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Abstract
In grape berries (Vitis vinifera L.), sesquiterpenes are mainly accumulated as hydrocarbons in the epicuticular wax layer of 
grapes, whereas monoterpenes, which are predominantly present as alcohols, are glycosylated and are stored as glycosides 
in the vacuoles of grape berry cells. In this study, extensive analysis of grape berry hydrolysates by means of comprehen-
sive two-dimensional gas chromatography–time-of-flight–mass spectrometry demonstrated that glycosylated sesquiterpene 
alcohols show very little structural diversity when compared to the sesquiterpene hydrocarbon fraction in the cuticle and are 
glycosylated to a rather low extent when compared to monoterpenols. Twenty-four enzymatically released terpenols were 
found in hydrolysates of the aromatic white wine variety Gewürztraminer (V. vinifera subsp. vinifera) after previous solid-
phase extraction and headspace solid-phase microextraction. The detection of only three sesquiterpene alcohols, namely 
farnesol, nerolidol and drimenol, shows that most sesquiterpene hydrocarbons do not have a related hydroxylated structure in 
grapes. Nevertheless, the presence of the acyclic aglycone farnesol and nerolidol may be of importance for the wine aroma, 
since these structural isomers can be converted into numerous sesquiterpenes by nonenzymatic acid-catalyzed reactions 
during wine production. Grape-derived glycosidically bound sesquiterpene alcohols, therefore, represent, in addition to free 
sesquiterpene hydrocarbons, another pool of compounds that may influence the aroma profile of wines.
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Introduction

Terpenes play a key role as plant secondary metabolites for 
the aroma of grapes (Vitis vinifera L.) and wines [1]. Both 
mono-  (C10) and sesquiterpenes  (C15), which are formed 

via the cytosolic mevalonate-dependent metabolic pathway 
(MVA) and the mevalonate-independent 1-deoxy-d-xylulose 
5-phosphate/2-C-methyl-d-erythritol 4-phosphate biosynthe-
sis pathway (DOXP/MEP) occurring in plastids [2, 3], are 
of central importance for the aroma [4, 5]. According to 
current knowledge, monoterpenes are stored predominantly 
as sugar bound alcohols in the vacuole whereas sesquit-
erpenes are accumulated as hydrocarbons in the nonpolar 
epicuticular wax layer of grape berries [6]. While free and 
volatile terpenes contribute directly to the aroma, a much 
larger fraction of glycosidically bound, non-volatile and 
thus aroma-inactive terpenoids is referred to as “hidden 
aromatic potential” in ripe grapes [7–9]. In 1974, the first 
evidence of glycosidically bound terpenes in grape berries 
was published by Cordonnier and Bayonove [10]. In the fol-
lowing decade, Williams et al. confirmed the presence of 
monoterpene glycosides by hydrolytic cleavage of the gly-
cosidic bond, identifying both acyclic monoterpene alco-
hols such as linalool, nerol and geraniol as well as mono-
cyclic terpenols such as α-terpineol as released aglycones 
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[11–13]. 6-O-α-l-Rhamnopyranosyl-β-d-glucopyranosides, 
6-O-α-l-arabinofuranosyl-β-d-glucopyranosides, 
6-O-β-d-apiofuranosyl-β-d-glucopyranosides and β-d-
glucopyranosides could be determined as sugar residues 
of monoterpene glycosides [11, 14]. While monoterpene 
glycosides in grapes have been extensively investigated in 
recent years [15–18], glycosidically bound sesquiterpenes 
in V. vinifera are still largely unknown. The first sesquiter-
pene glycosides in grapes were recently tentatively identi-
fied using ultra-high-performance liquid chromatography 
(UHPLC) quadrupole time-of-flight (qTOF) mass spec-
trometry (MS), but without further characterization of the 
aglycones [19]. Since glycosidically bound terpene alcohols 
are partly released both enzymatically and acid catalytically 
during winemaking [20, 21], grape-derived sesquiterpene 
glycosides represent an unexplored aroma potential, in addi-
tion to monoterpene glycosides. The potential importance 
of sesquiterpene alcohols for the wine aroma has recently 
been demonstrated by microvinification experiments. The 
yeast-derived, acyclic sesquiterpene alcohols nerolidol and 
farnesol can be converted into numerous other sesquiter-
penes by acid-catalyzed reactions during the vinification 
process, thus significantly altering the sesquiterpene profile 
of wines [22]. In the presented study, the terpene alcohols 
released from grape-derived terpene glycosides were ana-
lyzed using the Gewürztraminer variety. The glycosidically 
bound terpenes from isolated exocarp of grapes were sepa-
rated and concentrated using solid-phase extraction (SPE) 
and subsequently hydrolyzed enzymatically. The hydro-
lysates were analyzed by comprehensive two-dimensional 
gas chromatography–time-of-flight–mass spectrometry 
(GC × GC–TOF–MS) after previous headspace solid-phase 
microextraction (HS-SPME).

Materials and methods

Chemicals

Milli-Q water, ethanol (purity: ≥ 99.8%) and zinc sulfate 
(purity: 99.9%) were purchased from VWR International 
(Darmstadt, HE, Germany). The solvents dichlorometh-
ane (purity: 99.99%) and methanol (purity: ≥ 99.9%) were 
acquired from Fisher Scientific UK Limited (Loughbor-
ough, Leicestershire, UK) and Honeywell (Seelze, NI, Ger-
many). Di-sodium hydrogen phosphate (purity: ≥ 99%) and 
sodium dihydrogen phosphate monohydrate (purity: ≥ 99%) 
were obtained from Sigma-Aldrich Chemie GmbH 
(Taufkirchen, BY, Germany). Potassium ferrocyanide tri-
hydrate (purity: ≥ 99%) was acquired from Acros Organics 
(Geel, Antwerp Province, Belgium). Citric acid monohy-
drate (purity: ≥ 99.5%) and geraniol (purity: ≥ 90%) were 
purchased from Carl Roth GmbH & Co. KG (Karlsruhe, 

BW, Germany) and the enzyme preparation (β-glucosidase, 
polygalacturonase) from Oenobrands SAS (Montpel-
lier, Occitanie, France). The compounds citronellol 
(purity: ≥ 95%), nerol (purity: 98.7%), carvacrol (purity: 
99.4%), thymol (purity: > 99.9%), menthol (purity: 99.3%), 
dihydrocitronellol (purity: 98.3%) and a  C7–C30 saturated 
alkane standard solution (certified reference material) were 
obtained from Sigma-Aldrich (Steinheim, BW, Germany). 
Nerolidol (cis + trans, purity: 97.5%), farnesol (mixture of 
isomers, purity: 98.0%), α-terpineol (purity: 96%) and lin-
alool (purity: 98.5%) were purchased from Alfa Aesar (Ward 
Hill, MA, USA).

Sample material

The grape berries were sampled on two dates, September 
15, 2016 and October 4, 2016 from two aromatic clones 
(11 Gm and FR 46-106) of Gewürztraminer at the Hochs-
chule Geisenheim University (Geisenheim, HE, Germany; 
GPS coordinates: 49.98505, 7.94582; altitude: 96 m a.s.l). 
The stage of maturation of the grapes was described on the 
basis of refractometrically determined soluble solids (Sep-
tember 15, 2016: 11 Gm, 19.0°Bx; FR 46-106, 19.5°Bx and 
October 4, 2016: 11 Gm, 21.0°Bx; FR 46-106, 23.0°Bx).

Sample preparation

Tissue extraction

The isolation of the terpene glycosides from the skin of 
grape berries was carried out based on a previous paper 
[23]. As described, the skin of the grapes was peeled off 
and adherent pulp was removed. For the terpene analysis, 
20 g (fresh weight) of the grape berry skin was grounded 
in liquid nitrogen. The material was extracted under nitro-
gen and exclusion of light in a phosphate buffer (0.1 M; 
 Na2HPO4/NaH2PO4; pH 7) and 13% (v/v) ethanol for 24 h. 
The extracts were clarified with Carrez reagents and then 
centrifuged at 24,000 × g, 5 °C for 20 min. The supernatant 
was purified and concentrated by solid-phase extraction.

Solid‑phase extraction (SPE)

To separate the free terpenes from the glycosidically bound 
terpenes a 500 mg Lichrolut EN column from Merck KGaA 
(Darmstadt, HE, Germany) was conditioned as stated previ-
ously [24]. The free terpenes were eluted with dichlorometh-
ane and the glycosidically bound terpenes with methanol. 
The fraction containing the separated glycosidically bound 
terpenes was concentrated under reduced pressure until 
dryness.
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Hydrolysis

The residue was dissolved in 20 mL citrate-HCl-buffer 
(0.1 M; pH 4) and 100 mg of the enzyme preparation was 
added. All samples were stored at − 80 °C until analysis. 
Sample preparation was performed three times, resulting in 
three biological replicates.

Analysis of the hydrolysates

The hydrolysates of the grape berries were thawed and 
homogenized before analysis. A Combi PAL-xt autosa-
mpler with a heatable agitator and fiber conditioning sta-
tion from CTC Analytics (Zwingen, BL, Switzerland) was 
used. The terpene alcohols were extracted from headspace 
using a mixed SPME fiber for volatile and semivolatile 
compounds  (C3–C20) from Supelco (Bellefonte, PA, USA), 
based on a method described by Welke et al. [25]. After 
each analysis, the SPME fiber was baked-out to avoid 

sample carryover. In addition, empty vials were measured 
as control. The injection was carried out into a 7890B gas 
chromatograph from Agilent Technologies (Bellefonte, 
PA, USA) equipped with a ZX2 GC × GC cryogenic modu-
lator from Zoex Corp (Houston, TX, USA). Gas chromato-
graphic separation was performed by combining a highly 
polar capillary column from Agilent Technologies (Belle-
fonte, PA, USA) with a medium polar GC column from 
MEGA s.n.c. (Legnano, MI, Italy), a combination that was 
used in a previous work for the analysis of sesquiterpene 
hydrocarbons in grape berry exocarp [26]. The GC × GC 
separation was followed by a mass spectrometric analysis 
using a BenchTOF-Select time-of-flight–mass spectrome-
ter from Markes International Limited (Llantrisant, Wales, 
UK). The method parameters are listed in Table 1. Avail-
able mono- and sesquiterpene standards were diluted in 
ethanol and the resulting 1 mg/kg solutions were injected 
with a liquid syringe (1 μL injection volume, split mode).

Table 1  HS-SPME–GC × GC–
TOF–MS conditions used for 
the analysis of hydrolysates 
from grape berries 
(Gewürztraminer cultivar)

a Divinylbenzene (DVB)/carboxen (CAR)/polydimethylsiloxane (PDMS)
b Length × internal diameter × film thickness

Conditions

HS-SPME
 HS vial 10 mL headspace vial (screw cap)
 Sample volume 1 mL hydrolysate
 SPME fiber DVB/CAR/PDMSa; 50/30 µm; 2 cm; Stableflex; 24 Ga
 Incubation conditions 45 °C/0 rpm/10 min
 Extraction conditions 45 °C/0 rpm/30 min
 Desorption conditions 250 °C/5 min
 Fiber bake-out conditions 250 °C/15 min

GC × GC
 Injector mode Splitless
 Injector temperature 250 °C
 1D GC column DB-WAX Ultra Inert (30 m × 0.25 mm × 0.25 µmb)
 2D GC column MEGA-17 MS FAST (1.7 m × 0.10 mm × 0.10 µmb)
 Carrier gas Helium
 Gas flow Constant flow, 1.0 mL min−1

 Initial inlet pressure 24 psi
 GC oven program 35 °C (5 min)/5 °C min−1 to 120 °C 

(0 min)/3 °C min−1 to 220 °C (5 min)
 Modulator temperature offset + 25 °C
 Modulation period 5 s
 Pulse length 350 ms

TOF–MS
 MS transfer line temperature 250 °C
 Ion source temperature 250 °C
 Ionization mode Electron impact (EI), − 70 eV
 Detector voltage − 2214 V
 Mass range 35–250 m/z
 Scan rate 100 Hz
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Data analysis

Data were collected in ProtoTof (version 2.0) as *. LSC 
files and processed using the software platform Chrom-
Space (version 1.5.1). Both programs are from Markes 
International Limited (Llantrisant, Wales, UK). The data 
files were subjected to a dynamic background compensa-
tion (dbc) with a peak width of 100 ms. Data analysis was 
carried out using filtering methods (extracted-ion chro-
matogram, parametric filtering settings) and integration 
algorithms (persistence, deconvolution). Compound iden-
tification was performed using mass spectra (MS), reten-
tion indices (RI) and authentic standards (STD). Recorded 
mass spectra were compared with library spectra from the 
National Institute of Standards and Technology (NIST) 
database of the mass spectral search program (NIST, 
Gaithersburg, MD, USA; version 2.2). The similarity of 
the mass spectra was indicated by match factors (MF) 
and reverse match factors (RMF). After liquid injection 
of a saturated n-alkane standard solution  (C7–C30), the 
retention indices  (RIexp) were calculated using the method 
of van Den Dool and Kratz for temperature-programmed 
gas chromatography [27]. The mono- and sesquiterpene 
alcohols were subsequently identified by comparing the 
experimentally determined retention indices with lit-
erature values  (RIlit). The sesquiterpene alcohols (E)-
nerolidol and farnesol as well as the monoterpene alco-
hols linalool, menthol, dihydrocitronellol, α-terpineol, 
β-citronellol, nerol, geraniol, thymol and carvacrol were 
additionally identified by commercially available stand-
ard compounds. To determine the ratio of sesquiterpene 
aglycones to monoterpene aglycones, the mean values of 
the peak areas of all terpenols were summed and the per-
centage of each analyte calculated.

Results and discussion

The gas chromatographic separation of terpene aglycones 
from grapes (V. vinifera L.) requires prior cleavage of the 
glycosidic bond by means of enzymes or acids. By com-
bining suitable extraction methods (SPE–HS-SPME) with 
comprehensive two-dimensional gas chromatography–time-
of-flight–mass spectrometry (GC × GC–TOF–MS), a total of 
24 terpene aglycones were found in hydrolysates of grape 
berry exocarp. Figure 1 shows the two-dimensional separa-
tion of the released terpene alcohols.

Twenty-one monoterpene alcohols were identified in the 
hydrolysates of grape berries of the terpene-rich white wine 
variety Gewürztraminer (V. vinifera subsp. vinifera, clones 
11 Gm and FR 46-106). Among these, the structural diver-
sity of the p-menthane-related monoterpenols is remark-
able. The detection of menthol is particularly interesting 
because its precursor piperitone contributes to the positive 
mint aroma of red Bordeaux wines, as described by Picard 
et al. [28]. The large number of monoterpenols found in the 
hydrolysates is in marked contrast to the few free monoter-
pene alcohols found in the volatile profile of ripe grape ber-
ries (Gewürztraminer cultivar) identified by May [29]. The 
GC × GC–TOF–MS measurements thus confirm the assump-
tion that monoterpenols are predominantly glycosidically 
bound in grapes [6].

Although more than 80% of the peak area of all terpene 
aglycones detected can be attributed to only six monoterpe-
nols, nerol, α-terpineol, linalool, geraniol, β-citronellol and 
dihydrocarveol, the first detection of grape-derived sesquit-
erpene aglycones in the Gewürztraminer variety, especially 
(E)-nerolidol and farnesol [30, 31], is noteworthy. While 
previous studies showed that free mono- and sesquiter-
pene hydrocarbons as well as monoterpene alcohols mainly 
characterize the wine aroma, the detection of grape-derived 

Fig. 1  GC × GC–TOF–MS total ion chromatogram (TIC) of a hydro-
lysate from grape berries of the white wine variety Gewürztraminer 
(Vitis vinifera subsp. vinifera). The x axis represents the primary 
column retention time (1tR) and the y axis corresponds to the reten-
tion time on the secondary column (2tR). The peak intensity, which is 
proportional to analyte concentration, is represented by color-coding 

from low (violet) to high (red) on a white background. Note that a 
logarithmic color gradient has been selected, as numerous trace vol-
atile compounds would otherwise not be visible in a single contour 
plot due to some very dominant peaks. Peak numbers of mono- and 
sesquiterpene aglycones released by enzymatic hydrolysis refer to 
those of Fig. 2 and Table 2
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sesquiterpene aglycones reveals an undiscovered pool of 
potential aroma components in the Gewürztraminer variety.

It is known that wine yeasts are able to form the ses-
quiterpene alcohols farnesol and nerolidol [32]. Recently, 
deuterium-labeling experiments showed that yeast-derived 
farnesol and nerolidol significantly alter the terpene pro-
file of wines during the fermentation process [22]. The ses-
quiterpene alcohols act as precursors for the formation of 
numerous other sesquiterpenes. Due to the slightly acidic 
pH during vinification, many sesquiterpenes can already be 
formed by acid catalysis from nerolidol and farnesol without 
the presence of corresponding sesquiterpene cyclases [33].

In addition to the acyclic sesquiterpene alcohols nero-
lidol and farnesol, the first tentative and indirect detection 
of glycosidically bound drimenol in grape berry exocarp 
was obtained by GC × GC–TOF–MS analysis. The bicyclic 
drimenol has a drimane skeleton that has not been found in 
V. vinifera L. so far. The detection of drimenol is particu-
larly interesting due to the antifungal activity against Bot-
rytis cinerea [34], a pathogen that affects numerous plants 
including grapes [35]. At this point, it should be mentioned 

that drimenol can also be formed by rearrangement from 
farnesol [36].

The fact that only three sesquiterpene alcohols were 
found in the hydrolysates after extensive GC × GC analysis 
shows that sesquiterpene alcohols are rather by-products 
of sesquiterpene hydrocarbon synthases that are respon-
sible for the biosynthesis of structurally diverse carbon 
skeletons. Glycosylated sesquiterpene alcohols are prob-
ably stored in the vacuole of the grape berry cell as water-
soluble flavor precursors, similar to glycosylated monoter-
pene alcohols [37].

It should also be noted that both, numerous monoter-
pene hydrocarbons and numerous monoterpene alcohols 
are present in grape berries. In the case of sesquiterpenes, 
hydrocarbons dominate the volatile profile without the 
corresponding sesquiterpene alcohol analogues. However, 
these grape-derived glycosidically bound sesquiterpene 
alcohols, in particular farnesol and nerolidol, represent 
another important source of aroma precursors that may 
influence the wine aroma.

Fig. 2  Structural formulas of 
the enzymatically released 
terpene alcohols from grape-
derived terpene glycosides, 
grouped by sesquiterpene and 
monoterpene aglycones. 1–2 
acyclic sesquiterpene alcohols, 
3 bicyclic sesquiterpene alco-
hol, 4–11 acyclic monoterpene 
alcohols, 12–23 monocyclic 
monoterpene alcohols, 24 bicy-
clic monoterpene alcohol
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Table 2  Identified terpene aglycones enzymatically hydrolyzed from terpene glycosides in Gewürztraminer grapes (Vitis vinifera subsp. vinifera) 
using SPE–HS-SPME–GC × GC–TOF–MS

a Identified by retention index, mass spectrum and authentic standard
b Tentatively identified by retention index and mass spectral data
c Percentage of aglycone determined by the sum of peak areas. The mean value and the standard deviation resulting from the integration of three 
biological replicates are given
d Experimental retention indices on a polar DB-WAX Ultra Inert column calculated according to the method of van Den Dool and Kratz for 
temperature-programmed gas chromatography
e Retention indices reported in the literature for equivalent capillary GC columns
f Mean mass spectral match quality. The mean values of the match factors (MF) and reverse match factors (RMF) for the respective terpene agly-
cones are listed
g Liquid injection of an authentic standard for compound identification
h RIexp value has been extrapolated
i An authentic standard was commercially available (a.) and was measured using GC × GC–TOF–MS. The purity of this reference material was 
documented in the “Materials and methods”
j An authentic standard material was not available (n.a.)

No. Terpene aglycone Molecular formula Percentagec Identification criteria

RIexp
d RIlit

e MS (MF, RMF)f STDg

Sesquiterpene aglycones
 1 (E)-Nerolidola C15H26O 0.47 ± 0.31% 2040 2040 [38] 805, 852 a.i

 2 Farnesola C15H26O 2.68 ± 1.71% 2357 2354 [39] 832, 835 a.i

 3 Drimenolb C15H26O 0.19 ± 0.03% 2505 h 2494 [40] 800, 816 n.a.j

Monoterpene aglycones
 20 (Z)-Furan linalool  oxideb C10H18O2 3.05 ± 0.72% 1454 1454 [41] 842, 850 n.a.j

 21 (E)-Furan linalool  oxideb C10H18O2 3.39 ± 1.02% 1483 1483 [42] 804, 814 n.a.j

 10 Linaloola C10H18O 13.84 ± 0.84% 1547 1547 [43] 797, 808 a.i

 11 Hotrienolb C10H16O 0.13 ± 0.04% 1608 1613 [44] 729, 763 n.a.j

 12 Menthola C10H20O 0.86 ± 0.13% 1645 1644 [45] 856, 874 a.i

 24 (E)-Pinocarveolb C10H16O 1.19 ± 0.19% 1666 1659 [46] 815, 831 n.a.j

 4 Dihydrocitronellola C10H22O 0.17 ± 0.02% 1669 1666 [47] 732, 748 a.i

 14 α-Terpineola C10H18O 15.70 ± 1.58% 1703 1703 [48] 848, 889 a.i

 13 Dihydrocarveolb C10H18O 10.43 ± 0.64% 1709 1702 [49] 724, 757 n.a.j

 22 (Z)-Pyran linalool  oxideb C10H18O2 2.05 ± 0.45% 1744 1744 [50] 774, 801 n.a.j

 5 α-Citronellolb C10H20O 0.25 ± 0.03% 1759 1767 [47] 883, 924 n.a.j

 23 (E)-Pyran linalool  oxideb C10H18O2 0.52 ± 0.51% 1764 1763 [51] 828, 839 n.a.j

 6 β-Citronellola C10H20O 11.33 ± 2.02% 1767 1767 [52] 846, 859 a.i

 7 Nerola C10H18O 20.45 ± 3.91% 1805 1803 [53] 813, 821 a.i

 9 (Z)-Iso-geraniolb C10H18O 0.17 ± 0.04% 1835 1849 [54] 767, 789 n.a.j

 8 Geraniola C10H18O 11.50 ± 0.44% 1848 1848 [55] 804, 809 a.i

 15 p-Mentha-1-en-9-olb C10H18O 0.17 ± 0.03% 1943 1948 [56] 814, 868 n.a.j

 16 Perillyl  alcoholb C10H16O 0.03 ± 0.01% 2000 2004 [57] 693, 762 n.a.j

 19 Cuminolb C10H14O 0.08 ± 0.01% 2106 2101 [58] 763, 804 n.a.j

 17 Thymola C10H14O 0.84 ± 0.19% 2182 2183 [59] 876, 898 a.i

 18 Carvacrola C10H14O 0.54 ± 0.17% 2213 2212 [60] 905, 916 a.i
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