
Finite Fields and Their Applications 69 (2021) 101772
Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Roos bound for skew cyclic codes in Hamming 

and rank metric ✩

Gianira N. Alfarano a,∗, F.J. Lobillo b, Alessandro Neri c

a University of Zurich, Switzerland
b University of Granada, Spain
c Technical University of Munich, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 February 2020
Received in revised form 11 August 
2020
Accepted 9 October 2020
Available online 22 October 2020
Communicated by W. Cary Huffman

MSC:
11T71
94B65
16S36

Keywords:
Cyclic codes
Skew cyclic codes
Roos bound
Rank-metric codes
MRD codes

In this paper, a Roos like bound on the minimum distance 
for skew cyclic codes over a general field is provided. The 
result holds in the Hamming metric and in the rank metric. 
The proofs involve arithmetic properties of skew polynomials 
and an analysis of the rank of parity-check matrices. For the 
rank metric case, a way to arithmetically construct codes with 
a prescribed minimum rank distance, using the skew Roos 
bound, is also given. Moreover, some examples of MDS codes 
and MRD codes over finite fields are built, using the skew 
Roos bound.
© 2020 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

✩ Research partially supported by grant PID2019-110525GB-I00 from Agencia Estatal de Investigación 
(AEI) and from Fondo Europeo de Desarrollo Regional (FEDER), and from Swiss National Science 
Foundation through grants no. 187711 and 188430.
* Corresponding author.

E-mail addresses: gianiranicoletta.alfarano@math.uzh.ch (G.N. Alfarano), jlobillo@ugr.es
(F.J. Lobillo), alessandro.neri@tum.de (A. Neri).
https://doi.org/10.1016/j.ffa.2020.101772
1071-5797/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ffa.2020.101772
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ffa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ffa.2020.101772&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:gianiranicoletta.alfarano@math.uzh.ch
mailto:jlobillo@ugr.es
mailto:alessandro.neri@tum.de
https://doi.org/10.1016/j.ffa.2020.101772
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 G.N. Alfarano et al. / Finite Fields and Their Applications 69 (2021) 101772
1. Introduction

In the theory of error correcting codes, a crucial step was represented by the intro-
duction of algebraic structures, which led to the branch called algebraic coding theory. 
More specifically, the basic idea that initiated the study of linear codes was to take a 
finite field F as alphabet, and then use the vector space structure Fn when dealing with 
codes and their codewords. Among the linear codes, one of the most studied families 
is the one of cyclic codes. Their importance is given by the ring structure underlying 
their polynomial representation. Formally, a cyclic block code C over F is defined as 
an ideal of F [x]/(xn − 1). It is well-known that the minimum Hamming distance of a 
cyclic code is lower bounded by the BCH bound, see [5,4,31]. Concretely, let g(x) be 
the generator polynomial of C, ω be a primitive n-th root of unity and b, δ be positive 
integers. If g(ωb+i) = 0 for 0 ≤ i ≤ δ − 2, i.e. g has δ − 1 consecutive roots in an ex-
tension field of F , then the minimum Hamming distance of C is at least δ. The cyclicity 
property was further investigated in order to construct codes with prescribed Hamming 
distance. At a second step, Hartmann and Tzeng generalized the BCH bound deriv-
ing the well-known Hartmann-Tzeng (HT) bound [30]. Afterwards, Roos derived further 
generalizations which were shown to improve both the BCH and the HT bounds [45,44]. 
More precisely, the Roos bound that we will consider in this work states the following: 
if there are b, s, δ, k0, . . . , kr ∈ N, such that (s, n) = 1, kj−1 < kj for 1 ≤ j ≤ r and 
kr −k0 ≤ δ+ r−2, and g(ωb+si+kj ) = 0, for 0 ≤ i ≤ δ−2, 0 ≤ j ≤ r, then the minimum 
Hamming distance of the cyclic code C generated by g(x) is at least δ + r.

Skew polynomial rings were introduced in 1930 by Ore in his seminal paper [41] and 
then they have been further studied by several authors, see for instance [34,35,37]. The 
research on linear codes in this setting led to new codes with better parameters than 
the old known linear codes. In 2007, Boucher, Geiselmann and Ulmer [7] extended the 
definition of cyclicity to codes defined over the skew polynomial ring (see also [8,9,14]). 
In these works, the authors derived bounds on the Hamming distance of skew cyclic 
codes, generalizing in some sense the BCH bound to skew cyclic codes. In [28], the 
authors gave a version of the Hartmann-Tzeng bound for skew cyclic codes and provided 
a construction of these codes with prescribed designed Hamming distance.

Skew polynomial rings played a crucial role also in the construction of codes endowed 
with the rank metric. These codes were first introduced independently by Delsarte [17], 
Gabidulin [20] and Roth [46], and have been shown to have many applications, such as 
network coding [49,48,18], distributed data storage [43,12,40] and post-quantum cryptog-
raphy [21,42,22]. One of the most important constructions of rank-metric codes makes 
use of the ring of linearized polynomials. More specifically, these codes are known as 
Gabidulin codes and they are obtained by evaluating a particular set of linearized poly-
nomials in a suitable set of points (see [17,20]). The connection with skew polynomials 
is due to the fact that there is a natural isomorphism between the ring of linearized 
polynomials over a finite field and the ring of skew polynomials. Generalizations of this 
construction were provided in [14], where a rank-metric version of the BCH bound was 
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proposed. Moreover the analogue of the Hartmann-Tzeng bound for skew-cyclic codes 
over finite field with respect to the rank metric was shown in [39].

In this paper we provide a generalization of the Roos bound for skew cyclic codes 
in the Hamming metric and in the rank metric. Our results generalize previous bounds 
on the minimum distance of skew cyclic codes in the Hamming metric [8,14,28], and 
in the rank metric [17,21,46,14,2,39]. However, our setting only requires a cyclic Galois 
extension of finite degree, without restricting to the case of finite fields.

The paper is structured as follows. In Section 2 we recall the basics of skew polynomial 
rings and the notion of skew cyclic codes, focusing on the family of skew Reed-Solomon 
codes. Section 3 is dedicated to the rank metric. We define the rank metric in the most 
general setting and describe the construction of Gabidulin codes over any cyclic Galois 
extension. In Section 4 we fix the mathematical setting for the whole paper, focusing on 
the defining sets for skew cyclic codes, and we prove the results that are crucial for the 
main proofs. Section 5 is devoted to the proof of the skew version of the Roos bound 
for the Hamming metric. We use the bound to construct some examples of (MDS) codes 
over finite fields. In Section 6 we provide the skew version of the Roos bound for the 
rank metric. We compare the construction of the codes in the Hamming metric with 
the one in the rank metric, which led to an interesting result, explaining that it could 
be possible to construct skew cyclic MRD codes, using the arithmetic properties of the 
defining sets. We conclude with some remarks and an open problem in Section 7.

2. Skew cyclic codes and skew Reed-Solomon codes

In this section we recall some basic notions on skew polynomial rings and skew cyclic 
codes. The interested reader is referred to the recent survey of Gluesing-Luerssen [23].

We will use the notation introduced in [28, §2] to recall the definition of skew cyclic 
codes and some important known results. Let F/K be a field extension of finite degree μ. 
We assume F/K is cyclic, i.e. its Galois group, Gal(F/K), is cyclic. Fix a generator σ of 
Gal(F/K), hence its order |σ| is μ and K = Fσ is its invariant subfield. Let R = F [x; σ]
be the skew polynomial ring induced by σ over F and n be a multiple of μ, namely 
n = νμ for some ν positive integer. Recall that the multiplication rule over the skew 
polynomial ring R is given by

xa = σ(a)x for all a ∈ F.

In order to define skew cyclic codes over F it is enough to replace F [x]/(xn − 1) by 
R := R/R(xn−1), where Rf(x) denotes the left ideal generated by the polynomial f(x). 
Since σ has finite order μ, the center Z(R) of R is given by the commutative polynomial 
ring K[xμ], which follows directly from [32, Theorem 1.1.22]. Therefore, xn − 1 belongs 
to Z(R). Hence, R(xn − 1) is a twosided ideal and the quotient R is a K-algebra. The 
elements of R can be uniquely represented by polynomials of degree less than n and 
coefficients in F , hence there is a canonical isomorphism
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Fn → R
(a0, . . . , an−1) �→ a0 + a1x + · · · + an−1x

n−1
(1)

of F -vector spaces, where the F -action on R is given by left multiplication.
An [n, k]-linear code C over F is defined as a subspace of Fn of dimension k. Hence, 

thanks to the above isomorphism, we can identify linear codes in Fn as vector subspaces 
of R. We define the Hamming distance between two vectors in Fn as the number of 
components in which they differ. The minimum (Hamming) distance of a linear code C
is defined as the minimum over all the distances between two distinct codewords in C
and we denote it by dH(C). Equivalently, dH(C) is given by the minimum (Hamming) 
weight of the nonzero codewords in C, where the Hamming weight of a vector v ∈ Fn

is defined as the number of its nonzero components and we denote it by w(v). When 
the minimum distance d = dH(C) is known, we write that C is an [n, k, d]-linear code. 
The parameters n, k and d of a linear code C satisfy the following inequality, known as 
the Singleton bound [50]: d ≤ n − k + 1. When the minimum distance of C reaches the 
bound, C is called maximum distance separable (MDS) code.

In the setting defined above, an [n, k]-linear code C ⊆ Fn is called skew cyclic if its 
image under the canonical isomorphism (1) is a left ideal of R. We identify C without 
further mention with its image under the canonical isomorphism, hence we say that a 
skew cyclic code is a left ideal of R.

As in the classical commutative case, the rich arithmetic structure of R = F [x; σ] is 
the main tool which allows its use in different applications, including skew cyclic codes. 
This arithmetic structure has been studied by a lot of authors starting with the seminal 
paper [41]. In R, there is left (and right) Euclidean division, hence it is a left (and 
right) Euclidean domain. As a consequence, given f, g ∈ R there exists the greatest 
common right divisor and least common left multiple of them and can be computed with 
the corresponding version of the extended Euclidean algorithm. We denote the least 
common left multiple of two polynomials f, g ∈ R by [f, g]�. A detailed computational 
treatment of skew polynomials, including left division and extended Euclidean algorithm 
can be found in [11, Sections 1.3 and 1.4].

Being R a left Euclidean domain, it is also a left PID, hence every left ideal of R is 
principal. In fact, by using the right greatest common right divisor, it is easy to prove 
that for each skew cyclic code C, there exists a polynomial g ∈ R which is a right divisor 
of xn − 1, namely g |r xn − 1, such that deg(g) = n − k and g generates C as left ideal, 
i.e. C = Rg.

Evaluation in skew polynomials makes use of truncated norms. For any i ∈ N0, the i-th 
truncated norm on F is defined as Ni : F → F , with N0(a) = 1 and Ni(a) =

∏i−1
j=0 σ

j(a)
for i > 0, for any a ∈ F . This is a special case of [35, (2.3)], where a deep discussion of 
evaluations can be found. Note that N1(a) = a and Ni+1(a) = Ni(a)σi(a) for any i > 0. 
If f(x) =

∑r
i=0 fix

i ∈ R, it follows that the left division of f(x) by x − a is

f(x) = q(x)(x− a) +
r∑

fiNi(a)

i=0
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as proved in [35, Lemma 2.4], hence f(a) =
∑r

i=0 fiNi(a) is the correct notion of evalu-
ation of skew polynomials.

The structure of a skew cyclic code is better understood if a full decomposition of 
its generator polynomial g as least common left multiple of linear polynomials can 
be provided. Let E/K be a cyclic field extension of degree n and θ ∈ Gal(E/K) an 
automorphism of degree n, i.e. K = Eθ. Let S = E[x; θ] and S := S/S(xn − 1). Re-
call that S ∼= Kn×n is simple Artinian, see for instance [25, Theorem 1]. Hence all 
simple modules are isomorphic and given g ∈ S of degree n − k with g |r xn − 1, 
there exist β0, β1, . . . , βn−k−1 ∈ E such that g is the least common left multiple of 
{x − βi | 0 ≤ i ≤ n − k − 1}, that is

g = [x− β0, . . . , x− βn−k−1]� .

Recall that x − β |r xn − 1 if and only if Nn(β) = 1, and by Hilbert’s Theorem 90 
(see e.g. [36, Chapter VI, Theorem 6.1]) this happens if and only if β = θ(α)α−1 for 
some α ∈ E. Hence, βi = θ(αi)α−1

i for K-linear independent α0, . . . , αn−k−1 ∈ E, see 
[16, Theorem 5.3]. When these linear independent elements are part of a normal basis, 
a better knowledge of the parameters of the code is obtained. Concretely, we have the 
following result, that was first proved for the finite field case in [14, Proposition 1].

Proposition 1 ([27, Theorem 3.4]). Let α ∈ E such that 
{
α, θ(α), . . . , θn−1(α)

}
is a 

normal basis and β = θ(α)α−1. Let 1 ≤ δ ≤ n and g =
[{

x− θi(β) | 0 ≤ i ≤ δ − 2
}]

�
. 

Then Sg ⊆ S is an MDS code of length n and minimum Hamming distance δ.

These codes are usually called skew Reed-Solomon codes (see e.g. [38]), and denoted 
by

sRSθ
β(n, δ) = S

[{
x− θi(β) | 0 ≤ i ≤ δ − 2

}]
�
.

Skew Reed-Solomon codes can be efficiently decoded. For instance, a skew version of 
the Peterson-Gorenstein-Zierler algorithm can be found in [24, Algorithm 1] for general 
Galois cyclic extensions of fields. There are also decoding algorithms for skew Reed-
Solomon codes which are based on the skew version of the extended Euclidean algorithm. 
For finite fields, you can see [14, §5], and for rational functions over finite fields we refer to 
[26, Algorithm 1]. In fact, this last algorithm works for general Galois cyclic extensions, 
although it was presented for rational functions over finite fields. The same can be said 
of [26, Theorem 4], which is a version of Proposition 1 for the field of rational functions 
over finite field, but whose proof works over general Galois cyclic extensions.

The proof of Proposition 1 is based on the Circulant Lemma, which is a particular 
case of [35, Corollary 4.13]. We include the statement since it is going to be used to prove 
the main results of this paper.
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Lemma 2 (Circulant Lemma). Let {α0, . . . , αn−1} be a K–basis of E. Then, for every 
positive integer t ≤ n and every subset {k1, k2, . . . , kt} ⊆ {0, 1, . . . , n − 1},

∣∣∣∣∣∣∣∣
αk1 θ(αk1) . . . θt−1(αk1)
αk2 θ(αk2) . . . θt−1(αk2)
...

...
...

αkt
θ(αkt

) . . . θt−1(αkt
)

∣∣∣∣∣∣∣∣ �= 0.

An elementary proof is available in [26].

3. Rank metric over any field extension

Although we will always consider cyclic extensions, here we discuss the rank metric 
in the most general case, in the spirit of the recent works of Augot, Loidreau and Robert 
[2,1,3]. A similar approach was first investigated by Roth in [47, Section 6].

Let K be a field and E be an extension field of degree n. Let θ ∈ Gal(E/K) with 
order |θ| = η, so η divides n. Let moreover B = {b1, . . . , bn} be an ordered K-basis of E. 
For a given vector v = (v1, . . . , vN ) ∈ EN , we consider the following two matrices:

Mv,θ :=

⎛
⎜⎜⎝

v1 v2 · · · vN
θ(v1) θ(v2) · · · θ(vN )

...
...

...
θη−1(v1) θη−1(v2) · · · θη−1(vN )

⎞
⎟⎟⎠ ,

Mv,B :=

⎛
⎜⎜⎝

x1,1 x2,1 · · · xN,1
x1,2 x2,2 · · · xN,2

...
...

...
x1,n x2,n · · · xN,n

⎞
⎟⎟⎠ ,

where vi =
∑n

j=1 xi,jbj , for every i = 1, . . . , N .
Augot, Loidreau and Robert defined in [2] two different rank weights for a vector 

v ∈ EN as follows. Let E, K and θ be as above, and let v ∈ EN . The quantities wK(v)
and wE(v) are defined as

wK(v) := rkK(Mv,θ) = rkK(Mv,B),

wE(v) := rkE(Mv,θ) = deg(pv),

where pv = [x− v1, . . . , x− vN ]� ∈ E[x; θ]. It was shown by the same authors that these 
quantities are all equal in the following special case.

Proposition 3. [2, Proposition 5] If K = Eθ, then wE(v) = wK(v), and they are both 
equal to

wR(v) := dimK〈v1, . . . , vN 〉K .
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For the rest of this section we will only deal with the case Eθ = K, i.e. Gal(E/K)
is cyclic and the order of θ is n, therefore we will use the notation wR(v) to denote the 
rank weight of a vector with respect to the cyclic extension E/K.

Definition 4. Let E/K be a cyclic field extension of finite degree, then the rank distance
of two vectors u, v ∈ EN with respect to the extension E/K is defined as dR(u, v) :=
wR(u − v).

With this metric, we can introduce the notion of rank-metric codes.

Definition 5. Let E/K be a cyclic finite extension field and let N, k, d be positive integers. 
An [N, k, d]E/K rank-metric code C is a k-dimensional E-subspace of EN , endowed with 
the rank metric. The integer N is called the length of C, k is the dimension of C and d
is defined as

d = dR(C) := min{dR(u, v) | u, v ∈ C, u �= v}

and is called minimum rank distance of C.

Definition 6. Let k ≤ N and g ∈ EN be a vector such that wR(g) = N , and τ be a 
generator of Gal(E/K). Then, the τ -Gabidulin code Gk,τ (g) is the code

Gk,τ (g) =
〈
g, τ(g), . . . , τk−1(g)

〉
.

Observe that in the definition we are implicitly assuming that n ≥ N , since for every 
v ∈ E we have wR(v) ≤ [E : K] = n.

Gabidulin codes were constructed independently by Delsarte [17] and Gabidulin [20]
over finite fields, when τ is the Frobenius automorphism, and then generalized by 
Kshevetsky and Gabidulin in [33] to any generator of the Galois group. The general 
definitions for arbitrary fields were due to Roth in [47, Section 6] and to Augot, Loidreau 
and Robert in [2].

These codes are known to be maximum rank distance (MRD), i.e. the minimum rank 
distance of a Gabidulin code is N−k+1, which is the maximum possible value according 
to the Singleton-like bound for the rank metric (see [17,20] for the finite field case, [2] for 
general fields). Moreover, it is well-known that Gabidulin codes are closed under duality. 
This means that for every g ∈ EN such that wR(g) = N , there exists h ∈ EN such 
that wR(h) = N and Gk,τ (g)⊥ = GN−k,τ (h), where the dual is taken with respect to the 
standard inner product.

There is a way to characterize the minimum rank distance of an [N, k, d]E/K rank-
metric code C in terms of the minimum Hamming distance of a family of linear block 
codes obtained from C. This is explained by the next proposition, which directly follows 
from [20, Theorem 1] for the finite field case. For this purpose, we introduce the following 
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notation. For a given set H ⊆ EN , and a matrix M ∈ KN×N , we write H ·M := {uM |
u ∈ H}.

Proposition 7. Let C be an [N, k, d]E/K rank-metric code. Then

dR(C) = min {dH(C ·M) | M ∈ GLN (K)} .

Proof. Let δ := min {dH(C ·M) | M ∈ GLN (K)} and d := dR(C). For every c ∈ C, 
M ∈ GLN (K), we have wR(cM) = wR(c) and wR(cM) ≤ w(cM). Hence, δ ≥ d. On 
the other hand, suppose that c = (c1, . . . , cN ) ∈ C is of minimal rank weight. Let S :=
〈c1, . . . , cN 〉K that for hypothesis has dimension d over K, and choose a basis v1, . . . , vd
of S. Hence, there exists a matrix M̄ ∈ GLN (K) such that cM̄ = (v1, . . . , vd, 0, . . . , 0). 
This implies that δ ≤ dH(C · M̄) ≤ w(cM̄) = d, which concludes the proof. �
4. Defining sets

For the rest of the paper, F/K will denote an arbitrary cyclic field extension and 
σ ∈ Gal(F/K) an automorphism of order |σ| = μ such that K = Fσ. We say that σ has 
an extension θ of degree ν if there exists a field extension E/F and θ ∈ Gal(E/K) such 
that |θ| = n = νμ, θ|F = σ and Eθ = Fσ = K.

We fix such an extension E/F of degree ν.

K

F

E

μ

ν

n

Recall that R = F [x; σ], R = R
R(xn−1) , S = E[x; θ] and S = S

S(xn−1) . Since for any 
f ∈ R, we have Sf ∩R = Rf (see [28, Lemma 2.3]), there is a natural inclusion R ⊆ S. 
As we have observed in Section 2, we get that S ∼= Kn×n as K-algebras.

Let C = Rg be an [n, k] skew cyclic code with g |r xn − 1, and Ĉ = Sg. It follows that 
C is a subfield subcode of Ĉ. Moreover, there exist β0, . . . , βn−k−1 ∈ E such that

g = [x− β0, . . . , x− βn−k−1]� ,

as explained in Section 2.
Given {a0, . . . , at−1} ⊆ E, define the following n × t matrix (see also [34,35]):

N(a0, . . . , at−1) =
(
Ni(aj)

)
0≤i≤n−1
0≤j≤t−1

=

⎛
⎜⎜⎜⎜⎝

1 1 · · · 1
a0 a1 · · · at−1

N2(a0) N2(a1) · · · N2(at−1)
...

...
. . .

...

⎞
⎟⎟⎟⎟⎠ .
Nn−1(a0) Nn−1(a1) · · · Nn−1(at−1)
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For any matrix M we denote by ker(M) its left kernel, i.e. ker(M) = {v | vM = 0}.

Proposition 8. Let Ĉ ⊆ S be the [n, k] skew cyclic code generated be g = [x −
β0, . . . , x − βn−k−1]�, with β0, . . . , βn−k−1 ∈ E. Then, Ĉ = ker (N(β0, . . . , βn−k−1)), 
i.e. N(β0, . . . , βn−k−1) is a parity check matrix for C and Ĉ.

Proof. A polynomial f =
∑n−1

i=0 fix
i is in Ĉ if and only if x − βj |r f for all 0 ≤ j ≤

n − k − 1. Since x − βj |r f if and only if 
∑n−1

i=0 fiNi(βj) = 0, the result follows. �
As we pointed out before, x − β |r xn − 1 if and only if β = θ(α)α−1, for some 

α ∈ E \ {0}. For all α ∈ E we use the notation

α[θ] =
(
α, θ(α), . . . , θn−1(α)

)�
.

Proposition 9. Assume βi = θ(αi)α−1
i for each 0 ≤ i ≤ n − k − 1 and let g =

[x− β0, . . . , x− βn−k−1]�. Then

Ĉ = Sg = ker
(
α

[θ]
0
∣∣α[θ]

1
∣∣ · · · ∣∣α[θ]

n−k−1

)
.

Proof. Since Ni(βj) = θi(αj)α−1
j , it follows that (1, βj , N2(βj), · · · , Nn−1(βj))� =

α
[θ]
j α−1

j , hence, by [35, Equation (4.12)],

N(β0, . . . , βn−k−1) =
(
α

[θ]
0
∣∣α[θ]

1
∣∣ · · · ∣∣α[θ]

n−k−1

)⎛
⎜⎜⎝

α−1
0

α−1
1

. . .
α−1

n−k−1

⎞
⎟⎟⎠

and

ker (N(β0, . . . , βn−k−1)) = ker
(
α

[θ]
0
∣∣α[θ]

1
∣∣ · · · ∣∣α[θ]

n−k−1

)
as desired. �

From Proposition 9 it immediately follows the next result.

Corollary 10. Let α ∈ E be such that {α, θ(α), . . . , θn−1(α)} is a normal basis and let 
β = θ(α)α−1. Let moreover δ be an integer such that 1 ≤ δ ≤ n. Then

sRSθ
β(n, δ) = Gδ−1,θ(α[θ])⊥.

In particular, skew Reed-Solomon codes are MRD codes of dimension n − δ + 1 and 
minimum rank distance δ.
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Note that Corollary 10 is a generalization of [10, Proposition 3.2], which deal with 
finite fields only.

Let α ∈ E such that {α, θ(α), . . . , θn−1(α)} is a K-basis. Let β = θ(α)α−1. It is well 
known that

xn − 1 =
[
{x− θi(β) | 0 ≤ i ≤ n− 1}

]
�
,

see e.g. [16, Theorem 5.3]

Definition 11. Let g ∈ R such that g |r xn − 1, C = Rg and Ĉ = Sg. The β-defining set 
of g is

Tβ(g) =
{
0 ≤ i ≤ n− 1

∣∣ x− θi(β) |r g
}
.

In particular, 
[
{x− θi(β) | i ∈ Tβ(g)}

]
�
|r g.

5. Skew Roos bound for the Hamming metric

In this section, we will keep the notation of Definition 11. Hence we will write C for 
the skew cyclic code C = Rg, where g ∈ R is such that g |r xn − 1, and Ĉ = Sg.

Lemma 12. Let α1, . . . , αt+r ∈ E be linear independent elements over K. Let {k0, . . . , kr}
⊆ {0, . . . , n − 1} be such that kr − k0 ≤ t + r − 1 and kj−1 < kj for 1 ≤ j ≤ r. Let

A0 =

⎛
⎜⎝

θk0(α1) θk1(α1) · · · θkr (α1)
...

...
. . .

...
θk0(αt+r) θk1(αt+r) · · · θkr (αt+r)

⎞
⎟⎠ .

Let s ∈ {0, . . . , n − 1} such that (s, n) = 1 and

Ai =
(
A0 θs(A0) . . . θsi(A0)

)
,

for 0 ≤ i ≤ r. Then rk(At−1) = t + r.

Proof. Let Ai ⊆ Et+r be the column space of Ai, so dim(Ai) = rk(Ai). Observe that

{k0, . . . , kr} ⊆ {k0, k0 + 1, . . . , k0 + t + r − 1},

hence A0 is obtained from

A =

⎛
⎜⎝

θk0(α1) θk0+1(α1) · · · θk0+t+r−1(α1)
...

...
. . .

...
k0 k0+1 k0+t+r−1

⎞
⎟⎠
θ (αt+r) θ (αt+r) · · · θ (αt+r)
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after deleting some columns. By the Circulant Lemma (Lemma 2), rk(A) = t + r, hence 
dim(A0) = rk(A0) = r + 1. Assume by contradiction that dim(At−1) < t + r. Since 
Ai ⊆ Ai+1 for 0 ≤ i ≤ t − 2, it follows that there exists 0 ≤ j ≤ t − 2 such that 
dim(Aj) = dim(Aj+1), i.e. Aj = Aj+1. Since Ai+1 = Ai + θs(Ai) for 0 ≤ i ≤ t − 2, 
it follows that Aj = θs(Aj), i.e. Aj is invariant under the action of θs. Hence Aj ⊇
A0 + θs(A0) + · · · + θs(t+r−1)(A0). In particular Aj contains the columns of

A′ =

⎛
⎜⎝

θk0(α1) θk0+s(α1) · · · θk0+s(t+r−1)(α1)
...

...
. . .

...
θk0(αt+r) θk0+s(αt+r) · · · θk0+s(t+r−1)(αt+r)

⎞
⎟⎠ .

Since (s, n) = 1, K = Eθ = Eθs , so again by Lemma 2, det(A′) �= 0, and therefore 
dim(Aj) ≥ t + r. Finally At−1 ⊇ Aj , so we get t + r > dim(At−1) ≥ t + r, that is a 
contradiction. �

The following theorem is inspired by [28, Theorem 3.3].

Theorem 13 (Skew Roos bound for the Hamming metric). Let C be the skew cyclic code 
Rg, where g ∈ R and Ĉ = Sg. Let α ∈ E such that {α, θ(α), . . . , θn−1(α)} is a K-
basis and let β = θ(α)α−1. Moreover, assume that there are b, s, δ, k0, . . . , kr such that, 
(s, n) = 1, kj < kj+1 for 0 ≤ j ≤ r − 1, kr − k0 ≤ δ + r − 2, and b + si + kj ∈ Tβ(g) for 
all 0 ≤ i ≤ δ − 2 and 0 ≤ j ≤ r. Then dH(C) ≥ dH(Ĉ) ≥ δ + r.

Proof. The inequality dH(C) ≥ dH(Ĉ) follows since C is a subfield subcode of Ĉ. Let 
w = δ + r − 1 and let c ∈ Ĉ = Sg such that w(c) ≤ w, i.e. c =

∑w
h=1 chx

lh for suitable 
{l1, . . . , lw} ⊆ {0, . . . , n − 1}. For each 0 ≤ i ≤ δ − 2 and 0 ≤ j ≤ r, x − θb+si+kj (β) |r c, 
so

0 =
∑w

h=1 chNlh(θb+si+kj (β))

= θb+si+kj (α)−1 ∑w
h=1 chθ

b+si+kj+lh(α).

We get that c̄ := (c1, . . . , cw) is in the left kernel of the matrix θb(B) where

B =
(
A0 θs(A0) · · · θs(δ−2)(A0)

)
and

A0 =
(
θkj+lh(α)

)
1≤h≤w
0≤j≤r

.

Applying Lemma 12 with t = δ − 1, we get that rk(B) = w. Hence, c̄ = 0 and, so, c = 0
is the only element in Sg of weight at most δ + r − 1. �
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If s = 1 we obtain an nice relation with skew Reed-Solomon codes, as next proposition 
shows.

Proposition 14. Let C be the skew cyclic code Rg, where g ∈ R and Ĉ = Sg. Let α ∈ E

such that {α, θ(α), . . . , θn−1(α)} is a K-basis and let β = θ(α)α−1. Moreover, assume 
that there are b, δ, k0, . . . , kr such that kj < kj+1 for 0 ≤ j ≤ r − 1, kr − k0 ≤ δ + r − 2, 
and b +i +kj ∈ Tβ(g) for all 0 ≤ i ≤ δ−2 and 0 ≤ j ≤ r. Then sRSθ

θb+k0 (β)(n, δ+r) ⊇ Ĉ. 
In particular dH(C) ≥ δ + r and dR(C) ≥ δ + r.

Proof. Up to replacing β by θb(β), we may assume b = 0. Since kj < kj+1 for all 
j, it follows that kl ≥ kj + (l − j) for all j ≤ l. Assume, for a contradiction, that 
kj + δ − 1 < kj+1. Then

k0 + j + δ − 1 ≤ kj + δ − 1 < kj+1 ≤ kr − (r − j − 1),

and consequently

δ + r − 2 = (j + δ − 1) + (r − j − 1) < kr − k0,

which is incompatible with the hypothesis kr−k0 ≤ δ+r−2. Therefore kj+1 ≤ kj +δ−1
and

r⋃
j=0

{kj + i | 0 ≤ i ≤ δ − 2} = [k0, kr + δ − 2] ∩ Z.

Since kr ≥ k0 + r, it follows that

[k0, k0 + δ + r − 2] ∩ Z ⊆ Tβ(g),

so, if f =
[
{x− θk0+i(β) | 0 ≤ i ≤ δ + r − 2}

]
�
, we have that

f |r g.

This implies that Sf ⊇ Sg. Since Sf = sRSθ
θk0 (β)(n, δ + r) and Sg = Ĉ ⊇ C, the result 

follows using Proposition 1 and Corollary 10. �
Corollary 15. Assume that there are b, δ, s, k0, . . . , kr such that kj < kj+1 for 0 ≤ j ≤
r − 1, kr − k0 ≤ δ + r − 2, (s, n) = 1, and b + is + kjs ∈ Tβ(g) for all 0 ≤ i ≤ δ − 2
and 0 ≤ j ≤ r. Then there exists b′ such that sRSθs

θb′+k0s(β)(n, δ + r) ⊇ Ĉ. In particular 
dH(C) ≥ δ + r and dR(C) ≥ δ + r.

Proof. Apply Proposition 14 to θs and b′ = bu where us + vn = 1. �
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Proposition 14 and its Corollary 15 say that {0, 1, . . . , δ + r − 2} ⊆ Tθk0 (β)(g) and 
{0, 1, . . . , δ + r − 2} ⊆ Tθb′+k0s(β)(g) respectively, so they are instances of the skew 
BCH bound as presented in [28, Corollary 3.4] in the general framework of Galois cyclic 
extensions. Moreover, as we have already remarked after Proposition 1, there are efficient 
decoding algorithms which can be applied for skew cyclic codes in the framework of 
Proposition 14 and Corollary 15.

Theorem 13 and Proposition 14 use the fact that the corresponding distances of C are 
bounded by the distances of Ĉ. In these cases both distances are closely related as next 
results show.

Let π = θμ. Then F = Eπ. The proof of next proposition is essentially [53, Theorem 9].

Proposition 16. Let A = {α1, . . . , αk} ⊆ E such that π induces a permutation on A, 
i.e., for all 1 ≤ j ≤ k, there exists a unique 1 ≤ π(j) ≤ k such that π(αj) = απ(j). Let 
Ĉ = ker

(
α

[θ]
1
∣∣ · · · ∣∣α[θ]

k

)
⊆ En and C = Ĉ ∩ Fn. Then dH(Ĉ) = dH(C).

Proof. Since C ⊆ Ĉ, it follows that dH(C) ≥ dH(Ĉ). Let c = (c0, . . . , cn−1) ∈ Ĉ such that 
w(c) = dH(Ĉ). The hypothesis π(αj) = απ(j) implies that π(θi(αj)) = θi(απ(j)), so, for 
each 0 ≤ j ≤ s − 1, πj induces a permutation on the columns of 

(
α

[θ]
1
∣∣ · · · ∣∣α[θ]

k

)
. Since 

c ∈ Ĉ,

(c0, . . . , cn−1)
(
α

[θ]
1
∣∣ · · · ∣∣α[θ]

k

)
= 0,

so

(πj(c0), . . . , πj(cn−1))
(
α

[θ]
1
∣∣ · · · ∣∣α[θ]

k

)
= 0

for each 0 ≤ j ≤ s − 1. It follows that

(TrE/F (c0), . . . ,TrE/F (cn−1))
(
α

[θ]
1
∣∣ · · · ∣∣α[θ]

k

)
= 0,

i.e. (TrE/F (c0), . . . , TrE/F (cn−1)) ∈ Ĉ. Up to replacing c with some scalar multiple, we 
can assume 0 �=(TrE/F (c0), . . . , TrE/F (cn−1)) ∈ Fn, hence (TrE/F (c0), . . . , TrE/F (cn−1))
∈ C \ {0}. Therefore

dH(C) ≤ w(TrE/F (c0), . . . ,TrE/F (cn−1)) ≤ w(c) = dH(Ĉ),

and then we have the equality. �
By using the notation of [28, p. 94], let Cn = {0, 1, . . . , n − 1} be regarded as a cyclic 

group of order n and, since n = νμ, μCn = {0, μ, . . . , (ν − 1)μ} is a subgroup of order 
ν of Cn. Moreover, let Cn/μCn be the quotient group. If T = T 1 ∪ · · · ∪ T � ⊆ Cn such 
that T j ∈ Cn/μCn, it follows that i ∈ T implies i + μ ∈ T . A set with this property is 
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said to be μ-closed. The defining set of a polynomial g ∈ R = F [x; σ] is μ-closed because 
F = Eπ.

Proposition 17. Let g∈R such that g |r xn−1. Let α∈E such that {α, θ(α), . . . , θn−1(α)}
is a normal basis. Let β = θ(α)α−1 and let Tβ(g) =

{
i ∈ Cn : x− θi(β) |r g

}
. Then π

induces a permutation on 
{
θi(α) | i ∈ Tβ(g)

}
.

Proof. By [28, Lemma 4.3], Tβ(g) = T 1 ∪ · · · ∪ T � for some cosets T j ∈ Cn/μCn. Let 
A =

{
θi(α) | i ∈ Tβ(g)

}
. If θi(α) ∈ A,

π(θi(α)) = θi+μ(α) ∈ A

because i ∈ Tβ(g) implies i + μ ∈ Tβ(g). �
Example 18. Let F = F26 be the finite field with 26 elements, a be a primitive element 
satisfying a6 + a4 + a3 + a + 1 and consider the automorphism σ : F → F given by 
σ(a) = a2. The order of σ is 6.

Moreover, let E = F212 be an extension field of F . Let γ be a primitive element of 
E satisfying γ12 + γ7 + γ6 + γ5 + γ3 + γ + 1. The embedding ϕ : F → E is defined as 
ϕ(a) = γ9 +γ5 +γ4 +γ2 +γ = γ65. Let θ : E → E be the extension of the automorphism 
σ to the field E, that is the Frobenius automorphism of order 12.

Now, fix α := γ5 to be a normal element of E as a F2-vector space. Hence β :=
θ(α)α−1 = γ5. Choose the parameters of the Roos bound as b = 0, δ = 3, r = 1, k0 = 9
and k1 = 10. It follows that the defining set we are looking for is Tβ(g) = {2, 3, 4, 8, 9, 10}. 
Now we compute the least common left multiple 

[
x− θi(β)

]i=2,3,4,8,9,10
�

∈ F [x; σ] which 
defines a skew cyclic code of dimension 6 and distance at least 4. In particular, the code 
has generator polynomial

g = x6 + a31x5 + a26x4 + ax3 + a5x2 + a43x + a49.

With the aid of the software Magma [6], we can then compute the exact distance of 
the code that turns to be 6. Therefore, the code C = Rg is a [12, 6, 6] code over the field 
F = F26 .

Example 19. Let K = F2, F = F27 , a be a primitive element and σ : F → F , given by 
σ(a) = a2. Let E = F214 be the extension field of F of degree 2 and γ be a primitive 
element of E. By following Example 18, let α := γ7 be a normal element of E as K-vector 
space and fix β := θ(α)α−1 = γ7. Consider b = 0, δ = 3, r = 2, k0 = 2, k1 = 4, k2 = 5
as the parameters of the Roos bound. It follows that the defining set for the code we 
are constructing is Tβ(g) = {2, 3, 4, 5, 6, 9, 10, 11, 12, 13}, and g is computed as the least 
common left multiple 

[
{x− θi(β) | i ∈ Tβ(g)}

]
�
∈ F [x; σ]. The code generated by g is a 

[14, 4, 11] MDS linear code over F27 .
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Example 20. We are going to include an example concerning convolutional codes. Con-
volutional codes can be equivalently described as direct summands of F[z]n, where F
is a finite field, or as a vector subspace of F(z)n, the field of rational functions over a 
finite field. This equivalence was firstly established in [19, Theorem 3], and a more recent 
refinement can also be found in [29, Proposition 1]. We can also provide a lower bound 
on the free distance of a convolutional code, since it is lower bounded by its minimum 
Hamming distance. For this example we follow an analogous construction to [28, Ex-
ample 2.5]. Let F = F16(z) and σ : F → F the automorphism defined by σ(z) = b9

z+b4 , 
where F16 = F2[b]/(b4+b +1). This is an automorphism of order μ = 15 and, by Lüroth’s 
Theorem [52, §10.2], the invariant subfield is K = Fσ = F16(u) for some u ∈ F16(z). 
Let F256 = F2[a]/(a8 + a4 + a3 + a2 + 1). It is straightforward to check that a canonical 
embedding ε : F16 → F256 is defined by ε(b) = a17. Let π : F256 → F256 be the auto-
morphism defined by π(a) = a16, and let also denote by π the canonical extension to 
E = F256(z), i.e.

π

(
a0 + a1t + · · · + amtm

b0 + b1t + · · · + bm′tm′

)
= a16

0 + a16
1 t + · · · + a16

m tm

b160 + b161 t + · · · + b16m′tm
′ .

We also use σ to denote its canonical extension to σ : E → E, so σ(z) = a153

z+a68 . Since 
F16 = Fπ

256, it follows that σπ = πσ, so θ = σπ : E → E is an extension of σ of 
degree ν = 2. In order to build a skew cyclic convolutional code of a designed Hamming 
distance using the Roos bound, we need a normal basis of E over K = Eθ. Such a 
basis can be obtained from α = az, and the corresponding root is β = θ(α)α−1 =

a168

z2+a68z . Let T = {0, 2, 3, 4, 7, 9, 10, 11, 15, 17, 18, 19, 22, 24, 25, 26}. Then T is μ-closed, 
and g =

[
{x− θi(β) | i ∈ T}

]
�

generates a skew cyclic convolutional code of rate 14/30. 
This polynomial has degree 16 and its coefficients are rational functions up to degree 
11 which we have computed with the aid of [51]. Now, T ⊇ {0, 2, 3, 4, 7, 9, 10, 11}, which 
corresponds to the parameters b = 0, δ = 3, s = 7 and k0, k1, k2, k3 = 0, 2, 3, 4. So, its 
Hamming distance is bounded from below by δ + r = 3 + 3 = 6.

Remark 21. Observe that in the preceding examples the lower bounds obtained using a 
skew BCH bound and a skew Hartmann-Tzeng bound can be seen to be the same as the 
lower bound derived with the aid of Theorem 13. However, these examples are only to 
show how to construct skew cyclic codes with a prescribed minimum distance.

At this point a reader will be wondering whether it is possible to construct skew cyclic 
codes such that the best lower bound obtained via Theorem 13 improves the skew HT 
and the skew BCH bounds. The answer is yes. To see this, take any classical cyclic code 
of length n over a finite field such that the Roos bound provides a better estimate on 
the lower bound than the one obtained by the HT and BCH bounds. For examples, one 
can take [45, Examples 1 & 2]. This will result in a set of integers modulo n which we 
use as defining set Tβ(g) for a skew cyclic code in which F = E and [F : K] = n.
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Table 1
Skew cyclic codes constructed using the Roos bound. The rows in which appears a ∗ indicate that the 
corresponding code is MDS.

K F E = K(γ) α b δ r Tβ(g) [n, k, d]

F2 F26 F212 γ5 0 3 1 {2, 3, 4, 8, 9, 10} [12, 6, 6]
F2 F26 F212 γ5 0 3 1 {1, 2, 3, 4, 7, 8, 9, 10} [12, 4, 8]
F2 F25 F220 γ11 0 3 1 {1, 2, 3, 6, 7, 8, 11, 12, 13, 16, 17, 18} [20, 8, 11]
F2 F27 F214 γ7 0 3 1 {0, 5, 6, 7, 12, 13} [14, 8, 7]∗

F2 F27 F214 γ7 0 3 2 {0, 1, 2, 3, 4, 7, 8, 9, 10, 11} [14, 4, 11]∗

F3 F36 F312 γ7 0 3 1 {2, 3, 4, 8, 9, 10} [12, 6, 7]∗

F3 F35 F315 2γ13 + γ11 + γ10 + 2 0 3 1 {2, 3, 4, 7, 8, 9, 12, 13, 14} [15, 6, 10]∗

F5 F55 F510 γ9 + γ7 + γ6 + 3γ5 + 2γ3 + γ + 3 0 3 1 {0, 1, 2, 5, 6, 7} [10, 4, 7]∗

We conclude this section by commenting on Table 1, which provides a list of skew 
cyclic codes, computed as in Example 18. Hence F = K(a), where a is a primitive 
element of F and E = K(γ), with γ primitive element of E. The generator polynomials 
of the skew cyclic codes in the table are computed by the aid of Magma [6] as least 
common left multiples (we omit to write it for brevity). Moreover, always with the aid 
of Magma, we computed the effective minimum distances of the constructed skew-cyclic 
codes. Observe that in some cases with this construction we obtain codes reaching the 
Singleton bound.

6. Skew Roos bound for the rank metric

In this section we provide the rank-metric version of the skew Roos bound, which 
improves the bound of Theorem 13. The proof uses all the tools developed in the previous 
sections, and in particular it relies on Theorem 13, Lemmas 2 and 12 and Proposition 7.

Also in this section we will use the notation introduced in Definition 11, writing 
C = Rg, where g ∈ R is such that g |r xn − 1, and Ĉ = Sg.

The following result improves Corollary 15 and provides the real analogue of the Roos 
bound for skew cyclic code in the rank metric.

Theorem 22 (Skew Roos bound for the rank metric). Assume that there are b, s, δ, k0, . . . ,
kr such that (s, n) = 1, kj < kj+1 for 0 ≤ j ≤ r − 1, kr − k0 ≤ δ + r − 2, and 
b + si + kj ∈ Tβ(g) for all 0 ≤ i ≤ δ − 2 and 0 ≤ j ≤ r. Then dR(C) ≥ dR(Ĉ) ≥ δ + r.

Proof. As before dR(C) ≥ dR(Ĉ) because C is a subfield subcode of Ĉ. By Proposition 7, 
we need to prove that for every M−1 ∈ GLn(K), we have dH(Ĉ ·M−1) ≥ δ + r. Take a 
generic M ∈ GLn(K), define w = δ+r−1 and consider c ∈ Ĉ ·M−1 such that w(c) ≤ w, 
i.e. c =

∑w
h=1 chx

lh for a suitable S := {l1, . . . , lw} ⊆ {0, . . . , n − 1}. Denote by MS the 
matrix obtained from M only selecting the rows indexed by the elements in S (here we 
assume the row indices to be 0, 1, . . . , n − 1). As in the proof of Theorem 13, we get that 
c̄ := (c1, . . . , cw) belongs to the left kernel of the matrix MSB̃, where

B̃ =
(
A θs(A) · · · θs(δ−2)(A)

)
,

and
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A =
(
θkj+h(α)

)
0≤h≤n−1

0≤j≤r

.

Now observe that

MSB̃ =
(
MSA MSθ

s(A) · · · MSθ
s(δ−2)(A)

)
=

(
MSA θs(MSA) · · · θs(δ−2)(MSA)

)
,

where the last equality follows from the fact that the coefficients of MS are in K, and 
hence are fixed by θ. We observe now that the matrix MSA is of the form

MSA = A0 =
(
θkj (βh)

)
1≤h≤w
0≤j≤r

,

where the elements βh’s are given by βh = M{lh}α
[θ], and are linearly independent over 

K. Hence, by Lemma 2, A0 has rank r. At this point, by applying Lemma 12 on the 
matrices MSB̃ and MSA = A0, with t = δ − 1 we get that rk(MSB̃) = w and hence 
c̄ = 0, so c = 0 is the only element in Ĉ ·M−1 of weight at most δ + r − 1. This proves 
that dH(Ĉ ·M−1) ≥ δ + r and concludes the proof. �

In Section 3, we mentioned that Gabidulin codes are MRD codes, since their pa-
rameters attain a Singleton-like bound for the rank metric. Actually, there are two 
Singleton-like bounds for the rank metric, depending on how the length and the ex-
tension degree of the code are related. Formally, let C be an [n, k, d]F/K rank-metric 
code and let μ = [F : K], then

k ≤ n− d + 1 (2)

k ≤ n

μ
(μ− d + 1) (3)

In particular, one considers inequality (2) when n ≤ μ, and inequality (3) if μ divides n. 
In this setting, an [n, k, d]F/K rank-metric code is maximum rank distance (MRD) if its 
parameters meet with equality one of the two bounds above.

Since in the construction of rank-metric codes that we gave using the skew Roos 
bound of Theorem 22 we deal with n = μν, we should only consider inequality (3), that 
with our notation becomes

k ≤ ν(μ− d + 1). (4)

Hence, a code C satisfying the hypotheses of Theorem 22 is an [n, k, ≥ δ + r]F/K rank-
metric code, where k = n − deg g ≤ ν(μ − δ − r + 1).

Example 23. Consider the code C constructed in Example 18 endowed with the rank 
metric. Putting together the Singleton-like bound in (4) and the skew Roos bound for 



18 G.N. Alfarano et al. / Finite Fields and Their Applications 69 (2021) 101772
Table 2
Skew cyclic rank-metric codes constructed using the Roos bound. The rows 
in which appears a ∗ indicate that the corresponding code is MRD.

K F E δ r n k μ − μk
n + 1 dR

F2 F26 F212 3 1 12 6 4 4∗

F2 F26 F212 3 1 12 4 5 5∗

F2 F25 F220 3 1 20 8 4 4∗

F2 F27 F214 3 1 14 8 4 4∗

F2 F27 F214 3 2 14 4 6 6∗

F3 F36 F312 3 1 12 6 4 4∗

F3 F35 F315 3 1 15 6 5 4 ≤ dR ≤ 5
F5 F55 F510 3 1 10 4 4 4∗

the rank metric of Theorem 22, we get that C is a [12, 6, ≥ 4]F/K rank-metric code, where 
F = F26 and K = F2, which satisfies the following chain of inequalities

4 = δ + r ≤ dR(C) ≤ μ− μk

n
+ 1 = 4.

Therefore, the inequalities above are all equalities and C is an MRD code.

Example 24. Consider now the code C constructed in Example 19 equipped with the 
rank metric. In this case, combining the Singleton-like bound in (4) with the skew Roos 
bound for the rank metric of Theorem 22, we deduce that C is a [14, 4]F/K code with 
F = F27 , K = F2 and whose minimum rank distance satisfies

5 = δ + r ≤ dR(C) ≤ μ− μk

n
+ 1 = 6.

Hence, according to the two bounds, we have an MRD code or an almost MRD code 
(i.e. dR(C) = μ − μk

n ), depending on the exact value of dR(C). However, studying the 
set Tβ(g) more carefully, we can see that it also satisfy a skew Roos bound with b = 0, 
s = 1, δ′ = 6 and r = 0 (i.e. a skew BCH bound). Hence the code C is actually an MRD 
code.

Remark 25. It is very interesting to observe that the skew-cyclic code C considered 
in Examples 18 and 23 is not an MDS code, but an MRD code (with respect to the 
Singleton-like bound in (3)). This is quite surprising since for [n, k]F/K rank-metric 
codes such that n ≤ [F : K], i.e. when we need to consider the Singleton-like bound in 
(2), MRD codes are also MDS. In addition, we have by construction that C = Ĉ ∩ Fn, 
i.e. C is a subfield subcode of a rank-metric code Ĉ ≤ En. It is possible to verify that Ĉ
is not an MRD code (since it has codewords of rank weight equal to 6), even though C
is MRD.

In Table 2, we analyze the same skew cyclic codes from Table 1, endowed with the 
rank metric. Observe that, in all the cases, we get almost MRD codes or MRD codes.
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The behavior of the codes constructed with respect to the rank metric can be partially 
understood as follows. Let T ⊆ Cn be a μ-closed set, i.e. such that i ∈ T if and only if 
i + μ ∈ T . This means that T = Tβ(g) for some g ∈ R and T = T 1 ∪ · · · ∪ T �, where 
T j ∈ Cn/μCn. Hence, we can just consider for each T j a representative ij belonging to 
Cμ = {0, 1, . . . , μ − 1}. We denote this set by TF

β (g) := {i1, . . . , i�}.

Proposition 26. Suppose that the defining set Tβ(g) satisfies a skew Roos bound as in 
Theorem 22 for some δ ≥ 2 and r ≥ 0. Then the minimum rank distance of the code 
C = Rg satisfies δ + r ≤ dR(C) ≤ |TF

β (g)| + 1. In particular, if |TF
β (g)| = δ + r− 1, then 

C is an MRD code.

Proof. The first inequality is the skew Roos bound of Theorem 22. For the second in-
equality, we have that TF

β (g) is a system of representative for Tβ(g), which is its μ-closure. 
Therefore, |Tβ(g)| = ν|TF

β (g)| and k = n − |Tβ(g)| = νμ − ν|TF
β (g)|. Combining this 

equality with (4), we obtain

k = νμ− ν|TF
β (g)| ≤ ν(μ− d + 1),

from which we derive the desired inequality. The second statement follows directly. �
Remark 27. Proposition 26 translates the skew Roos bound and the Singleton-like bound 
in an arithmetic problem. Indeed, it essentially requires to find a defining set with a 
suitable cardinality and only working modulo n and μ to construct rank-metric codes 
whose minimum distance is upper and lower-bounded.

We can observe that in almost all the cases of Table 2 with r = 1, we get |TF
β (g)| =

δ+ r−1, with the δ and the r provided. In the codes from the second and the fifth rows, 
we get |TF

β (g)| = δ′ + r′ − 1, with some different δ′ and r′ for which Tβ(g) satisfies the 
skew Roos bound.

Corollary 28. Let b, δ′, μ, ν, n, s be nonnegative integers such that μ, ν ≥ 1, 2 ≤ δ′ ≤ μ, 
n = μν and (s, n) = 1. Define T := {b, b + s, b + 2s, . . . , b + (δ′ − 2)s} ⊆ Cμ, where all 
the elements are taken modulo μ, and let T̄ be its μ-closure in Cn. Then T̄ = Tβ(g) for 
some polynomial g ∈ R = F [x; σ], such that the code Rg is an [n, n − ν(δ′ − 1), δ′]F/K

MRD code.

Proof. First, observe that |T | = δ′ − 1, i.e. all the elements b + is mod μ are distinct, 
for 0 ≤ i ≤ δ′−2. Indeed, if there are 0 ≤ i ≤ j ≤ δ′−2 such that b + is ≡ b +js mod μ, 
then we would have (j−i)s ≡ 0 mod μ. Since (s, μ) = 1, this implies (j−i) ≡ 0 mod μ, 
which implies i −j = 0, due to the assumptions that 0 ≤ j−i ≤ δ′−2 ≤ μ −2. It is left to 
show that the μ-closure of T , that is T̄ , satisfies a skew Roos bound with δ = δ′ and r = 0. 
However, this is clear by construction, since for every 0 ≤ i ≤ δ′−2 the equivalence class 
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of b + is in Cn/μCn is contained in T̄ . In particular the set {b + is | 0 ≤ i ≤ δ′ − 2} ⊆ T̄

in Cn. We conclude the proof using Proposition 26. �
Example 29. Let us fix any triple of fields K ⊆ F ⊆ E such that [F : K] = μ = 11, 
and [E : F ] = ν = 7, and take the polynomial g such that TF

β (g) = {0, 1, 2, 3, 5, 6}. 
We can observe that the set Tβ(g) satisfies the skew Roos bound of Theorem 22 with 
b = 0, s = 12, δ = 3, r = 3, k0 = 0, k1 = 1, k2 = 2 and k3 = 5. Hence, δ + r = 6 and 
|TF

β (g)| = 6, and by Proposition 26 the code C = Rg is a [77, 49, dR(C)]F/K rank-metric 
code whose minimum distance satisfies 6 ≤ dR(C) ≤ 7.

At this point it is important to remark that in all the construction of MRD codes of 
Table 2, the codes satisfy also a skew Roos bound with r = 0 and δ = |TF

β (g)| + 1, that 
is they can be obtained using Corollary 28. Unfortunately, it does not seem trivial to 
construct MRD codes according to Proposition 26, different from the ones in Corollary 28. 
Indeed, this is not possible when μ is a prime number, as shown in the following result.

Proposition 30. Let s, b, δ, k0, . . . , kr be integers such that (s, n) = 1, kj < kj+1 for 
0 ≤ j ≤ r − 1, kr − k0 ≤ δ + r − 2, and b + si + kj ∈ Tβ(g) for all 0 ≤ i ≤ δ − 2 and 
0 ≤ j ≤ r. Moreover, assume that μ is a prime number. If |TF

β (g)| = δ + r − 1, then 
Tβ(g) satisfies a BCH bound with δ′ = δ + r.

Proof. Up to replacing β with θb(β), it is enough to prove the statement when b = 0. 
Let A := {k0, . . . kr} ⊆ Cμ and B := {0, s, . . . s(δ − 2)} ⊆ Cμ. In this setting we have 
TF
β (g) ⊇ A + B, where

A + B = {a + b | a ∈ A, b ∈ B}

and all the elements are taken modulo μ. First, we can suppose δ+r−1 < μ, otherwise we 
would get a trivial code. Moreover, we can also assume that δ > 2 and r ≥ 1, otherwise we 
have already a BCH bound. Combining the hypotheses and Cauchy-Davenport Theorem 
[13,15], we have the following equalities

|TF
β (g)| = |A + B| = |A| + |B| − 1 = δ + r − 1.

The pairs of sets (A, B) for which equality holds in the Cauchy-Davenport Theorem 
have been characterized by Vosper in [54]. Applying this result in our setting, i.e. when 
|A| = δ−1 > 1, |B| = r+1 > 1 and |A| +|B| −1 < μ, we get that |A +B| = |A| +|B| −1 if 
and only if A and B are representable as arithmetic progressions with the same common 
difference s′ and clearly s′ is coprime to μ. Hence also A +B = TF

β (g) is representable as 
an arithmetic progression with difference s′, and this implies that Tβ(g) satisfies a BCH 
bound. �
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7. Conclusions and open problems

In this paper, we provided a generalization of the Roos bound for skew cyclic codes in 
the Hamming and rank metric over a general field. The only requirement that we ask is 
to have a cyclic Galois extension of finite degree, but we do not require to work on finite 
fields. For the rank metric case, we also provide in Proposition 26 a way to arithmetically 
construct codes with a prescribed minimum rank distance, using the skew Roos bound 
of Theorem 22. Finally, we constructed some example of MDS codes and MRD codes 
over finite fields obtained using the skew Roos bounds of Theorems 13 and 22.

In the second part of Proposition 26, we suggest a way to construct MRD codes only 
using an arithmetic argument modulo μ and n. However, we could not come up with 
a general construction of MRD codes based on that, except for codes satisfying a skew 
Roos bound with parameters δ = |TF

β (g)| + 1 and r = 0. Hence we suggest the following 
open problem.

Problem 1. Is it possible to give a different systematic construction of MRD codes meet-
ing (3) based on Proposition 26 that can not be obtained using Corollary 28, i.e. not 
satisfying any skew Roos bound with parameters δ = |TF

β (g)| + 1 and r = 0?

As shown in Proposition 30, the answer to this question is negative when μ is prime. 
However, the general case is still unclear.
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