation of an identified linearity deviation in the extrapolated
flux linkage map.

A final evaluation of the extrapolation is shown in Fig. 4.15 using the example of the d- and q-
axis flux linkage maps, where a measured point affected by a linearity deviation in combination
with four initial values on the basis of the linear machine model—in a rectangle around the zero
point—is represented. The source code of the ID algorithm is discussed in detail in [Geb20].28

Finally, Fig. 4.16 shows the identified flux linkage maps for the test motors M3 and M4 (see
Table A.3). As can be seen, with the proposed method, the main nonlinearities in the flux link-
age can be relatively easily identified online during operation and used to optimize the model
accuracy, i.e, the initially assumed linear machine model. This has a positive impact on the
prediction accuracy, as will be shown in Chapter 7.

28The algorithm is identical for the d- and q-axis flux linkage maps except for the plausibility check. Here only
the axis component of the normal vector differs, i.e., ψd must increase with id and ψq with iq .
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Figure 4.16: Identified flux linkage maps with 20x20 grid points for motor M3 and M4.

4.4 Evaluation of Identification Accuracy

In the following a brief error calculation and analysis for the parameter ID are presented. The va-
lidity of the methods was assessed by repeating them several times with five different motors.

4.4.1 Statistical Evaluation of Linear Parameters

An important requirement for an ID method is that the results are reproducible and do not scat-
ter, i.e., a low standard derivation. If the results are also close to the real parameters, they have a
high accuracy. Exemplary for the offline ID in Section 4.1 using motor M1—see the identified
and data sheet values in Table A.3 of Appendix A.3.1—this is shown for ten iterations in Ta-
ble 4.2, including the unused Rph,q resulting from the ID in q-axis. The measurement accuracy
determined in Section 3.3 while using the applied voltage is the basis for the evaluation.
When analyzing the results, it is notable that the stator resistance identified in the d- and q-axis,
differs by a mean of 2.23 mΩ. The difference in the wiring of the d- and q-axis identification
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Table 4.2: Motor M1: Results of ten consecutive offline identifications.

Iteration Rph,d (mΩ) Ld (mH) Rph,q (mΩ) Lq (mH) ψpm (mVs)
1 107.458 0.2565 105.334 0.2573 6.042
2 107.483 0.2576 105.337 0.2567 5.837
3 107.619 0.2582 105.151 0.2556 5.827
4 107.585 0.2612 105.164 0.2579 5.867
5 107.309 0.2578 105.107 0.2546 5.846
6 107.428 0.2609 105.158 0.2555 5.833
7 107.390 0.2576 105.169 0.2551 5.860
8 107.387 0.2569 105.290 0.2618 5.822
9 107.430 0.2617 105.112 0.2545 5.897
10 107.251 0.2570 105.190 0.2567 5.847

Mean 107.434 0.2585 105.201 0.2566 5.868
MAX 107.619 0.2617 105.337 0.2618 6.042
MIN 107.251 0.2565 105.107 0.2545 5.822

Range 0.368 0.0052 0.229 0.0073 0.219
Standard deviation σ 0.106 0.0019 0.082 0.0021 0.0649

procedure is the most likely reason for this. However, this small deviation is acceptable. As-
suming a normal distribution of the measurements, the standard deviation σ and multiples of it
are a measure of how the measurements scatter around their mean value. Considering a range of
±3σ, 99.7 % of the measurements are within this range. Thus, Table 4.3 shows the scattering of
the measurements for 99.7 % of the measurements. In contrast to the other electrical parameters,
the resistance is strongly influenced by the test setup. More precisely, the RDS(on) of the used
MOSFET (see Section 2.2.1.1), the shunt current measurement, the wiring and the terminal
resistance influence the total resistance. For example, motor M1 shows in the data sheet—see
Table A.3—a resistance of Rph = 85 mΩ, where the MOSFET used indicates a resistance of
RDS(on) = 7.7 mΩ and the shunt of Rsh = 10 mΩ. As can be seen, the RDS(on) is almost 9 % and
Rsh is approx. 11 % of the stator resistance. Considering a MOSFET, a shunt and the wiring,
the actually identified resistance in Table 4.2 shows 125 % of the data sheet value of the motor.
Hence, it seems reasonable to identify the resistance with the help of the inverter in the end-use
setup by means of an integrated ID algorithm instead of using data sheet values.
The same applies to the other parameters. For them, however, a higher scatter is observed and
thus lower precision is achieved. Nevertheless, a relatively good identification of the linear pa-
rameters in the respective setup can be achieved. From online ID, see Section 4.3.1, only Rph

and ψpm are used due to the limited validity of the linear parameters. Consequently, for MPC,
the exemplary parameter mismatches in Section 2.6.3 can be avoided to some extent, i.e., as
long as nonlinearities such as saturation are not present.

Table 4.3: Motor M1: Achievable precision of identified parameters during ID.

Rph,d Ld Rph,q Lq ψpm

Offline - absolute ±3σ ±0.319 mΩ ±0.0052 mH ±0.247 mΩ ±0.0061 mH ±0.195 mVs
Offline - relative ±3σ 0.59 % 4.30 % 0.47 % 4.80 % 6.64 %
Online - relative ±3σ 0.3− 1.2 % 0.3− 4.5 % — 0.6− 9.1 % 0.3− 2.6 %
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4.4.2 Evaluation of Flux Linkage

To determine the precision of the flux linkage, i.e., ψd and ψq, and the influence of the required
parameters on their identification, the tolerance of the results is first determined by estimating
the error propagation. For this purpose, the maximum possible error ∆ζ given by

∆ζ =
κ∑
l=1

∣∣∣∣ ∂ζ∂xl∆xl
∣∣∣∣ (4.49)

can be calculated based on the partial derivatives of the variable of concern, i.e., ζ , with respect
to x for the number of parameters κ in the system.29 More concretely, for calculating the maxi-
mum measurement error, i.e., ∆ψd,ζ and ∆ψq,ζ , (4.44) is partially differentiated with respect to
each of the varying parameters, i.e., Rph, idq, vdq, and ωel, i.e.,

∂ψd
∂Rph

= − iq
ωel

,
∂ψq
∂Rph

=
id
ωel

(4.50a)

∂ψd
∂iq

= −
Rph

ωel
,
∂ψq
∂id

=
Rph

ωel
(4.50b)

∂ψd
∂vq

=
1

ωel
,
∂ψq
∂vd

= − 1

ωel
(4.50c)

∂ψd
∂ωel

= −
vq −Rphiq

ω2
el

,
∂ψq
∂ωel

=
vd −Rphid

ω2
el

. (4.50d)

Thus, using (4.50), the maximum possible error for each flux linkage component can be calcu-
lated with

∆ψdq,ζ =

∣∣∣∣P idqωel
∆Rph

∣∣∣∣+

∣∣∣∣Rph

ωel
P∆idq

∣∣∣∣+

∣∣∣∣− 1

ωel
P∆vdq

∣∣∣∣+

∣∣∣∣−ψdq

ωel
∆ωel

∣∣∣∣ . (4.51)

The course of the maximum measurement error determined from error propagation is shown in
Fig. 4.17 for motor M4, the parameters of which are provided in Table A.3 of Appendix A.3.1.
Analyzing (4.51) and by visual inspection of Fig. 4.17, the following assessment can be made
for the measurement uncertainty of the flux linkage identification:

1. It gets bigger with increasing current due to the uncertainty in the estimated resistance.

2. It increases with decreasing speed due to the decreasing induced voltage, which is conse-
quently measured in a very poor measuring range.

3. It is adversely affected by unmodeled effects, i.e., higher-order harmonics and iron losses.

29Note that (4.49) represents the worst-case scenario in which the individual measurement deviations ∆x do
not compensate for each other.
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Figure 4.17: Motor M4: Maximum measurement error exemplified for the most nonlinear motor
M4 at 1000 rpm. Measurements of a power analyzer (LMG) are also compared. For
a better clarification, Fig. 4.16 shows the identified flux linkage.

4. It increases as the measurement/estimate of the rotor angle becomes less accurate. An in-
sufficient phase shift correction—which is necessary for the compensation of the voltage-
measurement filter—as well as an increasing misalignment due to frictional effects intro-
duce inaccuracies in the transformation from the three-phase to the dq-plane, see (2.6).

Even if the rotor position dependent flux linkage deviations are averaged over several mechani-
cal rotor revolutions, the other effects can have a decisive impact.

Influence of the rotor angle alignment As mentioned, the rotor angle has a large influ-
ence on an accurate voltage measurement and thus on a correct flux linkage ID. For illustration,
Fig. 4.18 shows how the flux linkage maps shift/rotate when the rotor position angle is incor-
rect (by ∆ϕ∆), e.g., due to an unconsidered encoder offset ∆ϕ. It is noteworthy that there is a
rotational movement on the d-axis, while an offset shift appears on the q-axis.

Influence of the filter compensation Since the measured voltage30 has harmonics—due
to the switching nature of the inverter—a low-pass filter is necessary. The influence of this filter
must be compensated in phase and amplitude. Fig. 4.19(a) exemplifies the effects of incorrect
filter compensation at low speed, i.e., at 500 rpm. In the case study shown, three different values
are used for the real low-pass filter capacitors, namely 98 nF, 100 nF, and 47 nF. While in the
case of 100 nF and 47 nF the correct values are used for the filter compensation, a significant
error occurs as soon as, e.g., a real low-pass filter capacitor of 98 nF is compensated with 100 nF
due to unconsidered component tolerances. As exemplified by the orange line in Fig. 4.19(a),
the incorrect compensation of the filter introduces an offset into the identified flux linkage. On
the other hand, a correct capacitor value, e.g., 100 nF or 47 nF, will successfully compensate for
the low-pass filter influence, and enable correct flux linkage identification (light and dark blue
are nearly congruent).

30The applied voltage is not used, but rather the actual measured voltage, which is common for small drives
even without galvanic isolation.
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Figure 4.18: Motor M5: Identified flux linkage maps with different rotor angle alignment errors
∆ϕ∆ (experimental).
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Figure 4.19: Motor M5: Identification of flux linkage using the online ID (left) and with open
motor windings using the LMG670 (right) when ramped up by the load machine.
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Figure 4.20: Motor M5: Comparison of standard deviation, error propagation and influence of
speed, i.e., iron losses, on the flux linkage maps (experimental).

Influence of the iron losses Figs. 4.19(b)-4.19(c) show the influence of iron losses ex-
emplary using motor M5 for the case where all other effects can be neglected, i.e., with open
motor windings. Using the online ID, Fig. 4.20 shows the flux linkage change for different
speeds respectively compared to 500 rpm, i.e., low speed where the influence of iron losses is
small. Evidently, an increasing offset occurs with increasing speed due to the iron losses.
Considering Fig. 2.12, the effect is obvious. Since the induced voltages are proportional to the
speed, so are the iron loss currents idq,Fe. Since idq is composed of idq,Fe and the magnetizing
current idq,m, this will result in an increasing idq,Fe and decreasing idq,m for a constant idq at
increasing speed. Due to the decreasing idq,m, the induced voltage (or flux linkage) in the re-
spective other axis also decreases. Since due to ψpm the induced voltage in the q-axis is bigger
than in the d-axis, iq,Fe is also bigger than id,Fe. This proportionally reduces iq,m and thus ψq
more than it does for ψd. Table 4.4 summarizes the worst case iron loss effects identified using
the proposed online ID as well as an external measurement device, i.e., LMG670, as reference.
Similar results were obtained e.g. in [Ric16, p. 103]. The results show that although the influ-
ence of iron losses is present and measurable, it is quite small even at rated speed. In addition,
the influence must be taken with caution when comparing the standard deviation and the pre-
viously calculated error propagation. Even if the influence is small, a limited speed range, i.e.,
nm ∈ [5 − 30] % of nN, is recommended for the identification of the considered test machines.
In order to be able to use the proposed online ID at higher speeds, an additional term should be
included in (4.44) to account for the iron losses—if pronounced—during steady state, e.g., by
using a voltage error term [Ric16, p. 25], or a parallel resistance [RDD14, KSP11, BAC+19].

Table 4.4: Comparison of the standard deviation and the influence of the iron losses over speed.

∆ψd ∆ψq
Motor M1 Motor M4 Motor M5 Motor M1 Motor M4 Motor M5

Standard deviation ±3σ 2.5 % 7.0 % 2.6 % 4.0 % 4.9 % 2.5 %
Iron loss influence online ID 2.8 % 3.1 % 2.8 % 5.4 % 2.0 % 5.1 %

Iron loss influence LMG670 ID 2.6 % 3.3 % 2.3 % 4.6 % 2.4 % 2.7 %
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Figure 4.21: Motor M5: Identified flux linkage maps with 25x17 grid points for five motors with
the same part number but from different production batches (experimental).

Influence of manufacturing and aging Fig. 4.21 shows the proposed flux linkage online
ID for motor M5, repeated and compared for several motors of the same type, i.e., similar part
number, but different production dates. The associated production date and the linear parameters
are summarized in Table 4.5. As can be seen, even if a similar data sheet is provided, the motors
differ a lot, at least for different batches. Hence, data sheet values or even finite element method
(FEM) calculations are too general and do not help much in practice to recognize manufacturing
influences or effects occurring through aging [HG15]. The latter or other magnets are e.g. a
possible explanation for the reduced ψpm in case of the older motors in Table 4.5.
Therefore, parameter identification as an integrated part of the control algorithm, as presented
in this chapter, is beneficial. In this way, the parameters can be adjusted as accurately as possible
in the model while still achieving reasonable usability.

Table 4.5: Comparison of motors with the same part number but different production batches.

Motor Production date Rph (mΩ) Ld (mH) Lq (mH) ψpm (mVs) J (gcm2)
M5-1 06.11.2015 88.5 0.31 0.35 6.59 511.6
M5-2 07.03.2017 86.5 0.29 0.32 7.51 516.9
M5-3 10.04.2018 86.2 0.25 0.26 8.12 494.3
M5-4 10.04.2018 89.4 0.26 0.27 8.13 495.1
M5-5 10.04.2018 86.6 0.26 0.26 8.07 475.0



112 5 Reduction of the Search Space for FCS-MPC

5 Reduction of the Search Space for FCS-MPC

This chapter describes how to reduce the computational burden of FCS-MPC. In this context a
distinction must be made between „achieving a long horizon“ and „reducing the search space“.
The former is discussed, e.g., in [KGN+14], where a review of strategies for long prediction
intervals is shown, which points out the move blocking strategy, the extrapolation strategy and
the event-based horizon. These methods allow a long horizon, but not by limiting the search
space, i.e., discrete switching possibilities.
The latter, which is discussed in this chapter, deals with the reduction of the discrete number of
switching states within the search space with respect to a specific prediction interval.

5.1 Sphere Decoding Algorithm

As briefly described in Section 2.5.2.3, the sphere decoding algorithm is the most widely used
solver for IQPs. Consequently, using SDA, with the same computational effort a much longer
horizon can be calculated. However, two main disadvantages are present. First, the SDA requires
an LTI model, see Section 2.5.2.2. Second, the computational feasibility can be exceeded in the
case of transients, see, e.g., [ARB+19].

As mentioned in Section 2.5.1.2, for an LTI system e.g. the velocity dependence must be lin-
earized and constant inductances as well as resistance must be used, i.e., it must be assumed
that they have a certain fixed value. This linearization may be acceptable for drives with slow
mechanical time constants, which almost always operate in the same operating range and have a
linear magnetic circuit. However, avoiding an update of the state matrices and assuming a time-
invariant Hessian matrixH f—see Section 2.5.2.2—means that the same linearized matrices are
used over the whole operating range which can lead to suboptimality, e.g., 2.1 % in [LKG+17].
However, for highly utilized PMSMs treated in this work—see Section 2.2.1.2—the parameters
of the electrical model vary significantly during operation, e.g., due to saturation or tempera-
ture. This leads to additional suboptimality in the solution of the SDA if the matrices, e.g., the
Hessian matrix H f, are not updated, i.e., tracked, over the operating range. Consequently, an
update of the state matrices and recalculation of the Hessian matrix are theoretically necessary
as soon as the operating point changes [GQ15].



5.2 Preselection Based on Dead-Beat Control Action 113

As shown in Section 2.5.2.2, this requires matrix inversions. Considering small electrical drives
and the respective small mechanical and electrical time constants, speed, temperature and non-
linear magnetic effects vary even faster, i.e., the matrices have to be recalculated more often.
This drastically increases the computational load and limits the advantages of SDA at the afore-
mentioned high control frequencies, e.g., fcf = 100 kHz. Depending on the update rate, this may
imply that real-time calculation of the problem is not feasible. As a side note, the need for pa-
rameter tracking, see Chapter 4, becomes apparent when updating the state matrices and is even
emphasized hereafter in Chapter 7.

Another issue when using the SDA is the increase of the computational load and thus the
possible infeasibility of the solution in the presence of transients [ARB+19]. Even though,
as shown, e.g., in [KGA18, ARB+19, BAA+20], more and more solutions are emerging to
address this drawback. Nevertheless, the computational effort for a horizon Np = 4 is, e.g.,
59.43 µs [ARB+19] or about 40 µs [BAA+20], which exceeds the required control interval of
Tcf = 10 µs.

5.2 Preselection Based on Dead-Beat Control Action

To keep the computational complexity of the proposed direct MPC method modest so as to ren-
der its real-time implementation with the desired (high) control frequencies possible, a preselec-
tion method—introduced as “heuristic preselection” in [SKT+13]—is preferred and employed.
This method utilizes the dead-beat control action so as to reduce the search space.
As a result, instead of evaluating eight candidate switch positions (i.e., seven SVs) at each
prediction step, only four candidate switch positions (i.e., three unique SVs) are taken into con-
sideration. The dead-beat solution is given by

vdq,db(k) = Ldq
i∗dq(k)− idq(k)

Tcf
+Rphidq(k) + ωel(k)

(
PLdqidq(k) +

[
0

ψpm

])
. (5.1)

With (5.1), based on the dead-beat control action, the angle of the desired voltage vector vdq,db(k)

that drives the current to its reference within one control interval Tcf can be found with

γdb(k) = arctan2(vdq,db(k)) + ϕ, {γdb ∈ R | 0 ≤ γdb < 2π} . (5.2)

Using the angle γdb of the dead-beat solution (5.2), the triangular sector (one out of the six,
see Fig. 2.5) in which vdq,db(k) lies can be determined, for details see Table 5.1. Thus, only
two active and two zero SVs that form the sector are preselected, as illustrated in Table 5.1.
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Table 5.1: Candidate Voltage SVs Depending on γdb(k) = ∠vdq,db(k).

γdb Sector SVs[
0, π3

)
I v1, v2, v0/7[

π
3 ,

2π
3

)
II v2, v3, v0/7[

2π
3 , π

)
III v3, v4, v0/7[

π, 4π
3

)
IV v4, v5, v0/7[

4π
3 ,

5π
3

)
V v5, v6, v0/7[

5π
3 , 2π

)
VI v6, v1, v0/7

Equivalence between voltage SVs and switch positions

v0 ≡ [−1−1−1]T, v1 ≡ [ 1−1−1]T, v2 ≡ [ 1 1−1]T, v3 ≡ [−1 1−1]T

v4 ≡ [−1 1 1]T, v5 ≡ [−1−1 1]T, v6 ≡ [ 1−1 1]T, v7 ≡ [ 1 1 1]T

Consequently, only these four SVs are candidate solutions for the subsequent MPC problem.
In order to reduce the calculation effort for the reference tracking term in the cost function,
only one zero SV is considered since the impact of both zero SVs on the stator phase current is
identical. Moreover, the switching penalization term in the cost function respects both zero SVs
to reduce the switching frequency (and thus switching losses), i.e., the zero SV (v0 or v7) that
results in less switching effort—with respect to the previously applied SV—will be chosen by
the cost function, see, e.g., (2.75).

It has to be mentioned that although there is a possibility that the reduction of the search space
based on the location of the dead-beat control action on the plane can lead to suboptimal re-
sults1 [KG20]—especially during transients and at the sector border—the simulation and ex-
perimental results based on the chosen case study, i.e., two-level VSI with three phase legs for
PMSM where Np≤ 5, do not show any suboptimal performance.

Finally, it is worth mentioning that the proposed method still provides an exponential increase
of the computational effort over the horizon. However, for the considered application, i.e., a
two-level VSI, only 3Np instead of 8Np possibilities arise. Compared to the SDA, which offers
a linear increase in the computational load over the horizon, this is still disadvantageous. How-
ever, no operating point-dependent linearizations are necessary for the dead-beat preselection.
Consequently, for small drives, as shown in the following chapters, the dead-beat preselection
is preferable.

1The main reason for a possible suboptimality is that the dead-beat solution is theoretically not identical
to the solution of the cost function used for the DMPC problem. This is due to the fact that the mathematical
formulation of the dead-beat problem only considers reference tracking, which is fundamentally different from the
mathematical formulation of the DMPC cost function, which also includes possible further criteria and constraints.
For this reason, dead-beat preselection may not be called an unconstrained solution.
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6 Increasing the Switching Granularity of FCS-MPC

One of the main issues when using FCS-MPC for small electrical drives—with time constants
of just a few ms or even µs—is the insufficient switching granularity, as it was demonstrated in
Section 2.6.1. This is especially critical in the partial load range, i.e., at low modulation index,
where this leads to unnecessarily high current ripple and thus torque ripple. Although such a
low granularity might be acceptable during transient operation, since a highly dynamic behavior
is of greater importance, for steady-state operation it has an adverse effect. Specifically, since
one switching state is applied to the converter for the whole control interval Tcf, the theoretical
maximum fsw is limited to half of fcf. Therefore, the minimization of the torque ripple at steady-
state becomes more challenging. In particular, as reported in [KG20, Section V], the control
frequency should be about two orders of magnitude higher than the switching frequency for
a favorable performance. Even though, as shown in Chapter 3, new and powerful calculation
platforms are available that allow control frequencies fcf up to several hundred kHz [WDK17b],
this is still insufficient, as demonstrated in Section 2.6.1.
Consequently, a modulator, such as CB-PWM or SVM, seems to be advantageous compared
to FCS-MPC, since the state of the converter switch positions can change at any time instant
within Tcf. Owing to the higher granularity of modulator-based schemes, lower torque ripple—
especially at low modulation index—can be achieved for the same fcf compared to conventional
FCS-MPC. Therefore, introducing the concept of variable switching points (VSPs), i.e., time
instants within the control interval Tcf at which the converter switches change state (also referred
to as switching instants), to the FCS-MPC problem is meaningful. In doing so, FCS-MPC can
apply more than one switch position to the converter within one Tcf. Thus, higher switching
granularity can be achieved, which, in turn, allows for a reduction of the current and torque
distortions. As can be understood, a combination of high switching granularity and the fast
dynamic response of FCS-MPC seems beneficial.

Motivated by this, several works have adopted the notion of VSP and combined it with FCS-
MPC, see, e.g., [LK12, KSK+14, SKT+13, TZW+15, ZXLZ14, ZPY16, ZXL+14, TFG+17,
ZBY18, KMG18, WKDK19, ZDMB20, MCDA+19, KNG20]. Owing to the introduced VSPs,
these approaches can implement up to four different switch positions in one control interval Tcf.
A good overview is given in [KLGK20]. FCS-MPC with two different switch positions dur-
ing one Tcf was introduced, e.g., in [Kar13, KSK+14, SKT+13, TZW+15, ZXLZ14], whereas
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four different switch positions (akin to SVM) are implemented in [TFG+17, ZBY18, KMG18,
KNG20]. In [KSK+14] a so-called variable switching point predictive torque control (VSP2TC)
and in [SKT+13] a variable switching point predictive current control (VSP2CC) are presented.
However, the approaches in [Kar13, KSK+14, SKT+13, SKK+15, KAK18] for VSP2TC and
VSP2CC use only one-step prediction horizon, i.e.,Np = 1. Furthermore, in [SKT+13] only one
transition per Tcf is considered, since a combination of the previous and one new SV is applied.
On the contrary, long-horizon VSP2CC (Np = 5) is evaluated in [AKMK15], showing improved
performance of the drive system, but only in simulation. In [TZW+15] a so-called modulated
MPC (M2PC) is introduced. Methods such as [TZW+15, ZXLZ14] solve the optimization prob-
lem in two sequential steps, first the optimal SVs are chosen and second their application time
is computed. The sequential structure, however, can lead to suboptimal results. Furthermore,
strategies such as the one introduced in [KMG18], although achieving fixed fsw and determin-
istic harmonic spectra—making them suitable for grid-tied converters—do not exhibit the fast
response of FCS-MPC during transients and the resulting three VSPs enforce switching—and
switching losses—even if it is unnecessary, e.g., during transients.

6.1 Proposed VSP2CC Concept and Algorithm

All previous strategies usually apply two (or more) different switch positions within each con-
trol interval. In addition, the dynamics are often reduced by multistage control principles. The
optimization problem proposed in this chapter, first published in [WKDK19], however, allows
the controller to decide in real time, based on the cost function, whether to apply one or two
new switch positions within one Tcf. In the former case, similar to the classic FCS-MPC, a new
switch position can be applied or the previous one can be kept. In the latter case, a variable
switching point, i.e., a time instant within the control interval at which the inverter switches
change state, is computed. With this degree of freedom, during transients, the maximum avail-
able voltage can be applied to the inverter, either by implementing one active or a combination
of two active SVs. At steady-state operation, on the one hand, one active SV can be changed
into a zero one (or vice versa) at the computed VSP, thus reducing the current and torque ripples.
On the other hand, a zero SV can be applied for the full Tcf. Thus, the proposed controller aims
to reduce the current ripples while achieving excellent (the maximum) dynamic behavior.

For the realization of the proposed algorithm (see Fig. 6.1), a preselection is first done to min-
imize the computational effort. By doing so, the search space is reduced from eight candidate
SVs to three, see Section 5.2. Afterwards, the algorithm evaluates the stator currents for differ-
ent combinations of the three candidate SVs by calculating (2.73) for a horizon of Np steps.
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As a compromise between possibilities and computational effort, a distinction is made:

1. For the first prediction step, the three candidate SVs are evaluated by taking into account
two possibilities: either one SV is applied to the inverter for the whole Tcf (i.e., akin to
the conventional FCS-MPC), or two SVs are executed within one Tcf according to the
principles of VSP2CC. See the blue calculations on the right-hand side of Fig. 6.1.

2. For the prediction steps further in the horizon, i.e., Np > 1, the algorithm theoretically
has the ability to evaluate all the possible SV combinations by employing the VSP2CC
concept (nine per step). This implies that two SVs can be applied in each prediction
step. By doing so, nonetheless, the possible solutions to be enumerated are 32Np , i.e., the
optimization problem can become computationally intractable for Np > 1. To overcome
this issue, the concept of conventional FCS-MPC is employed for steps Np > 1, meaning
that only three candidate solutions are considered from the second step of the horizon
onwards. See the central (purple) steps and the left-hand branch in Fig. 6.1.

Start ` = 0

Measure Vdc(k − 1), idq(k − 1), ωel(k − 1), ϕ(k − 1)

Predict idq(k) for the delay time compensation

Determine voltage hexagon sector based on dead-beat preselection for search space reduction

`+ +

Calculation of the voltage space vectors based on ϕ(k + `− 1)

j = 0

j + +

Predict currents idq,j(k+`)

Check constraints

Calculate gradientsmj(k+`)

j > 3
false

` = 1
false

true
n1 = 0

n1 + +

n2 = 0

n2 + +

Calculate tz,n1,n2(k+`)

Predict idq,n1,n2(k+`)

Check constraints

n2 > 3
false

n1 > 3
false

` > Np
false

Cost function minimization

Apply the best switching states ūabc,con(k) with tz,con(k)

Figure 6.1: Block diagram of the proposed VSP2CC concept.
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As a result, the MPC algorithm has to evaluate a total of only 3Np+1 possible solutions. As can
be understood, the aforementioned simplification greatly reduces the computational complexity,
thus facilitating its real-time implementation. Finally, it should be stressed that, owing to the
receding horizon, only the first element (i.e., control action) of the solution is implemented.
From a performance point of view, this means that the first step of the horizon is the one with the
greatest significance. Hence, adopting the conventional FCS-MPC forNp > 1 does not adversely
affect the system performance.

To decide which SVs meet the control objectives, as mentioned in the beginning of this section,
the slopes of id and iq are calculated. Before doing so, the following assumptions are made:

• Due to the very small Tcf (i.e., 10 µs), the saturation does not affect the slopes during one
control interval Tcf. Therefore, the slopes are assumed to be piecewise linear.1

• The rotor angle ϕ is kept constant during one interval Tcf.2 Note that the possible values
of the stator voltage (2.12) are updated at each prediction step.

• Nonlinear time-varying parameters such as Rph, ψpm and ωm do not affect the current
slopes due to the significantly larger associated time constants as compared to Tcf.

By assuming constant current slopes for the entire interval Tcf, similar to [KSK+14, KAK18,
AKMK15], the slopes of the resulting current trajectory for each of the three SVs can be calcu-
lated by using

mdq(k) =
idq(k)− idq(k − 1)

Tcf
=

∆idq(k)

Tcf
, (6.1)

where mdq = [md mq]
T ∈ R2 and idq(k) is calculated based on (2.73).3 Since absolute induc-

tances are used in this calculation, the VSP2CC approach will be renamed to L-VSP2CC in the
following for reasons explained later in the thesis.
Given the constant slopes over one Tcf, the calculated mdq is identical in the time steps k and
k+ 1. By denoting these slopes with the subscripts n1 and n2, respectively, the rms current error
on the d- and q-axis can be calculated over the whole interval Tcf by using [SKT+13, SKK+15]

erms2,n1,n2
(tz) =

1

Tcf

(∫ tz,n1,n2

0

||idq,0+mdq,n1t−i∗dq||22dt+

∫ Tcf

tz,n1,n2

||idq,tz+mdq,n2t−i∗dq||22dt

)
,

(6.2)
where tz ∈ [0, Tcf]. An illustrative example of the resulting error area (in red) is shown in
Fig. 6.2 with a combination of v3 and v1 for iq. Expression (6.2) is calculated for each SV

1In the case where the PMSM used exhibits a significant saturation effect during one Tcf, this assumption does
not apply and the approach must be refined.

2For machines with many pole pairs, the variation of the rotor position within one Tcf may affect the VSP
calculation at high speeds. For example, when nm = 4000 rpm, p= 4 and Tcf = 10 µs, the rotor position change is
ϕ≈ 0.017 rad in one Tcf, leading to a possible voltage variation up to 1.8 %.

3The interlock time (here 200 ns) is compensated for according to [ITF+12], see also Section 3.3.
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Figure 6.2: Variable switching points by the intersection of two iq current trajectories forNp = 2.

combination including the possibility that one SV is applied for the whole interval Tcf, as shown
in Fig. 6.1. The variable switching point tz,n1,n2 , which minimizes the current ripple for each
SV combination, can be obtained by setting the derivative of (6.2) to zero, i.e., derms2/dtz = 0.
This yields

tz,n1,n2 =
an1,n2 + bn1,n2

cn1,n2 + dn1,n2

where (6.3)

an1,n2 = (md,n2−md,n1)(2id−2i∗d+Tcfmd,n2), bn1,n2 = (mq,n2−mq,n1)(2iq−2i∗q+Tcfmq,n2),

cn1,n2 = (md,n1 −md,n2)(2md,n1 −md,n2), dn1,n2 = (mq,n1 −mq,n2)(2mq,n1 −mq,n2).

To further simplify the calculation of tz,n1,n2 , so as to alleviate the associated computational
effort, (6.1) is utilized. In doing so, Tcf is set as a common factor, whereat the range of the
values tz,n1,n2 is reduced considerably, resulting in

tz,n1,n2 = Tcf
an1,n2 + bn1,n2

cn1,n2 + dn1,n2

where (6.4)

an1,n2 = (∆id,n2−∆id,n1)(2id−2i∗d+∆id,n2), bn1,n2 = (∆iq,n2−∆iq,n1)(2iq−2i∗q +∆iq,n2),

cn1,n2 = (∆id,n1 −∆id,n2)(2∆id,n1 −∆id,n2), dn1,n2 = (∆iq,n1 −∆iq,n2)(2∆iq,n1 −∆iq,n2).

This is advantageous for the subsequent implementation (especially when using fixed-point) on
an FPGA, as described in Section 6.3, since the value range is greatly reduced and the calcula-
tion of the fraction is therefore independent of the respective calculation interval Tcf. Observing
(6.4), it is evident that when the same voltage SV is evaluated for both time steps k and k + 1

the current slope remains constant over the whole Tcf. This implies that the associated switching
time is tz,n1,n2 = 0, i.e., only one switch position uabc is applied within one Tcf. As a result, either
one switch transition occurs within Tcf, or switching is avoided altogether in case the previously
applied switch position is the same.
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Furthermore, it should be mentioned that voltage SV combinations that lead to current trajec-
tories that do not intersect at all within Tcf, or lead to tz,n1,n2 >Tcf are excluded as infeasible.
Afterwards, by substituting Tcf with tz,n1,n2 in (2.73), all currents idq,n1,n2 are calculated.

6.2 Optimization Problem

The cost function is designed to minimize the current ripple while at the same time controlling
the switching frequency. Moreover, it should take into account the possibility of applying one
or two voltage SVs (i.e., switch positions) in the first prediction horizon step. Depending on the
previous switch positions, no switching action, one or two switching transitions are performed.
On this basis, the formulated cost function to be minimized in real time is4

Jf(k) =

k+Np−1∑
`=k

(
||y∗(`+1)−y(`+1)||22 + f̂(idq(`+1))+λu||∆[ūTabc(`−1) ūTabc(`)]

T ||1
)

(6.5)

where

f̂(idq(`+ 1)) =

imax if ||idq(`+ 1)||2 > imax

0 if ||idq(`+ 1)||2 ≤ imax

(6.6)

with y∗ = [i∗Tdq i
∗T
dq ]T ∈ R4 being the reference vector and y = [iTdq,tz i

T
dq,Tcf

]T ∈ R4 the output
vector. The sequence of manipulated switch positions over a finite horizon of Np ∈ N+ time
steps is defined as

U(k) = [ūTabc(k) ūTabc(k + 1) . . . ūTabc(k +Np − 1)]T ∈ U (6.7)

where ūabc = [uTabc,0 u
T
abc,tz ]

T and U = {−1, 1}2nhNp . Moreover, ∆[ūTabc(` − 1) ūTabc(`)]
T with

∆ =

[
0nh×nh −Inh Inh 0nh×nh
0nh×nh 0nh×nh −Inh Inh

]
, where 0nh×nh ∈ Nnh×nh and Inh ∈ Nnh×nh are the

zero and identity matrices of appropriate dimensions (here nh = 3, see Section 2.2.1.1), denotes
the penalization of the control action, and, consequently, of the switching frequency, which
is weighted by λu > 0 similar to (2.75). In this way, the average switching frequency can be
reduced at the expense of higher current ripple. Finally, (6.6) represents a hard constraint on the
stator current implemented as a protection mechanism with imax being the maximum current in

4Note that, in order to reduce the switching frequency (and thus the switching losses), while keeping the
computational load modest, the reference tracking error term is calculated only for one zero voltage SV (i.e., v0),
whereas the switching error term considers both v0 and v7. Following, the zero voltage SV that results in less
switching effort—with respect to the previously applied voltage SV—is chosen.
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per-unit, similar to (2.76).5

Inspecting (6.5), it can be seen that the cost function is designed to account for both possibilities
when solving the L-VSP2CC problem, namely that either two or one switch positions can be
implemented within one control interval Tcf. In the former case, the algorithm uses the pair of
switch positions (i.e., voltage SVs) and the corresponding current errors of iq and id which are
calculated at the time instants tz and Tcf, respectively. In the latter case, due to tz = 0, the first
current term of (6.5) for idq uses the same current error as the second term at Tcf in order to
enable a comparable cost, i.e., idq,tz = idq,Tcf . The cost function (6.5) uses the squared `2-norm
for error tracking, both to avoid any closed-loop stability issues and to enable performance

Algorithm 2 Inductance-based VSP2CC
1: function ūABC,CON,tZ,CON =L-VSP2CC(i∗dq, idq, ϕ,Np, ωel, Vdc)
2: idq(k−1)← read dq-transformation
3: idq(k)← predict using (2.73) with tz and Tcf . delay time compensation
4: vdq,db(k)← dead-beat solution using (5.1) . search space reduction
5: γdb(k)← ∠vdq,db(k) using (5.2) . sector of candidate vdq(k)
6: for ` = 1, . . . , Np do
7: vdq(k+`−1)← based on ϕ(k+`−1), Vdc(k) . three candidate SVs based on γdb(k)
8: for j = 1, . . . , 3 do . one SV within Tcf

9: idq,j(k+`)← predict using (2.73)
10: ||idq,j(k+`)|| ← idq,j(k+`) using (6.6) . current constraint
11: if ` = 1 then
12: mj(k+`)← using (6.1) . idq gradients
13: end if
14: end for
15: if ` = 1 then . VSP for Np = 1
16: for n1 = 1, . . . , 3 do
17: for n2 = 1, . . . , 3 do
18: if n1 = n2 then . one SV within Tcf

19: idq,n1,n2(k+`)← idq,j(k+`)
20: else . VSP for two SVs
21: tz,n1,n2(k+`)← (6.4) . VSP
22: idq,n1,n2(k+`)← predict with (2.73)
23: ||idq,n1,n2(k+`)|| ← idq,n1,n2(k+`) using (6.6) . current constraint
24: end if
25: end for
26: end for
27: end if
28: ūabc,con(k), tz,con(k)← solve (6.8)
29: end for
30: end function

5Theoretically, a soft constraint is to be preferred since it can avoid feasibility problems when solving (6.5).



122 6 Increasing the Switching Granularity of FCS-MPC

improvements [KGK18], even if this increases the computational load. Finally, with the cost
function (6.5) the L-VSP2CC problem is stated as

minimize
ūabc ∈U

J (see (6.5))

subject to (2.73), (6.6) .
(6.8)

Solving (6.8) yields the optimal switch position(s) ūabc,con which is (are) to be applied at the
corresponding optimal switching time instant(s), i.e., t= 0 and/or tz,con. Note that according to
the receding horizon policy, the elements of the switching sequence U con that correspond to
the predictions steps Np≥ 2 are discarded. In doing so, feedback is provided and a degree of
robustness to system uncertainties is achieved [RM09]. The proposed method is summarized in
the pseudo Algorithm 2.

6.3 Performance Evaluation

In the following, the proposed method is evaluated by using simulation and experimental re-
sults. Here, λu is adjusted for the conventional FCS-MPC and VSP2CC approaches to allow a
comparison—in terms of current THD and ripple—at almost equal average fsw.
The first evaluation in Fig. 6.3 shows simulation results for the currents id and iq—both for
a horizon of Np = 1 and Np = 5—during start-up for motor M1, see Table A.3. In addition,
it shows tz normalized with respect to the interval Tcf, which describes the application time
of SVn1 in each discrete time step. Finally, it also shows the corresponding selected SVs, i.e.,
switch positions. At the beginning—t= 0−0.27 ms—λu = 0.001 is applied, thus switching is
only minimally penalized. Afterwards λu = 0.018 for Np = 1 and λu = 0.045 for Np = 5 is ap-
plied, which leads to fsw≈ 20 kHz. As can be seen, for both reference current steps, the algo-
rithm decides to use only one or two active SV(s) to achieve the fastest possible response.
Moreover, in steady-state operation, the ripple is minimized by using two SVs (one active and
one zero) or by applying just a single zero SV. This case occurs, e.g., for t= 1.14−1.2 ms,
where a zero SV is applied after a VSP was chosen. More precisely, an active SV is applied
up to t= 1.15 ms, where a VSP first retains the active vector, followed by a zero vector for the
remaining interval, which is also kept for the following control interval. As a result, the num-
ber of switching transitions is minimized while keeping the current ripple acceptable. With a
further increasing λu the advantage becomes even more apparent. However, it can be noticed,
that for Np = 1 a steady-state deviation exists. As experiments have shown, this effect occurs
mainly at a low modulation index. This is due to the short horizon, where only the error area—
see Fig. 6.2—for the corresponding control interval is minimized. Thus, it is not taken into
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account that—if λu > 0—zero SVs are present in the following intervals, which would cause
a steady-state deviation if averaged over several intervals. For Np = 5 this deviation does not
occur. In any case, already with Np > 1, e.g., Np = 2, this deviation is no longer observed for
the considered small drives.
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Figure 6.3: Motor M1: Reference current step for i∗q showing the resulting currents id, iq, switch-
ing time tz and SVs by using L-VSP2CC with Np = 1 and Np = 5 for different λu

with nm = 200 rpm (simulation).
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6.3.1 Steady-State Performance

So far, all previous VSP2C(T)C methods, e.g., [Kar13, KSK+14, SKT+13, SKK+15, KAK18,
AKMK15], were only on a simulation level or implemented on the processor, thus struggling
with the computational load and therefore show only short prediction horizons and/or small
sampling frequencies. In contrast, the proposed algorithm is experimentally validated by fully
implementing the control loop in an FPGA using the platform described in Chapter 3. This al-
lows for longer prediction horizons and a sampling frequency of fcf = 100 kHz. The test bench
is shown in Fig. 3.4. At the example of a two-step horizon (Np = 2) the drive performance is
evaluated in the following, similar to Section 2.6. Fig. 6.4 shows the phase currents and phase
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Figure 6.4: Motor M1: Three-phase stator current and spectrum for i∗d = 0 A, i∗q = 12.16 A,
nm = 3000 rpm with fsw≈ 12.0 kHz (experimental).
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Figure 6.5: Motor M1: Stator current ripple and ITHD with i∗d = 0 A, i∗q = 12.16 A,
nm = 3000 rpm and Np = 2 (experimental).

current spectrum for the proposed L−VSP2CC with dead-beat preselection in comparison to
the conventional FCS-MPC and FOC using SVM at the rated operating point. More precisely,
for nm = 3000 rpm, i∗q = 12.16 A and i∗d = 0 A, where I∗N = 8.6 A is the nominal current for motor
M1, see Table A.3. As expected, FCS-MPC and L-VSP2CC have slightly different average fsw

and thereby produce different current ripples depending on the operating point. Hence, λu is
adjusted for both MPC approaches to achieve a comparable average fsw and thus a fair compar-
ison of all three methods of interest. The chosen average switching frequency is fsw≈ 12 kHz.
The spectrum is calculated over 20 fundamental periods. From the comparison at high speed
and current, i.e., high modulation index, it can be concluded that the conventional FCS-MPC
and L-VSP2CC achieve a comparable current ripple and THD, see also Fig. 6.5.
However, the main advantage of the proposed method becomes apparent as soon as a low mod-
ulation index is required. In the partial load range, FCS-MPC uses active SVs for the entire
control interval, which results in an unnecessarily high current ripple due to the limited gran-
ularity for the switching instant. Fig. 6.6 shows the phase currents and phase current spectrum
for nm = 200 rpm, i∗q = 5.0 A and i∗d = 0 A with an average switching frequency of fsw≈ 10 kHz.
From the comparison at low speed and current, i.e., low modulation index, it can be concluded
that reduced current ripple and lower current THD can be achieved by using L-VSP2CC instead
of the conventional FCS-MPC at almost the same average fsw, see also Fig. 6.7.
In general, at high speed or for high reference currents (in contrast to low speed and/or for
small reference currents) a higher voltage margin is required. This implies that with direct MPC
(FCS-MPC and VSP2CC), more active SVs are used, whereas zero SVs are less frequently uti-
lized. The other way around, for low speeds and/or small reference currents, where zero vectors
are mostly used, the advantage of VSP2CC is obvious, since a VSP, i.e., a time instant within
the control interval at which the inverter switches change, is chosen.
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(a) Three-phase stator current for conventional FCS-
MPC with Np = 2, λu = 0.253, fsw≈ 10.0 kHz.

(b) Stator current spectrum for conventional FCS-MPC
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(c) Three-phase stator current for L-VSP2CC with
Np = 2, λu = 0.07, fsw≈ 10.1 kHz.

(d) Stator current spectrum for L-VSP2CC with
ITHD = 2.67 %.
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(e) Three-phase stator current for FOC and SVM with
fsw = 10.0 kHz.

(f) Stator current spectrum for FOC and SVM with
ITHD = 2.65 %.

Figure 6.6: Motor M1: Three-phase stator current and spectrum for i∗d = 0 A, i∗q = 5.0 A,
nm = 200 rpm with fsw≈ 10.0 kHz (experimental).

For the proposed cost function, it can be further assumed that when a constant λu is specified, an
approximately constant current ripple is achieved independent of the speed and reference cur-
rent, see Fig. 6.8. Here, exemplarily shown for λu = 0.1, the ripple keeps between 0.2−0.5 A.
Thus, the algorithm decides to switch less at lower speeds. At higher speeds, where it is also
necessary, there are more switching operations on average. Finally, on the voltage limit—for a
high modulation index—the controller switches the inverter less frequently to fully utilize the
dc-link voltage (up to six-step operation). Even though a fixed switching frequency is required
for grid applications due to the filter specification, a switching frequency dependent on the op-
erating point (mainly on the speed)—thus varying—seems to be naturally correct for electrical
drives. With respect to VSP2CC, where a similar THD is obtained compared to FOC, this can
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Figure 6.7: Motor M1: Stator current ripple and ITHD for i∗d = 0 A, i∗q = 5.0 A, nm = 200 rpm and
Np = 2 (experimental).
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Figure 6.8: Motor M1: Stator current ripple and ITHD using L-VSP2CC with a constant λu, here
λu = 0.1, while varying i∗q and nm where i∗d = 0 A and Np = 2 (experimental).

be considered as an advantage. It is also conceivable that a characteristic curve or map can be
stored for λu to adapt the permissible current ripple (or fsw) as a function of the operating point.

With regard to the weighting factor λu, as discussed in [KG20], its value can significantly affect
the system performance. For VSP2CC, if λu = 0 an unnecessary high current ripple results,
see Fig. 6.9(a). As can be observed, an increased current ripple occurs in every second sector.
The reason for this relates to the implementation of the MPC algorithm, and specifically the
evaluation order of the voltage SVs. If switching transitions are not penalized the zero voltage
SV evaluated first (i.e., v0) is the one to be always chosen. Since both zero voltage SVs yield
the same predicted current gradient, the associated cost of the current error in (6.5) is the same.
Hence, if a zero voltage SV yields the minimum cost among all SVs, then the one evaluated first
is the solution to (6.8), and thus the corresponding position is the one applied to the inverter.
This—depending on the sector—may lead to unnecessary switching, and thus deadtime for the
interlock, eventually causing an increased current ripple.
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Figure 6.9: Motor M3: Single-phase stator current with i∗d = 0 A, i∗q = 2 A at nm = 200 rpm using
L-VSP2CC with Np = 2 (experimental).

In contrast to this, SVM addresses this issue by appropriately changing the order with which the
zero and active voltage SVs are applied. For example, if the reference voltage space vector v∗dq
is in the first sector, the sequence of SVs applied within one modulation period is v0–v1–v2–
v7–v2–v1–v0. If it is in the second sector, the sequence becomes v0–v3–v2–v7–v2–v3–v0, and
so on. Thus, SVM has an inherent mechanism for reducing the current harmonics by changing
only one switch position when a new voltage SV is applied. Such a behavior, however, can be
achieved with direct MPC provided that λu > 0. To confirm the above analysis the following
evaluation is made:

• If v0 is evaluated first, the current ripple is increased in sectors II, IV, and VI, as shown
with “A” in Fig. 6.9(a).

• If v7 is evaluated first, the current ripple is increased in sectors I, III, and V, as shown
with “B” in Fig. 6.9(a).

• If the control effort in (6.5) is at least minimally penalized, e.g., by setting λu = 0.0001,
the current ripple is approximately constant in all sectors, regardless of the evaluation
order of the voltage SVs, as shown with “A” in Fig. 6.9(b).

• If the interlock time td is decreased, e.g., from 500 ns to 200 ns, the current ripple reduces
even if the control effort is not penalized, as shown with “B” in Fig. 6.9(b).

Based on the above observations, it can be concluded that when λu = 0 the current ripple is
higher even if the interlock time is reduced. On the other hand, λu > 0 not only allows one
to decrease the switching frequency—and, in effect, the switching power losses—but also it
improves the current quality, which can be translated into lower current THD, and thus lower
thermal losses. Hence, penalizing the control effort is the preferred choice, see also [KG20,
Section IV].
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6.3.2 Transient Performance

Since a torque measuring shaft is usually not able to accurately describe the transient behavior of
the torque, i.e., the update rate of the torque signal of the measuring shaft is only 1 ms [Pra], no
torque measuring values are shown. Instead, Fig. 6.11 shows the phase currents for the proposed
L-VSP2CC in comparison to the conventional FCS-MPC and FOC during transients. Fig. 6.11
(left side) shows the current during a reference current step from i∗q = 0 A to i∗q = 18.24 A (which
is 1.5IN) for a constant speed and Fig. 6.11 (right side) the phase currents for a speed transient
generated by the load machine. Fig. 6.10 shows a close-up view of Fig. 6.11 (left side) for the
single and three phase currents. Here, both DMPC approaches show the maximum achievable
dynamics by using only active SVs. FOC, adjusted according to the modulus optimum, requires
a trade-off between fast settling-time and low overshoots. However, as can be seen, for a certain
time—even if it is minimal—a zero SV is used, since the switching sequence is fixed for SVM,
see Section 2.1.2. To improve the transient performance, i.e., to reduce (avoid) the turn-on time
of the zero SVs and thus to exploit the available voltage margin more effectively, it is common
practice to change the pulse pattern depending on the operating point, e.g., alternating between
continuous SVM at low speed (i.e., low modulation index up to 2/

√
3) and discontinuous SVM

or switching with the fundamental frequency at high speed (i.e., high modulation index up to

4/π). The latter would be able to use the same dc-link voltage, i.e.,
2

3
Vdc, similar to the two

DMPC approaches. However, it is not straightforward to define a suitable criterion on the basis
of which the pulse patterns are changed. For this reason, and also because it is rarely used for
small drives, only continuous SVM is compared.
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Figure 6.10: Motor M1: Stator current during transient operation for a reference step from i∗q =
0 A to i∗q = 18.24 A with i∗d = 0 A at nm = 200 rpm and fsw ≈ 10 kHz with Np = 2

as close-up view from Fig. 6.11 (left side) (experimental).



130 6 Increasing the Switching Granularity of FCS-MPC

0 0.01 0.02 0.03 0.04 0.05 0.06
time (s)

-20

-10

0

10

20

 i
p
h
 (

A
)

(a) Current step for FCS-MPC with Np=2, λu=0.253.
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(b) Speed change for FCS-MPC with Np=2, λu=0.253.
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(c) Current step for L-VSP2CC with Np=2, λu=0.07.
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(d) Speed change for L-VSP2CC with Np=2, λu=0.07.
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(e) Current step for FOC with kp=1.0, Ti=2.8 ms.
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(f) Speed change for FOC with kp=1.0, Ti=2.8 ms.
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(g) Current step for FOC with kp=1.25, Ti=2.8 ms.
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(h) Reference speed change nm=200 to 2000 rpm.

Figure 6.11: Motor M1: Three-phase stator current showing a current reference step (left side)
from i∗q = 0.0 A to i∗q = 18.24 A with i∗d = 0 A, nm = 200 rpm and a load speed
change (right side) from nm = 200 to 2000 rpm with i∗q = 12.16 A, i∗d = 0 A. fsw ≈
10.0 kHz before the transient occurs and Np = 2 (experimental).
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(d) d-axis current at ϕ = π/6 rad.
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(e) Switching instant tz at ϕ = 0 rad.
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(f) Switching instant tz at ϕ = π/6 rad.
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Figure 6.12: Motor M1: Reference current step with i∗q = 18.24 A showing the resulting currents
id, iq, switching time tz and SVs by using L-VSP2CC with Np = 2, λu = 0.043,
nm = 3000 rpm when starting at different electrical rotor angles ϕ (simulation).

Another reason for the high dynamics with VSP2CC—which can also be observed with FCS-
MPC—is the MIMO optimization, see Fig. 6.12. More specifically, if, e.g., the reference current
in the q−axis is increased, the error in this axis dominates the cost function. Hence, only dis-
crete voltage SVs, i.e., active SVs, are selected first, which minimize the q−axis current error as
much as possible. This results in an increased current error in the d−axis, i.e., this current de-
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viation is accepted. Depending on the position in the hexagon—see Fig. 2.3(b)—the deviation
is even advantageous in transients. In Fig. 6.12 the explained effect is demonstrated for ϕ= 0

rad, i.e., when the q-axis is between two discrete SVs, and for ϕ=
π

6
rad, i.e., when the q-axis

is aligned with v3. All other sectors behave similar. Consequently, two extreme conditions must
be distinguished. First, the d-axis or, second, the q-axis is aligned with a discrete SV.
For the first case, e.g., at ϕ= 0 rad, the cost function almost always chooses v3, resulting in a
negative id that leads to field weakening, i.e., it reduces the induced voltage ωel(Ldid + ψpm).
This allows more voltage, i.e., vq, to reach i∗q faster.
In the second case, e.g., at ϕ=

π

6
rad, a positive id results. However, since the q-axis is aligned

with a discrete SV, i.e., v3 contributes only to vq, it is still the best choice to minimize the cost
function and reach i∗q . However, this effect is mainly visible at higher speeds, i.e., at higher in-
duced voltage, and is not as pronounced at low speeds as shown for ϕ= 0 rad in Fig. 6.3.
In summary, using DMPC, both currents reach their respective references, i.e., steady state,
much faster compared to FOC with decoupling network. The latter uses independent SISO
PI-based controllers, whereas the d-axis controller does not and cannot know—possible super-
imposed strategies and feedback paths not included—that if it would allow a temporary error
for id, this would help the q-axis current, whereby collectively seen the steady state would be
reached faster.

6.3.3 Influence of Model and Parameter Inaccuracies

Akin to Section 2.6.3, the parameter sensitivity of the algorithm is evaluated by changing the
parameters in the model while those of the machine remain the same. Fig. 6.13—similar to
Fig. 2.29—shows the influence of the proposed method regarding to parameter mismatches.
Similar to conventional FCS-MPC, the inductance is the most important parameter as it deter-
mines the gradient for the predicted current change. If, e.g., the inductance in the machine is
only half of the inductance assumed in the prediction, i.e., 0.5L in the figures, an unnecessarily
high current ripple will occur. In contrast, an inductance assumed to be too small for the predic-
tion (2.0L) reduces the THD, which, however, also leads to a steady-state deviation, since the
slope of the predicted current is steeper than in reality.
These effects are also shown for the simulated dq-currents in Figs. 6.14-6.15. Similar to FCS-
MPC, at higher speeds, a mismatch in ψpm results in a steady-state drift. The resistance has an
identical behavior on L-VSP2CC as on FCS-MPC, whose mismatch has a marginal effect on
the control performance even at rated current. Even though a small steady-state error is also
apparent here, see Fig. 6.15.
Not shown but nevertheless with high influence is Vdc, which is an integral part—based on
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Figure 6.13: Motor M1: Trade-off between stator current ITHD and fsw with different parameter
mismatches for Np = 2 (experimental).
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Figure 6.14: Motor M1: Steady-state deviation for i∗d = 0 A, i∗q = 5.0 A, nm = 200 rpm with
different parameter mismatches using Np = 2 and a constant λu = 0.045
(fsw≈ 4.6 kHz without parameter variations) (simulation).
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Figure 6.15: Motor M1: Steady-state deviation for i∗d = 0 A, i∗q = 12.16 A, nm = 3000 rpm
with different parameter mismatches using Np = 2 and a constant λu = 0.112
(fsw≈ 18.6 kHz without parameter variations) (simulation).
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Figure 6.16: Motor M1: Single-phase stator current during transient operation using L-
VSP2CC and different parameter mismatches for a reference step from i∗q=0 A to
i∗q=18.24 A with i∗d=0 A, nm=200 rpm, fsw ≈ 10 kHz and Np=2 (experimental).

(2.12)—of the different SVs, which in turn are necessary for the current prediction (2.73). An
incorrect Vdc during prediction can cause a similar behavior as an incorrect inductance. How-
ever, since the voltage is measured and can therefore be assumed to be accurate, this will not be
discussed further here.

Finally, Fig. 6.16 shows the influence of parameter mismatches on the transient performance of
VSP2CC. In contrast to FCS-MPC, the inductance may also have an influence on the transient
behavior. In case of 2.0L the dynamic range is ideal at first. However, close before reaching
the reference, i.e., as soon as a VSP is used, a too flat predicted current gradient leads to a too
short application of an active SV, thus voltage-time area is missing. As a result the current in
the last section, i.e., t= 0.35− 0.4 ms, of Fig. 6.16(a) approaches the reference only slowly. In
case of 0.5L, suboptimal VSPs create unnecessary switching and thus reduce the dynamic in
transients. Although the currents of the other two phases are not plotted in Fig. 6.16(a), they
show a current ripple that explains the loss of dynamics. However, this may not be the case if
VSP2CC applies one SV for the entire control interval, i.e., if the use of a VSP is not selected
during the transient. The latter is shown for comparison, e.g., in Fig. 6.12.
In case of a mismatch for the resistance, i.e., Fig. 6.16(b), the transient performance is not
affected, similar to the conventional FCS-MPC in Fig. 2.32(b).

6.4 Final Assessment

The combination of the two performance criteria for PMSMs, i.e., low THD and fast transient
response, shows the great advantage of the presented L-VSP2CC approach.
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L-VSP2CC enables a high granularity for the switching instants. As a result, the drive perfor-
mance, as quantified by the current distortions, i.e., current THD, is significantly improved.
Compared to FCS-MPC, the current ripple, and thus indirectly the torque ripple, can be signif-
icantly reduced depending on the operating point (assuming a comparable average fsw). Com-
pared to FOC, similar performance is achieved. However, regarding noise, vibration, and harsh-
ness (NVH) and the possible excitation of resonances, the spread spectrum of L-VSP2CC can
even be seen as an advantage over FOC with SVM, see also [Hol94]. Even though the fixed
switching frequency of SVM is a prerequisite for grid applications due to the required filter de-
sign, this is not mandatory for motor applications. Consequently, due to the spread spectrum—
comparable to white noise—a uniform noise of low amplitude is generated. This avoids the
fixed high-frequency noise with comparatively higher amplitudes—in the audible range up to
20 kHz—resulting from the modulator, see, e.g., Fig. 6.4.

Moreover, VSP2CC comes with all FCS-MPC advantages, such as direct consideration of con-
straints, or the possibility to apply only active SVs during transients. The latter allows for the
fastest possible dynamic operation of the drive, limited only by the available dc-link voltage
margin. As a result, very fast transients are achieved with very short settling times. More specifi-
cally, VSP2CC can be executed at a frequency of, e.g., 100 kHz and thus reacts in transients quite
fast, even though it operates the drive system with a much lower switching frequency depending
on the operating point and the selected λu. Such an ability to adapt the switching frequency de-
pending on the operating point (e.g., at different motor speeds) is particularly advantageous for
electrical drives, as switching only takes place when required. As a result, unnecessary switch-
ing power losses can be avoided over the whole operating range.
FOC, in contrast, makes decisions at a much lower frequency rate, which is at most twice the
(constant) switching frequency for asymmetrical sampling or the same for symmetrical sam-
pling, regardless of the operating point. Thus, in transients FOC reacts much slower compared
to VSP2CC (assuming a similar fsw), although for FOC the delay times can also be compensated
for predictively, see, e.g., [Ric16]. Finally, when using FOC, the PI gains must also be adjusted
depending on the operating point.

The above imply that the proposed VSP2CC shifts the control effort from the design to the
computational stage. The latter, nevertheless, is simplified thanks to the control platform used,
see Chapter 3. Although the industry-oriented first system was chosen for the measurements
shown here, the second system—see Fig. A.2 of Appendix A.3—can be used to increase the
performance even further, i.e., increase the control frequency—thus the granularity of switch-
ing [KG20]—or the prediction horizon.



136 7 Prediction of the Flux Linkage Behavior

7 Prediction of the Flux Linkage Behavior

For a highly dynamic control, and especially for MPC, the nonlinear effects of the controlled
system, i.e., of the PMSM and inverter, must be taken into account to achieve the best possible
performance. Since in Section 6.3.3 the inductance, which can be rather nonlinear due to satu-
ration, was identified as the most critical parameter with the greatest impact on the performance
of VSP2CC, a high accuracy for the inductance over the entire operating range should be en-
sured. As shown in Section 2.6.3, the same necessity applies to conventional FCS-MPC. Thus,
it can be generally concluded that the inductance has the greatest influence on the performance
of direct MPC. Consequently, this chapter presents an extension of the VSP2CC algorithm ex-
plained in Chapter 6, which uses the flux linkage instead of the machine inductances for the
stator current prediction. The results were first published in [WKDK20, WKG+21].

All previous DMPC and expecially VSP2CC approaches, when designed for electrical drives,
see, e.g., [LK12, KSK+14, SKT+13, ZXL+14, ZBY18, KMG18, WKDK19], use prediction
models that rely on knowledge of the (absolute) motor inductances for computing the optimal
switch positions and the corresponding VSPs. This might be accurate enough for drives based
on induction motors, SPMSMs or IPMSMs operating in the linear region of the magnetic cir-
cuit. Since most of the small electrical drives do not leave this linear region, and therefore the
nonlinearities are negligible, a prediction can be made with sufficient accuracy.
However, when machines with a strong nonlinear magnetic circuit are of concern, such as most
IPMSMs or SynRMs, the prediction model accuracy degrades. Especially for highly utilized
IPMSMs, which are becoming increasingly popular due to the associated lower manufacturing
costs and weight, it becomes evident that an accurate prediction model is challenging since sat-
uration effects already occur in the nominal range [RGD14]. Such a need becomes even more
prominent given that cross-coupling effects are almost always present and cannot be neglected
for most IPMSM designs [vvD+03, MTSL08].

Predictive approaches using nonlinear models still hardly exist [Gem15, p. 8], but can be
promising for MPC, as pointed out, e.g., in [Pre13, p. 123]. As Schroeder has already rec-
ognized, „the effort of implementing a current control in the rotating coordinate system lies in
reducing the effects of the coupling dynamics on the current control dynamics to a minimum ac-
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ceptable level“ [Sch15, p. 738].1 For indirect current control methods, i.e., when using a modula-
tor, first predictive approaches for saturated cross-coupled PMSMs are shown, e.g., in [RGD14],
[DRB16], [Mey10, p. 71 ff.], [Min13, p. 162 ff.], [Gem15, p. 107 ff.] or [Ric16, p. 61 ff.], which
were mainly used to compensate for the delay time—introduced by sampling and calculation
times—and for decoupling the PI-based current controllers. A detailed description of these pre-
dictive controllers—which were used in combination with PI-based controllers—and the re-
spective nonlinear models are described, e.g., in [Ric16, p. 62], [RGD14] or [Gem15, p. 108].
The latter two focus on accounting for the nonlinearities of the machine in the control algorithm
to optimize the control behavior in dynamic situations. Consequently, since the trend goes more
and more in the direction of highly utilized synchronous machines—also for small drives—
direct current control methods, e.g., the proposed DMPC approach, should be extended in order
to include saturation and cross-coupling effects as accurate as reasonable.

In an attempt to improve the modeling accuracy of PMSMs, differential inductances Ldd, Ldq,
Lqq and Lqd can be used, see Section 2.2.1.2. When using differential inductances for the pre-
diction model of DMPC, the nonlinear voltage equation (2.24) can be used. However, predicting
the change in current for each discrete space vector, similar to (2.73) with the absolute induc-
tances, has some drawbacks when using differential inductances. Although these inductances
can be used to separate the physical processes, a closed-loop control would require accurate
knowledge of all the individual partial derivatives of the flux linkage. Due to their dependency
on the changes in current, they are susceptible to noise-contaminated current measurements
when identified by the inverter, as explained in Section 4.3.4. Moreover, introducing four (three
if symmetry is utilized) three-dimensional maps—as a function of the two current components
in d- and q-axis—implies a higher memory requirement, which also implies an increased com-
putational effort for traversing and using them. The latter aspect becomes even more important
when considering the real-time implementation of the algorithm, see Section 7.6. In summary,
differential inductances are not used to predict the change in current due to the following two
disadvantages:

1. In contrast to differential inductances, the flux linkage term directly describes the real
machine behavior and is therefore concise, i.e., fewer calculations are required to predict
the machine equations, i.e., less complexity.

2. To determine differential inductances, the flux linkage must be derived according to the
current, which can be affected by noise-contaminated current measurements. Thus avoid-
ing the derivation is more robust.

1Original text: „Daher liegt der Aufwand der Implementierung einer Stromregelung im rotierenden Koor-
dinatensystem darin, die Auswirkungen der Verkopplungsdynamiken auf die Stromregelungsdynamiken auf ein
minimal akzeptierbares Maß zu reduzieren.“
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A much more resource efficient, intuitive, and mathematically equivalent approach would be to
use (2.20) to predict the change in flux linkage. This requires a transfer function from current
to the flux linkage and vice versa, i.e., a polynomial function, neural network or map.
Motivated by the argumentation in Section 4.3.4, this chapter proposes the utilization of flux
linkage maps—instead of polynomial functions—in the prediction process. In this way, a rel-
atively computationally efficient MPC algorithm can be developed since only two maps are
required, while being more intuitive since the flux linkage directly describes the behavior of the
machine. Moreover, the proposed MPC algorithm is more robust to system parameter variations
because it automatically identifies or adapts the flux linkage in real time and therefore does not
require detailed prior knowledge of the machine inductances, see Section 4.3.4.
As a result, the predictions of the future behavior of the PMSM are more accurate, enabling the
calculation of more effective VSPs and thus improving the system performance, which is quan-
tified by the THD of the stator current. This is highlighted by the experimental results presented,
especially for drive systems with significant nonlinearities.

7.1 Derivation of the Change in Flux Linkage

The change of the flux linkage is described by (2.21). Even if saturation and cross-coupling
effects increase through the use of highly utilized synchronous machines (see Section 2.2.1.2),
the mentioned equations consider these effects. However, negative manufacturing influences
that result in an unequal air gap and thus an unequal air-gap field are difficult to account for,
due to the following two reasons:

1. Identifying a flux linkage map, which respects not only the influence of id and iq, but also
the electrical rotor angle, implies one current combination at each discrete rotor position.
On top of this, an adequate discrete step size for the rotor position granularity is necessary.
As can be expected, the measurement of such an exact rotor position during the control
process seems to be very complex and probably also very inaccurate.

2. Working in a rotating dq-frame, each harmonic, or at least the dominant ones, must be
transformed with the corresponding harmonic frequency. The number of pronounced har-
monic frequencies, i.e., the harmonics to be respected, can vary for several PMSMs (see,
e.g., motor M4), so a generic approach seems difficult.

Since the identification of the rotor position-dependent influence would be quite challenging
for real-time applications and the processing in the control algorithm would be quite compu-
tationally intensive—since a four-dimensional map would result for the flux linkage maps—a
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small prediction error is accepted. Even if it were possible to identify the position effect in real
time, it is questionable whether the accuracy would be good enough to generate additional value
for MPC performance. Consequently, the position-dependent asymmetry in the air gap is not
modeled, i.e., the last term in (2.21) is neglected similar to [Ric16, p. 25], and therefore not
considered in the MPC algorithm. In addition, negative manufacturing influences that lead to an
unequal air gap and thus an unequal air-gap field are negligible within a small tolerance band
[GT18]. However, as shown in Chapter 8, a generic correction term can deal with the compen-
sation of harmonics that are present due to the design of the machine in order to achieve the
smoothest possible current (or torque).

Neglecting the rotor dependency for the flux linkage maps, the voltage equation (2.20) can be
rearranged regarding the flux linkage change as

dψdq(t)

dt
= vdq(t)−Rph(t)idq(t)− ωel(t)Pψdq(t) . (7.1)

If (7.1) would be discretized with the help of forward Euler discretization—see Section 2.1.3—
a prediction of the flux linkage could be done in the same way as in the previous chapters for
the current. Thereby it would be assumed that the speed and current at the time step k can be
used to predict the slope up to k+ 1, see also [Gey17, p. 155]. In other words, forward Euler
is sufficiently accurate as long as the product of speed and the change of flux linkage during
one prediction interval is negligible, i.e., ωel(ψdq(k+ 1) − ψdq(k)) ≈ 0. However, this cannot
be guaranteed for small electrical drives—which often have a high number of pole pairs and
thus high electrical angular speed—in combination with longer calculation intervals Tcf. An
illustrative explanation of these effect can be found, e.g., in [Ric16, p. 23].

In an attempt to improve the prediction accuracy—in addition to the use of the flux linkage—
the prediction equation is adapted. Therefore, an additional modification is added to the forward
Euler discretization in order to make the approach more robust at high speeds. Consequently,
the voltage equation (2.20) gives [RGD14]

vdq(k) = Rphidq(k)+
∆ψdq(k+1)

Tcf
+

1

2
ωel(k)PΣψdq(k+1) (7.2)

where ∆ψdq(k+ 1) = ψdq(k+ 1) − ψdq(k) and Σψdq(k+ 1) = ψdq(k) + ψdq(k+ 1). The
voltage equation can be rearranged in order to get the flux linkage at the end of the discrete
interval (k+ 1) by using

ψdq(k+1) = ψdq(k) + Tcf

(
vdq(k)−Rphidq(k)− 1

2
ωel(k)P (ψdq(k) +ψdq(k + 1))

)
. (7.3)
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Assuming a constant electrical speed ωel as well as temperature for the permanent magnets and
the stator resistance Rph during one control interval Tcf

2, after some algebraic manipulations
shown in Appendix A.2.2, the flux linkage at time step k+ 1 is given by3

ψdq(k+1) ≈ ψdq(k) + Tcf
vdq(k)−Rphidq(k)− ωel(k)Pψdq(k)

1 +
1

4
T 2

cf ω
2
el(k)

. (7.4)

As can be seen, the above expression shows that the future behavior of the drive has been
decoupled from the machine inductances, adding a high degree of robustness to variations in
them. Finally, it should be mentioned that (7.4) is also used for the compensation of the delay
time, i.e., the time interval between the measurements occur and the execution of the control
action, caused by the real-time system.

7.2 VSP2CC with Flux Linkage-Based Prediction

In contrast to Chapter 6, and actually all other FCS-MPC as well as VSP2CC approaches, the
flux linkage is used for the current prediction in the presented method. Consequently, since the
stator current is both measured and optimized, a function to map the current into the flux linkage
and vice versa is required. To this end, the following expressions are utilized

fψ : R2 → R2, (id, iq)→ (ψd, ψq) (7.5a)

f−1
ψ : R2 → R2, (ψd, ψq)→ (id, iq) . (7.5b)

Here, fψ is identified as described in Section 4.3.4. Since fψ is uniquely invertible for all
PMSMs according to Maxwell’s 2nd law, f−1

ψ can be calculated numerically relatively easily.
In doing so, (7.5a) is used to map the measured current idq(k− 1) into the corresponding flux
linkage. This procedure is required only once per sampling interval, i.e., after the current mea-
surement. Next, the predicted flux linkage is calculated using (7.4). Subsequently, (7.5b) is used
to get idq(k+ `), with ` = 1, . . . , Np. Thus, the procedure of the reverse mapping is performed
after each individual prediction step, since the optimization problem underlying VSP2CC (see
Section 7.4) optimizes the current behavior.

2The temperature for the permanent magnets and the stator resistance Rph is updated before each prediction
process, see Section 4.3, but is kept constant during the prediction.

3It has to be mentioned that the adaption in (7.2) is only required at high speeds, as exemplified in Ap-

pendix A.2.2. When such extreme conditions are avoided, forward Euler is sufficient and 1 +
1

4
T 2

cf ω
2
el(k) ≈ 1

can be assumed for the denominator.
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Figure 7.1: Flux linkage- and inductance-based VSPs tz resulting by the intersection of two
possible trajectories of the q-component of the stator current idq. The measured
current is obtained when L-VSP2CC is used while saturation occurs. For simplicity
only the q-component of the current is shown.

Thanks to the utilization of the flux linkage maps and the decoupling of the prediction process
from the machine inductances, an improved gradient calculation can be acknowledged, espe-
cially when considering nonlinear PMSMs. This is exemplified in Fig. 7.1, where the current
trajectory computed with the inductance-based prediction model (2.73) leads to a suboptimal tz,
causing an unnecessarily high current ripple compared to the resulting ripple from the proposed
method.

More specifically, the example in Fig. 7.1 shows the case where the inductance-based predic-
tion model assumes a constant absolute inductance, but in the real system (i.e., the machine)
the inductance is halved due to saturation. This also halves the electrical time constant τel, re-
sulting in an actual current that is twice as high as the predicted value. The proposed method,
however, avoids such pitfalls, enabling a more accurate calculation of the current trajectories,
and, consequently, of VSPs thanks to which the current ripple can be significantly decreased.

Regarding the flux linkage, the nonlinear functions fψ and f−1
ψ are stored in flux linkage maps

and identified online during operation, as explained in Section 4.3.4. At this point, an impor-
tant distinction must be made when using the online parameter identification method, as each
map exists in two copies, i.e., in the RAM of the processor and the FPGA. Regarding the for-
mer, the flux linkage maps in the RAM are accessed by the processor and are modified in real
time with the identification procedure described in Section 4.3.4. However, since the prediction
procedure and the subsequent optimization process are fully implemented on the FPGA, the
maps are also stored there so that can be directly used without introducing any communication
delays. The procedure is illustrated in Fig. 3.3. This, however, may tax the computational and
memory resources required for the proposed algorithm. To address this, methods that alleviate
the computational load are implemented, as explained in the sequel.
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7.3 Interpolation and Extrapolation

The online identification of the flux linkage maps is performed on a processor in a time-
uncritical manner by—theoretically—using any kind of interpolation and extrapolation meth-
ods, e.g., IDW or cubic spline, see Section 4.3.4. For the FPGA implementation, however, in-
terpolation and extrapolation are relatively complex.

Interpolation An option for avoiding interpolation on the FPGA is to use flux linkage maps
with a very big number of sampling points. In this way, (valuable) DSP slices required for inter-
polation on the FPGA remain available for other functionalities, see Table 9.3 in Section 9.4.2.
There are two ways to do this. One option is to store them in the RAM, where they are accessed
during each control and prediction iteration. However, as mentioned before, storing these points
in the RAM is not practical due to the very long latency associated with the memory access. If
one adds up each memory access in each prediction step, the required prediction time would in-
crease significantly. Alternatively, all sampling points could be stored in FPGA registers. How-
ever, this is also a poor choice from an implementation point of view since a significant amount
of resources would be required for an acceptable degree of granularity. For example, consid-
ering the Zynq-7000 in Chapter 3, all available LUTs of the FPGA would be used for one
256× 256 map. Maps with lower granularity, e.g., a 100× 100 map, would result in a granular-
ity of 600 mA for a current range of [−30, 30] A, which is not accurate enough.
It is therefore not recommended to use the "nearest" choice, but rather interpolation. More
specifically, the use of linear interpolation is recommended due to its resource efficiency—using
FPGA registers—and dramatically reduced calculation time (and latency) inside the FPGA, as
shown in Table 9.3 of Section 9.4.2. Moreover, as can be seen in Fig. 7.2, such an interpolation
method is accurate enough despite its simplicity. When considering the test motor M3 (see Ta-
ble A.3), a 16× 16 map and a current range of [−30, 30] A, the maximum deviation is 3 mA,
which is negligible for the considered measurement range. Hence, no performance deterioration
is observed comparing with the cubic spline method. Furthermore, as explained in Section 4.3.4
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Figure 7.2: Motor M3: Comparison of interpolation methods for prediction using i∗d = − 1 A,
i∗q = 14 A at steady state with a speed of nm = 100 rpm (simulation).
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flux linkage maps have always a continuous course and, if rotor position angle dependencies
are neglected or averaged, they are also monotonically nondecreasing. Consequently, based on
the proper identified flux linkage maps—interpolated by using a more accurate interpolation
method, i.e., IDW, in a time-uncritical task—a linear interpolation for the control approach is
sufficient and feasible in real time.

Extrapolation Considering resource efficiency and control frequencies of fcf = 100 kHz, ex-
trapolation on the FPGA is complex and therefore better avoided. Thus, only interpolation is
performed on the FPGA. Consequently, the resulting flux linkage maps must cover at least the
entire current measurement range to allow prediction of current trajectories over the entire oper-
ating range. For this reason, the maps are generated in the processor using both interpolation and
extrapolation so as to cover the whole measurement range of the current sensors as described in
Section 4.3.4. This means that if, e.g., the measuring range of the current sensor is [−30, 30] A,
the flux linkage map created in the processor should cover at least this range, i.e., the processor
uses IDW to calculate a flux linkage map that covers a range of [−32, 32] A. Due to reasons
explained in Section 3.1.2, parameter combinations at fixed, regular intervals (grid intervals),
e.g., 2 A, are chosen for the FPGA implementation. This results in 32× 32 maps, which are
then transferred from the processor to the FPGA during operation so that they are available for
all steps of the prediction process. Hence, not performing extrapolation on the FPGA during the
prediction has no adverse effects since the required information is readily available.

7.4 Optimization Problem

The optimization problem remains nearly the same compared to the one used for the inductance-
based prediction in Section 6.2. The cost function (6.5), the current constraint definition (6.6)
and the same switching states (6.7) are used. With cost function (6.5) and the additional mapping
functions (7.5a) and (7.5b), the VSP2CC problem is slightly adjusted and is stated as

minimize
ūabc ∈U

Jf (see (6.5))

subject to (7.4), (7.5a), (7.5b), (6.6) .
(7.6)

Solving (7.6) yields the optimal switch position(s) ūabc,con which is (are) to be applied at the
corresponding optimal switching time instant(s), i.e., t= 0 and/or tz,con. Although the optimiza-
tion remains the same, the prediction in this case is based on the flux linkage.
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The entire optimization problem is shown in Algorithm 3, where the additional calculation steps
compared to the inductance-based VSP2CC variant (see Algorithm 2) are highlighted in gray.
In addition, the modified—(2.73) is replaced by (7.4)—calculation steps are highlighted in red.

Algorithm 3 Flux linkage-based VSP2CC
1: function ūABC,CON,tZ,CON =ψ-VSP2CC(i∗dq, idq, ϕ,Np, ωel, Vdc)
2: ψdq(k−1)← idq(k−1) using (7.5a)

3: ψdq(k)← predict using (7.4) with tz and Tcf . delay time compensation

4: idq(k)← ψdq(k) using (7.5b)
5: vdq,db(k)← dead-beat solution using (5.1) . search space reduction
6: γdb(k)← ∠vdq,db(k) using (5.2) . sector of candidate vdq(k)
7: for ` = 1, . . . , Np do
8: vdq(k+`−1)← based on ϕ(k+`−1), Vdc(k) . three candidate SVs based on γdb(k)
9: for j = 1, . . . , 3 do . one SV within Tcf

10: ψdq,j(k+`)← predict using (7.4)

11: idq,j(k+`)← ψdq,j(k+`) using (7.5b)
12: ||idq,j(k+`)|| ← idq,j(k+`) using (6.6) . current constraint
13: if ` = 1 then
14: mj(k+`)← using (6.1) . idq gradients
15: end if
16: end for
17: if ` = 1 then . VSP for Np = 1
18: for n1 = 1, . . . , 3 do
19: for n2 = 1, . . . , 3 do
20: if n1 = n2 then . one SV within Tcf

21: idq,n1,n2(k+`)← idq,j(k+`)
22: else . VSP for two SVs
23: tz,n1,n2(k+`)← (6.4) . VSP
24: ψdq,n1,n2

(k+`)← predict with (7.4) 4

25: idq,n1,n2(k+`)← ψdq,n1,n2
(k+`) using (7.5b)

26: ||idq,n1,n2(k+`)|| ← idq,n1,n2(k+`) using (6.6) . current constraint
27: end if
28: end for
29: end for
30: end if
31: ūabc,con(k), tz,con(k)← solve (7.6)
32: end for
33: end function
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7.5 Assessment of Influencing Factors

The utilization of the flux linkage maps in the prediction process, i.e., the ψ-based—in com-
parison to the L-based in Chapter 6—prediction, is particularly advantageous for (small) drives
with saturation and cross-coupling effects for several reasons. More specifically, MPC with an
L-based prediction model suffers from the following pitfalls:

• The bigger the phase resistance Rph, as is the case, e.g., with small motors (ironless wind-
ing), the bigger the voltage drop across it. This, in turn, can lead to a significant prediction
error. Since in case of the L-based prediction the inductance appears in the denominator
of (2.73), a decrease in it results in an underestimated voltage drop across Rph. A reduced
inductance due to saturation, e.g., by half, erroneously leads to a predicted voltage drop
across Rph, which is half than it actually is.

• The larger the ratio between Ld and Lq, the more significant the prediction error when
saturation happens. However, if the ratio remains constant over the entire operating range
such effects may cancel each other in the term ωelLdq of (2.73).

• For inductances that are almost equal, i.e., Ld ≈ Lq, the influence of ωel on the prediction
error is practically nonexistent in the d-axis and relatively small in the q-axis.

• Assuming a constant ϑm, the lower the ωel is, the bigger the prediction error. This is
due to a lower induced voltage at low speed which leads to a more significant voltage
drop across the resistance and inductances. In other words, the increased current change
causes an increase in the prediction error within one Tcf. This, however, as mentioned
above, affects only the q-axis.

• The less ψd is affected by ψpm, i.e., more reluctance difference, the bigger the prediction
error on the q-axis.

• For a given IPMSM and saturation effect, the prediction error increases with a higher
dc-link voltage Vdc or longer control interval Tcf, i.e., when the ratio between fcf and fsw

decreases.

4Theoretically, at time instant tz, (7.5b) must be used to get idq,n1,n2 so that the voltage drop over the resistance
in the second part of the control interval is computed based on a more accurate current.
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7.6 Performance Evaluation

The good steady-state and dynamic behavior of the L-VSP2CC was shown in Section 6.3.
Therein, low current distortions and fast transient responses for a PMSM-based drive system
are demonstrated. As shown in this section, such features remain in place with the proposed
VSP2CC scheme that utilizes flux linkage maps (i.e., ψ-VSP2CC). Moreover, such a favorable
performance is even more pronounced with nonlinear machines. To show this, one PMSM with
(mostly) linear behavior, i.e., motor M1, and two nonlinear machines (M3 and M4) have been
validated as case studies. The parameters of the PMSMs under considerations are provided in
Table A.3, while the flux linkage maps of motor M3 and M4 are shown in Figs. 4.16(a)-4.16(b),
and Figs. 4.16(c)-4.16(d), respectively. Motor M1 and M3 are commercial ones, whereas motor
M4 is a self-built prototype with fractional slot non-overlapping concentrated windings, where
harmonics are more pronounced in the machine design. Given the rather linear nature of mo-
tor M1, L-VSP2CC and ψ-VSP2CC—under the assumption that the inductances were correctly
identified—showed completely identical behavior, so the comparison was used for verification
purposes only. Thus the reader is referred to the results in Section 6.3.
Similar to the previous chapter, FOC with SVM serves as benchmark for comparing the per-
formance of the proposed ψ-VSP2CC and L-VSP2CC. Note that for a fair and meaningful
comparison, the weighting factor λu in the MPC methods is adjusted such that (approximately)
the same average switching frequency fsw results for operation under the same conditions.

7.6.1 Steady-State Performance

Figs. 7.3 and 7.4 show the simulated steady-state behavior of the id and iq currents for the non-
linear motor M3. For comparison purposes, the performance with the L-VSP2CC scheme is also
shown in the same figures. As can be seen, the latter control approach leads to an unnecessarily
high current ripple (see the measured current shown with the blue line) and—consequently—
high THD due to the inaccurate calculation of tz (see the predicted current shown with the light
blue line). On the other hand, the proposed ψ-VSP2CC, which uses the flux linkage maps—see
Figs. 4.16(a) and 4.16(b)—in the prediction process, computes the VSP instant tz such that the
current ripple (red line) is significantly lower. Consequently, the current THD also reduces.
Such an improved steady-state performance is even more pronounced with the prototype motor
M4 due to its stronger nonlinear behavior.
The steady-state performance comparison—in terms of current THD (ITHD)—for the different
drive systems and control approaches in question is summarized in Figs. 7.5-7.11.
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Figure 7.3: Motor M3: VSP2CC at ∠ψdq =
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6
rad with Np = 2, fsw≈ 11.5 kHz and

nm = 100 rpm (simulation).
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Figure 7.4: Motor M3: VSP2CC at ∠ψdq =
π
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rad with Np = 2, fsw≈ 11.5 kHz at nm = 100 rpm

(simulation).

First, Fig. 7.5 shows the steady-state three-phase current and corresponding spectra, respec-
tively, with both VSP2CC approaches and FOC for current reference values in the range of
current saturation for motor M3. Low speed, i.e., a low modulation index, is chosen since pa-
rameter inaccuracies have a higher impact in that case, see Sections 2.6.3 and 6.3.3. In addition,
Fig. A.14 of Appendix A.5 shows operation at the nominal speed, i.e., 3000 rpm. As can be
seen, ψ-VSP2CC outperforms L-VSP2CC, while the produced current THD with the proposed
method is similar to that of the conventional control solution, i.e., FOC with SVM. For all spec-
tra, the typically 5th and 7th harmonic are visible. In addition, in case of SVM, the amplitudes
of the harmonic group of the 2nd multiple of fsw are pronounced and also higher than the ampli-
tudes of the harmonics around fsw due to the low modulation index. In contrast, with VSP2CC
the typically spread spectrum is visible, whereby the amplitudes of the L-VSP2CC approach
are on average higher than those of ψ-VSP2CC, resulting in an increased THD.

Fig. 7.6 shows the current ripple for both discussed operating points, i.e., low and high speed,
when saturation is present. Since motor M3 is only slightly nonlinear, the difference between
the two VSP2CC approaches is small.



148 7 Prediction of the Flux Linkage Behavior

0 0.05 0.1 0.15 0.2
time (s)

-15

-10

-5

0

5

10

15

 i
p
h
 (

A
)

(a) Three-phase stator current for L-VSP2CC with
fsw≈ 10.2 kHz.

(b) Stator current spectrum for L-VSP2CC with
ITHD = 1.85 %.
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(c) Three-phase stator current for ψ-VSP2CC with
fsw ≈ 10.3 kHz.

(d) Stator current spectrum for ψ-VSP2CC with
ITHD = 1.48 %.
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(e) Three-phase stator current for FOC and SVM with
fsw = 10.0 kHz.

(f) Stator current spectrum for FOC and SVM with
ITHD = 1.49 %.

Figure 7.5: Motor M3: Three-phase stator current and spectrum for i∗d = − 5 A, i∗q = 18.03 A,
nm = 200 rpm with Np = 2, fsw≈ 10.0 kHz (experimental).

The evaluation in Fig. 7.7 shows that the more heavily the control effort is penalized (i.e., the
lower fsw gets by increasing the value of λu) the more important the prediction model accuracy
becomes. This means that at lower switching frequencies, fsw, the difference in the current THD
produced by L- and ψ-VSP2CC gets bigger. In addition, Fig. 7.7(d) shows that a recognizable
difference between both VSP2CC approaches—due to the nonlinear magnetic behavior—starts
for motor M3 in the range of the nominal current, i.e.,

√
2IN = 12.02 A.

Furthermore, as also shown in Fig. 7.7(d), a longer prediction horizon, e.g., Np = 5 is required
for an extremely low modulation index, i.e., at very low currents and speeds, to achieve a com-
parable THD as FOC with SVM. This can be explained by the fact that the time window in
which switching should take place is better covered, see also Fig. 6.3.
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Figure 7.6: Motor M3: Single-phase stator current ripple as close-up view from Fig. 7.5
and Fig. A.14 to show the switching behavior in comparison for operation using
VSP2CC with Np = 2 and FOC with SVM in steady state (experimental).
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(f) i∗d = 0 A, i∗q = 18.03 A, nm = 3000 rpm.

Figure 7.7: Motor M3: Trade-off between ITHD and fsw as well as ITHD and iq for VSP2CC and
FOC with SVM (experimental). System two, see Fig. A.2, was used for Np = 5.

Similar performance behavior is observed with the other nonlinear motor, namely motor M4.
This is demonstrated in Fig. 7.8, where the phase currents for two different operating points are
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Figure 7.8: Motor M4: Single-phase stator current for L- and ψ-VSP2CC with i∗d =−5.0 A,
i∗q = 14.0 A, nm = 200 rpm, Np = 2 at fsw≈ 16 kHz. For comparison, an operating
point without saturation, i.e., i∗d = 0 A, i∗q = 5.0 A, is shown (experimental).

shown when using L- and ψ-VSP2CC with Np = 2. Due to saturation, caused by an increasing
reference current, the current ripple and THD of L-VSP2CC also increases.
Fig. 7.9 shows the phase current and respective current spectra for motor M4 at low speed. Due
to the increased nonlinear magnetic behavior in motor M4, the positive influence of ψ-VSP2CC
becomes even more obvious. In addition, Fig. A.15 of Appendix A.5 shows operation at higher
speed, i.e., 800 rpm. Despite the good results, it has to be mentioned that the THD of motor
M4 shows a difference between simulation and experiment. As can be seen in the spectrum of
Fig. 7.9, the prototype M4 has pronounced harmonics, i.e., 5th and 7th, while the 2nd and 4th

also appear due to the fractional slot winding. Such harmonics are not modeled (considered) in
the controller, although they exist in the real motor. As shown in Section 4.3.4, the flux linkage
maps are identified by averaging over all rotor positions and several turns. Therefore, neither the
flux linkage maps nor the inductances take into account the harmonics.5 Despite the unmodeled
harmonics, however, ψ-VSP2CC still achieves a significant reduction of the current THD with
respect to that ofL-VSP2CC, while it is quite similar to that of FOC with SVM. For the spectrum
of the latter, see Fig. 7.9(f), the amplitudes of the harmonic group of the 2nd multiple of fsw are
higher than the amplitudes of the fsw group, similar to M3. Whereas in Fig. A.15(f) it is the
other way around since a high modulation index is used.
Fig. 7.10 shows the current ripple and Fig. 7.11 the THD of the current over the switching
frequency, both for motor M4. Here, nonlinearities are much more pronounced compared to
motor M3, i.e., saturation starts already at 4 A, see Fig. 7.11(d). Consequently, the proposed
ψ-VSP2CC achieves a more significant reduction in the current THD compared to L-VSP2CC
at low modulation indices, i.e, at low speeds. At nominal speeds, ψ-VSP2CC outperforms all
discussed control methods (FOC and L-VSP2CC) over the whole range of examined switching
frequencies, see, e.g., Figs. 7.11(e) and 7.11(f). Similar to motor M3, Fig. 7.11(d) shows that for

5To address this, as mentioned, the flux linkage maps would need one more dimension to depict the rotor
position effects. This, however, would increase the associated computational load. To keep the calculation effort
modest, an alternative is to use a correction term, see Chapter 8.
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(a) Three-phase stator current for L-VSP2CC with
fsw≈ 13.17 kHz.

(b) Stator current spectrum for L-VSP2CC with
ITHD = 5.28 %.
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(c) Three-phase stator current for ψ-VSP2CC with
fsw≈ 10.0 kHz.

(d) Stator current spectrum for ψ-VSP2CC with
ITHD = 1.90 %.
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(e) Three-phase stator current for FOC and SVM with
fsw = 10.0 kHz.

(f) Stator current spectrum for FOC and SVM with
ITHD = 1.81 %.

Figure 7.9: Motor M4: Three-phase stator current and spectrum for i∗d = − 5.0 A, i∗q = 14.0 A,
nm = 200 rpm with Np = 2, fsw≈ 10.0 kHz (experimental).

a small modulation index, i.e., current and speed are very small at the same time, an increased
horizon helps to improve the THD at low switching frequencies. Apart from the extremely small
modulation index, Np = 2 is completely sufficient. However, as bigger the ratio between fcf and
the average fsw, i.e., as more switching is penalized, the more beneficial is an increased horizon
since the time window in which switching should take place is better covered. In addition, by
further increasing the sampling/control frequency so as to increase the ratio between fcf and fsw,
the switching granularity can be further improved. This will lead to an even better performance
of ψ-VSP2CC, as reported in [KG20, Section V].
Based on the above-mentioned figures, it can be observed that the current ripple is also affected
by the position of the rotor flux vector within the triangular sectors formed by the voltage SVs.
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Figure 7.10: Motor M4: Single-phase stator current ripple as close-up view from Fig. 7.9
and Fig. A.15 to show the switching behavior in comparison for operation using
VSP2CC with Np = 2 and FOC with SVM in steady state (experimental).

10 15 20 25 30 35 40
1.5

2

2.5

fsw (kHz)

I T
H

D
(%

) L−VSP2CC (Np=2)

ψ-VSP2CC (Np=2)
FOC with SVM

(a) i∗d = 0 A, i∗q = 5.0 A, nm = 200 rpm.

5 10 15 20 25 30 35
1.5

2

2.5

fsw (kHz)

I T
H

D
(%

)

(b) i∗d = 0 A, i∗q = 15.0 A, nm = 200 rpm.

10 15 20 25 30 35

2

3

4

5

fsw (kHz)

I T
H

D
(%

)

(c) i∗d = − 5.0 A, i∗q = 14.0 A, nm = 200 rpm.
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(e) i∗d = 0 A, i∗q = 5.0 A, nm = 800 rpm.
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(f) i∗d = − 5.0 A, i∗q = 14.0 A, nm = 800 rpm.

Figure 7.11: Motor M4: Trade-off between ITHD and fsw as well as ITHD and iq for VSP2CC and
FOC with SVM (experimental). System two, see Fig. A.2, was used for Np = 5.

As mentioned e.g. in [HB94], assuming a constant switching frequency, the current ripple is
higher when the flux vector is located on the border of a sector, i.e., the induced voltage is
in the middle of a sector. This is the case regardless of the modulation/control method used,
as it depends on the relative position of the flux vector with respect to the voltage SVs. More
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Figure 7.12: Motor M3: Current for the first sector with i∗d = − 5 A, i∗q = 14 A at steady state
with a speed of nm = 100 rpm (simulation).

precisely, the closer the flux is to the voltage SVs, the bigger the voltage difference between the
induced and applied voltage, and, consequently, the bigger the current ripple. Thus, in case of
DMPC, where the switching frequency may vary within the sector, more switching is performed
in the middle of each sector and less at the sector border to maintain a constant current ripple.
However, as can be seen in Figs. 7.3 and 7.4, there is a significant difference in the current
prediction performed by the two VSP2CC methods. For example, in the middle of each sector,
e.g., at

π

6
rad, the current error on the q-axis is more dominant for L-VSP2CC, whereas at

the sector borders, e.g., at
π

3
rad, it is the other way around, i.e., the d-axis error is bigger.

Considering the flux linkage maps in Figs. 4.16(a)-4.16(b), it can be noticed that the saturation
effect on the q-axis is more pronounced than that on the d-axis. Since for the chosen case
studies the q-component of the reference current prevails, i.e., |i∗q| > |i∗d|, when it is aligned
with a voltage SV then a suboptimal prediction has a stronger adverse effect on the system
performance. As a result, L-VSP2CC produces an even higher current ripple at the middle of
each sector, see Fig. 7.12. On the other hand, as can be seen in the same figure, ψ-VSP2CC
successfully tackles this issue thanks to the more accurate current prediction.
Given the presented results for the steady-state operation of the examined drive systems, it
can be claimed that ψ-VSP2CC clearly outperforms L-VSP2CC. The current distortions, as
quantified by the current THD, significantly decrease, especially when machines with nonlinear
behavior are of concern. Considering saturation and cross-coupling—occurring at higher values
of the current reference—ψ-VSP2CC has the biggest advantage at low speed, since at lower
modulation index a parameter inaccuracy has a higher impact on the performance of DMPC.
Moreover, ψ-VSP2CC achieves similar steady-state behavior as FOC with SVM. However, at
high speeds, e.g., the rated speed, and when the ratio between fsw and the fundamental frequency
is small, the MIMO optimization of ψ-VSP2CC even allows a lower THD compared to FOC.6

6For FOC, as expected, the PI gains have a strong influence on the steady-state performance and must be
adjusted carefully depending on the operating point, i.e., the inductances must be updated.
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7.6.2 Transient Performance

Besides the steady-state behavior, the transient behavior of the drive systems is also of interest.
[Ric16] and [Kel12] showed that the dynamic behavior of nonlinear machines can be improved
by compensating at least for the delay time independently of the control approach used. How-
ever, by accounting for the nonlinear model in the prediction and optimization processes an
even more significant improvement can be achieved, as shown in the following. Fig. 7.13 shows
the transient performance for the methods of interest by applying a current reference step. In the
close-up view in Fig. 7.14(a) it can be noticed that both VSP2CC approaches show quite sim-
ilar dynamic behavior. However, when saturation is present, L-VSP2CC calculates suboptimal
switching points once the current reaches its reference, resulting in unnecessarily high current
ripple—see Fig. 7.14(a)—and torque ripple, see Fig. 7.14(b). Fig. 7.15(a) shows the same be-
havior for a lower reference current at standstill. At higher speeds, see, e.g., for nominal speed
with i∗q = 1.5IN in Fig. 7.15(b), the voltage amplitude is bigger, so an accurate VSP is less im-
portant and the negative influence is smaller. Note that in Figs. 7.13 - 7.15 the d-axis is aligned
with the a-phase at the beginning of the transient. Hence, the a-phase current initially rises,
while b- and c-phase currents decrease. Moreover, it can be noticed that VSP2CC–regardless
of the prediction method—provides also faster current responses than FOC. The latter can be
somewhat improved by tuning the PI controller more aggressively, at the expense, however,
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Figure 7.13: Motor M3: Three-phase stator current showing a current reference step from
i∗q = 0.0 A to i∗q = 16 A with i∗d = 0 A, nm = 200 rpm, fsw≈ 10.0 kHz after the tran-
sient occurred and Np = 2 (experimental).
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(a) Three-phase stator current during the transient.
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(b) Electromagnetic torque during the transient.
Figure 7.14: Motor M3: L- and ψ-VSP2CC and FOC for a step-change from i∗q = 0 A to

i∗q = 16.0 A with i∗d = 0 A, fsw≈ 20 kHz, nm = 200 rpm, Np = 2. The left hand side
is a close-up view from Fig. 7.13 (experimental).
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Figure 7.15: Motor M3: Stator current for L- and ψ-VSP2CC and FOC during transient opera-
tion for an i∗q step-change with i∗d = 0 A, Np = 2 (experimental).
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Figure 7.16: Motor M4: Three-phase stator current for ψ-VSP2CC for step-change from
i∗q = 0 A to i∗q = 8.0 A with i∗d = 0 A, nm = 200 rpm, fsw≈ 10 kHz (experimental).
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(a) L-VSP2CC with λu = 0.09.
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(b) ψ-VSP2CC with λu = 0.07.
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(c) FOC with kp = 2.0, Ti,id = 2.0 ms, Ti,iq = 3.2 ms.
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(d) Rotor shaft speed of the load machine.
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(e) Electromagnetic torque during speed change.

Figure 7.17: Motor M3: Three-phase stator current during a load speed change from nm = 200
to 2000 rpm with i∗q = 18.03 A, i∗d = 0 A. fsw≈ 20.0 kHz before the transient occurs
and Np = 2 (experimental results).

of current overshoots7. However, Figs. 7.14(a) and 7.15(a) show that even if an overshoot is
accepted, the dynamic of FOC is lower for reasons already discussed in Section 6.3.2. As ex-
plained there, both VSP2CC approaches have the freedom to initially use only active voltage
SVs, whereas FOC with SVM has to implement zero SVs which detract from the transient re-
sponse. Moreover, Fig. 7.16 shows the transient behavior of motor M4. Finally, the performance
of the proposed and benchmark controllers are tested under changes in the speed. Specifically,
Fig. 7.17 shows the phase currents and torque when the load machine changes the speed. As
can be seen, all controllers exhibit good behavior, although the quality of the current and torque
with ψ-VSP2CC is clearly higher (i.e., less ripples), as also demonstrated in Section 6.3.1.

7Decoupling network was active and two sets of gains were set based on the modulus optimum, see Section 2.3.
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7.7 Final Assessment

In this chapter, an extension of the VSP2CC algorithm discussed in Chapter 6 is presented in
which the flux linkage is used instead of the machine inductances for the stator current pre-
diction. This significantly improves the prediction accuracy and thus the effectiveness of the
implemented MPC algorithm when dealing with machines with pronounced nonlinear phenom-
ena such as saturation and cross-coupling, e.g., highly utilized IPMSMs. The more favorable
execution of the switching operations is especially supported by the high accuracy of the gra-
dient calculation, which is particularly advantageous when a VSP is used within the control
interval. As a result, the advantageous behavior of VSP2CC, see Section 6.4, is maintained even
for PMSMs with a strongly nonlinear magnetic circuit. This means that when the flux linkage is
used instead of the inductance to predict the current response, the same two main performance
criteria, i.e., low THD and fast transient response, are achieved extremely successfully.
More specifically, ψ-VSP2CC can dramatically improve the steady-state performance compared
to L-VSP2CC, as quantified by the current distortions (i.e., current THD). Moreover, the im-
proved gradient calculation achieved with ψ-VSP2CC, leads not only to an improved THD at
steady state, but also to less oscillations during transients. Thanks to the direct nature of the
control scheme, very fast transients with very short settling times are achieved, even when leav-
ing the linear range of the magnetic circuit. Moreover, ψ-VSP2CC achieves similar steady-state
performance with FOC while exhibiting superior dynamic behavior.
Even if an effort for the identification of the flux linkage—compared to the identification of
absolute inductances—is added, and an increase for the calculation effort can be recognized,
the associated benefit outweighs such a cost. The above imply that the proposed ψ-VSP2CC
shifts the control effort even more—compared to L-VSP2CC—from the design to the computa-
tional stage. However, if the use of the flux linkage is computationally infeasible—since, e.g., a
platform with low processing power has to be used—thus making the real-time implementation
of the proposed algorithm challenging, an alternative is to use look-up tables for the absolute
inductances. In this way, (self-) saturation effects can be—to some extent—respected and the
prediction error is—at least partially—minimized.

Finally, it is worth mentioning that thanks to the flux linkage-based control, the identified flux
linkage maps can also be used, e.g., for (current) loss minimized torque control, i.e., maximum
torque per ampere (MTPA) in the base speed range or maximum torque per volt (MTPV) in the
field weakening range, as shown for nonlinear PMSMs, e.g., in [NPRS14, BK18].
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8 Repetitive Position Dependent Flux Linkage

Correction

As demonstrated in the previous chapter, flux linkage prediction allows for the saturation ef-
fects to be taken into account. However, the influences of iron losses and spatial harmonics—
described in Section 2.2.1.2—are still either averaged or neglected, see, e.g., Section 4.3.4, thus
not considered. Further current harmonics in inverter-fed machines can be caused by nonlin-
earities of the inverter and switching of the inverter. Even if the above mentioned effects do
not have a (significant) impact on the dynamics this may lead to deviations for the steady-state
accuracy and performance. In addition, insufficiently compensated parameter mismatches, e.g.,
the magnet temperature, may still be theoretically possible and thus cause a steady-state error.

The first idea to compensate for model deviations that may still exist is to use model-free MPC
as already described in Section 2.6.3. However, model-free MPC is inappropriate for the fol-
lowing two reasons. First, model-free MPC, as the name implies, would lump all nonlinearities
present in the model without separating the influences on a parameter-by-parameter basis. Thus,
an improved behavior in transients or shortly after transients, as shown in the previous Chap-
ter 7, cannot be achieved, since the change of the inductance, i.e., saturation, is not considered
separately. Second, to the best knowledge of the author, the model-free MPC approaches pub-
lished so far do not take into account rotor-position dependent effects that would require a
memory to benefit from the knowledge of deviations from previous rotor revolutions.
Motivated by the above, a flux linkage correction term is introduced in this chapter, which al-
lows to compensate for the remaining sources of possible steady-state errors depending on the
rotor angle position and speed. In other words, as mentioned earlier, relevant model and parame-
ter deviations that may adversely affect the prediction are identified and modeled, see Chapter 4
and Chapter 7, and only effects that are less pronounced or insufficiently compensated for—in
case of the considered small PMSMs—are addressed in the following.
Therefore, a new extension for the MPC algorithm is introduced, which is based on the ap-
proaches of repetitive control (RC) and iterative learning control (ILC). Both methods use pre-
vious information to design a new control signal. This means that these methods can learn from
past experience to improve the control performance in future steps. Since the proposed method
is mainly used for tracking and rejecting periodic exogenous signals and does not use a state
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space description, it is assigned to the RC family [WGD09]. An overview and further informa-
tion regarding RC can be found, e.g., in [FW75, HW96, CDX04, WGD09, KCMW14].

In the field of power electronic systems, RC is used to suspress, e.g., voltage harmonics [LJS+17],
current harmonics [BPZ08, Ric16] or harmonics caused by the inverter, i.e., interlock time and
zero current crossing [BB04]. In [TGFZ16, TFOZ20] torque ripple is suppressed by RC. Here,
in the former case a reference current and in the latter case a reference torque is modified. In
addition, the former must reliably detect transients and prevent the RC algorithm from learning
during this time, which introduces additional complexity. To avoid transient detection and still
use RC for steady-state effects without creating instability, an accurate model of the dynamic
behavior of the controlled system is required, see, e.g., the torque ripple observer in [TFZ19].
A good overview of further RC approaches is given, e.g., in [Ric16, p. 81]. However, all RC
approaches available so far use PI-based or dead-beat controllers, where a compensation of
the control voltage—continuous control signal—usually occurs just before the voltage is ap-
plied to the modulator, i.e., as feed-forward control, see, e.g., [Ric16, p. 57]. Note that some of
them also modify the reference current or torque to compensate for the repetitive disturbances
[TGFZ16, TFOZ20]. Nevertheless, a modulator is always present in all the methods mentioned.
In contrast to the above, a concept of repetitive control for direct control methods—without
modulator—such as DMPC, i.e., ψ-VSP2CC, is proposed in the following.

8.1 Flux Linkage Correction Concept

If all the previous requirements and boundary conditions are combined, an RC method is neces-
sary that primarily compensates for the influences of spatial harmonics (thus avoids harmonic-
based flux linkage maps, see Section 4.3.4), harmonics from the inverter and iron losses, but
secondarily also for other effects such as undetected parameter and model deviations. Here,
the ability to control and damp harmonics is limited only by the switching frequency (or the
Nyquist-Shannon sampling theorem [Lun17, p. 427]) and the voltage limit of the inverter. In
addition, only the existing measurements, i.e., current, position and speed, should be used.

The proposed algorithm—which belongs to the class of RC methods—takes advantage of the
fact that effects describable as flux linkage errors, i.e., the previously mentioned nonlinearities,
are periodically repeated in steady-state operation with the electrical rotor angle ϕ. Even if the
electrical angle is sufficient for all electrical periodic signals, the mechanical angle, i.e., ϕm, is
chosen in the following to take into account also possible mechanical eccentricities of the shaft.
More precisely, the proposed method stores a flux linkage deviation ψdq,dev as a function of ϕm
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over one mechanical turn. In this process, each position-dependent deviation value is averaged
over several mechanical revolutions and is thus robust against noisy measurements. This makes
it possible to feed-forward this deviation in the following mechanical revolutions to compen-
sate for periodic and slowly varying model and parameter mismatches. From the control point of
view, this corresponds to a rotor angle-dependent integrator component. Thus, angle-dependent
effects such as current harmonics are fully compensated for during steady-state operation. Here,
the dynamic behavior is not impaired. The latter is also not necessary, since the dynamic be-
havior is already sufficiently good, see Chapter 7, and angle-dependent effects play a minor
role—are acceptable—in dynamic processes anyway. Hence, the flux linkage deviation must be
identified fast and precisely to pre-control it correctly, thereby enabling a stable control over the
entire operating range without affecting the dynamic behavior.

Therefore, a ψdq,dev(k− 1) vector is calculated during each control interval. Here, the original
predicted flux linkage—using (7.4)—calculated in the previous control step k− 2 for the delay
time compensation, i.e., ψdq(k− 1|k− 2), is subtracted from the determined ψdq(k− 1|k− 1)

based on the measured currents idq(k− 1) by using (7.5a). If the currently determined flux
linkage differs from the previously predicted one, a deviation results, i.e.,

ψdq,dev(k−1) = ψdq(k − 1|k − 1)−ψdq(k − 1|k − 2) , (8.1)

which is stored together with the actual rotor position ϕm. The resulting flux linkage deviation
ψdq,dev cannot be separated into the components of the machine and the inverter. However, this is
not necessary for control purposes as long as a single effect does not have a dominant influence
on the overall flux linkage. ψdq,dev depends on the currents idq, the rotor angle ϕm, the angular
frequency ωm, the dc-link voltage Vdc, the component temperature, i.e., ϑ, ϑm, ϑinv, and the aging
condition of the components, e.g., magnets, MOSFETs, diodes and shunts. Assuming correct
Vdc and flux linkage maps—thus correct consideration of saturation effects—in the considered
case the main influences on the flux linkage deviation originate from ϕm and ωm, i.e., from
spatial harmonics and iron losses, since temperature and aging affect quite slowly.

In contrast to the flux linkage correction term proposed here, e.g., a voltage correction term
is introduced in [Ric16, p. 53]. However, a voltage correction term is particularly useful in a
modulator-based method, since the controller output and thus the modulator input represents
a voltage, enabling feed-forward control. Whereas with DMPC switch positions are optimized
and thus the correction term is more flexible. Moreover, the voltage correction term is valid only
for a certain speed, so slowly varying speeds must be assumed. Consequently, the procedure
in [Ric16, p. 85] requires at least one electrical period at a new speed to ensure proper error
compensation, or even less, if assumptions are used for the occurrence of certain harmonics.
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However, for small electric drives, the speed may vary from zero to the rated speed during one
electrical period. In addition, the flux linkage change in (7.1) depends on the rotor speed. If,
e.g., ψpm would vary—illustrated in Fig. 2.10—as a function of rotor angle, this would lead not
only to a position but also a velocity-dependent flux linkage deviation in (7.4). Thus, the flux
linkage deviation is normalized to the speed, i.e., ωm, in the following to decouple it from the
speed prevailing at the time of measurement by using

ξψdq ,dev(k−1) =
ψdq,dev(k−1)

ωm(k−1)
. (8.2)

To store this deviation as a function of the rotor position ϕ(k− 1), a suitable granularity for
one mechanical revolution is required. The granularity depends on the order of the harmonics
to be compensated. As exemplarily shown in Fig. 2.10, the spatial harmonics are dominant up
to the 11th-order. Since the 11th- and 13th-order in the abc-system result in the 12th-order in the
dq-system, Nord = 12 is chosen. Considering the pole pair number of the examined machines,
see Table A.3, and at least 10 samples, i.e.,

π

5
rad, resolution for the highest electrical harmonic

order, the number of samples per mechanical fundamental period can be calculated by using

Nper = 10Nord p . (8.3)

After inserting concrete values for e.g. the motors M1 and M4 examined in the following, i.e.,
p= 4 and Nord = 12, this results in Nper = 480. Since the measured rotor position ϕ(k−1) will
not exactly match one of these discrete position values, the respective deviation ξψdq ,dev(k−1)

is stored for the nearest discrete position. To avoid the influence of outliers, i.e., to make the
approach more robust, and to avoid a negative influence of the nearest position choice, the de-
viation is additionally averaged over several mechanical rotor revolutions Nrev

1. Thus, to avoid
unnecessary memory usage, a weighted averaging method is applied to ξψdq ,dev, which results
in

ξ̄ψdq ,dev(k−1) =
Nrev − 1

Nrev
ξ̄ψdq ,dev(k−2) +

1

Nrev
ξψdq ,dev(k−1) . (8.4)

Since the rotor position changes in each prediction step, i.e., ϕ(k) . . . ϕ(k+Np), the correspond-
ing ξ̄ψdq ,cor(k) . . . ξ̄ψdq ,cor(k + Np) are calculated by linear interpolation from the two nearest
memory values of ξ̄ψdq ,dev(k) . . . ξ̄ψdq ,dev(k + Np). This yields

ψ̄dq,cor = ωmξ̄ψdq ,cor , (8.5)

which is calculated from the stored—speed-independent and averaged—flux linkage deviation
as well as the currently prevailing speed. Based on (7.4), the flux linkage prediction equation is

1In this work, Nrev = 6 was chosen as a compromise between convergence speed and robustness.
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Figure 8.1: ψ-VSP2CC with current reference tracking for a two-level VSI with a PMSM using
repetitive flux linkage correction for damping of rotor position dependent effects.

modified to include the flux linkage correction term ψ̄dq,cor, resulting in

ψdq(k+1) ≈ ψdq(k) + Tcf
vdq(k)−Rphidq(k)− ωelPψdq(k)

1 +
1

4
T 2

cf ω
2
el

+ ψ̄dq,cor(k + 1) (8.6)

where ψ̄dq,cor = [ψ̄d,cor ψ̄q,cor]
T ∈ R2. Fig. 8.1 shows the data path for the proposed ψ-VSP2CC

with repetitive flux linkage correction. The additional block connected in parallel indicates the
position-dependent identification and storage of the flux linkage deviation normalized to the
speed. This allows to compensate for deviations of the flux linkage after at least one initial
mechanical revolution even if the speed (and reference current) varies afterwards.

8.2 Performance Evaluation

The two effects mainly addressed by RC are the rotor position dependency of the flux linkage
and the iron losses. Both lead to a deviation in the prediction accuracy that becomes larger with
increasing speed. Moreover, since the iron losses are current-dependent, they can of course only
be fully compensated for in steady state, i.e., if idq remains approximately constant over Nrev

rotor revolutions. However, the rotor position dependency has the most significant periodic in-
fluence in PMSMs and for the small machines considered, see, e.g., motor M4, even the most
dominant influence which has not been considered so far. More precisely, for the evaluated ma-
chines the iron losses showed less influence than the spatial harmonics, since the former are
quite small—see Section 4.4.2—and no steady-state error was evident. In contrast, spatial har-
monics caused an unnecessarily high current THD, see, e.g., Fig. 7.9. Thus, the performance is
first evaluated by adding in simulation the 4th and 6th spatial harmonic on ψpm with an amplitude
of 20% of ψpm to emulate a disproportionately varying air gap over the rotor circumference in
the dq-plane. Consequently, the proposed repetitive controller attempts to compensate for the
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Figure 8.2: Motor M1: ψ-VSP2CC with repetitive flux linkage correction for i∗d = 0 A,
i∗q = 5.0 A at t= 0−11 ms and i∗q = 12.16 A at t= 11−40 ms, nm = 3000 rpm at
t= 0−16.52 ms and nm = 200 rpm at t= 16.52−40 ms with Np = 2, fsw≈ 20.0 kHz
(simulation).

rotor position dependency of the flux linkage to improve the current steady-state performance,
as exemplarily shown for motor M1 in Fig. 8.2. As can be seen, the flux linkage deviation, see
Fig. 8.2(c), has been learned in the first periods and can be feed-forwarded after activation both
in transients as well as at varying currents and speeds. Without compensation, i.e., t= 0−5 ms
in Fig. 8.2(b), a clear oscillation is visible in the dq-current, even if the current control runs at
fcf = 100 kHz. As ψpm was modified, it is obvious that the largest deviation in the predicted flux
linkage is in the q-axis and dependent on the prevailing speed, see Fig. 8.2(c).
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Considering the results in Fig. 7.9 for motor M4, pronounced low order harmonics, i.e., the 2nd,
4th, 5th and 7th, can be noticed. These are due to the effects mentioned above, which are not
known to the prediction model and are also very difficult to model, where the added value of
modeling compared to the effort (in terms of computational effort) is questionable. However,
using the proposed RC method, these harmonics can be significantly damped while keeping
the average switching frequency the same and computational effort low.2 This advantageous
behavior is illustrated in Fig. 8.3, where the measurements without RC are also shown for
comparison.
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Figure 8.3: Motor M4: Stator current spectrum for ψ-VSP2CC without repetitive correction
(ITHD = 1.90 %) see Fig. 7.9(d) and with repetitive correction (ITHD = 1.03 %) for
i∗d =−5.0 A, i∗q = 14.0 A, nm = 200 rpm withNp = 2, fsw≈ 10.0 kHz (experimental).

8.3 Final Assessment

In summary, when a flux linkage deviation occurs that varies with the rotor position, the speed
(e.g., in case of iron losses) or the temperature, the proposed RC method allows to compensate
for these slow varying model and parameter discrepancies when using a direct control approach.
This results in an improved steady-state performance, i.e., reference tracking accuracy and min-
imization of the current THD. Even though the proposed method optimizes the steady-state
performance of the current, the same approach can be used to optimize the torque, i.e., antiva-
lent deformation of the current, so that a uniform torque is obtained after taking into account
the non-uniform flux linkage, see (2.26).
Although not discussed here, the RC method can also be used for L-VSP2CC or conventional
DMPC. More precisely, if saturation and cross-coupling do not dominate, i.e., can be neglected,
and thus the absolute inductance can be assumed to be valid for all operating points (linear
magnetic circuit, i.e., linear relationship between current and flux linkage), then the current can
be used directly instead of the flux linkage for the proposed position-dependent correction.

2For comparison, an RC method for a PI controller using a modulator is shown in [Ric16, p. 119].
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9 Cascaded Model Predictive Control for Mechatronic

Drive Systems

Given the specific application of an electric drive, multiple control objectives are usually re-
quired. In addition to the highly dynamic current control described in the previous chapters, for
example, speed or position control may also be required. Taking these requirements into ac-
count, a mechatronic drive system can be assumed that contains both mechanical and electrical
time constants, which are usually in different ranges. More specifically, the ratio between the
two is typically in the range of 5-201, although in some small electrical drives the mechanical
time constant can be almost as small as the electrical one, so that the ratio is nearly one.
Nevertheless, most applications allow the use of cascaded control structures in order to separate
mechanical and electrical control objectives. This separation is common, for example, in con-
ventional FOC with cascaded PI controllers, see Section 2.3, or DTC with a superimposed PI
controller, see Section 2.4. For these standard methods, the reason for cascading is mainly due
to the limited options when using SISO control structures. However, in case of predictive con-
trol, the MIMO control structure allows the simultaneous control of multiple control objectives
[RKE+13]. Thus, it is theoretically possible to include all control objectives in one single cost
function, thereby avoiding a cascaded structure. Since this possibility seems very promising, it
was evaluated with numerous predictive control approaches. For example, [PB13b, FKRK14]
propose cascade-free current and speed FCS-MPC.

Nevertheless, given the predictive nature and optimization of several criteria with different time
constants, it is necessary to predict a noticeable change for each criterion. If no change in the
system states can be predicted—because the considered time range in the prediction process is
too short—a predictive optimization seems to be of no use. Consequently, the prediction and
optimization of current and speed—considering the reduction of mechanical natural oscillations
claimed in Section 1.2—require both a very long horizon and a very high granularity in order
to keep the current ripple acceptable on one side and to be able to predict a change in speed on
the other side.

1The electrical time constant of a small electric drive (see Section 2.2.1.3) is usually in the range of a few
hundred microseconds to a few milliseconds, while the mechanical time constant (see (2.32)) is in the range of a
few tens of milliseconds.
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The use of FCS-MPC, as discussed in the previous chapters or as used in the aforementioned
cascade-free FCS-MPC approaches, allows direct optimization of switch positions as well as
utilization of the maximum available dc-link voltage, thus providing the highest dynamic range,
but is also limited by the exponential growth of the computational effort to several discrete time
steps into the future, e.g., 5-10. Significantly extended prediction horizons would impede an ex-
perimental implementation of FCS-MPC, even if the search space could be reduced as described
in Chapter 5. Although ongoing research is dedicated to this problem, in particular through
the use of sphere decoding, it is not foreseeable that the implemented FCS-MPC horizon will
change significantly in the coming years. In addition, the linearization remains a problem when
using the SDA for small drives, as explained in Chapter 5.
Even if the accessible horizons are completely sufficient for the electrical controlled system—
see previous chapters or [KG20]—the prediction of mechanical transient processes requires a
longer horizon or enlarged time steps, i.e., lower calculation frequency, compared to current
control. In other words, if natural oscillations of the mechanical speed are to be damped, this
is probably not predictable with a short horizon. For an optimal prediction the whole transient
process would be useful. The question therefore arises as to how this can be achieved.

Long prediction intervals In [KGN+14] a review of strategies for long prediction intervals
is presented. The review points out three possibilities for FCS-MPC such as the move blocking
strategy, the extrapolation strategy and the event-based horizon. Move blocking divides the pre-
diction horizon into two parts with a discrete number of steps Np1 and Np2. The first part has a
length of Np1Tcf and the second part of Np2n2Tcf where n2 ∈ N+. However, this method uses
either FCS-MPC [Aya17, p. 80] or CCS-MPC for the entire prediction. Using the former, with
the extrapolation strategy all switching possibilities are calculated only for a short switching
horizon (e.g., two) and afterwards a trajectory for each discrete switching possibility, starting
from the last predicted step, is calculated and compared to a hysteresis band. The hysteresis
bands are considered as soft constraints. The event-based horizon method is a combination of
MPC and optimal pulse patterns.
In summary, while the above approaches allow for consideration of a longer time period with
the same number of prediction steps, they still optimize discrete switch positions. However, the
discrete switch positions have a direct—thus beneficial—influence on the electrical controlled
system, but no direct influence on the mechanical system, i.e., speed or position. Thus, FCS-
MPC seems unsuitable for the holistic prediction of the entire controlled mechatronic system.
Due to the fact that the electrical and mechanical time constants can be clearly separated into
two different time domains, a separation of these time domains seems to be useful for MPC de-
spite the possibility of MIMO optimization. For this reason, it seems reasonable to superimpose
a more suitable controller to FCS-MPC, i.e., to cascade it, in order to enable predictive control
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for the entire mechatronic system. This also avoids the problem that setting weighting factors
for criteria from different time domains and magnitudes is very challenging, as can be observed,
e.g., in [FSY12].

Cascaded control structures Using the idea of a cascaded control structure, [FRS+09]
and [GRS+14] respect a separation of the electrical and mechanical time domains by combin-
ing FCS-MPC with a superimposed PI-based and dead-beat speed controller, respectively. Even
though dead-beat has a single-stage predictive character, it is not possible to predict the course
of oscillations in the mechanical system. Thus, oscillations are not predictable and consequently
not avoidable. [WNB19] shows a cascaded long-horizon prediction, where both the mechanical
and electrical control loops utilize CCS-MPC. Similarly, [OKBH14, p. 249 ff.] also uses CCS-
MPC for speed control, but with an underlying PI current control. Unfortunately, both methods
do not take advantage of the direct nature of FCS-MPC. [HYZ+15] shows a hierarchical MPC
with a CCS-MPC power controller and an FCS-MPC current controller for a multilevel matrix
converter. However, no mechanical controlled system is considered here. In [ABY18] a cas-
caded structure of CCS-MPC and FCS-MPC—but with programmed modulator—is proposed,
however, since the modulator stage is separated, direct control behavior is not used. A gen-
eral discussion of hierarchical MPC structures is presented, e.g., in [SC07], which recommends
multiple layers to account for the different time constants in the controlled system.

9.1 Cascaded Continuous and Finite Control Set-MPC

As mentioned in [Sch15, p. 422], predictive current control enables fast current dynamics and
thus allows a highly dynamic superimposed speed or position control. However, none of the
aforementioned cascaded concepts allows the simultaneous use of FCS-MPC and a long pre-
diction horizon for the entire mechatronic system.
To accomplish this, a novel cascaded continuous and finite control set-model predictive control
(CCF-MPC) algorithm is described and experimentally verified for mechatronic drive systems.
This approach is advantageous for speed control of electrical drives in mechatronic systems
with equally high requirements on the electrical and mechanical controlled system. CCF-MPC
combines FCS-MPC and CCS-MPC in a cascaded structure regarding the electrical and me-
chanical controlled system and their respective time constants. In this way, CCF-MPC allows a
compromise between the discrete granularity of the prediction step size and the possible length
of the prediction horizon—see Fig. 9.1—considering only a slightly increasing computational
load. This is in contrast to the previously mentioned approaches.
First, CCF-MPC takes advantage of the direct nature of FCS-MPC. More precisely, it enables
high current dynamics by exploiting the dead-beat behavior, direct consideration of constraints,
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Figure 9.1: CCF-MPC with receding horizon policy for a five-step prediction horizon, i.e.,
Np = 5, respectively. y are the resulting controlled signals, y∗ are the reference sig-
nals and u are the discrete-time control signals, i.e., T ∗el for CCS-MPC and the switch
positions for FCS-MPC. For the latter, v4 is chosen exemplarily at the beginning.

optimization of the steady-state current behavior indicated by the current THD, and a minimized
control deviation by using a long horizon (see Chapter 7).2

Second, by integrating CCS-MPC, CCF-MPC enables a predictive calculation of changes in the
mechanical controlled system and thus reduced speed or position overshoots as well as an active
damping of mechanical oscillations in the load speed, i.e., torsional oscillations. This is benefi-
cial for the predictive overall optimization of mechatronic systems, i.e., two-mass systems, that
require highly dynamic but also highly precise position and speed control, e.g., for electrical
drives in machine tools or for end-of-line test systems in the field of window regulator motors.
Since CCS-MPC does not have the direct capability of FCS-MPC, but allows a longer prediction
horizon due to the tendency of lower computational effort (see Section 2.6.4), cascading both
schemes seems reasonable. This allows the best of both MPC methods—see Section 2.5—to be
used, i.e., combined. In addition, as shown in Chapter 3, the use of heterogeneous computation
platforms is advantageous for the implementation of the heterogeneous CCF-MPC approach.
More specifically, FCS-MPC is computed on the FPGA with fcf—see previous chapters—and

2Note that due to the high time granularity of the control interval (e.g., Tcf = 10 µs), a linear current gradient is
assumed for each individual prediction step of FCS-MPC, see Section 6.1.
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Figure 9.2: Control loop structure of the proposed CCF-MPC.

CCS-MPC is computed on the processor, since a lower control frequency, i.e., fcc, can be used.
This algorithm splitting is illustrated in Fig. 9.2. More in detail, Fig. 3.1 shows the imple-
mentation and Fig. 3.2 the corresponding temporal interaction. The basic idea and princible of
CCF-MPC was first published in [WHKD20, WHKDK18, WHKDK19].

9.2 Definition of Superimposed CCS-MPC

In this thesis, as described in Section 2.2.2, a TMS is considered for the mechanical controlled
system. Moreover, the focus is on speed control with ω∗, i.e., ω∗m or ω∗` , rather than position
control. Using CCS-MPC—see Section 2.5.1—for the optimization of the TMS, the required
LTI system is described by

dωm(t)

dt
d∆ϕ(t)

dt
dω`(t)

dt


︸ ︷︷ ︸

dx(t)

dt

=


−dTMS + dfric

Jm
−cTMS

Jm

dTMS

Jm

1 0 −1
dTMS

J`

cTMS

J`
−dTMS

J`


︸ ︷︷ ︸

Ac

ωm(t)

∆ϕ(t)

ω`(t)


︸ ︷︷ ︸

x(t)

+


1

Jm

0

0


︸ ︷︷ ︸
Bc

Tel(t)︸ ︷︷ ︸
u(t)

(9.1a)

y(t) =

[
∆ϕ(t)

ω`(t)

]
=

[
0 1 0

0 0 1

]
︸ ︷︷ ︸

Cc

x(t) , (9.1b)

where the torque is the decision variable, i.e, control signal. The latter serves as reference for the
subordinate controller of the electrical system. More in detail, as already mentioned, this chapter
deals with the optimization of the load speed, i.e., ω`, in order to control highly dynamic speed
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changes with low overshoots. Hence, in Fig. 9.2 ω∗` is given, where ω∗m could be used in the same
way. On top of that, an active damping of possible mechanical oscillations in the drive train is
achieved by minimizing ∆ϕ=ϕm − ϕ`, where ϕm is the angle of the motor shaft and ϕ` the
angle of the load. This suppresses mechanical natural oscillations in the TMS. Considering the
augmented model in Section 2.5.1.3 and the goal to optimize the load speed ω` and minimize
the angle deflection ∆ϕ, the weighting matrix is chosen with

Cλ =

[
0 0 0 λ∆ϕ 0

0 0 0 0 λω`

]
(9.2)

where λ defines which criterion of the TMS is prioritized.

9.2.1 Defining Constraints

As explained in Section 2.5.1.1, constraints can be included directly in the cost function. The
definition of these constraints is explained in Section 2.5.1.4. Depending on the application,
e.g., the maximum speed can be limited as an output constraint or the change in torque as an in-
put constraint. In the case of classical SISO controllers, e.g., FOC, if numerous constraints have
to be considered, this can often become very challenging since several feedbacks are present
and thus cases and prioritizations have to be covered. For CCS-MPC, it is significantly easier
to take such constraints into account. Notwithstanding this, just the maximum torque, Tel,max,
is limited in the following. This constraint can be defined by a rough calculation in terms of

the maximum allowable current, i.e., Tel,max =
3

2
pψpm

√
2Imax, neglecting the reluctance. Alter-

natively, the maximum permissible torque of the weakest component in the drive train can be
used to take into account mechanical limitations of individual components, such as the torque
limit of a measuring shaft.
Consequently the constraints can be described based on (2.61) with

−Umin(k) = Umax(k) = [Tel,max(k)Tel,max(k + 1) . . . Tel,max(k +Nc − 1)]T ∈ RNc×1 (9.3)

and the lower triangular matrix

M I,i j =

1 if i ≥ j

0 if i < j
∈ ZNc×Nc (9.4)

with i, j counting up until the size of Nc. In doing so, the control signal u(k) is not simply
clamped to the value Tel,max as in the case of a PI-based controller or even just saturated as in the
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case of LQR and the unconstrained solution of CCS-MPC (see Section 2.5.1.3), but rather con-
sidered as a constraint during optimization. Consequently, a predicted excitation of a possible
oscillation in the controlled system is not even excited. This means that, in comparison to the
unconstrained solution, the constrained solution already takes into account during optimization
(planning) that limitations must be met and therefore certain control signals cannot or should
not be produced. For example, the constrained solution is aware of the fact that a supposedly
infinite torque cannot be output in order to later compensate for an initially excited oscillation.
Therefore, the constrained solution already excites this oscillation less, because it knows that it
cannot damp it sufficiently later.
In the end, the reference can be reached faster and with less oscillations in the TMS by using
a better—in this case reduced—planned control signal, i.e., T ∗el, as will be shown in the fol-
lowing sections. Thus, the distinction made in Section 2.5.1 between CCSunc-MPC, which does
not consider constraints, and CCScon-MPC, which considers constraints and must be solved
numerically, is of great importance.

9.2.2 Defining Hildreth's Method

Considering the controlled mechanical system, i.e., (9.1), the weighting factors (9.2) and the
defined constraints, i.e., (9.3), a constrained solution, i.e., CCScon-MPC, must be determined.
Hence, based on the analytically solved unconstrained solution in (2.58), a numerical solution
must be calculated, as explained in Section 2.5.1.4. FGM [PBD13] and Hildreth's Method—see
Section 2.5.1.4—have been considered for this purpose. However, FGM has some disadvan-
tages compared to Hildreth's method in case of speed control. Due to the lack of an integrator,
FGM relies on using an observer or other methods of parameter tracking to compensate for pa-
rameter deviations and disturbances. Furthermore, in the ideal case, a reference value must be
specified for each state, which is not possible for the control of elastically coupled TMS. Con-
sequently, Hildreth's method is applied in the following to numerically calculate the constrained
optimal torque.
To implement this general approach in real time, the numerical method in (2.72) is limited to
k= 10 iterations. In doing so, the ISR runtime is only moderately loaded (see Section 9.4.2),
since additional computing capacity is required for updating the state matrices in Section 9.2.3,
i.e., Υc and Γc, as well as further time-uncritical tasks, see, e.g., Chapter 4.
The optimization provides the constrained solution for the torque optimization problem, i.e.,
∆ucon, where ucon is limited to Tel,max.
As a side comment, as can be seen from the defined system, i.e., (9.1), and the constraints, i.e.,
(9.3), the number of constraints may be equal or larger than the number of decision variables,
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i.e., ∆u. Thus, the variant shown in Section 2.5.1.4 to solve the quadratic problem analytically
in the Lagrange representation with equality constraints is unsuitable for two reasons. First,
having more constraints than decision variables does not lead to a feasible solution that satisfies
the constraints. Second, if the number of equality constraints equals the number of decision
variables, the only feasible solution is the one that satisfies the constraints, hence there are no
degrees of freedom left that can be used to minimize the cost function. For the presented use
case of speed control, where the torque is limited by |Tel,max|, this would mean that all ∆U con

(based on ρ) are optimized to the maximum permissible torque. As a result, the torque would
no longer fulfill the actual goals of the cost function, namely reference tracking.
Consequently, to avoid feasibility problems, it is justified and reasonable to use inequality con-
straints for the proposed control target, although this involves a numerical optimization.

9.2.3 Online Recalculation of Control Matrices

As explained in Section 2.5.1, the use of CCS-MPC requires an LTI system, which is not a prob-
lem as long as the controlled system can be assumed to be (partially) linear. For the TMS con-
sidered in this chapter, this can also be assumed for the spring constant and damping. However,
the moment of inertia can vary significantly under different load conditions. In addition, friction
varies with temperature. Nevertheless, the resulting mechanical nonlinearities have quite slow
time constants. Consequently, the idea of [Rau03] can be taken up and adapted.

In doing so, the slow time-varying parameters, e.g., friction, can be identified and adapted as
explained in Section 4.2. Consequently, the system and input matrix in (9.1a) can be updated
during operation. Afterwards, Υc and Γc are recalculated—but in a time-uncritical manner—
based on the procedure described in Section 2.5.1.3. In addition, the weighting matrix Rv can
be modified during this recalculation. Finally, the new matrices are stored in the RAM. The
prediction matrices are then replaced at the beginning of the following ISR call.3

9.2.4 Selection of Weighting Factors and Prediction Horizon

Regarding the weighting factors, a heuristic adjustment method is chosen, which is used for
both CCScon-MPC and CCSunc-MPC. First, the weighting factor of the manipulated variable,
i.e., rv, is chosen so that the controllers are stable at the maximum speed reference used. If the

3In the currently implemented algorithm, this recalculation and update occurs every 60 s, where this time
period was chosen heuristically. Considering the slowly changing mechanical parameters, e.g., friction, this update
rate has proven to be completely sufficient in the application demonstrated.
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maximum speed reference leads to an oscillation, i.e., possible instability, rv must be increased.
Afterwards, the weighting factors of the output matrix Cλ are chosen. Since only the ratio
between the different optimization criteria is relevant, i.e., determines how strongly which of
the optimized criteria is prioritized, λω` = 1 is set first. In a second step, λ∆ϕ is increased. If a
too large λ∆ϕ is chosen, hardly any oscillations occur, but this can lead to a permanent tracking
error as soon as the drive system is loaded. As mentioned in the previous section, the weighting
factors and thus their ratio can be changed during operation if necessary. However, this is not
done in the following.

Nc = 10 andNp = 35 are determined heuristically as described in [WHKDK19]. Here, the ITAE
criterion—see (2.90)—was determined for a variety of possibilities with Np ∈ [10, 50] ⊂ N
and Nc ∈ [1, 50] ⊂ N, where the minimum was selected afterwards. Moreover, due to the
limited computational capacity in one ISR cycle, the online adjustable horizon is limited to
Nc ≤ Np ≤ 10 and Np ≤ 35 for the experimental evaluation, see Section 9.4.2. Thus, Nc = 10,
Np = 35, rv = 100000, λω` = 1, and λ∆ϕ = 300 are chosen for the following evaluations.

9.3 Transition between the Cascaded Methods

Basically, two possibilities were considered to implement the transition between CCS-MPC and
FCS-MPC.

1. CCS-MPC optimizes and outputs a torque that is directly used as reference for a subordi-
nate FCS-MPC torque control. Thus MTPA/MTPV is an inherent part of the FCS-MPC
cost function.

2. CCS-MPC optimizes and outputs a torque, which is forwarded to an independent MT-
PA/MTPV optimization. The latter provides the reference currents for a subordinate FCS-
MPC current control.

In both cases, however, MTPA/MTPV must be taken into account so that a loss-minimized
torque can be generated, i.e., only the current heat losses are minimized here.
The first possibility was examined, e.g., in [PB13c] with MTPA and in [PB13d] with MTPV. In
case of MTPA, the author has two criteria in the cost function. The first relates to the difference
between the measured and the reference torque

cT(k) =
(
Tel(k)− T ∗el(k)

)2

. (9.5)
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The second is about an MTPA attraction term, i.e.,

cA(k) =
(
id +

Ld − Lq
ψpm

(i2d − i2q)
)2

, (9.6)

which selects the switching state with minimal total current. However, this concept has two
terms and the choice of the weighting factor between them is quite challenging. Especially
when electrical drives with different torque and current ranges are considered, the weighting
factors have to be adjusted frequently.
This problem was also examined in own considerations, see [Sch19]. Furthermore, the men-
tioned approach assumes a linear magnetic circuit, which, as shown in Chapter 7, is mostly not
valid and also has a noticeable impact on loss minimization, as evaluated, e.g., in [RTAG16,
BK18]. Finally, the introduction of a variable switching point, see Chapters 6-7, that mini-
mizes the current ripple is completely impossible, since a reference current—and not the refer-
ence torque—must be optimized. If the torque ripple would be minimized, see, e.g., [KSK+14,
AKMK15, KAK18], this does not automatically mean that the current ripple is also minimized.
On the other hand, the reverse can be guaranteed [Hol16]. Since the focus is not only on
a smooth torque but also on minimizing current heat losses, the harmonics of the current—
indicated by the THD—must be reduced, as shown in Chapters 6-7.
Therefore, the second possibility is chosen, i.e., the use of an independent MTPA/MTPV, to
calculate the reference currents based on the reference torque with the help of (2.26).

Reference currents based on the linear torque equation When assuming a linear
magnetic circuit, the reference currents in d- and q-axis can be calculated—see, e.g., [RTAG16],
[Sch15, p. 1095 ff.]—by using

id = −
ψpm

2(Ld − Lq)
−

√
ψ2

pm

4(Ld − Lq)2
+ iq

2 . (9.7)

As shown, e.g., in [RTAG16, BK18], this is only valid if the inductances do not exhibit satura-
tion and cross-coupling effects and the flux constant has not been changed by temperature.

Reference currents based on the nonlinear torque equation As highlighted in the
previous chapters, magnetic nonlinearities can no longer be neglected due to the increasing use
of highly utilized synchronous machines. Thus, in order to avoid time-varying nonlinearities
for Ld, Lq and ψpm, [RTAG16] shows an extended MTPA (EMTPA) calculation by using the
Lagrangian function. Other approaches that consider magnetic nonlinearities for MTPA can be
found, e.g., in [BK18] or, if iron losses are also to be considered, in [HKM20].
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Since the flux linkage maps are present anyway—see Section 4.3.4—it is recommended to use
the latter, i.e., EMTPA, to allow for a minimization of the copper heat losses even for nonlinear
magnetic circuits.
However, since this was not the research focus of this work, only the standard MTPA will be
used in the following, which is valid since the evaluated motor, i.e., motor M5, has a fairly linear
magnetic behavior.

For the transition between CCS-MPC and FCS-MPC, it is also of interest how the concept be-
haves as soon as the mechanical time constant is approximately as small as the electrical time
constant, i.e., τel ≈ τm. In this case, the control frequency fcc can be similar to fcf.
For comparison, in conventional PI-based control schemes, a ratio of fcf/fcc = 5−10 is usually
recommended to avoid stability problems, so that the discrete-time current controller can quasi-
continuously follow the torque reference provided by the discrete-time speed controller. This is
mainly due to the fact that the symmetrical optimum and modulus optimum methods mentioned
in Section 2.3 are based on continuous-time.
For CCF-MPC, since there is no physical integrator present, the constraints are already part of
the optimization, and the controller design is performed in the discrete-time domain, no such
stability problems have been encountered even if fcc≈ fcf. This is mainly due to the direct con-
sideration of the constraints, i.e., in the specific case the reference torque, when using CCScon-
MPC. However, since none of the experimental test setups had such close time constants, this
could only be validated in simulation.

9.4 Performance Evaluation

In the following, CCF-MPC is examined using the example of motor M5, see Table A.3,
on the test bench described in Section 3.3, whose TMS parameters are shown in Table A.4
of Appendix A.3. Moreover, for a meaningful comparison, similar to the previous chapters,
several comparable approaches for the cascaded control structure are considered. For the cur-
rent control, the PI-based control (Section 2.3), DTC (Section 2.4)—as another direct control
approach—and the proposed VSP2CC (Chapter 7) are compared.4 For the superimposed speed
control, the PI-based control5 (Section 2.3), LQR6 and both of the proposed unconstrained

4Even though the conventional FCS-MPC (Section 2.5.2) shows similar transient behavior, due to the clearly
better steady-state behavior of VSP2CC—as shown in the previous chapters—only the latter is shown in the fol-
lowing. However, both have been validated and compared in [HK20].

5The setting of the controller gains in case of DTC is explained in Appendix A.6.
6The LQR design is based on [Lun17, p. 304], with adjustments for the specific use case of a TMS from [JS95],

adding an additional integrator for steady-state accuracy.
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Table 9.1: Evaluated cascaded control structures and their respective control frequencies.

Acronym
Speed Current / fa fcf fcc
control torque control (kHz) (kHz) (kHz)

FOC PI PI 20 20 10
PI-DTC PI DTC 100 100 10

PI-DMPC PI VSP2CC 100 100 10
LQR LQR VSP2CC 100 100 10

CCFunc-MPC CCSunc-MPC VSP2CC 100 100 10
CCFcon-MPC CCScon-MPC VSP2CC 100 100 10

CCSunc- and constrained CCScon-MPC are compared. Since in the field of MIMO optimiza-
tion problems LQR—as a method of optimal control—is very common [Lun17, p. 291 ff.],
especially for mechanical controlled systems, it is used as a reference for the desired highly
dynamic speed control. The investigated combinations of the mentioned approaches and the
respective sampling and control frequencies are summarized in Table 9.1. Furthermore, for the
comparison of the TMS speed controller it must be noted, that LQR and CCS-MPC as MIMO
controllers optimize the load speed, minimize the angle difference between motor and load
shaft and respect the motor speed. On the other hand, the three approaches with PI-based speed
controller—since they are SISO controllers—optimize just the motor speed.7

Parameter selection For CCS-MPC, it is necessary to parameterize the drive system as a
TMS, requiring a spring stiffness cTMS, a damping dTMS and the moments of inertia, as outlined
in Section 9.2. The same parameters are required for LQR, whereas the moments of inertia are
sufficient for FOC, PI-DTC and PI-DMPC. All parameters have been calculated analytically
and identified using the offline ID described in Section 4.2, where the results were quite similar
in both cases. Regarding the spring stiffness c, it should be noted that although in a drive train
each component has its own spring stiffness, in a TMS one component is the dominant elastic
one. Thus, the spring stiffness of the shafts can be considered rigid, i.e., c → ∞, compared to
the spring stiffnesses of the couplings, and the latter in turn can be considered rigid compared
to the torque measurement shaft. Hence, c of the torque measurement shaft is approximately
equal to cTMS. The individual c values can be found in Appendix A.3.2.
With the assumption of a TMS, the moments of inertia on the right and left side of the mea-
suring shaft can be summarized, see Appendix A.3.2 for details. The damping of the TMS has
been calculated analytically with (2.35) and identified by means of the parameter ID in Sec-
tion 4.2.2. The parameter ID procedure in Section 4.2.1 was used to identify the friction. All
TMS parameters are summarized in Table A.4 of Appendix A.3.2.

7It has also been investigated that the PI-based controller directly controls the load speed instead of the motor
speed. Unfortunately, this caused strong oscillations and eventually unstable behavior.
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Evaluation As mentioned in Section 9.2, in case of TMS speed control, the speed of the
load, i.e., n`, is the state of interest, i.e., is optimized, while the motor speed is not of inter-
est. A uniform test profile for n∗` is used for the subsequent evaluation of the control meth-
ods, see Fig. A.16 of Appendix A.6. First, at time t= 0.01 s, a speed reference step is applied
from zero to the desired reference speed. Second, at t= 0.2 s the drive is loaded with a load
torque TL = 0.2 Nm, i.e., almost half of the nominal torque, and is removed at t= 0.3 s. Third,
at t= 0.4 s a speed reversal is performed, i.e., −n∗` is set as reference speed. For n∗` , speeds
were evaluated in a range of 500 rpm up to 2000 rpm with 500 rpm steps. However, since the
oscillatory behavior is more pronounced in the part-load range than, e.g., at the nominal oper-
ating point, such a part-load operating point, i.e., n∗` = 500 rpm, is evaluated in the following.
In addition, a relatively low speed and torque constraint is chosen to focus on the advantage of
the superimposed CCS-MPC approach instead of the more dynamic behavior of the subordinate
DMPC current control. In doing so, a torque constraint of TN, i.e., 0.47 Nm in case of motor M5,
is chosen for the control output, i.e., the control signal of the superimposed speed controller. In
case of CCFcon-MPC this constraint is part of the optimization—see Section 9.2.1—where for
the control output of the PI-based controller clamping is used and for CCFunc-MPC and LQR8

the control signal is simply saturated, i.e., truncated. The comparison of the control methods
of interest is shown in Fig. 9.3-9.5. More concretely, Fig. 9.3 shows the speed of the load side.
The associated torque Tel is shown in Fig. 9.4. For CCFcon-MPC, the associated phase currents
are additionally shown in Fig. A.17 of Appendix A.6. As can be seen in Fig. 9.3, CCFcon-MPC
reaches the speed reference much faster and with less overshoot. The same beneficial behavior
appears for the load step. In order to interpret the results correctly, a more detailed analysis of
the procedures and results is necessary.

From a theoretical point of view, it is assumed that LQR is in most cases preferable to CCS-
MPC [SR98]. This is based on the fact that, first, LQR does not need to define a horizon, since
the horizon in LQR is infinite. Second, similar to CCScon-MPC, constraints can be theoretically
considered [SR98].8 Third, the computational effort is less than for CCS-MPC. Although in
simulation the LQR results were quite promising, in the experimental evaluation the gains of
the controller had to be reduced to avoid oscillations at the controller output.9 In addition,
CCS-MPC settled faster during reference tracking, with similar observations shown in [SB17,
p. 839]. Finally, the superimposed LQR algorithm requires an additional pre-filter or a tracking
integrator to guarantee steady-state accuracy [JS95], [SB17, p. 837]. For these reasons, CCS-
MPC is preferred in this work.

8Even though there are approaches for LQR that can take constraints into account, e.g., [SR98], this is not
common and is not considered in this work.

9Using the LQR method as descriped in [JS95], the LQR gains are chosen to be αLQR = 500, βLQR = 500,
δLQR = 107 and γLQR = 1.3 · 105, where the feedback factor isKLQR = [0.13 27.67 −0.047 8.41]T .
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Figure 9.3: Motor M5: Comparison of the considered methods for a reference speed step from
n∗` = 0 rpm to n∗` = 500 rpm using the test profile in Fig. A.16 (experimental).
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Figure 9.4: Motor M5: Tel of the considered methods for a reference speed step from n∗` = 0 rpm
to n∗` = 500 rpm using the test profile in Fig. A.16 (experimental).
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With respect to the superimposed PI-based controller, for each combination, i.e., PI-DTC, PI-
DMPC, FOC, the SISO controller optimizes only the motor speed nm without considering the
angular displacement ∆ϕ and the load speed n`, the latter two being the actual optimization
objectives. However, if the PI-based controller is fed with the load speed, disproportionate os-
cillations appear, making it unsuitable for stable operation.

With regard to the behavior of CCFunc-MPC and CCFcon-MPC, however, a clear difference
becomes apparent. As expected, both methods behave equally well for the load step shown
in Fig. 9.3, since no constraint is active there. However, in case of the speed reference step,
where the torque constraint is active, CCFcon-MPC can directly take the limitations into account
during the optimization and thus suppress the mechanical oscillations that occur much better
compared to the other approaches. For a more detailed analysis of the oscillations, Fig. 9.5
shows the reference speed step of Fig. 9.3 in a close-up view. In addition, the corresponding
deflection and oscillation of ∆ϕ is shown in Fig. 9.6(a), where the associated control output,
i.e., T ∗el and the resulting measured torque Tel—using (2.26)—, are shown in Fig. 9.6(b).
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Figure 9.5: Motor M5: Speed for CCFcon-MPC for a reference speed step from n∗` = 0 rpm to
n∗` = 500 rpm (experimental).

The main benefit of the proposed CCFcon-MPC can be clearly recognized in Fig. 9.6(a). As
mentioned before, the CCScon-MPC suppresses the oscillations much more or excites them less
and thus reaches the reference speed much faster than the other controllers. In case of CCFunc-
MPC, the torsional moment resulting from twisting the TMS, see peak-to-peak in Fig. 9.6(a),
can be calculated with

TTMS = cTMS∆ϕ . (9.8)

Thus, using cTMS = 100
Nm
rad

, the total change of ∆ϕ= 0.0065 rad results in a torque of 0.65 Nm.
This corresponds to almost 1.5 of the nominal torque of the considered drive. Even though—
similar to a capacitor—the energy present during the oscillation is first stored in one oscillation
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Figure 9.6: Motor M5: Transient comparison for CCSunc-MPC and CCScon-MPC for a reference
speed step from n∗` = 0 rpm to n∗` = 500 rpm (experimental).

half-period and second released in the other half-period, this process is subject to losses, e.g.,
due to the damping dTMS. More in detail, the dissipation, i.e., the irreversible conversion of ki-
netic energy into thermal energy, leads to the fact that for control methods with a significantly
higher oscillation—the energy supplied is assumed to be the same for all methods due to the
constraints—more energy is dissipated and is therefore not available for acceleration. Consider-
ing Fig. 9.5, the energy loses by dissipation in the TMS can be approximated from t= 1−16 ms
by using

Edis(t) = dTMS

∫
(ωm(t)− ω`(t))2dt . (9.9)

Further details on dissipation can be found, e.g., in [Zel18, p. 56 ff.]. Additional damping effects
occur due to electromagnetic damping and damping by the controller. As a result, CCFcon-MPC
reaches the reference speed earlier thanks to the reduced oscillations.

Examining Fig. 9.6(b) more closely, it is noticeable that the clearly more pronounced oscillatory
behavior with the other control methods, e.g., CCFunc-MPC, is due, first, to the steeper increase
of T ∗el and, second, to the non-existent reaction to the oscillations, i.e., the uncompensated os-
cillation amplitudes. CCFunc-MPC still demands almost infinite torque to reach the reference
speed as fast as possible, even if the torque limit has already been reached and thus the control
signal is saturated. If the controller subsequently wants to reduce the control signal in order to
minimize ∆ϕ for a predicted oscillation, the internally reduced control signal is still far above
the torque constraint Tel,max, i.e., still saturated, due to the previously demanded high torque.
As a result, the reduction has no effect. Contrary to this, CCFcon-MPC has a kind of integrated
reference filter, whereby this results from the control signal constraint, i.e., Tel,max (see (9.3)), in
the cost function. On the other hand, a reference filter would have to be added separately for the
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other methods. This avoids in case of CCFcon-MPC steep reference changes—if they cannot be
followed due to the system limits—and thereby excites less oscillations. In addition, the control
signal does not increase further inside the controller after reaching the constraint, so in case of
oscillations these can be damped directly, see the red reductions in Fig. 9.6(b).

Evaluation with laser vibrometer To conclude the evaluation of CCF-MPC, an exter-
nal measurement is performed using a Polytec rotational laser vibrometer RLV-5500. External
means that the measured values are acquired with an external measuring unit instead of using
the measured values of the controller, i.e., SoC FPGA. The vibrometer gives a detailed analysis
of the different frequency components in the speed. The experimental setup is shown in Fig. A.3
of Appendix A.3. For the evaluation of CCF-MPC, the change in load speed during a load step
of T` = 0.1 Nm is measured. This change is represented by the angle difference between two
measurement points of the load speed, i.e., ∆ϕ`. Fig. 9.7 shows a significant reduction of the
deflection during the load step when using CCF-MPC. This confirms the results of the previous
measurements. In case of CCF-MPC, no noticeable difference is apparent between CCFunc-
MPC and CCFcon-MPC. This is to be expected since the applied torque is not close to the torque
limit, i.e., both control signals are identical.
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Figure 9.7: Motor M1: Displacement angle ∆ϕ` of the load shaft during a load step T` = 0.1 Nm
(experimental).

9.4.1 Influence of Model and Parameter Inaccuracies

Similar to the previous chapters, the robustness of the model-based controller to parameter
variations is of interest. Hence, in the following, a variation of the inertia, the torsional stiffness
and the damping factor is added to the model. The test bench is unchanged. However, Fig. 9.8
shows almost similar control behavior under parameter mismatches compared to the unchanged
model, even with significant deviations of 50 %. In Fig. 9.8(a), J represents the simultaneous
variation of Jm and J`.
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Figure 9.8: Motor M1: CCF-MPC with parameter variations for a reference speed step from
n∗` = 0 rpm to n∗` = 1000 rpm (experimental).

In summary, the most important influence on the control behavior of the mechanical controlled
system—similar to the inductance for the electrical controlled system, see Sections 2.6.3 and
6.3.3—is a parameter uncertainty for one of the moments of inertia, i.e., Jm or J`. The damping
constant has the least influence.

9.4.2 Resource and Timing Evaluation

The following evaluation is done by using the first system, see Table A.2 of Appendix A.3,
while the second system behaves similar.

Processor Table 9.2 shows the change of the ISR runtime, i.e., ∆TISR, which represents
the computation time when using the individual speed control methods in steady state. It can
be noted that the computation time of CCScon-MPC is significantly increased compared to the
other methods. Especially in transients, when constraints are (almost) active, the computation
time of CCScon-MPC can be even longer due to the slower converging problem. In steady state,
however, it can be assumed that the numerical optimization converges in time since the set
of active constraints are zero, i.e., γact = 0. The maximum ISR runtime, considering all tasks,
was TISR≈ 90 µs, which is near the ISR limit of Tcc = 100 µs. However, it should be noted that
during this maximum ISR runtime, i.e., when the maximum computation time is required by a
slowly converging optimization problem, an online recalculation and replacement of the control
matrices—see Section 9.2.3—has additionally taken place.

Table 9.2: Required computation time for the speed controller in steady state.

Required
PI LQR

Unconstrained Constrained
computation time CCS-MPC CCS-MPC

∆TISR 9 µs 9 µs 17 µs 27 µs
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FPGA Table 9.3 shows the required total resources and the achieved timing when implement-
ing the current control algorithm on an FPGA with a basic clock frequency of 100 MHz. Even
if the resources depend on the specific way of implementation (sharing and streaming), the
provided information provides insight since it can indicate the required resources and/or com-
putational load for an increased horizon and/or more complex cost functions. The fixed-point
value range is chosen based on a normalized (pu) scaling. It should be mentioned that for the
comparison of the two predictive approaches, apart from the prediction process itself (i.e., (2.73)
as opposed to (7.4)), all IP cores are identical and use the same clocks. This means that, e.g., the
ADC readout, the cost function and the dead-beat solution are completely identical. The main
difference between the two VSP2CC approaches is the use of flux linkage maps in case of the
ψ-based method.
At this point, it is worth mentioning that flux linkage maps are preferred to polynomial solu-
tions for reasons related to resource efficiency, see Section 4.3.4. Specifically, for the bivariate
extension, two terms (one for self- and one for cross-saturation) and, therefore, two multiplica-
tions are required for each polynomial order. Moreover, a third term describes the impact of the
permanent magnets. Therefore, it can be concluded that when comparing the calculation effort
of both options and taking into account the subsequent FPGA implementation, the flux linkage
maps constitute a computationally cheaper method.
Finally, FOC and DTC require only about half of the resources needed for the proposed direct
MPC algorithms.

Table 9.3: Resource and timing evaluation for the FPGA using the first system in Table A.2.

Resources
LUT LUT Block Slice registers DSP

as logic as memory RAMs (flip-flops) slices

Available in first system 53200 17400 140 106400 220

Available in second system 274080 144000 912 548160 2520

L-VSP2CC (Np=2) 30983 1134 32 30310 119

ψ-VSP2CC (Np=2) 39776 1470 37 36723 135

FOC 21652 1114 32 21675 52

DTC 22187 1214 32 23602 47

Timing
Sampling Dead-beat Prediction Optimization

Total
& dq-trans. preselection & VSP2CC & minimization

L-VSP2CC (Np=2) 1.6 µs 0.3 µs 0.9 µs 0.38 µs 3.18 µs

ψ-VSP2CC (Np=2) 1.6 µs 0.3 µs 1.9 µs 0.38 µs 4.18 µs

FOC 1.6 µs — — — 2.21 µs

DTC 1.6 µs — — — 1.72 µs
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9.5 Final Assessment

In this chapter, the advantageous behavior of MIMO control, i.e., LQR and CCS-MPC, over
SISO control, i.e., PI, is demonstrated using an elastically coupled TMS as an example. Al-
though LQR is a very capable MIMO method, CCScon-MPC has shown better performance in
the applications and experiments considered here, especially for reference tracking. Depending
on the speed reference, the latter can be reached faster as well as the settling time of the closed
loop can be reduced up to 50 %. However, this may be different for other use cases.
Moreover, the proposed CCScon-MPC showed the benefit over CCSunc-MPC by considering the
constraints directly during optimization instead of saturating the control signal afterwards. As
demonstrated, in the case of an elastically coupled TMS, this leads to improved dynamics and a
smoother speed behavior, which can lead to improved positioning accuracy. Moreover, with the
presented method, it is possible to adjust the system matrices in the model of CCS-MPC during
operation. In terms of usability, this is beneficial compared to the state of the art, as no precise
knowledge of the TMS setup, i.e., the parameters, is required in advance. More precisely, the
parameters are identified directly in the application by executing the offline parameter ID in
Section 4.2. The same offline ID can be re-executed as soon as parameter changes are expected,
e.g., during operating breaks.
Even though the proposed CCFcon-MPC implies an increased computational load compared
to the other methods, this is addressed by the platform shown in Chapter 3. Consequently, as
demonstrated in Section 9.4.2, the computational load is moderate.

In summary, CCFcon-MPC, as stated at the beginning of the thesis in the requirements of Sec-
tion 1.2, enables the fastest possible dynamics while taking into account the minimization of
energy losses. More specifically, the subordinate DMPC, i.e., ψ-VSP2CC, follows ideally and
provides exactly the required current as illustrated in Fig. 9.6(b). Moreover, as shown, a delay
results only from the electrical time constant and the system delay, i.e., discrete sampling and
control interval. Consequently, in case of Fig. 9.6(b), where fcc = 10 kHz is used for the speed
controller, the requested current is reached at most after 100 µs.

One possibility for improving the method is to observe the load speed n`, i.e., encoderless
operation, which could eliminate the second incremental encoder on the load side. A second
option is to extend the speed controller with a position controller that is as jerk-free as possible.
Third, funnel control [SB17, p. 739 ff.]—which avoids a knowledge of the model parameters—
is a promising alternative for the TMS speed control. This could potentially be attractive in
combination with a subordinate DMPC. Here, a comparison with CCFcon-MPC would be inter-
esting.
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10 Conclusion and Outlook

Current and speed control of elastically coupled mechatronic drive systems using small—
possibly magnetically nonlinear—PMSMs have been addressed. The main aim is to achieve
very fast closed-loop dynamics while minimizing ripple and overshoots, with low-loss opera-
tion as a secondary condition. For this purpose, it is beneficial to consider the numerous system
constraints such as maximum current, torque, and the natural behavior of the controlled system,
i.e., the discrete switching states of the VSI, directly during optimization. It has been shown
that classical SISO controllers such as FOC with SVM or DTC have their difficulties in consid-
ering several objectives simultaneously. For this reason, a combination of two MPC methods is
formulated that achieves the above objectives in a significantly superior manner.

10.1 Conclusion

To accomplish the aforementioned claims—see also Section 1.1—this thesis addresses five open
problems in the field of MPC. These issues are pointed out and possible solutions are proposed,
theoretically analyzed and experimentally validated.
First, MPC requires increased processing power compared to the state of the art, which is ad-
dressed by introducing heterogeneous calculation platforms. These enable more efficient solv-
ing of control algorithms by performing distributed computation on processors and FPGA using
low latency data exchange. Contrary to previous research, this makes it possible to solve FCS-
MPC—and even ψ-VSP2CC—with a long horizon and control frequencies of several hundred
kHz.
Second, since the switching behavior of FCS-MPC for electrical machines with small electrical
time constants has insufficient switching granularity for an acceptable current ripple, a variable
switching point based on the calculation of current gradients is provided, i.e., VSP2CC. Here,
high current dynamics and current quality, i.e., low THD, are achieved simultaneously. This
enables DMPC to be used not only for large drives but also for small drives, i.e., those with
small electrical time constants, as demonstrated for the first time in this work.
Third, this thesis considers the possible impact of nonlinearities, i.e., parameter and model in-
accuracies, on the control performance along with compensation solutions that are suitable for
ensuring the best possible control behavior. More specifically, the inductance was identified
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as the parameter with the most significant and non-negligible influence on the performance,
compared to all other electrical parameters (while it was the moment of inertia in the case
of mechanical parameters). Hence, a flux linkage-based prediction rather than an inductance-
based one has been established, which enables accurate calculation of the current behavior even
for PMSMs with a nonlinear magnetic circuit, i.e., when saturation and cross-coupling are pro-
nounced. In the case of VSP2CC, i.e., when using the current gradients, the results demonstrated
the potential benefits of the proposed ψ-VSP2CC. As is shown, the latter clearly outperforms
L-VSP2CC—which bases its prediction on inductances—when magnetic nonlinearities are of
concern. Moreover, it achieves similar steady-state performance with FOC while exhibiting su-
perior dynamic behavior.
Fourth, to compensate for rotor position-dependent as well as cyclically repeating model and
parameter deviations, a repetitive correction term for direct control methods, i.e., DMPC, is in-
troduced. This compensates for the negative influences of spatial harmonics, for example, that
may be present in the PMSM design, resulting in increased current and, in turn, enhanced torque
performance.
Fifth, when the mechanical controlled system is additionally considered, a cascaded MPC struc-
ture for mechatronic drive systems is presented, i.e., CCF-MPC. As in conventional FOC, it
separates electrical and mechanical controlled systems rather than optimizing the entire system
in a single MPC cost function. The novelty is that DMPC is used for the current control loop
and CCS-MPC for the superimposed mechanical control loop. This separation facilitates both
the fine granularity necessary for the prediction steps in current optimization and a discernible
change in the states for the prediction of the mechanical behavior. This decouples the usually
larger mechanical time constant, i.e., τm, from the electrical time constant τel. Thus, DMPC en-
ables highly dynamic current optimization as described, and with superimposed CCS-MPC—
which is comparatively computationally cheaper—a long prediction horizon for the entire drive
system is still achieved. The demonstrated measurements show that the presented MIMO opti-
mization, i.e., CCF-MPC, provides improved dynamics and shorter settling times in transients,
as well as active damping of natural oscillations in the flexible shaft in steady state, in contrast
to PI (SISO) and LQR (MIMO).
In addition, an inherent method for parameter identification—especially for the flux linkage—
and online adaptation is elaborated, which enables high usability by parameterizing MPC mod-
els during operation, thus ensuring the best possible control behavior over the entire operating
range.

In conclusion, the answers to the research question can now be assessed. As claimed, the pro-
posed ψ-VSP2CC achieves the fastest possible dynamic current response while avoiding over-
shoots, even for PMSMs with nonlinear magnetic behavior. Thus, the overall benefit of ψ-
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VSP2CC can be seen in terms of enhanced dynamics and increased usability in comparison
to FOC with SVM and improved THD in comparison to conventional FCS-MPC, DTC and
the L-VSP2CC approach. More specifically, in the former case, i.e., FOC with SVM, the PI
gains and pulse pattern must be adjusted as a function of the operating point to achieve accept-
able performance over the entire operating range. In contrast, ψ-VSP2CC inherently decides to
switch more or less frequently depending on the operating point, while always ensuring maxi-
mum dynamics. Only a single weighting factor, i.e., λu, needs to be adjusted, which defines the
acceptable current ripple.
Moreover, DMPC produces a spread spectrum—comparable to white noise—with low ampli-
tudes, in contrast to SVM, which has a spectrum with certain orders of harmonics and compara-
tively high amplitudes. For drives, the spread spectrum, i.e., the distribution of harmonic energy
over a wide frequency range, can actually be advantageous for two reasons. First, a variable
switching frequency reduces mechanical excitation at certain frequencies, which is in contrast
to the concentrated frequencies around the carrier frequency in the case of SVM [Hol94]. Sec-
ond, depending on the operating point, it avoids unnecessary switching operations.
In addition, constraints are inherently accounted for in MPC, avoiding complex feedback paths
and prioritization in the case of PI-typical clamping, i.e., when the current or voltage limit is
reached.
To sum up, it can be concluded that CCF-MPC with subordinate ψ-VSP2CC is an interesting
alternative to established control methods and is useful for mechatronic controlled systems with
small electrical drives.

10.2 Outlook

Iron losses due to the fundamental frequency cannot be mitigated by the controller, since the
flux density B and fundamental frequency are due to the operating point. However, the inverter-
related iron losses can potentially be beneficially affected. In SVM, the switching frequency,
the multiples thereof, and the respective side harmonics each cause their own iron losses, which
depend on the amplitude of the respective flux density with B2. In the case of DMPC, a spread
spectrum is given. Thus, considering all the harmonic orders generated by the inverter switch-
ing, a lower amplitude ofB for the respective orders—even if more harmonic orders are present
in the spread spectrum—can potentially reduce the overall inverter-related iron losses of the
motor. Even though the iron losses turned out to be relatively low for the small drives under
consideration, the reduction of inverter-related iron losses could be an extremely promising cri-
terion for PMSMs in higher power classes.
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Moreover, with the proposed repetitive extension in Chapter 8, the torque rather than the cur-
rent can be optimized directly. Thus, for geometrically induced spatial harmonics in the flux
linkage, the current can be bent in the opposite direction—instead of being corrected to an ideal
fundamental—which, due to the multiplication of current and flux linkage in the torque equa-
tion, i.e., (2.26), can provide a smooth torque.
Considering its ability to directly account for constraints during optimization, DMPC is espe-
cially promising at the modulation limit, i.e., voltage limit, see, among others, [PB13d]. As
shown by the first self-conducted investigations [Sch19], the voltage reserve, i.e., the reserve
for the compensation of dynamic processes at the modulation limit, can be kept significantly
smaller and thus the available dc-link voltage can be better utilized. However, this requires fur-
ther investigation.
Finally, this thesis provides a basis for more complex systems such as multi-phase PMSMs,
where significantly more states must be optimized simultaneously due to the increased com-
plexity.
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Nomenclature

Abbreviations

ADC Analog-to-Digital Converter

CCF-MPC Cascaded Continuous and Finite control set-Model Predictive Control

CCS-MPC Continuous Control Set-Model Predictive Control

DFT Discrete Fourier Transform

DMPC Direct Model Predictive Control

DSP Digital Signal Processor/Digital Signal Processing

DT Drive Train

DTC Direct Torque Control

FCS-MPC Finite Control Set-Model Predictive Control

FEM Finite Element Method

FGM Fast Gradient Method

FOC Field Oriented Control

FPGA Field Programmable Gate Array

GUI Graphical User Interface

HDL Hardware Description Language

ID IDentification

IDW Inverse Distance Weighting

IGBT Insulated Gate Bipolar Transistor

IP Intellectual Property

IPMSM Interior Permanent Magnet Synchronous Machine

ISR Interrupt Service Routine

ITAE Integral of Time multiplied by Absolute value of Error

LM Levenberg-Marquardt algorithm



ii Nomenclature

LMG Power Measuring Device

LQR Linear Quadratic Regulator

MIMO Multiple-Input Multiple-Output

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MPC Model Predictive Control

NdFeB Neodymium iron Boron

OCM On-Chip Memory

PI Proportional-Integral

PMASynRM Permanent Magnet Assisted Synchronous Reluctance Machine

PMSM Permanent Magnet Synchronous Maschine

PRBS Pseudo Random Binary Sequence

PWM Pulse Width Modulation

QP Quadratic Programming

RCP Rapid Control Prototyping

RSM Reluctance Synchronous Machine

SAR Successive Approximation Register

SISO Single-Input Single-Output

SoC FPGA System on Chip Field Programmable Gate Array

SPI Serial Peripheral Interface

SPMSM Surface Permanent Magnet Synchronous Machine

SV discrete voltage Space Vector

SVM Space Vector Modulation

SynRM Synchronous Reluctance Machine

THD Total Harmonic Distortion

TMS Two-Mass System

VHDL Very high speed integrated circuit Hardware Description Language

VSI Voltage Source Inverter

VSP Variable Switching Point

VSP2CC Variable Switching Point Predictive Current Control

VSP2TC Variable Switching Point Predictive Torque Control



Nomenclature iii

Symbols

αR temperature coefficient of winding material in 1/K

αψ temperature coefficient of flux linkage in 1/K

Ψ̄ measurement array for the scattered flux linkage maps

0m×n zero matrix of dimension m× n with 0m×n ∈ Rm×n

Γ predictive state matrix

Θ̂LM parameter estimation vector for Levenberg-Marquardt algorithm

Ψ measurement array for the instantaneous and scattered flux linkage maps

Υ predictive input matrix

A,Ac state (or system) matrix in discrete and continuous time respectively

B,Bc input matrix in discrete and continuous time respectively

C, Cc output matrix in discrete and continuous time respectively

H Hessian matrix

In identity matrix of dimension n× n, In = diag(1, ..., 1) ∈ Rn×n

J J, J J,c Jacobian matrix in discrete and continuous time respectively

∆Ψd measurement array for the temperature-dependent flux deviation

∆ω deviation of the electrical rotor angular velocity in rad/s

∆ψd, ∆ψq, ∆ψdq deviation of the flux linkage in the rotor-fixed coordinate system in Vs

∆ϕ displacement angle between motor and load shaft position in rad

∆ϕ∆ deviation for the rotor position encoder offset in rad

∆ϑ temperature difference in °C

∆cTMS,rel relative deviation of the estimated torsional stiffness in %

∆dTMS,rel relative deviation of the estimated rotational damping in %

∆ia, ∆ib, ∆ic deviation of the phase currents in A

∆id, ∆iq, ∆idq deviation of the current in the rotor-fixed coordinate system in A

∆Rph deviation of the phase (winding) resistance in Ω

∆T torque deviation in Nm

∆u, ∆u, ∆U change in switch position

∆va, ∆vb, ∆vc deviation of the phase voltages in V

∆vd,Fe, ∆vq,Fe iron loss error voltages in the rotor-fixed coordinate system in V
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∆vd, ∆vq, ∆vdq deviation of the voltage in the rotor-fixed coordinate system in V

∆x, ∆y, ∆z absolute deviation of a variable

∆step relative measurement uncertainty as a result of step size for ID in %

` discrete time step relative to k

γ, γ, γact constraint when using CCS-MPC

γdb angle of the dead-beat solution in rad

γsvm angle of the space vector modulation in rad

κ number of discrete samples for one ID step/number of parameters in the
system

λ weighting factor

λLM weighting factor for scaling Levenberg-Marquardt algorithm

λ∆ϕ weighting factor for the angle deflection when using CCS-MPC

λω` weighting factor for the load speed when using CCS-MPC

λu weighting factor for penalizing switching when using FCS-MPC

Λd, Λq, Λdq differential angular dependencies of the flux linkage in Vs/rad

Pωm spectral speed power density in dBm

PTm spectral torque power density in dBm

ωdam measured damper frequency in rad/s

ωel electrical rotor angular velocity in rad/s

ωm mechanical rotor angular velocity on the motor side in rad/s

ωres,ana analytic resonance frequency in rad/s

ωres measured resonance frequency in rad/s

ω` mechanical rotor angular velocity on the load side in rad/s

ψα, ψβ , ψαβ flux linkage in the stator-fixed coordinate system in Vs

ψpm,ref reference direct-axis flux linkage component caused by the permanent mag-
nets per pole pair in Vs (Wb)

ψpm direct-axis flux linkage component caused by the permanent magnets per
pole pair in Vs (Wb)

ψa, ψb, ψc, ψabc flux linkages of each phase in Vs
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ψd, ψq, ψdq direct- and quadrature-axis flux linkage in the rotor-fixed coordinate system
in Vs

ψ~
d direct-axis flux linkage due to the current excitation without the permanent

magnets in Vs

ρ, ρact, ρcon, ρ~ Lagrange multiplier when using CCS-MPC

ρsph radius of sphere when using FCS-MPC

σ standard deviation of the measurements

τel electrical time constant of the motor in s

τm mechanical time constant of the motor in s

τϑ thermal time constant of the motor in s

ε distance between two measurements in the flux linkage map in A (for IDW)

εmin minimum distance between two measurements in the flux linkage map in A
(for IDW)

ϕ electrical rotor angle in rad

ϕm mechanical rotor angle on the motor side in rad

ϕ∆ rotor position encoder offset in rad

ϕ` mechanical rotor angle on the load side in rad

ϑ temperature of the motor winding in °C

ϑinv temperature of the semiconductors of the inverter in °C

ϑm,ref reference temperature of the permanent magnets in °C

ϑm temperature of the permanent magnets in °C

ϑref reference temperature of the motor winding in °C

ω̃m mean of speed measurement values for viscous friction ID in rad/s

T̃m mean of torque measurement values for viscous friction ID in Nm

ξ, ξ control deviation, output tracking term

ζ , ζ general state

B flux density in T (Vs/m2)

c torsional stiffness in Nm/rad

ccou torsional stiffness of the coupling in Nm/rad

cTMS,0 torsional stiffness of the undamped system in Nm/rad
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cTMS,ideal reference for torsional stiffness in Nm/rad

cTMS torsional stiffness of the whole TMS in Nm/rad

D damping ratio in %

d rotational damping in Nms/rad

dfric viscous friction constant in Nms/rad

dTMS,ideal reference for rotational damping in Nms/rad

dTMS rotational damping of the whole TMS in Nms/rad

e Euler’s number

fa sampling frequency of the measurements in Hz

fcc control frequency of the mechanical control loop in Hz

fcf control frequency of the electrical control loop in Hz

fc control frequency in Hz

fdam measured damper frequency in Hz

fID, min, fID, max smallest and largest identified frequency during ID in Hz

fres measured resonance frequency in Hz

fS, PRBS sampling rate of the Welch algorithm in Hz

fsw (average) switching frequency in Hz

Gana analytic transfer function for ID in rad/(Nms)

Gexp measured transfer function for ID in rad/(Nms)

GS shear modulus in Nm/mm2

i, i, I current in A or pu

i, j, l, m, n, o arbitrary counting index

i0 no load RMS phase current in A

IN rated current in A

iα, iβ , iαβ currents in the stator-fixed coordinate system in A

ia, ib, ic, iabc phase currents in A

id, iq, idq currents in the rotor-fixed coordination system in A

J moment of inertia in kgm2

j imaginary unit of complex numbers
√
−1

Jcou moment of inertia of the coupling in kgm2
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Jc, Jc,unc, Jc,con cost function of CCS-MPC

Je,m, Je,` moment of inertia of the encoder on the motor and load side respectively in
kgm2

Jf cost function of FCS-MPC

JLM cost function of Levenberg-Marquardt algorithm

Jms,m, Jms,` moment of inertia of the torque measuring shaft on the motor and load side
respectively in kgm2

Jsm moment of inertia of the motor in kgm2

J` moment of inertia on the load side in kgm2

Jm moment of inertia on the motor side in kgm2

Js` moment of inertia of the load in kgm2

k discrete time instants, k ∈ N0

kp proportional tuning factor

kp,ω proportional tuning factor for speed controller

kp,id, kp,iq proportional tuning factor for current controller in the respective axis

Lph-ph phase-phase inductance between two terminals in H

Lph, La, Lb, Lc phase (winding) inductance in H

Ldd partial (differential) d-inductance of the d-axis (self-coupling inductance in
the direct-axis) in the rotor-fixed coordinate system in H

Ldq partial (differential) q-inductance of the d-axis (cross-coupling inductance
in the direct-axis) in the rotor-fixed coordinate system in H

Ld, Lq, Ldq absolute inductances in the rotor-fixed coordinate system in H

Lqd partial (differential) d-inductance of the q-axis (cross-coupling inductance
in the quadrature-axis) in the rotor-fixed coordinate system in H

Lqq partial (differential) q-inductance of the q-axis (self-coupling inductance in
the quadrature-axis) in the rotor-fixed coordinate system in H

md, mq,mdq current gradient (slope) in A/s

n motor speed in rpm

Nbrk number of measurements during breakaway torque ID

nmax maximum allowed speed in rpm

nmin minimum speed representable by the encoder in rpm
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nN rated motor speed in rpm

NPRBS number of switching operations in a PRBS interval

nPRBS number of shift register stages

Nsty number of control steps to guarantee steady state for breakaway torque ID

Nvisco number of measurement steps for viscous friction ID

p number of pole pairs

r weighting factor of the distance influence when using IDW

RDS(on) drain-source on-state resistance of the MOSFET in Ω

RFe iron loss resistance Ω

Rph,ref reference phase (winding) resistance in Ω

Rph-ph phase-phase resistance between two terminals in Ω

Rph, Ra, Rb, Rc phase (winding) resistance in Ω

Rsh resistance of the shunt in Ω

s Laplace operator

sstep scaling factor of current steps during ID

SωT variance of measured speed and torque values in Nm rad/s

Sω2 variance of measured speed values in rad2/s2

t time in s

Ta sampling interval of the measurements in s

tbrk,ID duration of breakaway torque ID in s

Tbrk breakaway friction torque in Nm

Tcc control interval of the mechanical control loop in s

Tcf control interval of the electrical control loop in s

Tcoul coulomb friction torque (speed independent) in Nm

Tc control interval in s

Tel electromagnetic (electromechanical or inner) torque in Nm

Tfpga period of the FPGA clock in s

Tfric,k single friction torque of one arbitrary friction contact in Nm

Tfric total torque through friction in Nm

Tf the torque applied by the spring to the load side (spring torque) in Nm
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TISR runtime of the ISR in s

Ti integral tuning factor

Tms torque of the measuring shaft in Nm

Tm mechanical torque on the motor side in Nm

TN rated torque in Nm

TP,PRBS period of the PRBS in s

TS,PRBS cycle time of the PRBS in s

Tsw modulation and switching interval in s

tz variable switching point in s or pu

T` mechanical torque on the load side in Nm

Ti,ω integral tuning factor for speed controller

Ti,id, Ti,iq integral tuning factor for current controller in the respective axis

U , U sequence of switch positions (switching sequence)

u, u switch position, control signal, input signal

v, v, V voltage in V or pu

Vdc dc-link voltage in V or pu

VN rated voltage in V

vα, vβ , vαβ voltages in the stator-fixed coordination system in V

va, vb, vc, vabc phase voltages in V

vd, vq, vdq voltages in the rotor-fixed coordination system in V

x, x,X state signal or x-axis in the coordinate system

x(1) measurement for the test signal with positive half-wave

x(2) measurement for the test signal with negative half-wave

y, y, Y controlled signal, output signal or y-axis in the coordinate system

z disturbance signal or z-axis in the coordinate system
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A.1 Mathematical Definitions

In this work the following conventions for mathematical symbols and definitions are used:

x scalars are written in italic letters
x vectors are bold lower case letters
X matrices are bold upper case letters
x∗ references are marked with a star superscript
|x| absolute value of the scalar x (abs(x))
||x||1 1-norm of the vector x, i.e., sum of the absolute values (

∑
abs(x))

||x||2 2-norm or length of the vector x, i.e., square root of the sum of the squared
values also named Euclidian norm (

√∑
x2)

||x||22 sum of the squared values (
∑
x2)

A.2 Derivations

A.2.1 Space Vector Modulation - Quadrant and Sector Selection

For an SVM implementation which avoids the additional trigonometric functions in (2.8a)-
(2.8b), the existing sin(ϕ) and cos(ϕ) values of the current dq-transformation are used to convert
v∗dq to v∗αβ , see Section 2.1.1. Afterwards, by using

a = |v∗α|+
1√
3

∣∣v∗β∣∣ (A.1a)

b = |v∗α| −
1√
3

∣∣v∗β∣∣ (A.1b)

c =
2√
3

∣∣v∗β∣∣ , (A.1c)

the sector and quadrant of v∗αβ can be determined with Fig. A.1 by using the signs of v∗α and v∗β
as well as b. In doing so, |vR| and |vL| can be determined with the help of Table A.1.
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Figure A.1: Space vector modulation - flowchart to determine quadrant and sector [QD15,
p. 32].

Table A.1: Space vector modulation - table for calculation of the voltage vectors |vR| and |vL|
based on the current sector and quadrant [QD15, p. 23 ff.].

|vR| |vL|

Sector 1 Quadrant 1 |v∗α| −
1√
3

∣∣∣v∗β∣∣∣ 2√
3

∣∣∣v∗β∣∣∣
Sector 2 Quadrant 1 |v∗α|+

1√
3

∣∣∣v∗β∣∣∣ − |v∗α|+
1√
3

∣∣∣v∗β∣∣∣
Quadrant 2 − |v∗α|+

1√
3

∣∣∣v∗β∣∣∣ |v∗α|+
1√
3

∣∣∣v∗β∣∣∣
Sector 3 Quadrant 2

2√
3

∣∣∣v∗β∣∣∣ |v∗α| −
1√
3

∣∣∣v∗β∣∣∣
Sector 4 Quadrant 3 |v∗α| −

1√
3

∣∣∣v∗β∣∣∣ 2√
3

∣∣∣v∗β∣∣∣
Sector 5 Quadrant 3 |v∗α|+

1√
3

∣∣∣v∗β∣∣∣ − |v∗α|+
1√
3

∣∣∣v∗β∣∣∣
Quadrant 4 − |v∗α|+

1√
3

∣∣∣v∗β∣∣∣ |v∗α|+
1√
3

∣∣∣v∗β∣∣∣
Sector 6 Quadrant 4

2√
3

∣∣∣v∗β∣∣∣ |v∗α| −
1√
3

∣∣∣v∗β∣∣∣
Finally, with the help of vR, vL and Vmax = Vdc/

√
3 the activation times of the discrete SVs are

determined without additional trigonometric function by using

tR = Tsw
|vR|
Vmax

(A.2a)

tL = Tsw
|vL|
Vmax

(A.2b)

t0 = Tsw − tR − tL . (A.2c)
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A.2.2 Derivation of the Discretization Error Corrected Flux Linkage Prediction

A detailed derivation of the flux linkage change is provided hereafter. Using (7.2), the flux
linkage change at time step k+ 1 is [RGD14]

ψd(k+1) = ψd(k) + Tcf

(
vd(k)−Rphid(k) +

ωel(k)

2

(
ψq(k)+

ψq(k) + Tcf
(
vq(k)−Rphiq(k)− ωel(k)

2
Σψd(k+1)︸ ︷︷ ︸

ψq(k+1)

))) (A.3a)

ψq(k+1) = ψq(k) + Tcf

(
vq(k)−Rphiq(k)− ωel(k)

2

(
ψd(k)+

ψd(k) + Tcf
(
vd(k)−Rphid(k) +

ωel(k)

2
Σψq(k+1)︸ ︷︷ ︸

ψd(k+1)

)))
.

(A.3b)

After rearranging and collecting terms, it yields

ψd(k+1) = ψd(k) +
Tcf(vd(k)−Rphid(k) + ωel(k)ψq(k))

1 +
1

4
T 2

cfω
2
el(k)

+
T 2

cf
ωel(k)

2
(vq(k)−Rphiq(k)− ωel(k)ψd(k))

1 +
1

4
T 2

cfω
2
el(k)

(A.4a)

ψq(k+1) = ψq(k) +
Tcf(vq(k)−Rphiq(k)− ωel(k)ψd(k))

1 +
1

4
T 2

cfω
2
el(k)

+
T 2

cf
ωel(k)

2
(−vd(k) +Rphid(k)− ωel(k)ψq(k))

1 +
1

4
T 2

cfω
2
el(k)

.

(A.4b)

Further simplifications are valid. First, given that Tcf � 1, it holds that ωel,maxTcf � 1, where
ωel,max is the maximum electrical speed. In light of this, the last term of (A.4a) and (A.4b) can
be neglected. Second, the denominator of the first term can be assumed to be constant and equal
to one, since ω2

el,maxT
2
cf ≈ 0. However, since the formula should be valid in general, only the first

assumption is implemented, whereas the second is not. Due to extreme conditions such as high
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speed drives at low sampling and control frequencies (e.g., ωel = 1000 rad/s and Tcf = 1 ms),
the aforementioned denominator can be greater than one. For this reason, the denominator is
calculated on the processor and is kept constant for one complete prediction process, since
the mechanical angular velocity can be assumed to be constant during the prediction process
of the electrical model. With the above manipulations, assumptions, and simplifications (7.4)
results.

A.3 Test Bench

Two systems are used for the evaluation, as mentioned in Chapter 3. The first one is an industry-
oriented solution and is more cost-effective. The second one is a high-end platform that serves
as a feasibility study. Both systems and their core components are summarized in Table A.2.

Table A.2: Core components of the two control platforms used.

Component First system Second system
Ohmrichter UltraZohm

Calculation unit (SoC FPGA) XA7Z020 XCZU9EG
ADC AD7980 (16-bit, 1 MSPS) LTC2311-16 (16-bit, 5 MSPS)

Current sensor CSS4527FT10L0
Op-amp INA240A1PWR

MOSFET BSC094N06LS5
Gate driver UCC27211A

As an alternative to the first system shown in Fig. 3.4, the second real-time calculation system,
i.e., the UltraZohm, first presented in [WGL+19], is used for longer horizons. The UltraZohm is
shown in Fig. A.2. The idea, concept, hardware and software have been shared as open source
and are continuously developed further by a community, see [WSL+].
In addition, a laser vibrometer is used as an external device to benchmark CCF-MPC and the

other control approaches in Section 9.4 regarding the reduction of mechanical oscillations. The
alignment of the laser vibrometer on the test bench is shown in Fig. A.3.

Figure A.2: UltraZohm real-time computation system with analog and digital adapter board.
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Figure A.3: Experimental setup for the evaluation of CCF-MPC via the Polytec rotational laser
vibrometer RLV-5500.

A.3.1 Investigated Synchronous Machines

The following Table A.3 shows the investigated PMSMs. Note that for Rph, Ld, Lq and ψpm the
identified parameters are listed in the linear region of the machine. Additionally, the data sheet
values are given in brackets. It is worth mentioning that the identified parameters also include
the respective cables and connectors.

An incremental quadrature encoder with 5000 lines per revolution (Sendix 8.5000.8344.5000)
is selected to determine the rotor position of the respective motor under test. An RS422 voltage
signal is selected to ensure robust operation. In general, there a two possibilities to evaluate the

Table A.3: Motor and system parameters in the linear region of the magnetic circuit.

Description Symbol
Motor M1 Motor M2 Motor M3 Motor M4 Motor M5

Bühler ebm-papst ebm-papst Prototype Bühler
1.25.058.401 ECI-63.20-K1-D00 ECI-63.20-K1-B00 — 1.25.058.201

Circuit — star star star star star
Rotor PM — surface interior interior interior surface

Winding —
non-overlapping non-overlapping non-overlapping non-overlapping non-overlapping

concentrated concentrated concentrated concentrated concentrated
Pole pair number p 4 4 4 4 4

Rated power PN 170 W 150 W 150 W — 157 W

Rated voltage VN 24 V 48 V 24 V 24 V 24 V
Rated current IN 8.6 A 4.5 A 8.5 A — 8.0 A
Rated torque TN 40 Ncm 36 Ncm 36 Ncm 90 Ncm 47 Ncm
Rated speed nN 4000 rpm 4000 rpm 4000 rpm — 3200 rpm

Winding resistance Rph 107(85) mΩ 220 (210) mΩ 90 (70) mΩ 290 mΩ 86 (70) mΩ

d-axis inductance Ld 0.26(0.25) mH 0.47 (0.44) mH 0.14 (0.13) mH 0.49 mH 0.29 (0.38) mH
q-axis inductance Lq 0.26(0.25) mH 0.77 (0.44) mH 0.21 (0.13) mH 2.10 mH 0.32 (0.38) mH
PM flux constant ψpm 5.9 mVs 10(11.6) mVs 6.0 (6.6) mVs 20 mVs 7.5 (7.0) mVs
dc-link voltage Vdc 24 V 24 V 24 V 24 V 24 V
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A, B, I-lines. First, the time between two—either rising or falling—edges of the same line, i.e.,
A or B, is measured, or, second, by counting the edges of both lines (quadrature) in a given time
window. Combining these two possibilities, an IP core in the FPGA evaluates the lines with a
clock frequency of 100 MHz and outputs ωm, ϕm and ϕ, see Figs. 3.1-3.3.

A.3.2 Investigated Two-Mass System

Next to the motor parameters, the system parameters of the test bench—see Chapter 3—, i.e.,
load machine, measuring shaft (torque transducer), speed encoder, couplings are shown in Ta-
ble A.4. The parameters were identified by the offline ID, see Section 4.2. In addition, all pa-
rameters of the test bench shown in Fig. 3.4 were calculated and compared to the identified
values for validation.
The spring stiffness of the drive shaft and the other components is usually in a range that can
be considered to be rigid, i.e., c → ∞, compared to the spring stiffness of the couplings and
torque measuring shaft. Comparing the test bench in Fig. 3.4, the spring stiffnesses of all cou-
plings are identically, i.e., ccou,1-2 = ccou,2-3 = ccou,4-5 = 1200 Nm/rad [Coub], with one exception,
the coupling between the measuring shaft and incremental encoder of the load side, which has
the spring stiffness ccou,3-4 = 7000 Nm/rad [Coua]. In relation to this, the torsional stiffness of the
measuring shaft is significantly lower. Therefore, the torsional stiffness of the couplings are con-
sidered torsionally stiff and the spring stiffness of the measuring shaft, i.e., cTMS = 100 Nm/rad
[Pra], can be used for modeling the TMS.

The summarized moment of inertia on the motor side, i.e., Jm, results from the incremental
encoder of the motor under test (Je,m), the used motor—motor M5 is used in Table A.4—(Jsm),
the drive side of the torque measuring shaft (Jms,m) and two couplings (Jcou,1-2, Jcou,2-3). The
moment of inertia on the load side, i.e., J`, is a combination of the load side of the torque
measuring shaft (Jms,`), the incremental encoder of the load side (Je,`), the load machine (Js`)
and the remaining two couplings (Jcou,3-4, Jcou,4-5).

Table A.4: Parameter of the two-mass system under investigation using motor M5.

Description Symbol Value
Spring constant of the shaft (torsional stiffness) cTMS 100 Nm/rad

Viscous friction dfric 1.71 · 10−4 Nms/rad
Viscous damping of the TMS dTMS 0.2 · 10−3 Nms/rad
Mass inertia of the motor side Jm 4.61 · 10−5 kgm2

Mass inertia of the load side J` 5.66 · 10−5 kgm2

Mechanical time constant τm 18.3 ms
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A.4 Supplementary Measurements for Offline Parameter
Identification

A.4.1 Results for Electrical Offline Parameter Identification

For the method presented in Section 4.1.1, Fig. A.4 exemplarily shows the identification of
the resistance and d-axis inductance for motor M1, see Table A.3 of Appendix. It is worth
mentioning that due to the switch positions, i.e., uabc = [1 − 1 − 1]T , the terminal values are
measured and thus a conversion to phase values, i.e., R̂ph and L̂d, must be carried out.
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Figure A.4: Motor M1: Current response in d-axis (experimental).

The LM algorithm shows a high coefficient of determination and thus a good adaptation of the
analytical to the measured current response. Fig. A.5 shows the convergence of the parameters
during the optimization process of the LM algorithm. As can be seen, the parameters have
already converged to an optimum after 11 iteration steps.
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Figure A.5: Motor M1: Convergence of the LM algorithm (experimental).
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A.4.2 Results for Friction Identification

In the following, the results of the breakaway torque followed by the results of the viscous
and coulomb friction are discussed both in general and on the basis of specific experimental
measurements.

Since the subsequent identification of Tbrk and Tfric are based on Tel, i.e., (2.28), and thus cal-
culated using the electrical measured quantities and variables, their accuracy is particularly
important. The accuracy of current and angle described in Section 3.3 is used for this purpose.
In addition, the values given in Table 4.3 are used for the flux linkage. Since only iq is used
during the ID, i.e, id≈ 0, the inductances are irrelevant.

Using a multiple of the standard deviation, i.e., 3σ, as discussed in Section 4.4.1, Table A.5
summarizes the resulting estimation uncertainty of the experimental identification procedure.
Here, the accuracy of the current sensor and encoder remains negligible, since averaging over
512 data values during the identification allows mutual compensation of the random deviations.
Therefore, the uncertainty in the estimation of the flux linkage constant is responsible for the
dominant error in the torque calculation.
The measurement uncertainty for the reference torque Tms, determined by the torque measuring
shaft, is mainly distorted by the measuring amplifier. Nevertheless, it is still about ten times
more accurate than the identified torque.

Table A.5: Measurement uncertainty for the experimental ID process.

Torque Torque
iabc ∆ϕ∆ ψpm Tel measuring measuring Tms

shaft amplifier
±3σ ± 0.04 % ±π/3200 rad 2.94 % ± 2.98 % ± 0.05 % ± 0.3 % ± 0.35 %

A.4.2.1 Breakaway Torque Identification

The identification of the breakaway torque is part of the offline parameter identification in Sec-
tion 4.2.1. However, since this parameter is not used for the control of the mechanical controlled
system in Chapter 9, but rather for condition monitoring, it is described in the following.

The identification process of the breakaway torque starts, as shown in Fig. A.6, by increasing
the reference current, i.e., i∗q , (independent of saliency) with discrete current steps ievastep until
rotation occurs. The step size depends on the rated motor current IN and the step scaling factor
sstep. It can be calculated by ievastep = INsstep. To ensure completely development of motor torque
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Figure A.6: Breakaway torque ID flow chart.

as a result of iq current, the delay time between two current steps must be greater than 5τel. Due
to the discrete iteration process, the accuracy of the identified torque arise from the current
step size ievastep. To achieve the most accurate torque, sstep must be chosen as small as possible.
However, for small values of sstep the ID duration increases considerably. In order to be able
to assess a compromise solution between small measurement uncertainty ∆step and a short ID
duration tbrk,ID, the two process parameters are evaluated in dependence of sstep (see Fig. A.7).
The process parameters correspond to

tbrk,ID =
2Tbrk5τel

3pψpmINsstep
(A.5)

∆step =
3INssteppψpm

2Tbrk
. (A.6)

As depicted in Fig. A.7, for small electrical drives a compromise between ∆step and tbrkID can
be achieved by choosing sstep≈ 0.001. However, sstep is a modifiable variable during operation.
Due to cogging torque and presliding effects, such as frictional hysteresis and stick slip effects,
the breakaway torque is a varying measurand, which fluctuats in dependence on the rotor posi-
tion [Rud12]. For a reduction of the sensitivity and in order to prevent the release of the algo-
rithm with a poorly identified Tbrk, a counter needs to exceed the heuristically chosen threshold
Nsty. If the rotor shaft stops while counting, ievastep will be increased. This enables the speed to
be debounced, which may be necessary due to the cogging torque and the pre-sliding effects.
If the amount of measurements exceeds Nbrk, the maximum existing Tbrk is calculated based on
the maximum iq measurement by using (2.28). It must be ensured that id≈ 0.
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Figure A.7: Impact of the scaling factor sstep on the breakaway torque ID process.

A.4.2.2 Results for Breakaway Torque Identification

For the breakaway torque identification, the validity of the results is first verified by the relative
standard deviation, which is determined for two motors, see Table A.6. The breakaway torque
ID has a low variance overall. However, there is a trend towards higher variance the smaller the
motor or its inertia.

Figs. A.8-A.9 show the torque and speed measurements exemplarily for the two test motors. The
breakaway torques experimentally identified by the offline ID are shown here in comparison to
the reference measurement—torque measuring shaft—and in comparison to the simulation.

For motor M1, the results of experiment and simulation agree well in general. Due to the depen-
dence of the breakaway torque on the rotor position, the experiment shows lower peak speed
values compared to the simulation. Nevertheless, the maximum breakaway torque measured
with the torque measuring shaft agrees sufficiently well with the experimentally identified, i.e.,
offline ID, values.
Motor M5 behaves similarly to motor M1, where the identified breakaway torque also depends
on the rotor position. In the simulation, however, such dependencies on the rotor position are
not modeled, so they do not appear in the simulation results. However, the maximum torque
of the torque measuring shaft also agrees very well with the identified maximum torque of the
offline ID.
It can be noticed that, compared to motor M1, the overshoot of the speed is lower for motor

Table A.6: Relative standard deviation of breakaway torque ID.

Motor M1 Motor M5
σTbrk/T̃brk 1.76 % 2.61 %
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Figure A.8: Motor M1: Timeseries of breakaway torque ID with Nsty = 50 and sstep = 0.5 %.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

time (s)

to
rq

ue
(N

m
)

Offline ID Simulation Measuring shaft max.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

time (s)

ω
m

(r
ad

/s
)

Offline ID Simulation

Figure A.9: Motor M5: Timeseries of breakaway torque ID with Nsty = 2 and sstep = 0.5 %.

M5 due to the higher sensitivity of the algorithm by using a smaller Nsty value. However, Nsty

is chosen large enough to ensure smooth rotation.

A.4.2.3 Results for Viscous and Coulomb Friction Identification

In the following, the offline ID discussed in Section 4.2.1 is verified. Similar to the breakaway
torque, the validity of the results is first verified by the relative standard deviation, which is
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(b) Offline ID compared to a reference, i.e., Tms of the measuring shaft, over 15 iterations.

Figure A.10: Motor M1: Offline ID for friction.

determined for two motors, see Table A.7. When evaluating the results, the coulomb friction
shows a lower variance than the viscous friction. This observation is consistent with more com-
plex friction models in the literature, such as [AG20], where viscous friction depends on the
viscosity and loading condition of the lubricant and is thus more affected by influences such as
temperature variations.

Figs. A.10(a) and A.11(a) show for motor M1 and M5 respectively the identified friction behav-
ior over speed, using the offline ID of Section 4.2.1. Here, for both motors, the measurements
are compared with the respective regression line to examine the agreement with the linear fric-
tion simplification made in Section 2.2.2.1. In Figs. A.10(b) and A.11(b) the friction from the
linear regression is compared with a reference, i.e., torque of the measuring shaft Tms.
As can be noticed, for the considered motors and speed range, the simplification of linear fric-
tion fits very well for motor M1 and M5. Here, a good agreement is achieved respectively in
the speed range from 200 rpm to 1000 rpm. However, in the speed range below 200 rpm, the
rotation becomes unstable and the torque values cannot contribute to the linear regression.

Table A.7: Relative standard deviation of viscous- and coulomb friction offline ID.

σx/x̃ Motor M1 Motor M5
x = Tcoul 1.38 % 1.82 %
x = dfric 2.44 % 4.66 %
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Figure A.11: Motor M5: Offline ID for friction.

More specifically, the results of the torque measuring shaft and the offline ID match very well
for motor M1. When comparing the friction curves in Fig. A.10(b), no significant difference
can be observed. Only a small difference at higher speeds can be seen, which must be caused
by fundamental wave iron losses that corrupt the offline ID measurement.
For motor M5, first, the offline identified friction curves in Fig. A.11(b) show a somewhat larger
scatter compared to motor M1 as well as, second, a significantly larger deviation compared to
the torque of the measuring shaft. For the latter, the difference between them becomes even
bigger at higher speeds. This again indicates iron losses.
Comparing the standard deviation of the offline ID and that of the torque measuring shaft for
motor M1 in Fig. A.10(b), it is noticeable that the latter is higher than the former. This can
mainly be attributed to the extremely poorly utilized measuring range of the torque measuring
shaft and offsets that occur when the direction of rotation changes around zero position.
A significant difference between motor M1 and M5 can be observed by comparing the standard
deviations of the torque measuring shaft measurements, i.e., 3σTms , in Figs. A.10(b) and A.11(b).
Here, 3σTms of motor M5 is considerably smaller than that of motor M1. The reason for this is
thought to be the lower number of measurements for motor M5.

Future work could consider nonlinear friction curves, since the linear simplification does not
correspond to reality at high speeds. In this case, a numerical optimization method is required
for the regression calculation.
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A.4.3 Results for Two-mass System Identification

Fig. A.12 shows the experimental speed and torque measurements for four different drive trains
when excited by pseudo-binary signals, see Section 4.2.2.3. This measurements are used to
determine the transfer function in Fig. 4.8.
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(b) Torque signal.

Figure A.12: Measured signals for the identification of the transfer function (experimental).
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A.5 Supplementary Measurements for Current Control

Motor M1 As a comparison to FOC with SVM and FCS-MPC in Fig. 2.26, Fig. A.13 shows
the phase currents and spectrum at the same operating point when using DTC.
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(a) Three-phase stator current for conventional DTC
with |∆Tel| = 0.011, fsw ≈ 10.0 kHz.

(b) Stator current spectrum for conventional DTC with
ITHD = 7.48 %.

Figure A.13: Motor M1: Three-phase stator current and spectrum for i∗d = 0 A, i∗q = 5.0 A,
nm = 200 rpm with fsw≈ 10.0 kHz, where the 5th harmonic has 1.36 % (experi-
mental).

Motor M3 In addition to the measurements in Section 7.6.1, Fig. A.14 shows the phase cur-
rents for steady-state operation when operating with 3000 rpm.
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(a) Three-phase stator current for L-VSP2CC with
fsw≈ 16.4 kHz.

(b) Stator current spectrum for L-VSP2CC with
ITHD = 2.58 %.
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(c) Three-phase stator current for ψ-VSP2CC with
fsw≈ 16.6 kHz.

(d) Stator current spectrum for ψ-VSP2CC with
ITHD = 2.01 %.

Figure A.14: Motor M3: Three-phase stator current and spectrum for i∗d = − 5 A, i∗q = 18.03 A,
nm = 3000 rpm with Np = 2, fsw≈ 16.0 kHz (experimental).
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Motor M4 In addition to the measurements in Section 7.6.1, Fig. A.15 shows the phase cur-
rents for steady-state operation when operating with 800 rpm.
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(a) Three-phase stator current for L-VSP2CC with
fsw≈ 15.65 kHz.

(b) Stator current spectrum for L-VSP2CC with
ITHD = 1.55 %.
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(c) Three-phase stator current for ψ-VSP2CC with
fsw≈ 15.35 kHz.

(d) Stator current spectrum for ψ-VSP2CC with
ITHD = 1.02 %.
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(e) Three-phase stator current for FOC and SVM with
fsw = 16.0 kHz.

(f) Stator current spectrum for FOC and SVM with
ITHD = 1.22 %.

Figure A.15: Motor M4: Three-phase stator current and spectrum for i∗d = − 5.0 A, i∗q = 14.0 A,
nm = 800 rpm with Np = 2, fsw≈ 16.0 kHz (experimental).

A.6 Supplementary Measurements for Speed Control

DTC with PI-based speed controller As mentioned in Section 2.4, setting the PI gains
of the speed controller, that is superimposed on DTC, can be challenging. Under certain cir-
cumstances, inadequate gains can damage the drive system due to strong oscillating currents at
the stability limit. PI gains are therefore chosen similar to FOC speed control, but reduced by a
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factor of 10, since IN/TN has approximately the same ratio.
Thus, the PI gains of the speed controller correspond to Ti,ω = 2 ms and kp,ω = 0.03. For DTC,∣∣∆ψdq

∣∣ = 0 was chosen to achieve the lowest possible current and torque ripple. A torque hys-
teresis not equal to zero, on the other hand, has a positive effect on the ripple of current and
torque, since this allows zero pointers to be switched in the partial load range of the drive. This
hysteresis is chosen as |∆Tel| = 0.02TN. DTC is executed with a frequency of Tcf = 100 kHz
since the control algorithm switches the semiconductors directly. However, for a fair compari-
son, the resulting average switching frequency should be in a similar range as SVM.

Test profile for the evaluation For the evaluation in Section 9.4, the test profile used is
shown exemplarily for n∗` = 500 rpm in Fig. A.16.
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Figure A.16: Test profile for evaluation.

Motor M5 For CCFcon-MPC, Fig. A.17 shows the associated phase currents for the speed and
torque shown in Fig. 9.3 and Fig. 9.4 of Section 9.4.
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Figure A.17: Motor M5: Phase currents for CCFcon-MPC for a reference speed step from
n∗` = 0 rpm to n∗` = 500 rpm and afterwards to n∗` = − 500 rpm. Moreover, a load
step T` = 0.2 Nm is shown, see the test profile in Fig. A.16 (experimental).
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