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Abstract
Finding communities that are not only relatively densely connected in a graph but
that also show similar characteristics based on attribute information has drawn strong
attention in the last years. There exists already a remarkable body ofwork that attempts
to find communities in vertex-attributed graphs that are relatively homogeneous with
respect to attribute values. Yet, it is scattered through different research fields andmost
of those publications fail to make the connection. In this paper, we identify important
characteristics of the different approaches and place them into three broad categories:
those that select descriptive attributes, related to clustering approaches, those that
enumerate attribute-value combinations, related to pattern mining techniques, and
those that identify conditional attribute weights, allowing for post-processing. We
point out that the large majority of these techniques treat the same problem in terms of
attribute representation, and are therefore interchangeable to a certain degree. In addi-
tion, different authors have found very similar algorithmic solutions to their respective
problem.
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1 Introduction

Graphs are a powerful mechanism to represent data. Applications range from social
networks, over gene analysis, to smart sensor systems. Due to the ubiquitous nature
of graphs, analyzing them is a highly active research field with clustering/community
detection being one of themost important and frequently applied tasks.While classical
graph clustering approaches have considered merely structural information, in recent
years attributed graph clustering has gained strong attention: it integrates additional
attribute data about individual instances into the clustering task, to enhance its result.
In a social network, e.g., the attributes describing each user’s characteristics might be
combined with the underlying friendship network to form an attributed graph.1

Figure 1 shows an example, in which each vertex is, for the sake of presentation,
labeled with a set of items.

In the last few years, a number of clustering approaches for attributed graphs
have been introduced. The discussion in the related work sections of publications
on the topic tends to focus on whether different methods allow finding overlapping
communities or not, or considers the technical methodology of the approaches (e.g.,
distance-based, model-based, random walk-based, etc.). In this survey, we choose a
different way of looking at this issue based on the following observation: There are
essentially two ways of exploiting attribute values. 1) to improve community detec-
tion by leveraging attribute value similarities, and 2) to derive a concrete description
of discovered communities. The latter one enables us to better understand the struc-
ture of the detected communities, i.e. in order to answer the question why this set of
vertices is a reasonable community. This is particularly relevant not only relating to
interpretability but also given the recently renewed focus on explainable results of
data analysis processes.

To return to the example shown in Fig. 1, the rectangular boxes show two
communities—two groups of vertices that are strongly connected to each other but that
have few connections among each other. It can also be seen, however, that neither of
those communities can be described by only one single set of items. The communities
marked within grey rectangles, on the other hand, are still strongly connected within,
weakly connected to each other, and describable with the items “A” (top-left commu-
nity) and “B” (bottom-right community), respectively. Clearly, those are not the only
two describable communities. It is easy to see that we can further find subcommunities
which are described by more complex descriptions, e.g., considering the set of items
“A, B” focussing on the four central vertices of the top-left community. Notably, the
set of items “B, C” describes two communities, one on the left of the upper rectangle,
and one in the center of the lower one, showing that descriptions are not necessarily
unique to communities. Another example, referring to two communities described “C,
D” is given in Fig. 2.

The approaches we discuss in this work do this at different levels of explicitness.
There are approaches that identify for each community the attribute-value combina-
tions that describe the community, returning ready-made descriptions. Additionally,

1 It isworthmentioning that the term ‘attributed graph’ is not the only termused by the scientific community.
Other terms include, e.g., ‘graphs with feature vectors’, ‘labeled graphs’, or ‘annotated graph’, where also
‘network’ is often substituted for ‘graph’.
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Fig. 1 Attributed graph with natural communities (indicated by rectangular box) and describable commu-
nities (grey background)

there are approaches that explicitly identify attributes for which all vertices in a com-
munity have the same or similar values, without, however, also explicitly returning
those values themselves. Finally, there are methods that derive indicators for the
importance that attributes have for different communities but that would require post-
processing of those indicators to enumerate the attributes.We discuss all three of those
approaches. In summary, the main focus of this survey are methods that explicitly treat
attributes and therefore (can) derive descriptive communities.

Indeed, this is in marked contrast to the survey by Bothorel et al. (2015), which
discusses works that exploit the attribute information in graphs for improving clus-
tering results, i.e. improving community detection—by calculating distances or by
augmenting density information. That is, the primary goal of these methods is to
improve clustering performance by using multiple data sources—not to find descrip-
tive communities. This also means that attributes are not treated explicitly but the
information that is contained in them is mixed with the information inherent in the
network. This takes the form of, for instance, defining quality measures that also take
attribute similarity into account. Because the returned results of those approaches are
only the communities, and no information about the contribution of the attributes
is included, even post-processing might then not result in community descriptions.
Therefore, these are outside the scope of our survey.

We start our discussion by introducing fundamental definitions in Sect. 2, followed
by a concrete description of our selection methodology in Sect. 3. We then con-
tinue with an in-depth survey and categorization of description-oriented approaches
in Sect. 4. Next, we briefly touch the aspect of evaluation and graph generation for
attributed graphs in Sect. 5 before Sect. 6 concludes the survey with a summary and
an outlook on further promising research directions.

2 Definitions

In the following, we outline and summarize fundamental definitions on graphs and
communities.

Definition 1 (Graph) A graph is a tuple G = 〈V , E〉, where V is a set of vertices and
E a set of edges E ⊆ V × V . We refer to the number of edges a vertex v ∈ V is
incident to as the vertex’ degree, deg(v) = |{(u, v) ∈ E | u ∈ V }|.
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Fig. 2 Projection of vertices of the graph shown in Fig. 1 labeled with “C, D”

Definition 2 (Attributed Graph) An attributed graph is a graphG in which each v ∈ V
is associated to a vector of attribute values x = (x1, . . . , xd), and each edge e ∈ E to
a vector y = (y1, . . . , yt ). We use ai (v) to refer to the ith attribute value of a vertex v,
and ai (e) for the edge e respectively. We denote with AV the set of vertex attributes,
d = |AV |, and with AE the set of edge attributes, t = |AE |. If |AV | > 0, |AE | = 0,
we refer to G as vertex-attributed; similarly if |AV | = 0, |AE | > 0, we call it edge-
attributed. If |AV | = 0, |AE | = 0, then we refer to a plain graph.

Note, that this definition subsumes the widely used labeled graph definition, in which
each vertex has a label, and each edge a label or a weight, as a special case.

Definition 3 (Projected Graph) Given a set of vertex attributes AV , an attributed graph
G, a description p = {A1 � val1, . . . , Ad � vald} with Ai ∈ AV , val j ∈ dom(A j ),
and � ∈ {<,≤,=,≥,>}, a projected graph Gp is defined as follows: the subgraph
Gp = 〈Vp, Ep〉, Vp = {v j ∈ V | ai (v j ) � vali }, Ep = {(u, v) ∈ E | u ∈ Vp, v ∈
Vp}, is referred to as the projected graph according to description p.

The graph shown in Fig. 2 depicts the result of projecting the graph shown in Fig. 1
on the description “C,D”. The projection acts as a filter on the vertices, and creates
two communities that can both be described by a single set of items, which we also
call an itemset.

Definition 4 (Graph partition) A partition of a graph G is a set of sets of vertices
PG = {C1, . . . ,Ck}, with Ci ∩ C j = ∅, and ⋃

i Ci = C ; the individual Ci are also
referred to as clusters or communities. The external (internal) degree of a vertex v

refers to the number of edges connecting it to vertices in other (the same) communities:

– degext (v) = |{(u, v) ∈ E | v ∈ Ci , u ∈ C j , i 
= j}| ,
– degint (v) = |{(u, v) ∈ E | v ∈ Ci , u ∈ Ci }| .

This definition is equivalent to the standard community detection definition, in which
it is assumed that vertices can belong to a single community only, and that the graph is
partitioned w.r.t. vertices, not w.r.t. edges. A consequence of the latter is that edges can
have end points belonging to different communities, a characteristic that is exploited
in calculating the quality of communities. When the assumption of strict vertex mem-
bership is relaxed, we refer to overlapping communities.

Overall, how to define communities is a rather complex topic, on which no con-
sensus has been reached yet in the literature. We do not discuss all possible aspects
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but refer the interested reader to Fortunato (2010). An often enforced requirement is
connectedness.

Definition 5 (Path) Given a graphG, a path of length p ∈ N between two vertices v, u
is a list of edges 〈(v1, v2), (v2, v3), . . . , (vp, vp+1)〉 for distinct vertices vi , vi ∈ V ,
i.e. vi 
= v j , i 
= j, with v = v1, u = vp+1.

Definition 6 (Connectedness/Reachability) A community C ⊆ V is considered con-
nected if and only if there is a path between any two vertices v, u ∈ C . The
n-reachability of a community derives from the existence of a path of maximally
length n between any two vertices in the community.

Yet given that reachability requirements could be satisfied by chains of vertices,
stronger connectivity requirements are often imposed, such as that vertices need to
form a k-core (Seidman 1983).

Definition 7 (k-Core) A community C is referred to as a k-Core if and only if
degint (v) ≥ k for every v ∈ C , i.e. each vertex is adjacent to at least k vertices
of the community, and the community is maximal, i.e. one cannot add additional
vertices without violating that property.

A sufficient criterion for communities, finally, is that they are not only connected
but have more internal connections than external ones, focusing on the density. This is
in general related to the notion of density, e.g., (Charikar 2000; Diestel 2006), where
we focus on edge density differentiating between edges internal/external to a given
community.

Definition 8 ((Edge) Density) Given a community Vi , its intra-community density is
the ratio of existing internal edges to the maximum possible number of internal edges:

δint (Ci ) = |{(u, v) | u, v ∈ Ci }|
|Ci |(|Ci | − 1)/2

=
∑

v∈Ci
degint (v)

|Ci |(|Ci | − 1)
.

Its inter-community density is the ratio of existing edges external edges to possible
external edges:

δext (Ci ) = |{(u, v) | u ∈ Ci , v ∈ C j , i 
= j}|
|Ci ||V \ Ci | =

∑
v∈Ci

degext (v)

|Ci ||V \ Ci | .

Such criteria can be absolute, using the definition above with a threshold, but also
relative. There are too many different measures for relative density to list them here,
which is why we only mention the widely-known modularity.

Definition 9 (Modularity) Themodularity (Newman2004;Newman andGirvan 2004)
of a graph clustering with k communities C1, . . . ,Ck ⊆ V focuses on the number of
edges within a community and compares that with the expected such number given
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a null-model (i.e. , a corresponding random graph where the vertex degrees of G are
preserved). It is given by

Modulari t y(C1, . . . ,Ck) = 1

2m

k∑

i=1

∑

u,v∈Ci

Au,v − deg(u) deg(v)

2m
,

where Au,v is the entry of the adjacency matrix referring to vertices u and v, and m is
the number of edges of the whole graph.

Modularity has been used as optimization criterion driving a number of different
classical community detection algorithms, i.e. ones not taking attribute information
into account.

When it comes to communities in attributed graphs, finally, structural density is not
enough but vertices should also agree with respect to attributes, which can be assessed
using a cohesion function (Moser et al. 2009), for instance.

Definition 10 (Cohesion function) A cohesion function is a function

f : P(V ) × P(AV ) × R �→ {true, false}

This function is required to satisfy both a maximality characteristic, i.e. for any set of
vertices V ′ and set of attributes A′

V , the latter contains all attributes for which V ′ is
cohesive,

( f (V ′, A′
V , θs) = true ∧ �A′′

V ⊃ A′
V : f (V ′, A′′

V , θs) = true) ⇒
( f (V ′, A∗

V , θs) = true ⇒ A∗
V ⊆ A′

V ),

and an anti-monotonicity characteristic, i.e. given a set of vertices and a set of attributes
that are cohesive, any subsets of those attributes/vertices stay cohesive:

f (V ′, A′
V , θs) = true ⇒ f (V ′′, A′′

V , θs) = true,∀V ′′ ⊆ V ′, A′′
V ⊆ A′

V

Moser et al. (2009) also provide a concrete example of such a definition:

f (V ′, A′
V , θs) = ∀Ai ∈ A′

V : |max
v∈V ′ ai (v) − min

v∈V ′ ai (v)| ≤ θs

As an illustration, consider Fig. 4: assuming θs = 0.2, A′
V for the upper shaded

community would be {A, B}, and for the lower shaded one {A, B,C}.

3 Scope and overview: algorithm selection and categorization

The numerous techniques that are capable of putting a concrete description on discov-
ered communities rely on the followingmechanisms: (a) descriptions drive community
detection—they are explicitly enumerated and restrict the vertices that can be used to
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form communities, (b) communities drive description formation—only those attribute
values appearing for vertices in a community can be used, or (c) vertex and attribute
membership probabilities for communities are optimized together. The first two
approaches are not necessarily exclusive: as we will see later, some methods iterate
between the two.

Hence, there are different options for constructing a description. Following the
local pattern mining view (Hand 2002; Morik 2002; Morik et al. 2005), we focus on
attributes, and attribute values; and a description combines these in a suitable way,
e.g., by a conjunction, disjunction, or combination thereof. Also, please note that
such descriptions (patterns) induce local structures that can be regarded as the result
themselves, or can be integrated into a global approach that partitions the complete
(graph) data space.

In this paper,we intend to explore these issues in detail, drawing explicit connections
between the differentmethods, in the same spirit as has been done in (Novak et al. 2009)
for supervised rule induction. A comparison between (Pool et al. 2014) and (Galbrun
et al. 2014), for example, has been reported in the latter, showing that the description
language and discriminative learning of the former leads to rather different results.
However, the remaining techniques that we consider (see below), notwithstanding
their similarities, have not been compared against each other before.

3.1 Algorithmic selection criteria

Our selection methodology is based on different aspects of description-oriented
approaches, focusing on ideas from community detection and local pattern mining.
For the latter, we first need to consider what makes up a local pattern. For that, we
take some ideas and definitions from local pattern detection (Hand 2002; Morik 2002;
Morik et al. 2005) which we also illustrate with an example below: According to Hand
(2002) a local pattern can be regarded as a data vector exhibiting an anomalously high
local density of data points compared to a background model. A local pattern has two
important characteristics (Hand 2002; Klösgen 2002)—exemplified by the gray boxes
in Fig. 3: (1) Local patterns cover small parts of the data space. (2) Local patterns
deviate from the distribution of the population of which they are part. This deviation
is usually measured by interestingness measures that contrast their behavior with that
of the entire data or of other patterns.

As a simple illustration, consider Fig. 3: item “A” occurs in five vertices, item “B” in
only four but the set of items “A,B” in four vertices out of 11. The expected frequency
of that set of items is (5 · 4)/11 = 1.81, so its observed frequency deviates clearly
from the background distribution. The expected distribution of “C, D”, on the other
hand, is (9∗9)/11 = 7.36 and its observed distribution 7, it can therefore be regarded
as not local.

Therefore, in an unsupervised view on local pattern detection, no information but
the data itself is given to find out what patterns may be present in the database. In
contrast, a supervised view exploits some information about a concept of interest, or
some target distribution in order to identify interesting patterns. Then, a local pattern
can be regarded as a subgroup, for example, covering a set of instances that contrasts
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Fig. 3 Attributed graph with a community describable by a local, discriminative description (top), and one
describable by a non-local, non-discriminative one (bottom)

A=0.95,B=0.75,C=0.9,
D=0.1,E=0.3,F=0

A=0.9,B=0.75,C=0.7,
D=0.3,E=0,F=0.7
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D=0,E=0.9,F=0.1 A=0.8,B=0.75,C=0.3,

D=0.5,E=0.1,F=0.5
A=0.75,B=0.75,C=0.1,
D=0.7,E=0.7,F=0.3

A=0,B=0.3,C=0.65,
D=0.9,E=0.1,F=0

A=0.1,B=0.25,C=0,
D=0.9,E=0.5,F=0.9

A=0,B=0,C=0.9,
D=0.3,E=0.9,F=0.3

A=0,B=0.25,C=0.6,
D=0.7,E=0,F=0.5

A=0,B=0.2,C=0.55,
D=0,E=0.5,F=0.7

A=0,B=0.15,C=0.5,
D=0.5,E=0.7,F=0.1

Fig. 4 Projection of vertices of the graph shown in Fig. 4 labeled with “C, D”

the global model, cf. Morik (2002). If we consider the edge distribution to be the
target distribution, “A,B” is also a local pattern from a supervised perspective since
the described community is denser than expected.

Thus, our main focus in this survey is on techniques that have two important
aspects in common: (1) Each algorithm identifies a subset of attribute dimensions,
i.e. attributes or attribute–values, that are relevant for the detected communities. (2)
These subsets can be mapped to individual communities and their respective induced
subgraphs (according to the idea of a local pattern).

While communities (i.e. set of vertices) are local structures more or less by defi-
nition, different categories how to handle the attributes have been proposed. We are
specifically interested in local methods where the focus is on subsets of attribute
dimensions that are locally relevant. Also, we focus on methods that create concise
attributive descriptions, in contrast to those approaches for which the derived descrip-
tions often only take the form of certain values appearing in the majority of vertices
in a community, instead of all of them.

Based on these intuitions we can identify three possible categories of algo-
rithms/methods, allowing different potential for interpretation/description:

1. Description via (explicit) attribute selection: Considering Fig. 4, such a method
would select {A, B} for the upper shaded community because their values are
rather close for all vertices, as well as {A, B,C} for the lower one.

2. Description via (explicit) attribute-value selection: Considering Fig. 4, such a
method could find the description A ≥ 0.75 ∧ B = 0.75 for the upper shaded
community, for instance, and B ≤ 0.3 ∧ C ≤ 0.65 ∧ C ≥ 0.5 for the lower one.
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3. Description via implicit attribute selection/attributeweighting, i.e. post-processing
algorithmic output w.r.t. attributes: For Fig. 4, such a method could for instance
derive the following weights:

Attribute Upper communities Lower communities
Complete Shaded Complete Shaded

A 1.18 5 ∞ ∞
B 2 ∞ 3.33 6.67
C 1.11 1.25 2.5 6.67
D 1.11 1.43 1.11 1.11
E 1.11 1.11 1.11 1.43
F 1.11 1.43 1.43 1.43

If we apply a threshold of 3 to select relevant attributes, the non-shaded upper
community cannot be described at all, the shaded one by attributes “A” and “B”, the
lower non-shaded one with “A” and “B”, and the shaded one with “A”, “B”, and “C”.

As we will outline in Sect. 4.3, the third option differs from the first two in that
attributes are not explicitly selected. Instead, all methods discussed in that section
derive some kind of indicator for attributes that could be post-processed to create a
description.

Table 1 provides an overviewof all considered techniques according to this selection
methodology in the order as discussed above, i.e. (1) attribute selection, (2) attribute-
value selection, and (3) postprocessing. Here, the methods in the upper part (and the
respective algorithms) will be discussed in detail in Sects. 4.1 and 4.2, and the ones in
the lower part in Sect. 4.3, including explicit methods and options for postprocessing,
as well as more implicit ones, i.e. postprocessing left to the user.

3.2 Algorithmic categorization

Considering the above selection of approaches based on their type of description, we
provide in the following sections a more detailed categorization of the first two groups
according to different criteria. While this section presents an overview on the given
criteria, the next section summarizes and categorizes the techniques in more detail.

The first three subcategories concern the informativeness of the descriptions:

1. Does the technique select explicit attribute values as part of the description? All
techniques surveyed in detail select a subset, or subspace, of attributes that are
specific to the given communities. Not all of them also select the attribute values
that describe the community. While those can usually be extracted in a post-
processing step, given the community and the relevant attribute subspace, selecting
values allows to present the user with communities and their actual descriptions
directly.

2. Can found communities overlap? The ability to mine overlapping communities
gives additional flexibility and therefore a higher chance to find high-quality
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Table 1 Categorization of algorithms (references in alphabetical order) based on the presented selection
criteria. The top part shows the selected methods based on the inclusion criteria (1 and 2), while the bottom
part includes the algorithms based on post-processing; the latter will be discussed in less detail in Sect. 4.3

Reference Attribute
selection

Attr.-value
selection

Post-processing

Atzmueller and Mitzlaff (2010),
Atzmueller and Mitzlaff (2011),
Atzmueller et al. (2016)

�

Atzmueller et al. (2018),
Atzmueller et al. (2019)

�

Boden et al. (2012),
Boden et al. (2013)

�

Du et al. (2017) �
Galbrun et al. (2014) �
Günnemann et al. (2010),
Günnemann et al. (2011),
Günnemann et al. (2012),
Günnemannet al. (2013a),
Günnemann et al. (2013b),
Günnemann et al. (2013c)

�

Kalofolias et al. (2019) �
Moser et al. (2009) �
Pool et al. (2014) (�)

Sánchez et al. (2013) �
Silva et al. (2012) �
Soldano and Santini (2014),
Soldano et al. (2015),
Soldano et al. (2017)

�

Balasubramanyan and Cohen (2011) �
Baldominos et al. (2017) �
Li et al. (2010) �
Martínez-Seis (2017) �
McCallum et al. (2006) �
Newman and Clauset (2016) �
Revelle et al. (2015) �
Steinhaeuser and Chavla (2008) �
Smith et al. (2016) �
Wang et al. (2016) �
Xu et al. (2012) �
Yang et al. (2013) �
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results. On the other hand, this can lead to redundancy among communities and
reduce interpretability.

3. Does the technique identify local patterns as descriptions, according to the criteria
given in Sect. 3.1?

– In addition, we assess whether found descriptions are discriminative, i.e. whether
they are found by contrasting different communities, or, in other words, whether
knowing any of the descriptions allows one to recover a particular community.
Notably, a non-local description will not be discriminative but a local one will not
automatically help to discriminate between communities.

To illustrate this sub-characteristic, we can again consider Fig. 3. “A,B”, is dis-
criminative in that this description occurs in all vertices of the upper highlighted
community and only there. “C,D”, on the other hand, while correcting describing the
lower highlighted community, also occurs in other vertices.
Additional categories concern the applicability of the techniques:

4. In which language are descriptions enumerated? Most commonly, description lan-
guages are sets of attributes, or conjunctions of attribute-value pairs, but more
expressive languages are also possible.

5. Does the technique work on discrete attribute values, continuous ones, or both?
6. Are attributes considered on vertices, edges, or both?
7. Does the technique consider a single graph, or does it allow for multi-layer

graphs/multiplex networks?

Finally, techniques can traverse the search space either heuristically or in an exact
manner, trading off execution speed against qualitative guarantees. A summary of the
approaches and their corresponding characteristics is presented in Table 2.

4 Survey on relevant algorithms

In the following three subsections, we describe the selected techniques in more detail.
We focus mainly on the first four characteristics (1.-4.) since the applicability criteria
(4.-8.) do not lend themselves to much interpretation, and add some information about
the traversal strategy. The order of the discussed techniques will be chronological,
allowing the reader to follow the methodological developments.

4.1 Attribute selection

We subdivide techniques according to whether they select attribute values or not, and
the first class of techniques identifies attribute subspaces that are relevant for particular
communities but not the values of those attributes, which could however be derived
in a post-processing step.

CoPaMMoser et al. (2009) propose tomine so-called cohesive patterns. A cohesive
pattern is a tuple of a set attributes D and a subgraph G = (V , E) that fulfills three
criteria: (1) D satisfies a cohesion function, (2) G is dense, and (3) G is connected.
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To find patterns, the approach first removes all non-cohesive edges, i.e. edges for
which the vertices violate the cohesion function. The resulting connected compo-
nents are processed independently in an Apriori-like manner, joining edges until
they violate the cohesive pattern constraint, i.e. the approach is community-driven.
Attribute subspaces are identified via amaximal attribute subspace for a subgraph that
is still cohesive. This implies several characteristics of the found patterns: as men-
tioned above, while attribute subspaces are explicitly selected, attribute values are not.
Since edges are joined, it is possible that communities (vertex-)overlap. Furthermore,
because attribute subspaces are chosen without recurrence to the full graph or even
communities resulting from the same connected community, it is neither guaranteed
that they are local, nor that they are discriminative.

GAMER Günnemann et al. (2010), Günnemann et al. (2013c) enhance the above
principle by taking the possible redundancy of subgraphs into account. While CoPaM
reports all maximal dense subgraphs—which might overlap to a high extent—the
works by Günnemann et al. (2010), Günnemann et al. (2013c) focus on finding a set
of non-redundant dense subgraphswithmaximal interestingness.Here, interestingness
can be any function taking the density, size, or number of attributes of the subgraph
into account. Furthermore, the attributes of the community need to satisfy a cohesion
function. To find clusters, a set enumeration tree operating on the set of vertices is
exploited. The tree is traversed in a best-first approaches leading to an exact, non-
heuristic solution.

EDCAR Günnemannet al. (2013a) use the same modeling approach as the work
above. In contrast, however, they exploit a heuristic search principle, thus leading to
much better scalability. More precisely, the set enumeration tree is explored via the
GRASP (Greedy Randomized Adaptive Search) principle.

DB-CSCDeviating from the above scenario that the attribute values of a cluster are
bounded by a specific interval, Günnemann et al. (2012), Günnemann et al. (2011)
propose a density-based cluster definition. More precisely, in the selected attribute
subspace the cluster needs to follow the well-known DBSCAN (Ester et al. 1996)
clustering definition; while in the graph space an extension of k-cores has been pro-
posed. Again, a set of non-redundant clusters is generated. Since DBSCAN allows
to find arbitarly shaped clusters, no specific attribute values selection is provided per
cluster. For finding the clusters, an apriori-like search principle combined with fixed-
point iteration is exploited: starting with 1-dimensional clusters, higher dimensional
clusters are iteratively constructed. Within each subspace, clusters can be detected via
a fixpoint iteration. The subspaces are neither contrasted to the overall distribution,
nor to other communities.

SSCG Günnemann et al. (2013b) extend the principle of spectral clustering to
find subspace clusters in attributed graphs. Following the idea of subspace clustering,
each cluster is associated with an individual set of relevant attributes. The selected
attributes subsequently determine the similarity/weight of two adjacent vertices; that
is, the affinity matrix used in spectral clustering is no longer static but depends on the
selected subspaces. Overall, since neither the subspaces nor the clusters are known,
both aspect are learned in a joint fashion by minimizing the so-called normalized
subspace cut—an extension of the normalized cut. The approach does not identify

123



Mining communities and their descriptions on attributed… 675

local patterns but optimizes a global model. Since solving this optimization problem
is NP-hard, the authors propose an approximative alternating optimization scheme.

ConSub Sánchez et al. (2013) use a Monte Carlo process to generate interval con-
straints on vertex attributes,which are used to create projected subgraphs. If the number
of edges in the subgraph is higher than expected, a congruent subspace and correspond-
ing subgraph has been found. To derive larger attribute subspaces, the authors propose
a bottom-up,Apriori-like approach, similar to Günnemann et al. (2010). The authors
view their approach rather as dimensionality reduction to make community (outlier)
detection more effective.
There are two common threads to the techniques described so far: 1) descriptions
drive community discovery, and 2) vertex attributes’ values’ similarity are considered,
either via explicit thresholding or via clustering.

OSCom Starting from ego-networks, Du et al. (2017), Sun et al. (2018) apply a
metric-based greedy strategy for detecting a set of subnetworks based on the respective
attributed neighborhood, i.e. the common attributes. After that, subcommunities are
extracted, forming an overall supergraph. Finally, global semantic communities are
identified on this supergraph.

MIMAG Orthogonal to the above works that mostly consider vertex-attributed
graphs, Boden et al. (2013), Boden et al. (2012) focuse on edge-attributed graphs.
Similar to the work of Günnemann et al. (2010) they build on extensions of quasi-
cliques (i.e. δint ≥ 0.5), now taking multiple graph layers into account and finding
descriptions operating on the edge attributes. They propose a joint set enumeration
tree to efficiently generate the communities in an informed best first search.

4.2 Attribute-value selection

The second class of techniques identifies both attributes and their relevant values
directly. This obviates the need for a post-processing step of the discovered patterns
to discover the appropriate values for the description. These techniques in many cases
also use descriptions to drive community detection directly in order to establish amap-
ping between attribute dimensions and induced subgraph. The presented techniques
below are somewhat younger than those proposed in the preceding section, and not
surprisingly, there are clear connections to existing (local) pattern mining approaches.

SCPM Silva et al. (2012) binarize attributes, allowing them to treat attribut-value
combinations as items, and apply frequent itemset mining to find promising candi-
dates. By projecting the graph on the itemset, certain vertices will be removed, and the
remaining connected components can be checked for the satisfaction of a minimum
density constraint. By calculating upper bounds on the structural correlation of item-
sets, the pruning capabilities of the approach are enhanced. Clearly, overlap is entirely
possible for the communities found by this approach. In addition, while frequent pat-
terns have been considered the first instance of local patterns in the literature, there
is in fact no locality as such—a frequent pattern can be so frequent that it applies to
different sections of the network. The literature on frequent patterns includes quite
many examples of interestingness measures that relate the frequency of a pattern to
background models (Vreeken and Tatti 2014).
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ParaminerLC / MinerLC Soldano and Santini (2014) take this approach towards
the logical conclusion in terms of frequent itemset mining, mining closed frequent
itemsets as candidate descriptions. As in Silva et al. (2012), the graph is projected and
connected components identified. A difference to the older technique is the use of the
Galois operator on the candidate community, refining both community and description
further. Both enumeration options, descriptions driving community discovery and
communities driving description enumeration, are therefore interleaved.

A follow-up work (Soldano et al. 2015) turns the approach into an iterative one,
treating found communities as networks in which sub-communities should be found.
The similarity to the preceding approach means that Soldano et al. also inherit the
limitations, such as the lack of true locality, while they also apply a different defini-
tion of local (abstract) patterns; essentially, they add the idea of graph abstractions
which lead to further constrained subnetworks where communities are identified, as
described above. This is implemented in the MinerLC algorithm (as an adaptation of
the ParaminerLC algorithm) for undirected but also regarding directed networks (Sol-
dano et al. 2017) and further graph abstractions. If a (strong) constraining graph
abstraction constraint is applied (e.g., a k-core (Seidman 1983) constraint, where
k > 1), then MinerLC basically focuses on those (locally) induced (constrained) sub-
graphs, thus advancing on purely frequent pattern based approaches for community
detection on attributed networks. There are further extensions, e.g., regarding two-
mode attributed networks (Soldano et al. 2019) with according constraints as well.

DCM Instead of starting from the description side, as the approaches discussed
above, Pool et al. (2014) start with communities (as groups of vertices). The space of
possible communities is larger than that of (conjunctive) descriptions, which means
that they have to use a heuristic approach to find high-scoring ones, as is usual in com-
munity detection. Concretely, the approach starts from basic community candidates
and greedily adds/removes vertices to improve a community score. Once those can-
didates stabilize, a pattern mining approach is used to find discriminative conjunctive
patterns that predict vertices’ community membership. For each community, corre-
sponding patterns are combined into a disjunction. This gives DCM a much richer
description language than other methods discussed in this section. Vertices matching
the description are included in the community (and non-matching ones removed).
Since this will result in changes to the communities, the process is iterated until the
community structure remains unchanged.

To ensure interpretability and control redundancy, the top-k communities are
selected in a post-processing step, scored by a measure trading off community quality
and description complexity, and controlled by a redundancy threshold on the Jaccard-
similarity between communities vertices. The use of the discriminative pattern miner
results in local patterns, and the redundancy threshold can be used to control commu-
nity overlap—typically some overlap will be accepted.

Spectral, LDense, PivotGalbrun et al. (2014) also consider the problem of finding a
set of at most k communities in a labeled graph, the cumulative densities of which are
maximal. Vertices are described by labels, i.e. by words. Since a bag-of-words shows
the same characteristics as an itemset, the two problem settings are interchangeable.
After translating their problem into the generalized maximum coverage problem and
showing guarantees for a greedy algorithm that always adds the community hav-
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ing highest residual density, they propose three different techniques for finding the
best community. To control redundancy, edges already included in communities are
removed between iterations but can be re-added in later iterations to improve the
formed communities.

– One of the three techniques, Spectral, begins with calculating a similarity matrix
between attribute-values, using Jaccard over vertices having the respective attribute
values as similarity measure. Using the Laplacian of this matrix, attribute values
are ordered according to the fiedler vector, and continuous intervals in this ordering
considered to identify candidates for communities. The set of communities found
by this approach can be vertex-overlapping but edge-overlap is explicitly excluded.
Descriptions are not compared to those of other communities or the background
graph.

– Next, LDense, greedily—i.e. heuristically—adds labels such that the correspond-
ing vertex set has the highest density, until the description becomes too specific
andmatches no vertices anymore. Among the vertex sets formed during this search
process, the densest (and its description) is included into the solution set.

– The third approach, Pivot, heuristically forms communities, and after formation
greedily constructs the description best matching it. As in Pool et al. (2014), ver-
tices are then added and removed according to whether they match the description
or not.

COMODO Atzmueller et al. (2016), propose a technique that explicitly aims at
identifying local patterns. Inspired by subgroup discoverymethods (Atzmueller 2015),
their approach exhaustively enumerates conjunctions of attribute-value tests, and cal-
culates (standard) community quality measures such as the modularity (Newman and
Girvan 2004), the segregation index (Freeman1978), or the inverted average out degree
fraction (Yang and Leskovec 2012) on the corresponding communities, using upper
bounds/optimistic estimates of these measures to aid in pruning. Comodo returns
the top-k community patterns, with an optional redundancy check using a minimal
improvement filter, e.g., Bayardo et al. (2000). The use of the community quality
measure implies discriminative descriptions, such that a description covering several
communities (components) receives a low score.

Atzmueller (2016) applies the algorithm also to more complex community quality
functions for anomaly detection on labeled edges. The measures used to score descrip-
tions compare community densities to that of the entire graph, satisfying the locality
property. (Atzmueller et al. 2016; Atzmueller 2016) build on Atzmueller and Mitzlaff
(2010), Atzmueller and Mitzlaff (2011), which used fewer measures. These papers
precede the other works discussed in this section.

MinerLSDAtzmueller et al. (2018), Atzmueller et al. (2019) combine central ideas
of the discussed COMODO (Atzmueller et al. 2016) and MinerLC (Soldano et al.
2015, 2017) algorithms for explicitly mining closed local patterns into the MinerLSD
algorithm. It focuses both on local pattern mining, applying the standard local modu-
larity metric (Newman 2004; Atzmueller et al. 2016), as possible for COMODO. In
addition, MinerLSD can utilize graph abstractions which reduce graphs to k-core sub-
graphs (Soldano et al. 2015) for enabling further graph (interestingness) constraints.
Then, local patterns are identified in a similar way as for MinerLC, while the applied
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community measure (local modularity) also favors discriminative descriptions as for
COMODO. In particular, in order to prevent the typical pattern explosion in pattern
mining, MinerLSD employs closed patterns. Then, the top-k patterns or those above
a certain local modularity threshold are returned.

RoSi Kalofolias et al. (2019) apply the same approach as Comodo—treat commu-
nity detection as subgroup discovery, let description enumeration drive discovery, use
optimistic estimates—but propose a different, k-core based measure to discover more
robust communities.
With the exception ofDCM, all techniques in this section have very much in common
with each other. SCPM, ParaminerLC, Spectral, LDense, and Pivot all use an item-
set representation. While the conjunctions of attribute-value combinations used by
Comodo, MinerLSD and RoSi would give themmore flexibility in the case of numeri-
cal attributes, for discrete attributes these can be translated into items, as SCPM shows.

Most of the methods also let descriptions drive community discovery, although
DCM and ParaminerLC interleave the two processes to a certain degree, and Pivot
also starts from communities.

4.3 Attribute-guided graphmining (post-processing possibilities)

There are a number of techniques that employ option three in Sect. 3.1, i.e. that
utilize descriptive information for mining attributed graphs but do not explicitly select
attributes or attribute values directly. The post-processing necessary would therefore
be more extensive than in the case of the methods described in Sect. 4.1. Strictly
speaking, most of these methods fall into the class of algorithms only exploiting
attribute information to improve community detection that are described by Bothorel
et al. (2015).

They differ from those methods that integrate attribute information via combined
similarity functions or by introducing virtual vertices, however. In the former case,
inverting the function to derive attribute importance is far from obvious, and in the
latter there may be parts of a community that depend not at all on attribute vertices
and others that fall apart if one removed these vertices.

Whereas the methods described in Sect. 4.2 explicitly enumerate both attributes
and their values, and those in Sect. 4.1 at least return the attributes that need to be
processed, the techniques in this section calculate the relative importance of attributes
and this information has to be post-processed to derive descriptions. We therefore
discuss most of these techniques in less detail, giving more attention to those that
demonstrated this kind of post-processing.

We summarize the different methods in Table 3, indicating whether overlapping
communities can be found, the used algorithmic technique, whether the method con-
siders vertex or edge attributes, and whether attributes are discrete or continuous.

4.3.1 Explicit post-processing

We start with methods including explicit post-processing options.
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GT model We begin with the work of McCallum et al. (2006), which has several
interesting characteristics: (1) this is, to the best of our knowledge, the first such work,
(2) they consider attributes on edges, not vertices, and (3) they explicitly post-process
their results to retrieve the most relevant attributes. Concretely, they consider edges
to be labeled with words, equivalent to items, and employ a topic model taking both
labels and group membership into account. They extract the five to eight (depending
on experimental setting) most relevant words from the topic model.

Block-LDA Balasubramanyan and Cohen (2011) combine block models with LDA
to estimate both communitymembership and conditional topic distributions. ByGibbs
sampling fifteen terms per community, they recover the most relevant terms.

CESNA Yang et al. (2013) use a model in which each vertex has community affili-
ation probabilities. Those affiliation probabilities predict both edges between vertices
and attribute values, and the formation process consists of estimating those affiliations
in such away that they alignwith the edges and attributes observed in the data. Vertices
are annotated with words or phrases, by exploiting the estimated conditional attribute
weights, the authors extract the top attributes per community.

SENC Revelle et al. (2015) use a topic model for finding relevant topics for com-
munities, as well as vertex membership probabilities, and employ an EM algorithm
to optimize the two. They assume that vertices are described by words but differ from
other work in using term weights (TFIDF), i.e. switching from an itemset-like setting
to one of numerical values. In the experimental evaluation, they present the top-40
terms per community according to learned conditional probabilities.

SCIWang et al. (2016) employ non-negative matrix factorization (NMF). Vertices
are described by bags-of-words, or itemsets, and the objective function combines
topology and attribute similarity, using a trade-off parameter. As a result of their for-
mulation, one of the derived matrices encodes the relationships between communities
and attributes, which they exploit to extract the top-10 words.

ASCD The work of Qin et al. (2018) differs only to a small degree from SCI, mainly
due to a focus on the fact that topology and shared attribute values can disagree,
requiring the ability to fine-tune the trade-off between the two. They also extract the
top-10 words.

4.3.2 Post-processing left to the user

Finally, we focus on approaches which do not include explicit post-processing, but
leave that to the user for potentially extracting descriptions from the discovered com-
munities. Steinhaeuser and Chavla (2008) annotate edges with the similarity between
vertices’ attribute values, and group them into communities by thresholding those
similarity values. By post-processing those communities, one could identify those
attributes for which vertices are similar, as well as their values but the descriptions
could be rather general. Li et al. (2010) first form communities using the Girvan-
Newman method (Girvan and Newman 2002), and then identify relevant topics using
Latent Dirichlet Allocation. Community detection is not informed by descriptions, and
communities are not adjusted afterwards, however, meaning that descriptions could
be unreliable or non-existent. Xu et al. (2012) propose building an MAP model over
vertex attribute values to cluster vertices.While one could use model values to identify
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the most relevant attributes for each cluster, this is not an output of the approach. Smith
et al. (2016) use a random-walk based method for identifying communities, and derive
weights for attribute values based on their frequency in the network and the visitation
frequency of the random walker. Those walks could be used to identify the descrip-
tion corresponding to a community in post-processing. Newman and Clauset (2016)
use a Bayesian modeling technique based on stochastic block models for estimating
community allocations including structural and attributive information, however no
description is targeted. Baldominos et al. (2017) find stereotypes from communities
detected using amodularity-optimizing algorithm byweighting labels according to the
proportion of vertices in the community that support them. Conversely, Martínez-Seis
(2017) use homophilic principles for obtaining a ranking of the attributes and then
only apply those for community detection.

5 Evaluation and attributed graph generation

A glaring issue for finding descriptions of communities is evaluation. It is already a
difficult challenge in the case of classical community detection because the ground
truth is often not known, and evaluating whether the description of a community is
appropriate is arguably even harder. There are some benchmark graph generators for
creating plain networks, e.g., (Lancichinetti et al. 2008; Baldesi et al. 2018; Bojchevski
et al. 2018), however, these donot take attribute information into accountwhen creating
the respective graphs.

Attributed graph generators aim to generate graphs following natural properties,
e.g., power-law behaviour of the degree distribution. Existing works cover extensions
of preferential attachment models (Zheleva et al. 2009; Lee et al. 2015), stochastic
block models (Newman and Clauset 2016), or sampling approaches (Robles-Granda
et al. 2016). Kaytoue et al. (2017) generate attributed graphs incorporating con-
nected components with attributive structure. Furthermore, Serratosa (2018) presents
a methodology for generating pairs of attributed graphs with a bounded graph edit
distance, focussing on graph matching problems. Note that all these approaches for
generating attributed graphs usually do not explicitely model communities. That is,
the ‘true’ community structure will not be known for the generated graphs. In con-
trast, Largeron et al. (2015), Largeron et al. (2017) introduce a graph generator for
attributed graphs that is able to incorporate community structure in the generated
attributed graphs. However, the work does not propose how to find these communi-
ties.

It is worth noting that all attributed graph clustering models based on probabilistic
generative models (e.g. Kim (2011), Yang et al. (2013), Xu et al. (2014)) could in
principle also be used for generating data; usually, however, they are used for inference
only.
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6 Conclusion

Even though community detection in attributed graphs, and more concretely detect-
ing communities and their descriptions together, is still a relatively young research
direction, progress has been quick and a variety ofmature techniques exist already. Sur-
veying those approaches, we have identified three main families, one which employs
subspace clustering ideas, i.e. identifying those attribute-subspaces for which com-
munities occur in the graph/network, a second one that adapts ideas developed in local
pattern mining, and a third one that identifies the conditional importance of attributes
in certain communities.

For the first class of methods, this allows exploiting the rich set of clustering tech-
niques developed over several decades of research to address the similarity question
in the attribute space, giving those approaches both high flexibility and good run-
ning times. Accordingly, multiple established clustering notions such as degree-based
clustering, spectral clustering, or density-based clustering have been transfered to the
attributed graph domain.

The second class of techniques has undergone the same progression as previous
forms of pattern mining: starting from frequent patterns, via condensed representa-
tions, to exhaustive techniques employing sophisticated upper bounds to find the best
patterns according to established quality criteria. As was to be expected, this progres-
sion happened much faster than for the original pattern mining settings, which also
means that the field has completely caught up to the state of the art. Any future develop-
ments in pattern mining could be ported to the communities-plus-descriptions-setting
without problems, giving rise to new powerful methods.

The third class draws liberally from anything that allows to assess attribute impor-
tance, whether via clustering, learning, probabilisticmodeling etc. This gives that class
the highest flexibility when it comes to integrating recent advances, and makes it the
largest of the three algorithmic classes we considered. Yet matching attributes or their
combinations to communities will in most cases only be approximate, as opposed to
the more concrete descriptions of the other two classes.

One of the benefits of surveying the state of the art lies in seeing what potential
research directions remain underexplored.

1. Existing approaches have arguably picked the low-hanging fruit in focusing on
itemset or attribute-value annotations. Yet vertices could as well be described
by sequences, graphs (molecules), or logical formulas. Given that clustering and
pattern mining techniques for such complex data representations exist, there is
no reason that one could not port existing work to the—admittedly challenging—
problem setting of finding communities that have more complex descriptions than
attribute-value combinations.

2. The real-life data captured in graphs is often not static but changes over
time, whether in collaboration networks or networks modeling human mobility,
e.g., Giannotti et al. (2016). Dynamic attributed graphs have been studied (Desmier
et al. 2014; Boulicaut et al. 2016), as has community detection in dynamic graphs
(Mucha et al. 2010; Nguyen et al. 2011; Xie et al. 2013) but the two have yet to
be married.
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3. While we pointed out a few approaches that address edge-attributed graphs, i.e.
characterizations of the relationships among entities, the vast majority of exist-
ing work focuses on vertex-attributed graphs, i.e. characterizations of the entities
themselves.

4. Richer network representations like multi-layer and multiplex networks (Mucha
et al. 2010) provide a rich set of analysis options concerning the network structure
which can be exploited in community detection.

5. Finally, while each of the previously mentioned future directions should be
expected to be challenging, we fully expect that at some point they will be com-
bined, if only because the problem setting offers a very rich descriptivemodel of the
world. Finding communities in dynamic multiplex networks that can be described
(and therefore understood) by complex descriptions on vertices and edges is the
foreseeable endpoint of a development of which we have only sketched the begin-
nings in this work.

It is not entirely clear, however, whether developments in this direction can be
expected anytime soon. Research on graph and network analysis has exceedingly
focussed on embedding techniques in recent years, even if it is not clear that such
techniques represent clear improvements (Mara et al. 2020). It is therefore entirely
possible that we will see the same development as in deep learning-based machine
learning: opaque models are learned, and symbolic methods added afterwards to make
those models interpretable, instead of deriving interpretable results directly.
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