

Technical University of Munich

TUM Department of Civil, Geo and Environmental Engineering

Chair of Computational Modeling and Simulation

Image-Based Localization in 3D Point Clouds

Master Thesis

for the Master of Science Program Computational Mechanics

Author: Ahmethan Başak

Student ID: 03709066

Supervisors: Florian Noichl, M.Sc.

 Yuandong Pan, M.Sc.

Date of Issue: 14. December 2020

Date of Submission: 14. June 2021

Abstract II

Abstract III

Localization is a highly anticipated and active research topic. It divides into various

areas concerning different interests and needs. Application of localization starts with

basic questions like “where am I” and “how can I acquire the location information.” In

terms of hardware usage in localization, laser scanners and cameras are examples of

collecting environment information in different kinds of data. In this thesis, image-based

localization is conducted with the images that are retrieved by cameras.

Cameras are tools for computer-vision-based approaches. According to the needs of

the user, image data is processed during operation, or mapping of an area is done with

all collected images. These images are the starting point of image-based localization.

The area that localization takes place is reconstructed by collected images from this

area because of the relationship between localization accuracy and 3D reconstruction

of the scene. It is significant for localization. Reconstruction in this study is done by

COLMAP, which is open-source software that has a pipeline structure to create a

sparse and dense model from collected images. The reconstruction process is exe-

cuted by using theories such as Scale-Invariant Feature Transform (SIFT), Structure-

from-Motion (SfM), and Multi-View Stereo (MVS).

Reconstruction of the scene is used to find the location of a particular image with its

camera poses inside an aligned large laser-scanned point cloud. To achieve this, the

reconstruction steps are observed in a different set of parameters to reach a dense

reconstructed model, and alignment quality is tried to be improved.

Abstract

Zusammenfassung IV

Lokalisierung ist ein hochaktuelles und aktives Forschungsthema. Es unterteilt sich in

verschiedene Bereiche, die unterschiedliche Interessen und Bedürfnisse betreffen. Die

Anwendung der Lokalisierung beginnt mit grundlegenden Fragen wie "wo bin ich" und

"wie kann ich die Standortinformationen erfassen." In Bezug auf die Verwendung von

Hardware in der Lokalisierung sind Laserscanner und Kameras Beispiele für das Sam-

meln von Umgebungsinformationen in verschiedenen Arten von Daten. In dieser Arbeit

wird die bildbasierte Lokalisierung mit den Bildern durchgeführt, die von Kameras ab-

gerufen werden.

Kameras sind Werkzeuge für computer-vision-basierte Ansätze. Je nach Bedarf des

Anwenders werden die Bilddaten während des Betriebs verarbeitet, oder es wird eine

Kartierung eines Bereichs mit allen gesammelten Bildern durchgeführt. Diese Bilder

sind der Ausgangspunkt der bildbasierten Lokalisierung. Der Bereich, in dem die Lo-

kalisierung stattfindet, wird durch gesammelte Bilder aus diesem Bereich rekonstruiert,

da ein Zusammenhang zwischen Lokalisierungsgenauigkeit und 3D-Rekonstruktion

der Szene besteht. Sie ist für die Lokalisierung von Bedeutung. Die Rekonstruktion in

dieser Studie erfolgt mit COLMAP, einer Open-Source-Software, die eine Pipeline-

Struktur zur Erstellung eines spärlichen und dichten Modells aus gesammelten Bildern

hat. Der Rekonstruktionsprozess wird unter Verwendung von Theorien wie Scale-In-

variant Feature Transform (SIFT), Structure-from-Motion (SfM) und Multi-View Stereo

(MVS) durchgeführt.

Die Rekonstruktion der Szene wird verwendet, um die Position eines bestimmten Bil-

des mit seinen Kamerapositionen innerhalb einer ausgerichteten großen laserge-

scannten Punktwolke zu finden. Um dies zu erreichen, werden die Rekonstruktions-

schritte in einem unterschiedlichen Satz von Parametern betrachtet, um ein dichtes

rekonstruiertes Modell zu erreichen, und es wird versucht, die Ausrichtungsqualität zu

verbessern.

Zusammenfassung

List of Contents V

List of Figures VII

List of Tables XI

List of Abbreviations XII

1 Introduction and Motivation 13

1.1 Image-based Localization ... 13

1.2 Aims and Objectives ... 14

1.3 The layout of the thesis ... 15

2 Theoretical Background 16

2.1 Structure-from-Motion ... 16

2.1.1 Incremental Structure-from-Motion ... 17

2.2 Scale-Invariant Feature Transform ... 19

2.2.1 Scale Space Extrema Detection ... 20

2.2.2 Keypoint Localization .. 24

2.2.3 Orientation Assignment ... 25

2.2.4 Keypoint Descriptor ... 26

2.3 Multi-View Stereo .. 28

3 Methodology 31

3.1 Toolkit ... 31

3.1.1 Docker .. 31

3.1.2 COLMAP ... 34

3.1.3 Connection with Server ... 35

3.1.4 CloudCompare .. 37

3.2 COLMAP Reconstruction .. 38

3.3 Initialize the reconstruction on the server .. 39

3.4 Adding New Images to Reconstructed Model ... 41

3.5 Alignment of Point Clouds ... 44

3.6 Finding Camera Poses ... 50

List of Contents

List of Contents VI

4 Experiments and Results 57

4.1 Alignment Quality .. 59

4.2 Camera Position Finding for Varied Reconstructions.................................. 66

5 Conclusion and Future Work 70

References 73

Appendix 77

List of Figures VII

Figure 2.1.1: COLMAP’s incremental Structure-from-Motion pipeline (Schoenberger,

2020a) ... 17

Figure 2.2: Multi-Scale representation of a signal (Lindeberg, 1996) 20

Figure 2.3: Blurred Images (Lowe, 2004) ... 21

Figure 2.4: Gaussian Blur Operator (Lowe, 2004) .. 21

Figure 2.5: Blurring in several octaves (Tyagi, 2019) ... 21

Figure 2.6: The Scale-Space representation of the 2D image (Lindeberg, 1996) 22

Figure 2.7: Computing Difference of Gaussian (Lowe, 2004) 22

Figure 2.8: Difference of Gaussian of each scale (Lowe, 2004) 23

Figure 2.9: Comparison of D(x, y, σ) value between neighbors (Lowe, 2004) 23

Figure 2.10: Location of extremum (Lowe, 2004) ... 24

Figure 2.11: Calculations for extrema elimination (Feature Detection - SIFT, 2019)

(Lowe, 2004) ... 25

Figure 2.12: Keypoint with detected scale (Utkarsh Sinha, 2016) 25

Figure 2.13: Keypoint Histogram (Utkarsh Sinha, 2016)... 26

Figure 2.14: Keypoint Descriptor 16x16 Histogram (Tyagi, 2019) 27

Figure 2.15: Histogram with sub-blocks (Tyagi, 2019) .. 27

Figure 2.16: Multi-View Reconstruction pipeline (Slobodan Ilic, 2011) 29

Figure 2.17: Window-based Multi-View Stereo algorithm (Agarwal et al., 2011) 29

Figure 3.1: Docker architecture (Docker, 2018) .. 31

Figure 3.2: Docker build command ... 32

Figure 3.3: Docker Container Run Commands For COLMAP’s Reconstruction 32

Figure 3.4: Percentage of usage for each GPU in the server 33

Figure 3.5: Docker volume system (Docker, 2020) ... 33

Figure 3.6: “docker ps -a” command ... 34

Figure 3.7: Create an SSH keypair (Gite Vivek, 2021) ... 35

Figure 3.8: PuTTY Key Generator .. 36

List of Figures

List of Figures VIII

Figure 3.9: FileZilla interface .. 37

Figure 3.10: CloudCompare Logo and GUI (Daniel Girardeau-Montaut, 2011) 37

Figure 3.11: COLMAP Pipeline with Mapper function ... 38

Figure 3.12: COLMAP’s Feature Extractor Commands .. 40

Figure 3.13: Usage of Docker cp command ... 40

Figure 3.14: Workspace folder .. 41

Figure 3.15: File system for the mapper ... 41

Figure 3.16: Docker Container Run Commands For COLMAP’s Mapper Function .. 42

Figure 3.17: DB Browser for SQLite ... 43

Figure 3.18: COLMAP Visualization of Sparse model and Camera Locations 43

Figure 3.19: COLMAP Visualization of Generated Point Cloud 44

Figure 3.20: Laser-scanned point cloud without any cutting 44

Figure 3.21: MeshLab Toolbar .. 45

Figure 3.22: Left: Before Deleting Points Right: After Deleting Points 45

Figure 3.23: Align Tool Window of MeshLab .. 46

Figure 3.24: Point-Based Glueing in MeshLab ... 46

Figure 3.25: MeshLab Error Text .. 47

Figure 3.26: Unsuccessful Alignment of Point Cloud in MeshLab 47

Figure 3.27: CloudCompare Toolbox .. 47

Figure 3.28: Left: Picking Points From “Align” Point Cloud Right: Picking Point From

“Reference” Point Cloud .. 48

Figure 3.29: Align Tool Windows of CloudCompare ... 48

Figure 3.30: Generated Transformation Matrix in CloudCompare 49

Figure 3.31: Aligned Point Clouds in CloudCompare ... 49

Figure 3.32: Colored Point Clouds in CloudCompare ... 50

Figure 3.33: Point Cloud Visualized with Python Open3D library 50

Figure 3.34: Exported Text File Format of the model .. 51

Figure 3.35: COLMAP GUI Features for importing and exporting models 51

Figure 3.36: Camera Poses inside laser-scanned point cloud 52

Figure 3.37: Filtering Point outside Camera View ... 53

List of Figures IX

Figure 3.38: Application of Pythagorean theorems ... 54

Figure 3.39: Point Viewpoint Check .. 54

Figure 3.40: Camera Locations and their captured points .. 55

Figure 3.41: An image file and its corresponding viewpoint with captured points 56

Figure 4.1: Project Initialization File .. 57

Figure 4.2: Patch Match Configuration ... 58

Figure 4.3: Mapper and first reconstruction comparison ... 59

Figure 4.4: Alignment with 4 points ... 60

Figure 4.5: Cloud-to-Cloud feature ... 60

Figure 4.6: Density comparison between point clouds ... 61

Figure 4.7: Choose Role ... 61

Figure 4.8: Left: General settings for Distance Computation Right: Local Model Type

Selection ... 62

Figure 4.9: Left: Cloud to Cloud distance for Reconstruction 1 Right: Cloud to Cloud

distance visualization .. 62

Figure 4.10: Left: Cloud to Cloud distance for Reconstruction 2 Right: Cloud to Cloud

distance visualization .. 63

Figure 4.11: Left: Cloud to Cloud distance for Reconstruction 3 Right: Cloud to Cloud

distance visualization .. 63

Figure 4.12: Left: Cloud to Cloud distance for Reconstruction 4 Right: Cloud to Cloud

distance visualization .. 63

Figure 4.13: Left: Cloud to Cloud distance for Reconstruction 5 Right: Cloud to Cloud

distance visualization .. 64

Figure 4.14: Left: Cloud to Cloud distance for Reconstruction 6 Right: Cloud to Cloud

distance visualization .. 64

Figure 4.15: Left: Cloud to Cloud distance for Reconstruction 7 Right: Cloud to Cloud

distance visualization .. 64

Figure 4.16: image455, image456 and image459 .. 66

Figure 4.17: image460, image461 and image463 .. 66

Figure 4.18: Captured Points for image455 and image461 for Reconstruction 4. 67

Figure 4.19: Reconstruction 6 with camera poses .. 67

Figure 4.20: Reconstruction 4 with camera poses .. 68

List of Figures X

Figure 4.21: Camera Viewpoint of image463 from Reconstruction 6 (Left) and 4 (Right)

 .. 68

Figure 4.22: Captured points of Camera Viewpoint Reconstruction 6 in CloudCompare

 .. 68

Figure 4.23: Captured points of Camera Viewpoint Reconstruction 4 in CloudCompare

 .. 69

Figure 4.24: CloudCompare Visualization of captured points of image455 and

image461 .. 69

Figure 5.1: CloudCompare ICP Setting window (CloudCompare, 2015b) 70

Figure 5.2: Classic ICP algorithm flow chart (Liu et al., 2018) 71

Figure 5.3: Improved ICP algorithm flow chart (Liu et al., 2018) 71

Figure 5.4: CMS laser-scanned point cloud .. 72

Figure 5.5: Office 3218 manually found .. 72

List of Tables XI

Table 1: Reconstructed Model Analyze after the mapper ... 59

Table 2: Reconstruction C2C Comparison with respect to a threshold value 65

Table 3: CloudCompare data storing structure for C2C distance 65

Table 4: Reconstruction C2C Comparison with respect to first five class 66

Table 5: Captured Points by cameras for different reconstructions 67

List of Tables

List of Abbreviations XII

2D

3D

4PC

C2C

CMS

CV

DoG

DSP

GUI

ICP

MVS

OS

PnP

SfM

SIFT

Two-dimensional

Three-dimensional

Four Point Congruent

Cloud-to-Cloud

Chair of Computational Modelling and Simulation

Computer Vision

Difference of Gaussians

Domain Size Pooling

Graphical User Interface

Iterative Closest Point

Multi-View Stereo

Operating System

Perspective-n-Point

Structure-from-Motion

Scale-Invariant Feature Transform

List of Abbreviations

Introduction and Motivation 13

1.1 Image-based Localization

Image-based localization is an essential topic of computer vision. Localization applica-

tions can be varied according to a different set of conditions. Some of the cases occur

in indoor or outdoor environments. For example, augmented reality, navigation, locali-

zation of pedestrians and robots, and visualization of photo collections are the topics

that image-based localization is needed and can improve the application process. For

photo collections, image-based localization uses them for large-scale reconstructions

that are based on the initial pose estimate of the localization approach. Reconstruction

of the selected environment starts with estimating the orientation of the camera, and

the scale of the reconstruction is rising with advanced research such as Structure from

Motion (SfM).

3D models are used for image-based localization. The usage of the 3D model is de-

scribed in this paper (Li et al., 2010). 3D points and their descriptors are named as

points, 2D image features, and their descriptors as features. Matching is handled as

direct and indirect 2D to 3D matching. Direct matching focuses on searching for the

nearest neighbors of a specified feature descriptor in a given space which is consists

of 3D point descriptors. As a result of this search, a 3D point corresponding to a 2D

feature can be found. Indirect matching follows a more generalized approach than

searching individual matches. Points and their descriptors are represented by an inter-

mediate construct. In this method, the proximity does not preserve in descriptor space,

unlike the direct way. The local 2D features in the query image are processed to es-

tablish correspondence between other features. This correspondence search is crucial

for image-based localization, and it is accepted as a start point of image-based locali-

zation. The feature descriptors like Scale-Invariant Feature Transform (SIFT) are one

of the common approaches used for the reconstructed 3D points in the model. These

SIFT descriptors formulate the correspondence search as a descriptor matching prob-

lem. Classical direct matching approaches, such as approximative tree-based search,

can be considered because of their performance in providing good matching results

from the image to descriptors from the model. This good performance comes with a

drawback in terms of computational effort and time. In large and dense descriptor

1 Introduction and Motivation

Introduction and Motivation 14

collections, the search for matching makes the process expensive to handle. Thus,

recent approaches consider using the indirect matching method to process massive

databases (Sattler et al., 2011).

1.2 Aims and Objectives

This thesis focuses on localizing a particular image and the camera pose, which is

related to this image inside a given laser-scanned point cloud of an area. Image-based

localization is applied to get information from an unknown area and locate positions.

Images that are taken from a video as a series of screenshots are collected from the

area to reconstruct the scene. Then, the reconstructed point cloud is aligned with a

laser-scanned point cloud. The laser-scanned point cloud is referred to as ground truth,

and benchmarks are done with respect to it.

The first part of the localization, reconstruction of the area, is done by an open-source

software COLMAP perform the reconstruction process. Series of images are used to

reconstruct a sparse and dense model. The 3D point cloud is created separately after

the reconstruction process. Densification of the point cloud is a need for localization

accuracy. Therefore, we have the point cloud, which is based on the dense model

instead of a sparse model. Additional functions of COLMAP are used to add new im-

ages into the reconstruction. Image registration is applied, and a new image is suc-

cessfully registered into the COLMAP database file. Then, the mapper function is im-

plemented to match the feature points of added images into the previous database

with a camera position inside the point cloud.

The reconstructed dense 3D point cloud is the requirement to move on to the next

phase of the thesis. In the second part, the main objective of the thesis is finding the

camera pose of a new image inside the laser-scanned point cloud. Comparison be-

tween the laser-scanned point cloud and the COLMAP generated point cloud is started

with the alignment process. CloudCompare software performs the alignment between

point clouds. Therefore, the quality comparison and the error between point clouds are

available with the help of CloudCompare. Then, a python script is used to filter the

added images and their related information from the database of reconstruction that

includes new images. As a result of this, the camera locations of the new images are

reachable and visualized.

Afterward, several trials are conducted with various parameters, and the influence of

the parameters is discussed with their needs of computation power and time.

Introduction and Motivation 15

Moreover, the success rate of adding new images into produced reconstruction is an-

alyzed, and the location of the new camera poses that are generated from added im-

ages is compared inside a given laser-scan point cloud. A further approach is ad-

dressed for better alignment between the 3D reconstructed point cloud and laser-

scanned point cloud.

1.3 The layout of the thesis

Chapter 1 identifies the usage and current state of the art of image-based localization

and presents the objective of this thesis with a brief explanation of further processes.

Chapter 2 introduces the theoretical background behind the COLMAP software. The

pipeline of SfM and MVS are explained with used terms like feature detection and im-

age matching of SIFT.

Chapter 3 includes the explanation of the tools and software that are used in this study

and then presents the workflow of reconstruction, describing the alignment process

between point clouds and finding the location of the camera pose and the image inside

the laser-scanned point cloud with an explained script.

Chapter 4 presents some specific test cases with different assumptions and parame-

ters. Experiment setups are explained, and their corresponding results are discussed.

Chapter 5 discusses the performance of the alignment process and success in finding

camera poses of added images inside laser-scanned point clouds with different recon-

structions of the scene.

Theoretical Background 16

2.1 Structure-from-Motion

Structure from motion (SfM) is originated from two key fields, photogrammetry and

computer vision. Photogrammetry is an old topic that is used for measuring and pro-

cessing lengths and angles in photos for mapping purposes (Visser, 1982). One of the

early researches in vision consists of the recovery from the stereo, which is proposed

by Marr and Poggio (2016). In that study, the correspondence between images is es-

tablished by an iterative cooperative algorithm.

The current state-of-the-art SfM consists of several sections to reconstruct 3D structure

from a series of images taken from different viewpoints inside an area. These images

sequentially are added into the final reconstruction.

SfM is applied by using three different strategies. These are incremental strategies,

hierarchical strategies, and global approaches. Global approaches of SfM recon-

structed all images at once instead of processing them sequentially. During the recon-

struction, global camera positions are estimated based on different approaches such

as pairwise rotations and vanishing points, rotation averaging in the RANSAC frame-

work, discrete-continuous optimization, and lie-algebraic averaging. After the estima-

tion step is completed, SfM solves a linear problem to evaluate 3D structure and cam-

era translations. One of the drawbacks of the global approach of SfM occurs in case

the pairwise geometries are inaccurate or the number of pairwise geometries is not

enough. This method is not able to average pairwise motions properly. Other SfM strat-

egy is named as hierarchical strategies which aim to avoid fully sequential reconstruc-

tion of incremental SfM like global approaches. Hierarchical strategies propose a dif-

ference apart from the global approach. It does not use global estimations. There are

various studies for reconstruction that are based on hierarchical strategies. Havlena

(2009) uses visual words to find candidate image triplets for reconstruction. Later these

reconstructions are merged into a more extensive reconstruction. Gherardi (2010) pro-

poses implementing a balanced tree on images to use clustering of match-graph.

These clusters are merged hierarchically to build a larger reconstruction (Shah et al.,

2015).

2 Theoretical Background

Theoretical Background 17

SfM aims to get unknown parameters by only using 2D point coordinate measurements

over several views or frames. These measurements are the locations of the 2D fea-

tures in the images which depend on three parameters. The first parameter is the co-

ordinates of the feature points in 3D space, the second reason is the relative 3D motion

between the camera and the scene, and the third parameter is the internal geometry

of the camera (Jebara et al., 1999).

In this thesis, incremental strategy is used for SfM. The algorithm and the related soft-

ware are written by Schönberger. The name of the software is known as COLMAP,

which is an open-source tool for structure-from-motion and multi-view modeling.

2.1.1 Incremental Structure-from-Motion

Incremental SfM differs from other strategies with the sequential processing of each

image in collections. Good seed image pairs are evaluated to reconstructs the cameras

and points. Reconstruction progress sequentially images by image by adding well-con-

nected images, estimating camera parameters, and triangulating feature matches.

(Brown & Lowe, 2005; Snavely et al., 2006) Global bundle adjustment, which is a re-

finement of camera poses and 3D point positions, is used to avoid drift accumulation.

Bundle adjustment is repeated during every step in incremental SfM, and this causes

the complexity of the incremental SFM is resulted as O(n4) due to repeated BA. (Shah

et al., 2015) Various methods are proposed to improve the efficiency of the BA. Among

these methods, two topics come into prominence. These are fast approximations of

the sparse bundle adjustment and exploiting many-core architectures to parallelize it.

(Agarwal et al., 2011; Agarwal et al., 2010; Wu et al., 2011) As an example of parallel-

ization, leveraging highly parallel GPU architecture for an optimized pipeline is offered

by Wu. (2013)

Figure 2.1.1: COLMAP’s incremental Structure-from-Motion pipeline (Schoenberger, 2020a)

Incremental strategy is chosen for this thesis application since it is the leading strategy

for unordered photo collection. COLMAP introduces a new approach of SfM to improve

the resulted reconstruction in terms of accuracy, robustness, scalability, and

Theoretical Background 18

completeness (Schönberger & Frahm, 2016). COLMAP pipeline of SfM that is shown

in Figure 2.1.1 is divided into two sections for the process of incremental SfM. These

are correspondence search and incremental reconstruction. Correspondence search

is related to find the relationship between images in terms of feature point matching.

Feature extraction is defined as feature point detection in images. These points are

points that are likely to be detected in corresponding images. SIFT is used as the pri-

mary tool to extract these features. The appearance descriptor represents detected

sets of local features at the location for each image. One condition is set for the fea-

tures to be detected by SfM. The features can be recognizable in multiple images if

they are invariant under geometric and radiometric changes. After feature extraction is

completed successfully, feature points need to be matched to know the correspond-

ence between points in each pair of images. SfM detects the same scene part by using

the appearance description of the images, which is a representation of features in im-

ages. Every image pair is tested for scene overlap, which means if a pair is overlapped,

there should be a feature correspondence between them. Feature correspondence is

evaluated by using a similarity metric that compares the appearance of the features.

Finding the most similar feature in an image for every feature in the image proves that

correspondence.

The third stage of the COLMAP pipeline is geometric verification which is responsible

for verifying the potentially overlapping image pairs. The reason why this verification

step is needed that matching is based entirely on appearance. So there is no guaran-

tee that corresponding features actually map to the same scene point. Thus, verifica-

tion of matches involves estimating the transformation that maps feature points be-

tween images. This estimation is managed by projective geometry, which depends on

the spatial configuration of an image pair and changes with respect to different map-

ping that describe the geometric relation.

After geometric verification is confirmed, reconstruction of the 3D structure proceeds

with the second part of the pipeline. In this part, COLMAP’s incremental reconstruction

takes place. Initial pair selection is significant for reconstruction. The reason for the

significance, bad chosen initial pair makes COLMAP hard to progress towards the end

result because the number of overlapping camera views will not be enough to reach

robust and accurate reconstruction. This lack of redundancy affects the performance

of the process. To avoid this negative effect, the model should be initialized with a

Theoretical Background 19

particularly selected two-view reconstruction (Beder & Steffen, 2006). During the re-

construction, the model is growing by registering new images. The registration step is

done by solving the Perspective-n-Point (PnP) problem. The problem is defined as

using feature correspondences to triangulate points in registered images. PnP follows

different routes according to the calibration of the camera. Estimation of the pose of a

calibrated camera is executed with a given set of 3D points in the world and their equiv-

alent 2D projections in the images. RANSAC (Frahm et al., 2006) and minimal pose

solver are used for this estimation. For uncalibrated cameras, the intrinsic parameters

are used with various minimal solvers and sampling-based approaches. A novel robust

following best image selection method for accurate pose estimation is proposed by

COLMAP. Registration is finalized with triangulation. Triangulation is applied to calcu-

late the 3D point corresponding to each pair of matched points. Triangulation is an

important step in SfM. It increases the stability of the existing model through redun-

dancy and enables registration of new images by providing additional 2D-3D corre-

spondences (Triggs et al., 2000). Although image registration and triangulation are

separate procedures, their results are highly correlated, and the uncertainties of the

camera pose may propagate to triangulated points. Therefore, further refinement is

needed. In the last step of the incremental reconstruction, an iterative bundle adjust-

ment is used to provide a refinement to the model. The joint non-linear refinement of

camera parameters and point parameters minimizes the reprojection error and poten-

tially down-weight outliers by using a loss function which is called function pi, that pro-

jects scene points to image space.

This proposed SfM pipeline of COLMAP introduces a method to identify and highly

overlapping images for efficient bundle adjustment of dense collections and establish

complete and precise models with improved robustness and accuracy.

2.2 Scale-Invariant Feature Transform

Scale-Invariant Feature Transform (SIFT) is a widely used feature-based method for

object recognition and was first presented by Lowe in 1999. It uses a class of local

image features that are invariant to image scaling, translation, and rotation and partially

invariant to changes in lighting and projection (Forsman, 2011).

There are four steps of generating the set of image features. They are listed as Scale-

space extrema detection, keypoint localization, orientation assignment, and keypoint

descriptor (Lowe, 2004).

Theoretical Background 20

2.2.1 Scale Space Extrema Detection

Scale-space extrema detection is a filtering approach to identify the locations and

scales of features from different views of the same object. This identification is made

by using the scale-space function (SIFT Image Features, 2015). This section includes

the definition of scale space and usage of the scale-space function to find keypoints in

the images.

Real-world objects are only recognizable and exist as meaningful entities if they are in

a certain range of scale. This recognition difference can be described with an example.

In this example, a branch of a tree can be identified easily with all details from a few

centimeters to a few meters. If the distance between the objects and viewer increases

or decreases too much, objects should change with respect to the scale. At the na-

nometer level, observing the molecules inside the leaves of the tree becomes mean-

ingful. Also, looking at a forest with a lot of trees is logical for the kilometer level.

(Lindeberg, 1996) A lot of familiar examples of this multi-scale nature of objects can

be observed. The scale of observation affects the appearance of the objects in the real

world and shows the notion of the scale. Scale-space is a way of replicating this con-

ception on digital images. The need for this replication comes from the question of how

to analyze and derive information from real-world measurement data.

Multi-scale representation is visualized in Figure 2.2. The original signal with different

levels of scale is represented by an ordered set of derived signals. The source of the

signal is the image that its features are unknown. “t” represents the levels of the scale

(Lindeberg, 1996).

Figure 2.2: Multi-Scale representation of a signal (Lindeberg, 1996)

The main focus of the scale-space representation is producing a set of derived signals

which includes the suppressed form of the fine-scale information. A function is used to

represent this set as the scale-space of an image. This function, L(x,y,σ), is generated

from the convolution of a Gaussian kernel at different scales from the input images.

Theoretical Background 21

This convolution and its derivatives create smoothing transformations (Feature

Detection - SIFT, 2019).

Two terms take into place to describe this process. These are octaves and gaussian

blurring. Octaves are the separated form of the scale-space, and the number of oc-

taves and scale are related to the size of the original image. Gaussian blurring is the

convolution of the gaussian operator and the image in mathematical representation.

The blurred image is defined with a function in Figure 2.3 where * is the convolution

parameter, G(x, y, σ) is a variable-scale Gaussian, and I(x, y) is the input image

(Lindeberg, 1993).

Figure 2.3: Blurred Images (Lowe, 2004)

“σ” is the scale operator in Figure 2.4. It is the same parameter with “t” in Figure 2. The

amount of blur in the image depends on the value of G(x, y, σ).

Figure 2.4: Gaussian Blur Operator (Lowe, 2004)

In Figure 2.5, several octaves of the original image are generated. The size of each

octave is half of the previous octave. Inside an octave, each pixel in the images grad-

ually blurred by Gaussian Blurring.

Figure 2.5: Blurring in several octaves (Tyagi, 2019)

Theoretical Background 22

Another example of different levels in the scale-space representation of a two-dimen-

sional image is shown in Figure 2.6. Scale levels are defined as t or σ = 0, 2, 8, 32,

128 and 512. Grey-level blobs indicate local minima at each scale.

Figure 2.6: The Scale-Space representation of the 2D image (Lindeberg, 1996)

In finer scales, each noise and texture are detected separately. When the scale be-

comes coarser with applied smoothing, separated sections are unified and merge into

one unit. Finally, bigger single blobs are observed. This example shows the hierar-

chical shape decomposition by observing the effect of varying scale parameters in the

scale-space representation (Lindeberg, 1996).

Difference of Gaussians (DoG)

Blurred images that are produced by the Gaussian kernel are used to generate another

set of images to detect locations of the stable keypoint locations in the scale-space.

The DoG is one of the various methods that can locate scale-space extrema. DoG

takes the difference of Gaussian blurring of two images with different scale values.

One of the images is scaled k times as kσ, and the scaled image differentiate from the

other image that has a scale value of σ, as it is seen in Figure 2.7.

Figure 2.7: Computing Difference of Gaussian (Lowe, 2004)

Theoretical Background 23

In the Gaussian Pyramid, this process is repeated for different octaves of the image..

In Figure 2.8, the result of the process that is done for different octaves of the image

in the Gaussian Pyramid is represented (Lowe, 2004).

Figure 2.8: Difference of Gaussian of each scale (Lowe, 2004)

Finding Keypoints

Until this part, scale space is generated and used to calculate the Difference of the

Gaussians. Those DoGs are used to compute Laplacian of Gaussian approximations

that are scale-invariant.

Figure 2.9: Comparison of D(x, y, σ) value between neighbors (Lowe, 2004)

Search for the local extrema is done by several comparisons between different scales

and inside scales in Figure 2.9. Comparison inside the scale starts with comparing the

8 neighbors of a selected pixel, D(x, y, σ) value of each pixel is compared with the

neighbors to detect the local maxima and minima at the same scale. Then, the upper

Theoretical Background 24

and lower scales take into comparison. 9 pixels in upper and lower neighbors are com-

pared with the selected pixel of up and down one scale. Thus, 26 checks are made for

each pixel in an image. If the D(x, y, σ) value is the minimum or maximum of all these

compared values of pixels, this selected pixel will become local extrema. If it is a local

extremum, it is also a potential keypoint or the best representation of the keypoint in

that scale.

2.2.2 Keypoint Localization

In the previous step, plenty of keypoints are generated. Therefore, they should be fil-

tered out according to some criteria. The keypoints which have low contrast or are

poorly localized on edge are eliminated from the list of keypoints. The reason for the

elimination is these keypoints are not useful as features, and they should be removed.

After that, a similar approach to the Harris Corner Detector is applied to remove edge

features, and low contrast features are removed with respect to their intensity value.

To make the decision about elimination in terms of contrast, Laplacian is calculated for

each keypoint in the list, and a value z which represents the location of extremum, is

found in Figure 2.10. Additionally, Taylor series expansion of scale space is used to

get a more accurate location of extrema (SIFT Image Features, 2015).

Figure 2.10: Location of extremum (Lowe, 2004)

If the function x value is below a threshold value, extrema are eliminated because of

low contrast. For the elimination decision with respect to the location of extrema, a

condition is searched. This exclusion is required since the difference of Gaussians has

a higher response for edges. In this condition, a large principle curvature across the

edge but a small curvature in the perpendicular direction in the difference of Gaussian

function. If the difference value is below the ratio of largest to the smallest eigenvector,

the extrema are eliminated. Principal curvature is computed from the 2x2 Hessian ma-

trix (H) at the location and scale of the extrema (Feature Detection - SIFT, 2019).

In Figure 2.11, filtering for keypoints is done for two criteria. Flats mean checking the

contrast and value is compared to a threshold which is taken as 0.03 in this example.

Edge checking for this case is applied by computing Hessian.

Theoretical Background 25

Figure 2.11: Calculations for extrema elimination (Feature Detection - SIFT, 2019) (Lowe, 2004)

2.2.3 Orientation Assignment

The previous process verifies the keypoints in terms of stability, and the scale that

detected keypoint is located is known as is seen in Figure 2.12. The blurred image

represents the scale of detection for the yellow keypoint. Therefore, scale invariance

exists.

Figure 2.12: Keypoint with detected scale (Utkarsh Sinha, 2016)

In that step, the goal is assigning a consistent orientation to the keypoints based on

local image properties. This assignment is needed because keypoint descriptors are

described relative to this orientation, and invariance to rotation is achieved.

To get orientation, the keypoint scale is used to select the Gaussian smoothed image

L, then gradient magnitude, m, and orientation, θ, are computed. Computed gradient

orientations of sample points form a histogram, and the highest peak in the histogram

is located. This peak and any other local peak within 80% of the height of this peak is

Theoretical Background 26

used to create a keypoint with that orientation. Furthermore, some points might be

assigned multiple orientations, and a parabola can be used to reach an interpolation

of peak value from 3 closest histogram values to the peak are interpolated. This is

done for all pixels around the keypoint; the histogram will have a peak at some point.

Figure 2.13: Keypoint Histogram (Utkarsh Sinha, 2016)

To compute the orientation, the highest peak in the histogram is picked, and each peak

above 80% of this peak is also taken into account. It is shown with a line for 80% of

the peak in Figure 2.13. Keypoints are created with the same location and scale, alt-

hough their directions are different. The stability of matching increased with the contri-

bution of this situation.

2.2.4 Keypoint Descriptor

Each keypoint now has a location, scale, and orientation. The local gradient data is

used to generate keypoint descriptors for each keypoint in the local image region that

is as distinct and invariant as feasible to changes in viewpoint and illumination. To do

this, the gradient information is rotated to line up with the orientation of the keypoint

and then weighted by a Gaussian with a variance of 1.5 * keypoint scale. Visualization

of keypoint descriptors is done by a set of histograms over a window centered on the

keypoint.

In Figure 2.14, a 16x16 window around the keypoint is created and is divided into 16

sub-blocks of 4x4 size.

Theoretical Background 27

Figure 2.14: Keypoint Descriptor 16x16 Histogram (Tyagi, 2019)

Each sub-block consists of 8 bin orientation bins in Figure 2.15.

Figure 2.15: Histogram with sub-blocks (Tyagi, 2019)

In total, 4x4 descriptors over 16x16 sample array were used in practice. 4 direction

represents the main compass directions, and other 4 represents the mid-points of

these directions. As a result of 4x4x8 directions, it generates 128 bin values. It is rep-

resented as a feature vector of 128 elements to form a keypoint descriptor. This feature

vector introduces a few complications and dependences. These are related to rotation

and illumination. The feature vector uses gradient orientations which means a rotation

of the image causes changing of all gradient operations. Another dependence is re-

lated to illumination; it is connected to the threshold that is used to eliminate keypoints.

Theoretical Background 28

Keypoint Matching

The closest neighbors of keypoints in two images are identified and matched. How-

ever, due to noise or other factors, the second closest match may be quite close to the

first. The closest distance to second closest distance ratio is used in this scenario.

SIFT takes into place in the correspondence search stage of the COLMAP. During this

stage, image matching and recognition have proceeded, and distinctive image fea-

tures, which are named SIFT features, are extracted from a set of reference images

and stored in a database. Different images cause a challenge related to find a correla-

tion between those extracted features of images and match them. To overcome this

challenge, a new image is matched by individually comparing each feature of the new

image to the prior database and identifying candidate matching features based on the

Euclidean distance of their feature vectors. Lowe discusses fast nearest-neighbor al-

gorithms that can perform this computation rapidly against large databases. (Lowe,

2004)

When memory and computational power are limited, SIFT must be modified to meet

the requirements of the problem. Compression is applied to use memory efficiently.

Compressed SIFT descriptors ensure that the system contains more visited maps to

avoid the constant loading and unloading of maps. In addition, the time complexity of

SIFT limits the use of the algorithm for online purposes. After SIFT descriptors are

extracted, VLAD can be applied for further steps (Wei et al., 2015).

2.3 Multi-View Stereo

Sparse models are generated as outcome products of SfM, which is introduced in the

previous section. Alongside the sparse model, camera poses and 3D points are recov-

ered. Sparse models are not the best in case of precision of geometric primitives is

needed, and densification method is required (Forsman, 2011). Because the recon-

structed 3D model after SfM only contains the distinctive image features which match

other images nicely.

Multi-View Stereo (MVS) is used to produce robust, accurate, and efficient dense mod-

els. MVS takes the registered images and produces dense and accurate models.

These images are collected from studio conditions, internet, video, and unstructured

image collections. Images are usually collected for image-based rendering,

Theoretical Background 29

classification, and localization applications. According to the needs of the application

method, the implementation method can also change.

Figure 2.16: Multi-View Reconstruction pipeline (Slobodan Ilic, 2011)

MVS reconstruction pipeline in Figure 2.16 briefly consists of three steps. These are

image acquisition, camera pose extraction, and generating 3D reconstruction. Image

acquisition is completed with collected images, and the required camera poses are

already known since the SfM process is completed and camera parameters for each

image are computed along with the sparse model. Then 3D geometry of the scene is

reconstructed by using the set of images and corresponding camera parameters. Ad-

ditionally, the materials of the scene can be reconstructed.

Figure 2.17: Window-based Multi-View Stereo algorithm (Agarwal et al., 2011)

In Figure 2.17, a set of images are used to find the correct depth. An infinite number

of depth line vectors are created. All of them is starting from the viewing point. At each

depth value, the window is projected into the other images. In this way, consistency

Theoretical Background 30

among textures at these image projections is computed. The criterion that shows the

correct depth is at the true depth; the consistency score is maximum (Agarwal et al.,

2011). This brief example is extended with different methods, such as dense pixelwise

correspondence search.

Dense pixelwise correspondence search is the base of the stereo methods, and this

search is related to illumination and viewing geometry conditions. These conditions

define the setting of the problem that occurs in controlled or uncontrolled environments.

MVS grasps multiple views to overcome the inherent occlusion problems of two-view

approaches (Schönberger et al., 2016). The method used for MVS in COLMAP con-

currently accounts for a diversity of photometric and geometric priorities, also improves

the robustness and accuracy of Zheng's depth determination (Zheng et al., 2014).

COLMAP uses the output of the SfM in MVS. Thus, the workload of the MVS is re-

duced, and because of the calibration, which is done in SfM, results are accurate.

COLMAP computes depth and normal information for every pixel inside an image.

(Schoenberger, 2020a) The dense point cloud of the scene is produced by fusion of

the depth and normal maps of multiple images in 3D. Pixelwise view selection with

MVS is performed for depth and normal estimation and fusion.

Methodology 31

3.1 Toolkit

3.1.1 Docker

Docker is a service that uses operating system virtualization to deliver prepared soft-

ware packages called containers. These containers are processes that are isolated

from all other processes on the host machine and include their own operating system

kernel, software, and libraries.

Figure 3.1: Docker architecture (Docker, 2018)

Client-server architecture is used in Docker, as seen in Figure 3.1. The client com-

municates with the Docker daemon, which has the responsibility of building, running,

and distributing the Docker containers. When Docker pull and docker run commands

are used, Daemon communicates with the registry. Docker registries are the storage

for the Docker images. While running a container, the container uses a custom image.

Images are built according to Dockerfile. This script includes instructions that define

layers in the images. Additionally, GPU usage and volume mounting are done by def-

initions inside Dockerfile.

Dockerfile, which is used for COLMAP reconstruction, consists of a list of dependent

images and requires software packages. Ripfreeworld COLMAP image is pulled from

3 Methodology

Methodology 32

Docker Hub, and a script is added to insert bash commands into the running container.

The link for the image is “https://hub.docker.com/r/ripfreeworld/colmap_cuda10.2”.

This script is used to start and configure reconstruction in COLMAP. A detailed de-

scription of this script is in section 3.3. Docker-build command uses the Dockerfile in-

side the specified directory.

Figure 3.2: Docker build command

“-t” flag is used to reference the version of the built image in Figure 3.2. Therefore,

different versions of similar images can be built with the help of this flag. “.” means that

the required Dockerfile location is the same as the terminal path. After the build process

of the image is completed, the image is running by a container with the docker run

command. To check an image is built correctly, the “docker images” command is used

to list all of the images. In case of a need to remove one of the images, “docker rmi

image_id” is used.

Figure 3.3: Docker Container Run Commands For COLMAP’s Reconstruction

In Figure 3.3, there are flags that are added below the docker run command. “-d”

makes the container run in the detached mode, which allows the container to run in

the background. Thus, when the root process inside the container is completed, con-

tainers exit. “-name” gives identification to the container. Moreover, graphic cards can

be assigned to containers in case of multiple devices like our case. Pointy has two

graphic cards, and they are available for multiple users. According to the graphic

memory usage of these cards, the user must choose the one with free memory. “nvidia-

smi” command is used to list the current situation of the system in Figure 3.4, and the

user can choose the suitable card for a certain container.

Methodology 33

Figure 3.4: Percentage of usage for each GPU in the server

Docker offers several methods to store generated data by containers. These methods

are volumes, bind mounts, and tmpfs mount, and the working structures of methods

are shown in Figure 3.5.

Figure 3.5: Docker volume system (Docker, 2020)

Volumes are significant to persist data in Docker and have an advantage over bind

mounts in some aspect. Both methods need a mounting directory in the host machine

and Docker container. As a difference between the two methods, volumes are main-

tained by Docker and are isolated from the core functionality of the host machine. On

the other hand, bind mountings have a dependence on the directory structure and the

operating system of the host machine. Although bind mounts are basic when it is com-

pared to volumes, and they are performant. ”—mount” or “-v” flags are used to assign

which method is chosen. “—mount” is preferred because of recommendations in

Methodology 34

docker hub which claims that the syntax is more clear. The source part indicates the

directory path inside the host machine. The target indicates the directory inside the

created container. In this thesis, bind mountings are used to transfer series of images

into the container, and after reconstruction is completed, dense model and sparse

model are reachable by using these volumes.

Running containers can be listed by using “docker ps” commands. Also, by adding -a

flag, it can show existed containers as listed in Figure 3.6.

Figure 3.6: “docker ps -a” command

“docker stop container_id” is used to stop a running process during the runtime. Ex-

isted containers can be removed by using “docker rm container_id”.

Additionally, after the container is left to running, the process can be observed by using

“docker logs -f container_id”. This command gives the opportunity to the user to debug

the error and follow every step of the reconstruction.

3.1.2 COLMAP

COLMAP is a general-purpose SfM and MVS pipeline with a graphical and command-

line interface. A wide range of features comes with the software, which is focused on

the reconstruction of ordered and unordered image collections.

Current SfM algorithms fail to produce fully satisfactory results in terms of complete-

ness and robustness. As a result of this, the system cannot register large fraction im-

ages, or broken models are observed because of misregistration or drift. The reasons

that cause these outcomes occur during the SfM steps. In the correspondence search

part, it should not produce an incomplete scene graph. Incompleteness affects the

connectivity for complete models and the required redundancy for reliable estimation.

In the reconstruction part, the error can exist in the image registration or triangulation

step, and it may be related to missing or inaccurate scene structure. Therefore, images

cannot be registered properly (Schönberger & Frahm, 2016).

Methodology 35

A new algorithm which is presented by Schönberger, comes with a solution to these

known problems. Firstly, COLMAP introduces a geometric verification strategy that is

used to increase the robustness of the initialization and triangulation parts. Secondly,

a new best view selection is applied to maximize the robustness and accuracy of the

incremental reconstruction process. Thirdly, a robust triangulation method is used to

produce a more complete scene structure than the current algorithm with a reduced

amount of computational effort. Fourth, an iterative Bundle Adjustment, re-triangula-

tion, and outlier filtering strategy improve completeness and accuracy by mitigating

drift effects. Finally, a more efficient BA parameterization for dense photo collections

through redundant view mining is applied. All of these changes make the new algorithm

surpass the current state-of-the-art systems Bundler and VisualSFM.

COLMAP has two kinds of interfaces which are GUI and command-line interface. GUI

is used to show points and camera positions of reconstructed models. The command-

line interface can be controlled on the terminal and has specific flags to change pa-

rameters in each step of reconstruction.

3.1.3 Connection with Server

Reconstruction of series of images in COLMAP needs a certain amount of computation

power. The Chair of Computational Modelling and Simulation has a server that is ded-

icated to the high-performance required computation. The technical specifications of

Pointy are capable of solving these computations. This server is named Pointy, and it

has two Quadro RTX 8000 GPUs with 48 GB graphic memory and an AMD Ryzen

Threadripper 3900X 64-Core processor. Connection to this server is made by SSH File

Transfer Protocol (SFTP). For authentication purposes, the user must have credentials

that are needed for connection. These are a public key and a private key. Keys are

created in the terminal by this line on Linux in Figure 3.7.

Figure 3.7: Create an SSH keypair (Gite Vivek, 2021)

“-t rsa” specifies the type of key to create. ”dsa”, ”ecdsa”, ”ed25519”, “rsa1” (for protocol

version 1 of rsa) and “rsa” (for protocol version 2) are the possible types that can be

defined. “-b” flag species the number of bits in the key to creating. In this example,

Methodology 36

4096 bits version is preferred. The default value for the RSA key is 2048 bits. “-f” flag

specifies the filename of the key file, and “-c” flag is used to set a new comment.

The public key is sent to the admin of the server, and the private key is used to make

the connection to the server. The SFTP server configuration includes the host key.

When the client requests the host key, the server must send the host key to the client

(SFTP Server Overview - IBM Documentation, 2021).

Admin of server gives a username besides only taking the public key, and the client

uses this username and private key to transfer files. Firstly, the private key must be

transformed into a format by using Putty. Then, the user is able to make the transfer

by using an SFTP connection.

Figure 3.8: PuTTY Key Generator

PuTTY key generator in Figure 3.8 is used to convert the private ssh key into the “.ppk”

type. Since FileZilla needs this type of private key to connect the server. File transfer

between Pointy and the local machine is maintained by FileZilla. FileZilla is an open-

source, cross-platform FTP application. It performs the file transfer using FTP and en-

crypted FTP such as SFTP like the connection of Pointy (FileZilla - Wikipedia, 2021).

Methodology 37

Figure 3.9: FileZilla interface

In Figure 3.9, the FileZilla interface is seen with two tabs. The left tab is the explorer

for the file system of the local machine, and the right tab is for the server’s file system.

Files can be easily transferred via Drag and Drop, and if there are lots of files for the

transfer, it creates a queue for files. The transfer between the server and the local

machine can be paused or continued. Also, new folders and files can be created and

moved to different locations on the server. These features are used to create the folder

that is needed for reconstruction.

3.1.4 CloudCompare

Figure 3.10: CloudCompare Logo and GUI (Daniel Girardeau-Montaut, 2011)

CloudCompare is a 3D point cloud (and triangular mesh) editing and processing soft-

ware. It was created with the intention of comparing two dense 3D point clouds (such

as those obtained with a laser scanner) or a point cloud and a triangular mesh. It makes

Methodology 38

use of a dedicated octree structure for this purpose. After that, it was expanded to

include more general point cloud processing software, including many advanced algo-

rithms (registration, resampling, color/normal/scalar fields handling, statistics compu-

tation, sensor management, interactive or automatic segmentation, display enhance-

ment, etc.) (CloudCompare, 2016).

3.2 COLMAP Reconstruction

The reconstruction process is split into two parts. COLMAP starts the sparse recon-

struction by loading all extracted data from the database into memory and seeding it

with an initial image pair. The scene is then gradually expanded by adding fresh images

and triangulating additional points. Following the reconstruction of a sparse represen-

tation of the scene and camera poses from the input image, the reconstruction process

continued with dense reconstruction. MVS now has the ability to recover denser scene

geometry. COLMAP features an integrated dense reconstruction pipeline that gener-

ates depth and normal maps for all registered images before fusing them into a dense

point cloud with normal information (Schoenberger, 2020a). Inside the dense recon-

struction process, the first process is undistorting the images. Secondly, the depth and

the normal maps are computed by using stereo. Thirdly, these maps are fused to a

point cloud.

Figure 3.11: COLMAP Pipeline with Mapper function

The image registration and mapper function are related to the reconstruction step. The

difference between these processes is triangulation. For image registration, firstly, new

features of the added images are extracted. Then it matches them with the existing

Methodology 39

images in the database. Thus, all of the new images are registered into the model. In

the case of more accurate result is needed, the mapper function is preferred, as seen

in Figure 3.11. It enables COLMAP to restart or continue the reconstruction process to

find the scene, and the camera poses of the added images instead of just registering

the added images into the existed database.

By using the GUI of COLMAP, the user can start reconstruction and view the results

of reconstruction. In this thesis, the command-line interface is preferred because of

several reasons. Firstly, Pointy is a server and does not offer Linux’s GUI to operate.

Secondly, the command-line interface works with docker containers and gives the user

freedom to change the parameters of each step of reconstruction. A script called “En-

trypoint.sh” is used along with the building of the docker container, which includes

COLMAP. This script includes paths of images, database, and initialization files inside

the container.

3.3 Initialize the reconstruction on the server

Images are taken from a video as screenshots. Frame per second value decides the

number of images. A high FPS value makes the number of images higher. These im-

ages are transferred into the Pointy. Reconstruction in COLMAP can be done auto-

matically, or every step of the reconstruction sets manually. These steps require a

project.ini file that includes the parameter values regarding the process of the recon-

struction in that specific step.

In Figure 3.12, available commands of COLMAP’s feature extractor are listed by using

the -h, -help flag. COLMAP has two options in terms of setting configuration. One of

them is using the command line with listed flags and changing every parameter indi-

vidually. Another option is preparing an initialization file with assigned values and

changing parameters inside this file. Additionally, paths related to project files and the

database is given inside the file. These paths are the file locations inside containers.

The camera model is also specified in this file. --ImageReader from the defined models

in COLMAP documentation. Pinhole and radial camera models are chosen during tri-

als. Pinhole cameras are basic because it uses one and two focal length parameters

even with a setting of undistorted images. Therefore, the radial camera model is pre-

ferred to cover more possibility of having images that are taken with different cameras.

This model is quite useful with cases with unknown camera intrinsics and images which

have different camera calibration.

Methodology 40

Figure 3.12: COLMAP’s Feature Extractor Commands

Parameters that are related to SIFT theory are defined in the feature extractor. Domain

size pooling (DSP) is a development on SIFT that improves matching and feature de-

scriptors.

After the project initialization file is prepared with decided parameters, a container that

is capable of running COLMAP with the needed reconstruction steps is built. Dockerfile

in Appendix A.1 is used to build the container. Inside this docker file, Entrypoint.sh file

is copied from the directory, and the commands inside the file start the reconstruction

sequentially. For the reconstruction, the file in Appendix A.2 is used. Every step of the

reconstruction can be followed by mentioned docker command (“docker logs -f) to view

the terminal inside the container.

Docker cp command is used to copy the stored data inside the container to the host

machine. The workspace folder includes dense and sparse models. Inside the dense

model folder, point cloud .ply file, depth maps, normal maps, and consistency graphs

are created after the dense stereo stage, which includes patch match stereo and stereo

fusion. In Figure 3.13, the section between cp and “:” represents the container ID. The

remaining part is the path of files inside the container, which will be copied into the

server’s hard disk separately.

Figure 3.13: Usage of Docker cp command

Methodology 41

This workspace folder in Figure 3.14 includes dense and sparse models, depth and

consistency maps, and reconstructed point clouds.

Figure 3.14: Workspace folder

3.4 Adding New Images to Reconstructed Model

COLMAP includes an option to make user adds new images to existing reconstruction.

This option follows a route that is similar to first registration. Firstly, features in new

images are extracted and registered into the database, which is created during the first

reconstruction. New images are listed in a text file per line with image names. Then,

they are registered to the model. COLMAP offers two methods to add new images.

The first method follows a path that takes new images and extracts the features from

the images. Finally, it registers them into the database. If the accuracy of the recon-

struction is a significant criterion for the registration, the second method, the mapper

function, is preferred since it is a more accurate alternative to only registering images

to the model. With the mapper function, reconstruction is restarted or continued, and it

offers an accurate image registration with triangulation. To execute the mapper func-

tion inside a container, folders should be filled with files according to the structure in

Figure 3.15. The images folder includes both the images from the first reconstruction

and newly added images. The data folder includes a database.db file and project ini-

tialization file of the previous reconstruction. The text folder includes a text file of new

image names. Previously reconstructed dense and sparse models are stored in the

workspace folder.

Figure 3.15: File system for the mapper

Methodology 42

A container for the mapper is prepared apart from the reconstruction because the map-

per function is called by using “colmap mapper”. The new Entrypoint.sh file in Appen-

dix A.3 is written and used inside docker build operation to create the container that is

adding new images into existed reconstruction.

In Figure 3.16, the container is prepared to run with volume mountings according to

the described file structure. –d flag starts the container in detached mode, the –name

flag gives a container name, and the –gpus flag is used to select a GPU. The last line

represents the image that runs in the container.

Figure 3.16: Docker Container Run Commands For COLMAP’s Mapper Function

The results of the mapper can be checked by opening the reconstructed point cloud

on COLMAP’s GUI in my local computer. Also, new images and camera data should

be registered into the database of the reconstruction. Added images are named as

image455.jpeg to image463.jpeg. In Figure 3.17, matching features and cameras are

listed in multiple tabs of DB Browser for SQLite, which is a software used to open

SQLite database files on Linux.

Methodology 43

Figure 3.17: DB Browser for SQLite

The reconstruction is visualized by opening the model in COLMAP GUI after every

step is completed in Figures 3.18 and 3.19.

Figure 3.18: COLMAP Visualization of Sparse model and Camera Locations

Methodology 44

Figure 3.19: COLMAP Visualization of Generated Point Cloud

3.5 Alignment of Point Clouds

Point cloud of the CMS and videos of office room 3218 are given by supervisors for

usage in this study in Figure 3.20. This point cloud is generated by using laser scan-

ners. It includes a large number of points with regularly scatter behavior than

COLMAP’s reconstructed point cloud.

Figure 3.20: Laser-scanned point cloud without any cutting

Because of the number of points, it is hard to visualize in terms of hardware require-

ments. MeshLab, which is another software dedicated to processing and editing

Methodology 45

triangular meshes and point clouds, used to visualize and edit this point cloud. Firstly,

sampling is applied to laser-scanned point cloud to reduce the computational effort of

the local computer to visualize the point cloud. Therefore, the local computer is able to

make rotation and move along the point cloud. Secondly, the location of the office room

3218 is found. Then point cloud is cut by MeshLab tools. Points that are unrelated to

the room are picked by using the Select Vertices tool. After this operation, these points

are deleted by Delete the current set of selected vertices tool. In Figure 3.21, the blue

square indicates the Select Vertices tool, and the green square indicates Delete the

current set of selected vertices.

Figure 3.21: MeshLab Toolbar

Unrelated points are the points located outside of the room and the ceiling of the room.

These points are deleted by explained tools.

Figure 3.22: Left: Before Deleting Points Right: After Deleting Points

This edited point cloud needs to align with the COLMAP’s reconstructed point cloud,

as seen in Figure 3.22.

Methodology 46

Firstly, MeshLab’s align tool, which is shown in Figure 3.23, is used, and the following

steps are applied. The user needs to choose one point cloud as a reference by using

the Manual Rough Glueing option from the same window.

Figure 3.23: Align Tool Window of MeshLab

Point-Based Glueing needs at least 4 points in each point cloud to complete alignment.

In Figure 3.24, there are three additional options at the bottom of the window. Allow

scaling option is used to make the models be the same size.

Figure 3.24: Point-Based Glueing in MeshLab

Methodology 47

After points are selected from both point clouds, the user presses the Process button

in Figure 3.23, and the alignment starts with computing overlaps between point clouds.

The problem with MeshLab occurs in this step. The result of the process keeps giving

errors with an explanation that says there is no successful arc among candidate align-

ment arcs in Figure 3.25.

Figure 3.25: MeshLab Error Text

The resultant point cloud is shown in Figure 3.26. Alignment is not completed properly,

and MeshLab is not successful in matching pair of points.

Figure 3.26: Unsuccessful Alignment of Point Cloud in MeshLab

This problem is solved by switching to another software called CloudCompare. Similar

to MeshLab, alignment of the point clouds are made by picking points from two-point

clouds. For alignment in CloudCompare, the red squared tool is used in Figure 3.27.

This tool needs at least picked equivalent point pairs for alignment

Figure 3.27: CloudCompare Toolbox

Methodology 48

These points clouds are referred to as align and reference. In Figure 3.28, points that

are chosen from the “reference” are labeled as RX, and points that are chosen from

the “align” are labeled as AX during the process.

Figure 3.28: Left: Picking Points From “Align” Point Cloud Right: Picking Point From “Reference” Point Cloud

Coordinates of points with their labels are listed in Figure 3.29. Additionally, the scale

of the point clouds may need an adjustment. Thus, adjust scale option of the Cloud-

Compare is used.

Figure 3.29: Align Tool Windows of CloudCompare

After alignment is completed, CloudCompare computes a transformation matrix that

includes an integrated scaling parameter that is defined between the aligned point

cloud and the reference point cloud, as is seen in Figure 3.30.

Methodology 49

Figure 3.30: Generated Transformation Matrix in CloudCompare

At the end of the alignment process, aligned point clouds are visualized in Figure 3.31.

There are some objects that are not scanned in laser. Apart from these, matches be-

tween the remaining points are visible.

Figure 3.31: Aligned Point Clouds in CloudCompare

To understand which regions of the room have better-represented reconstruction, they

are colored with different colors in Figure 3.32. The red color is used for the laser-

scanned point cloud, and the green color is used for the reconstructed point cloud.

Methodology 50

Figure 3.32: Colored Point Clouds in CloudCompare

3.6 Finding Camera Poses

Another way of visualizing the reconstructed point cloud is using the visual-

ize_model.py python script that comes with COLMAP installation. This script opens the

exported text file format of the COLMAP and visualizes reconstructed points and cam-

era poses in Figure 3.33. The exported text file format includes cameras.txt that is filled

with a list of the cameras and their data, points3D.txt is filled with coordinates of points

and related image information, and images.txt is filled with a list of images used in the

reconstruction. The id of the camera that the image is taken and 3D points generated

from the related images are also in the images text file.

Figure 3.33: Point Cloud Visualized with Python Open3D library

Methodology 51

For further processes, this script needs a modification to visualize aligned laser-

scanned point cloud and camera poses of reconstruction in the same space. Also, the

laser-scanned point cloud is converted into an exported text file format. To make this

conversion, COLMAP GUI’s import model option is used in Figure 3.35. After point

cloud is imported as a model, GUI’s export the model as a text file option is used, and

the resultant files are created, as is seen in Figure 3.34.

Figure 3.34: Exported Text File Format of the model

Figure 3.35: COLMAP GUI Features for importing and exporting models

The laser-scanned point cloud and the reconstructed point cloud are aligned in the

previous step. After alignment, the coordinate system of both point clouds is assumed

as same. Therefore, they can be visualized in the same space, and they will show the

correct viewpoint of cameras. In the first place, visualize_model.py, which is written by

COLMAP developer, needs some extension of functions to visualize laser-point cloud.

The default version of this python script is written to visualize the reconstructed point

clouds with all the camera positions. The first added features are made to visualize

camera position with pose direction inside the laser-scanned point cloud instead of the

reconstructed point cloud. This modified script is firstly used for the result of the mapper

function. The aim is the finding the new images inside the reconstruction because

Methodology 52

COLMAP dense reconstruction does not add every added image into the final recon-

struction with respect to parameters that are used in Patch Match Sampling. To find

out the number of added images inside the resultant reconstruction. IDs of the images

are compared with the text list that mapper function is used. Found camera poses are

visualized in Figure 3.36.

Figure 3.36: Camera Poses inside laser-scanned point cloud

The next task is finding the captured points which stay in front of the camera by using

camera information. The camera information includes camera intrinsic, rotation matrix,

translation, and the position of the camera inside the reconstructed point cloud. This

data related to reconstruction is stored inside the exported text files. “images.txt” file

stores a quaternion (QW, QX, QY, QZ) and a translation vector (TX, TY, TZ) to gener-

ate the pose of an image by defining the relation between the projection world to cam-

era coordinate system for every image. “camera.txt” file stores camera model type,

width, and height of each camera line by line. “points3D.txt” file contains coordinates

and RGB values of all points in the point cloud (Schoenberger, 2020b).

To get all of the captured points by the camera, a geometric relationship is needed to

filter out the points. Camera position is defined with 5 points in the space. In Figure

3.37, these points are indicated as C0,1,2,3,4. The first point, C0, represents the loca-

tion of the camera sensor, and the remaining points create the rectangle viewpoint in

front of the camera and show the direction. Every point in the point cloud is filtered

iteratively to find out the point is inside or outside of the camera, and according to the

number of the found images in the reconstruction, this process is repeated.

Four lines are drawn as starting from the location of the sensor and passing by the

corners of the frame. These lines are named Line 1, Line 2, Line 3, and Line 4. Line 1

Methodology 53

is between [C0,1]. Line 2 is between [C0,2]. Line 3 is between [C0,3]. Line 4 is between

[C0,4]. They are extended as continuous lines without a limitation in the space. For

further steps, they will be treated as vectors with a starting point from C0. Therefore,

there are an infinite number of frames can be drawn in front of the camera. The only

restriction is that the corners of the frame should be on the defined lines. Vector pro-

jection is used to find a specific frame that is on the same plane as the trial point in the

filtering operation. Firstly, two vectors are created. The first one starts from the location

of the camera sensor (C0) to the first defined frame’ center (C1). The second one starts

from the same location as the first one (C0) to the trial point in the space (P1). Then,

the second vector (C0, P1) is projected on the first vector (C0, C1). Thus, the distance

between the new frame and the camera sensor is known since the magnitude of the

projection vector is equal to the distance. Also, the coordinates of the new frame’s

corners which are points (1’),(2’),(3’),(4’), and width and height value of the new frame,

are known by scaling the norms of the vectors. Scaling is done between the norms of

the vectors (C0,1) and (C0,1’) to find the coordinate of the new frame’s corner. These

norms are acquired by applying two Pythagorean theorems, as is seen in Figure 3.38.

Figure 3.37: Filtering Point outside Camera View

Methodology 54

Figure 3.38: Application of Pythagorean theorems

The last check of the points is simply deciding if a point is inside or outside of the

rectangle, which is the new frame in that case. Inside, the case of this check means

that the trial point is captured by the specified camera. In Figure 3.39, points are check

whether they are in the camera’s viewpoint or not. From the general perspective, we

know that P1 is inside the viewpoint and P2 is not inside the viewpoint.

Figure 3.39: Point Viewpoint Check

For the first case, P1 divides the rectangle into 4 small triangles. The rectangle’s area

is known since the new frame’s width, and height is known. Also, coordinates of all

corners and coordinates of P1 are known. Therefore, the rectangle’s area and the ar-

eas of triangles can be calculated. The criteria that decide that points are inside or

outside is the summation of 4 small areas that cannot be larger than the area of the

Methodology 55

rectangle. For P1, this criterion is not violated, so it is inside the viewpoint, but for the

second case, P2 divides the rectangle’s area into 4 small triangles, and the total area

of triangles is larger than the rectangle’s area, so the criteria are violated. As a result

of this, P2 is outside of the camera’s viewpoint. This check is continued sequentially

for every point in the laser-scanned point cloud.

All of these steps are computed inside a python script which is in Appendix B.1. In that

script, the argument parser is set to take the paths of the exported file version of the

laser-scanned point cloud with (--laserscan_model), exported file version of the recon-

structed point cloud with (--input_model), and the name list of the newly added images

(--exporttext_model). Two collections are created as a global variable to store the data

of the cameras of found images and the points that are inside the viewpoint of the

camera. Additionally, one more check is needed, and it uses the “angle_between” func-

tion. The requirement for this check is coming from the case that the selected point in

the iteration is on the rear side of the camera. In that case, points are filtered from both

sides of the camera. To prevent this problem, the angle between the projection vector

and a vector that is defined between (C0, C1) is calculated. The angle must be 0 to

add the selected point into the collection of points.

In Figure 3.40, the cameras of found images are displayed with the points inside their

viewpoint. This script has a commented section that allows the user to select one im-

age and shows only its camera’s viewpoint.

Figure 3.40: Camera Locations and their captured points

Methodology 56

This script has a commented section that allows the user to select one image and

shows only its camera’s viewpoint. In Figure 3.41, the script only displays the points

that are inside the viewpoint of the camera that has the same position as the camera

that captures the following image file.

Figure 3.41: An image file and its corresponding viewpoint with captured points

Experiments and Results 57

The process of finding the camera pose of new images is explained in the last part of

the Methodology section. In the experiment section, various reconstructions are cre-

ated, and camera poses in each reconstruction will be found.

The parameters of reconstruction steps are changed to have reconstruction with dif-

ferent variations. COLMAP includes configuration files for each reconstruction step.

The first step of the reconstruction starts with setting a file directory with an initialization

script. This script which is seen in Figure 4.1, includes parameters for feature extrac-

tion, preferred camera type, and paths.

Figure 4.1: Project Initialization File

In this file, domain size pooling is set to 1 to have a better version of SIFT which means

feature extraction will be more accurate, but it has a negative side in which DSP needs

more computational power than the default condition. Also, max_image_size,

max_num_features, and num_octaves parameters are changed to have a better re-

construction. The maximum number of features and number of octaves are increased

to search further range for more features.

4 Experiments and Results

Experiments and Results 58

Patch Match is also an important step for the reconstruction and has a direct influence

on the point cloud quality. The parameter of patch match is configured in the script that

is used with Dockerfile. Entryfile.sh files in Appendix A.2 and A.3 have parameters to

modify the patch match step. In Figure 4.2, the related section of the file is given.

Figure 4.2: Patch Match Configuration

To get a better result from dense reconstruction, some specific parameters are vari-

ously tested in the patch match section. According to COLMAP documentation, a large

patch window radius (PatchMatchStereo.window_radius) can improve the quality of

results. Additionally, the filtering threshold can be reduced but with a loss from the

photometric consistency. (PatchMatchStereo.filter_min_ncc). Window radius is setting

the size of the patch, which captures the surrounding pixel and the number of pixels

around a selected pixel. COLMAP increases the appearance of the little features with

respect to the increasing value of window radius. Moreover, a bigger window radius

affects the reconstruction in terms of computation time since it needs more pixels for

patch matching. Reconstruction 1 to 7 is computed with the corresponding window

radius values of 2,4,6,8,10,12,14. For steps, defined parameters are used as variables

in trials. Produced reconstruction is processed for finding camera poses, and their re-

sults are compared.

Experiments and Results 59

The related data about the model is collected by using the model analyzer extension

of the COLMAP after reconstruction is finished, as seen in Table 1. In Figure 4.3, the

number of images that are used in the dense model is compared for the first recon-

struction and the second reconstruction after the mapper.

Figure 4.3: Mapper and first reconstruction comparison

According to results in Table 1, for window radius values 6,8,10, the mapper performs

stable, and the number of the image in the dense models are the same, and points

inside reconstructed point clouds are closer.

Table 1: Reconstructed Model Analyze after the mapper

4.1 Alignment Quality

Alignment between point clouds is significant because the localization accuracy is re-

lated to the distance to the laser-scanned point cloud. In this study, it is taken as ground

234

236

238

240

242

244

246

248

250

252

254

2 4 6 8 10 12 14

Mapper Data wrt Window Radius

Images Registered Images

Window Radius 2 4 6 8 10 12 14
Cameras 6 6 7 7 7 6 7
Images 245 247 252 252 252 245 251
Registered images 245 247 252 252 252 245 251
Points 34457 34599 34804 34776 34898 34342 34923
Observations 180377 180812 181560 181505 181893 179813 181775
Mean track length 5,234843 5,225931 5,216642 5,219260 5,212133 5,235950 5,205022
Mean observation

per image 736,232653 732,032389 720,476190 720,257937 721,797619 733,930612 724,203187
Mean reprojection

error (px) 1,066989 1,068538 1,070000 1,073391 1,070763 1,070799 1,068729
Number of fused

points 263740 933025 1618745 2147781 2624225 2982279 3408930

Experiments and Results 60

truth, and benchmarks are done based on it. For the second set of experiments, align-

ment affects the results because the coordinate system is assumed as the same after

the alignment process. Therefore, the distance between point clouds is also a descrip-

tion of the accuracy of the second part.

Laser-scanned point cloud and COLMAP reconstructed point cloud is aligned using

CloudCompare. For comparison purposes, reconstructions with different window ra-

dius are produced. The alignment between the resultant point cloud and a laser-

scanned point cloud is done by picking the same 4 points for every trial in Figure 4.4.

Figure 4.4: Alignment with 4 points

After alignment for every reconstruction is completed and their transformation matrices

applied to the laser-scanned point cloud. By using CloudCompare’s Cloud-to-Cloud

Distance feature is used, which is located in the toolbar, as is shown in Figure 4.5.

Figure 4.5: Cloud-to-Cloud feature

According to the documentation of CloudCompare, point clouds are labeled as com-

pared and reference. The distances are calculated between the points of compared

point cloud and reference point cloud. All computations are done relatively to reference

point cloud’s points. To choose a role among point clouds, there are some conditions

which are reference point cloud should be the one with widest extents and higher den-

sity.

Experiments and Results 61

The density of point clouds is calculated by CloudCompare and compared. Recon-

struction 4 with window radius 8 is taken and compared with the laser-scanned point

cloud in Figure 4.6.

Figure 4.6: Density comparison between point clouds

As a result of this comparison, reconstructed point clouds are taken as a reference for

all comparisons, and it is chosen in Figure 4.7.

Figure 4.7: Choose Role

After roles of point clouds are defined, a distance computation window appears with

several options. Octree level is the level of subdivision of octrees that distance com-

putation is performed. It is decided automatically by the software. Max distance is used

as a threshold value to filter out further points from the computation.

Local modeling strategy is preferred for distance computation because of its success

in coping with sampling-related issues. These issues might be a globally too small

density or too high local variations of the density of the reference cloud. The reference

cloud is chosen from reconstructed clouds, and these reconstructions consist of well

and badly constructed sections. Therefore, local modeling is needed, and a quadratic

model, among other types of local models, is selected since it is recommended to use

as follows in Figure 4.8 (CloudCompare, 2015a).

Experiments and Results 62

Figure 4.8: Left: General settings for Distance Computation Right: Local Model Type Selection

Cloud to cloud distance for every reconstruction is computed, and a histogram with the

information of C2C absolute distances is generated. Additionally, compared point cloud

is colored according to the distance of points of the reference point cloud. The blue

color is used to closest distances between point clouds, and it is followed by green,

yellow, and red with respect to distance. The results of C2C distance for reconstruc-

tions are shown in Figures 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, and 4.15 as a histogram

and 3D visualization with colored values.

Figure 4.9: Left: Cloud to Cloud distance for Reconstruction 1 Right: Cloud to Cloud distance visualization

Experiments and Results 63

Figure 4.10: Left: Cloud to Cloud distance for Reconstruction 2 Right: Cloud to Cloud distance visualization

Figure 4.11: Left: Cloud to Cloud distance for Reconstruction 3 Right: Cloud to Cloud distance visualization

Figure 4.12: Left: Cloud to Cloud distance for Reconstruction 4 Right: Cloud to Cloud distance visualization

Experiments and Results 64

Figure 4.13: Left: Cloud to Cloud distance for Reconstruction 5 Right: Cloud to Cloud distance visualization

Figure 4.14: Left: Cloud to Cloud distance for Reconstruction 6 Right: Cloud to Cloud distance visualization

Figure 4.15: Left: Cloud to Cloud distance for Reconstruction 7 Right: Cloud to Cloud distance visualization

CloudCompare is capable of exporting cloud to cloud distance data as an excel file. By

using these files, the quality of the alignment will be compared. The distance between

Experiments and Results 65

point pairs is investigated according to a threshold value. Therefore, the percentage of

the number of points that their C2C distances that are bigger than the threshold value

are compared for different reconstructions. The threshold value is defined as 0.35 for

comparisons.

Reconstruction Number of Points Total Number of Points Percentage

Reconstruction 1 506303 895350 56,55

Reconstruction 2 592930 895350 66,22

Reconstruction 3 630524 895350 70,42

Reconstruction 4 653866 895350 73,03

Reconstruction 5 665150 895350 74,29

Reconstruction 6 660542 895350 73,77

Reconstruction 7 682425 895350 76,22

Table 2: Reconstruction C2C Comparison with respect to a threshold value

This comparison in Table 2 shows that the best alignment is Reconstruction 7, and it

is followed by Reconstruction 5 and 6.

CloudCompare computes C2C with classes. The excel exported file stores the classes

and C2C distances, as seen in Table 3. Each class consists of a range of values. The

third column and fourth column indicate the minimum and maximum values of the

class. The second column represents the number of points inside the class. In total,

256 classes are created.

Table 3: CloudCompare data storing structure for C2C distance

Another comparison is made for the first 5 classes of C2C distances. The percentage

of the number of the points in the first 5 classes is compared for all of the reconstruc-

tion.

Experiments and Results 66

Reconstruction Number of Points Total Number of Points Percentage

Reconstruction 1 155882 895350 17,41

Reconstruction 2 218525 895350 24,41

Reconstruction 3 256474 895350 28,65

Reconstruction 4 248913 895350 27,80

Reconstruction 5 240929 895350 26,91

Reconstruction 6 261662 895350 29,22

Reconstruction 7 238121 895350 26,60

Table 4: Reconstruction C2C Comparison with respect to first five class

Presented results in Table 4 demonstrate that the best alignment is Reconstruction 6,

and it is along with Reconstruction 3 and 4.

4.2 Camera Position Finding for Varied Reconstructions

In this set of experiments, camera information is used to capture the points in front of

the camera viewpoint. Different reconstructions which are produced with varied param-

eters are taken into the position finding process, and results are shown. The total num-

ber of the captured points by each camera is calculated for all of the images that are

used in the process listed in Figure 4.16 and Figure 4.17. The total number of points

in the laser-scanned point cloud is 895350. This number of points belongs to the ver-

sion of the point cloud after it is edited to extract the location of office room 3218.

Figure 4.16: image455, image456 and image459

Figure 4.17: image460, image461 and image463

The captured points and the camera’s viewpoint of image455 and image461 are visu-

alized for Reconstruction 4 in Figure 4.18. These images are selected since the amount

of captured points has a large difference because of the wider viewpoint of the im-

age461.

Experiments and Results 67

Figure 4.18: Captured Points for image455 and image461 for Reconstruction 4.

Reconstruction 6 is not able to catch the location of the camera that captures im-

age459.jpeg in Figure 4.19. On the other hand, the location of the camera that captures

the same image is available for other reconstructions (3,4,5,7), as is seen in Figure

4.20 and Table 5.

Reconsturction Image455 Image456 Image459 Image460 Image461 Image463

Reconstruction 1 60611 46913 not available 51055 135560 79820

Reconstruction 2 77940 47996 not available 2159 259377 61149

Reconstruction 3 34881 16281 16835 22561 258690 43998

Reconstruction 4 75522 13238 13708 31593 256435 28704

Reconstruction 5 50251 3175 23546 50799 200037 69810

Reconstruction 6 75720 56573 not available 51301 260230 62899

Reconstruction 7 58782 56573 23561 48949 148346 72465

Table 5: Captured Points by cameras for different reconstructions

Figure 4.19: Reconstruction 6 with camera poses

Experiments and Results 68

Figure 4.20: Reconstruction 4 with camera poses

Although Reconstruction 6 cannot add all of the images into reconstruction. The results

of image463.jpeg consist of significant differences. As it is seen in Figure 4.21, the

point cloud on the left side includes blanks, and the right one is completed.

Figure 4.21: Camera Viewpoint of image463 from Reconstruction 6 (Left) and 4 (Right)

In the python script, the cameras, images, and points3D text files are created with the

results of all filtering out processes, and they can be visualized by using CloudCom-

pare. The differences can also be visualized in this software, as seen in Figures 4.22

and 4.23.

Figure 4.22: Captured points of Camera Viewpoint Reconstruction 6 in CloudCompare

Experiments and Results 69

Figure 4.23: Captured points of Camera Viewpoint Reconstruction 4 in CloudCompare

According to Table 5, there are 62899 points inside the camera’s viewpoint in Recon-

struction 6. For Reconstruction 4, this value drops to 28704, and with visualization of

point clouds in Figures 4.22 and 4.23, the difference is clearly visible.

A similar approach can be made for image455 and image461 to see additional cap-

tured points because of the wider viewpoint. In Figure 4.24, the red color shows the

points from image461, and the green color shows the points from image455.

Figure 4.24: CloudCompare Visualization of captured points of image455 and image461

Conclusion and Future Work 70

Alignment of the reconstructed point cloud and a laser-scanned point cloud is done

manually by picking points inside both point clouds. However, the software which is

used to visualize point clouds also offers an algorithm which is called Iterative Closest

Point (ICP). ICP is used to minimize the differences between point clouds. Both

MeshLab and CloudCompare include ICP implementation. In Figure 5.1, CloudCom-

pare’s ICP parameter settings window is seen.

Figure 5.1: CloudCompare ICP Setting window (CloudCompare, 2015b)

For CloudCompare, the ICP registration will not work effectively when two-point clouds

have big variances on large scales. As a result, this strategy is extremely effective for

precisely aligning clouds, and it is the only way to achieve a good outcome in similar

situations. CloudCompare will display the resulting RMS when the user has picked at

least 3 or more pairs of points in both point clouds, and the user can preview the result

with the 'align' button. Each pair's error contribution is listed next to each point in the

table. As a result, the worst case can be deleted or re-picked. Users can also add

additional points to both sets at any time to provide more limitations and improve the

accuracy of the output.

5 Conclusion and Future Work

Conclusion and Future Work 71

The initial part of the ICP starts similar to manual point picking. One point cloud is fixed

into its coordinates, and the other point cloud becomes the source for the algorithm.

The user matches the closest points in both point clouds. After this part, the difference

of ICP becomes clearer. The algorithm iteratively estimates the combination of rotation

and translation and apply a minimization technique to align the point cloud. Until it

reaches the limit of iteration or its error value reaches the defined RMS value, iteration

continues (ICP-Wikipedia, 2021).

Figure 5.2: Classic ICP algorithm flow chart (Liu et al., 2018)

In Figure 5.2, ICP’s pipeline is seen with its termination point. An improved ICP algo-

rithm in this paper (Liu et al., 2018) is offered. The new algorithm uses the four-point

Congruent (4PC) algorithm instead of kd-tree to increase the search efficiency of the

corresponding point. The main idea of the 4PC algorithm is to find four corresponding

points in the plane of reference and source point cloud and make the algorithm faster

than the classical algorithm. The flow chart of the improved ICP algorithm in Figure

5.3.

Figure 5.3: Improved ICP algorithm flow chart (Liu et al., 2018)

ICP can extend the limits of the project and increase the localization accuracy because

the current state of the alignment process is error-prone. Even the ICP algorithm needs

user decisions for first matching. But, in some cases picking points from the point

clouds are not easy. In Figure 5.4, the laser-scanned point cloud consists of lots of

points, and the details are under the layers of the points. For example, we need to find

the room and edit point cloud to make the processing part faster. The office room is

found in Figure 5.5.

Conclusion and Future Work 72

Figure 5.4: CMS laser-scanned point cloud

After this step, the point cloud needs some cuts because the COLMAP reconstruction

focuses on the bookshelves and the yellow sofa in the room. From this perspective, it

is impossible to recognize any of the furniture.

Figure 5.5: Office 3218 manually found

Therefore, there should be no need to edit point clouds and manual point picking in the

perfect scenario. Moreover, this condition would remove the human influence on the

processes. The reason why this scenario is hard to achieve is that a huge point cloud

needs computational power and efficient algorithms, and there are different kinds of

point clouds in terms of density and distribution in space, so an algorithm should handle

various point clouds.

Another improvement to increase the localization accuracy can be taking some meas-

urements in the scanned area manually to be sure that the laser-scanned point cloud

is a proper reference for the computation.

In terms of computational time, improvements might be made in the camera pose find-

ing section. The script that is used checks every point in the point cloud to decide these

points are inside the camera’s viewpoint or they are outside. This process takes a long

time proportionally with increasing cameras because points are sequentially tested for

the criterion. The binary search might be implemented to reduce computation time for

this step.

References 73

 Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S. M., &

Szeliski, R. (2011). Building Rome in a Day. Commun. ACM, 54(10), 105–112.

Available at https://doi.org/10.1145/2001269.2001293

 Agarwal, S., Snavely, N., Seitz, S. M., & Szeliski, R. (2010). Bundle Adjustment in

the Large. In K. Daniilidis, P. Maragos, & N. Paragios (Eds.), Computer Vision --

ECCV 2010 (pp. 29–42). Springer Berlin Heidelberg.

 Beder, C., & Steffen, R. (2006). Determining an Initial Image Pair for Fixing the

Scale of a 3D Reconstruction from an Image Sequence. In K. Franke, K.-R. Müller,

B. Nickolay, & R. Schäfer (Eds.), Pattern Recognition (pp. 657–666). Springer

Berlin Heidelberg.

 Brown, M., & Lowe, D. G. (2005). Unsupervised 3D object recognition and

reconstruction in unordered datasets. Fifth International Conference on 3-D Digital

Imaging and Modeling (3DIM’05), 56–63. Available at

https://doi.org/10.1109/3DIM.2005.81

 CloudCompare. (2015a). Cloud-to-Cloud Distance - CloudCompareWiki.

Available at http://www.cloudcompare.org/doc/wiki/index.php?title=Cloud-to-

Cloud_Distance

 CloudCompare. (2015b). ICP - CloudCompareWiki. Available at

http://www.cloudcompare.org/doc/wiki/index.php?title=ICP

 CloudCompare. (2016). Introduction - CloudCompareWiki. Available at

https://www.cloudcompare.org/doc/wiki/index.php?title=Introduction

 Daniel Girardeau-Montaut. (2011). CloudCompare - Open Source project. In

OpenSource Project. Available at https://www.danielgm.net/cc/

 Docker. (2018). Docker overview | Docker Documentation. In Docker.Com (p. 1).

Available at https://docs.docker.com/get-started/overview/

 Docker. (2020). Use volumes | Docker Documentation. Available at

https://docs.docker.com/storage/volumes/

 Feature Detection - SIFT. (2019). Available at

References

References 74

https://github.com/deepanshut041/feature-detection/tree/master/sift

 FileZilla - Wikipedia. (2021). Available at https://en.wikipedia.org/wiki/FileZilla

 Forsman, M. (2011). Point cloud densification. Available at

https://people.cs.umu.se/tfy98mfn/exjobb/report.pdf

 Frahm, J., Pollefeys, M., Science, C., Carolina, N., & Hill, C. (2006). RANSAC for

(Quasi-) Degenerate data (QDEGSAC) (submitted to CVPR 2006).

 Gherardi, R., Farenzena, M., & Fusiello, A. (2010). Improving the efficiency of

hierarchical structure-and-motion. 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 1594–1600. Available at

https://doi.org/10.1109/CVPR.2010.5539782

 Gite Vivek. (2021). How to set up ssh keys on Linux-unix. Available at

https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/

 Havlena, M., Torii, A., Knopp, J., & Pajdla, T. (2009). Randomized structure from

motion based on atomic 3D models from camera triplets. 2009 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Workshops,

CVPR Workshops 2009, 2009 IEEE, 2874–2881. Available at

https://doi.org/10.1109/CVPRW.2009.5206677

 ICP-Wikipedia. (2021). Iterative closest point - Wikipedia. Available at

https://en.wikipedia.org/wiki/Iterative_closest_point

 Jebara, T., Azarbapejani, A., & Pentiand, A. (1999). 3D Structure from 2D Motion.

IEEE Signal Processing Magazine, May.

 Li, Y., Snavely, N., & Huttenlocher, D. P. (2010). Location Recognition Using

Prioritized Matching Algorithm. Eccv, 978–993.

 Lindeberg, T. (1993). Scale-Space Theory in Computer Vision.

 Lindeberg, T. (1996). Scale-space: A framework for handling image structures at

multiple scales. Computing, 1–12.

 Liu, J., Shang, X., Yang, S., Shen, Z., Liu, X., Xiong, G., & Nyberg, T. R. (2018).

Research on Optimization of Point Cloud Registration ICP Algorithm. In S. Satoh

(Ed.), Image and Video Technology (pp. 81–90). Springer International Publishing.

 Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2), 91–110. Available at

References 75

https://doi.org/10.1023/B:VISI.0000029664.99615.94

 Marr, A. D., & Poggio, T. (2016). Cooperative Computation of Stereo Disparity

Published by : American Association for the Advancement of Science Stable

Available at URL : http://www.jstor.org/stable/1742217 Linked references are

available on JSTOR for this article : Cooperative Computation of Stereo D.

194(4262), 283–287.

 Sattler, T., Leibe, B., & Kobbelt, L. (2011). Fast image-based localization using

direct 2D-to-3D matching. Proceedings of the IEEE International Conference on

Computer Vision, 667–674. Available at

https://doi.org/10.1109/ICCV.2011.6126302

 Schoenberger, J. L. (2020a). COLMAP Documentation. Available at

https://colmap.github.io/tutorial.html

 Schoenberger, J. L. (2020b). Output Format — COLMAP. Available at

https://colmap.github.io/format.html

 Schönberger, J. L., & Frahm, J. M. (2016). Structure-from-Motion Revisited.

Conference on Computer Vision and Pattern Recognition, June, pp.4104-4113.

 Schönberger, J. L., Zheng, E., Frahm, J. M., & Pollefeys, M. (2016). Pixelwise

view selection for unstructured multi-view stereo. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 9907 LNCS, 501–518. Available at

https://doi.org/10.1007/978-3-319-46487-9_31

 SFTP server overview - IBM Documentation. (2021). Available at

https://www.ibm.com/docs/en/b2badv-communication/1.0.0?topic=concepts-sftp-

server-overview

 Shah, R., Deshpande, A., & Narayanan, P. J. (2015). Multistage SFM: A Coarse-

to-Fine Approach for 3D Reconstruction. iii. Available at

http://arxiv.org/abs/1512.06235

 SIFT Image Features (pp. 2–3). (2015). Available at

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0405/MURRAY

/SIFT.html

 Slobodan Ilic. (2011). Multi-View 3D-Reconstruction. Available at

References 76

http://campar.in.tum.de/twiki/pub/Chair/TeachingWs11Cv2/Multi-View3D-

Reconstruction.pdf

 Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo Tourism: Exploring Photo

Collections in 3D. ACM Trans. Graph., 25(3), 835–846. Available at

https://doi.org/10.1145/1141911.1141964

 Triggs, B., McLauchlan, P. F., Hartley, R. I., & Fitzgibbon, A. W. (2000). Bundle

adjustment – a modern synthesis. Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 1883, 298–372. Available at https://doi.org/10.1007/3-540-44480-

7_21

 Tyagi, D. (2019). Introduction to SIFT(Scale Invariant Feature Transform) |

Medium. Available at https://medium.com/data-breach/introduction-to-sift-scale-

invariant-feature-transform-65d7f3a72d40

 Utkarsh Sinha. (2016). SIFT: Theory and Practice: Keypoint orientations - AI

Shack (p. 1). Available at http://aishack.in/tutorials/sift-scale-invariant-feature-

transform-keypoint-orientation/

 Visser, J. (1982). Manual of photogrammetry. Photogrammetria, 38(3), 116–117.

Available at https://doi.org/10.1016/0031-8663(82)90012-6

 Wei, B., Guan, T., Duan, L., Yu, J., & Mao, T. (2015). Wide area localization and

tracking on camera phones for mobile augmented reality systems. Multimedia

Systems, 21(4), 381–399.Available at https://doi.org/10.1007/s00530-014-0364-2

 Wu, C. (2013). Towards Linear-Time Incremental Structure from Motion. 2013

International Conference on 3D Vision - 3DV 2013, 127–134. Available at

https://doi.org/10.1109/3DV.2013.25

 Wu, C., Agarwal, S., Curless, B., & Seitz, S. M. (2011). Multicore bundle

adjustment. CVPR 2011, 3057–3064. Available

athttps://doi.org/10.1109/CVPR.2011.5995552

 Zheng, E., Dunn, E., Jojic, V., & Frahm, J. M. (2014). PatchMatch based joint view

selection and depthmap estimation. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 1510–1517. Available

at https://doi.org/10.1109/CVPR.2014.196

Appendix 77

 Appendix A.1: Dockerfile for COLMAP

FROM ripfreeworld/colmap_cuda10.2:2020Aug26

COPY entrypoint.sh entrypoint.sh

CMD ["./entrypoint.sh"]

Appendix A.2: Entrypoint.sh for COLMAP reconstruction

#!/bin/bash

set -eE

DATASET_PATH=/tmp/data
IMAGE_PATH=/tmp/images

colmap database_creator --database_path /tmp/data/database.db

echo "DATABASE CREATED"

echo "OPERATION START"

mkdir -p /tmp/workspace && colmap feature_extractor \
--project_path $DATASET_PATH/project.ini \
--database_path $DATASET_PATH/database.db \
--image_path $IMAGE_PATH

OUTPUT_PATH=/tmp/workspace

echo "END OF FEATURE EXTRACTOR"

colmap exhaustive_matcher \
 --database_path $DATASET_PATH/database.db

echo "END OF EXHAUSTIVE MATCHER"

mkdir $OUTPUT_PATH/sparse

colmap mapper \
 --database_path $DATASET_PATH/database.db \
 --image_path $IMAGE_PATH \
 --output_path $OUTPUT_PATH/sparse

echo "END OF MAPPER"

mkdir $OUTPUT_PATH/sparse/triangulated

colmap point_triangulator \
 --database_path $DATASET_PATH/database.db \
 --image_path $IMAGE_PATH \
 --input_path $OUTPUT_PATH/sparse/0 \
 --output_path $OUTPUT_PATH/sparse/triangulated

mkdir $OUTPUT_PATH/dense

colmap image_undistorter \

Appendix

Appendix 78

 --image_path $IMAGE_PATH \
 --input_path $OUTPUT_PATH/sparse/triangulated \
 --output_path $OUTPUT_PATH/dense \
 --output_type COLMAP \
 --max_image_size 2000

echo "END OF IMAGE UNDISTORTER"

colmap patch_match_stereo \
 --workspace_path $OUTPUT_PATH/dense \
 --workspace_format COLMAP \
 --PatchMatchStereo.geom_consistency true \
 --PatchMatchStereo.filter 1 \
 --PatchMatchStereo.write_consistency_graph false \
 --PatchMatchStereo.max_image_size -1 \
 --PatchMatchStereo.window_radius 8 \
 --PatchMatchStereo.window_step 1 \
 --PatchMatchStereo.num_samples 15 \
 --PatchMatchStereo.num_iterations 5 \
 --PatchMatchStereo.filter_min_num_consistent 2 \
 --PatchMatchStereo.depth_min -1 \
 --PatchMatchStereo.depth_max -1 \
 --PatchMatchStereo.sigma_spatial -1 \
 --PatchMatchStereo.sigma_color 0.20000000298023224 \
 --PatchMatchStereo.ncc_sigma 0.60000002384185791 \
 --PatchMatchStereo.min_triangulation_angle 1 \
 --PatchMatchStereo.incident_angle_sigma 0.89999997615814209 \
 --PatchMatchStereo.geom_consistency_regularizer 0.30000001192092896 \
 --PatchMatchStereo.geom_consistency_max_cost 3 \
 --PatchMatchStereo.filter_min_ncc 0.10000000149011612 \
 --PatchMatchStereo.filter_min_triangulation_angle 3 \
 --PatchMatchStereo.filter_geom_consistency_max_cost 1 \
 --PatchMatchStereo.cache_size 200 \
 --PatchMatchStereo.gpu_index -1

echo "END OF PATCH MATCH STEREO"

colmap stereo_fusion \
 --workspace_path $OUTPUT_PATH/dense \
 --workspace_format COLMAP \
 --input_type geometric \
 --output_path $OUTPUT_PATH/dense/fused.ply

echo "END OF STEREO FUSION"

echo "COLMAP POINT CLOUD IS GENERATED"

mkdir $OUTPUT_PATH/exporttext

colmap model_converter \
 --input_path $OUTPUT_PATH/dense/sparse \
 --output_path $OUTPUT_PATH/exporttext \
 --output_type TXT

echo "RESULTS ARE EXPORTED AS TXT FILES"

colmap model_analyzer \
 --path $OUTPUT_PATH/sparse/triangulated

echo "DENSE MODEL ANALYZE"

colmap model_analyzer \
 --path $OUTPUT_PATH/dense/sparse

Appendix 79

Appendix A.3: Entrypoint.sh for COLMAP mapper

#!/bin/bash
set -eE

DATASET_PATH=/tmp/data
IMAGE_PATH=/tmp/images

echo "OPERATION START"

mkdir -p /tmp/output && colmap feature_extractor \
 --database_path $DATASET_PATH/database.db \
 --image_path $IMAGE_PATH \
 --image_list_path /tmp/text/images.txt

OUTPUT_PATH=/tmp/output
mkdir $OUTPUT_PATH/sparse

colmap exhaustive_matcher \
 --database_path $DATASET_PATH/database.db

echo "END OF EXHAUSTIVE MATCHER"

echo "MAPPER START"

colmap mapper \
 --database_path $DATASET_PATH/database.db \
 --image_path $IMAGE_PATH \
 --output_path $OUTPUT_PATH/sparse

echo "MAPPER END"

echo "IMAGE UNDISTORTER START"

mkdir $OUTPUT_PATH/dense

colmap image_undistorter \
 --image_path $IMAGE_PATH \
 --input_path $OUTPUT_PATH/sparse/0 \
 --output_path $OUTPUT_PATH/dense \
 --output_type COLMAP \
 --max_image_size 2000

echo "END OF IMAGE UNDISTORTER"

colmap patch_match_stereo \
 --workspace_path $OUTPUT_PATH/dense \
 --workspace_format COLMAP \
 --PatchMatchStereo.geom_consistency true \
 --PatchMatchStereo.filter 1 \
 --PatchMatchStereo.write_consistency_graph false \
 --PatchMatchStereo.max_image_size -1 \
 --PatchMatchStereo.window_radius 4 \
 --PatchMatchStereo.window_step 1 \
 --PatchMatchStereo.num_samples 15 \
 --PatchMatchStereo.num_iterations 5 \
 --PatchMatchStereo.filter_min_num_consistent 2 \
 --PatchMatchStereo.depth_min -1 \
 --PatchMatchStereo.depth_max -1 \
 --PatchMatchStereo.sigma_spatial -1 \
 --PatchMatchStereo.sigma_color 0.20000000298023224 \
 --PatchMatchStereo.ncc_sigma 0.60000002384185791 \
 --PatchMatchStereo.min_triangulation_angle 1 \

Appendix 80

 --PatchMatchStereo.incident_angle_sigma 0.89999997615814209 \
 --PatchMatchStereo.geom_consistency_regularizer 0.30000001192092896 \
 --PatchMatchStereo.geom_consistency_max_cost 3 \
 --PatchMatchStereo.filter_min_ncc 0.10000000149011612 \
 --PatchMatchStereo.filter_min_triangulation_angle 3 \
 --PatchMatchStereo.filter_geom_consistency_max_cost 1 \
 --PatchMatchStereo.cache_size 200 \
 --PatchMatchStereo.gpu_index -1

echo "END OF PATCH MATCH STEREO"

colmap stereo_fusion \
 --workspace_path $OUTPUT_PATH/dense \
 --workspace_format COLMAP \
 --input_type geometric \
 --output_path $OUTPUT_PATH/dense/fused.ply

echo "END OF STEREO FUSION"

echo "COLMAP POINT CLOUD IS GENERATED"

mkdir $OUTPUT_PATH/exporttext

colmap model_converter \
 --input_path $OUTPUT_PATH/dense/sparse \
 --output_path $OUTPUT_PATH/exporttext \
 --output_type TXT

echo "MAPPER RESULTS ARE EXPORTED AS TXT FILES"

colmap model_analyzer \
 --path $OUTPUT_PATH/sparse/0

echo "DENSE MODEL ANALYZE"

colmap model_analyzer \
 --path $OUTPUT_PATH/dense/sparse

Appendix 81

Appendix B.1: Added sections of visualize_model.py inside COLMAP (Schoenberger,

2020a)

camerainfo = collections.namedtuple(

 "camerainfo", ["camera_id", "image_id", "lines","points"])

Point3Dinfo = collections.namedtuple(

 "Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"])

These two dictionary are created for filtering cameras and points with their data

cameradict = {}

pointdict = {}

Dictionary is created to store camera data that added after the mapper

def cam_register(image_id,camera_id,cam_lines,cam_points):

 cameradict[image_id] = camerainfo(camera_id=camera_id, image_id=image_id,

 lines=cam_lines, points=cam_points)

def point_register(point3D_id,xyz,rgb,error,image_ids,point2D_idxs):

 pointdict[point3D_id] = Point3Dinfo(id=point3D_id, xyz=xyz, rgb=rgb,

 error=error, image_ids=image_ids,

 point2D_idxs=point2D_idxs)

Added lines to add_cameras function

def add_cameras(self, scale=1):

 .

 .

 .

 cam_points = np.asarray(cam_model[2].points)

 cam_lines = np.asarray(cam_model[2].lines)

 cam_register(img.id,img.camera_id,cam_lines,cam_points)

 .

 .

 .

def parse_args():

 parser = argparse.ArgumentParser(description="Visualize COLMAP binary and text

models")

 parser.add_argument("--input_model", required=True, help="path to input model

folder")

 parser.add_argument("--laserscan_model", required=True, help="path to laser

scan model folder")

 parser.add_argument("--exporttext_model", required=True, help="path to exported

.txt folder")

 parser.add_argument("--input_format", choices=[".bin", ".txt"],

 help="input model format", default="")

 args = parser.parse_args()

 return args

r is the point with a distance from the line

p and q are the given points on the line

def t(p, q, r):

 x = p-q

 return np.dot(r-q, x)/np.dot(x, x)

def d(p, q, r):

 return np.linalg.norm(t(p, q, r)*(p-q)+q-r)

def projectionvector(u,v):

 # Projection of Vector u on Vector v

 # finding norm of the vector v

 v_norm = np.sqrt(sum(v**2))

Appendix 82

 # finding dot product using np.dot()

 return (np.dot(u, v)/v_norm**2)*v

def trianglearea(p1,p2,p3):

 v1 = p1 - p2

 v2 = p1 - p3

 v3 = p2 - p3

 normv1 = np.sqrt(sum(v1**2))

 normv2 = np.sqrt(sum(v2**2))

 normv3 = np.sqrt(sum(v3**2))

 # Calculate the semi-perimeter

 s = (normv1 + normv2 + normv3) / 2

 # Calculate the area

 area = (s*(s-normv1)*(s-normv2)*(s-normv3)) ** 0.5

 return area

def unit_vector(vector):

 # Returns the unit vector of the vector.

 return vector / np.linalg.norm(vector)

def angle_between(v1, v2):

 # Returns the angle in radians between vectors 'v1' and 'v2'::

 # Angle_between((1, 0, 0), (0, 1, 0))

 # 1.5707963267948966

 # Angle_between((1, 0, 0), (1, 0, 0))

 # 0.0

 # Angle_between((1, 0, 0), (-1, 0, 0))

 # .141592653589793

 v1_u = unit_vector(v1)

 v2_u = unit_vector(v2)

 return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))

def main():

 #args = parse_args()

 #model_path = args.input_model

 #laserscan_path = args.laserscan_model

 #imagelist_path = args.exporttext_model

 model_path = "/home/ahmethan/Desktop/pointcloud/winr/6/process"

 laserscan_path = "/home/ahmethan/Desktop/pointcloud/winr/6/process/laseralign8"

 points3D_path = laserscan_path + "/points3D.txt"

 modelpc3_path = model_path + "/points3D.txt"

 imagelist_path = "/home/ahmethan/Desktop/pointcloud/winr/6/process/text/im-

ages.txt"

 with open(imagelist_path) as f:

 templist = f.readlines()

 image_names = []

 for temp in templist:

 index = temp.find(".")

 if index != -1:

 subtemp = temp[index-3:index]

 image_names.append(int(subtemp))

 points3dlaser = read_points3D_text(points3D_path)

 print("Total number of points in the laser-scanned point cloud is " +

str(len(points3dlaser)) +".")

 # Read COLMAP model

 model = Model()

Appendix 83

 #model.read_model(model_path, ext=args.input_format)

 model.read_model(model_path, ext=".txt")

 images = model.images

 found_images = []

 del_list = []

 # Search additional images inside exported model

 for img in images:

 prev_len = len(found_images)

 for x in image_names:

 if x == img:

 found_images.append(x)

 print("Camera pose of image" + str(x) + ".jpeg is found.")

 if prev_len == len(found_images):

 del_list.append(img)

 # Uncomment this section to choose only one image for further process

 num_img = int(input("Enter the image number to find captured points: "))

 for img_id in found_images:

 if img_id != num_img:

 del_list.append(img_id)

 found_images.clear()

 found_images.append(num_img)

 # Delete unrelated camera poses from images dictionary

 for delete in del_list:

 images.pop(delete)

 model.images = images

 points3dlaser = read_points3D_text(points3D_path)

 model.create_window()

 model.add_cameras(scale=1)

 for imageid in found_images:

 points = cameradict[imageid].points

 lines = cameradict[imageid].lines

 widthcalc = np.sum((points[1]-points[2])**2, axis=0)

 width = np.sqrt(widthcalc)

 heightcalc = np.sum((points[2]-points[4])**2, axis=0)

 height = np.sqrt(heightcalc)

 framecenter = (((points[1]+points[3])/2)+((points[2]+points[4])/2))/2

 framevec = framecenter-points[0]

 framevec_norm = np.sqrt(sum(framevec**2))

 point_num = 0

 for id in points3dlaser:

 testpoint = points3dlaser[id].xyz

 pointvec = testpoint-points[0]

 provec = projectionvector(pointvec,framevec)

 provec_norm = np.sqrt(sum(provec**2))

 width_trial = (width*provec_norm)/framevec_norm

 height_trial = (height*provec_norm)/framevec_norm

 center_to_corner = np.sqrt(((width_trial)/2)**2+((height_trial)/2)**2)

 norm_provec = np.sqrt(sum(provec**2))

 norm_cornervec = np.sqrt((center_to_corner**2)+(norm_provec**2))

 line1vec = points[1]-points[0]

 line2vec = points[2]-points[0]

 line3vec = points[3]-points[0]

Appendix 84

 line4vec = points[4]-points[0]

 normline1 = np.sqrt(sum(line1vec**2))

 normline2 = np.sqrt(sum(line2vec**2))

 normline3 = np.sqrt(sum(line3vec**2))

 normline4 = np.sqrt(sum(line4vec**2))

 corner1vec = (norm_cornervec/normline1)*line1vec

 corner2vec = (norm_cornervec/normline2)*line2vec

 corner3vec = (norm_cornervec/normline3)*line3vec

 corner4vec = (norm_cornervec/normline4)*line4vec

 corner1point = corner1vec + points[0]

 corner2point = corner2vec + points[0]

 corner3point = corner3vec + points[0]

 corner4point = corner4vec + points[0]

 rectangle_area = width_trial * height_trial

 area1P4 = trianglearea(corner1point,testpoint,corner4point)

 area4P3 = trianglearea(corner4point,testpoint,corner3point)

 area3P2 = trianglearea(corner3point,testpoint,corner2point)

 areaP21 = trianglearea(testpoint,corner2point,corner1point)

 totalarea = area1P4 + area4P3 + area3P2 + areaP21

 if totalarea < rectangle_area:

 if angle_between(provec,framevec) == 0.0:

 point_regis-

ter(points3dlaser[id].id,points3dlaser[id].xyz,points3dlaser[id].rgb,points3dlaser[

id].error,

 points3dlaser[id].im-

age_ids,points3dlaser[id].point2D_idxs)

 point_num += 1

 print("Camera pose of image" + str(imageid) + ".jpeg captures " +

str(point_num) + " points from laser-scanned point cloud.")

 write_points3D_text(pointdict, modelpc3_path)

 #write_points3D_text(points3dlaser, modelpc3_path)

 #model.read_model(model_path, ext=args.input_format)

 model.read_model(model_path, ext=".txt")

 model.add_points()

 model.show()

 result_path = "/home/ahmethan/Desktop/pointcloud/winr/6/result"

 result_image_path = result_path + "/images.txt"

 result_points_path = result_path + "/points3D.txt"

 result_camera_path = result_path + "/cameras.txt"

 cameras = model.cameras

 write_cameras_text(cameras,result_camera_path)

 write_images_text(images,result_image_path)

 write_points3D_text(pointdict, result_points_path)

if __name__ == "__main__":

 main()

With this statement I declare that I have independently completed this Master Thesis.

The thoughts taken directly or indirectly from external sources are properly marked as

such. This thesis was not previously submitted to another academic institution and has

also not yet been published.

Munich, 24. June 2021 Ahmethan Başak

First Name Family Name

Ahmethan Başak

Lochhamer Straße 7

82152 München

ahmethanbasak@gmail.com

Declaration of Originality

