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Abstract III 
 

Localization is a highly anticipated and active research topic. It divides into various 

areas concerning different interests and needs. Application of localization starts with 

basic questions like “where am I”  and “how can I acquire the location information.” In 

terms of hardware usage in localization, laser scanners and cameras are examples of 

collecting environment information in different kinds of data. In this thesis, image-based 

localization is conducted with the images that are retrieved by cameras.  

Cameras are tools for computer-vision-based approaches. According to the needs of 

the user, image data is processed during operation, or mapping of an area is done with 

all collected images. These images are the starting point of image-based localization. 

The area that localization takes place is reconstructed by collected images from this 

area because of the relationship between localization accuracy and 3D reconstruction 

of the scene. It is significant for localization. Reconstruction in this study is done by 

COLMAP, which is open-source software that has a pipeline structure to create a 

sparse and dense model from collected images. The reconstruction process is exe-

cuted by using theories such as Scale-Invariant Feature Transform (SIFT), Structure-

from-Motion (SfM), and Multi-View Stereo (MVS). 

Reconstruction of the scene is used to find the location of a particular image with its 

camera poses inside an aligned large laser-scanned point cloud. To achieve this, the 

reconstruction steps are observed in a different set of parameters to reach a dense 

reconstructed model, and alignment quality is tried to be improved. 
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Zusammenfassung IV 
 

Lokalisierung ist ein hochaktuelles und aktives Forschungsthema. Es unterteilt sich in 

verschiedene Bereiche, die unterschiedliche Interessen und Bedürfnisse betreffen. Die 

Anwendung der Lokalisierung beginnt mit grundlegenden Fragen wie "wo bin ich" und 

"wie kann ich die Standortinformationen erfassen." In Bezug auf die Verwendung von 

Hardware in der Lokalisierung sind Laserscanner und Kameras Beispiele für das Sam-

meln von Umgebungsinformationen in verschiedenen Arten von Daten. In dieser Arbeit 

wird die bildbasierte Lokalisierung mit den Bildern durchgeführt, die von Kameras ab-

gerufen werden.  

Kameras sind Werkzeuge für computer-vision-basierte Ansätze. Je nach Bedarf des 

Anwenders werden die Bilddaten während des Betriebs verarbeitet, oder es wird eine 

Kartierung eines Bereichs mit allen gesammelten Bildern durchgeführt. Diese Bilder 

sind der Ausgangspunkt der bildbasierten Lokalisierung. Der Bereich, in dem die Lo-

kalisierung stattfindet, wird durch gesammelte Bilder aus diesem Bereich rekonstruiert, 

da ein Zusammenhang zwischen Lokalisierungsgenauigkeit und 3D-Rekonstruktion 

der Szene besteht. Sie ist für die Lokalisierung von Bedeutung. Die Rekonstruktion in 

dieser Studie erfolgt mit COLMAP, einer Open-Source-Software, die eine Pipeline-

Struktur zur Erstellung eines spärlichen und dichten Modells aus gesammelten Bildern 

hat. Der Rekonstruktionsprozess wird unter Verwendung von Theorien wie Scale-In-

variant Feature Transform (SIFT), Structure-from-Motion (SfM) und Multi-View Stereo 

(MVS) durchgeführt. 

Die Rekonstruktion der Szene wird verwendet, um die Position eines bestimmten Bil-

des mit seinen Kamerapositionen innerhalb einer ausgerichteten großen laserge-

scannten Punktwolke zu finden. Um dies zu erreichen, werden die Rekonstruktions-

schritte in einem unterschiedlichen Satz von Parametern betrachtet, um ein dichtes 

rekonstruiertes Modell zu erreichen, und es wird versucht, die Ausrichtungsqualität zu 

verbessern. 
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1.1 Image-based Localization 

Image-based localization is an essential topic of computer vision. Localization applica-

tions can be varied according to a different set of conditions. Some of the cases occur 

in indoor or outdoor environments. For example, augmented reality, navigation, locali-

zation of pedestrians and robots, and visualization of photo collections are the topics 

that image-based localization is needed and can improve the application process.  For 

photo collections, image-based localization uses them for large-scale reconstructions 

that are based on the initial pose estimate of the localization approach. Reconstruction 

of the selected environment starts with estimating the orientation of the camera, and 

the scale of the reconstruction is rising with advanced research such as Structure from 

Motion (SfM). 

3D models are used for image-based localization. The usage of the 3D model is de-

scribed in this paper (Li et al., 2010). 3D points and their descriptors are named as 

points, 2D image features, and their descriptors as features. Matching is handled as 

direct and indirect 2D to 3D matching. Direct matching focuses on searching for the 

nearest neighbors of a specified feature descriptor in a given space which is consists 

of 3D point descriptors. As a result of this search, a 3D point corresponding to a 2D 

feature can be found. Indirect matching follows a more generalized approach than 

searching individual matches. Points and their descriptors are represented by an inter-

mediate construct. In this method, the proximity does not preserve in descriptor space, 

unlike the direct way. The local 2D features in the query image are processed to es-

tablish correspondence between other features. This correspondence search is crucial 

for image-based localization, and it is accepted as a start point of image-based locali-

zation. The feature descriptors like Scale-Invariant Feature Transform (SIFT) are one 

of the common approaches used for the reconstructed 3D points in the model. These 

SIFT descriptors formulate the correspondence search as a descriptor matching prob-

lem. Classical direct matching approaches, such as approximative tree-based search, 

can be considered because of their performance in providing good matching results 

from the image to descriptors from the model. This good performance comes with a 

drawback in terms of computational effort and time. In large and dense descriptor 

1 Introduction and Motivation 
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collections, the search for matching makes the process expensive to handle. Thus, 

recent approaches consider using the indirect matching method to process massive 

databases (Sattler et al., 2011).  

1.2 Aims and Objectives 

This thesis focuses on localizing a particular image and the camera pose, which is 

related to this image inside a given laser-scanned point cloud of an area. Image-based 

localization is applied to get information from an unknown area and locate positions. 

Images that are taken from a video as a series of screenshots are collected from the 

area to reconstruct the scene. Then, the reconstructed point cloud is aligned with a 

laser-scanned point cloud. The laser-scanned point cloud is referred to as ground truth, 

and benchmarks are done with respect to it. 

The first part of the localization, reconstruction of the area, is done by an open-source 

software COLMAP perform the reconstruction process. Series of images are used to 

reconstruct a sparse and dense model. The 3D point cloud is created separately after 

the reconstruction process. Densification of the point cloud is a need for localization 

accuracy. Therefore, we have the point cloud, which is based on the dense model 

instead of a sparse model. Additional functions of COLMAP are used to add new im-

ages into the reconstruction. Image registration is applied, and a new image is suc-

cessfully registered into the COLMAP database file. Then, the mapper function is im-

plemented to match the feature points of added images into the previous database 

with a camera position inside the point cloud.  

The reconstructed dense 3D point cloud is the requirement to move on to the next 

phase of the thesis. In the second part, the main objective of the thesis is finding the 

camera pose of a new image inside the laser-scanned point cloud. Comparison be-

tween the laser-scanned point cloud and the COLMAP generated point cloud is started 

with the alignment process. CloudCompare software performs the alignment between 

point clouds. Therefore, the quality comparison and the error between point clouds are 

available with the help of CloudCompare. Then, a python script is used to filter the 

added images and their related information from the database of reconstruction that 

includes new images. As a result of this, the camera locations of the new images are 

reachable and visualized. 

Afterward, several trials are conducted with various parameters, and the influence of 

the parameters is discussed with their needs of computation power and time. 
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Moreover, the success rate of adding new images into produced reconstruction is an-

alyzed, and the location of the new camera poses that are generated from added im-

ages is compared inside a given laser-scan point cloud. A further approach is ad-

dressed for better alignment between the 3D reconstructed point cloud and laser-

scanned point cloud. 

1.3 The layout of the thesis 

Chapter 1 identifies the usage and current state of the art of image-based localization 

and presents the objective of this thesis with a brief explanation of further processes. 

Chapter 2 introduces the theoretical background behind the COLMAP software. The 

pipeline of SfM and MVS are explained with used terms like feature detection and im-

age matching of SIFT. 

Chapter 3 includes the explanation of the tools and software that are used in this study 

and then presents the workflow of reconstruction, describing the alignment process 

between point clouds and finding the location of the camera pose and the image inside 

the laser-scanned point cloud with an explained script. 

Chapter 4 presents some specific test cases with different assumptions and parame-

ters. Experiment setups are explained, and their corresponding results are discussed. 

Chapter 5 discusses the performance of the alignment process and success in finding 

camera poses of added images inside laser-scanned point clouds with different recon-

structions of the scene. 
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2.1 Structure-from-Motion 

Structure from motion (SfM) is originated from two key fields, photogrammetry and 

computer vision. Photogrammetry is an old topic that is used for measuring and pro-

cessing lengths and angles in photos for mapping purposes (Visser, 1982). One of the 

early researches in vision consists of the recovery from the stereo, which is proposed 

by Marr and Poggio (2016). In that study, the correspondence between images is es-

tablished by an iterative cooperative algorithm. 

The current state-of-the-art SfM consists of several sections to reconstruct 3D structure 

from a series of images taken from different viewpoints inside an area. These images 

sequentially are added into the final reconstruction.  

SfM is applied by using three different strategies. These are incremental strategies, 

hierarchical strategies, and global approaches. Global approaches of SfM recon-

structed all images at once instead of processing them sequentially. During the recon-

struction, global camera positions are estimated based on different approaches such 

as pairwise rotations and vanishing points, rotation averaging in the RANSAC frame-

work, discrete-continuous optimization, and lie-algebraic averaging. After the estima-

tion step is completed, SfM solves a linear problem to evaluate 3D structure and cam-

era translations. One of the drawbacks of the global approach of SfM occurs in case 

the pairwise geometries are inaccurate or the number of pairwise geometries is not 

enough. This method is not able to average pairwise motions properly. Other SfM strat-

egy is named as hierarchical strategies which aim to avoid fully sequential reconstruc-

tion of incremental SfM like global approaches. Hierarchical strategies propose a dif-

ference apart from the global approach. It does not use global estimations. There are 

various studies for reconstruction that are based on hierarchical strategies. Havlena 

(2009) uses visual words to find candidate image triplets for reconstruction. Later these 

reconstructions are merged into a more extensive reconstruction. Gherardi (2010) pro-

poses implementing a balanced tree on images to use clustering of match-graph. 

These clusters are merged hierarchically to build a larger reconstruction (Shah et al., 

2015). 

2 Theoretical Background 
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SfM aims to get unknown parameters by only using 2D point coordinate measurements 

over several views or frames. These measurements are the locations of the 2D fea-

tures in the images which depend on three parameters. The first parameter is the co-

ordinates of the feature points in 3D space, the second reason is the relative 3D motion 

between the camera and the scene, and the third parameter is the internal geometry 

of the camera (Jebara et al., 1999). 

In this thesis, incremental strategy is used for SfM. The algorithm and the related soft-

ware are written by Schönberger. The name of the software is known as COLMAP, 

which is an open-source tool for structure-from-motion and multi-view modeling. 

2.1.1 Incremental Structure-from-Motion 

Incremental SfM differs from other strategies with the sequential processing of each 

image in collections. Good seed image pairs are evaluated to reconstructs the cameras 

and points. Reconstruction progress sequentially images by image by adding well-con-

nected images, estimating camera parameters, and triangulating feature matches. 

(Brown & Lowe, 2005; Snavely et al., 2006) Global bundle adjustment, which is a re-

finement of camera poses and 3D point positions, is used to avoid drift accumulation. 

Bundle adjustment is repeated during every step in incremental SfM, and this causes 

the complexity of the incremental SFM is resulted as O(n4) due to repeated BA. (Shah 

et al., 2015) Various methods are proposed to improve the efficiency of the BA. Among 

these methods, two topics come into prominence. These are fast approximations of 

the sparse bundle adjustment and exploiting many-core architectures to parallelize it. 

(Agarwal et al., 2011; Agarwal et al., 2010; Wu et al., 2011) As an example of parallel-

ization, leveraging highly parallel GPU architecture for an optimized pipeline is offered 

by Wu. (2013) 

 

Figure 2.1.1: COLMAP’s incremental Structure-from-Motion pipeline (Schoenberger, 2020a) 

Incremental strategy is chosen for this thesis application since it is the leading strategy 

for unordered photo collection. COLMAP introduces a new approach of SfM to improve 

the resulted reconstruction in terms of accuracy, robustness, scalability, and 
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completeness (Schönberger & Frahm, 2016). COLMAP pipeline of SfM that is shown 

in Figure 2.1.1 is divided into two sections for the process of incremental SfM. These 

are correspondence search and incremental reconstruction. Correspondence search 

is related to find the relationship between images in terms of feature point matching. 

Feature extraction is defined as feature point detection in images. These points are 

points that are likely to be detected in corresponding images. SIFT is used as the pri-

mary tool to extract these features. The appearance descriptor represents detected 

sets of local features at the location for each image. One condition is set for the fea-

tures to be detected by SfM. The features can be recognizable in multiple images if 

they are invariant under geometric and radiometric changes. After feature extraction is 

completed successfully, feature points need to be matched to know the correspond-

ence between points in each pair of images. SfM detects the same scene part by using 

the appearance description of the images, which is a representation of features in im-

ages. Every image pair is tested for scene overlap, which means if a pair is overlapped, 

there should be a feature correspondence between them. Feature correspondence is 

evaluated by using a similarity metric that compares the appearance of the features. 

Finding the most similar feature in an image for every feature in the image proves that 

correspondence.  

The third stage of the COLMAP pipeline is geometric verification which is responsible 

for verifying the potentially overlapping image pairs. The reason why this verification 

step is needed that matching is based entirely on appearance. So there is no guaran-

tee that corresponding features actually map to the same scene point. Thus, verifica-

tion of matches involves estimating the transformation that maps feature points be-

tween images. This estimation is managed by projective geometry, which depends on 

the spatial configuration of an image pair and changes with respect to different map-

ping that describe the geometric relation.    

After geometric verification is confirmed, reconstruction of the 3D structure proceeds 

with the second part of the pipeline. In this part, COLMAP’s incremental reconstruction 

takes place. Initial pair selection is significant for reconstruction. The reason for the 

significance, bad chosen initial pair makes COLMAP hard to progress towards the end 

result because the number of overlapping camera views will not be enough to reach 

robust and accurate reconstruction. This lack of redundancy affects the performance 

of the process. To avoid this negative effect, the model should be initialized with a 
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particularly selected two-view reconstruction (Beder & Steffen, 2006). During the re-

construction, the model is growing by registering new images. The registration step is 

done by solving the Perspective-n-Point (PnP) problem. The problem is defined as 

using feature correspondences to triangulate points in registered images. PnP follows 

different routes according to the calibration of the camera. Estimation of the pose of a 

calibrated camera is executed with a given set of 3D points in the world and their equiv-

alent 2D projections in the images. RANSAC (Frahm et al., 2006) and minimal pose 

solver are used for this estimation. For uncalibrated cameras, the intrinsic parameters 

are used with various minimal solvers and sampling-based approaches. A novel robust 

following best image selection method for accurate pose estimation is proposed by 

COLMAP. Registration is finalized with triangulation. Triangulation is applied to calcu-

late the 3D point corresponding to each pair of matched points. Triangulation is an 

important step in SfM. It increases the stability of the existing model through redun-

dancy and enables registration of new images by providing additional 2D-3D corre-

spondences (Triggs et al., 2000). Although image registration and triangulation are 

separate procedures, their results are highly correlated, and the uncertainties of the 

camera pose may propagate to triangulated points. Therefore, further refinement is 

needed. In the last step of the incremental reconstruction, an iterative bundle adjust-

ment is used to provide a refinement to the model. The joint non-linear refinement of 

camera parameters and point parameters minimizes the reprojection error and poten-

tially down-weight outliers by using a loss function which is called function pi, that pro-

jects scene points to image space. 

This proposed SfM pipeline of COLMAP introduces a method to identify and highly 

overlapping images for efficient bundle adjustment of dense collections and establish 

complete and precise models with improved robustness and accuracy. 

2.2 Scale-Invariant Feature Transform 

Scale-Invariant Feature Transform (SIFT) is a widely used feature-based method for 

object recognition and was first presented by Lowe in 1999. It uses a class of local 

image features that are invariant to image scaling, translation, and rotation and partially 

invariant to changes in lighting and projection (Forsman, 2011). 

There are four steps of generating the set of image features. They are listed as Scale-

space extrema detection, keypoint localization, orientation assignment, and keypoint 

descriptor (Lowe, 2004). 
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2.2.1 Scale Space Extrema Detection 

Scale-space extrema detection is a filtering approach to identify the locations and 

scales of features from different views of the same object. This identification is made 

by using the scale-space function (SIFT Image Features, 2015). This section includes 

the definition of scale space and usage of the scale-space function to find keypoints in 

the images. 

Real-world objects are only recognizable and exist as meaningful entities if they are in 

a certain range of scale. This recognition difference can be described with an example. 

In this example, a branch of a tree can be identified easily with all details from a few 

centimeters to a few meters. If the distance between the objects and viewer increases 

or decreases too much, objects should change with respect to the scale. At the na-

nometer level, observing the molecules inside the leaves of the tree becomes mean-

ingful. Also, looking at a forest with a lot of trees is logical for the kilometer level. 

(Lindeberg, 1996) A lot of familiar examples of this multi-scale nature of objects can 

be observed. The scale of observation affects the appearance of the objects in the real 

world and shows the notion of the scale. Scale-space is a way of replicating this con-

ception on digital images. The need for this replication comes from the question of how 

to analyze and derive information from real-world measurement data. 

Multi-scale representation is visualized in Figure 2.2. The original signal with different 

levels of scale is represented by an ordered set of derived signals. The source of the 

signal is the image that its features are unknown. “t” represents the levels of the scale 

(Lindeberg, 1996). 

 

Figure 2.2: Multi-Scale representation of a signal (Lindeberg, 1996) 

The main focus of the scale-space representation is producing a set of derived signals 

which includes the suppressed form of the fine-scale information. A function is used to 

represent this set as the scale-space of an image. This function, L(x,y,σ), is generated 

from the convolution of a Gaussian kernel at different scales from the input images. 



Theoretical Background 21 
 

This convolution and its derivatives create smoothing transformations (Feature 

Detection - SIFT, 2019). 

Two terms take into place to describe this process. These are octaves and gaussian 

blurring. Octaves are the separated form of the scale-space, and the number of oc-

taves and scale are related to the size of the original image. Gaussian blurring is the 

convolution of the gaussian operator and the image in mathematical representation. 

The blurred image is defined with a function in Figure 2.3 where * is the convolution 

parameter, G(x, y, σ) is a variable-scale Gaussian, and I(x, y) is the input image 

(Lindeberg, 1993). 

 

Figure 2.3: Blurred Images (Lowe, 2004) 

“σ” is the scale operator in Figure 2.4. It is the same parameter with “t” in Figure 2. The 

amount of blur in the image depends on the value of G(x, y, σ). 

 

Figure 2.4: Gaussian Blur Operator (Lowe, 2004) 

In Figure 2.5, several octaves of the original image are generated. The size of each 

octave is half of the previous octave. Inside an octave, each pixel in the images grad-

ually blurred by Gaussian Blurring. 

 

Figure 2.5: Blurring in several octaves (Tyagi, 2019) 
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Another example of different levels in the scale-space representation of a two-dimen-

sional image is shown in Figure 2.6. Scale levels are defined as t or σ = 0, 2, 8, 32, 

128 and 512. Grey-level blobs indicate local minima at each scale. 

 

Figure 2.6: The Scale-Space representation of the 2D image (Lindeberg, 1996) 

In finer scales, each noise and texture are detected separately. When the scale be-

comes coarser with applied smoothing, separated sections are unified and merge into 

one unit. Finally, bigger single blobs are observed. This example shows the hierar-

chical shape decomposition by observing the effect of varying scale parameters in the 

scale-space representation (Lindeberg, 1996). 

Difference of Gaussians (DoG) 

Blurred images that are produced by the Gaussian kernel are used to generate another 

set of images to detect locations of the stable keypoint locations in the scale-space. 

The DoG is one of the various methods that can locate scale-space extrema. DoG 

takes the difference of Gaussian blurring of two images with different scale values. 

One of the images is scaled k times as kσ, and the scaled image differentiate from the 

other image that has a scale value of σ, as it is seen in Figure 2.7. 

 

Figure 2.7: Computing Difference of Gaussian (Lowe, 2004) 
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In the Gaussian Pyramid, this process is repeated for different octaves of the image.. 

In Figure 2.8, the result of the process that is done for different octaves of the image 

in the Gaussian Pyramid is represented (Lowe, 2004). 

 

Figure 2.8: Difference of Gaussian of each scale (Lowe, 2004) 

Finding Keypoints 

Until this part, scale space is generated and used to calculate the Difference of the 

Gaussians. Those DoGs are used to compute Laplacian of Gaussian approximations 

that are scale-invariant. 

 

Figure 2.9: Comparison of D(x, y, σ) value between neighbors (Lowe, 2004) 

Search for the local extrema is done by several comparisons between different scales 

and inside scales in Figure 2.9. Comparison inside the scale starts with comparing the 

8 neighbors of a selected pixel, D(x, y, σ) value of each pixel is compared with the 

neighbors to detect the local maxima and minima at the same scale. Then, the upper 
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and lower scales take into comparison. 9 pixels in upper and lower neighbors are com-

pared with the selected pixel of up and down one scale. Thus, 26 checks are made for 

each pixel in an image. If the D(x, y, σ)  value is the minimum or maximum of all these 

compared values of pixels, this selected pixel will become local extrema. If it is a local 

extremum, it is also a potential keypoint or the best representation of the keypoint in 

that scale.  

2.2.2 Keypoint Localization 

In the previous step, plenty of keypoints are generated. Therefore, they should be fil-

tered out according to some criteria. The keypoints which have low contrast or are 

poorly localized on edge are eliminated from the list of keypoints. The reason for the 

elimination is these keypoints are not useful as features, and they should be removed. 

After that, a similar approach to the Harris Corner Detector is applied to remove edge 

features, and low contrast features are removed with respect to their intensity value. 

To make the decision about elimination in terms of contrast, Laplacian is calculated for 

each keypoint in the list, and a value z which represents the location of extremum, is 

found in Figure 2.10. Additionally, Taylor series expansion of scale space is used to 

get a more accurate location of extrema (SIFT Image Features, 2015). 

 

Figure 2.10: Location of extremum (Lowe, 2004) 

If the function x value is below a threshold value, extrema are eliminated because of 

low contrast. For the elimination decision with respect to the location of extrema, a 

condition is searched. This exclusion is required since the difference of Gaussians has 

a higher response for edges. In this condition, a large principle curvature across the 

edge but a small curvature in the perpendicular direction in the difference of Gaussian 

function. If the difference value is below the ratio of largest to the smallest eigenvector, 

the extrema are eliminated. Principal curvature is computed from the 2x2 Hessian ma-

trix (H) at the location and scale of the extrema (Feature Detection - SIFT, 2019). 

In Figure 2.11, filtering for keypoints is done for two criteria. Flats mean checking the 

contrast and value is compared to a threshold which is taken as 0.03 in this example. 

Edge checking for this case is applied by computing Hessian. 
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Figure 2.11: Calculations for extrema elimination (Feature Detection - SIFT, 2019) (Lowe, 2004) 

2.2.3 Orientation Assignment 

The previous process verifies the keypoints in terms of stability, and the scale that 

detected keypoint is located is known as is seen in Figure 2.12. The blurred image 

represents the scale of detection for the yellow keypoint. Therefore, scale invariance 

exists. 

 

Figure 2.12: Keypoint with detected scale (Utkarsh Sinha, 2016) 

In that step, the goal is assigning a consistent orientation to the keypoints based on 

local image properties. This assignment is needed because keypoint descriptors are 

described relative to this orientation, and invariance to rotation is achieved. 

To get orientation, the keypoint scale is used to select the Gaussian smoothed image 

L, then gradient magnitude, m, and orientation, θ, are computed. Computed gradient 

orientations of sample points form a histogram, and the highest peak in the histogram 

is located. This peak and any other local peak within 80% of the height of this peak is 
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used to create a keypoint with that orientation. Furthermore, some points might be 

assigned multiple orientations, and a parabola can be used to reach an interpolation 

of peak value from 3 closest histogram values to the peak are interpolated. This is 

done for all pixels around the keypoint; the histogram will have a peak at some point. 

 

Figure 2.13: Keypoint Histogram (Utkarsh Sinha, 2016) 

To compute the orientation, the highest peak in the histogram is picked, and each peak 

above 80% of this peak is also taken into account. It is shown with a line for 80% of 

the peak in Figure 2.13. Keypoints are created with the same location and scale, alt-

hough their directions are different. The stability of matching increased with the contri-

bution of this situation. 

2.2.4 Keypoint Descriptor 

Each keypoint now has a location, scale, and orientation. The local gradient data is 

used to generate keypoint descriptors for each keypoint in the local image region that 

is as distinct and invariant as feasible to changes in viewpoint and illumination. To do 

this, the gradient information is rotated to line up with the orientation of the keypoint 

and then weighted by a Gaussian with a variance of 1.5 * keypoint scale. Visualization 

of keypoint descriptors is done by a set of histograms over a window centered on the 

keypoint. 

In Figure 2.14, a 16x16 window around the keypoint is created and is divided into 16 

sub-blocks of 4x4 size. 
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Figure 2.14: Keypoint Descriptor 16x16 Histogram (Tyagi, 2019) 

Each sub-block consists of 8 bin orientation bins in Figure 2.15. 

 

Figure 2.15: Histogram with sub-blocks (Tyagi, 2019) 

In total, 4x4 descriptors over 16x16 sample array were used in practice. 4 direction 

represents the main compass directions, and other 4 represents the mid-points of 

these directions. As a result of 4x4x8 directions, it generates 128 bin values. It is rep-

resented as a feature vector of 128 elements to form a keypoint descriptor. This feature 

vector introduces a few complications and dependences. These are related to rotation 

and illumination. The feature vector uses gradient orientations which means a rotation 

of the image causes changing of all gradient operations. Another dependence is re-

lated to illumination; it is connected to the threshold that is used to eliminate keypoints. 
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Keypoint Matching 

The closest neighbors of keypoints in two images are identified and matched. How-

ever, due to noise or other factors, the second closest match may be quite close to the 

first. The closest distance to second closest distance ratio is used in this scenario. 

SIFT takes into place in the correspondence search stage of the COLMAP. During this 

stage, image matching and recognition have proceeded, and distinctive image fea-

tures, which are named SIFT features, are extracted from a set of reference images 

and stored in a database. Different images cause a challenge related to find a correla-

tion between those extracted features of images and match them. To overcome this 

challenge, a new image is matched by individually comparing each feature of the new 

image to the prior database and identifying candidate matching features based on the 

Euclidean distance of their feature vectors. Lowe discusses fast nearest-neighbor al-

gorithms that can perform this computation rapidly against large databases. (Lowe, 

2004) 

When memory and computational power are limited, SIFT must be modified to meet 

the requirements of the problem. Compression is applied to use memory efficiently. 

Compressed SIFT descriptors ensure that the system contains more visited maps to 

avoid the constant loading and unloading of maps. In addition, the time complexity of 

SIFT limits the use of the algorithm for online purposes. After SIFT descriptors are 

extracted, VLAD can be applied for further steps (Wei et al., 2015). 

2.3 Multi-View Stereo 

Sparse models are generated as outcome products of SfM, which is introduced in the 

previous section. Alongside the sparse model, camera poses and 3D points are recov-

ered. Sparse models are not the best in case of precision of geometric primitives is 

needed, and densification method is required (Forsman, 2011). Because the recon-

structed 3D model after SfM only contains the distinctive image features which match 

other images nicely.  

Multi-View Stereo (MVS) is used to produce robust, accurate, and efficient dense mod-

els. MVS takes the registered images and produces dense and accurate models. 

These images are collected from studio conditions, internet, video, and unstructured 

image collections. Images are usually collected for image-based rendering, 
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classification, and localization applications. According to the needs of the application 

method, the implementation method can also change. 

 

 

Figure 2.16: Multi-View Reconstruction pipeline (Slobodan Ilic, 2011) 

MVS reconstruction pipeline in Figure 2.16 briefly consists of three steps.  These are 

image acquisition, camera pose extraction, and generating 3D reconstruction. Image 

acquisition is completed with collected images, and the required camera poses are 

already known since the SfM process is completed and camera parameters for each 

image are computed along with the sparse model. Then 3D geometry of the scene is 

reconstructed by using the set of images and corresponding camera parameters. Ad-

ditionally, the materials of the scene can be reconstructed. 

 

Figure 2.17: Window-based Multi-View Stereo algorithm (Agarwal et al., 2011) 

In Figure 2.17, a set of images are used to find the correct depth. An infinite number 

of depth line vectors are created. All of them is starting from the viewing point. At each 

depth value, the window is projected into the other images. In this way, consistency 
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among textures at these image projections is computed. The criterion that shows the 

correct depth is at the true depth; the consistency score is maximum (Agarwal et al., 

2011). This brief example is extended with different methods, such as dense pixelwise 

correspondence search. 

Dense pixelwise correspondence search is the base of the stereo methods, and this 

search is related to illumination and viewing geometry conditions. These conditions 

define the setting of the problem that occurs in controlled or uncontrolled environments. 

MVS grasps multiple views to overcome the inherent occlusion problems of two-view 

approaches (Schönberger et al., 2016). The method used for MVS in COLMAP con-

currently accounts for a diversity of photometric and geometric priorities, also improves 

the robustness and accuracy of Zheng's depth determination (Zheng et al., 2014). 

COLMAP uses the output of the SfM in MVS. Thus, the workload of the MVS is re-

duced, and because of the calibration, which is done in SfM, results are accurate. 

COLMAP computes depth and normal information for every pixel inside an image. 

(Schoenberger, 2020a) The dense point cloud of the scene is produced by fusion of 

the depth and normal maps of multiple images in 3D. Pixelwise view selection with 

MVS is performed for depth and normal estimation and fusion. 
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3.1 Toolkit 

3.1.1 Docker 

Docker is a service that uses operating system virtualization to deliver prepared soft-

ware packages called containers. These containers are processes that are isolated 

from all other processes on the host machine and include their own operating system 

kernel, software, and libraries. 

 

Figure 3.1: Docker architecture (Docker, 2018) 

Client-server architecture is used in Docker, as seen in Figure 3.1. The client com-

municates with the Docker daemon, which has the responsibility of building, running, 

and distributing the Docker containers. When Docker pull and docker run commands 

are used, Daemon communicates with the registry. Docker registries are the storage 

for the Docker images. While running a container, the container uses a custom image. 

Images are built according to Dockerfile. This script includes instructions that define 

layers in the images. Additionally, GPU usage and volume mounting are done by def-

initions inside Dockerfile. 

Dockerfile, which is used for COLMAP reconstruction, consists of a list of dependent 

images and requires software packages. Ripfreeworld COLMAP image is pulled from 

3 Methodology 
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Docker Hub, and a script is added to insert bash commands into the running container. 

The link for the image is “https://hub.docker.com/r/ripfreeworld/colmap_cuda10.2”. 

This script is used to start and configure reconstruction in COLMAP. A detailed de-

scription of this script is in section 3.3. Docker-build command uses the Dockerfile in-

side the specified directory. 

 

Figure 3.2: Docker build command 

“-t” flag is used to reference the version of the built image in Figure 3.2. Therefore, 

different versions of similar images can be built with the help of this flag. “.” means that 

the required Dockerfile location is the same as the terminal path. After the build process 

of the image is completed, the image is running by a container with the docker run 

command. To check an image is built correctly, the “docker images” command is used 

to list all of the images. In case of a need to remove one of the images, “docker rmi 

image_id” is used. 

 

Figure 3.3: Docker Container Run Commands For COLMAP’s Reconstruction 

In Figure 3.3, there are flags that are added below the docker run command. “-d” 

makes the container run in the detached mode, which allows the container to run in 

the background. Thus, when the root process inside the container is completed, con-

tainers exit. “-name” gives identification to the container. Moreover, graphic cards can 

be assigned to containers in case of multiple devices like our case. Pointy has two 

graphic cards, and they are available for multiple users. According to the graphic 

memory usage of these cards, the user must choose the one with free memory. “nvidia-

smi” command is used to list the current situation of the system in Figure 3.4, and the 

user can choose the suitable card for a certain container. 
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Figure 3.4: Percentage of usage for each GPU in the server 

Docker offers several methods to store generated data by containers. These methods 

are volumes, bind mounts, and tmpfs mount, and the working structures of methods 

are shown in Figure 3.5. 

 

Figure 3.5: Docker volume system (Docker, 2020) 

Volumes are significant to persist data in Docker and have an advantage over bind 

mounts in some aspect. Both methods need a mounting directory in the host machine 

and Docker container. As a difference between the two methods, volumes are main-

tained by Docker and are isolated from the core functionality of the host machine. On 

the other hand, bind mountings have a dependence on the directory structure and the 

operating system of the host machine. Although bind mounts are basic when it is com-

pared to volumes, and they are performant. ”—mount” or “-v” flags are used to assign 

which method is chosen. “—mount” is preferred because of recommendations in 



Methodology 34 
 

docker hub which claims that the syntax is more clear. The source part indicates the 

directory path inside the host machine. The target indicates the directory inside the 

created container. In this thesis, bind mountings are used to transfer series of images 

into the container, and after reconstruction is completed, dense model and sparse 

model are reachable by using these volumes. 

Running containers can be listed by using “docker ps” commands. Also, by adding -a 

flag, it can show existed containers as listed in Figure 3.6. 

 

Figure 3.6: “docker ps -a” command 

“docker stop container_id” is used to stop a running process during the runtime. Ex-

isted containers can be removed by using “docker rm container_id”. 

Additionally, after the container is left to running, the process can be observed by using 

“docker logs -f container_id”. This command gives the opportunity to the user to debug 

the error and follow every step of the reconstruction. 

3.1.2 COLMAP 

COLMAP is a general-purpose SfM and MVS pipeline with a graphical and command-

line interface. A wide range of features comes with the software, which is focused on 

the reconstruction of ordered and unordered image collections. 

Current SfM algorithms fail to produce fully satisfactory results in terms of complete-

ness and robustness. As a result of this, the system cannot register large fraction im-

ages, or broken models are observed because of misregistration or drift. The reasons 

that cause these outcomes occur during the SfM steps. In the correspondence search 

part, it should not produce an incomplete scene graph. Incompleteness affects the 

connectivity for complete models and the required redundancy for reliable estimation. 

In the reconstruction part, the error can exist in the image registration or triangulation 

step, and it may be related to missing or inaccurate scene structure. Therefore, images 

cannot be registered properly (Schönberger & Frahm, 2016). 
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A new algorithm which is presented by Schönberger, comes with a solution to these 

known problems. Firstly, COLMAP introduces a geometric verification strategy that is 

used to increase the robustness of the initialization and triangulation parts. Secondly, 

a new best view selection is applied to maximize the robustness and accuracy of the 

incremental reconstruction process. Thirdly, a robust triangulation method is used to 

produce a more complete scene structure than the current algorithm with a reduced 

amount of computational effort. Fourth, an iterative Bundle Adjustment, re-triangula-

tion, and outlier filtering strategy improve completeness and accuracy by mitigating 

drift effects. Finally, a more efficient BA parameterization for dense photo collections 

through redundant view mining is applied. All of these changes make the new algorithm 

surpass the current state-of-the-art systems Bundler and VisualSFM. 

COLMAP has two kinds of interfaces which are GUI and command-line interface. GUI 

is used to show points and camera positions of reconstructed models. The command-

line interface can be controlled on the terminal and has specific flags to change pa-

rameters in each step of reconstruction. 

3.1.3 Connection with Server 

Reconstruction of series of images in COLMAP needs a certain amount of computation 

power. The Chair of Computational Modelling and Simulation has a server that is ded-

icated to the high-performance required computation. The technical specifications of 

Pointy are capable of solving these computations. This server is named Pointy, and it 

has two Quadro RTX 8000 GPUs with 48 GB graphic memory and an AMD Ryzen 

Threadripper 3900X 64-Core processor. Connection to this server is made by SSH File 

Transfer Protocol (SFTP). For authentication purposes, the user must have credentials 

that are needed for connection. These are a public key and a private key. Keys are 

created in the terminal by this line on Linux in Figure 3.7.  

 

Figure 3.7: Create an SSH keypair (Gite Vivek, 2021) 

“-t rsa” specifies the type of key to create. ”dsa”, ”ecdsa”, ”ed25519”, “rsa1” (for protocol 

version 1 of rsa) and “rsa” (for protocol version 2) are the possible types that can be 

defined. “-b” flag species the number of bits in the key to creating. In this example, 
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4096 bits version is preferred. The default value for the RSA key is 2048 bits. “-f” flag 

specifies the filename of the key file, and “-c” flag is used to set a new comment. 

The public key is sent to the admin of the server, and the private key is used to make 

the connection to the server. The SFTP server configuration includes the host key. 

When the client requests the host key, the server must send the host key to the client 

(SFTP Server Overview - IBM Documentation, 2021). 

Admin of server gives a username besides only taking the public key, and the client 

uses this username and private key to transfer files. Firstly, the private key must be 

transformed into a format by using Putty. Then, the user is able to make the transfer 

by using an SFTP connection. 

 

Figure 3.8: PuTTY Key Generator 

PuTTY key generator in Figure 3.8 is used to convert the private ssh key into the “.ppk” 

type. Since FileZilla needs this type of private key to connect the server. File transfer 

between Pointy and the local machine is maintained by FileZilla. FileZilla is an open-

source, cross-platform FTP application. It performs the file transfer using FTP and en-

crypted FTP such as SFTP like the connection of Pointy (FileZilla - Wikipedia, 2021). 
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Figure 3.9: FileZilla interface 

In Figure 3.9, the FileZilla interface is seen with two tabs. The left tab is the explorer 

for the file system of the local machine, and the right tab is for the server’s file system. 

Files can be easily transferred via Drag and Drop, and if there are lots of files for the 

transfer, it creates a queue for files. The transfer between the server and the local 

machine can be paused or continued. Also, new folders and files can be created and 

moved to different locations on the server. These features are used to create the folder 

that is needed for reconstruction. 

3.1.4 CloudCompare 

 

Figure 3.10: CloudCompare Logo and GUI (Daniel Girardeau-Montaut, 2011) 

CloudCompare is a 3D point cloud (and triangular mesh) editing and processing soft-

ware. It was created with the intention of comparing two dense 3D point clouds (such 

as those obtained with a laser scanner) or a point cloud and a triangular mesh. It makes 
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use of a dedicated octree structure for this purpose. After that, it was expanded to 

include more general point cloud processing software, including many advanced algo-

rithms (registration, resampling, color/normal/scalar fields handling, statistics compu-

tation, sensor management, interactive or automatic segmentation, display enhance-

ment, etc.) (CloudCompare, 2016). 

3.2 COLMAP Reconstruction 

The reconstruction process is split into two parts. COLMAP starts the sparse recon-

struction by loading all extracted data from the database into memory and seeding it 

with an initial image pair. The scene is then gradually expanded by adding fresh images 

and triangulating additional points. Following the reconstruction of a sparse represen-

tation of the scene and camera poses from the input image, the reconstruction process 

continued with dense reconstruction. MVS now has the ability to recover denser scene 

geometry. COLMAP features an integrated dense reconstruction pipeline that gener-

ates depth and normal maps for all registered images before fusing them into a dense 

point cloud with normal information (Schoenberger, 2020a). Inside the dense recon-

struction process, the first process is undistorting the images. Secondly, the depth and 

the normal maps are computed by using stereo. Thirdly, these maps are fused to a 

point cloud. 

 

Figure 3.11: COLMAP Pipeline with Mapper function 

The image registration and mapper function are related to the reconstruction step. The 

difference between these processes is triangulation. For image registration, firstly, new 

features of the added images are extracted. Then it matches them with the existing 
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images in the database. Thus, all of the new images are registered into the model. In 

the case of more accurate result is needed, the mapper function is preferred, as seen 

in Figure 3.11. It enables COLMAP to restart or continue the reconstruction process to 

find the scene, and the camera poses of the added images instead of just registering 

the added images into the existed database. 

By using the GUI of COLMAP, the user can start reconstruction and view the results 

of reconstruction. In this thesis, the command-line interface is preferred because of 

several reasons. Firstly, Pointy is a server and does not offer Linux’s GUI to operate. 

Secondly, the command-line interface works with docker containers and gives the user 

freedom to change the parameters of each step of reconstruction. A script called “En-

trypoint.sh” is used along with the building of the docker container, which includes 

COLMAP. This script includes paths of images, database, and initialization files inside 

the container. 

3.3 Initialize the reconstruction on the server 

Images are taken from a video as screenshots. Frame per second value decides the 

number of images. A high FPS value makes the number of images higher. These im-

ages are transferred into the Pointy. Reconstruction in COLMAP can be done auto-

matically, or every step of the reconstruction sets manually. These steps require a 

project.ini file that includes the parameter values regarding the process of the recon-

struction in that specific step.  

In Figure 3.12, available commands of COLMAP’s feature extractor are listed by using 

the -h, -help flag. COLMAP has two options in terms of setting configuration. One of 

them is using the command line with listed flags and changing every parameter indi-

vidually. Another option is preparing an initialization file with assigned values and 

changing parameters inside this file. Additionally, paths related to project files and the 

database is given inside the file. These paths are the file locations inside containers.  

The camera model is also specified in this file. --ImageReader from the defined models 

in COLMAP documentation. Pinhole and radial camera models are chosen during tri-

als. Pinhole cameras are basic because it uses one and two focal length parameters 

even with a setting of undistorted images. Therefore, the radial camera model is pre-

ferred to cover more possibility of having images that are taken with different cameras. 

This model is quite useful with cases with unknown camera intrinsics and images which 

have different camera calibration. 
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Figure 3.12: COLMAP’s Feature Extractor Commands 

Parameters that are related to SIFT theory are defined in the feature extractor. Domain 

size pooling (DSP) is a development on SIFT that improves matching and feature de-

scriptors.  

After the project initialization file is prepared with decided parameters, a container that 

is capable of running COLMAP with the needed reconstruction steps is built. Dockerfile 

in Appendix A.1 is used to build the container. Inside this docker file, Entrypoint.sh file 

is copied from the directory, and the commands inside the file start the reconstruction 

sequentially. For the reconstruction, the file in Appendix A.2 is used. Every step of the 

reconstruction can be followed by mentioned docker command (“docker logs -f) to view 

the terminal inside the container. 

Docker cp command is used to copy the stored data inside the container to the host 

machine. The workspace folder includes dense and sparse models. Inside the dense 

model folder, point cloud .ply file, depth maps, normal maps, and consistency graphs 

are created after the dense stereo stage, which includes patch match stereo and stereo 

fusion. In Figure 3.13, the section between cp and “:” represents the container ID. The 

remaining part is the path of files inside the container, which will be copied into the 

server’s hard disk separately. 

 

Figure 3.13: Usage of Docker cp command 
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This workspace folder in Figure 3.14 includes dense and sparse models, depth and 

consistency maps, and reconstructed point clouds. 

 

Figure 3.14: Workspace folder 

3.4 Adding New Images to Reconstructed Model 

COLMAP includes an option to make user adds new images to existing reconstruction. 

This option follows a route that is similar to first registration. Firstly, features in new 

images are extracted and registered into the database, which is created during the first 

reconstruction. New images are listed in a text file per line with image names. Then, 

they are registered to the model. COLMAP offers two methods to add new images. 

The first method follows a path that takes new images and extracts the features from 

the images. Finally, it registers them into the database. If the accuracy of the recon-

struction is a significant criterion for the registration, the second method, the mapper 

function, is preferred since it is a more accurate alternative to only registering images 

to the model. With the mapper function, reconstruction is restarted or continued, and it 

offers an accurate image registration with triangulation. To execute the mapper func-

tion inside a container, folders should be filled with files according to the structure in 

Figure 3.15. The images folder includes both the images from the first reconstruction 

and newly added images. The data folder includes a database.db file and project ini-

tialization file of the previous reconstruction. The text folder includes a text file of new 

image names. Previously reconstructed dense and sparse models are stored in the 

workspace folder. 

 

Figure 3.15: File system for the mapper 
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A container for the mapper is prepared apart from the reconstruction because the map-

per function is called by using  “colmap mapper”. The new Entrypoint.sh file in Appen-

dix A.3 is written and used inside docker build operation to create the container that is 

adding new images into existed reconstruction. 

In Figure 3.16, the container is prepared to run with volume mountings according to 

the described file structure. –d flag starts the container in detached mode, the –name 

flag gives a container name, and the –gpus flag is used to select a GPU. The last line 

represents the image that runs in the container. 

 

Figure 3.16: Docker Container Run Commands For COLMAP’s Mapper Function 

The results of the mapper can be checked by opening the reconstructed point cloud 

on COLMAP’s GUI in my local computer. Also, new images and camera data should 

be registered into the database of the reconstruction. Added images are named as 

image455.jpeg to image463.jpeg. In Figure 3.17, matching features and cameras are 

listed in multiple tabs of DB Browser for SQLite, which is a software used to open 

SQLite database files on Linux. 
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Figure 3.17: DB Browser for SQLite 

The reconstruction is visualized by opening the model in COLMAP GUI after every 

step is completed in Figures 3.18 and 3.19. 

 

Figure 3.18: COLMAP Visualization of Sparse model and Camera Locations 
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Figure 3.19: COLMAP Visualization of Generated Point Cloud 

3.5 Alignment of Point Clouds 

Point cloud of the CMS and videos of office room 3218 are given by supervisors for 

usage in this study in Figure 3.20. This point cloud is generated by using laser scan-

ners. It includes a large number of points with regularly scatter behavior than 

COLMAP’s reconstructed point cloud.  

 

Figure 3.20: Laser-scanned point cloud without any cutting 

Because of the number of points, it is hard to visualize in terms of hardware require-

ments. MeshLab, which is another software dedicated to processing and editing 
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triangular meshes and point clouds, used to visualize and edit this point cloud. Firstly, 

sampling is applied to laser-scanned point cloud to reduce the computational effort of 

the local computer to visualize the point cloud. Therefore, the local computer is able to 

make rotation and move along the point cloud. Secondly, the location of the office room 

3218 is found. Then point cloud is cut by MeshLab tools. Points that are unrelated to 

the room are picked by using the Select Vertices tool. After this operation, these points 

are deleted by Delete the current set of selected vertices tool. In Figure 3.21, the blue 

square indicates the Select Vertices tool, and the green square indicates Delete the 

current set of selected vertices. 

 

Figure 3.21: MeshLab Toolbar 

Unrelated points are the points located outside of the room and the ceiling of the room. 

These points are deleted by explained tools. 

 

Figure 3.22: Left: Before Deleting Points Right: After Deleting Points 

This edited point cloud needs to align with the COLMAP’s reconstructed point cloud, 

as seen in Figure 3.22. 
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Firstly, MeshLab’s align tool, which is shown in Figure 3.23, is used, and the following 

steps are applied. The user needs to choose one point cloud as a reference by using 

the Manual Rough Glueing option from the same window.   

 

Figure 3.23: Align Tool Window of MeshLab 

Point-Based Glueing needs at least 4 points in each point cloud to complete alignment. 

In Figure 3.24, there are three additional options at the bottom of the window. Allow 

scaling option is used to make the models be the same size. 

 

Figure 3.24: Point-Based Glueing in MeshLab 
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After points are selected from both point clouds, the user presses the Process button 

in Figure 3.23, and the alignment starts with computing overlaps between point clouds. 

The problem with MeshLab occurs in this step. The result of the process keeps giving 

errors with an explanation that says there is no successful arc among candidate align-

ment arcs in Figure 3.25. 

 

Figure 3.25: MeshLab Error Text 

The resultant point cloud is shown in Figure 3.26. Alignment is not completed properly, 

and MeshLab is not successful in matching pair of points. 

 

Figure 3.26: Unsuccessful Alignment of Point Cloud in MeshLab 

This problem is solved by switching to another software called CloudCompare. Similar 

to MeshLab, alignment of the point clouds are made by picking points from two-point 

clouds. For alignment in CloudCompare, the red squared tool is used in Figure 3.27. 

This tool needs at least picked equivalent point pairs for alignment  

 

Figure 3.27: CloudCompare Toolbox 
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These points clouds are referred to as align and reference. In Figure 3.28, points that 

are chosen from the “reference” are labeled as RX, and points that are chosen from 

the “align” are labeled as AX during the process.  

 

Figure 3.28: Left: Picking Points From “Align” Point Cloud Right: Picking Point From “Reference” Point Cloud 

Coordinates of points with their labels are listed in Figure 3.29. Additionally, the scale 

of the point clouds may need an adjustment. Thus, adjust scale option of the Cloud-

Compare is used. 

 

Figure 3.29: Align Tool Windows of CloudCompare 

After alignment is completed, CloudCompare computes a transformation matrix that 

includes an integrated scaling parameter that is defined between the aligned point 

cloud and the reference point cloud, as is seen in Figure 3.30. 
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Figure 3.30: Generated Transformation Matrix in CloudCompare 

At the end of the alignment process, aligned point clouds are visualized in Figure 3.31. 

There are some objects that are not scanned in laser. Apart from these, matches be-

tween the remaining points are visible.  

 

Figure 3.31: Aligned Point Clouds in CloudCompare 

To understand which regions of the room have better-represented reconstruction, they 

are colored with different colors in Figure 3.32. The red color is used for the laser-

scanned point cloud, and the green color is used for the reconstructed point cloud. 
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Figure 3.32: Colored Point Clouds in CloudCompare 

3.6 Finding Camera Poses 

Another way of visualizing the reconstructed point cloud is using the visual-

ize_model.py python script that comes with COLMAP installation. This script opens the 

exported text file format of the COLMAP and visualizes reconstructed points and cam-

era poses in Figure 3.33. The exported text file format includes cameras.txt that is filled 

with a list of the cameras and their data, points3D.txt is filled with coordinates of points 

and related image information, and images.txt is filled with a list of images used in the 

reconstruction. The id of the camera that the image is taken and 3D points generated 

from the related images are also in the images text file.  

 

Figure 3.33: Point Cloud Visualized with Python Open3D library 
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For further processes, this script needs a modification to visualize aligned laser-

scanned point cloud and camera poses of reconstruction in the same space. Also, the 

laser-scanned point cloud is converted into an exported text file format. To make this 

conversion, COLMAP GUI’s import model option is used in Figure 3.35. After point 

cloud is imported as a model, GUI’s export the model as a text file option is used, and 

the resultant files are created, as is seen in Figure 3.34.  

 

Figure 3.34: Exported Text File Format of  the model 

 

Figure 3.35: COLMAP GUI Features for importing and exporting models 

The laser-scanned point cloud and the reconstructed point cloud are aligned in the 

previous step. After alignment, the coordinate system of both point clouds is assumed 

as same. Therefore, they can be visualized in the same space, and they will show the 

correct viewpoint of cameras. In the first place, visualize_model.py, which is written by 

COLMAP developer, needs some extension of functions to visualize laser-point cloud. 

The default version of this python script is written to visualize the reconstructed point 

clouds with all the camera positions. The first added features are made to visualize 

camera position with pose direction inside the laser-scanned point cloud instead of the 

reconstructed point cloud. This modified script is firstly used for the result of the mapper 

function. The aim is the finding the new images inside the reconstruction because   
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COLMAP dense reconstruction does not add every added image into the final recon-

struction with respect to parameters that are used in Patch Match Sampling. To find 

out the number of added images inside the resultant reconstruction. IDs of the images 

are compared with the text list that mapper function is used. Found camera poses are 

visualized in Figure 3.36. 

 

Figure 3.36: Camera Poses inside laser-scanned point cloud 

The next task is finding the captured points which stay in front of the camera by using 

camera information. The camera information includes camera intrinsic, rotation matrix, 

translation, and the position of the camera inside the reconstructed point cloud. This 

data related to reconstruction is stored inside the exported text files. “images.txt” file 

stores a quaternion (QW, QX, QY, QZ) and a translation vector (TX, TY, TZ) to gener-

ate the pose of an image by defining the relation between the projection world to cam-

era coordinate system for every image. “camera.txt” file stores camera model type, 

width, and height of each camera line by line. “points3D.txt” file contains coordinates 

and RGB values of all points in the point cloud (Schoenberger, 2020b). 

To get all of the captured points by the camera, a geometric relationship is needed to 

filter out the points. Camera position is defined with 5 points in the space. In Figure 

3.37, these points are indicated as C0,1,2,3,4. The first point, C0, represents the loca-

tion of the camera sensor, and the remaining points create the rectangle viewpoint in 

front of the camera and show the direction. Every point in the point cloud is filtered 

iteratively to find out the point is inside or outside of the camera, and according to the 

number of the found images in the reconstruction, this process is repeated. 

Four lines are drawn as starting from the location of the sensor and passing by the 

corners of the frame. These lines are named Line 1, Line 2, Line 3, and Line 4. Line 1 
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is between [C0,1]. Line 2 is between [C0,2]. Line 3 is between [C0,3]. Line 4 is between 

[C0,4]. They are extended as continuous lines without a limitation in the space. For 

further steps, they will be treated as vectors with a starting point from C0. Therefore, 

there are an infinite number of frames can be drawn in front of the camera. The only 

restriction is that the corners of the frame should be on the defined lines. Vector pro-

jection is used to find a specific frame that is on the same plane as the trial point in the 

filtering operation. Firstly, two vectors are created. The first one starts from the location 

of the camera sensor (C0) to the first defined frame’ center (C1). The second one starts 

from the same location as the first one (C0) to the trial point in the space (P1). Then, 

the second vector (C0, P1) is projected on the first vector (C0, C1). Thus, the distance 

between the new frame and the camera sensor is known since the magnitude of the 

projection vector is equal to the distance. Also, the coordinates of the new frame’s 

corners which are points (1’),(2’),(3’),(4’), and width and height value of the new frame, 

are known by scaling the norms of the vectors. Scaling is done between the norms of 

the vectors (C0,1) and (C0,1’) to find the coordinate of the new frame’s corner. These 

norms are acquired by applying two Pythagorean theorems, as is seen in Figure 3.38.  

 

Figure 3.37: Filtering Point outside Camera View 
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Figure 3.38: Application of Pythagorean theorems 

The last check of the points is simply deciding if a point is inside or outside of the 

rectangle, which is the new frame in that case. Inside, the case of this check means 

that the trial point is captured by the specified camera. In Figure 3.39, points are check 

whether they are in the camera’s viewpoint or not. From the general perspective, we 

know that P1 is inside the viewpoint and P2 is not inside the viewpoint.  

 

Figure 3.39: Point Viewpoint Check 

For the first case, P1 divides the rectangle into 4  small triangles. The rectangle’s area 

is known since the new frame’s width, and height is known. Also, coordinates of all 

corners and coordinates of P1 are known. Therefore, the rectangle’s area and the ar-

eas of triangles can be calculated. The criteria that decide that points are inside or 

outside is the summation of 4 small areas that cannot be larger than the area of the 
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rectangle. For P1, this criterion is not violated, so it is inside the viewpoint, but for the 

second case, P2 divides the rectangle’s area into 4 small triangles, and the total area 

of triangles is larger than the rectangle’s area, so the criteria are violated. As a result 

of this, P2 is outside of the camera’s viewpoint. This check is continued sequentially 

for every point in the laser-scanned point cloud. 

All of these steps are computed inside a python script which is in Appendix B.1. In that 

script, the argument parser is set to take the paths of the exported file version of the 

laser-scanned point cloud with (--laserscan_model), exported file version of the recon-

structed point cloud with (--input_model), and the name list of the newly added images 

(--exporttext_model). Two collections are created as a global variable to store the data 

of the cameras of found images and the points that are inside the viewpoint of the 

camera. Additionally, one more check is needed, and it uses the “angle_between” func-

tion. The requirement for this check is coming from the case that the selected point in 

the iteration is on the rear side of the camera. In that case, points are filtered from both 

sides of the camera. To prevent this problem, the angle between the projection vector 

and a vector that is defined between (C0, C1) is calculated. The angle must be 0 to 

add the selected point into the collection of points. 

In Figure 3.40, the cameras of found images are displayed with the points inside their 

viewpoint. This script has a commented section that allows the user to select one im-

age and shows only its camera’s viewpoint. 

 

Figure 3.40: Camera Locations and their captured points 
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This script has a commented section that allows the user to select one image and 

shows only its camera’s viewpoint. In Figure 3.41, the script only displays the points 

that are inside the viewpoint of the camera that has the same position as the camera 

that captures the following image file. 

 

Figure 3.41: An image file and its corresponding viewpoint with captured points  
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The process of finding the camera pose of new images is explained in the last part of 

the Methodology section. In the experiment section, various reconstructions are cre-

ated, and camera poses in each reconstruction will be found. 

The parameters of reconstruction steps are changed to have reconstruction with dif-

ferent variations. COLMAP includes configuration files for each reconstruction step. 

The first step of the reconstruction starts with setting a file directory with an initialization 

script. This script which is seen in Figure 4.1, includes parameters for feature extrac-

tion, preferred camera type, and paths.  

 

Figure 4.1: Project Initialization File 

In this file, domain size pooling is set to 1 to have a better version of SIFT which means 

feature extraction will be more accurate, but it has a negative side in which DSP needs 

more computational power than the default condition. Also, max_image_size,  

max_num_features, and num_octaves parameters are changed to have a better re-

construction. The maximum number of features and number of octaves are increased 

to search further range for more features. 

 

4 Experiments and Results 
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Patch Match is also an important step for the reconstruction and has a direct influence 

on the point cloud quality. The parameter of patch match is configured in the script that 

is used with Dockerfile. Entryfile.sh files in Appendix A.2 and A.3 have parameters to 

modify the patch match step. In Figure 4.2, the related section of the file is given. 

 

Figure 4.2: Patch Match Configuration 

To get a better result from dense reconstruction, some specific parameters are vari-

ously tested in the patch match section. According to COLMAP documentation, a large 

patch window radius (PatchMatchStereo.window_radius) can improve the quality of 

results. Additionally, the filtering threshold can be reduced but with a loss from the 

photometric consistency. (PatchMatchStereo.filter_min_ncc). Window radius is setting 

the size of the patch, which captures the surrounding pixel and the number of pixels 

around a selected pixel. COLMAP increases the appearance of the little features with 

respect to the increasing value of window radius. Moreover, a bigger window radius 

affects the reconstruction in terms of computation time since it needs more pixels for 

patch matching. Reconstruction 1 to 7 is computed with the corresponding window 

radius values of 2,4,6,8,10,12,14. For steps, defined parameters are used as variables 

in trials. Produced reconstruction is processed for finding camera poses, and their re-

sults are compared. 
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The related data about the model is collected by using the model analyzer extension 

of the COLMAP after reconstruction is finished, as seen in Table 1. In Figure 4.3, the 

number of images that are used in the dense model is compared for the first recon-

struction and the second reconstruction after the mapper. 

 

Figure 4.3: Mapper and first reconstruction comparison 

According to results in Table 1, for window radius values 6,8,10, the mapper performs 

stable, and the number of the image in the dense models are the same, and points 

inside reconstructed point clouds are closer. 

 

Table 1: Reconstructed Model Analyze after the mapper 

4.1 Alignment Quality 

Alignment between point clouds is significant because the localization accuracy is re-

lated to the distance to the laser-scanned point cloud. In this study, it is taken as ground 
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Mapper Data wrt Window Radius

Images Registered Images

Window Radius 2 4 6 8 10 12 14
Cameras 6 6 7 7 7 6 7
Images 245 247 252 252 252 245 251
Registered images 245 247 252 252 252 245 251
Points 34457 34599 34804 34776 34898 34342 34923
Observations 180377 180812 181560 181505 181893 179813 181775
Mean track length 5,234843 5,225931 5,216642 5,219260 5,212133 5,235950 5,205022
Mean observation 

per image 736,232653 732,032389 720,476190 720,257937 721,797619 733,930612 724,203187
Mean reprojection 

error (px) 1,066989 1,068538 1,070000 1,073391 1,070763 1,070799 1,068729
Number of fused 

points 263740 933025 1618745 2147781 2624225 2982279 3408930
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truth, and benchmarks are done based on it. For the second set of experiments, align-

ment affects the results because the coordinate system is assumed as the same after 

the alignment process. Therefore, the distance between point clouds is also a  descrip-

tion of the accuracy of the second part. 

Laser-scanned point cloud and COLMAP reconstructed point cloud is aligned using 

CloudCompare. For comparison purposes, reconstructions with different window ra-

dius are produced. The alignment between the resultant point cloud and a laser-

scanned point cloud is done by picking the same 4 points for every trial in Figure 4.4. 

 

Figure 4.4: Alignment with 4 points 

After alignment for every reconstruction is completed and their transformation matrices 

applied to the laser-scanned point cloud. By using CloudCompare’s Cloud-to-Cloud 

Distance feature is used, which is located in the toolbar, as is shown in Figure 4.5. 

 

Figure 4.5: Cloud-to-Cloud feature 

According to the documentation of CloudCompare, point clouds are labeled as com-

pared and reference. The distances are calculated between the points of compared 

point cloud and reference point cloud. All computations are done relatively to reference 

point cloud’s points. To choose a role among point clouds, there are some conditions 

which are reference point cloud should be the one with widest extents and higher den-

sity. 
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The density of point clouds is calculated by CloudCompare and compared. Recon-

struction 4 with window radius 8 is taken and compared with the laser-scanned point 

cloud in Figure 4.6. 

 

Figure 4.6: Density comparison between point clouds 

As a result of this comparison, reconstructed point clouds are taken as a reference for 

all comparisons, and it is chosen in Figure 4.7. 

 

Figure 4.7: Choose Role 

After roles of point clouds are defined, a distance computation window appears with 

several options. Octree level is the level of subdivision of octrees that distance com-

putation is performed. It is decided automatically by the software. Max distance is used 

as a threshold value to filter out further points from the computation. 

Local modeling strategy is preferred for distance computation because of its success 

in coping with sampling-related issues. These issues might be a globally too small 

density or too high local variations of the density of the reference cloud. The reference 

cloud is chosen from reconstructed clouds, and these reconstructions consist of well 

and badly constructed sections. Therefore, local modeling is needed, and a quadratic 

model, among other types of local models, is selected since it is recommended to use 

as follows in Figure 4.8 (CloudCompare, 2015a). 
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Figure 4.8: Left: General settings for Distance Computation Right: Local Model Type Selection 

Cloud to cloud distance for every reconstruction is computed, and a histogram with the 

information of C2C absolute distances is generated. Additionally, compared point cloud 

is colored according to the distance of points of the reference point cloud. The blue 

color is used to closest distances between point clouds, and it is followed by green, 

yellow, and red with respect to distance. The results of C2C distance for reconstruc-

tions are shown in Figures 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, and 4.15 as a histogram 

and 3D visualization with colored values. 

 

Figure 4.9: Left: Cloud to Cloud distance for Reconstruction 1 Right: Cloud to Cloud distance visualization 
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Figure 4.10: Left: Cloud to Cloud distance for Reconstruction 2 Right: Cloud to Cloud distance visualization 

 

Figure 4.11: Left: Cloud to Cloud distance for Reconstruction 3 Right: Cloud to Cloud distance visualization 

 

Figure 4.12: Left: Cloud to Cloud distance for Reconstruction 4 Right: Cloud to Cloud distance visualization 
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Figure 4.13: Left: Cloud to Cloud distance for Reconstruction 5 Right: Cloud to Cloud distance visualization 

 

Figure 4.14: Left: Cloud to Cloud distance for Reconstruction 6 Right: Cloud to Cloud distance visualization 

 

Figure 4.15: Left: Cloud to Cloud distance for Reconstruction 7 Right: Cloud to Cloud distance visualization 

CloudCompare is capable of exporting cloud to cloud distance data as an excel file. By 

using these files, the quality of the alignment will be compared. The distance between 
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point pairs is investigated according to a threshold value. Therefore, the percentage of 

the number of points that their C2C distances that are bigger than the threshold value 

are compared for different reconstructions. The threshold value is defined as 0.35 for 

comparisons. 

Reconstruction Number of Points Total Number of Points Percentage

Reconstruction 1 506303 895350 56,55           

Reconstruction 2 592930 895350 66,22           

Reconstruction 3 630524 895350 70,42           

Reconstruction 4 653866 895350 73,03           

Reconstruction 5 665150 895350 74,29           

Reconstruction 6 660542 895350 73,77           

Reconstruction 7 682425 895350 76,22            

Table 2: Reconstruction C2C Comparison with respect to a threshold value 

This comparison in Table 2 shows that the best alignment is Reconstruction 7, and it 

is followed by Reconstruction 5 and 6. 

CloudCompare computes C2C with classes. The excel exported file stores the classes 

and C2C distances, as seen in Table 3. Each class consists of a range of values. The 

third column and fourth column indicate the minimum and maximum values of the 

class. The second column represents the number of points inside the class. In total, 

256 classes are created.  

 

Table 3: CloudCompare data storing structure for C2C distance 

Another comparison is made for the first 5 classes of C2C distances. The percentage 

of the number of the points in the first 5 classes is compared for all of the reconstruc-

tion. 
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Reconstruction Number of Points Total Number of Points Percentage

Reconstruction 1 155882 895350 17,41           

Reconstruction 2 218525 895350 24,41           

Reconstruction 3 256474 895350 28,65           

Reconstruction 4 248913 895350 27,80           

Reconstruction 5 240929 895350 26,91           

Reconstruction 6 261662 895350 29,22           

Reconstruction 7 238121 895350 26,60            

Table 4: Reconstruction C2C Comparison with respect to first five class 

Presented results in Table 4 demonstrate that the best alignment is Reconstruction 6, 

and it is along with Reconstruction 3 and 4. 

4.2 Camera Position Finding for Varied Reconstructions 

In this set of experiments, camera information is used to capture the points in front of 

the camera viewpoint. Different reconstructions which are produced with varied param-

eters are taken into the position finding process, and results are shown. The total num-

ber of the captured points by each camera is calculated for all of the images that are 

used in the process listed in Figure 4.16 and Figure 4.17. The total number of points 

in the laser-scanned point cloud is 895350. This number of points belongs to the ver-

sion of the point cloud after it is edited to extract the location of office room 3218. 

 

Figure 4.16: image455, image456 and image459 

 

Figure 4.17: image460, image461 and image463 

The captured points and the camera’s viewpoint of image455 and image461 are visu-

alized for Reconstruction 4 in Figure 4.18. These images are selected since the amount 

of captured points has a large difference because of the wider viewpoint of the im-

age461. 
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Figure 4.18: Captured Points for image455 and image461 for Reconstruction 4. 

Reconstruction 6 is not able to catch the location of the camera that captures im-

age459.jpeg in Figure 4.19. On the other hand, the location of the camera that captures 

the same image is available for other reconstructions (3,4,5,7), as is seen in Figure 

4.20 and Table 5. 

 

Reconsturction Image455 Image456 Image459 Image460 Image461 Image463

Reconstruction 1 60611 46913 not available 51055 135560 79820

Reconstruction 2 77940 47996 not available 2159 259377 61149

Reconstruction 3 34881 16281 16835 22561 258690 43998

Reconstruction 4 75522 13238 13708 31593 256435 28704

Reconstruction 5 50251 3175 23546 50799 200037 69810

Reconstruction 6 75720 56573 not available 51301 260230 62899

Reconstruction 7 58782 56573 23561 48949 148346 72465  

Table 5: Captured Points by cameras for different reconstructions 

 

 

Figure 4.19: Reconstruction 6 with camera poses 
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Figure 4.20: Reconstruction 4 with camera poses 

Although Reconstruction 6 cannot add all of the images into reconstruction. The results 

of image463.jpeg consist of significant differences. As it is seen in Figure 4.21, the 

point cloud on the left side includes blanks, and the right one is completed. 

 

Figure 4.21: Camera Viewpoint of image463 from Reconstruction 6 (Left) and 4 (Right) 

In the python script, the cameras, images, and points3D text files are created with the 

results of all filtering out processes, and they can be visualized by using CloudCom-

pare. The differences can also be visualized in this software, as seen in Figures 4.22 

and 4.23. 

 

Figure 4.22: Captured points of Camera Viewpoint Reconstruction 6 in CloudCompare 
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Figure 4.23: Captured points of Camera Viewpoint Reconstruction 4 in CloudCompare 

According to Table 5, there are 62899 points inside the camera’s viewpoint in Recon-

struction 6. For Reconstruction 4, this value drops to 28704, and with visualization of 

point clouds in Figures 4.22 and 4.23, the difference is clearly visible. 

A similar approach can be made for image455 and image461 to see additional cap-

tured points because of the wider viewpoint. In Figure 4.24, the red color shows the 

points from image461, and the green color shows the points from image455. 

 

Figure 4.24: CloudCompare Visualization of captured points of image455 and image461 
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Alignment of the reconstructed point cloud and a laser-scanned point cloud is done 

manually by picking points inside both point clouds. However, the software which is 

used to visualize point clouds also offers an algorithm which is called Iterative Closest 

Point (ICP). ICP is used to minimize the differences between point clouds. Both 

MeshLab and CloudCompare include ICP implementation. In Figure 5.1, CloudCom-

pare’s ICP parameter settings window is seen. 

 

Figure 5.1: CloudCompare ICP Setting window (CloudCompare, 2015b) 

For CloudCompare, the ICP registration will not work effectively when two-point clouds 

have big variances on large scales. As a result, this strategy is extremely effective for 

precisely aligning clouds, and it is the only way to achieve a good outcome in similar 

situations. CloudCompare will display the resulting RMS when the user has picked at 

least 3 or more pairs of points in both point clouds, and the user can preview the result 

with the 'align' button. Each pair's error contribution is listed next to each point in the 

table. As a result, the worst case can be deleted or re-picked. Users can also add 

additional points to both sets at any time to provide more limitations and improve the 

accuracy of the output.  

5 Conclusion and Future Work 
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The initial part of the ICP starts similar to manual point picking. One point cloud is fixed 

into its coordinates, and the other point cloud becomes the source for the algorithm. 

The user matches the closest points in both point clouds. After this part, the difference 

of ICP becomes clearer. The algorithm iteratively estimates the combination of rotation 

and translation and apply a minimization technique to align the point cloud. Until it 

reaches the limit of iteration or its error value reaches the defined RMS value, iteration 

continues (ICP-Wikipedia, 2021). 

 

Figure 5.2: Classic ICP algorithm flow chart (Liu et al., 2018) 

In Figure 5.2, ICP’s pipeline is seen with its termination point. An improved ICP algo-

rithm in this paper (Liu et al., 2018) is offered. The new algorithm uses the four-point 

Congruent (4PC) algorithm instead of kd-tree to increase the search efficiency of the 

corresponding point. The main idea of the 4PC algorithm is to find four corresponding 

points in the plane of reference and source point cloud and make the algorithm faster 

than the classical algorithm. The flow chart of the improved ICP algorithm in Figure 

5.3. 

 

Figure 5.3: Improved ICP algorithm flow chart (Liu et al., 2018) 

ICP can extend the limits of the project and increase the localization accuracy because 

the current state of the alignment process is error-prone. Even the ICP algorithm needs 

user decisions for first matching. But, in some cases picking points from the point 

clouds are not easy. In Figure 5.4, the laser-scanned point cloud consists of lots of 

points, and the details are under the layers of the points. For example, we need to find 

the room and edit point cloud to make the processing part faster. The office room is 

found in Figure 5.5.  
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Figure 5.4: CMS laser-scanned point cloud 

After this step, the point cloud needs some cuts because the COLMAP reconstruction 

focuses on the bookshelves and the yellow sofa in the room. From this perspective, it 

is impossible to recognize any of the furniture. 

 

Figure 5.5: Office 3218 manually found 

Therefore, there should be no need to edit point clouds and manual point picking in the 

perfect scenario. Moreover, this condition would remove the human influence on the 

processes. The reason why this scenario is hard to achieve is that a huge point cloud 

needs computational power and efficient algorithms, and there are different kinds of 

point clouds in terms of density and distribution in space, so an algorithm should handle 

various point clouds. 

Another improvement to increase the localization accuracy can be taking some meas-

urements in the scanned area manually to be sure that the laser-scanned point cloud 

is a proper reference for the computation. 

In terms of computational time, improvements might be made in the camera pose find-

ing section. The script that is used checks every point in the point cloud to decide these 

points are inside the camera’s viewpoint or they are outside. This process takes a long 

time proportionally with increasing cameras because points are sequentially tested for 

the criterion. The binary search might be implemented to reduce computation time for 

this step. 
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 Appendix A.1: Dockerfile for COLMAP 

FROM ripfreeworld/colmap_cuda10.2:2020Aug26 

 
COPY entrypoint.sh entrypoint.sh 
 

CMD ["./entrypoint.sh"] 

Appendix A.2: Entrypoint.sh for COLMAP reconstruction 

#!/bin/bash 

set -eE 
 
DATASET_PATH=/tmp/data 
IMAGE_PATH=/tmp/images 
 
colmap database_creator --database_path /tmp/data/database.db 
 
echo "DATABASE CREATED" 
 
echo "OPERATION START" 
 
mkdir -p /tmp/workspace && colmap feature_extractor \ 
--project_path  $DATASET_PATH/project.ini   \ 
--database_path $DATASET_PATH/database.db \ 
--image_path $IMAGE_PATH 
 
OUTPUT_PATH=/tmp/workspace 
 
echo "END OF FEATURE EXTRACTOR" 
 
colmap exhaustive_matcher \ 
   --database_path $DATASET_PATH/database.db 
    
echo "END OF EXHAUSTIVE MATCHER" 
 
mkdir $OUTPUT_PATH/sparse 
 
colmap mapper \ 
    --database_path $DATASET_PATH/database.db \ 
    --image_path $IMAGE_PATH \ 
    --output_path $OUTPUT_PATH/sparse 
     
echo "END OF MAPPER" 
 
mkdir $OUTPUT_PATH/sparse/triangulated 
 
colmap point_triangulator \ 
    --database_path $DATASET_PATH/database.db \ 
    --image_path $IMAGE_PATH \ 
    --input_path  $OUTPUT_PATH/sparse/0 \ 
    --output_path $OUTPUT_PATH/sparse/triangulated 
     
mkdir $OUTPUT_PATH/dense 
 
colmap image_undistorter \ 

Appendix 
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    --image_path $IMAGE_PATH \ 
    --input_path $OUTPUT_PATH/sparse/triangulated \ 
    --output_path $OUTPUT_PATH/dense \ 
    --output_type COLMAP \ 
    --max_image_size 2000 
 
echo "END OF IMAGE UNDISTORTER" 
 
colmap patch_match_stereo \ 
    --workspace_path $OUTPUT_PATH/dense \ 
    --workspace_format COLMAP \ 
    --PatchMatchStereo.geom_consistency true \ 
    --PatchMatchStereo.filter 1 \ 
    --PatchMatchStereo.write_consistency_graph false \ 
    --PatchMatchStereo.max_image_size -1 \ 
    --PatchMatchStereo.window_radius 8 \ 
    --PatchMatchStereo.window_step 1 \ 
    --PatchMatchStereo.num_samples 15 \ 
    --PatchMatchStereo.num_iterations 5 \ 
    --PatchMatchStereo.filter_min_num_consistent 2 \ 
    --PatchMatchStereo.depth_min -1 \ 
    --PatchMatchStereo.depth_max -1 \ 
    --PatchMatchStereo.sigma_spatial -1 \ 
    --PatchMatchStereo.sigma_color 0.20000000298023224 \ 
    --PatchMatchStereo.ncc_sigma 0.60000002384185791 \ 
    --PatchMatchStereo.min_triangulation_angle 1 \ 
    --PatchMatchStereo.incident_angle_sigma 0.89999997615814209 \ 
    --PatchMatchStereo.geom_consistency_regularizer 0.30000001192092896 \ 
    --PatchMatchStereo.geom_consistency_max_cost 3 \ 
    --PatchMatchStereo.filter_min_ncc 0.10000000149011612 \ 
    --PatchMatchStereo.filter_min_triangulation_angle 3 \ 
    --PatchMatchStereo.filter_geom_consistency_max_cost 1 \ 
    --PatchMatchStereo.cache_size 200 \ 
    --PatchMatchStereo.gpu_index -1 
     
echo "END OF PATCH MATCH STEREO" 
 
colmap stereo_fusion \ 
    --workspace_path $OUTPUT_PATH/dense \ 
    --workspace_format COLMAP \ 
    --input_type geometric \ 
    --output_path $OUTPUT_PATH/dense/fused.ply 
 
echo "END OF STEREO FUSION" 
 
echo "COLMAP POINT CLOUD IS GENERATED" 
 
mkdir $OUTPUT_PATH/exporttext 
 
colmap model_converter \ 
    --input_path $OUTPUT_PATH/dense/sparse \ 
    --output_path $OUTPUT_PATH/exporttext \ 
    --output_type TXT 
 
echo "RESULTS ARE EXPORTED AS TXT FILES" 
 
colmap model_analyzer \ 
    --path $OUTPUT_PATH/sparse/triangulated 
 
echo "DENSE MODEL ANALYZE" 
 
colmap model_analyzer \ 
    --path $OUTPUT_PATH/dense/sparse 
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Appendix A.3: Entrypoint.sh for COLMAP mapper 

#!/bin/bash 
set -eE 
 
DATASET_PATH=/tmp/data 
IMAGE_PATH=/tmp/images 
 
echo "OPERATION START" 
 
mkdir -p /tmp/output && colmap feature_extractor \ 
    --database_path $DATASET_PATH/database.db \ 
    --image_path $IMAGE_PATH \ 
    --image_list_path /tmp/text/images.txt 
 
OUTPUT_PATH=/tmp/output 
mkdir $OUTPUT_PATH/sparse 
 
colmap exhaustive_matcher \ 
   --database_path $DATASET_PATH/database.db 
    
echo "END OF EXHAUSTIVE MATCHER" 
 
echo "MAPPER START" 
     
colmap mapper \ 
    --database_path $DATASET_PATH/database.db \ 
    --image_path $IMAGE_PATH \ 
    --output_path $OUTPUT_PATH/sparse 
 
echo "MAPPER END" 
 
echo "IMAGE UNDISTORTER START" 
 
mkdir $OUTPUT_PATH/dense 
 
colmap image_undistorter \ 
    --image_path $IMAGE_PATH \ 
    --input_path $OUTPUT_PATH/sparse/0 \ 
    --output_path $OUTPUT_PATH/dense \ 
    --output_type COLMAP \ 
    --max_image_size 2000 
 
echo "END OF IMAGE UNDISTORTER" 
 
colmap patch_match_stereo \ 
    --workspace_path $OUTPUT_PATH/dense \ 
    --workspace_format COLMAP \ 
    --PatchMatchStereo.geom_consistency true \ 
    --PatchMatchStereo.filter 1 \ 
    --PatchMatchStereo.write_consistency_graph false \ 
    --PatchMatchStereo.max_image_size -1 \ 
    --PatchMatchStereo.window_radius 4 \ 
    --PatchMatchStereo.window_step 1 \ 
    --PatchMatchStereo.num_samples 15 \ 
    --PatchMatchStereo.num_iterations 5 \ 
    --PatchMatchStereo.filter_min_num_consistent 2 \ 
    --PatchMatchStereo.depth_min -1 \ 
    --PatchMatchStereo.depth_max -1 \ 
    --PatchMatchStereo.sigma_spatial -1 \ 
    --PatchMatchStereo.sigma_color 0.20000000298023224 \ 
    --PatchMatchStereo.ncc_sigma 0.60000002384185791 \ 
    --PatchMatchStereo.min_triangulation_angle 1 \ 



Appendix 80 
 

    --PatchMatchStereo.incident_angle_sigma 0.89999997615814209 \ 
    --PatchMatchStereo.geom_consistency_regularizer 0.30000001192092896 \ 
    --PatchMatchStereo.geom_consistency_max_cost 3 \ 
    --PatchMatchStereo.filter_min_ncc 0.10000000149011612 \ 
    --PatchMatchStereo.filter_min_triangulation_angle 3 \ 
    --PatchMatchStereo.filter_geom_consistency_max_cost 1 \ 
    --PatchMatchStereo.cache_size 200 \ 
    --PatchMatchStereo.gpu_index -1 
     
echo "END OF PATCH MATCH STEREO" 
 
colmap stereo_fusion \ 
    --workspace_path $OUTPUT_PATH/dense \ 
    --workspace_format COLMAP \ 
    --input_type geometric \ 
    --output_path $OUTPUT_PATH/dense/fused.ply 
 
echo "END OF STEREO FUSION" 
 
echo "COLMAP POINT CLOUD IS GENERATED" 
 
mkdir $OUTPUT_PATH/exporttext 
 
colmap model_converter \ 
    --input_path $OUTPUT_PATH/dense/sparse \ 
    --output_path $OUTPUT_PATH/exporttext \ 
    --output_type TXT 
 
echo "MAPPER RESULTS ARE EXPORTED AS TXT FILES" 
 
colmap model_analyzer \ 
    --path $OUTPUT_PATH/sparse/0 
 
echo "DENSE MODEL ANALYZE" 
 
colmap model_analyzer \ 
    --path $OUTPUT_PATH/dense/sparse 
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Appendix B.1: Added sections of visualize_model.py inside COLMAP (Schoenberger, 

2020a) 

 

 

camerainfo = collections.namedtuple( 

    "camerainfo", ["camera_id", "image_id", "lines","points"]) 

 

Point3Dinfo = collections.namedtuple( 

    "Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"])     

 

# These two dictionary are created for filtering cameras and points with their data 

cameradict = {} 

pointdict = {} 

 

# Dictionary is created to store camera data that added after the mapper 

 

def cam_register(image_id,camera_id,cam_lines,cam_points): 

 

    cameradict[image_id] = camerainfo(camera_id=camera_id, image_id=image_id, 

                                            lines=cam_lines, points=cam_points) 

 

 

def point_register(point3D_id,xyz,rgb,error,image_ids,point2D_idxs): 

 

    pointdict[point3D_id] = Point3Dinfo(id=point3D_id, xyz=xyz, rgb=rgb, 

                                               error=error, image_ids=image_ids, 

                                               point2D_idxs=point2D_idxs) 

# Added lines to add_cameras function 

def add_cameras(self, scale=1): 

 . 

 . 

 . 

            cam_points = np.asarray(cam_model[2].points) 

            cam_lines = np.asarray(cam_model[2].lines) 

            cam_register(img.id,img.camera_id,cam_lines,cam_points) 

 . 

 . 

 . 

 

def parse_args(): 

    parser = argparse.ArgumentParser(description="Visualize COLMAP binary and text 

models") 

    parser.add_argument("--input_model", required=True, help="path to input model 

folder") 

    parser.add_argument("--laserscan_model", required=True, help="path to laser 

scan model folder") 

    parser.add_argument("--exporttext_model", required=True, help="path to exported 

.txt folder") 

    parser.add_argument("--input_format", choices=[".bin", ".txt"], 

                        help="input model format", default="") 

    args = parser.parse_args() 

    return args 

 

 

# r is the point with a distance from the line 

# p and q are the given points on the line 

def t(p, q, r): 

    x = p-q 

    return np.dot(r-q, x)/np.dot(x, x) 

 

def d(p, q, r): 

    return np.linalg.norm(t(p, q, r)*(p-q)+q-r) 

 

def projectionvector(u,v): 

    # Projection of Vector u on Vector v 

    # finding norm of the vector v 

    v_norm = np.sqrt(sum(v**2))  
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    # finding dot product using np.dot() 

    return (np.dot(u, v)/v_norm**2)*v 

 

def trianglearea(p1,p2,p3): 

 

    v1 = p1 - p2 

    v2 = p1 - p3 

    v3 = p2 - p3 

 

    normv1 = np.sqrt(sum(v1**2)) 

    normv2 = np.sqrt(sum(v2**2)) 

    normv3 = np.sqrt(sum(v3**2)) 

 

    # Calculate the semi-perimeter 

    s = (normv1 + normv2 + normv3) / 2 

 

    # Calculate the area 

    area = (s*(s-normv1)*(s-normv2)*(s-normv3)) ** 0.5 

    return area 

 

 

def unit_vector(vector): 

    # Returns the unit vector of the vector. 

    return vector / np.linalg.norm(vector) 

 

 

def angle_between(v1, v2): 

    # Returns the angle in radians between vectors 'v1' and 'v2':: 

 

    # Angle_between((1, 0, 0), (0, 1, 0)) 

    # 1.5707963267948966 

    # Angle_between((1, 0, 0), (1, 0, 0)) 

    # 0.0 

    # Angle_between((1, 0, 0), (-1, 0, 0)) 

    # .141592653589793 

     

    v1_u = unit_vector(v1) 

    v2_u = unit_vector(v2) 

    return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) 

 

def main(): 

 

    #args = parse_args() 

    #model_path = args.input_model 

    #laserscan_path = args.laserscan_model 

    #imagelist_path = args.exporttext_model 

    model_path = "/home/ahmethan/Desktop/pointcloud/winr/6/process" 

    laserscan_path = "/home/ahmethan/Desktop/pointcloud/winr/6/process/laseralign8" 

    points3D_path = laserscan_path + "/points3D.txt" 

    modelpc3_path = model_path + "/points3D.txt" 

    imagelist_path = "/home/ahmethan/Desktop/pointcloud/winr/6/process/text/im-

ages.txt" 

 

    with open(imagelist_path) as f: 

        templist = f.readlines() 

 

    image_names = [] 

    for temp in templist: 

        index = temp.find(".") 

        if index != -1: 

            subtemp = temp[index-3:index] 

            image_names.append(int(subtemp)) 

 

    points3dlaser = read_points3D_text(points3D_path) 

    print("Total number of points in the laser-scanned point cloud is " + 

str(len(points3dlaser)) +".") 

 

    # Read COLMAP model 

    model = Model() 



Appendix 83 
 

    #model.read_model(model_path, ext=args.input_format) 

    model.read_model(model_path, ext=".txt") 

 

    images = model.images 

 

    found_images = [] 

    del_list = [] 

 

    # Search additional images inside exported model 

    for img in images: 

        prev_len = len(found_images) 

        for x in image_names: 

            if x == img: 

                found_images.append(x) 

                print("Camera pose of image" + str(x) + ".jpeg is found.") 

        if prev_len == len(found_images): 

            del_list.append(img) 

 

    # Uncomment this section to choose only one image for further process 

 

    num_img = int(input("Enter the image number to find captured points: ")) 

    for img_id in found_images: 

        if img_id != num_img: 

            del_list.append(img_id) 

    found_images.clear() 

    found_images.append(num_img) 

     

 

    # Delete unrelated camera poses from images dictionary 

    for delete in del_list: 

        images.pop(delete) 

 

 

    model.images = images 

    points3dlaser = read_points3D_text(points3D_path) 

 

    model.create_window() 

    model.add_cameras(scale=1) 

 

    for imageid in found_images: 

 

        points = cameradict[imageid].points 

        lines = cameradict[imageid].lines 

        widthcalc = np.sum((points[1]-points[2])**2, axis=0) 

        width = np.sqrt(widthcalc) 

        heightcalc = np.sum((points[2]-points[4])**2, axis=0) 

        height = np.sqrt(heightcalc) 

         

        framecenter = (((points[1]+points[3])/2)+((points[2]+points[4])/2))/2 

        framevec = framecenter-points[0] 

        framevec_norm = np.sqrt(sum(framevec**2)) 

        point_num = 0 

 

        for id in points3dlaser: 

 

            testpoint = points3dlaser[id].xyz 

 

            pointvec = testpoint-points[0] 

            provec = projectionvector(pointvec,framevec) 

            provec_norm = np.sqrt(sum(provec**2)) 

 

            width_trial = (width*provec_norm)/framevec_norm 

            height_trial = (height*provec_norm)/framevec_norm 

                         

            center_to_corner = np.sqrt(((width_trial)/2)**2+((height_trial)/2)**2) 

            norm_provec = np.sqrt(sum(provec**2)) 

            norm_cornervec = np.sqrt((center_to_corner**2)+(norm_provec**2)) 

            line1vec = points[1]-points[0] 

            line2vec = points[2]-points[0]  

            line3vec = points[3]-points[0] 
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            line4vec = points[4]-points[0] 

 

            normline1 = np.sqrt(sum(line1vec**2)) 

            normline2 = np.sqrt(sum(line2vec**2)) 

            normline3 = np.sqrt(sum(line3vec**2)) 

            normline4 = np.sqrt(sum(line4vec**2)) 

 

            corner1vec = (norm_cornervec/normline1)*line1vec 

            corner2vec = (norm_cornervec/normline2)*line2vec 

            corner3vec = (norm_cornervec/normline3)*line3vec 

            corner4vec = (norm_cornervec/normline4)*line4vec 

 

            corner1point = corner1vec + points[0] 

            corner2point = corner2vec + points[0] 

            corner3point = corner3vec + points[0] 

            corner4point = corner4vec + points[0] 

 

            rectangle_area = width_trial * height_trial 

 

            area1P4 = trianglearea(corner1point,testpoint,corner4point) 

            area4P3 = trianglearea(corner4point,testpoint,corner3point) 

            area3P2 = trianglearea(corner3point,testpoint,corner2point) 

            areaP21 = trianglearea(testpoint,corner2point,corner1point) 

 

            totalarea = area1P4 + area4P3 + area3P2 + areaP21 

             

            if totalarea < rectangle_area: 

                if angle_between(provec,framevec) == 0.0: 

                    point_regis-

ter(points3dlaser[id].id,points3dlaser[id].xyz,points3dlaser[id].rgb,points3dlaser[

id].error, 

                                points3dlaser[id].im-

age_ids,points3dlaser[id].point2D_idxs) 

                    point_num += 1 

         

        print("Camera pose of image" + str(imageid) + ".jpeg captures " + 

str(point_num) + " points from laser-scanned point cloud.") 

 

 

    write_points3D_text(pointdict, modelpc3_path) 

    #write_points3D_text(points3dlaser, modelpc3_path) 

    #model.read_model(model_path, ext=args.input_format) 

    model.read_model(model_path, ext=".txt") 

    model.add_points() 

    model.show() 

     

    result_path = "/home/ahmethan/Desktop/pointcloud/winr/6/result" 

    result_image_path = result_path + "/images.txt" 

    result_points_path = result_path + "/points3D.txt" 

    result_camera_path = result_path + "/cameras.txt" 

    cameras = model.cameras 

 

    write_cameras_text(cameras,result_camera_path) 

    write_images_text(images,result_image_path) 

    write_points3D_text(pointdict, result_points_path) 

 

 

if __name__ == "__main__": 

    main() 
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