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Abstract
This paper studies the problem of recovering a signal from one-bit compressed sensing
measurements under a manifold model; that is, assuming that the signal lies on or near
a manifold of low intrinsic dimension.We provide a convex recovery method based on
the Geometric Multi-Resolution Analysis and prove recovery guarantees with a near-
optimal scaling in the intrinsic manifold dimension. Our method is the first tractable
algorithm with such guarantees for this setting. The results are complemented by
numerical experiments confirming the validity of our approach.
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1 Introduction

Linear inverse problems are ubiquitous in many applications in science and engineer-
ing. Starting with the seminal works of Candès et al. [10], as well as Donoho [15], a
new paradigm in their analysis became an active area of research in the last decades.
Namely, rather than considering the linear model as entirely given by the application,
one seeks to actively choose remaining degrees of freedom, often using a randomized
strategy, to make the problem less ill-posed. This approach gave rise to a number
of recovery guarantees for random linear measurement models under structural data
assumptions. The first works considered the recovery of sparse signals; subsequent
works analyzed more general union-of-subspaces models [18] and the recovery of
low-rank matrices [44], a model that can also be employed when studying phaseless
reconstruction problems [11] or bilinear inverse problems [1].

Another line ofworks following this approach studiesmanifoldmodels. That is, one
assumes that the structural constraints are given by (unions of finitelymany)manifolds.
While thismodel is considerably richer than say sparsity, its rather general formulation
makes a unified study, at least in some cases, somewhat more involved. The first work
to study random linear projections of smooth manifold was [5], the authors show that
Gaussian linear dimension reductions typically preserve the geometric structure. In
[29], these results are refined and complemented by a recovery algorithm, which is
based on the concept of the Geometric Multi-Resolution Analysis as introduced in [3]
(cf. Sect. 2.1 below). These results were again substantially improved in [17]; these
latest results no longer explicitly depend on the ambient dimension.

Arguably, working with manifold models is better adapted to real-world data than
sparsity and hence may allow one to work with smaller embedding dimensions. For
that, however, other practical issues need to be considered as well. In particular, to our
knowledge there are almost no works to date that study the effects of quantization, i.e.,
representing the measurements using only a finite number of bits (the only remotely
connectedwork that we are aware of is [39], but this paper does not consider dimension
reduction and exclusively focuses on the special case of Grassmann manifolds).

For sparse signal models, in contrast, quantization of subsampled randommeasure-
ments is an active area of research. On the one hand, a number of works considered the
scenario of memoryless scalar quantization, that is, each of the measurements is quan-
tized independently. In particular, the special case of representing each measurement
only by a single bit, its sign—often referred to as one-bit compressed sensing—has
received considerable attention. In [31], it was shown that one-bit compressed sensing
with Gaussian measurements approximately preserves the geometry, and a heuristic
recovery schemewas presented. In [42], recovery guarantees for a linearmethod, again
with Gaussian measurements, were derived. Subsequently, these results were gener-
alized to sub-Gaussian measurements [2], and partial random circulant measurements
[14]. In [41], the authors provided a recovery procedure for noisy one-bit Gaussian
measurements which provably works onmore general signal sets (essentially arbitrary
subsets of the Euclidean ball). This procedure, however, becomes NP-hard as soon as
the signal set is non-convex, a common property of manifolds.

Another line of works studied the so-called feedback quantizers, that is, the bit
sequence encoding the measurements is computed using a recursive procedure. These
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works adapt the Sigma-Delta modulation approach originally introduced in the con-
text of bandlimited signals [22,40] and later generalized to frame expansions [6,7]
to the sparse recovery framework. A first such approach was introduced and ana-
lyzed for Gaussian measurements in [23]; subsequent works generalize the results to
sub-Gaussian random measurements [20,33]. Recovery guarantees for a more stable
reconstruction scheme based on convex optimization were proven for sub-Gaussian
measurements in [45] and extended to partial random circulant matrices in [21]. For
more details on the mathematical analysis available for different scenarios, we refer
the reader to the overview chapter [9].

In this paper, we focus on the MSQ approach and leave the study of Sigma-Delta
quantizers under manifold model assumptions for future work.

1.1 Contribution

We provide the first tractable one-bit compressed sensing algorithm for signals which
are well approximated by manifold models. It is simple to implement and comes
with error bounds that basically match the state-of-the-art recovery guarantees in [41].
In contrast to the minimization problem introduced in [41], which does not come
with a minimization algorithm, our approach always admits a convex formulation and
hence allows for tractable recovery. Our approach is based on the Geometric Multi-
Resolution Analysis (GMRA) introduced in [3], and hence combines the approaches
of [29] with the general results for one-bit quantized linear measurements provided in
[41,43].

1.2 Outline

We begin by a detailed description of our problem in Sect. 2 and fix notation for the
rest of the paper. The section also includes a complete axiomatic definition of GMRA.
Section 3 states our main results. The proofs can be found in Sect. 4. In Sect. 5, we
present some numerical experiments testing the recovery in practice and conclude
with Sect. 6. Technical parts of the proofs as well as adaption of the results to GMRAs
from random samples are deferred to the appendix.

2 Problem Formulation, Notation, and Setup

The problem we address is the following. We consider a given union of low-
dimensional manifolds (i.e., signal class) M of intrinsic dimension d that is a subset
of the unit sphere SD−1 of a higher dimensional spaceRD , d � D. Furthermore, let us
imagine that we do not know M perfectly, and so instead we only have approximate
information about M represented in terms of a structured dictionary model D for
the manifold. Our goal is now to recover an unknown signal x ∈ M from m one-bit
measurements

y = sign Ax, (1)
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where A ∈ R
m×D has Gaussian i.i.d. entries of variance 1/

√
m, using as few mea-

surements, m, as possible. Each single measurement sign 〈ai , x〉 can be interpreted as
the random hyperplane {z ∈ R

D : 〈ai , z〉 = 0} tessellating the sphere (cf. Fig. 1a).
In order to succeed using only m � D such one-bit measurements we will use the
fact that x is approximately sparse in our (highly coherent, but structured) dictionary
D for M provides structural constraints for signal x to be recovered. Thus the setup
connects to recent generalizations of the quantized compressed sensing problem [41]
which we will exploit in our proof.

2.1 GMRA Approximations toM ⊂ R
D and Two Notions of Complexity

Clearly, the solution to this problem depends on what kind of representation, D, of
the manifold M we have access to. In this paper, we consider the scenario where
the dictionary for the manifold is provided by a Geometric Multi-Resolution Analysis
(GMRA) approximation to M [3] (cf. Fig. 1b). We will mainly work with GMRA
approximations of M characterized by the axiomatic Definition 2.1 below, but we
also consider the case of a GMRA approximation based on random samples fromM
(see Sect. 3 and Appendices D and E for more details).

As one might expect, the complexity and structure of the GMRA-based dictionary
for M will depend on the complexity of M itself. In this paper, we will work with
two different measures of a set’s complexity: (i) the set’s Gaussian width and (ii) the
notion of the reach of the set [19]. The Gaussian width of a set M ⊂ R

D is defined
by

w(M ) := E

[
sup
z∈M

〈g, z〉
]

S
D−1

(a) Tessellation of the sphere by random hy-

perplanes.

M

(b) Submanifold M of SD−1 and one level

of GMRA.

Fig. 1 One-bit measurements and GMRA
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where g ∼ N (0, ID). Properties of this quantity are discussed in Sect. 4.1. The notion
of reach is, in contrast, more obviously linked to the geometry of M and requires a
couple of additional definitions before it can be defined formally.

The first of these definitions is the tube of radius r around a given subsetM ⊂ R
D ,

which is the D-dimensional superset ofM consisting of all the points in RD that are
within Euclidean distance r ≥ 0 from M ⊂ R

D ,

tuberM :=
{
x ∈ R

D : inf
y∈M

‖x − y‖2 ≤ r
}
.

The domain of the nearest neighbor projection onto the closure ofM is also needed,
and is denoted by

D(M ) :=
{
x ∈ R

D : ∃! y ∈ M such that ‖x − y‖2 = inf
z∈M

‖x − z‖2
}
.

Finally, the reach of the set M ⊂ R
D is simply defined to be the smallest distance

r around M for which the nearest neighbor projection onto the closure of M is no
longer well defined. Equivalently,

reachM := sup {r ≥ 0 : tuberM ⊆ D(M )}.

Given this definition one can see, e.g., that the reach of any d < D dimensional sphere
of radius r in R

D is always r , and that the reach of any d ≤ D dimensional convex
subset of RD is always∞.

Definition 2.1 (GMRA approximation toM [29]) Let J ∈ N and K0, K1, . . . , K J ∈
N. Then a Geometric Multi-Resolution Analysis (GMRA) approximation of M is a

collection {(C j ,P j )}, j ∈ [J ] := {0, . . . , J }, of sets C j = {c j,k}K j
k=1 ⊂ R

D of
centers and

P j =
{
P j,k : RD → R

D | k ∈ [K j ]
}

of affine projectors that approximateM at scale j , such that the following assumptions
(i)–(iii) hold.

(i) Affine projections: Every P j,k ∈ P j has both an associated center c j,k ∈ C j

and an orthogonal matrix Φ j,k ∈ R
d×D such that

P j,k(z) = ΦT
j,kΦ j,k(z− c j,k) + c j,k,

i.e., P j,k is the projector onto some affine d-dimensional linear subspace Pj,k

containing c j,k .
(ii) Dyadic structure: The number of centers at each level is bounded by |C j | = K j ≤

CC 2d j for an absolute constant CC ≥ 1. There exist C1 > 0 and C2 ∈ (0, 1],
such that following conditions are satisfied:

(a) K j ≤ K j+1 for all j ∈ [J − 1].
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(b) ‖c j,k1 − c j,k2‖2 > C1 · 2− j for all j ∈ [J ] and k1 �= k2 ∈ [K j ].
(c) For each j ∈ [J ] \ {0} there exists a parent function p j : [K j ] → [K j−1]

with

‖c j,k − c j−1,p j (k)‖2 ≤ C2 · min
k′∈[K j−1]\{p j (k)}

‖c j,k − c j−1,k′ ‖2.

(iii) Multiscale approximation: The projectors inP j approximateM at scale j , i.e.,
when M is sufficiently smooth the affine spaces Pj,k locally approximate M
pointwise with error O(2−2 j ). More precisely:

(a) There exists j0 ∈ [J −1] such that c j,k ∈ tubeC12− j−2(M ) for all j > j0 ≥ 1
and k ∈ [K j ].

(b) For each j ∈ [J ] and z ∈ R
D let c j,k j (z) be one of the centers closest to z, i.e.,

k j (z) ∈ argmin
k∈[K j ]

‖z− c j,k‖2. (2)

Then, for each z ∈ M there exists a constant Cz > 0 such that

‖z− P j,k j (z)(z)‖2 ≤ Cz · 2−2 j

for all j ∈ [J ]. Moreover, for each z ∈ M there exists C̃z > 0 such that

‖z− P j,k′(z)‖2 ≤ C̃z · 2− j

for all j ∈ [J ] and k′ ∈ [K j ] satisfying

‖z− c j,k′ ‖2 ≤ 16 ·max
{‖z− c j,k j (z)‖2, C1 · 2− j−1}.

Remark 2.2 By property (i), GMRA approximation represents M as a combination
of several anchor points (the centers c j,k) and corresponding low-dimensional affine
spaces Pj,k . The levels j control the accuracy of the approximation. The centers
are organized in a tree-like structure as stated in property (ii). Property (iii) then
characterizes approximation criteria to be fulfilled on different refinement levels. Note
that centers do not have to lie on M (compare Fig. 1b) but their distance to M is
controlled by property (iii.a). If the centers form a maximal 2− j packing of a smooth
manifold M at each scale j or if the GMRA is constructed from manifold samples
as discussed in [38] (cf. Appendix E), the constants C1 and C̃z are in fact bounded by
absolute constants which will become important later on, cf. Remark 3.2.

2.2 Additional Notation

Let us now fix some additional notation. Throughout the remainder of this paper we
will work with several different metrics. Perhaps most importantly, we will quantify
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cj,k j (x)

cj,k ′

x

Pj,k j (x)

Pj,k ′
Pj,k ′(x)

M

Fig. 2 The closest center c j ,k j (x) is not identified by measurements. Dotted lines represent one-bit hyper-
planes

the distance between two points z, z′ ∈ R
D with respect to their one-bit measurements

by

dA(z, z′) := dH(sign Az, sign Az′)
m

,

where dH counts the number of differing entries between the two sign patterns (i.e.,
dA(z, z′) is the normalized Hamming distance between the signs of Az and Az′).
Furthermore, let PS denote orthogonal projection onto the unit sphere SD−1, and more
generally let PK denote orthogonal (i.e., nearest neighbor) projection onto the closure
of an arbitrary set K ⊂ R

D wherever it is defined. Then, for all z, z′ ∈ R
D we will

denote by dG(z, z′) = dG(PS(z),PS(z′)) the geodesic distance between PS(z) and
PS(z′) on S

D−1 normalized to fulfill dG(z′′,−z′′) = 1 for all z′′ ∈ R
D .

Herein the Euclidian ball with center z and radius r is denoted by B(z, r). In
addition, the scale- j GMRA approximation to M ,

M j := {P j,k j (z)(z) : z ∈ B(0, 2)} ∩B(0, 2),

will refer to the portions of the affine subspaces introduced in Definition 2.1 for each
fixed j , which are potentially relevant as approximations to some portion of M ⊂
S

D−1. To prevent theM j above from being emptywewill further assume in our results
that we only use scales j > j0 large enough to guarantee that tubeC12− j−2(M ) ⊂
B(0, 2). Hence we will have c j,k ∈ B(0, 2) for all k ∈ K j , and so C j ⊂ M j . This
further guarantees that no sets Pj,k∩B(0, 2) are empty, and that Pj,k∩B(0, 2) ⊂ M j

for all k ∈ K j .
Finally, we write a � b if a ≥ Cb for some constant C > 0. The diameter of

a set K ⊂ R
D will be denoted by diam K := supz,z′∈K ‖z − z′‖2, where ‖ · ‖2 is

the Euclidian norm. We use dist(A, B) = infa∈A,b∈B ‖a − b‖2 for the distance of
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two sets A, B ⊂ R
D and, by an abuse of notation, dist(0, A) = infa∈A ‖a‖2. The

operator norm of a matrix A ∈ R
n1×n2 is denoted by ‖A‖ = supx∈Rn2 ,‖x‖2≤1 ‖Ax‖2.

We will write N (K , ε) to denote the Euclidian covering number of a set K ⊂ R
D

by Euclidean balls of radius ε (i.e., N (K , ε) is the minimum number of ε-balls that
are required to cover K ). And, the operators �r� (resp. �r�) return the closest integer
smaller (resp. larger) than r ∈ R.

2.3 The Proposed Computational Approach

Combining prior GMRA-based compressed sensing results [29] with the one-bit
results of Plan and Vershynin in [41] suggests the following strategy for recovering
an unknown x ∈ M from the measurements given in (1): First, choose a center c j,k′
whose one-bit measurements agree with as many one-bit measurements of x as pos-
sible. Due to the varying shape of the tessellation cells this is not an optimal choice
in general (see Fig. 2). Nevertheless, one can expect Pj,k′ to be a good approximation
to M near x. Thus, in the second step a modified version of Plan and Vershynin’s
noisy one-bit recovery method using Pj,k′ should yield an approximation of P j,k′(x)
which is close to x.1 See OMS-simple for pseudocode.

Algorithm OMS-simple: OnebitManifoldSensing – Simple Version

INPUT: A, y, GMRA of M , refinement level j , R

I. Identify a center c j,k′ close to x via

c j,k′ ∈ argmin
c j,k∈C j

dH(sign Ac j,k, y), (3)

where dH is the Hamming distance, i.e., dH(z, z′) := |{l : zl �= z′l}|.
If dH(sign Ac j,k′ , y) = 0, directly choose x∗ = c j,k′ and omit II.

II. If there is no center in the same cell as x (as in Fig. 2), solve a noisy one-bit
recovery problem as in [41], i.e.,

x∗ = argmin
z∈RD

m∑
l=1

(−yl)〈al , z〉 subject to z = P j,k′(z) and ‖z‖2 ≤ R (4)

where R is a suitable parameter.

Remark 2.3 The minimization in (3) can be efficiently calculated by exploiting tree
structures in C j . Numerical experiments (see Sect. 5) suggest this strategy to yield
adequate approximation for the center c j,k j (x) in (2), while being considerably faster
(we observed differences in runtime up to a factor of 10).

1 Note that in this second step the given measurements y of x are interpreted as being noisy measurements
of P j,k′ (x).
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0
0

Pj,k ′(0)

1
2

Pj,k′∩ B(0, 2) ))

Pj,k′ ∩ B (0, 2) Pj,k′(0)

Fig. 3 Two views of an admissible set convPS(Pj ,k′ ∩B(0, 2)) from (5) if ‖c‖2 = ‖P j,k′ (0)‖2<1

Though simple to understand, the constraints in (4) have two issues that we need
to address: First, in some cases the minimization problem (4) empirically exhibits
suboptimal recovery performance (see Sect. 5.1 for details). Second, the parameter
R in (4) is unknown a priori (i.e., OMS-simple requires parameter tuning, making it
less practical than one might like). Indeed, our analysis shows that making an optimal
choice for R in OMS-simple requires a priori knowledge about ‖P j,k′(x)‖2 which is
only approximately known in advance.

To address this issue, we will modify the constraints in (4) and instead minimize
over the convex hull of the nearest neighbor projection of Pj,k′ ∩B(0, 2) onto SD−1,

convPS(Pj,k′ ∩B(0, 2)),

to remove the R dependence. If 0 ∈ Pj,k′ one has convPS(Pj,k′ ∩B(0, 2)) = Pj,k′ ∩
B(0, 1). If 0 /∈ Pj,k′ the set convPS(Pj,k′ ∩B(0, 2)) is described by the following
set of convex constraints which are straightforward to implement in practice. Denote
by Pc the projection onto the vector c = P j,k′(0). Then

z ∈ convPS(Pj,k′ ∩B(0, 2)) ⇐⇒

⎧⎪⎨
⎪⎩
‖z‖2 ≤ 1,

ΦT
j,k′Φ j,k′z+ Pc(z) = z,

〈z, c〉 ≥ ‖c‖22/2.
(5)

The first two conditions above restrict z to B(0, 1) and span Pj,k′ , respectively. The
third condition then removes all points that are too close to the origin (see Fig. 3). A
rigorous proof of equivalence can be found in Appendix A.

Our analysis uses that the noisy one-bit recovery results of Plan and Vershynin
apply to arbitrary subsets of the unit ballB(0, 1) ⊂ R

D which will allow us to adapt
our recovery approach. Replacing the constraints in (4) with those in (5) we obtain
the following modified recovery approach, OMS.
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Algorithm OMS: OnebitManifoldSensing

INPUT: A, y, GMRA of M , refinement level j

I. Identify a center c j,k′ close to x via

c j,k′ ∈ argmin
c j,k∈C j

dH(sign Ac j,k, y). (6)

where dH is the Hamming distance, i.e., dH(z, z′) := |{l : zl �= z′l}|.
If dH(sign(Ac j,k′), y) = 0, directly choose x∗ = c j,k′ and omit II.

II. If there is no center lying in the same cell as x (see Fig. 2), recover the
projection of x onto Pj,k′ , i.e., P j,k′(x). To do so solve the convex optimization

x∗ = argmin
z∈RD

m∑
l=1

(−yl)〈al , z〉 subject to z ∈ convPS(Pj,k′ ∩B(0, 2)). (7)

As we shall see, theoretical error bounds for both OMS-simple and OMS can be
obtained by nearly the same analysis despite their differences.

3 Main Results

In this section, we present the main results of our work, namely that both OMS-simple
andOMSapproximate a signal onM to arbitrary precisionwith a near-optimal number
of measurements. More precisely, we obtain the following theorem.

Theorem 3.1 ((uniform) recovery) There exist absolute constants E, E ′, c > 0 such
that the following holds. Let ε ∈ (0, 1) and assume the GMRA’s maximum refinement
level J ≥ j := �log(1/ε)�. Further suppose that one has dist(0,M j ) ≥ 1/2, 0 <

C1 < 2 j , and supx∈M C̃x < 2 j−2. If

m ≥ EC−6
1 ε−6 max

{
w(M ),

√
d log(e/ε)

}2
, (8)

then with probability at least 1− 12e−cC2
1ε2m, for all x ∈ M ⊂ S

D−1 the approxima-
tions x∗ obtained by OMS satisfy

‖x − x∗‖22 ≤ E ′(1+ C̃x + C1 max {1, logC−1
1 })2ε log 1

2ε
. (9)

Proof The proof can be found below Theorem 4.14 in Sect. 4. ��
Remark 3.2 Let us briefly comment on the assumptions of Theorem 3.1. First, since
M ⊂ S

D−1, requiring dist(0,M j ) ≥ 1/2 is a mild assumption. Any GMRA not
fulfilling it would imply a worst-case reconstruction error of 1/2 in (9). The constant
1/2 was chosen for simplicity and can be replaced by an arbitrary number in (0, 1).
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This, however, influences the constants E, E ′, c. Second, the restrictions onC1 and C̃x
are easily satisfied, e.g., if the centers form a maximal 2− j packing ofM at each scale
j or if the GMRA is constructed from manifold samples as discussed in [38] (cf.
Appendix E). In both these cases C1 and C̃x are in fact bounded by absolute constants.

Note that Theorem 3.1 depends on the Gaussian width of M . For general sets K
this quantity provides a quite tight measure of the set complexity which might seem
counter-intuitive for non-convex K on first sight. After all the convex hull of K might
be considerably larger than the set itself while w(K ) = w(conv K ). However, the
intuition is deceptive in this case. In high-dimensional spaces, the intrinsic complexity
of non-convex sets and their convex hull hardly differ. For instance, if K is the set of
s-sparse vectors in the D-dimensional Euclidean unit ball, its convex hull, the �1-ball,
is full dimensional but w(K ) = w(conv K ) ≈ s log(D/s) which differs from the
information theoretic lower bound on the complexity of K by at most a log-factor.

In the case of compact Riemannian submanifolds ofRD itmight bemore convenient
to have a dependence on the geometric properties of M instead (e.g., its volume and
reach). Indeed, one can show by means of [17] that w(M ) can be upper bounded in
terms of the manifold’s intrinsic dimension d, its d-dimensional volume VolM , and
the inverse of its reach. Intuitively, these dependencies are to be expected as amanifold
with fixed intrinsic dimension d can become more complex as either its volume or
curvature (which can be bounded by the inverse of its reach) grows. The following
theorem, which is a combination of different results in [17], formalizes this intuition
by bounding the Gaussian width of a manifold in terms of its geometric properties.

Theorem 3.3 Assume M ⊂ R
D is a compact d-dimensional Riemannian manifold

with d-dimensional volume VolM where d ≥ 1. Then one can replace w(M ) in the
above theorem by

w(M ) ≤ C · diamM ·
√

d ·max

{
log

c
√

d

min {1, reachM } , 1
}
+ logmax {1,VolM }

where C, c > 0 are absolute constants.

Proof See Appendix B. ��
Remark 3.4 Note that in our setting M ⊂ S

D−1 implies that diamM ≤ 2 and
reachM ≤ 1. As we will see, the Gaussian width of the GMRA approximation
to M is also bounded in terms of w(M ). This additional width bound is crucial to
the proof of Theorem 3.1 as the complexity of the GMRA approximation to M also
matters whenever one attempts to approximate an x ∈ M using only the available
GMRA approximation to M . See, e.g., Lemmas 4.3, 4.5, and 4.6 below for upper
bounds on the Gaussian widths of GMRA approximations to manifolds M ⊂ S

D−1

in various settings.

Finally, we point out that Theorem 3.1 assumes access to a GMRA approximation to
M ⊂ S

D−1, which satisfies all of the axioms listed in Definition 2.1. Following the
work of Maggioni et al. [38], however, one can also ask whether a similar result will
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still hold if the GMRA approximation one has access to has been learned by randomly
sampling points fromM without the assumptions of Definition 2.1 being guaranteed
a priori. Indeed, such a setting is generally more realistic. In fact it turns out that a
version of Theorem 3.1 still holds for such empirical GMRA approximations under
suitable conditions; see Theorem E.7. We refer the interested reader to Appendices
D and E for additional details and discussion regarding the use of such empirically
learned GMRA approximations.

4 Proofs

This section provides proofs of the main result in both settings described above and
establishes several technical lemmas. First, properties of the Gaussian width and the
geodesic distance are collected and shown. Then, the main results are proven for a
given GMRA approximation fulfilling the axioms.

4.1 Toolbox

Westart by connecting slightly different definitions of dimensionalitymeasures similar
to the Gaussian width and clarify how they relate to each other. This is necessary as the
tools we make use of appear in their original versions referring to different definitions
of Gaussian width.

Definition 4.1 (Gaussian (mean) width) Let g ∼ N (0, IdD). For a subset K ⊂ R
D

define

(i) the Gaussian width: w(K ) := E
[
supx∈K 〈g, x〉

]
,

(ii) the Gaussian mean width to be the Gaussian width of K − K , and
(iii) the Gaussian complexity: γ (K ) = E

[
supx∈K |〈g, x〉|].

By combining properties 5) and 6) of [41, Prop. 2.1] one has

w(K − K ) ≤ 2w(K ) ≤ 2γ (K ) ≤ 2

(
w(K − K ) +

√
2

π
dist(0, K )

)
. (10)

Remark 4.2 One can easily verify that w(K ) ≥ 0 for all K ⊂ R
D since w(K ) :=

E
[
supx∈K 〈g, x〉

] ≥ supx∈K E[〈g, x〉] = 0. The square w(K ∩ B(0, 1))2 of the Gaus-
sian width of K ⊂ R

D is also a good measure of intrinsic dimension. For example, if
K is a linear subspace with dim K = d then w(K ∩B(0, 1)) ≤ √

d . In this sense, the
Gaussian width extends the concept of dimension to general sets K . Furthermore, for
a finite set K the Gaussian width is bounded by w(K ) ≤ C f diam(K ∪{0})√log |K |.
This can be deduced directly from the definition (see, e.g., [41, Sect. 2]).

Now thatwe have introduced the notion ofGaussianwidth,we can use it to characterize
the union of the givenmanifold and a single level of itsGMRAapproximationM ∪M j

(recall the definition of M j in Sect. 2).
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Lemma 4.3 (a bound on the Gaussian width for coarse scales) For M j , the subspace
approximation in the GMRA of level j > j0 (cf. the end of Sect. 2) for M of dimension
d ≥ 1, the Gaussian width of M ∪M j can be bounded from above and below by

max {w(M ), w(M j )} ≤ w(M ∪M j )

≤ 2w(M )+ 2w(M j ) + 3 ≤ 2w(M ) + C
√

d j .

Remark 4.4 Note that the first inequality holds for general sets, not onlyM andM j .
Moreover, one only uses M j ⊂ B(0, 2) to prove the second inequality. It thus holds
for M j replaced with arbitrary subsets of B(0, 2). We might use both variations
referring to Lemma 4.3.

Proof The first inequality follows by noting that

max {w(M ), w(M j )} = max

{
E

[
sup
v∈M

〈v, g〉
]
,E

[
sup
v∈M j

〈v, g〉
]}

≤ E

[
sup

v∈M∪M j

〈v, g〉
]
= w(M ∪M j ).

To obtain the second inequality observe that

w(M ∪M j ) ≤ γ (M ∪M j ) ≤ E

[
sup
v∈M

|〈v, g〉| + sup
v∈M j

|〈v, g〉|
]

= γ (M ) + γ (M j )

≤ 2w(M )+ 2w(M j ) +
√

2

π
dist(0,M ) +

√
2

π
dist(0,M j )

≤ 2

(
w(M )+ w(M j ) + 1.5

√
2

π

)
,

(11)

where we used (10), the fact that M ⊂ S
D−1, and that M j ⊂ B(0, 2). For the last

inequality we bound w(M j ). First, note that

w(M j ) = E

[
sup
v∈M j

〈v, g〉
]
= E

[
sup

v∈{P j,k j (x)(x) : x∈B(0,2)}∩B(0,2)
〈v, g〉

]

≤ E

[
sup

x∈⋃k∈[K j ] Pj,k∩B(0,2)
〈x, g〉

]
.

For all k ∈ [K j ] there exist d-dimensional Euclidean balls L j,k ⊂ Pj,k of radius 2 such
that Pj,k ∩B(0, 2) ⊂ L j,k . Hence,

⋃
k∈[K j ](Pj,k ∩B(0, 2)) ⊂ L j :=⋃

k∈[K j ] L j,k .
By definition, the ε-covering number of L j (a union of K j d-dimensional balls) can be
bounded byN (L j , ε) ≤ K j (6/ε)d which implies logN (L j , ε) ≤ d j log(12CC /ε)
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by GMRA property (ii). By Dudley’s inequality (see, e.g., [16]) we conclude via
Jensen’s inequality that

w(M j ) ≤ w(L j ) ≤ CDudley

∫ 2

0

√
logN (L j , ε) dε

≤ CDudley
√

d j
∫ 2

0

√
log 12CC − log ε dε

≤ CDudley
√

d j

√
2 log 12CC −

∫ 2

0
log ε dε ≤ C ′√d j,

where C ′ is a constant depending on CDudley and CC . Choosing C = 2C ′ + 3 yields
the claim as 3

√
2/π ≤ 3

√
d j . ��

The following two lemmas concerning width bounds for fine scales will also be useful.
Their proofs (see Appendix C), though more technical, use ideas similar to the proof
of Lemma 4.3. The first lemma improves on Lemma 4.3 for large values of j by
considering a more geometrically precise approximation toM ,M rel

j ⊂ M j .

Lemma 4.5 (a bound of the Gaussian width for fine scales) Assume j ≥ log2 D,
max {1, supz∈M Cz} =: CM < ∞, and M rel

j := {P j,k j (z)(z) : z ∈ M } ∩ B(0, 2).
We obtain

max {w(M ), w(M rel
j )} ≤ w(M ∪M rel

j )

≤ 2w(M )+ 2w(M rel
j ) + 3 ≤ C(w(M ) + 1) log D.

It is not surprising that for general M ∈ S
D−1 the width bound for w(M j ) (resp.

w(M rel
j )) depends on either j or log D. When using the proximity of M rel

j to M in

Lemma 4.5 we only use the information thatM rel
j ⊂ tubeCM 2−2 j and a large ambient

dimension D will lead to a higher complexity of the tube. In the case of Lemma 4.3, we
omit the proximity argument by using the maximal number of affine d-dimensional
spaces inM j and hence do not depend on D but on the refinement level j .

The next lemma just below utilizes even more geometric structure by assuming that
M is a Riemannian manifold. It improves on both Lemma 4.3 and 4.5 for such M
by yielding a width bound which is independent of both j and D for all j sufficiently
large.

Lemma 4.6 (a bound of the Gaussian width for approximations to Riemannian man-
ifolds) Assume M ⊂ S

D−1 is a compact d-dimensional Riemannian manifold
with d-dimensional volume VolM where d ≥ 1. Furthermore, suppose that for
max {1, supz∈M Cz} =: CM , j > max { j0, log2(8CM /C1)}, and set M rel

j :=
{P j,k j (z)(z) : z ∈ M } ∩ B(0, 2). Then there exist absolute constants C, c > 0
such that

max {w(M ), w(M rel
j )} ≤ w(M ∪M rel

j )
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≤ C

√
d

(
1+ log

c
√

d

reach M

)
+ logmax {1,VolM }.

Here the constants Cz and C1 are from properties (iii.b) and (iii.a), respectively.

Finally, the following lemma quantifies the equivalence between Euclidean and nor-
malized geodesic distance on the sphere.

Lemma 4.7 For z, z′ ∈ S
D−1 one has

dG(z, z′) ≤ ‖z− z′‖2 ≤ πdG(z, z′).

Proof First observe that 〈z, z′〉 = cos�(z, z′) = cosπdG(z, z′). This yields

‖z− z′‖2 − dG(z, z′) = √
2− 2 cosπdG(z, z′) − dG(z, z′) ≥ 0

as the function f (x) = √
2− 2 cosπx − x is non-negative on [0, 1]. For the upper

bound note the relation between the geodesic distance d̃G and the normalized geodesic
distance dG,

d̃G(z, z′) = πdG(z, z′),

which yields

‖z− z′‖2 ≤ d̃G(z, z′) = πdG(z, z′). ��

We now have the preliminary results necessary in order to prove Theorem 3.1.

4.2 Proof of Theorem 3.1 with Axiomatic GMRA

Recall that our theoretical result concerns OMS-simple with recovery performed
using (3) and (4). The proof is based on the following idea. We first control the error
‖c j,k′ − x‖2 made by (3) in approximating a GMRA center closest to x. To do so we
make use of Plan and Vershynin’s result on δ-uniform tessellations in [43]. Recall the
equivalence between one-bit measurements and random hyperplanes.

Definition 4.8 (uniform tessellation [43, Defn. 1.1]) Let K ⊂ S
D−1 and an arrange-

ment of m hyperplanes in R
D be given via a matrix A (i.e., the j-th row of A is the

normal to the j-th hyperplane). Let dA(x, y) ∈ [0, 1] denote the fraction of hyper-
planes separating x and y in K and let dG be the normalized geodesic distance on the
sphere, i.e., opposite poles have distance one. Given δ > 0, the hyperplanes provide a
δ-uniform tessellation of K if

|dA(x, y) − dG(x, y)| ≤ δ

holds for all x, y ∈ K .
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Theorem 4.9 (random uniform tessellation, [43, Thm. 3.1]) Consider a subset K ⊆
S

D−1 and let δ > 0. Let

m ≥ C̄δ−6 max {w(K )2, 2/π}

and consider an arrangement of m independent random hyperplanes in R
D uniformly

distributed according to the Haar measure. Then with probability at least 1−2e−cδ2m,
these hyperplanes provide a δ-uniform tessellation of K . Here and later C̄, c denote
positive absolute constants.

Remark 4.10 In words, Theorem 4.9 states that if a number of one-bit measurements
scale at least linearly in intrinsic dimension of a set K ⊂ S

D−1, then with high
probability the percentage of different measurements of two points x, y ∈ K is closely
related to their distance on the sphere. Implicitly the diameter of all tessellation cells
is bounded by δ. The original version of Theorem 4.9 uses γ (K ) instead of w(K ).
However, note that by (10) we get for K ⊆ S

D−1 that γ (K ) ≤ w(K − K )+√
2/π ≤

3w(K ) as long as w(K ) ≥ √
2/π which is reasonable to assume. Hence, if C̄ is

changed by a factor of 9, Theorem 4.9 can be stated as above.

Using these results we will show in Lemma 4.13 that the center c j,k′ identified in step I
of the algorithmOMS-simple satisfies‖x−c j,k′ ‖2≤16max {‖x−c j,k j (x)‖2, C12− j−1}
in Lemma 4.13. Therefore, the GMRA property (iii.b) provides an upper bound on
‖x − P j,k′(x)‖2. What remains is to then bound the gap between P j,k′(x) and the
approximationx∗. This happens in two steps. First, Plan andVershynin’s result onnoisy
one-bit sensing (see Theorem 4.11) is applied to a scaled version of (4) bounding the
distance between P j,k′(x) and x̄ (the minimizer of the scaled version). This argument
works by interpreting the true measurements y as a noisy version of the non-accessible
one-bit measurements of P j,k′(x). The rescaling becomes necessary as Theorem 4.11
is restricted to the unit ball in Euclidean norm. Lastly, a geometric argument is used
to bound the distance between the minimum points x̄ and x∗ in order to conclude the
proof.

Theorem 4.11 (noisy one-bit [41, Thm. 1.3]) Let a1, . . . , am be i.i.d. standard Gaus-
sian random vectors in R

D and let K be a subset of the Euclidean unit ball in R
D. Let

δ > 0 and suppose that m ≥ C ′δ−6w(K )2. Then with probability at least 1−8e−cδ2m,
the following event occurs. Consider a signal x̃ ∈ K satisfying ‖x̃‖2 = 1 and its
(unknown) uncorrupted one-bit measurements ỹ = (ỹ1, . . . , ỹm) given as

ỹi = sign 〈ai , x̃〉, i = 1, 2, . . . , m.

Let y = (y1, . . . , ym) ∈ {−1, 1}m be any (corrupted) measurements satisfying
dH(ỹ, y) ≤ τm. Then the solution x̄ to the optimization problem

x̄ = arg max
z

∑
m
i=1yi 〈ai , z〉 subject to z ∈ K ,
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with input y, satisfies

‖x̄ − x̃‖22 ≤ δ

√
log

e

δ
+ 11τ

√
log

e

τ
.

Remark 4.12 Theorem 4.11 yields guaranteed recovery of unknown signals x ∈ K ⊂
B(0, 1) up to a certain error by the formulation we use in (4) from one-bit measure-
ments, if the number of measurements scales linearly with the intrinsic dimension of
K . The recovery is robust to noise on the measurements. Note that the original version
of Theorem 4.11 uses w(K − K ) instead of w(K ). As w(K − K ) ≤ 2w(K ) by (10),
the result stated above also holds for a slightly modified constant C ′.

We begin by proving Lemma 4.13.

Lemma 4.13 If m ≥ C̄C−6
1 26( j+1) max {w(M ∪ PS(C j ))

2, 2/π} the center c j,k′ cho-
sen in step I of Algorithm OMS-simple fulfills

‖x − c j,k′ ‖2 ≤ 16max {‖x − c j,k j (x)‖2, C12
− j−1}

for all x ∈ M ⊂ S
D−1 with probability at least 1− 2e−c(C12− j−1)2m.

Proof By definition of c j,k′ in (3) we have that

dH(sign Ac j,k′ , y) ≤ dH(sign Ac j,k j (x), y).

As, for all z, z′ ∈ R
D , dH(sign Az, sign Az′) = mdA(z, z′) = mdA(PS(z),PS(z′)),

this is equivalent to

dA(PS(c j,k′), x) ≤ dA(PS(c j,k j (x)), x).

Noting that Gaussian random vectors and Haar random vectors yield identically dis-
tributed hyperplanes, Theorem4.9 now transfers this bound to the normalized geodesic
distance, namely

dG(PS(c j,k′), x) ≤ dG(PS(c j,k j (x)), x) + 2δ

with probability at least 1 − 2e−cδ2m where δ = C12− j−1. Observe dG(z, z′) ≤
‖z− z′‖2 ≤ πdG(z, z′) for all z, z′ ∈ S

D−1 (recall Lemma 4.7) which leads to

‖PS(c j,k′)− x‖2 ≤ πdG(PS(c j,k j (x)), x) + 2πδ ≤ π‖PS(c j,k j (x)) − x‖2 + 2πδ.

As by property (iii.a) the centers are close to the manifold, they are also close to the
sphere and we have ‖PS(c j,k) − c j,k‖2 < C12− j−2, for all c j,k ∈ C j . Hence, we
conclude

‖c j,k′ − x‖2 ≤ ‖c j,k′ − PS(c j,k′)‖2 + ‖PS(c j,k′) − x‖2
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≤ π
(‖c j,k j (x) − x‖2 + C12

− j−2)+ 2πδ + C12
− j−2

≤
(

π + π

2
+ 2π + 1

2

)
max {‖c j,k j (x) − x‖2, C12

− j−1}
≤ 16max {‖c j,k j (x) − x‖2, C12

− j−1}. ��

We can now prove a detailed version of Theorem 3.1 for the given axiomatic GMRA
and deduce Theorem 3.1 as a corollary.

Theorem 4.14 (uniform recovery—axiomatic case) Let M ⊂ S
D−1 be given by its

GMRA for some levels j0 < j ≤ J , such that C1 < 2 j0+1 where C1 is the constant
from GMRA properties (ii.b) and (iii.a). Fix j and assume that dist(0,M j ) ≥ 1/2.
Further, let d ≥ 1 and

m ≥ 16max {C ′, C̄} · C−6
1 26( j+1)(w(M )+ C

√
d j)2, (12)

where C ′ is the constant from Theorem 4.11, C̄ from Theorem 4.9, and C > 3 from
Lemma 4.3. Then, with probability at least 1− 12e−(C12− j−1)2cm the following holds
for all x ∈ M with one-bit measurements y = sign Ax and GMRA constants C̃x from
property (iii.b) satisfying C̃x < 2 j−1: The approximations x∗ obtained by OMS fulfill

‖x − x∗‖2 ≤ 2− j/2 4
√

j

×
(
2C̃x2

− j/2 +
√

C1

2
4

√
log

4e

min {C1, 1} +
√
11C ′

x
4

√
log

2e

min {C ′
x, 1}

)
.

Here C ′
x := 2C̃x + C1.

Proof of Theorem 3.1 As j = �log(1/ε)�, we know that 2− j ≤ ε ≤ 2− j+1. This
implies

m ≥ EC−6
1 ε−6 max

{
w(M ),

√
d

(
log

1

ε
+ 1

)}2

≥ 16max {C ′, C̄} · C−6
1 26( j+1)(w(M ) + C

√
d j)2

for E > 0 chosen appropriately. The result follows by applying Theorem 4.14. ��

Proof of Theorem 4.14 Recall that k′ is the index chosen by OMS in (6). The proof
consists of three steps. First, we apply Lemma 4.13 in (I). By the GMRA axioms
this supplies an estimate for ‖x − P j,k′(x)‖2 with high probability. In (II) we use
Theorem 4.11 to bound the distance between P j,k′(x)/‖P j,k′(x)‖2 and the minimizer
x∗ given by
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x∗ = argmin
z

m∑
l=1

(−yl)〈al , z〉 subject to z ∈ K := convPS(Pj,k′ ∩B(0, 2))

(13)

with high probability. By a union bound over all events, part (III) then concludes with
an estimate of the distance ‖x − x∗‖2 combining (I) and (II).

(I) Set δ := C12− j−1. Observing that C12− j−2 < 1/2 by assumption, GMRA
property (iii.a) yields that all centers in C j are closer to S

D−1 than 1/2, i.e.,
1/2 ≤ ‖c j,k‖2 ≤ 3/2. Hence, by (10)

0 ≤ w(PS(C j )) ≤ γ (PS(C j ))

≤ 2γ (C j ) ≤ 4w(C j ) + 2

√
2

π
dist(0,C j ) ≤ 4w(C j ) + 4.

(14)

As C j ⊂ M j we know by Lemma 4.3, (14), and Remark 4.4 that

m ≥ 4C̄δ−6(2w(M )+ 2C
√

d j)2 ≥ 4C̄δ−6(2w(M ) + 4w(C j ) + 6)2 (15)

≥ 4C̄δ−6(2w(M )+ w(PS(C j ))+ 2)2 = C̄δ−6(4w(M ) + 2w(PS(C j )) + 4)2

≥ C̄δ−6(w(M ∪ PS(C j )) + 1)2 ≥ C̄δ−6 max {w(M ∪ PS(C j ))
2, 2/π}.

Hence, Lemma 4.13 implies that

‖x − c j,k′ ‖2 ≤ 16max {‖x − c j,k j (x)‖2, C12
− j−1}

with probability at least 1− 2e−cδ2m . By GMRA property (iii.b) we now get that

‖x − P j,k′(x)‖2 ≤ C̃x2
− j (16)

for some constant C̃x.

(II) Define α := ‖P j,k′(x)‖2 and note that one has 1/2 ≤ α ≤ 3/2 as x ∈ S
D−1 and

‖x − P j,k′(x)‖2 ≤ C̃x2− j ≤ 1/2 by (16) and assumption. We now create the setting
of Theorem 4.11. Define x̃ := P j,k′(x)/α ∈ S

D−1, ỹ := sign Ax̃ = sign AP j,k′(x),
K = convPS(Pj,k′ ∩B(0, 2)), and τ := (2C̃x+C1)2− j . If successfully applied with
these quantities, Theorem 4.11 will bound ‖x̃ − x∗‖2 by

‖x̃ − x∗‖2 ≤
√

δ

√
log

e

δ
+ 11τ

√
log

e

τ

≤
(√

C1

2
4

√
log

4e

min {C1, 1}

+
√
11(2C̃x + C1)

4

√
log

2e

min {2C̃x + C1, 1}

)
2− j/2 4

√
j .

(17)

123



972 Discrete & Computational Geometry (2021) 65:953–998

All that remains is to verify that the conditions of Theorem 4.11 are met so that (17)
is guaranteed with high probability. We first have to check dH(ỹ, y) ≤ τm. Recall that
1/α ≤ 2 and for α > 0 one has αw(K ) = w(αK ). Applying Lemma 4.3 and (10) we
have, in analogy to (15), that

m ≥ C̄δ−6(4w(M ) + 4w(M j ) + 12)2 ≥ C̄δ−6
(
2w(M )+ 2w

(
M j

α

)
+ 12

)2

≥ C̄δ−6
(

w

(
M ∪ M j

α

)
+ 7

)2
≥ C̄δ−6

(
w

((
M ∪ M j

α

)
∩B(0, 1)

)
+ 7

)2
.

Note that in the third inequality a slightmodification of the second inequality inLemma
4.3 is used.AsM j/α ⊂ B(0, 4), one hasw(M∪M j/α) ≤ 2w(M )+2w(M j/α)+5
by adapting (11).We can now use Theorem 4.9, Lemma 4.7, and the fact that |1−α| =
|‖x‖2 − ‖P j,k′(x)‖2| ≤ ‖x − P j,k′(x)‖2 to obtain

dH(ỹ, y)
m

= dA(x̃, x) ≤ dG(x̃, x) + δ ≤ ‖x̃ − x‖2 + δ

≤ ‖x̃ − P j,k′(x)‖2 + ‖P j,k′(x) − x‖2 + δ

= |1− α| + ‖P j,k′(x) − x‖2 + δ

≤ 2‖P j,k′(x) − x‖2 + δ ≤ (2C̃x + C1)2
− j = τ

with probability at least 1 − 2e−cδ2m . Furthermore, by a similar argumentation as
in (14) one gets

w(K ) = w(PS(Pj,k′ ∩B(0, 2))) ≤ 4w(M j ) + 4, (18)

where one uses invariance of the Gaussian width under taking the convex hull (see
[41, Proposition 2.1]), the fact that Pj,k′ ∩B(0, 2) ⊂ M j , and the assumption that
1/2 ≤ dist(M j , 0) ≤ 2. In combination with Lemma 4.3 we have, in analogy to (15),
that

m ≥ 4C ′δ−6(2w(M )+ 4w(M j ) + 6)2 ≥ 4C ′δ−6(w(K )+ 2)2 ≥ C ′δ−6w(K )2.

Hence, we can apply Theorem 4.11 to obtain with probability at least 1 − 8e−cδ2m

that

‖x̄ − x̃‖22 ≤ δ

√
log

e

δ
+ 11τ

√
log

e

τ
;

the estimate (17) now follows.
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(III) To conclude the proof we apply a union bound and obtain with probability at
least 1− 12e−cδ2m that

‖x − x∗‖2 ≤ ‖x − P j,k′(x)‖2 + ‖P j,k′(x) − x̃‖2 + ‖x̃ − x∗‖2
= ‖x − P j,k′(x)‖2 + |1− α| + ‖x̃ − x∗‖2
≤ 2‖x − P j,k′(x)‖2 + ‖x̃ − x∗‖2.

GMRA property (iii.b) combined with (17) now yields the final desired error bound.
��

Remark 4.15 For obtaining the lower bounds on m in (12) and (8) we made use of
Lemma 4.3 leading to the influence of j which is suboptimal for fine scales (i.e.,
j large). To improve on this for large j one can exploit the alternative versions of
the lemma, namely, Lemmas 4.5 and 4.6. Then, however, some minor modifications
become necessary in the proof of Theorem 4.14 as the lemmas only apply to M rel

j :

– In (I), e.g., one has to guarantee that C j ⊂ M rel
j , i.e., that each center c j,k is a

best approximation for some part of the manifold. This is a reasonable assumption
especially if the centers are constructed as means of small manifold patches, which
is a common approach in empirical applications (cf. Appendix D).

– Also, when working with M rel
j it is essential in (II) to have a near-best approxi-

mation subspace of x, i.e., the k′ obtained in (I) has to fulfill k′ ≈ k j (x) as M rel
j

does not include many near-optimal centers for each point on M . Here, one can
exploit the minimal distance of centers c j,k to each other as described in GMRA
property (ii.b) and choose δ slightly smaller (in combination with a correspond-
ingly strengthened upper bound in Lemma 4.13) to obtain the necessary guarantees
for (I). As we are principally concerned with the case where j = O(log D) in this
paper, however, we will leave such variants to future work.

We are now prepared to explore the numerical performance of the proposed methods.

5 Numerical Simulation

In this section, we present various numerical experiments to benchmark OMS. The
GMRAswework with are constructed using the GMRA code provided byMaggioni.2

We compared the performance of OMS for three exemplary choices of M , namely,
a simple 2-dim sphere embedded in R

20 (20000 data points sampled from the 2-
dimensional sphereM embedded in S20−1), the MNIST data set [36] of handwritten
digits “1” (3000 data points in R

784), and the Fashion-MNIST data set [47] of shirt
images (2000 data points in R

784). Both MNIST data sets have been projected to the
unit sphere before taking measurements and computing the GMRA. In each of the
experiments 5.1–5.4, we first computed a GMRA up to refinement level jmax = 10
and then recovered 100 randomly chosen x ∈ M from their one-bit measurements

2 The code is available at http://www.math.jhu.edu/~mauro/#tab_code.
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by applying OMS. Depicted is the averaged relative error between x and its approx-
imation x∗, i.e., ‖x − x∗‖2/‖x‖2 which is equal to the absolute error ‖x − x∗‖2 for
M ⊂ S

D−1. Note the different approximation error ranges of the sphere and the
MNIST experiments when comparing both settings. As a benchmark, the average
error caused by the best GMRA approximation, i.e., projection of x onto the GMRA,
is provided in all plots in the form of a horizontal dashed black line.3 Let us mention
that the error caused by best GMRA approximation—though being a benchmark for
the recovery performance one could expect—is not a strict lower bound to OMS since
the algorithm is not restricted to the GMRA but uses convex relaxations of the GMRA
subspaces, cf. Fig. 4a.

5.1 OMS-Simple vs. OMS

The first test compares recovery performance of the two algorithms presented above,
namely OMS-simple for R ∈ {0.5, 1, 1.5} andOMS. The results are depicted in Fig. 4.
Note that only R = 1.5 and, in the case of the 2-sphere, R = 1 are depicted as in the
respective other cases for each number of measurements most of the trials did not yield
a feasible solution in (4), so the average was not well defined. One can observe that for
all data sets OMS outperforms OMS-simple which is not surprising as OMS does not
rely on a suitable parameter choice. This observation is also the reason for us to restrict
the theoretical analysis to OMS. The more detailed approximation of the toy example
(2-dimensional sphere) is due to its simpler structure and lower dimensional setting
and can also be observed in 5.2–5.4. Figures 5 and 6 depict one specific reconstructed
image of Fashion-MNIST, for four different numbers of measurements m. Obviously,
OMS shows a better performance having less quantization artifacts. Moreover, the
good visual quality of the OMS reconstruction in Fig. 6 for only m = 100 suggests
that the �2-error used inFig. 4 is a rather pessimistic performancemeasure.Considering
that all MNIST-images could be fully coded in 8 · 28 · 28 = 6272 bits (gray-scale
images contain only 8-bit of information per pixel), it is important to point out the
potentially overly pessimistic nature of the �2-errors reported for m = 10000, as well
as to note that the visual quality is already much better than one might expect for OMS
at compressions of ratios of size 100/6272 < 0.02.

5.2 Modifying OMS

Observations in [34] motivate to consider a modification of OMS in which (7) is
replaced by

x∗ = argmin
z∈RD

m∑
l=1

[(−yl)〈al , z〉]+ subject to z ∈ convPS(Pj,k′ ∩B(0, 2)),

3 Tobeprecise, for eachxwepicked theGMRAsubspaceminimizing the projection distance‖x−P j,k (x)‖2
and averaged this error over all realizations of x.
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(c) Fashion-MNIST

Fig. 4 Comparison of OMS-Simple for R = 1 (dotted-dashed, yellow), R = 1.5 (dashed, blue), and OMS
(solid, red). Recall from Sect. 5.1 that OMS-Simple for R = 1 does not recover in b and c. The black dotted
line highlights average error caused by direct GMRA projection

(a) Groundtruth (b) GMRA (c) m=10 (d) m=100 (e) m=1000 (f) m=10000

Fig. 5 One Fashion-MNIST signal with its OMS-Simple (R = 1.5) reconstructions. The best GMRA
approximation is given as a benchmark. Note that the GMRA uses an 11-dimensional subspace at this part
of the manifold

(a) Groundtruth (b) GMRA (c) m=10 (d) m=100 (e) m=1000 (f) m=10000

Fig. 6 One Fashion-MNIST signal with its OMS reconstructions. The best GMRA approximation is given
as a benchmark. Note that the GMRA uses an 11-dimensional subspace at this part of the manifold
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where [t]+ = max {0, t} denotes the positive part of t ∈ R. We tested this approach in
some initial numerical experiments, but found that the modification produced ambigu-
ous results with no clear improvement. Let us mention that after the original version of
this paper had been finished, the [ · ]+-formulation has been thoroughly analyzed for
robust one- and multi-bit quantization in a dithered measurement setup in [32], but not
in the context of GMRA and with dithering (this explains the ambiguous experimental
outcomes in our case, as we do not use dithering in the one-bit measurements). Cer-
tainly one could transfer results from [32] to our setting by changing the measurement
model to include dithering, cf. [13].

5.3 Are Two Steps Necessary?

One might wonder if the two steps in OMS-simple and OMS are necessary at all.
Wouldn’t it be sufficient to use the center c j,k′ determined in step I as an approximation
for x? If the GMRA is fine enough, this indeed is the case. If one only has access to
a rather rough GMRA, the simulations in Fig. 7 show that the second step makes a
notable difference in approximation quality. This behavior is not surprising in view
of Lemma 4.13. The lemma guarantees a good approximation of x by c j,k′ as long
as x is well approximated by an optimal center. For both MNIST data sets, one can
observe that the second step only improves performance if the number of one-bit
measurements is sufficiently high. For a small set of measurements the centers might
yield better approximation as they lie close to M by GMRA property (iii.a). On the
other hand, only parts of the affine spaces are practical for approximation and a certain
number of measurements is necessary to restrict II to the relevant parts.

5.4 Tree vs. No Tree

In the fourth test, we checked if approximation still workswhen not all possible centers
are compared in step I of OMS but their tree structure is used.More precisely, to find an
optimal center one compares on the first refinement level all centers, and then continues
in each subsequent level solely with the children of the k best centers (in the presented
experiments we chose k = 10). Of course, the chosen center will not be optimal as
not all centers are compared (see Fig. 7). In the simple 2-dimensional sphere setting,
step II, however, can compensate theworse approximation quality of I with tree search.
Figure 7a hardly shows a difference in final approximation quality in both cases. In
both MNIST settings, however, one can observe a considerable difference even when
performing two steps. Figures 8 and 9 illustrate the differences in reconstruction using
tree search vs. full center comparison, respectively, using only step I of OMS vs. using
both steps, for m = 100 and m = 1000. This corresponds to a compression ratio of
100/6272 < 0.02 resp. 1000/6272 < 0.2, cf. the discussion in Sect. 5.1. Comparing
c and d with e and f of Fig. 8 one sees that full center search reconstructs more detailed
features (shape), comparing c and d with e and f of Fig. 9 one sees that the second
step enhances reconstruction of details (neckline).
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Fig. 7 Comparison of the following: Approximation by step I of OMS when using tree structure (dashed
with points, yellow) and when comparing all centers (solid with points, purple); approximation by steps I
& II of OMS when using tree structure (dashed, blue; this line is mostly hidden behind the solid red curve
in the first plot) and when comparing all centers (solid, red). The black dotted line highlights average error
caused by direct GMRA projection

(a) Ground truth (b) GMRA (c) Tree structure
using step I

(d) Tree structure
using steps I & II

(e) Full search
using step I

(f) Full search
using steps I & II

Fig. 8 One Fashion-MNIST signal with OMS reconstructions using tree search or full center search and
using only step I or both steps, for m = 100. The best GMRA approximation is given as a benchmark. Note
that the GMRA uses a 7-dimensional subspace at this part of the manifold
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(a) Ground truth (b) GMRA (c) Tree structure
using step I

(d) Tree structure
using steps I& II

(e) Full search
using step I

(f) Full search
using steps I & II

Fig. 9 One Fashion-MNIST signal with OMS reconstructions using tree search or full center search and
using only step I or both steps, for m = 1000. The best GMRA approximation is given as a benchmark.
Note that the GMRA uses a 7-dimensional subspace at this part of the manifold

5.5 A Change of Refinement Level

The last experiment (see Fig. 10) examines the influence of the refinement level j on
the approximation error. For small j (corresponding to a rough GMRA) a high num-
ber of measurements can hardly improve the approximation quality while for large j
(corresponding to a fine GMRA) the approximation error decreases with increasing
measurement rates. This behavior is as expected. A rough GMRA cannot profit much
from many measurements as the GMRA approximation itself yields an approximate
lower bound on the obtainable approximation error. For fine GMRAs the behavior
along the measurement axis is similar to above experiments. Note that further increase
of j for the same range of measurements did not improve accuracy. Notably, the
Fashion-MNIST reconstruction performs quite well even for small choices of j sug-
gesting that the manifold of shirt images is, at least in terms of GMRA approximation,
of lower complexity than the manifold of digits “1.” This is in line with the observa-
tion that the approximation error for Fashion-MNIST is smaller than for MNIST in
the above experiments. The non-monotonous increase of the quality of reconstruction
in Fig. 10c—the levels j = 4, 8, 10 perform especially well—is more difficult to
explain; it might relate to the fact that Fashion-MNIST is considered to be harder to
classify thanMNIST—there seem to be features identifying the images (overall shape,
detailed contours) on various levels of refinement.

6 Discussion

In this paper, we proposed OMS, a tractable algorithm to approximate data lying on
low-dimensionalmanifolds from compressive one-bit measurements, thereby comple-
menting the theoretical results of Plan and Vershynin on one-bit sensing for general
sets in [41] in this important setting.We then proved (uniform)worst-case error bounds
for approximations computed by OMS under slightly stronger assumptions than [41],
and also performed numerical experiments on both toy examples and real-world data.
As a byproduct of our theoretical analysis (see, e.g., Sect. 4), we have further linked
the theoretical understanding of one-bit measurements as tessellations of the sphere
[43] to the GMRA techniques introduced in [3], by analyzing the interplay between a
given manifold and its GMRA approximation’s complexity measured in terms of the
Gaussian mean width. Finally, to indicate applicability of our results we showed that
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Fig. 10 Approximation error of OMS for different refinement levels j and numbers of measurements

they hold even if there are just random samples from the manifold at hand as opposed
to the entire manifold (see, e.g., Appendices D and E). Several interesting questions
remain for future research, however.

First, the experiments in Sect. 5.4 suggest a possible benefit from using the tree
structure withinC j . Indeed, approximation of OMS does still yield comparable results
if I is restricted to a tree-based search which has the advantage of being computable
much faster than the minimization over all possible centers. It would be desirable to
obtain theoretical error bounds even in this case, as well as to consider the use of other
related fast nearest neighbor methods from computer science [26].

Second, the attentive reader might have noticed in the empirical setting of Appen-
dices D and E that (A2) in combination with Lemma E.6 seems to imply that II of
OMS may be unnecessary. As can be seen from Sect. 5.3 though, the second step
of OMS yields a notable improvement even with an empirically constructed GMRA
which hints that even with (A2) not strictly fulfilled the empirical GMRA techniques
remain valid, and II of OMS of value. Understanding this phenomenon might lead to
more relaxed assumptions than (A1)–(A4).

Third, it could be rewarding to also consider versions of OMS for additional empir-
ical GMRA variants including, e.g., those which rely on adaptive constructions [37],
GMRA constructions in which subspaces that minimize different criteria are used to
approximate the data in each partition element (see, e.g., [27]), and distributed GMRA
constructions which are built up across networks using distributed clustering [4] and
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SVD [30] algorithms. Such variants could prove valuable with respect to reducing
the overall computational storage and/or runtime requirements of OMS in different
practical situations.

Fourth, it would be illustrative to compare our GMRA approach which can be inter-
preted as “signal processing”-type convexification (or at least reduction to a convex
subproblem) with recent advances on non-convex ADMM [35], i.e., direct application
of non-convex optimization techniques. Two approaches seem of special interest: first,
one could replace the GMRA manifold model by Generative Adversarial Networks
(GANs) and apply ADMM to the resulting non-convex reconstruction problem or,
second, stay in the GMRA setting but not restrict the reconstruction procedure to one
single subspace.

Finally, it would also likely be fruitful to explore alternate quantization schemes to
the one-bit measurements (1) considered herein. In particular, the so-calledΣΔ quan-
tization schemes generally outperform the type of memoryless scalar quantization
methods considered herein both theoretically and empirically in compressive sensing
contexts [25,33,45], and initial work suggests that they may provide similar improve-
ments in the GMRA model setting considered here [28]. Nevertheless, one should
be aware that feedback quantization schemes like ΣΔ quantization might be of lim-
ited practicability in recent large-scale applications like massive MIMO [24], where
the measurements are collected (and quantized) in a distributed fashion rendering the
use of feedback information impossible. In such cases, the just analyzed memoryless
quantization model is of particular interest.
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Appendix A: Characterization of Convex Hull

Lemma A.1 Let Pj,k′ be the affine subspace chosen in step I of OMS-simple and define
c = P j,k′(0). If 0 /∈ Pj,k′ , the following equivalence holds:
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z ∈ convPS(Pj,k′ ∩B(0, 2)) ⇔

⎧⎪⎨
⎪⎩
‖z‖2 ≤ 1,

ΦT
j,k′Φ j,k′z+ Pc(z) = z,

〈z, c〉 ≥ ‖c‖22/2.
(19)

Proof First, assume z ∈ convPS(Pj,k′ ∩B(0, 2)). Obviously, ‖z‖2 ≤ 1. As projecting
onto the sphere is a simple rescaling, convPS(Pj,k′ ∩B(0, 2)) ⊂ span Pj,k′ implies
that ΦT

j,k′Φ j,k′z+Pc(z) = z. For showing the third constraint note that any z′ ∈ Pj,k′

can be written as z′ = c + (z′ − c) where z′ − c is perpendicular to c. If in addition
‖z′‖2 ≤ 2, we get

〈PS(z′), c〉 =
〈

z′

‖z′‖2 , c
〉
= 〈c, c〉

‖z′‖2 ≥ ‖c‖22
2

.

As z is a convex combination of different PS(z′), the constraint also holds for z.
Let z fulfill the three constraints. Then z′ = (‖c‖22/〈z, c〉) · z satisfies z′ ∈ Pj,k′
because of the second constraint and 〈z′, c〉 = ‖c‖22. Furthermore, by the first and third
constraints, ‖z′‖2 ≤ (‖c‖22/〈z, c〉) ≤ 2 and hence z′ ∈ Pj,k′ ∩B(0, ‖c‖22/〈z, c〉) ⊂
Pj,k′ ∩B(0, 2). As Pj,k′∩B(0, ‖c‖22/〈z, c〉) is the convex hull of Pj,k′ ∩(‖c‖22/〈z, c〉)·
S

D−1 , there are z1, . . . , zn ∈ Pj,k′ and λ1, . . . , λn ≥ 0 with ‖zk‖2 = ‖c‖22/〈z, c〉 and∑
λk = 1 such that (‖c‖22/〈z, c〉) · z =

∑
λkzk . Hence, z =∑

λk(〈z, c〉/‖c‖22) · zk .
As (〈z, c〉/‖c‖22) · zk ∈ PS(Pj,k′ ∩B(0, 2)) we get z ∈ convPS(Pj,k′ ∩B(0, 2)). ��

Appendix B: Proof of Theorem 3.3

Denote by τ the reach ofM and by ρ the diameter diamM . First, note that for a set
K ⊂ R

D , by Dudley’s inequality [16],

w(K ) ≤ C ′
∫ diam K/2

0

√
logN (K , ε) dε,

whereC ′ is an absolute constant. Second, [17, Lem. 14] states that the covering number
N (M , ε) of a d-dimensional Riemannian manifold M can be bounded by

N (M , ε) ≤
(

2

ε
√
1− (ε/(4τ ))2

)d
VolM

VolBd

for ε ≤ τ/2. After noting that VolBd ≥ β−1(2π/d)d/2 for all d ≥ 1 for an absolute
constant β > 1, this expression may be simplified to

N (M , ε) ≤ β

( √
2d

ε
√

π
√
1− (ε/(4τ ))2

)d

VolM ≤ β

( √
d

ε
√
1− (ε/(4τ ))2

)d

VolM .
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We can combine these facts to obtain

w(M ) ≤ C ′
∫ ρ/2

0

√
logN (M , ε) dε ≤ C ′

(
ρ

2

∫ ρ/2

0
logN (M , ε) dε

)1/2

= C ′
√

ρ

2

(∫ τ/2

0
logN (M , ε) dε +

∫ ρ/2

τ/2
logN (M , ε) dε

)1/2
,

by using Cauchy–Schwarz inequality for the second inequality. We now bound the
first integral by

∫ τ/2

0
logN (M , ε) dε ≤

∫ τ/2

0

[
−d log

(
ε

β
√

d

√
1− ε2

16τ 2︸ ︷︷ ︸
≥1/2, as ε≤τ/2

)
+ log(VolM )

]
dε

≤
∫ τ/2

0
−d log

ε

2β
√

d
dε + τ

2
log(VolM )

= −d

[
ε log

ε

2β
√

d
− ε

]τ/2

0
+ τ

2
log(VolM )

= dτ

2

(
log

4β
√

d

τ
+ 1

)
+ τ

2
log(VolM ).

As the covering number is decreasing with increasing ε, the second integral can be
bounded as follows:

∫ ρ/2

τ/2
logN (M , ε) dε ≤

∫ ρ/2

τ/2
logN (M , τ/2) dε

=
(

ρ

2
− τ

2

)[
−d log

τ

c
√

d
+ log(VolM )

]

= d

(
ρ

2
− τ

2

)
log

c
√

d

τ
+
(

ρ

2
− τ

2

)
log(VolM ).

Both together yield

w(M ) ≤ C

√
ρ

2

(
dτ

2

(
log

c′
√

d

τ
+ 1

)
+ d

(
ρ

2
− τ

2

)
log

c′
√

d

τ
+ ρ

2
log(VolM )

)1/2

≤ C

√
ρ

2

(
dτ ·max

{
log

c′
√

d

τ
, 1

}
+ d (ρ − τ) ·max

{
log

c′
√

d

τ
, 1

}
+ ρ log(VolM )

)1/2

= C

√
ρ

2

(
dρ ·max

{
log

c′
√

d

τ
, 1

}
+ ρ log(VolM )

)1/2

≤ Cρ√
2

√
d ·max

{
log

c′
√

d

τ
, 1

}
+ log(VolM ).

123



Discrete & Computational Geometry (2021) 65:953–998 983

Appendix C: Proof of Lemmas 4.5 and 4.6

Recall that M rel
j := {P j,k j (z)(z) : z ∈ M } ∩ B(0, 2). We will begin by establishing

some additional technical lemmas.

Lemma C.1 Set CM := supz∈M Cz (cf. (iii.b)). Then M rel
j ⊆ tubeCM 2−2 jM .

Proof If x ∈ M rel
j there exists zx ∈ M such that x = P j,k j (zx)(zx). The Euclidean

distance d(x,M ) therefore satisfies

d(x,M ) = inf
z∈M

‖x − z‖2 ≤
∥∥P j,k j (zx)(zx) − zx

∥∥
2 ≤ CM 2−2 j

by property (iii.b). ��
Given a subset S ⊂ R

D wewill letN (S, ε)denote the cardinality of aminimal ε-cover
of S by D-dimensional Euclidean balls of radius ε > 0 each centered in S. Similarly,
we will let P(S, ε) denote the maximal packing number of S (i.e., the maximum
cardinality of a subset of S that contains points all of which are at least Euclidean
distance ε > 0 from one another.) The following lemmas bound N (M rel

j , ε) for
various ranges of j and ε.

Lemma C.2 Set CM := supz∈M Cz. Then N (M rel
j , ε) ≤ N (M , ε/2) for all ε ≥

2CM 2−2 j .

Proof First note that for all η ≥ ρ := CM 2−2 j , Lemma C.1 implies that

M rel
j ⊆ tubeρM ⊂

⋃
p∈Cη

B(p, 2η),

where Cη is an η-cover of M . Thus, for all ε ≥ 2η ≥ 2ρ

N (M rel
j , ε) ≤ N

( ⋃
p∈Cη

B(p, 2η), ε

)
≤ N (M , η) = N (M , ε/2). ��

Lemma C.3 N (M rel
j , ε) ≤ (6/ε)dN (M , ε) for all ε ≤ C12− j/4 as long as j > j0

(see properties (iii.a) and (ii.b)).

Proof By properties (iii.a) and (ii.b), every center c j,k has an associated p j,k ∈ M
such that both B(p j,k, C12− j−2) ⊂ B(c j,k, C12− j−1) and B(p j,k, C12− j−2) ∩
B(c j,k′ , C12− j−1) = ∅ for all k �= k′. Let P̃j := {p j,k : k ∈ [K j ]}. Consequently,
we have that K j = |P̃j | and ‖p j,k − p j,k′ ‖2 ≥ C12− j−1 for all k �= k′. Since P̃j is a
C12− j−1-packing of M , we can further see that

K j ≤ P(M , C12
− j−1) ≤ N (M , C12

− j−2) ≤ N (M , ε)
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for all ε ≤ C12− j−2. Now, M rel
j ⊆ L j , where L j is defined as in the proof of

Lemma 4.3 (this proof also discusses its covering numbers). As a result we have that

N (M rel
j , ε) ≤ N (L j , ε) ≤ K j

(
6

ε

)d

≤ N (M , ε) ·
(
6

ε

)d

holds for all ε ≤ C12− j−2. ��
Furthermore, we will use the two-sided Sudakov inequality as stated in [46].

Lemma C.4 There exist absolute constants c, C > 0 such that the following holds.
For T ∈ R

n, we have that

c · sup
ε≥0

ε
√
logN (T , ε) ≤ w(T ) ≤ C log D · sup

ε≥0
ε
√
logN (T , ε).

C.1: Proof of Lemma 4.5

We aim to bound w(M rel
j ) in terms of w(M ). By Lemmas C.1 and C.4, we get that

w(M rel
j ) ≤ C log D · sup

ε≥0
ε

√
logN (M rel

j , ε)

≤ C log D ·
(

sup
0≤ε≤2CM 2−2 j

ε

√
logN

(
tubeCM 2−2 j M , ε

) + sup
ε≥2CM 2−2 j

ε

√
logN (M rel

j , ε)

)

≤ C log D ·
(

sup
0≤ε≤2CM 2−2 j

ε
√
logN (B(0, 1+ CM ), ε) + sup

ε≥2CM 2−2 j
ε
√
logN (M , ε/2)

)
,

where the last inequality follows from tubeCM 2−2 jM ⊆ B(0, 1 + CM ) and
Lemma C.2. Appealing to Lemma C.4 once more to bound the second term above
we learn that

w(M rel
j ) ≤ C log D ·

(
sup

0≤ε≤2CM 2−2 j
ε
√
logN (B(0, 1+ CM ), ε))

+ 2 sup
ε≥0

ε

2

√
logN (M , ε/2)

)

≤ C log D ·
(

sup
0≤ε≤2CM 2−2 j

ε
√
logN (B(0, 1+ CM ), ε)) + 2cw(M )

)
.

Tobound the first term above,we note that using the covering number ofB(0, 1+CM )

it can be bounded as follows:

N (B(0, 1+ CM ), ε) = N

(
B(0, 1),

ε

1+ CM

)

≤
(
1+ 2+ 2CM

ε

)D

≤
(
4CM + 4

ε

)D

.
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As ε "→ ε
√
log((4CM + 4)/ε) is non-decreasing for ε ∈ (0, 2CM 2−2 j ), we obtain

by assuming that log2 D ≤ j ,

sup
0≤ε≤2CM 2−2 j

ε
√
logN (B(0, 1+ CM ), ε)) ≤ sup

0≤ε≤2CM 2−2 j
ε

√
D log

4CM + 4

ε

≤ 2CM 2−2 j

√
D log

(
4CM + 4

CM
· 22 j−1

)
≤ CA ·

√
2 j − 1

2 j
·
√

D

2 j
≤ C ′

where C ′ is an absolute constant. Appealing to (11) now finishes the proof.

C.2: Proof of Lemma 4.6

Let 2CM 2−2 j ≤ ε̃ ≤ C12− j/4. We aim to bound w(M rel
j ) in terms of covering

numbers for M . To do this we will use Dudley’s inequality in combination with the
knowledge that M rel

j ⊂ B(0, 2) (by definition). By Dudley’s inequality,

w(M rel
j ) ≤ C ′

∫ 2

0

√
logN (M rel

j , ε) dε

≤ C ′
(∫ ε̃

0

√
logN (M rel

j , ε) dε +
∫ 2

ε̃

√
logN (M rel

j , ε) dε

)
,

where C ′ is an absolute constant. Appealing now to Lemmas C.3 and C.2 for the first
and second terms above, respectively, we can see that

w(M rel
j ) ≤ C ′

(∫ ε̃

0

√
log ((6/ε)dN (M , ε)) dε +

∫ 2

ε̃

√
logN (M , ε/2) dε

)

≤ C ′
∫ 2

0

√
log ((6/ε)dN (M , ε/2)) dε

= 2C ′
∫ 1

0

√
d log(3/η) + logN (M , η) dη

≤ 2C ′
√∫ 1

0
d log(3/η) dη +

∫ 1

0
logN (M , η) dη,

where the last bound follows from Jensen’s inequality. We can now bound the second
term as in the proof of Theorem 3.3 in Appendix B. Doing so we obtain

w(M rel
j ) ≤ C ′′

√∫ 1

0
d log(3/η) dη + d

(
1+ log

c′
√

d

τ

)
+ log(VolM )

≤ C ′′′
√

d

(
1+ log

c′
√

d

τ

)
+ log(VolM ) ,
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where τ is the reach of M and C ′′′, c′ are absolute constants. Appealing to (11)
together with Theorem 3.3 now finishes the proof.

Appendix D: Data-Driven GMRA

The axiomatic definition of GMRA proves useful in deducing theoretical results but
lacks connection to concrete applications where the structure of M is not known a
priori. Hence, in the following we first describe a probabilistic definition of GMRA
which can be well approximated by empirical data (see [3,12,38]) and is connected
to the above axioms by applying results from [38]. In fact, we will see that under
suitable assumptions the probabilistic GMRA fulfills the axiomatic requirements and
its empirical approximation allows one to obtain a version of Theorem 3.1 even when
only samples from M are known.

D.1: Probabilistic GMRA

A probabilistic GMRA of M with respect to a Borel probability measure Π , as
introduced in [38], is a family of (piecewise linear) operators {P j : RD → R

D} j≥0 of
the form

P j (x) =
K j∑

k=1

1Cj,k(x)Pj,k(x).

Here, 1M denotes the indicator function of a set M and, for each refinement level j ≥ 0,

the collection of pairs of measurable subsets and affine projections {(C j,k,P j,k)}K j
k=1

has the following structure. The subsetsC j,k ⊂ R
D for k = 1, . . . , K j form a partition

of RD , i.e., they are pairwise disjoint and their union is RD . The affine projectors are
defined by

P j,k(x) = c′j,k + PVj,k (x − c′j,k),

where, for X ∼ Π , c′j,k = E[X |X ∈ C j,k] =: E j,k[X ] ∈ R
D and

Vj,k := argmin
dim V=d

E j,k

[∥∥X − (c′j,k + ProjV (X − c′j,k))
∥∥2
2

]
,

where the minimum is taken over all linear spaces V of dimension d. From now on we
will assume uniqueness of these subspaces Vj,k . To point out parallels to the axiomatic
GMRA definition, think of Π being supported on the tube of a d-dimensional man-
ifold. The axiomatic centers c j,k are then considered to be approximately equal to
the conditional means c′j,k of some cells C j,k partitioning the space, and the corre-
sponding affine projection spaces Pj,k are spanned by eigenvectors of the d leading
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Table 1 The assumption set on Π

(A1) There exists an integer 1 ≤ d ≤ D and a positive constant θ1 = θ1(Π) such that for all k = 1, . . . , K j ,

Π(C j,k ) ≥ θ12− jd .

(A2) Define the restricted measureΠ j ,k byΠ j ,k (S) := Π(S∩C j,k )/Π(C j,k ) for measurable S. There is
a positive constant θ2 = θ2(Π) such that for all k = 1, . . . , K j , if X is drawn fromΠ j,k then,Π j,k -almost
surely,

‖X − c′j,k‖2 ≤ θ22− j .

(A3) Denote the eigenvalues of the covariance matrix Σ j ,k by λ
j,k
1 ≥ . . . ≥ λ

j,k
D ≥ 0. Then there exist

σ = σ(Π) ≥ 0, θ3 = θ3(Π), θ4 = θ4(Π) > 0, and some α > 0 such that for all k = 1, . . . , K j ,

λ
k, j
d ≥ θ3

2−2 j

d and
∑D

l=d+1λ
j ,k
l ≤ θ4(σ

2 + 2−2(1+α) j ) ≤ λ
j,k
d
2 .

(A4) There exists θ5 = θ5(Π) such that

‖Id − P j‖∞,Π ≤ θ5(σ + 2−(1+α) j ),

where ‖T ‖∞,Π = supx∈suppΠ ‖T (x)‖2, for T : RD → R
D .

eigenvalues of the conditional covariance matrix

Σ j,k = E j,k
[
(X − c′j,k)(X − c′j,k)T ].

Defined in this way, the P j correspond to projectors onto the GMRA approxi-
mations M j introduced above if c j,k = c′j,k . From [38] we adopt the following
assumptions on the entities defined above, and hence, on the distribution Π . From
now on we suppose that for all integers jmin ≤ j ≤ jmax, (A1)–(A4) (see Table 1)
hold true.

Remark D.1 Assumption (A1) ensures that each partition element contains a reason-
able amount of Π -mass. Assumption (A2) guarantees that all samples from Π j,k will
lie close to its expectation/center. As a result, each c′j,k must be somewhat geometri-
cally central withinC j,k . Together, (A1) and (A2) have the combined effect of ensuring
that the probability mass of Π is somewhat equally distributed onto the different sets
C j,k , i.e., the number of points in each set C j,k is approximately the same, at each
scale j . The third and fourth assumptions (A3) and (A4) essentially constrain the
geometry of the support of Π to being effectively d-dimensional and somewhat reg-
ular (e.g., close to a smooth d-dimensional submanifold of RD). We refer the reader
to [38] for more detailed information regarding these assumptions.

An important class of probability measures Π fulfilling (A1)–(A4) is presented in
[38]. For the sake of completeness we repeat it here and also discuss a method of

constructing the partitions {C jk}K j
k=1 from such probability measures. From here on

let M be a smooth d-dimensional submanifold of SD−1 ⊂ R
D . Let UK denote the

uniform distribution on a given set K . We have the following definition.

Definition D.2 ([38, Defn. 3]) Assume that 0 ≤ σ < τ . The distribution Π is said to
satisfy the (τ, σ )- model assumption if (i) there exists a smooth, compact submanifold
M ↪→ R

D with reach τ such that suppΠ = tubeσM , (ii) the distributions Π and
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UtubeσM are absolutely continuous with respect to each other so the Radon–Nikodym
derivative dΠ/dUtubeσM exists and satisfies

0 < φ1 ≤ dΠ

dUtubeσM
≤ φ2 < ∞ Utubeσ (M )-almost surely.

The constants φ1 and φ2 are implicitly assumed to only depend on a slowly growing
function of D, compare [38, Rem. 4].

Let us now discuss the construction of suitable partitions {C jk} bymaking use of cover
trees. A cover tree T on a finite set of samples S ⊂ M is a hierarchy of levels with the
starting level containing the root point and the last level containing every point in S.
To every level a set of nodes is assigned which is associated with a subset of points
in S. To be precise, given a set S of n distinct points in some metric space (X, dX),
a cover tree T on S is a sequence of subsets Ti ⊂ S, i = 0, 1, . . . , that satisfies the
following (see [8]).

(a) Nesting: Ti ⊆ Ti+1, i.e., once a point appears in Ti it is in every Tj for j ≥ i .
(b) Covering: For every x ∈ Ti+1 there exists exactly one y ∈ Ti such that dX(x, y) ≤

2−i . Here y is called the parent of x.
(c) Separation: For all distinct points x, y ∈ Ti , dX(x, y) > 2−i .

The set Ti denotes the set of points in S associated with nodes at level i . Note that
there exists N ∈ N such that Ti = S for all i ≥ N . Herein we will presume that S is
large enough to contain an ε-cover of M for ε > 0 sufficiently small.

Moreover, the axioms characterizing cover trees are strongly connected to the
dyadic structure of GMRA. For a given cover tree (for construction see [8]) on a
set Xn = {X1, . . . , Xn} of i.i.d. samples from the distribution Π with respect to the
Euclidean distance let a j,k for k = 1, . . . , K j be the elements of the j th level of the

cover tree, i.e., Tj = {a j,k}K j
k=1, and define

κ j (x) = argmin
1≤k≤K j

‖x − a j,k‖2.

With this a partition of RD into Voronoi regions

C j,k = {x ∈ R
D : κ j (x) = k} (20)

can be defined. Maggioni et al. showed in [38, Thm. 7] that by this construction all
assumptions (A1)–(A4) can be fulfilled. The question arises if the properties of the
axiomatic definition of GMRA in Definition 2.1 are equally met. As only parts of the
axioms are relevant for our analysis, we refrain from giving rigorous justification for
all properties.

1. GMRA property (i) holds by construction if the matrices Φ j,k are defined so that
ΦT

j,kΦ j,k = PVj,k along with any reasonable choice of centers c j,k .
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2. The dyadic structure axioms (ii.a)–(ii.c) also hold as a trivial consequence of the
cover tree properties (a)–(c) above if the axiomatic centers c j,k are chosen to be
the elements of the cover tree set Tj (i.e., the a j,k elements). By the (ρ, σ )-model
assumption, samples drawn fromΠ will have a quite uniform distribution all over
suppΠ . Hence, the probabilistic centers c′j,k of each C j,k-set will also tend to be
close to the axiomatic centers c j,k = a j,k proposed here for small σ (see, e.g.,
assumption (A2) above).

3. One can deduce GMRA property (iii.a) from the fact that our chosen centers a j,k

belong toM if suppΠ = M (or to a small tube around M if σ is small).
4. The first part of (iii.b) is implied by (A4) with the uniform constant θ5 for all

x ∈ M if a j,k is sufficiently close to c′j,k . To show the second part of (iii.b) note
that

‖x − P j,k′(x)‖2 ≤ ‖x − c j,k′ ‖2 + ‖c j,k′ − P j,k′(x)‖2
= ‖x − c j,k′ ‖2 +

∥∥PVj,k′ (x − c j,k′)
∥∥
2

≤ 2‖x − c j,k′ ‖2 ≤ 32max
{∥∥x − c j,k j (x)

∥∥
2, C12

− j−1}
≤ 32max {Cε2

− j , C12
− j−1} ≤ C · 2− j

where in the second last step, we used our cover tree properties (recall that c j,k =
a j,k). Again, the constants C, Cε > 0 do not depend on the chosen x ∈ M as
long as S is well chosen (e.g., contains a sufficiently fine cover of M ).

Considering the GMRA axioms above we can now see that only the first part of (iii.b)
may not hold in a satisfactory manner if we choose to set ΦT

j,kΦ j,k = PVj,k and
c j,k = a j,k . And, even when it does not hold with Cz being independent of j , it will
at least hold with a worse j-dependence due to assumption (A2).

D.2: Empirical GMRA

The axiomatic properties only hold above, of course, if the GMRA is constructed with
knowledge of the true PVj,k subspaces. In reality, however, this will not be the case
and we are rather given some training data consisting of n samples from near/on M ,
Xn = {X1, . . . , Xn}, which we assume to be i.i.d. with distributionΠ . These samples
are used to approximate the real GMRA subspaces based onΠ so that the operatorsP j

can be replaced by their estimators

P̂ j (x) =
K j∑

k=1

1{x∈Cj,k}P̂j,k(x),

where {C j,k}K j
k=1 is a suitable partition of R

d obtained from the data,

P̂ j,k(x) = ĉ j,k + PV̂ j,k
(x − ĉ j,k), ĉ j,k = 1

|Xk, j |
∑

x∈X j,k

x,
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V̂ j,k = arg min
dim V=d

1

|X j,k |
∑

x∈X j,k

‖x − ĉ j,k − PV (x − ĉ j,k)‖22,

and X j,k = C j,k ∩ Xn . In other words, working with the above model we have
one perfect GMRA that cannot be computed (unless Π is known) but fulfills all
important axiomatic properties, and an estimated GMRA that is at hand but that is
only an approximation to the perfect one. Thankfully, the main results of [38] stated in
Appendix E give error bounds on the difference between perfect and estimated GMRA
with c j,k = ĉ j,k ≈ c′j,k ≈ a j,k that only depend on the number of samples from Π

one can acquire. Following their notational convention we will denote the empirical
GMRA approximation at level j , i.e., the set P̂ j projects onto, by M̂ j = {̂P j (z) : z ∈
B(0, 2)} ∩B(0, 2) and the affine subspaces by P̂j,k = {̂P j,k(z) : z ∈ R

D}. We again
restrict the approximation to B(0, 2). The single affine spaces will be non-empty as
all ĉ j,k lie by definition close toB(0, 1) if suppΠ is close toM , which we assume.

In the empirical settingOMShas to be slightlymodified to conform to our empirical
GMRA notation. Hence, (6) and (7) become

ĉ j,k′ ∈ argmin
ĉ j,k∈Ĉ j

dH(sign Âc j,k, y), (21)

x∗ = argmin
z∈RD

m∑
l=1

(−yl)〈al , z〉 subject to z ∈ convPS(P̂j,k′ ∩B(0, 2)). (22)

OMS can be adapted in a similar way by changing (6) and (7). To stay consistent
with the axiomatic notation, we denote the sets containing the centers c′j,k and ĉ j,k by

C ′
j and Ĉ j , respectively. As shown in Appendix E, the main result also holds in this

setting. There is only an additional influence of sample size on the probability.

Appendix E: Proof of Theorem 3.1 with Empirical GMRA

Recall the definitions of probabilisticGMRA, empirical GMRA, and themodifications
of (6) resp. (7) to become (21) resp. (22). We start with the central result of [38].

Theorem E.1 Suppose that assumptions (A1)–(A3) are satisfied (see Table 1). Let
X , X1, . . . , Xn be an i.i.d. sample from Π and d̄ = 4d2θ42 /θ23 . Then for any jmin ≤
j ≤ jmax and any t ≥ 1 such that t + logmax {d̄, 8} ≤ θ1n2− jd/2,

E
[‖X − P̂ j (X)‖22

] ≤ 2θ4(σ
2 + 2−2 j(1+α)) + c12

−2 j d2(t + logmax {d̄, 8})
n2− jd

,

and if in addition (A4) is satisfied,

‖Id − P̂ j‖∞,Π ≤ θ5(σ + 2−(1+α) j ) +
√

c1
2
2−2 j d2(t + logmax {d̄, 8})

n2− jd
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with probability≥ 1−2 jd+1
(
e−t+e−θ1n2− jd

/16
)
/θ1, where c1 = 2

(
12θ32

√
2/(θ3

√
θ1)+

4θ2
√
2/(d

√
θ1)
)
2.

Theorem E.1 states that under assumptions (A1)–(A4) the empirical GMRA approx-
imates M as well as the perfect probabilistic one as long as the number of samples
n is sufficiently large. For the proof of our main theorem we only need the following
two bounds which can be deduced from (20) and (21) in [38] by setting t = 2 jd . As
both appear in the proof of Theorem E.1, we state them as a corollary. The interested
reader may note that n j,k appearing in the original statements can be lower bounded
by θ1n2− jd .

Corollary E.2 Under the assumptions of Theorem E.1 the following holds for any
C1 > 0 as long as j, α are sufficiently large and σ is sufficiently small:

Pr

[
max
k∈K j

∥∥PVj,k − PV̂ j,k

∥∥ ≥ C1

12
2− j−2

]
≤ 2

θ2
2 jde−2 jd min {1,32θ22 d2/C2

1 },

Pr

[
max
k∈K j

∥∥c′j,k − ĉ j,k
∥∥
2 ≥

C1

12
2− j−2

]
≤ 2

θ2
2 jde−2 jd min {1,32θ22 d2/C2

1 },

if

n ≥ nmin = (2 jd + logmax {d̄, 8})·
·min

{
144 · 2(d+1) j+3θ22 d/(C1θ1θ3), 96 · 2d j+1θ2/(C1θ1)

}2
.

Remark E.3 ByCorollaryE.2with probability of at least 1−O
(
2 jde−2 jd )

the empirical
centers ĉ j,k of one level j have a worst-case distance to the perfect centers c′j,k of at

most O(2− j−2) if n � O(23 jd). As a result, the empirical centers ĉ j,k will also be at
most O(2− j−2) distance from their associated cover tree centers a j,k if n � O(23 jd),
by assumption (A2). The same holds true for the projectors PVj,k and PV̂ j,k

in operator
norm.

The proof of Theorem 3.1 in this setting follows the same steps as in the axiomatic
one. First, we give an empirical version of Lemma 4.13. Then we link x and x∗ as
described in Sect. 4.2while controlling the difference between empirical and axiomatic
but unknown GMRA by Corollary E.2. The following extension of Lemma 4.3 will
be regularly used.

Corollary E.4 (bound of Gaussian width) The Gaussian width of M ∪M j ∪ M̂ j can
be bounded from above by

max {w(M ), w(M j ), w(M̂ j )} ≤ w(M ∪M j ∪ M̂ j )

≤ 2w(M )+ 2w(M j ) + 2w(M̂ j ) + 5 ≤ 2w(M )+ C
√

d j

where M̂ j is defined as at the end of Appendix D.
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Proof The proof follows directly the lines of the proof of Lemma 4.3. The additional
term w(M̂ j ) can be bounded in the same way as w(M j ). ��
Remark E.5 By the structure of the proof one can easily obtain several subversions of
the inequalities, e.g.,w(M ∪M̂ j ) ≤ 2w(M )+2w(M̂ j )+5.We will use themwhile
only referring to Corollary E.4. Moreover, similar generalizations as in Lemma 4.3
apply (cf. Remark 4.4)

Note that we are now setting our empirical GMRA centers c j,k to be the associated
mean estimates ĉ j,k as a means of approximating the axiomatic GMRA structure we
would have if we had instead chosen our centers to be the true expectations c′j,k (recall
Appendix D). We also implicitly assume below that there exists a constant C1 > 0 for
which the associated axiomatic GMRA properties in Sect. 2 hold when the centers c j,k

are chosen as these true expectations c′j,k and the ΦT
j,kΦ j,k as PVj,k .

Lemma E.6 Fix j sufficiently large. Under the assumptions of Theorem E.1 and n ≥
nmin, if m ≥ C̄C−6

1 26( j+1)w(M ∪ PS(Ĉ j ))
2 the index k′ of the center ĉ j,k′ chosen in

step I of the algorithm fulfills

∥∥x − c′j,k′
∥∥
2 ≤ 16max

{∥∥x − c′j,k j (x)

∥∥
2, C12

− j−1}
for all x ∈ M ⊂ S

D−1 with probability at least 1− O
(
2 jde−2 jd + eδ2m

)
.

Proof The proof will be similar to the one of Lemma 4.13. By definition we have

dH(sign Âc j,k′ , y) ≤ dH(sign Âc j,k j (x), y).

As, for all z, z′ ∈ S
D−1, dH(sign Az, sign Az′) = m · dA(z, z′), this is equivalent to

dA(PS(̂c j,k′), x) ≤ dA(PS(̂c j,k j (x)), x).

Theorem 4.9 transfers the bound to normalized geodesic distance, namely

dG(PS(̂c j,k′), x) ≤ dG(PS(̂c j,k j (x)), x) + 2δ

with probability at least 1 − 2e−cδ2m where δ = C12− j−1. Observe dG(z, z′) ≤
‖z− z′‖2 ≤ πdG(z, z′) for all z, z′ ∈ S

D−1 (see Lemma 4.7) which leads to

‖PS(̂c j,k′)− x‖2 ≤ πdG(PS(̂c j,k j (x)), x) + 2πδ ≤ π‖PS(̂c j,k j (x)) − x‖2 + 2πδ.

We will now use the fact that by Corollary E.2,

‖̂c j,k − c′j,k‖2 ≤
C1

12
2− j−2

for all k ∈ K j with probability ≥ 1 − O
(
2 jde−2 jd )

. From this we first deduce by
GMRA property (iii.a) that ‖̂c j,k −PS(̂c j,k)‖2 ≤ ‖̂c j,k −PS(c′j,k)‖2 ≤ ‖̂c j,k − c′j,k‖2

123



Discrete & Computational Geometry (2021) 65:953–998 993

+ ‖c′j,k − PS(c′j,k)‖2 < (C1 + C1/2)2− j−2 for all ĉ j,k ∈ Ĉ j . Combining above
estimates and using triangle inequality we obtain

‖c j,k′ − x‖2 ≤ ‖PS(̂c j,k′) − x‖2 + ‖̂c j,k′ − PS(̂c j,k′)‖2 + ‖̂c j,k′ − c′j,k′ ‖2
< π‖PS(̂c j,k j (x))− x‖2 + 2πδ + 2C12

− j−2

≤ π
(‖̂c j,k j (x) − PS(̂c j,k j (x))‖2 + ‖̂c j,k j (x) − c′j,k j (x)‖2 + ‖c′j,k j (x) − x‖2

)
+ 2πδ + C12

− j−1 < π‖c j,k j (x) − x‖2 + 2πδ + (1+ π)C12
− j−1

≤ (4π + 1)max {‖c j,k j (x) − x‖2, C12
− j−1}

≤ 16max {‖c j,k j (x) − x‖2, C12
− j−1}.

A union bound over both probabilities yields the result. ��

Having Lemma E.6 at hand we can now show a detailed version of Theorem 3.1 in this
case. For convenience please first read the proof of Theorem 4.14. As above choosing
ε = 2− j√ j yields Theorem 3.1 for OMS-simple with a slightly modified probability
of success and slightly different dependencies on C1 and C̃x in (9).

Theorem E.7 Let M ⊂ S
D−1 be given by its empirical GMRA for some levels j0 ≤

j ≤ J from samples X1, . . . , Xn for n ≥ nmin (defined in Corollary E.2), such that
0 < C1 < 2 j0+1 where C1 is the constant from GMRA properties (ii.b) and (iii.a) for
a GMRA structure constructed with centers c′j,k and with the ΦT

j,kΦ j,k as PVj,k . Fix

j and assume that dist(0, M̂ j ) ≥ 1/2. Further, let

m ≥ 64max {C ′, C̄} · C−6
1 26( j+1)(w(M )+ C

√
d j)2,

where C ′ is the constant from Theorem 4.11, C̄ from Theorem 4.9, and C from
Lemma 4.3. Then, with probability at least 1−O

(
2 jde−2 jd +eδ2m

)
the following holds

for all x ∈ M with one-bit measurements y = sign Ax and GMRA constants C̃x from
property (iii.b) satisfying C̃x < 2 j−1: The approximations x∗ obtained by OMS fulfill

‖x − x∗‖2 ≤
(
21− j/2

(
C̃x + C1

8

)
+√

C1
4

√
log

4e

C1

+
√
22C̃x + 55

4
C1

4

√
log

2e

2C̃x + 5C1/4

)
2− j/2 4

√
j .

Proof The proof consists of the same three steps as the one of Theorem 4.14. First,
we apply Lemma E.6 in (I). By the GMRA axioms this supplies an estimate for
‖x−P j,k′(x)‖2 with high probability (recall thatP j,k′(x)will bePVj,k′ (x−c′j,k′)+c′j,k′
in this case). In (II) we use (I) to deduce a bound on ‖x − P̂ j,k′(x)‖2, and then use
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Theorem 4.11 to bound the distance between P̂ j,k′(x)/‖P̂ j,k′(x)‖2 and the minimum
point x∗ of

x∗ = argmin
z

m∑
l=1

(−yl)〈al , z〉 subject to z ∈ K := convPS(P̂j,k′ ∩B(0, 2)), (23)

with high probability. Taking the union bound over all events, part (III) then concludes
with an estimate of the distance ‖x − x∗‖2 by combining (I) and (II).

(I) Set δ = C12− j−1 and recall that C12− j−2 < 1/2 by assumption which implies
by GMRA property (iii.a) that all centers in C ′

j are closer to S
D−1 than 1/2, i.e.,

1/2 ≤ ‖c′j,k‖2 ≤ 3/2. Moreover, Corollary E.2 holds with probability at least 1 −
O
(
2 jde−2 jd )

and implies ‖̂c j,k − c′j,k‖2 ≤ (C1/12)2− j−2 ≤ 1/4. Hence, by triangle
inequality, 1/4 ≤ ‖̂c j,k‖2 ≤ 7/4. From this and (10) we deduce

w(PS(Ĉ j )) ≤ γ (PS(Ĉ j )) ≤ 4γ (Ĉ j ) ≤ 8w(Ĉ j ) + 4

√
2

π
dist(0, Ĉ j ) ≤ 8w(Ĉ j )+ 8.

(24)

As Ĉ j ⊂ M̂ j , we know by Corollary E.4 and (24) that

m ≥ 16C̄δ−6(2w(M )+ 2C
√

d j)2 ≥ 16C̄δ−6(2w(M )+ 4w(Ĉ j ) + 10)2

≥ 4C̄δ−6(4w(M ) + 8w(Ĉ j ) + 20)2 ≥ 4C̄δ−6(4w(M ) + w(PS(Ĉ j ))+ 12)2

≥ C̄δ−6(8w(M )+ 2w(PS(Ĉ j )) + 24)2 ≥ C̄δ−6(w(M ∪ PS(Ĉ j ))+ 19)2

≥ C̄δ−6 max

{
w(M ∪ PS(Ĉ j ))

2,
2

π

}
. (25)

Hence, Lemma 4.13 implies

‖x − c′j,k′ ‖2 ≤ 16max
{∥∥x − c′j,k j (x)

∥∥
2, C12

− j−1}
with probability at least 1−O

(
2 jde−2 jd + eδ2m

)
. By GMRA property (iii.b) we get,

for some constant C̃x,

‖x − P j,k′(x)‖2 ≤ C̃x2
− j . (26)

(II) Define α̂ = ‖P̂ j,k′(x)‖2. Note that ‖x− c′j,k′ ‖2 ≤ 4 as x ∈ S
D−1 and all c′j,k are

close to the sphere by assumption. Hence,

‖P j,k′(x) − P̂ j,k′(x)‖2
≤ ∥∥c′j,k′ + PVj,k′ (x − c′j,k′)− ĉ j,k′ − PV̂ j,k′ (x − ĉ j,k′)

∥∥
2

≤ ‖c′j,k′ − ĉ j,k′ ‖2 +
∥∥PVj,k′ − PV̂ j,k′

∥∥ · ‖x − c′j,k′ ‖2 + ‖c′j,k′ − ĉ j,k′ ‖2
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≤ 2C12− j−2

12
+ C12− j−2

12
‖x − c′j,k′ ‖2 ≤

C12− j−2

2
,

by application of Corollary E.2. This implies 1/4 ≤ α̂ ≤ 7/4 as x ∈ S
D−1 and

‖x − P̂ j,k′(x)‖2 ≤ ‖x − P j,k′(x)‖2 + ‖P j,k′(x) − P̂ j,k′(x)‖2
≤ C̃x2

− j + C12− j−2

2
≤ 3

4

(27)

by (26) and the assumption that max {C̃x, C1/4} · 2− j ≤ 1/2. As before we create the
setting for Theorem 4.11.

Let us define x̃ := P̂ j,k′(x)/α̂ ∈ S
D−1, ỹ := sign Ax̃ = sign AP̂ j,k′(x),

K = convPS(P̂j,k′ ∩ B(0, 2)), and τ := 2− j (2C̃x + 5C1/4). If applied to this,
Theorem 4.11 would give the desired bound on ‖x̃ − x∗‖2. We first have to check
dH(ỹ, y) ≤ τm. Recall that 1/α̂ ≤ 4 and as α̂ > 0 one has α̂w(K ) = w(̂αK ). By
applying Corollary E.4 again we have that

m ≥ 64δ−6 max {C ′, C̄} · (w(M )+ C
√

d j)2

≥ 4C̄δ−6(2w(M )+ 2w(M̂ j ) + 5)2

≥ C̄δ−6(8w(M ) + 8w(M̂ j ) + 20)2

≥ C̄δ−6w

(
M ∪ M̂ j

α̂

)2
≥ C̄δ−6w

((
M ∪ M̂ j

α̂

)
∩B(0, 1)

)2
.

Use ‖x̃ − P̂ j,k′(x)‖2 = |1− α̂| ≤ ‖x − P̂ j,k′(x)‖2, Theorem 4.9, and Lemma 4.7, to
obtain

dH(ỹ, y)
m

= dA(x̃, x) ≤ dG(x̃, x) + 2δ ≤ ‖x̃ − x‖2 + 2δ

≤ ‖x̃ − P̂ j,k′(x)‖2 + ‖P̂ j,k′(x) − x‖2 + 2δ ≤ 2‖P̂ j,k′(x) − x‖2 + 2δ

≤ 2C̃x2
− j + C12

− j−2 + 2δ ≤ 2− j
(
2C̃x + 5C1

4

)
= τ

with probability at least 1 − 2e−cδ2m . Assuming the above events hold true we can
apply Theorem 4.11, as by Corollary E.4, in analogy to (25) and (18),

m ≥ 4C ′δ−6(2w(M ) + 4w(M j ) + 4w(M̂ j )+ 10
)2

≥ C ′δ−6w
(
PS(P̂j,k′ ∩B(0, 2))

) ≥ C ′δ−6w(K )2

and obtain with probability at least 1− 8e−cδ2m ,

‖x̃ − x∗‖22 ≤ δ

√
log

e

δ
+ 11τ

√
log

e

τ
. (28)
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(III) We conclude as in Theorem 4.14. Recall that ‖x̃ − P̂ j,k′(x)‖2 = |1 − α| ≤
‖x − P j,k′(x)‖2 ≤ 2− j (C̃x + C1/8). By union bound we obtain with probability at

least 1− O
(
2 jde−2 jd + eδ2m

)
,

‖x − x∗‖2 ≤ ‖x − P̂ j,k′(x)‖2 + ‖P̂ j,k′(x) − x̃‖2 + ‖x̃ − x∗‖2

≤ 2‖x − P̂ j,k′(x)‖2 +
√

δ

√
log

e

δ
+ 11τ

√
log

e

τ

≤ 21− j
(

C̃x + C1

8

)
+ 2−( j+1)/2

√
C1

4

√
log

e

C12− j−1

+ 2− j/2
√
22C̃x + 55C1/4

4

√
log

2 j e

2C̃x + 5C1/4

≤ 2− j/2 4
√

j

{
21− j/2

(
C̃x + C1

8

)
+√

C1
4

√
log

4e

C1

+
√
22C̃x + 55

4
C1

4

√
log

2e

2C̃x + 5C1/4

}
.

As explained in the proof of Theorem 4.14, the last step was simplified for notational
reasons. ��
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