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Abstract
Objectives To assess the clinical utility of dual-energy CT (DE-CT)–derived iodine concentration (IC) and effective Z (Zeff) in
addition to conventional CT attenuation (HU) for the discrimination between primary lung cancer (LC) and pulmonary metas-
tases (PM) from different primary malignancies.
Methods DE-CT scans of 79 patients with LC (3 histopathologic subgroups) and 89 patients with PM (5 histopathologic
subgroups) were evaluated. Quantitative IC, Zeff, and conventional HU values were extracted and normalized to the thoracic
aorta. Differences between groups were assessed by pairwiseWelch’s t test. Correlation and linear regression analyses were used
to examine the relationship of imaging parameters in LC and PM. Diagnostic accuracy was measured by the area under receiver
operator characteristic curve (AUC) and validated based on resampling methods.
Results Significant differences between subgroups of LC and PMs were noted for all imaging parameters, with the highest number of
significant pairs for IC. In univariate analysis, only IC was a significant diagnostic feature for discriminating LC from PM (p = 0.03).
All quantitative imaging parameters correlated significantly (p < 0.0001, respectively), with the highest correlation between IC and Zeff

(r = 0.91), followed by IC and HU (r = 0.76) and Zeff and HU (r = 0.73). Diagnostic models combining IC or Zeff with HU (IC+HU:
AUC = 0.73; Zeff+HU: AUC = 0.69; IC+Zeff+HU: AUC = 0.73) were not significantly different and outperformed individual
parameters (IC: AUC = 0.57; Zeff: AUC = 0.57; HU: AUC = 0.55) in diagnostic accuracy (p < 0.05, respectively).
Conclusion DE-CT-derived IC or Zeff and conventional HU represent complementary imaging parameters, which, if used in
combination, may improve the differentiation between LC and PM.
Key Points
• Individual quantitative imaging parameters derived from DE-CT (iodine concentration, effective Z) and conventional CT (HU)
provide complementary diagnostic information for the differentiation of primary lung cancer and pulmonary metastases.

• A combination of conventional HU and DE-CT parameters enhances the diagnostic utility of individual parameters.
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Abbreviations
AUC Area under the receiver operating characteristic

curve
CRC Colorectal adenocarcinoma
CT Computed tomography
CTDIvol Volume-based CT dose index
DE-CT Dual-energy CT
DL-CT Dual-layer CT
DLP Dose length product
DS-CT Dual-source CT
HU Hounsfield units
IC Iodine concentration
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LC Lung cancer
PBC Pancreato-biliary adenocarcinoma
PM Pulmonary metastasis
RCC Renal cell carcinoma
ROC Receiver operating characteristic
ROI Region-of-interest
SCC Squamous cell carcinoma
SCLC Small-cell lung cancer
SD Standard deviation
SEM Standard error of the mean

Introduction

Computed tomography (CT) represents the cornerstone mo-
dality for the imaging of pulmonary malignancies. Lung can-
cer (LC) is the most common cancer in the USA and causes
the most cancer-related deaths per organ site [1]. However, the
most common malignant tumor found in the lungs are pulmo-
narymetastases (PM) originating from another primary cancer
[2]. The differentiation between primary LC and PM is criti-
cal, as it defines the diagnostic and therapeutic workflow. For
example, diagnosis of PM usually warrants further imaging
studies to identify the primary malignancy (e.g., mammogra-
phy and other organ-specific imaging studies), whereas LC
requires complete staging examinations before definitive
treatment can be initiated. Additionally, patients may present
with synchronous PM and primary LC [3] or with a known
primary tumor and a new pulmonary lesion of unknown origin

(PM or LC). Until recently, upon appearance of an unknown
pulmonary lesion on CT, radiologists used morphological
criteria, such as density, borders, and size, to narrow down
the list of possible differential diagnoses [4, 5]. These criteria
are particularly useful for the differentiation between malig-
nant and benign pulmonary lesions. However, in most cases,
further subclassification of lesions is not possible based on
conventional CT alone, ultimately requiring biopsy or
follow-up examinations for definite diagnosis.

Over the last years, dual-energy CT (DE-CT) has emerged
as a promising diagnostic technology for various clinical appli-
cations [6–10] leading to widespread adoption in clinical prac-
tice. Previous studies exploring the use of DE-CT for the as-
sessment of pulmonary lesions focused on the differentiation
between lung cancer (LC) and inflammatory masses [11] on the
one hand and the differentiation of PMs [12, 13] on the other
hand. To our knowledge, no previous studies have investigated
the differentiation of LC and PM by conventional CT or DE-
CT, despite the given clinical relevance. In previous DE-CT
studies, the most frequently used imaging parameter was iodine
concentration (IC). More recently, the effective atomic number
(Zeff) decomposition of tissues was introduced for oncologic
applications. Similar to IC, the rationale of using Zeff is accurate
quantification of iodine uptake, considered a surrogate measure
for tumor perfusion. Both imaging parameters are now readily
available in commercial DE-CT analysis packages. This, how-
ever, has raised a further dilemma for radiologists in clinical
practice: which quantitative imaging parameters should be used
for the characterization of pulmonary lesions or can they be

Fig. 1 Patient selection process
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used interchangeably? Furthermore, would conventional
Hounsfield units (HU) still provide an incremental diagnostic
value or is this parameter obsolete when IC or Zeff measure-
ments are available? Only few studies assessed all of the latter
imaging parameters simultaneously and for pulmonary malig-
nancies, no formal analysis has been presented as to which
quantitative imaging parameters is to be preferred.

In this study, we sought to systematically assess the diag-
nostic value of IC and Zeff, derived from DL-CT, as well as
conventional HU for the characterization of numerous pulmo-
nary malignancies. We hypothesized that incorporating IC,
Zeff, and HU into a diagnostic model may improve the differ-
entiation between pulmonary metastases and LC and thus help
streamline the diagnostic workflow in patients with pulmo-
nary lesions of unknown origin.

Material and methods

Patient population

This retrospective, HIPAA-compliant, single-center study
was approved by our institutional review board, and a waiver
of informed consent was obtained. Between 2016 and 2018,
1007 patients underwent a DL-CT of the thorax for suspected

PM or suspected primary lung tumors. Primary inclusion
criteria were (a) histopathologically confirmed primary LC,
(b) histopathologically confirmed PM, and (c) clinically con-
firmed PM. Clinical diagnosis of PM was based on a follow-
up > 6 months demonstrating progression of the PM, defined
by the appearance of new lesions or > 20% progression in
size. Histopathological subgroups smaller than 10 patients
were excluded from further analysis. Furthermore, patients
were excluded due to prior therapy (local, systemic) and lesion
size less than 5 mm. We finally analyzed 79 patients with
primary LC (adenocarcinoma, n = 45; squamous cell carcino-
ma (SCC), n = 16; small-cell LC (SCLC), n = 18) and 89
patients with PM from primary breast (invasive-ductal adeno-
carcinoma, n = 17), colorectal (CRC) (adenocarcinoma, n =
27), head and neck (squamous cell carcinoma, n = 17), kidney
(RCC) (clear-cell renal cell carcinoma, n = 10), and pancreato-
biliary (PBC) (adenocarcinoma, n = 18) malignancies. The
study population flowchart is illustrated in Fig. 1.

Dual-energy CT technique

The examination of all patients using a dual-layer spectral CT
(IQon; Philips Healthcare) followed the same routine proto-
col. Before the start of the scan, an anterior-posterior scout
was performed to determine the scan range. Intravenous

Table 1 Iodine concentration, effective Z, conventional HU, and tumor volume of lung metastases and primary lung cancers

Type Primary location Histology n IC (mg/ml) Zeff HU

Metastasis Breast Invasive-ductal adenocarcioma 17 1.5 ± 0.59 8.00 ± 0.37 60.39 ± 18.95

Metastasis Colorectum Adenocarcioma 27 1.26 ± 0.56 7.97 ± 0.38 50.5 ± 22.34

Metastasis Head and neck Squamos cell carcinoma 17 1.57 ± 0.46 8.21 ± 0.27 59.72 ± 15.89

Metastasis Kidney Clear-cell carcinoma 10 2.89 ± 1.24 8.81 ± 0.51 94.39 ± 22.77

Metastasis Pancreato-biliary tract Adenocarcioma 18 2.2 ± 0.76 8.43 ± 0.35 67.73 ± 25.62

Primary tumor Lung Adenocarcioma 45 1.66 ± 0.47 8.18 ± 0.21 71.10 ± 17.1

Primary tumor Lung Squamos cell carcinoma 16 1.44 ± 0.78 8.04 ± 0.46 65.98 ± 20.78

Primary tumor Lung Small-cell lung cancer 18 1.09 ± 0.42 7.96 ± 0.39 55.53 ± 14.2

Listed are mean values ± standard deviation. Pulmonary tumors are specified by their type (primary, metastatic), location of their primary tumor, and
histology. The following parameters were measured using dual-energy CT: IC, iodine concentration; Zeff , effective atomic number; HU, conventional
attenuation values in Hounsfield units

Fig. 2 Examples of a patient with
primary lung cancer (left) and
with pulmonary metastasis
(right). In each patient, a lesion in
the apex of the left upper lobe is
present. The following values
were measured for these lesions:
HU: 61/68; Zeff: 8.4/7.3; IC 1.84/
0.60
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contrast medium (Imeron 400 MCT, 400 mg/ml; Bracco
Imaging) was injected with a standard dosage of 80 ml at a
flow rate of 2–2.5 ml/s, followed by a 30-ml saline chaser at
the same flow rate. All scans were performed in the venous
phase (scan delay 70 s after the start of the application of the
contrast medium). The following scanning parameters were
used: 120 kVp; automatic tube current selection with resulting
exposures of 37–84 mAs; 512 × 512 matrix; collimation 64 ×
0.625 mm; reconstructed slice thickness and interval 0.9 mm/
0.9 mmwith a soft tissue kernel. The field-of-view was adapted
to the patient size. Conventional and spectral basis images were
reconstructed using the iDose4 (Philips Healthcare) algorithm.
The mean volume-weighted CT dose index (CTDIvol) and dose
length product (DLP) for the complete protocol were 4.4 mGy
and 180 mGy*cm, respectively, corresponding to an effective
dose of 2.5 mSv (conversion factor 0.014).

Image analysis

Quantitative analysis of spectral CT images was performed
using commercially available software (IntelliSpace Portal v.
10.1, Philips Healthcare). Image analysis was performed ret-
rospectively by a resident fellow in radiology and supervised
by a senior radiologist (11 years of radiology experience).
Using a semi-automated 3D segmentation algorithm, a
volume-of-interest was created for each pulmonary lesion. A
circular two-dimensional region-of-interest was manually
placed in the descending aorta. The following imaging param-
eters were acquired: conventional (polychromatic) Hounsfield
units (HU), iodine concentration (IC) (mg/ml), and effective
atomic number (Zeff). To account for hemodynamic inter-
patient variations, the measured parameter values in the
volume-of-interest of the PM were normalized to the thoracic
aorta as previously described [13]. All analyses were conduct-
ed on normalized measurements.

Statistical analysis

Reporting followed Standards of Reporting of Diagnostic
Accuracy [14]. All statistical analyses were performed using

�Fig. 3 Quantitative results for the dual-energy CT–derived iodine
concentration and conventional CT attenuation values. a Median values
of iodine concentration (IC), (b) effective atomic number (Zeff), and (c)
conventional Hounsfield unit (HU) values with quartiles, minimum, and
maximum values, for primary lung cancers (adenocarcinoma, squamous
cell carcinoma (SCC), small-cell lung cancer (SCLC)) and pulmonary
metastases from primary breast (invasive-ductal adenocarcinoma),
colorectal (adenocarcinoma), head and neck (squamous cell carcinoma),
kidney (clear-cell renal cell carcinoma), and pancreato-biliary
(adenocarcinoma) malignancies. Presented are p values of pairwise
Welch t tests adjusted for multiple comparisons using the Benjamini-
Hochberg correction. Differences between subgroups of pulmonary
metastases and primary lung cancers were not assessed. *Adjusted
p value of < 0.05, ** < 0.01, *** < 0.001
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R version 3.6.1 (R Foundation for Statistical Computing) and
the following R packages: caret (versions 6.0–84), boot (ver-
sions 1.3–22), car (versions 3.0–3), pROC (1.15.3) [15].
Confidence intervals for all analyses were derived using boot-
strap sampling with 2000 replicates. Differences betweenmeans
were assessed by pairwise Welch’s t test to correct for unequal
variances between groups. Multiple testing adjusted p values
were computed using Benjamini-Hochberg correction [16], also
known as false-discovery rate. Differences were only assessed
between subgroups of metastases and LC. The relationship be-
tween imaging parameters was evaluated using the Pearson cor-
relation coefficient (r) and linear regression analysis. Three-
parameter linear regression models were constructed using pairs
of imaging parameters as independent and dependent variable,
the type of pulmonary tumor as categorical variable (primary
versusmetastatic), and two-way interactions between them. This
approach allows to assess the change of one imaging parameter
value in a tumor subgroup as a function of another imaging
parameter. Logistic regression models were developed for the
discrimination of primary LC versus PM using imaging param-
eters alone and in combination. Bootstrapping with 2000 repli-
cations was performed for internal validation to avoid optimism
in model performance measures. Diagnostic accuracy was mea-
sured by the area under receiver operator characteristic (ROC)
curve (AUC) and compared using a bootstrap test (2000 repli-
cates) [15]. Additional diagnostic performance measures (sensi-
tivity, specificity, and negative and positive predictive value)
were calculated for model thresholds corresponding to the max-
imumYouden index. All tests were two-tailed, and p < 0.05was
considered statistically significant.

Results

A total of 79 LC and 89 PM on 168 DE-CT scans were ana-
lyzed in this study; a representative example of a LC and a PM

is shown in Fig. 2. Quantitative results of IC, Zeff, and con-
ventional CT values of all pulmonary tumors are provided in
Table 1 and Fig. 3a–c. Significant differences in all imaging
parameters were observed for lung adenocarcinoma versus
PM from CRC (IC: p = 0.01; Zeff: p = 0.05; HU: p = 0.002)
and RCC (IC: p = 0.02; Zeff: p = 0.01; HU: p = 0.04), for SCC
versus PM from RCC (IC: p = 0.02; Zeff: p = 0.005; HU: p =
0.02), and for SCLC versus PM from RCC (IC: p = 0.009;
Zeff: p = 0.003; HU: p = 0.002). Additional significant differ-
ences were noted based on IC and Zeff between lung adeno-
carcinoma (IC: p = 0.02; Zeff: p = 0.02), SCC (IC: p = 0.02;
Zeff: p = 0.02), and SCLC (IC: p = 0.0001; Zeff: p = 0.003)
versus metastatic lesions from PBC, respectively. Significant
differences between SCLC and metastases from head and
neck cancer (IC: p = 0.01) and breast cancer (IC: p = 0.04)
were only observed for IC.

All quantitative imaging parameters correlated significant-
ly, with the highest correlation between IC and Zeff (r = 0.91, p
< 0.0001), followed by IC and HU (r = 0.76, p < 0.0001) and
Zeff and HU (r = 0.73, p < 0.0001).We analyzed the following
linear regression models including the type of pulmonary tu-
mor (primary versus metastatic) and pairs of imaging param-
eter as dependent versus independent variable (Table 2): mod-
el (a) HU versus IC (Fig. 4a); model (b) HU versus Zeff (Fig.
4b); model (c) Zeff versus IC (Fig. 4c). A two-way interaction
term was not statistically significant in any of the three
regression models (model a: p = 0.94; model b: p = 0.53;
model c: p = 0.13) and was, therefore, dropped from the
models. A significant effect of the type of pulmonary tumor
on HU values (dependent variable) was observed for models a
(p < 0.0001) and b (p < 0.0001), with coefficients of 9.85 and
8.43, respectively, for the category “Primary LC. These re-
sults translate into significantly higher HU values of LCs com-
pared with those of PM at fixed values of IC (model a) and Zeff

(model b), and, by contrast, no significant differences in Zeff at
fixed values of IC (model c).

Table 2 Linear regression
analysis Model Dependent variable Independent variables Coeffecient [CI] p value

a HU IC 23.36 [19.64, 26.49] < 0.0001

Primary lung cancer 9.85 [5.4, 13.85] < 0.0001

Pulmonary metastasis Reference

b HU Zeff 39.9 [34.12, 44.72] < 0.0001

Primary lung cancer 8.43 [3.63, 12.62] 0.0003

Pulmonary metastasis Reference

c Zeff IC 0.50 [0.46, 0.55] < 0.0001

Primary lung cancer 0.02 [− 0.04, 0.07] 0.59

Pulmonary metastasis Reference

CI indicates bootstrapped 95% confidence interval (2000 replicates). IC, iodine concentration on dual-energy
computed tomography; HU, conventional computed tomography attenuation values in Hounsfield units; Zeff ,
effective atomic number. Italics indicate significant p values (< 0.05). Note that two-way interaction terms for all
three models were not significant in preliminary analyses
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In univariate logistic regression analysis, only IC was
found to be a significant predictor for the discrimination
of primary LC from PM (p = 0.03; Table 3). Coefficients
of uni- and multivariate logistic regression models are

provided in Supplementary Table 1. Diagnostic perfor-
mance was assessed for all imaging parameters alone
and in combination (Table 4; Supplementary Table 2).
Only the corresponding AUCs of logistic regression
models combining HU with IC and/or Zeff were signifi-
cantly different from 0.5 (p < 0.0001, respectively), indi-
cating useful diagnostic tests. Accordingly, the corre-
sponding bootstrap optimism-corrected AUCs of these
combinations were significantly higher compared with
those of single imaging parameters and a combination of
IC and Zeff (p < 0.005, respectively). The combined
models including HU (IC+HU, Zeff+HU, IC+Zeff+HU)
did not differ significantly in their corresponding AUCs.
The highest AUC was achieved by the parameter combi-
nation of IC and HU (AUC 0.73) (Table 4; Fig. 5).

Discussion

Our study demonstrates that the discrimination of primary LC
from PM is feasible using a combination of DE-CT-derived
IC or Zeff, and conventional HU. Using either imaging param-
eter alone did not enable diagnostic utility. IC and Zeff did not
provide complementary information to one another for this
diagnostic task and can thus be used interchangeably for the
implementation into a diagnostic model.

In earlier reports, DE-CT-derived parameters were used for
the differentiation of PM from different primary tumors [12,
13] and for the evaluation of therapy response in LC [17].
However, to our knowledge, no previous studies have exam-
ined the differentiation between LC and PM. For the majority
of cases in current clinical practice, this discrimination can
only be made based on histopathological evaluation.
Therefore, patients are required to undergo biopsy upon ap-
pearance of new pulmonary lesions on CT. Aside from possi-
ble complications, such as pneumothorax or bleeding, this
diagnostic pathway may ultimately delay further therapy.
Our study suggests DE-CT as a useful tool for the differenti-
ation of LC and PM, whichmay help streamline the diagnostic
workflow in patients with pulmonary lesions of unknown

Fig. 4 Linear regression scatter plots of quantitative imaging parameters
in primary lung cancer and pulmonary metastases. a Conventional HU
and IC. b Conventional HU and Zeff. c Zeff and IC. Gray-shaded area
represents the limits of the 95% confidence interval of the linear
regression fit. Significant differences in HUs were noted between
primary lung cancer and pulmonary metastases at fixed IC (p < 0.0001)
and Zeff (p = 0.0003) in regression models a and b; no significant
difference in Zeff at fixed IC was found in model c

Table 3 Univariate logistic regression analysis for discrimination of
primary lung cancer from pulmonary metastases

Variable Coeffecient [CI] p value

IC − 0.481 [− 0.95, − 0.07] 0.03

Zeff − 0.66 [− 1.36, 0.13] 0.09

HU 0.01 [− 0.01, 0.02] 0.25

CI indicates bootstrapped 95% confidence intervals (2000 replicates). IC,
iodine concentration on dual-energy computed tomography;HU, conven-
tional computed tomography attenuation values in Hounsfield units; Zeff ,
effective atomic number. Italic indicates significant p values (< 0.05)
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origin and even avoid invasive diagnostic procedures in cer-
tain cases.

Our study focused on the utility of the most commonly
used DE-CT-derived parameters IC and Zeff, which are readily
provided by most commercial software platforms, in addition
to conventional HU. While previous DE-CT studies used a
multitude of imaging features, such as the slope of the spectral
HU curve [18], virtual mono-energetic HUs, or extracted
radiomic features from DE-CT-derived parametric maps

[19], the appeal of our approach is its simplicity, only using
three “off-the-shelf imaging parameters obtained from DE-
CT scans which could facilitate integration into the clinical
workflow without additional software applications.

Our study could demonstrate that a differentiation between
LC and PM is possible in many cases. However, if used alone,
no parameter provided reliable predictions. Both IC and Zeff

are considered surrogate measures for tumor vascularity and
perfusion. While IC directly quantifies iodine content, Zeff

Fig. 5 ROC curves for the
discrimination of primary lung
cancer (n = 79) from pulmonary
metastases (n = 89) corrected for
optimism using bootstrapping
(2000 replicates). Logistic
regression models, combining
dual-energy CT–derived iodine
concentration (IC), Zeff, and
conventional CT attenuation
values (HU), as well as single
parameters, were tested. The
corresponding areas under the
curve (AUCs) of the combined
models incorporating HU were
significantly higher than those of
IC (p < 0.05), Zeff (p < 0.01), or
HU (p < 0.01) alone. No
significant differences were noted
between single parameters and a
combinedmodel using IC and Zeff

Table 4 Diagnostic accuracy for
the differentiation of primary lung
cancer from pulmonary
metastases

Model AUC [CI] pa pb pc pd pe pf pg

IC 0.57 [0.48, 0.65] 0.95 0.83 0.0009 0.02 1 0.001

Zeff 0.57 [0.48, 0.66] 0.95 0.82 0.002 0.01 0.96 0.002

HU 0.55 [0.46, 0.63] 0.83 0.82 0.0003 0.006 0.83 0.0003

IC+HU 0.73* [0.65, 0.80] 0.0009 0.002 0.0003 0.17 0.0009 0.36

Zeff+HU 0.69* [0.61, 0.77] 0.02 0.01 0.006 0.17 0.04 0.17

IC+Zeff 0.57 [0.48, 0.65] 1 0.96 0.83 0.0009 0.04 0.0009

IC+Zeff+
HU

0.73* [0.65, 0.80] 0.001 0.002 0.0003 0.36 0.17 0.0009

AUC, area under the receiver operating characteristic curve; CI, bootstrapped 95% confidence intervals (2000
replicates); IC, iodine concentration on dual-energy computed tomography; HU, conventional computed tomog-
raphy attenuation values in Hounsfield units; Zeff , effective atomic number. p values are provided for the com-
parisons of bootstrap optimism-corrected AUCs: versus a IC; b Zeff ; c HU; d IC+HU; e Zeff +HU; f IC+Zeff ; g IC+
Zeff +HU. Italicized p values indicate significant differences (< 0.05). *AUCs significantly different from 0.5
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describes the average atomic number for a tissue of interest
and can thus indirectly provide information about accumula-
tion of contrast material. Coefficients for IC and Zeff in the
logistic regression models indicate that LC accumulated less
contrast material than PMs, indicating differences in tumor
vascularity. Nonetheless, diagnostic utility could only be
achieved by the addition of HU in a diagnostic model. This
diagnostic incremental value of HU was confirmed by linear
regression analysis. At fixed values of IC or Zeff, LCs demon-
strated significantly higher HU values than PMs. This sug-
gests that, in addition to tumor vascularity, which may be
accurately assessed by IC or Zeff, there are subtle differences
in tissue composition that are more evident by HU quantifica-
tion. Consequently, the assessment of pulmonary tumors of
unknown origin in clinical routine should not be limited to
single parameters but consider both conventional CT attenua-
tion and DE-CT-derived parameters.

Not all pairwise comparisons between subgroups of LC
and PM in our study yielded significant differences for all
imaging parameters. Given the similarity of several subgroups
of LC and PM, in many cases, a definite differentiation may
not be achieved by imaging alone. In a clinical context, our
proposed combined diagnostic models could, however, pro-
vide an additional diagnostic hint and help streamline further
diagnostic work-up. For instance, upon appearance of a new
pulmonary lesion in patients with a known primary tumor,
characteristic DE-CT parameter values may help to confirm
the clinical suspicion and initiate therapy without additional
invasive tissue sampling.

Findings of our study should be interpreted in the context
of some limitations. First, the analysis was retrospective and
limited to a single reference center. Second, the number of
included CT scans for some histopathological subgroups
was relatively low and, although we assessed a multitude of
tumor types, no benign pulmonary lesions and not all malig-
nant pulmonary tumors are considered. Third, no other DE-
CT technology was used besides DL-CT as different systems
are not available at our institution. Since IC can be measured
accurately with other systems [20], the results of the present
study are expected to be transferable to other systems. Fourth,
we acknowledge that additional imaging characteristics such
as tumor margins, size, calcifications, or presence of necrotic
areas, which are an integral part of any clinical CT assessment,
could have improved the diagnostic performance of our mod-
el. This study is a first step in demonstrating the feasibility of
distinguishing between LC and PM. Machine learning algo-
rithms handling multiple predefined input variables or deep
learning models that are capable of automatically learning and
extracting imaging features are an interesting avenue for fu-
ture research but will ultimately require larger data sets.

In conclusion, our study demonstrates the feasibility of
differentiating between LC and PM via DE-CT. Using a com-
bination of IC and/or Zeff with HU may help avoid invasive

tissue sampling in patients with a history of extra- or
intrapulmonary malignancies.
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