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Abstract
Crude oil plays a significant role in economic developments in the world. Under-
standing the relationship between oil price changes and stock market returns helps to
improve portfolio strategies and risk positions. Kilian (Am Econ Rev 99(3): 1053–
1069, 2009) proposes to decompose the oil price into three types of oil price shocks by
using a structural vector autoregression model. This paper investigates the dynamic,
nonlinear dependence and risk spillover effects between BRICS stock returns and the
different types of oil price shocks using an appropriate multivariate and dynamic cop-
ula model. Risk is measured using the conditional value at risk, conditioning on one
or more simultaneous oil and stock market shocks. For this purpose, a D-vine-based
quantile regression model and the GAS copula model are combined. Our results show,
inter alia, that the early stages of the Covid-19 crisis lead to increasing risk levels in
the BRICS stock markets except for the Chinese one, which has recovered quickly
and therefore shows no changes in the risk level.

Keywords Oil prices · Risk management · Time-varying copula · D-vine copula ·
CoVaR

JEL Classification C12 · C32 · C52 · C53

1 Introduction

Over the past decades, the emerging countries Brazil, Russia, India, China, and South
Africa (BRICS) havegrown rapidly and theyhavebecomemore attractive for investors.
In 1990, these five countries only generated about 11% of global gross domestic prod-
uct (GDP), whereas in 2018 it was 32%. In the future, it is expected that this proportion
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will grow even more. This economic growth was accompanied by an increase of oil
consumption. Therefore, it is important for global investors to investigate the relation-
ship and risk spillover effects between the crude oil market and BRICS stock markets.
This is particularly relevant in the light of increased financialization of the oil market,
which is subject to speculation of financial investors; see Kilian and Murphy (2014);
Kilian and Lee (2014). Consequently, there is danger of risk spillovers that investors
and policy makers must be aware of.

Earlier studies focus on interactions between oil price shocks and the macroecon-
omy; see, e.g., Hamilton (1983), Bernanke (1983), Gilbert andMork (1986), Hamilton
(1988), Barsky and Kilian (2004), or Jones et al. (2004). Later, a considerable amount
of literature considers the stock markets as the stock market usually is a good indicator
for the economy in a country. For example, (Huang et al. (1996)) find no evidence for
correlation between oil future returns and US stock returns. Sadorsky (1999), Jones
and Kaul (1996) and Miller and Ratti (2009) suggest that oil prices have a negative
influence on stock market returns. However, Sadorsky’s (2001) multifactor market
model shows a positive relationship between oil price changes and stock price returns
in the Canadian oil and gas industry. According to Basher and Sadorsky (2006) and
Wang et al. (2013), there is a positive relationship for oil-exporting countries and a
negative one for oil-importing countries.

However, these studies do not consider Kilian’s (2009) conclusion that not all oil
price shocks are alike. He proposes an approach that decomposes the real price of
oil into three components, i.e., three kinds of oil price shocks. Shocks to the current
physical availability of crude oil, the supply-side shocks, occur for instance in the
event of natural disasters. The aggregate demand shocks are shocks in the current
demand for crude oil driven by fluctuations in the global business cycle, such as
the global financial crisis. The precautionary demand shocks result from shifts in
the precautionary demand for oil. Consequently, many subsequent studies follow the
approach of Kilian (2009) and decompose the oil price shocks into the three different
components by using a structural VAR (SVAR)model. Kilian and Park (2009) observe
that oil price shocks caused by a global economic expansion have a positive effect on
stock prices, whereas oil-demand shocks have a negative impact. Oil supply shocks
seem to have a less significant influence on stock prices. Filis et al. (2011) investigate
the time-varying correlation between stock market prices and oil prices using a DCC-
GARCH-GJR approach in various oil-importing and oil-exporting countries. Their
results show that there is a positive dependence between stock returns and oil demand-
type shocks. Mokni (2020) recognizes by using a time-varying parameter regression
model that stock returns react to the demand shocks more than to the supply shocks.
Additionally, the effect of supply shocks is in general limited and negative, whereas
aggregate demand shocks have a positive impact on stock returns. Basher et al. (2012)
analyze the relationship between oil prices, exchange rates, and stockmarkets and find
that positive oil supply shocks do not have a severe effect on the stock market prices.
An unanticipated demand increase has a small positive impact on stock market prices.
Moreover, many studies also show that the relationship between oil price shocks and
stock market returns depends on the type of the economy, the political situation, and
the importance of oil for the country. Due to the oil intensity in emerging countries, the
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economic impact of oil price shocks on emerging countries is generally higher than in
industrialized countries (Li et al. 2020; Bouoiyour and Selmi 2016; Maghyereh 2006).

Many studies focus on linear relationship or even make the distributional assump-
tion of normality. Moreover, they ignore the time variation of the relationship. In order
to also capture nonlinear and asymmetric relationships, some studies employ the cop-
ula approach to explore the dependence between stock prices and oil price shocks.
Aloui et al. (2013), Sukcharoen et al. (2014), and Li et al. (2020) use time-varying
copula models to study the time-dependent relationship between oil prices and stock
markets in various countries worldwide. However, these studies do not make a dis-
tinction between the different types of oil price shocks. A paper which combines the
time-varying copula analysis and the SVAR-based decomposition of oil prices is the
paper of Ji et al. (2018). This paper analyzes the dynamic dependence of BRICS coun-
tries’ stock returns and the three oil price shocks using the dynamic copula model by
Patton (2006). Furthermore, a copula-based CoVaR approach is employed to study the
risk spillover effects of oil price shocks on stock returns of the BRICS countries from
the perspective of extreme market risks. The authors conclude that the dependence
is generally time-varying and positive. The oil-specific demand shocks are the most
important factor, and oil price shocks from the supply side do not significantly influ-
ence the stock market returns. The only exception is China, where the stock market is
more sensitive to oil price increases resulting from oil supply shocks.

We consider a similar problem as Ji et al. (2018), studying the dependence prop-
erties between stock market returns in BRICS countries and the different types of oil
prices shocks. However, we make the following contributions. First, we improve the
bivariate modeling of time-varying copula dependence parameter by applying the gen-
eralized autoregressive score model (GAS), proposed by Creal et al. (2008). As shown
in Manner and Reznikova (2012), the dynamic copula model by Patton (2006) is infe-
rior to other specifications for time-varying copulas, so application of the GAS model
is strictly preferable. Second, in order to be able to analyze also multivariate depen-
dence structures, we extend themodel by using a dynamicD-vine copulamodel, which
combines the GAS model and the D-vine copula model, as proposed in Almeida et al.
(2016). Third, we measure the spillover effects of multiple risk factors jointly using a
copula-based CoVaR approach. As the computation of the copula-based CoVaR con-
ditional on multiple variables exceeding certain risk levels is a non-standard problem,
we propose using the D-vine-based quantile regression by Kraus and Czado (2017) to
compute the required conditional quantile function. For this, we extend this approach
for time-varying copulas. For a static vine copula a similar approach to computing
the CoVaR has been proposed by Jiang et al. (2021). Finally, our data set spans the
time period February 1996 to April 2020. With this data set, we can also derive some
conclusions to early effects from Covid-19 crisis on the relationship between stock
markets and the oil market.

This paper is organized as follows. Section 2 describes the econometric method-
ology. Section 3 presents the empirical analysis including the description and some
further methodological issues. Finally, Sect. 4 concludes the paper.
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2 Methodology

We need an adequate model for the joint distribution of a vector time-series and
follow the ideas of Almeida et al. (2016) combining the D-vine copula model with a
generalized autoregressive score (GAS) model to allow for time-varying dependence
parameters. This approach leads to the favorable situation that the joint distribution
is separated into several bivariate time-varying copulas and its marginals. Then, we
can apply a sequential maximum likelihood estimator (MLE) to estimate the required
parameters.

We aim to model the joint distribution of a d-dimensional time series rt =
(r1,t , . . . , rd,t ) for t = 1, . . . , T , where each ri,t follows a ARMA (m, n)-GARCH
(p, q) model, i.e.,

ri,t = μi +
m∑

j=1

φ j ri,t− j + εi,t +
n∑

j=1

θ jεi,t− j = μi,t + εi,t

εi,t = σi,t zi,t , zi,t ∼ Fi i .i .d.

σ 2
i,t = ωi +

p∑

j=1

α jε
2
i,t− j +

q∑

j=1

β jσ
2
i,t− j , (2.1)

where μi,t = E(ri,t |Ft−1), σ 2
i,t = Var(ri,t |Ft−1) and Fi is the distribution function

of the innovations with zero mean and unit variance. For the error distribution, we
consider the normal and the skewed t-distribution by Hansen (1994). The best fitting
ARMA-GARCH model is selected based on the BIC.

The joint distribution F of the standardized innovations zi,t can nowbe decomposed
according to Sklar’s Theorem into its marginals F1, . . . Fd and its copula C :

F(z1,t , . . . zd,t ) = C(F1(z1,t ), . . . , Fd(zd,t )).

The joint density is given by

f (z1,t , . . . zd,t ) = c(F1(z1,t ), . . . , Fd(zd,t )) ·
d∏

i=1

fi (zi,t ), (2.2)

where c is the corresponding copula density. Estimation of the copula requires trans-
forming the standardized innovations into uniformly distributed variables. For this
purpose, we use the probability integral transformation and define the copula data as
ui,t = Fi (zi,t , δ̂i ), where δ̂i denotes the estimated parameter vector for margin i and
we define ut = (u1,t , . . . , ud,t ). We assume that the parametric copula density c is
time-varying, i.e., ut ∼ c(ut |θ t ,Ft−1; γ ), where Ft−1 is the information set avail-
able at time t − 1, θ t is the time-varying copula parameter, and γ is the vector of
time-independent parameters.

In Sect. 2.1, we introduce the GAS model, which allows modeling time-varying
dependence in bivariate copula models. Section 2.2 introduces D-vine copulas, and in

123



Stock market returns and oil price shocks: A CoVaR analysis...

Sect. 2.3 we combine the time-varying GAS copulas and the D-vine model to obtain a
flexible model allowing for high-dimensional and time-varying dependence. Section
2.4 reviews the value at risk and conditional value at risk, and Sect. 2.5 shows how
D-vine-based quantile regressions can be used to compute the conditional value at risk
in high-dimensional settings.

2.1 Generalized autoregressive score copula model

The generalized autoregressive score (GAS) model was introduced in Creal et al.
(2013). Consider a bivariate time series process (ui,t , u j,t ) for t = 1, . . . , T and fixed
1 ≤ i �= j ≤ d. Assume that its distribution is given by copula c, i.e.,

(ui,t , u j,t ) ∼ c(·, ·; θ
i j
t )

with θ
i j
t ∈ 	 the time-varying parameter of the copula c. Without loss of generality,

we assume that θ i jt is a scalar for all i, j and t . To handle different copula families in a
unified fashion, we parameterize the copulas with Kendall’s τ ∈ (−1, 1), as for many
bivariate copulas there is a one-to-one relationship between the copula parameter and
Kendall’s τ , i.e., there is a function r such that θ

i j
t = r(τ i jt ). We assume that τ

i j
t is

driven by the process λ
i j
t ∈ (−∞,∞) through the inverse Fisher transform ψ ,

τ
i j
t = exp(2λi jt ) − 1

exp(2λi jt ) + 1
=: ψ(λ

i j
t ).

Equivalently, we can expressλ
i j
t = ψ−1(τ

i j
t ) = 0.5·ln(

1+λ
i j
t

1−λ
i j
t
). TheGAS specification

for λ
i j
t is given by

λ
i, j
t = ωi j + δi j s

i j
t−1 + φi jλ

i j
t−1,

where si jt is the scaled score
si jt = Si j,t∇i j,t ,

with the score

∇i j,t = ∂ ln c(ui,t , u j,t |θ i jt ,Ft ; γi j )

∂θ
i j
t

and γi j = (ωi j , φi j , δi j ). The scaling factor Si j,t is defined as the square root of the
inverse of the Fisher information.1

2.2 D-vinemodels

The vine copula model enables us to construct multivariate copulas with a wide class
of bivariate copula families as building blocks. The decomposition of the joint density

1 If the parameter is vector valued, the score is a vector to be scaled by the square root of the information
matrix.
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into conditional pair copulas is not unique, and the number of possible constructions

for a d−dimensional copula density is very large and equal to
(d
2

) · (d − 2)! · 2(d2)
(see Morales-Napoles et al. 2010). Therefore, Bedford and Cooke (2002) introduced
a graphical model called regular vine (R-vine). The R-vine is a sequence of nested
trees, which allows to organize and illustrate the needed pairs of variables and their
corresponding sets of conditioning variables. D-vine copulas are a special case fea-
turing a specific structure. The following statements are the basis for the vine copula
theory. Let (X1, . . . , Xd) be a random vector with joint distribution F and density f ,
respectively. The density f can be decomposed recursively by

f (x1, . . . , xd) =
d∏

k=2

f (xk |x1, . . . , xk−1) · f (x1). (2.3)

Using Sklar’s Theorem, we can rewrite the conditional density f (·|·) , e.g., for dimen-
sion d = 2

f (x1|x2) = c12(F1(x1), F2(x2)) · f1(x1),

where c12 denotes the density of a bivariate copula. Similarly, for dimension d = 3,
we get

f (x1|x2, x3) = c13|2(F1|2(x1|x2), F3|2(x3|x2)|x2) · c12(F1(x1), F2(x2)) · f1(x1).

For simplicity, we introduce for distinct indices i, j, i1, . . . , ik with i < j and i1 <

· · · < ik the abbreviation

ci, j |D := ci, j |D(F(xi |xD), F(x j |xD)), (2.4)

where D := {i1, . . . , ik} and xD := (xi1 , . . . , xik ). With this notation, we can
formulate the decomposition of conditional distribution of (X1, Xk) given X2 =
x2, . . . , Xk−1 = xk−1

f (xk |x1, . . . , xk−1) = c1,k|2:(k−1) · f (xk |x2, . . . , xk−1)

=
[
k−2∏

s=1

cs,k|(s+1):(k−1)

]
· c(k−1),k · fk(xk), (2.5)

where r : s := (r , r + 1, . . . , s) for integers r and s with r < s. Substituting (2.5)
into (2.3) and replacing s = i , k = i + j leads to

f (x1, . . . , xd) =
⎡

⎣
d−1∏

j=1

d− j∏

i=1

ci,i+ j |(i+1):(i+ j−1)

⎤

⎦ ·
[

d∏

k=1

fk(xk)

]
, (2.6)

wherewe drop the arguments of the copulas for simplicity.We see that the joint density
can be separated into its marginal densities and several conditional pair copulas. In
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Fig. 1 D-vine tree representation for d = 5

particular, if the marginal distributions of Xk are uniform for all k = 1, . . . , d, then the
density in (2.6) is called a D-vine copula density and the corresponding distribution
function is a D-vine copula distribution function. In general, ci,i+ j |(i+1):(i+ j−1)(·, ·)
depends on the conditioning variables x(i+1):(i+ j−1), so we make the common
simplifying assumption that this dependence does not hold in our case. In our
case, ci,i+ j |(i+1):(i+ j−1)(·, ·) only depends on the values of F(Xi |x(i+1):(i+ j−1)) and
F(Xi+ j |x(i+1):(i+ j−1)).

In order to compute the conditional distribution functions given in (2.4) for a D-
vine copula, we use the following formula from Czado (2019). Let i ∈ D and D−i :=
D \ {i}, then

F(x j |xD) = h ji |D−i (F(x j |xD−i )|F(xi |xD−i )), (2.7)

where h j |i (u j |ui ) := ∂Ci, j (ui ,u j )

∂ui
is the h-function associated with the pair copula Ci j .

The nodes in the D-vine tree represent the particular pairs of observations or pseudo
observations obtained from previous trees and the edges represents the respective pair
copula density with respective copula parameters. The pseudo-observations in the
higher trees depend on the pair copulas in the lower trees. Based on the pseudo data
u j |D−i and ui |D−i from the previous tree, the pseudo-observations for the next tree can
be computed as

u j |D = h ji |D−i (u j |D−i |ui |D−i ; θi j |D).

Hence, the pseudo-data can be calculated recursively by starting with the copula data
from the first tree and then using the bivariate copulas and pseudo-data from lower
trees.

As an example, consider a D-vine copula density of dimension d = 5. The joint
copula density c can be written as

c(u1, . . . , u5) = c12 · c23 · c34 · c45 · c13|2 · c24|3 · c35|4 · c14|23 · c25|34 · c15|234.

The bivariate unconditional and conditional copula densities of the above factorization
can be easily reconstructed from the corresponding D-vine tree shown in Fig. 1. For
more details on vine trees and vine copulas, we refer to Czado (2019).
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2.3 D-vine-basedmultivariate dynamic copula models and estimation

Now, we introduce dynamics into the D-vine copula model by using the bivariate
dynamic GAS copula as the pair copulas in a D-vine copula model. First, we assume
that all conditional and unconditional pair copulas in (2.6) are bivariate parametric
copulas. Further, we are given a time-varying copula parameter θ l(i, j)t for the bivariate
copula density cl(i, j)(·, ·; θ

l(i, j)
t ), where l(i, j) := i, i + j |(i + 1) : (i + j − 1) and

j = 1, . . . , d − 1, i = 1, . . . , d − j . Our dynamic parametric D-vine copula density
is then given by

c(u1:d ; θt) :=
d−1∏

j=1

d− j∏

i=1

cl(i, j)(F(ui |u(i+1):(i+ j−1)), F(ui+ j |u(i+1):(i+ j−1)); θ
l(i, j)
t ),

(2.8)
where the parameter vector θt consists of the parameters of all pair copulas and we
omit the parameters of the conditional marginal distributions.

The estimation of themodel is done via inference function formargin (IFM)method
by Joe and Xu (1996) as the logarithm of the joint density in (2.2) is a sum of marginal
and copula log-likelihood functions. The idea of IFM is tomaximize the log-likelihood
separately. First, the marginal parameters are estimated separately and standardized
residuals are formed. Then, we transform the standardized residuals with the paramet-
ric probability integral transformation in order to obtain copula data for the next step.
According to (2.8), the copula density of a D-vine copula is a product of bivariate
conditional copulas. Therefore, we can also estimate the copula parameters for each
pair copula sequentially. We start in the first tree and utilize the estimation results
from tree 1 to form pseudo copula data for the estimation of copula parameters in the
second tree. We proceed with this approach until we have estimated all necessary pair
copulas. According to Nagler et al. (2020), this multi-step estimator is consistent and
asymptotically normal.

It is important to note that the order of variables in the first tree influences the esti-
mation results andmust be chosen with care. A common strategy is to choose the order
of variables in the first tree such that neighboring variables have the highest Kendall’s
Tau values among all possible orderings. We follow this procedure to determine the
D-vine in our applications.

Density forecasts can be easily be computed from the suggested model, as the
model is fully parametric and the time-varying parameters follow observation driven
models. Hence, risk measures can be predicted in a straightforward fashion and the
model can be used for portfolio optimization. We do not perform a prediction exercise
in this paper due to the limited number of potential out-of-sample observations for a
credible evaluation of these multivariate density forecasts2. However, the predictive
performance of this model for weekly and daily stock (market) returns is studied in
Almeida et al. (2016).

2 Multivariate density forecasts could, e.g., be evaluated using the method studied in Dovern and Manner
(2020).
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2.4 Value at risk and conditional value at risk

The value at risk (VaR) is a common tool in financial risk management. It measures
how much maximum loss an investor will suffer in a given time period and with a
given probability. We distinguish between the upside and the downside risk. Given
the log return rt of the underlying asset at time t and the confidence level α, the VaR
of a long financial position considers the lower tail of the return’s distribution and is
defined as P(rt ≤ −VaRlong

α,t ) = α. The VaR of a short financial position considers
the upper tail of the return’s distribution and is defined as P(rt ≥ VaRshort

α,t ) = α. We

define themarket downside risk as VaRD
α,t = −VaRlong

α,t and themarket upside risk as
VaRU

α,t = VaRshort
α,t . If the distribution Ft of rt is continuous and strictly increasing,

we can compute the VaR with help of the respective quantile function F−1
t , i.e.,

VaRD
α,t = F−1

t (α) , VaRU
α,t = F−1

t (1 − α).

As the VaR only measures a single asset’s risk3, but we want to compute the sys-
temic risk exposure of multiple assets and the risk spillover effects, we consider the
conditional value at risk (CoVaR) as proposed by Adrian and Brunnermeier (2016).
They define the CoVaR as the VaR of a financial system conditional on a given event.
Consider an institution i and some event C(X j ) with j �= i . Then, the CoVaRα is
defined as the α-quantile of the conditional probability of the financial system’s return
ri :

P(ri ≤ CoVaR
i |C(X j )
α |C(X j )) = α. (2.9)

Here we define the event C(X j ) as the situation when a market or various markets are
in an extremal downside or upside risk situation with tail probability β. That means
that these returns are equal to their respective downside or upside VaR. In the case
of two observed markets, we define the downside CoVaR with tail probability α of
market 1 at time t conditional on market 2 being in downside risk with tail probability
β as follows:

P(r1,t ≤ CoVaR1|2,D
α,t |r2,t = VaR2,D

β,t ) = α.

Similarly, the corresponding upside CoVaR with tail probability α can be defined as

P(r1,t ≥ CoVaR1|2,U
α,t |r2,t = VaR2,U

β,t ) = α.

The CoVaR can be computed by solving this equation numerically. However, using
the results from Hakwa et al. (2015), we can compute the CoVaR directly in our
time-varying copula setting using the quantile function and the inverse h-functions:

3 Although in principle one can consider the VaR of a given portfolio.
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CoVaR1|2,D
α,t = F−1

1,t (h−1
1|2(α, F2,t (VaR2,D

β,t ); θ
1,2
t ))

= F−1
1,t (h−1

1|2(α, β; θ
1,2
t )),

CoVaR1|2,U
α,t = F−1

1,t (h−1
1|2(1 − α, F2,t (VaR2,U

β,t ); θ
1,2
t ))

= F−1
1,t (h−1

1|2(1 − α, 1 − β; θ
1,2
t )), (2.10)

with θ
1,2
t the corresponding time-varying copula parameter of the copula C12 associ-

ated to the returns r1,t and r2,t .

2.5 D-vine-based quantile regression

Equation (2.10) above allows us only to compute a bivariate copula-based CoVaR. In
the empirical analysis we also want to stress more variables simultaneously, i.e., we
want to consider more general events C(X j ) that involve extreme events of various
variables. To extend the copula-based CoVaR approach to such a multivariate setting,
we make use of the D-vine-based quantile regression proposed by Kraus and Czado
(2017). The quantile regression means prediction of conditional quantiles. This is
exactly how the CoVaR is defined.

Let us assume that we want to predict the quantile of the return Y of asset 1
(response variable) given the returns (X1, . . . , Xd) of assets 2, . . . , d + 1, d ≥ 1
(predictor variables), where Y ∼ FY and X j ∼ Fj , j = 1, . . . d. We are interested in
the conditional quantile function

qα(x1, . . . , xd) := F−1
Y |X1,...Xd

(α|x1, . . . , xd), α ∈ (0, 1).

We can express the joint conditional distribution function of Y as follows:

FY |X1,...Xd (y|x1, . . . , xd) = P(Y ≤ y|X1 = x1, . . . , Xd = xd)

= P (FY (Y ) ≤ v|F1(X1) = u1, . . . , Fd(Xd) = ud)

= CV |U1,...Ud (v|u1, . . . , ud),

where V := FY (Y ), Uj := Fj (X j ), v := FY (y) and u j := Fj (x j ), j = 1, . . . , d.
Inversion yields

F−1
Y |X1,...Xd

(α|x1, . . . , xd) = F−1
Y

(
C−1
V |U1,...Ud

(α|u1, . . . , ud)
)

. (2.11)

Hence, we can express the conditional quantile function in terms of the inverse
marginal distribution function F−1

Y of the response Y and the conditional copula quan-
tile function C−1

V |U1,...,Ud
. To get an estimate of the conditional quantile function, we

have to first obtain the estimates of the marginals F̂Y and F̂j , j = 1, . . . , d, then the
estimates of the copula ĈV |U1,...,Ud and finally use the expression:

q̂α(x1, . . . , xd) := F̂−1
Y

(
Ĉ−1
V |U1,...Ud

(α|û1, . . . , ûd)
)

, (2.12)
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where û j := F̂j (x j ), j = 1, ..., d.
The difficulty lies now in the estimation of the multivariate copula CV |U1,...,Ud .

The solution is to fit a D-vine copula to (V ,U1, . . . ,Ud) such that V, as the response
variable, is the first node in the first tree. The predictor variables are ordered such that
the neighboring variables have the highest Kendall’s Tau values among all possible
orderings. Finally, we can express the conditional copula function in terms of nested
h-functions by using Eq. (2.7) as shown by Kraus and Czado (2017). We can extend
the above equations for time-varying copulas. We illustrate this in a 4-dimensional
example by letting the copula parameter be time-varying. The example is inspired by
the example in Kraus and Czado (2017).

Example 1 Assume we want to compute the conditional distribution of the variable
V1 conditioned on the variables V2, V3, V4. Moreover, assume that the optimal D-vine
order is: V1 − V2 − V3 − V4. Then, using Eq. (2.7), we can express the conditional
distribution of V1 given (V2, V3, V4) as follows:

CV1|V2,V3,V4(v1|v2, v3, v4; θt)

= hV1|V4;V2,V3
(
CV1|V2,V3(v1|v2, v3; θ

13|2
t )|CV4|V2,V3(v4|v2, v3; θ

24|3
t ); θ

14|23
t

)

= hV1|V4;V2,V3(hV1|V3;V2
[
CV1|V2(v1|v2; θ12t )|CV3|V2(v3|v2; θ23t ); θ

13|2
t

]
|

hV4|V2;V3
[
CV4|V3(v4|v3; θ34t )|CV2|V3(v2|v3; θ23t ); θ

24|3
t

]
; θ

14|23
t )

= hV1|V4;V2,V3(hV1|V3;V2
[
hV1|V2(v1|v2; θ12t )|hV3|V2(v3|v2; θ23t ); θ

13|2
t

]
|

hV4|V2;V3
[
hV4|V3(v4|v3; θ34t )|hV2|V3(v2|v3; θ23t ); θ

24|3
t

]
; θ

14|23
t )

with θt = (θ12t , θ23t , θ34t , θ
13|2
t , θ

24|3
t , θ

14|32
t ) the time-varying dependence parameter

for each pair copula of the D-vine copula density.
By inverting the above expression, we get the conditional quantile function:

C−1
V1|V2,V3,V4(α|v2, v3, v4; θt)

= h−1
V1|V2{h−1

V1|V3;V2 [h−1
V1|V4;V2,V3

(
α|hV4|V2;V3(hV4|V3(v4|v3; θ34t )|

hV2|V3(v2|v3; θ23t ); θ
24|3
t ); θ

14|23
t

)
|hV3|V2(v3|v2; θ23t )]; θ

13|2
t |v2; θ12t }.

Using Eq. (2.12), we get a closed expression for the conditional quantile function for
dimension n = 4:

qα(v2, v3, v4) = F−1
V1

(
C−1
V1|V2,V3,V4(α|v2, v3, v4; θt)

)
.

For the implementation of the time-varying D-vine-based quantile regression, we
adopt code from the R package vinereg.
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3 Empirical analysis

Our aim is to investigate possible risk spillover effects between BRICS stock returns
and different types of oil price shocks. In Sect. 3.1, we apply the structural VAR to
decompose the oil price into three types of oil price shocks. Sect. 3.2 presents the data
and preliminary analysis. In Sect. 3.3, we utilize a time-varying copula approach to
model the bivariate dependence between BRICS stock returns and oil price shocks. In
Sect. 3.4 we conduct a multivariate risk spillover analysis by using dynamic D-vine
models.

3.1 Decomposing oil prices

Kilian (2009) assumes that the real price of oil can be decomposed into three oil price
shocks, the oil supply shocks, the aggregate demand shocks, and the precautionary
demand shocks. In order to extract these effects from the monthly crude oil price, he
utilizes a structural vector autoregressive (SVAR) model with lag order 24. The SVAR
representation is given by

Ayt = ν +
24∑

i=1

Aiyt−i + εt , (3.1)

where yt = (st , gt , pt )′, εt = (εSSt , εDS
t , εOS

t )′ with st− the percent change (log
difference) in global crude oil production, gt− an index of real economic activity,

and pt = 100 ln
(

npt
C P It/100

)
− the real oil price expressed logarithmically. Here, npt

refers to the nominal oil prices and CP It to the U.S. consumer price index.
We follow the identification strategy in Kilian (2009) assuming a lower triangular

form of A and the variable ordering given above. He argues that supply cannot be
expected to respond to demand shocks in the same month as oil-producers need some
time to react to changes in demand. Furthermore, it appears reasonable that aggregate
demand does not respond immediately to oil market-specific shocks. Estimation is
basedon the reduced form representation. The structural shocks εt are obtained through
the Cholesky decomposition of the covariance matrix of the reduced-form residuals.

The (structural) oil price shocks are defined as follows:

• εSSt (crude oil supply shocks )—unpredictable innovations in global oil production,
• εDS

t (aggregate demand shocks)—unpredictable innovations in global real eco-
nomic activity that cannot be explained based on crude oil supply shocks,

• εOS
t (oil-specific demand shocks)—unpredictable innovations in real oil price that
cannot be explained based on oil supply shocks and aggregate demand shocks.

The oil price decomposition is computed as the cumulative effect of oil supply
shock pSSt , of aggregate demand shock pDS

t , and of oil-specific demand shock pOS
t
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as follows:

pSSt =
t−1∑

q=0

∂ pt
∂εSSt−q

ε̂SSt−q , pDSt =
t−1∑

q=0

∂ pt
∂εDSt−q

ε̂DSt−q , pOSt =
t−1∑

q=0

∂ pt
∂εOSt−q

ε̂OSt−q , (3.2)

where pt = c+ pSSt + pDSt + pOSt with a constant c, and pSSt , pDSt , pOSt the components
of real oil prices, i.e., oil supply shocks, aggregate demand shocks, and oil-specific
demand shocks.

Our analysis is based on the first differences of the oil price components �pSSt ,
�pDSt , and �pOSt , which we consider as oil price shocks.

3.2 Data and preliminary analysis

In order to extract the three oil price shocks, we took monthly data from February
1994 to April 2020, i.e., 327 observations, of the following three variables : (1) World
oil production as a proxy of world oil supply st from the U.S. Energy Information
Administration (EIA), (2) the Kilian index as the global economic activity index gt
which we collected from the personal website of Lutz Kilian4, and (3) United States
crude oil imported acquisition cost by refiners (collected from the EIA) deflated with
the U.S. Consumer Price Index (collected from U.S. Bureau of Labor Statistics) as the
real price of oil pt .

The Kilian index is constructed from an equally weighted index of the percentage
growth rates, obtained from a panel of single voyage bulk dry cargo ocean shipping
freight rates measured in dollars per metric ton. The construction of the index controls
for fixed effects associated with shipping routes, ship sizes, and types of cargo. We
refer to Kilian (2009) for more details.

Using these variables, the SVAR(24) is estimated as described in Sect. 3.1. Figure
2 presents the evolution of the three components of real oil price, pSSt , pDS

t , pOS
t ,

defined in (3.2). We observe that oil prices are driven by different factors in different
time periods. The supply shocks have a comparably small effect on the oil price and
are relatively constant. Themost volatile effect on the oil price is due to the oil-specific
demand shocks. The drop and the subsequent increase of oil price during the Asian
financial crisis in 1998/99 are contributed solely to the oil-specific demand shocks.
The strong decrease of oil price due to the global financial crisis in 2008 has resulted
especially from oil-specific demand shocks, but also from aggregate demand shocks.
The same is valid for the Covid-19 crisis in 2020. Thereby, we can confirm the claim
of Kilian and Park (2009) and Mokni (2020) that the oil price is mainly influenced by
the demand side and there is little influence by the supply side. For the further analysis
we use the oil price shocks defined as �pSSt , �pDSt , and �pOSt .

Moreover, as we want to analyze the dependence between different oil price shocks
and BRICS stock returns, we collected monthly BRICS stock returns from invest-
ing.com, yahoo finance and the official website of BSE India. We summarize the used

4 https://sites.google.com/site/lkilian2019/.
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Fig. 2 Historical decomposition of real oil prices

Table 1 Price indices for each of
the BRICS countries

Country Price index name

Brazil Bovespa (BVSP) Index

Russia RTS (IRTS) Index

India S&P BSE Sensex (BSESN) Index

China Shanghai Composite (SSEC) Index

South Africa FTSE/JSE All Share (JALSH) Index

price indices in Table 1. The choice of the price index for a particular country was
mainly driven by the availability of the data and the importance of the index.

Figure 3 depicts the evolution of the log returns of the BRICS countries’ stock
market indices for the period of February 1996 till April 2020. We notice a quite
similar development of the stock returns. Russia and Brazil exhibit the most volatile
log returns, whereas South Africa has the lowest volatility. Overall, we observe three
periods with exceptionally large losses. The first is the Asian crisis in 1998, the second
the global financial crisis in 2008, and the last the Covid-19 crisis in 2020.

Table 2 presents the summary statistics of the log returns in each of the BRICS
countries and the three oil price shocks. The table shows that the monthly means of
all stock returns of the BRICS are positive and Brazil has the highest monthly mean
return or 0.961% and China the lowest monthly mean return or 0.567%. Russia’s
log returns have the largest and South Africa’s the lowest standard deviation. The
skewness is negative for all countries, implying that the log returns are skewed to the
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Fig. 3 Stock market returns of BRICS countries

left. Furthermore, the kurtoses are all positive, indicating a heavy tailed distribution
of the log returns. The significant results of the Jarque-Bera statistics show evidence
that BRICS returns exhibit a non-normal distribution. The Ljung-Box test with lag
order six indicates that there exists autocorrelation for the Russian and Chinese return
series. The Ljung-Box of squared residuals and the Lagrange multiplier test statistics
with lag order six indicate that all BRICS log returns exhibit heteroskedasticity and
ARCH effects.

The summary statistics of the oil price shocks reveal that the oil supply shocks have
positive mean, while the other two oil shocks have negative mean. The oil-specific
demand shocks have the largest standard deviation of 8.292 among all oil shock types.
Besides, the test statistics show that all shocks are serially correlated. The Jarque-
Bera statistic indicates a normal distribution for the supply shocks. Additionally, the
aggregate demand shocks and the oil-specific demand shocks exhibit conditional het-
eroskedasticity.

In view of the descriptive statistics, it is reasonable to apply ARMA(m, n)-
GARCH(p, q) models for the marginal distributions of the returns ri,t of country
i at time point t , as defined in (2.1). For the conditional mean, we choose simple
ARMA models with lag length minimizing the Bayesian information criterion (BIC).
The conditional variance of the residuals is modeled using a GARCH(1, 1) model
with either normal or skewed t distribution, again depending on the minimum BIC.

According to the BIC, we apply an ARMA(1, 0)-GARCH(1, 1) model with a nor-
mal distribution as conditional distribution of the standardized residuals for the two oil
demand shocks and an ARMA(1, 1)-GARCH(1, 1) model with a normal distribution
for the oil supply shock. For Brazil, Russia, and India, we employ an ARMA(0, 0)-
GARCH(1, 1) model with skewed t innovations and for China and South Africa, we
employ anARMA(0, 0)-GARCH(1, 1) model with normal distribution. The estimated
parameters (and their standard errors) of the marginal distributions are given in Table
3. Most coefficients are significant at the 5%-level. Moreover, we ensure with a Ljung-
Box test that the residuals and squared residuals show no autocorrelation.
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Table 2 Summary statistics for oil price shocks and log returns of BRICS countries

Mean Median Max. Min. Sd Skew. Kurt.

BRICS

BR 0.961 1.258 21.546 −50.341 8.522 −1.315 5.387

RU 0.951 1.472 44.456 −82.457 13.270 −1.122 6.184

IN 0.792 0.971 24.885 −27.299 6.906 −0.464 1.490

CN 0.567 0.635 27.805 −28.278 7.796 −0.179 1.806

ZA 0.726 0.950 13.195 −35.134 5.384 −1.111 6.227

OIL

SS 0.057 −0.013 7.065 −6.774 2.256 −0.094 3.123

DS −0.062 0.274 11.262 −16.233 3.786 −0.770 5.204

OS −0.337 1.062 19.258 −41.063 8.292 −0.946 5.898

JB test LB test(6) LB2-test(6) ARCH-LM test(6)

BRICS

BR 442.831 ∗∗∗ 8.557 13.492 ∗∗ 19.485 ∗∗∗
RU 533.122 ∗∗∗ 20.507 ∗∗∗ 55.569 ∗∗∗ 77.331 ∗∗∗
IN 38.480 ∗∗∗ 1.419 15.602 ∗∗ 35.923 ∗∗∗
CN 42.454 ∗∗∗ 16.125 ∗∗ 21.651 ∗∗∗ 43.710∗∗∗
ZA 538.481 ∗∗∗ 10.090 14.618 ∗∗ 20.930 ∗∗∗
OIL

SS 0.688 83.407 ∗∗∗ 9.062 11.469 ∗
DS 89.633 ∗∗∗ 135.726 ∗∗∗ 121.823 ∗∗∗ 57.778 ∗∗∗
OS 148.064 ∗∗∗ 57.984 ∗∗∗ 60.635 ∗∗∗ 22.189 ∗∗∗

JB denotes the Jarque-Bera normality test, LB the Ljung-Box test, LB2 the Ljung-Box test for the squared
series. ∗, ∗∗, and ∗ ∗ ∗ denote significance level at 10%, 5% and 1%, respectively.

The model fit is evaluated in two ways. First, we check the model assumptions
by comparing the sample quantiles of the standardized residuals with the theoretical
quantiles. Figure 4 shows the QQ-plot for all three oil price shocks and Fig. 5 for the
stock market returns. They illustrate a good model fit with few deviations from the
theoretical quantiles in the tails. Second, we performed the following goodness-of-
fit tests: Kolmogorov-Smirnov, Cramer-von-Mises, Anderson Darling, and Neyman
smooth test. None of the tests rejects the null hypothesis for any of the series. Conse-
quently, we can use the estimated parametric distributions of the standardized residuals
to perform the probability integral and obtain copula data for the further analysis, i.e.,

ui,t = Fi

(
rit − μ̂i t

σ̂i t
; δ̂i |Ft−1

)
,

where μ̂i t = E(rit |Ft−1) and σ̂ 2
i t = Var(rit |Ft−1) are the estimated conditionalmean

and standard deviation of the variable i at time t from the ARMA-GARCH model,
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Fig. 4 QQ-plot of the standardized residuals from the ARMA-GARCH models for the oil price shocks

and F(·; δ̂i ) is the distribution function of the standardized residuals with estimated
parameter vector δ̂i .

3.3 Bivariate analysis

We begin by estimating appropriate dynamic copula models for each stock market
with the three oil price shock variables, respectively.

For modeling the dynamics in dependence over time, the GAS copula model is
used.5 The estimation of the best dynamic GAS copula is done with maximum likeli-
hood estimation, where we allow for the following copula families: Gaussian, Student
t, Clayton, Gumbel, Survival Clayton, and Survival Gumbel. The selection of the best
copula family is based on the Akaike Information Criterion (AIC). In order to replicate
the whole dependence spectrum (negative and positive dependence) for the Clayton,
Gumbel, and their survival copulas, we allow themodel to use the 90◦-rotated versions
of these copulas, whenever the dependence is negative.

Table 4 provides summary statistics for the time-varying dependence parameter for
each pair.6 Looking at the best fitting copula families, for 7 out of 15 pairs a symmet-
ric copula was chosen, the Gauss copula in most cases. In terms of asymmetry, the
Gumbel and survival Clayton copulas are characterized by upper tail dependence and
lower tail independence, whereas for the Clayton copula we have lower tail depen-

5 As an alternative, the time-varying model by Patton (2006) was used, but the model fit was clearly inferior
in comparison with the GAS model.
6 Detailed results for the bivariate analysis can be found in Kielmann (2020).
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Fig. 5 QQ-plot of the standardized residuals from the ARMA-GARCH models for the log returns of the
BRICs countries

Table 4 Summary statistics of dynamic Kendall’s Tau

Copula family Mean Median Max Min Sd Pos.Prop.*

BR-SS Surv. Clayton −0.024 −0.021 0.306 −0.275 0.047 0.197

BR-DS Gaussian 0.136 0.163 0.383 −0.136 0.100 0.886

BR-OS Clayton 0.042 0.045 0.298 −0.339 0.056 0.855

RU-SS Gumbel 0.041 0.033 0.164 −0.211 0.036 0.945

RU-DS Student 0.062 0.062 0.222 −0.117 0.064 0.828

RU-OS Gaussian 0.181 0.205 0.322 0.016 0.092 1.000

IN-SS Surv. Clayton 0.004 0.005 0.371 −0.130 0.040 0.614

IN-DS Gaussian 0.124 0.113 0.436 −0.143 0.121 0.869

IN-OS Clayton 0.053 0.058 0.281 −0.106 0.042 0.907

CN-SS Gumbel 0.001 0.001 0.073 −0.436 0.034 0.583

CN-DS Gaussian 0.070 0.055 0.684 −0.464 0.164 0.728

CN-OS Gaussian 0.070 0.067 0.392 −0.364 0.095 0.793

ZA-SS Gumbel 0.013 0.005 0.313 −0.313 0.090 0.603

ZA-DS Clayton 0.004 0.004 0.171 −0.155 0.021 0.697

ZA-OS Gaussian 0.126 0.136 0.295 −0.057 0.048 0.979

*Pos.Prop. means the proportion of positive dependence in the total dynamic dependence
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Table 5 Summary statistics of CoVaR − VaR

CoVaRD
α − VaRD

α CoVaRUα − VaRUα
Mean Max Min Sd Mean Max Min Sd

BR-SS 0.670 9.101 −3.820 1.133 −0.324 4.660 −4.480 0.954

BR-DS −3.283 8.229 −7.882 2.860 1.749 4.201 −4.614 1.546

BR-OS −2.623 12.111 −11.659 2.626 0.160 2.263 −10.495 0.811

RU-SS −1.098 7.973 −11.973 1.502 1.967 16.507 −5.243 1.961

RU-DS −4.587 1.760 −22.647 3.172 2.952 14.548 −1.151 2.037

RU-OS −5.789 −0.984 −21.230 3.135 3.712 13.565 0.640 2.001

IN-SS 0.065 3.618 −4.106 0.584 0.221 5.844 −2.595 0.801

IN-DS −2.193 3.759 −8.446 2.074 1.376 5.283 −2.450 1.309

IN-OS −2.477 2.621 −10.909 1.835 0.269 2.769 −1.394 0.337

CN-SS 0.052 21.157 −1.254 1.297 0.158 3.166 −16.676 1.195

CN-DS −0.976 10.281 −9.813 2.976 0.976 9.813 −10.281 2.976

CN-OS −1.127 12.091 −10.626 2.143 1.127 10.626 −12.091 2.143

ZA-SS 0.005 12.385 −4.685 1.280 0.308 6.285 −11.981 1.592

ZA-DS −0.148 8.923 −3.692 0.728 −0.030 0.997 −8.512 0.523

ZA-OS −1.491 1.481 −7.626 0.963 1.491 7.626 −1.481 0.963

dence and upper tail independence. We can conclude that for all BRICS countries and
the oil supply shocks, upper tail dependence is present (survival Clayton and Gumbel
copulas). This means that when the supply of oil is extremely high, then also the stock
market returns tend to be high, which is to be expected. For oil the exporters, i.e.,
Russia and Brazil, high oil supply has a direct effect on the profitability of companies
in the oil export sector. For the oil-importing countries high oil supply is beneficial via
lower prices. Further, we can conclude from the upper tail dependence between the
aggregate demand shock and Russia’s stockmarket (Student copula) that an extremely
high global demand level will result in rising stock returns. This is reasonable, because
Russia is an oil-exporting country and its economy is highly dependent on oil compa-
nies. Moreover, for ZA-DS, RU-DS, BR-OS, and IN-OS we have evidence for lower
tail dependence. Turning to the strength of dependence measured in terms of Kendall’s
tau, while the average dependence is close to zero, there is some notable variation.
While overall positive dependence dominates, there are also periods with considerable
negative dependence.

Based on the estimated models, the VaR and CoVaR are computed as explained
in Sect. 2.4 using α = β = 0.05. We want to test for (1) the existence and the
significance of risk spillover effects and (2) asymmetric effects of CoVaRs. This is
done by comparing the upside and the downside CoVaR and VaR and testing their
equality. Table 5 provides summary statistics for the differences between the CoVaR
and the VaR. While the CoVaR tends to exceed the VaR in absolute terms there is a
notable variation presents. To additionally assess the asymmetric effects, we construct

two additional samples, namely CoVaRD
α

VaRD
α

and CoVaRU
α

VaRU
α

, and test their equality. We test
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Table 6 Kolmogorov–Smirnov test for spillover effect and asymmetry

H0: CoVaRD
α = VaRD

α H0: CoVaRUα = VaRUα H0:
CoVaRD

α

VaRD
α

= CoVaRUα
VaRUα

H1: CoVaRD
α �= VaRD

α H1: CoVaRUα �= VaRUα H1:
CoVaRD

α

VaRD
α

�= CoVaRUα
VaRUα

BR,SS 0.183∗∗∗ 0.162∗∗∗ 0.138∗∗∗
BR,DS 0.566∗∗∗ 0.507∗∗∗ 0.548∗∗∗
BR,OS 0.397∗∗∗ 0.076 0.797∗∗∗
RU,SS 0.079 0.152∗∗∗ 0.493∗∗∗
RU,DS 0.252∗∗∗ 0.217∗∗∗ 0.441∗∗∗
RU,OS 0.400∗∗∗ 0.341∗∗∗ 0.548∗∗∗
IN,SS 0.045 0.062 0.372∗∗∗
IN,DS 0.259∗∗∗ 0.266∗∗∗ 0.269∗∗∗
IN,OS 0.331∗∗∗ 0.076 0.848∗∗∗
CN,SS 0.021 0.048 0.221∗∗∗
CN,DS 0.110∗ 0.110∗ 0.021

CN,OS 0.155∗∗∗ 0.155∗∗∗ 0.021

ZA,SS 0.031 0.062 0.128∗∗
ZA,DS 0.045 0.021 0.541∗∗∗
ZA,OS 0.210∗∗∗ 0.210∗∗∗ 0.476∗∗∗

∗, ∗∗ and ∗ ∗ ∗ denote significance level at 10%, 5% and 1%, respectively

these hypotheses using the two-sample Kolmogorov–Smirnov (KS) test:

Dn,m = sup
x

|F1,n(x) − F2,m(x)|,

where F1,n and F2,m are the empirical distribution functions of the first and the second
sample, respectively.

Table 6 summarizes the results of the KS test for risk spillover and asymmetric
effects. There are no significant risk spillover effects from oil supply shocks to BRICS
stock returns, except in Brazil (upside and downside) and Russia (upside), the oil-
exporting countries in the sample. However, there are significant risk spillover effects
from aggregate demand oil shocks to BRICS stock returns, except in South Africa
(upside and downside). Furthermore, there are significant risk spillover effects from
oil-specific demand shocks to almost all BRICS stock returns, except in Brazil (upside)
and in India (upside). In addition, we get significant results for asymmetric effects
between upside and downside risk spillovers of almost all oil price shocks on all log
returns of the BRICS countries, with an exception of China and the oil demand shocks
and the oil-specific shocks.
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3.4 Multivariate analysis

In this section we want to investigate multivariate risk spillover effects by combining
several variables in our analysis. Again, we measure the risk spillover effects by
estimating the upside and downside value at risks (VaRs) and conditional value at
risks (CoVaRs). We calculate the VaR at a 95% confidence level (α = 0.05). The
CoVaR is defined as the VaR for BRICS stock returns at a 95% confidence level
(α = 0.05), conditional on the VaR for several variables at the 95% confidence level
(β = 0.05). For calculating the multivariate CoVaRs, we combine the GAS model
from Sect. 2.1 and the flexible D-vine-based quantile regression model from Sect.
2.5. Using this approach, we can analyze the effects on a country when all oil price
components are shocked. Moreover, we are able to answer the question, how a stock
market in one specific country would react to several oil price shocks and/or extreme
stock market situation in other BRICS countries.

Let us say a few words on the D-vine copula model, estimated for the D-vine-based
quantile regression. Due to the high dimension and complexity of our model and the
increasing estimation uncertainties in the higher D-vine trees, we decide to allow for
time constant copulas, in order to minimize the number of parameters to be estimated.
We rely on the AIC for selecting the best pair copula. That means that for each pair
copula in the D-vine copula model we estimate time-varying and constant copulas
from the following families: Normal, Student t, Clayton, Survival Clayton, Gumbel,
Survival Gumbel, and Independence copula.

Based on the D-vine estimation results, we compute the downside (upside) CoVaR
of the variable of interest, say i , conditional on, e.g., OS, DS, SS being simultaneously
equal to their downside (upside) VaR.We can calculate this by using Eq. (2.12) and the
estimated conditional mean and standard deviation from the ARMA-GARCH model:

CoVaRD,i |OS,DS,SS
α,t =σ̂i,t · q̂α,i (F̂

−1
OS(β), F̂−1

DS(β), F̂−1
SS (β)) + μ̂i,t (3.3)

CoVaRU ,i |OS,DS,SS
α,t =σ̂i,t · q̂1−α,i (F̂

−1
OS(1 − β), F̂−1

DS(1 − β), F̂−1
SS (1 − β)) + μ̂i,t .

(3.4)

We consider two types of analyses. First, we consider each countries stock market
return conditional on all three oil shocks. Second, we look at the CoVaR of each
country conditional on the most influential oil prices shock together with a shock to
either one or all other BRICS stock markets. This allows us to see how influential
multiple shocks are on the estimated CoVaR relative to the univariate VaR and the
bivariate CoVaR.

We do not present detailed estimation results for the D-vine copula models, but
these details can be found in Kielmann (2020). Graphical representations of the VaR
and CoVaR for all studied countries and different conditioning variables can be found
there as well. Below, we put some focus on the presentation of the results for China
given its importance in the global economy.

We use a Kolmogorov–Smirnov (KS) test to test whether the CoVaR of each
countries stock market returns, conditional on all three oil price shocks, signifi-
cantly differs from the CoVaR conditional on the oil-specific demand shocks (OS).
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To conduct the test, we use the two time series of the CoVaRs (CoVaRi |OS and
CoVaRi |OS,DS,SS) for the downside and for the upside risk effect for country i ,
respectively. To assess the (conditionally) asymmetric effects, we construct two addi-

tional samples,
CoVaRi |OS,DS,SS

α,D

CoVaRi |OS
α,D

and
CoVaRi |OS,DS,SS

α,U

CoVaRi |OS
α,U

, and test their equality. The tests

reject all hypotheseswith one exception, namely the upsideCoVaR forRussia.7 Hence,
we can conclude that inclusion of all oil price shocks in the risk spillover analysis leads
to significant differences for the upside risk and for the downside risk, compared to the
inclusion of only one oil price shock. Moreover, (conditionally) asymmetric effects
cannot be rejected.

The summary statistics of the risk measures can be found in Tables 7 and 8. It can
be seen that, as to be expected, multiple oil prices shocks lead to an increase in the
risk measure. Looking at the different oil shocks in Table 7, we can see that supply
shocks (SS) do not increase the risk, whereas demand (DS) and oil prices-specific
(OS) shock do increase the risk notably, especially for the oil exporters Russia and
Brazil. It is notable that joint shocks of all three oil price components increase the risk
significantly compared to shocks in the individual components. This is not surprising
as, by construction, the oil shocks are (unconditionally) orthogonal to each other. The
largest increase in risk due to oil price shocks can be observed for Russia, which is
not surprising given the dependence of the Russian economy on oil.

Table 8 shows the results for the CoVaR conditional on (1) the most influential oil
shock alone, (2) together with the most influential stock market shock, (3) together
with a shock to all BRICS stockmarkets, and (4) together with country-specific shocks
to inflation and exchange rates (vs. the US$) as proxies for macroeconomic shocks.
As macroeconomic shocks we consider devaluations of the exchange rate and high
inflation, which are typically seen as negative macroeconomic conditions.8 This is
done as, obviously, spillovers will occur between international stock markets and we
want to evaluate how strong these spillovers are. Furthermore, macroeconomic shocks
are also considerable risk factors and we want to compare their effect to shocks to the
other risk factors. As to be expected, a larger number of shocks increases the CoVaR
with the exception of China and South Africa, for which the risk conditional on shocks
to all BRICS countries is not larger than conditionally only on the country with the
strongest dependence. Comparing Tables 7 and 8, we can conclude that China and
South Africa are less vulnerable to BRICS stock market shocks compared to the other
countries after controlling for the most relevant oil shocks. Furthermore, for Brazil,
Russia, India, and South Africa macroeconomic shocks increase the CoVaR risk in
a similar magnitude as oil or stock market shocks. For China shocks to inflation and
exchange rates have no noticeable spillover effects.

Focusing on the example of China9, Fig. 6 depicts the evolution of the downside
resp. upside VaR and CoVaR of the Chinese stock market returns, conditional on

7 Detailed results for these hypothesis tests can be found in Kielmann (2020).
8 For the macroeconomic data we consider standardized residuals from the best-fitting ARMAmodels with
ARCH(1) errors, as there is only weak evidence for ARCH effects in these series. Details concerning the
modeling of these series are omitted to preserve space and can be obtained by the authors upon request.
9 Similar graphs and more detailed results for the other countries are available from the authors upon
request.
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Effects of oil shocks on Chinese stock market
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Fig. 6 Upside and downside VaR and CoVaR of log returns in China conditional on specified oil shocks

all oil shocks being equal to their VaR. For comparison, we also present the CoVaR
conditional on only the oil-specific shocks being equal to its VaR. Specific crisis
periods are clearly visible from the figure. For the most time points in the observed
time period, we see that both the downside and the upside CoVaRs from the model
with all oil shocks are higher than the CoVaRs from the model with only the oil-
specific demand shocks. However, we observe that at some time points, the CoVaR
conditional on all three oil price shocks being equal to their VaR is even lower than the
VaR. This can be explained by the time-varying dependence permitted in our model,
which identifies periods of negative dependence.

In order to analyze the risk spillover effects from oil-specific shocks (OS) jointly
with shocks in the stock markets in BRICS being equal to their VaR on the Chinese
stock market, we apply the D-vine model with the ordering CN-BR-RU-ZA-IN-OS.
Figure 7 depicts the CoVaRs for the model with all BRICS and the oil-specific demand
shocks, for themodelwithBrazil and the oil-specific demand shocks, and for themodel
with only the oil-specific demand shocks. We observe that the extreme market risks in
Chinese stock market does not change much if considering all BRICS stock market in
our analysis, compared to our model if only including the Brazil stock market and the
oil-specific shocks. From Figs. 6 and 7, we can see that the Covid-19 shock in early
2020 is not visible in the (conditional) risk level of the Chinese stock market.
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Effects of oil−specific shock and stock market shocks in BRICS on Chinese stock market
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Fig. 7 Upside and downside VaR and CoVaR for China conditional on specified oil and stockmarket shocks

4 Conclusion

This paper quantifies risk spillover effects fromdifferent types of oil price shocks to the
stockmarkets of the BRICS countries in amultivariate setting relying on threemethod-
ological pillars. First, we base our risk spillover analysis on the bivariate time-varying
GASmodel of Creal et al. (2008), a recommendable specification for introducing time
variation in copula models. Second, we extend the bivariate copula-based analysis of a
risk spillover to a multivariate one. Third, using the D-vine-based quantile regression
of Kraus and Czado (2017), we are able to investigate the effects of several oil price
shocks simultaneously on BRICS countries’ stock returns and, additionally, consider
interdependencies between BRICS stock markets and with macroeconomic variables.

Our empirical results provide clear evidence that the dependence between oil shocks
and stock returns is time-varying and mostly positive. However, the extent of this
dependence strongly depends on the type of oil price shocks and the importance of oil
for an individual country. In general, the oil-specific shocks are the most influential
oil price shocks for BRICS stock market movements, whereas the oil supply shocks
hardly influence the stock markets and their extreme market risk level. Furthermore,
our analysis of risk spillover effects of extreme risks in the oil market shows us that
especially demand oil shocks influence the risk level of stock returns in the BRICS.

We observe that the Asian financial crisis, the global financial crisis, and the Covid-
19 crisis led to significantly increasing risks in the stock markets. However, we also
found that China’s stockmarket has recovered quickly from the Covid-19 crisis. Based
on our multivariate risk spillover analysis, we can conclude that including all oil price
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shocks in our analysis, instead of only one oil price shock, leads to higher risk spillover
effects on the stock markets in BRICS. Moreover, we find that there are considerable
interdependencies between the BRICS stock markets leading to considerable risk
spillovers in addition to oil shocks. Finally, joint shocks to inflation and exchange
rates also spill over to the respective stock markets for Russia, Brazil, and South
Africa, whereas they do not for China and India.

The described empirical findings provide important implications for financial
investors to improve their portfolio strategies and risk positions. They are also are
helpful for the governments in BRICS countries, in order to react better to oil price
shocks or BRICS wide stock market shocks. From a policy perspective, we saw that
stock markets of oil-exporting countries are more vulnerable to oil demand shocks.
Reducing this vulnerability is crucial for preventing significant economic and financial
instability in these countries that may spill over to other countries via financial and
non-financial contagion channels.

Themethodologywe suggest should be useful in different applications. TheD-vine-
GAS copula model is highly flexible and can be applied in large dimensions without
exploding computational requirements. Combined with the D-vine-based quantile
regression this allows for a flexible and general risk spillover analysis compared to the
commonly used bivariate analysis in which the CoVaR is computed based on a single
risk event. Conditioning on multiple joint risk events improves the empirical useful-
ness of the this risk measure. This methodological contribution could be of interest
in a number of applications as it increases the usefulness for copula-based CoVaR
estimation.
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